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Abstract

Boneh and Venkatesan have proposed a polynomial time algorithm
for recovering a ”hidden” element α ∈ IFp, where p is prime, from
rather short strings of the most significant bits of the residue of αt
modulo p for several randomly chosen t ∈ IFp. González Vasco and
the first author have recently extended this result to subgroups of
IF∗

p of order at least p1/3+ε for all p and to subgroups of order at
least pε for almost all p. Here we introduce a new modification in
the scheme which amplifies the uniformity of distribution of the ‘mul-
tipliers’ t and thus extend this result to subgroups of order at least
(log p)/(log log p)1−ε for all primes p. As in the above works, we give
applications of our result to the bit security of the Diffie–Hellman se-
cret key starting with subgroups of very small size, thus including all
cryptographically interesting subgroups.

Keywords: Hidden number problem, Diffie-Hellman key exchange, Lattice
reduction, Exponential sums, Waring problem in finite fields
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1 Introduction

For a prime p, denote by IFp the field of p elements and always assume that
it is represented by the set {0, 1, . . . , p − 1}. Accordingly, sometimes, where
obvious, we treat elements of IFp as integer numbers in the above range.

For a real η > 0 and t ∈ IFp we denote by MSBη(t) any integer which
satisfies the inequality

|t − MSBη(t)| < p2−η−1. (1)

Roughly speaking, MSBη(t) is an integer having about η most significant
bits as t (taking into account our convention about the elements of IFp).
However, this definition is more flexible and better suited to our purposes.
In particular we remark that η in the inequality (1) need not be an integer.

Given a subgroup G ⊆ IF∗
p we consider the following hidden number prob-

lem over G:

Recover a number α ∈ IFp such that for k elements t1, . . . , td ∈ G,
chosen independently and uniformly at random from G, we are
given k pairs

(th, MSBη(αth)) , h = 1, . . . , d,

for some η > 0.

For G = IF∗
p this problem has been introduced and studied by Boneh

and Venkatesan [1, 2]. In [1] a polynomial time algorithm is designed which
recovers α for some η ∼ (log p)1/2 and k = O(log1/2 p). The algorithm of [1]
has been extended in several directions. In particular, in [5] it is generalised
to all sufficiently large subgroups G ⊆ IF∗

p. This and other generalisations
have led to a number of cryptographic applications, see [20, 21, 22]. Using
bounds of exponential sums from [7, 10] it has been shown that the algorithm
of [1] works for subgroups G ⊆ IF∗

p of order #G ≥ pν+ε where for any ε > 0
and sufficiently large Q one can take

• ν = 1/3 for all primes p ∈ [Q, 2Q],

• ν = 0 for all primes p ∈ [Q, 2Q], except at most Q5/6+ε of them.

Using a recent improvement of [9] of the bounds of exponential sums one can
obtain the same result with
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• ν = 1/4 for all primes p ∈ [Q, 2Q],

• ν = 0 for all primes p ∈ [Q, 2Q], except at most Q3/4+ε of them.

However, in practical applications one would probably choose a subgroup of
order about exp

(

c(log p)1/3(log log p)2/3
)

for some constant c > 0 in order to
balance complexities of the number field sieve based attacks and Pollard’s
rho-method based attacks, see [6, 13, 16, 17, 23].

Here we extend the algorithm of [1] to the case of almost arbitrary sub-
groups G ⊆ IF∗

p. More precisely, our result applies to any subgroup G ⊆ IF∗
p of

size #G ≥ log p/(log log p)1−ε, thus it includes all subgroups of cryptograph-
ically interesting sizes. As in [1], our method is based on lattice reduction
algorithms and also makes use of exponential sums, however not in such a
direct way as in [5]. Namely, we introduce certain new arguments allowing
to amplify the uniformity of distribution properties of small subgroups G.
This allows us to use the bound of exponential sums from [8] with elements
of G, which is very moderate in strength (and does not imply any unifor-
mity of distribution properties of G which would be the crucial argument of
the method of [5]). The bound of [8] has however the very important ad-
vantage over the bounds of [7, 9, 10] that it applies to subgroups of order
#G ≥ log p/(log log p)1−ε. It is interesting to note that our approach has links
with the famous Waring problem which has been studied in number theory
for several hundred years. In fact, the Waring problem in finite fields has
been the main motivation of the bound of exponential sums of [8] which we
use in this paper. For surveys of recent results on this problem see [3, 8, 24].
As in [1, 5] we apply our algorithm for the hidden number problem to derive
a bit security result for the Diffie-Hellman scheme.

We hope that similar ideas can be used for several other variants of the
hidden number problem and its applications, see [20, 21, 22]. On the other
hand, it should be remarked that our approach requires an increase in the
number of oracle calls (which remains polynomial nevertheless, in particular
it never exceeds (log p)4).

Throughout the paper log x always denotes the binary logarithm of x >
0 and the constants in the ‘O’-symbols may occasionally, where obvious,
depend on a small positive parameter ε and are absolute otherwise. We
always assume that p is a prime number with p ≥ 5, thus the expressions
log log p and log log log p are defined (and positive).

Acknowledgements: The first author was supported in part by
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2 Exponential sums and distribution of short

sums of elements of subgroups

For a complex z we put ep(z) = exp(2πiz/p).
Let T = #G, T |(p − 1), be the cardinality of a subgroup G ⊆ IF∗

p. If we
put n = (p − 1)/T then each element r ∈ G has exactly n representations
r = xn with x ∈ IF∗

p. Therefore, for any λ ∈ IFp,

∑

r∈G

ep (λr) =
T

p − 1

∑

x∈IF∗

p

ep (λxn) .

Now by Theorem 1 of [8] we have the following bound, see also [3, 9, 10].

Lemma 1. For any 1 > ε > 0 there exists a constant c(ε) > 0 such that for
any subgroup G ⊆ IF∗

p of order

T ≥
log p

(log log p)1−ε

the bound

max
gcd(λ,p)=1

∣

∣

∣

∣

∣

∑

r∈G

ep (λr)

∣

∣

∣

∣

∣

≤ T

(

1 −
c(ε)

(log p)1+ε

)

holds.

For an integer k ≥ 1, a subgroup G ⊆ IF∗
p and t ∈ IFp we denote by

Nk(G, t) the number of solutions of the equation

r1 + . . . + rk ≡ t (mod p), r1, . . . , rk ∈ G.

Recalling the relation between the set of nth powers, where n = (p − 1)/T ,
we see that studying the above congruence is equivalent to studying the
congruence

xn
1 + . . . + xn

k ≡ t (mod p), x1, . . . , xk ∈ IF∗
p.
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The problem of finding the smallest possible value of k for which the con-
gruence (or in more traditional settings the corresponding equation over ZZ)
has a solution for any t is known as the Waring problem. However for our
purposes just a solvability is not enough. Rather we need an asymptotic
formula for the number of solutions.

We show that Lemma 1 can be used to prove that for reasonably small
k, Nk(G, t) is close to its expected value.

Lemma 2. For any 1 > ε > 0 there exists a constant C(ε) > 0 such that
for any subgroup G ⊆ IF∗

p, of order

T ≥
log p

(log log p)1−ε

the bound

max
t∈IFp

∣

∣

∣

∣

Nk(G, t) −
T k

p

∣

∣

∣

∣

≤
T k

p2

holds for any integer k ≥ C(ε)(log p)2+ε.

Proof. The well-known identity (see for example [12, Chapter 5.1])

p−1
∑

λ=0

ep(λu) =

{

0, if u 6≡ 0 (mod p),
p, if u ≡ 0 (mod p),

implies that

Nk(G, a) =
∑

r1,... ,rk∈G

1

p

p−1
∑

λ=0

ep (λ(r1 + . . . + rk − t))

=
1

p

p−1
∑

λ=0

ep (−λt)

(

∑

r∈G

ep (λr)

)k

.

Separating the term T k/p, corresponding to λ = 0, and applying Lemma 1
to other terms, we obtain

max
t∈IFp

∣

∣

∣

∣

Nk(G, t) −
T k

p

∣

∣

∣

∣

≤ T k

(

1 −
c(ε)

(log p)1+ε

)k

= T k exp
(

O
(

k(log p)−1−ε
))

and the desired result follows. ⊓⊔
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3 Uniform distribution and hidden number

problem

First of all we recall the classical definition of the discrepancy D(Γ) of an
N -element sequence Γ = (γ1, . . . , γN) of elements of the interval [0, 1]:

D(Γ) = sup
J⊆[0,1]

∣

∣

∣

∣

A(J, N)

N
− |J |

∣

∣

∣

∣

,

where the supremum is extended over all subintervals J of [0, 1], |J | is the
length of J , and A(J, N) denotes the number of points γn in J for 0 ≤ n ≤
N − 1. Informally speaking the discrepancy tells us how much the number
of hits A(J, N) of a given interval J differs from its expected value |J |N .

Now, following [14] we say that a finite sequence T of elements of IFp is
∆-homogeneously distributed modulo p if for any integer λ with gcd(λ, p) =
1, the discrepancy of the sequence of fractions (λt/p)t∈T is at most ∆ (we
certainly assume that λt ∈ IFp and thus is reduced modulo p and all these
points belong to [0, 1]).

The following statement is a generalization of Theorem 1 of [1] and is
given in [14] as Lemma 4.

Lemma 3. Let ω > 0 be an arbitrary absolute constant. For a prime p,
define

η = ω

(

log p log log log p

log log p

)1/2

and d =
⌈

3η−1 log p
⌉

.

Let T be a 2−η-homogeneously distributed modulo p sequence of integer num-
bers. There exists a probabilistic polynomial-time algorithm A such that for
any α ∈ IFp given 2d integers

th and uh = MSBη (αth) , h = 1, . . . , d,

its output satisfies for sufficiently large p

Pr [A (p, t1, . . . , td; u1, . . . , ud) = α] ≥ 1 −
1

p

where the probability is taken over all t1, . . . , td chosen uniformly and in-
dependently at random from the elements of T and all coin tosses of the
algorithm A.
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4 Hidden Number Problem in Subgroups

Assume that for α ∈ IF∗
p and a subgroup G ⊆ IF∗

p of order T , generated by g ∈
IF∗

p, we are given an oracle HNPµ such that for every x ∈ {0, 1, . . . , T − 1},
it returns MSBµ(αgx).

Theorem 4. Let ϑ > 0 be an arbitrary absolute constant and let

µ = ϑ

(

log p log log log p

log log p

)1/2

.

There exists a polynomial time probabilistic algorithm which, for any 1 > ε >
0 and any g ∈ IF∗

p of order

T ≥
log p

(log log p)1−ε
,

makes O (µ−1(log p)3+ε) calls of the oracle HNPµ and then recovers α with
probability at least 1 + O

(

2−µ/2
)

.

Proof. For integers w we denote by ⌊w⌋p the remainder of w on division by
p. Take C(ε) from Lemma 2, d from Lemma 3, and put

k =
⌈

C(ε)(log p)2+ε)
⌉

, η = 2µ/3, d =
⌈

3η−1 log p
⌉

.

Then by Lemma 2 the sequence

T = (r1 + . . . + rk | r1, . . . , rk ∈ G)

of k-sums of elements of G is 2−η-homogeneously distributed modulo p. Now
we call the oracle HNPµ for dk uniformly and independently at random
chosen

r11, . . . , r1k, . . . , rd1, . . . , rdk ∈ G

and get integers uhj with

|⌊αrhj⌋p − uhj| < p/2µ+1, h = 1, . . . , d, j = 1, . . . , k.

For h = 1, 2, . . . , d we put

vh =
k

∑

j=1

⌊αrhj⌋p, th =

⌊

k
∑

j=1

rhj

⌋

p

, uh =
k

∑

j=1

uhj.
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(where we used addition over ZZ).
Note that for sufficiently large p,

|vh − uh| < kp/2µ+1 ≤ p/2η+1.

Next, we have

vh − uh − ⌊vh⌋p + ⌊uh⌋p = νp with ν ∈ {−1, 0, 1}.

If ν = 1 then we have

⌊vh⌋p − ⌊uh⌋p + p = |vh − uh| < p/2η+1

which is only possible if ⌊vh⌋p > p − p/2η+1. If ν = −1 then we have

⌊uh⌋p − ⌊vh⌋p + p = |vh − uh| < p/2η+1

which is only possible if ⌊vh⌋p < p/2η+1. If ν = 0 then we have

|⌊αth⌋p − ⌊uh⌋p| = |⌊vh⌋p − ⌊uh⌋p| = |vh − uh| <
p

2η+1
.

By Lemma 2, the probability that p/2η+1 ≤ ⌊vh⌋p ≤ p − p/2η+1 for all
h = 1, . . . , d is 1 + O (d2−η). Now the algorithm of Lemma 3 yields the
correct α with probability at least 1 + O (d2−η + p−1) = 1 + O

(

2−µ/2
)

if p is
sufficiently large. ⊓⊔

5 Bit Security of the Diffie-Hellman scheme

As in [1, 5] we now apply Theorem 4 to derive a bit security result for the
Diffie-Hellman scheme.

We assume that for a subgroup G ⊆ IF∗
p we are given an oracle DHµ

which, given the values of X = gx ∈ IFp and Y = gy ∈ IFp, outputs the value
of MSBµ (gxy). Repeating the same arguments of [5] we derive the following
result.

Theorem 5. Let ϑ > 0 be an arbitrary absolute constant and let

µ = ϑ

(

log p log log log p

log log p

)1/2

.
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There exists a polynomial time probabilistic algorithm which, for any 1 > ε >
0 and any g ∈ IF∗

p of order

T ≥ (log p)1+ε

which for any pair (a, b) ∈ {0, 1, . . . , T−1}2, given the values of A = ga ∈ IFp

and B = gb ∈ IFp, makes O (µ−1(log p)3+ε) calls of the oracle DHµ and
computes gab correctly with probability 1 + O

(

2−µ/2 + T−ε/2
)

.

Proof. As in [5], given a pair (a, b) ∈ {0, 1, . . . , T −1}2 let us select an integer
s ∈ {0, 1, . . . , T − 1} uniformly at random. We compute

gs = Bgs

thus gs = gb+s.
Let ∆ = T ε/(1+ε). The probability that gcd(b + s, T ) ≥ ∆ is at most

τ(T )/∆, where τ(T ) is the number of positive integer divisors of T . Indeed,
for any divisor D|T with D ≥ ∆ there are at most T/D ≤ T/∆ values of
x ∈ {0, 1, . . . , T − 1} with gcd(x, T ) = D.

Using the bound τ(T ) = T o(1), see [15, Chapter 1, Theorem 5.2], we
obtain that the probability of gcd(b + s, T ) ≥ ∆ is at most T−ε/2.

In the opposite case, when gcd(b + s, T ) < ∆, the multiplicative order of
gs is

Ts =
T

gcd(b + s, T )
>

log p

(log log p)1−ε
.

Put αs = ga(b+s). Now we can call the oracle DHµ with gxA = gx+a and gs

to evaluate
MSBµ

(

g(a+x)(b+s)
)

= MSBµ (αsg
x
s )

for an integer x chosen uniformly at random in the set {0, 1, . . . , T − 1}.
Because Ts|T the values of x are uniformly distributed modulo Ts as well,
thus Theorem 4 can be applied, producing the desired result. ⊓⊔

6 Remarks

It seems very plausible that the same approach can be applied to the hidden
number problem over extension fields which is related to proving bit security
of XTR and LUC protocols, see [11, 19], as well as of some tripartite key
exchange protocol on elliptic curves, see [4]. In particular, for this purpose
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one can probably use a very weak bound of [18] which however applies to
very small subgroups.

As in [1, 5], Theorem 4 can be applied to a number of other cryptographic
protocols, for example to the ElGamal cryptosystem.

In [2] a nonuniform algorithm has been constructed which works with
much smaller values η ∼ log log p. This means that if the points t1, . . . , td ∈ G
are known in advance, one can design (in exponential time) a certain data
structure, that now given d values MSBη(αth), h = 1, . . . , d, the hidden
number α can be found in polynomial time. In principle our approach can
be used to extend the algorithm of [2], as well. However, this algorithm works
only for almost all α ∈ IFp rather than for all of them.
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[6] R. Crandall and C. Pomerance, Prime numbers: A Computational per-
spective, Springer-Verlag, Berlin, 2001.

[7] D. R. Heath-Brown and S. V. Konyagin, ‘New bounds for Gauss sums
derived from kth powers, and for Heilbronn’s exponential sum’, Quart.
J. Math., 51 (2000), 221–235.

10



[8] S. V. Konyagin, ‘On estimates of Gaussian sums and the Waring problem
modulo a prime’, Trudy Matem. Inst. Acad. Nauk USSR, Moscow, 198

(1992), 111–124 (in Russian); translation in Proc. Steklov Inst. Math.,
1 (1994), 105–117.

[9] S. V. Konyagin, ‘Bounds of exponential sums over subgroups and Gauss
sums’, Preprint , 2002, 1–25 (in Russian).

[10] S. V. Konyagin and I. Shparlinski, Character sums with exponential
functions and their applications , Cambridge Univ. Press, Cambridge,
(1999).
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