
How to Predi
t the Output of a

Hardware Random Number Generator

Markus Di
htl

Siemens AG, Corporate Te
hnology

Email: Markus.Di
htl�siemens.
om

Abstra
t. A hardware random number generator was des
ribed at CHES 2002 in [Tka03℄.

In this paper, we analyze its method of generating randomness and, as a 
onsequen
e of the

analysis, we des
ribe how, in prin
iple, an atta
k on the generator 
an be exe
uted.

1 Introdu
tion

Both designs for hardware random number generators and the evaluation of hardware random

number generators have not been treated often in publi
ations. This means a serious 
ontrast

between { on the one hand { the importan
e of hardware random number generation and their

evaluation for the se
urity of appli
ations and { on the other hand { the little attention this topi


has found in the published literature.

One 
ase where the absen
e of a suitable physi
al random number generator re
eived 
onsider-

able publi
 attention were the defe
ts found in the random number generation for SSL implemented

in an early version of the Nets
ape browser. The time of the day used as the only sour
e of true

randomness did not provide enough entropy. This la
k of entropy 
ould be used for a spe
ta
ular

atta
k [GW96℄.

Physi
al random number generators deriving their randomness from a physi
al random pro
ess,

are also 
alled true random number generators (TRNGs). TRNGS have to be distinguished from

pseudo random number generators (PRNGs). PRNGs derive their output algorithmi
ally from

a se
ret initial state. The unpredi
tability of PRNGs relies on the 
omputational infeasibilty of

trying all possible initial states, and on some assumptions on the algorithm used.

We will see that the hardware random number generator des
ribed at CHES 2002 in [Tka03℄ is

a 
ombination of TRNG and PRNG elements. Therefore we just 
all it the RNG (random number

generator) in this paper.

We will show that the RNG in some 
ases produ
es very little entropy, so that its output 
an

be predi
ted. This is in 
ontrast with one of the design requirements for the generator 
ited in

[Tka03℄.

This paper provides theoreti
al analysis based on the properties of the RNG des
ribed in

[Tka03℄; no experiments on a real 
hip were made.

2 A hardware random number generator

The RNG des
ribed in [Tka03℄ uses two free running os
illators, implemented as ring os
illators,

to 
lo
k two deterministi
 �nite state ma
hines.

One of the �nite state ma
hines is a binary linear feedba
k shift register (LFSR) of length 47.

The feedba
k polynomial of the LFSR is primitive.

The other �nite state ma
hine is a one dimensional binary 
ellular automaton (CA) with a

neighbourhood of 3. The CA 
onsists of 37 
ells. All 
ells ex
ept one follow one rule to derive

their next state: The new value is the XOR of the old values of the two neighbouring 
ells. Only


ell 28 is subje
t to another, albeit similar, rule: Its new value is the XOR sum of its old value

and the old values of its two neighbours. For the two 
ells at the border of the CA, null boundary


onditions are used; that is those neighbouring 
ells whi
h are required by the CA rules, but whi
h



are beyond the limits of the CA, are assumed to have the �xed value 0. If started from a not all

zeros state, this CA has a 
y
le length of 2

37

� 1.

When the RNG has to produ
e a random number, 32 bits of the LFSR and 32 bits of the

CA are taken from �xed positions of those �nite state ma
hines. The 32 bits from the LFSR are

XORed with the 32 bits from the CA in order to re
eive the 32 bit output word.

3 Where does the randomness in the RNG 
ome from?

The main elements of the RNG are two free running os
illators, a linear feedba
k shift register, and

a 
ellular automaton. Free running os
illators 
an be a basis of TRNGs, whereas linear feedba
k

shift registers and 
ellular automata, whi
h are deterministi
, are frequently used in the 
onstru
-

tion of PRNGs. In order to get a 
lear understanding of the origin of randomness in the RNG, the

TRNG parts and the PRNG parts have to be separated mentally.

The linear feedba
k shift register used in the RNG 
an be seen as a spe
ial 
ounter with a

period length of 2

43

�1. The 
ounter states are not represented as the familiar binary numbers, but

are en
oded as subsequent shift register states. Clearly the 
onversion between the representation

of a 
ounter state as a binary number and a shift register state is 
ompletely deterministi
.

Analogously, the 
ellular automaton used in the RNG 
an be seen as a spe
ial 
ounter with a

period length of 2

37

� 1. Here, the 
ounter state is represented as a 
ellular automaton state, but

again, the 
onversion between these 
ellular automaton states and the familiar binary numbers is


ompletely deterministi
.

Hen
e, the only sour
e of entropy in the RNG are the initial states of the registers in the linear

feedba
k shift register and the 
ellular automaton, and the number of 
lo
ks that o

urred for

the linear feedba
k shift register and for the 
ellular automaton. The number of 
lo
ks for the

linear feedba
k shift register is only relevant modulo 2

43

� 1, the number of 
lo
ks for the 
ellular

automaton modulo 2

37

� 1.

4 How random is this?

As we have identi�ed the sour
es of entropy in the RNG, the question arises how mu
h entropy

they provide.

The �rst sour
e of randomness are the undetermined initial states of the registers. Even if ea
h

register assumed the 0 and 1 state with probability 1=2 ea
h time the RNG is initialized, and

even if there were no dependen
ies between the states of the registers at di�erent initializations,

this would not help the RNG mu
h on the long run, be
ause a good TRNG has to must produ
e


ontinually new entropy as it runs, and not rely on an initial sto
k of entropy. However, the initial

states of 
ip 
ops turn out to be no reliable sour
e of entropy. Due to manufa
toring variations,

they are not 
ompletely symmetri
al and as a 
onsequen
e, most 
ip 
ops have an initial state

whi
h they initially take with a probability 
lose to 1.

The other sour
es of randomness are the number of 
lo
ks o

urring for the 
ellular automaton

(modulo 2

37

�1) and for the linear feedba
k shift register (modulo 2

43

�1) sin
e the initialization.

When an atta
ker Ali
e knows the frequen
ies of the free running os
illators 
lo
king the

LFSR and the CA only with limited pre
ision, the RNG be
omes 
ompletely unpredi
table after

a suÆ
iently long waiting time.

Let us assume Ali
e knows the frequen
ies of the free running os
illators with a pre
ision of

10 per
ent, and that she also knows the initial state of the CA. Roughly speaking she looses all

information about the state of the CA after about 10 � (2

37

� 1) � 10

12


lo
ks of the CA. Even if

the CA were 
lo
ked with 1 GHz, this would mean a waiting time of about 22 minutes. And in

order to a
hieve 
ompletely independent CA states, one would also need waiting times of about

22 minutes between ea
h 32 bit blo
k of random values generated.

In [Tka03℄, too, a minimum sampling period for the subsequent generation of 32 bit blo
ks

of random values is given. It is 
onsiderably smaller than 10

12

, namely 86 
yles of the os
illator


lo
king the LFSR. Subsequently, we shall study the predi
tability of the RNG when this minimum

sampling period is used.

2



5 How to predi
t the RNG bits

5.1 How well does an atta
ker know the frequen
ies of the free running 
lo
king

os
illators?

Evidently, the better the atta
ker Ali
e knows the frequen
ies of the free running os
illators 
lo
k-

ing the LFSR and the CA, the better she 
an predi
t the numbers of 
lo
ks o

urring for the

LSFR and the CA.

The knowledge of these frequen
ies depends heavily on the 
ir
umstan
es of the atta
k. The

main environmental parameters in
uen
ing the frequen
ies of free running os
illators are the tem-

perature and the supply voltage. Sometimes these parameters are diÆ
ult to predi
t for Ali
e. In

other appli
ations, she may know these parameters pre
isely , or may even 
hoose them. For exam-

ple, professionally run trust 
enters tend to have their 
omputers in stable air 
onditioned environ-

ments without mu
h variation in temperature or supply voltage. On the other hand, smart
ards

will en
ounter enormous variations in environmental 
onditions, but when the user of a smart
ard

wants to atta
k the physi
al random number generator of the smart
ard, she may 
hoose the

environment temperature and the supply voltage at her will.

But even when Ali
e knows the operating 
onditions of the os
illators perfe
tly, their fre-

quen
ies 
annot be predi
ted perfe
tly, be
ause of non-deterministi
 e�e
ts in the os
illators. For

example, there are physi
ally unavoidable noise voltages in the transistors of the os
illator. This

noise in
uen
es to some degree the exa
t moments when the transistors swit
h.

In order to infer the 
lo
king frequen
ies from the environmental data, the atta
ker 
an either

perform experiments on a 
hip with the hardware random number generator, or she must know

the design details of the os
illators. The manufa
turer of the 
hip of 
ourse knows these design

details, and the out
ome of a good hardware random number generator should be unpredi
table

even for the manufa
turer of the hardware.

We will not elaborate a statisti
al model for the atta
ker's knowledge of the 
lo
king frequen-


ies, be
ause this is not 
ru
ial for the atta
k. As we will see later on, we 
an easily in
rease

the number of tries to guess the number of 
lo
ks o

urring for the LFSR and the CA if our

assummptions about the knowledge of the 
lo
king frequen
ies are wrong.

In order to make the atta
k as eÆ
ient as possible, we 
on
entrate on the 
ase where the RNG

is subsequently sampled as fast as possible. In [Tka03℄, the minimum time between the sampling

of two output words is de�ned by the requirement that both state ma
hines (CA and LFSR) 
lo
k

at least twi
e their length.

For our atta
k we also need to assume an upper bound on the ratio of the frequen
y of

the faster free running os
illator and the slower os
illator. This is not an arbitrary restri
tion,

but performan
e and power 
onsumption 
onsiderations make it advisable to 
hoose the 
lo
king

frequen
ies of both os
illators in the same order of magnitude. If a very fast os
illator is used for

one �nite state ma
hine and a slow os
illator for the other, one gets a RNG with a low data rate

but high power 
onsumption. The low data rate is 
aused by the slow os
illator and the design

rule that the �nite state ma
hine must be 
lo
ked twi
e its length before it 
an be sampled again.

The high power 
onsumption is due to the fast os
illator, be
ause power 
onsumption and 
lo
king

frequen
y of the state ma
hine are roughly proportional. Subsequently, we assume an upper bound

of 3 for the frequen
y ratio of the os
illators. If the frequen
y ratio were higher, more guesses would

be needed to �nd the 
orre
t number of 
lo
ks. A lower bound would speed up the atta
k.

In the s
enario where the atta
ker de�nes the environmental 
onditions, she should be able

to know the 
lo
k frequen
ies with a pre
ision of 1 per
ent. If the atta
ker does not 
ontrol the

environmental 
onditions, she might be able to determine the 
lo
king frequen
ies with a pre
ision

of 10 per
ent.

5.2 Guessing the number of 
lo
ks

Subsequently, we will 
onsider three 32 bit words sampled from the RNG at top speed. This means

that we have to 
onsider the number of 
lo
ks o

urring between the �rst and se
ond sample, and

3



between the se
ond and third sample, for ea
h os
illator. We use f

CA

and f

LFSR

to denote the


lo
k frequen
ies of the CA and the LFSR, respe
tively.

Case A Here we 
onsider the 
ase f

LFSR

� f

CA

. IN this 
ase, the maximumsampling frequen
y

is limited by the rule that the LFSR must 
lo
k twi
e its length before it 
an be sampled again.

This means that at top speed the LFSR 
lo
ks 86 times, or, sin
e Ali
e knows the frequen
y only

with a pre
ision of one per
ent in the s
enario of an environment 
ontrolled by her, there may

also o

ur 85 or 87 
lo
ks. By our bound of 3 on the frequen
y ratio between the os
illators, the

number of CA 
lo
ks is bounded by 258. With an error of one per
ent in Ali
es knowledge of the

frequen
y, this leads to at most 7 possible numbers of CA 
lo
ks. Analogously, with a 10 per
ent

inse
urity for the frequen
ies, there are 19 possibilities for the number of LFSR 
lo
ks, and at

most 53 for the number of CA 
lo
ks.

Case B Here we 
onsider the 
ase f

LFSR

> f

CA

. We have to distinguish two sub
ases.

Case B1 When 37f

LFSR

� 43f

CA

holds, that is f

LFSR

is only slightly larger than f

CA

, the

maximum sampling rate allowed for the RNG is still determined by the LFSR frequen
y. As in


ase A, we have 3 possibilities for the number of LFSR 
lo
ks, if we know the frequen
ies with a

pre
ision of 1 per
ent. Sin
e the CA is 
lo
ked at a lower rate, at most 3 numbers of CA 
lo
ks

are possible. For the s
enario of a 10 per
ent pre
ision in the knowledge of the frequen
ies, we get

19 possible numbers of LFSR 
lo
ks and also 19 possible numbers of CA 
lo
ks.

Case B2 When 37f

LFSR

> 43f

CA

holds, the maximum sampling rate is determined by the CA.

If the atta
ker knows the frequen
ies with a pre
ision of 1 per
ent, this leads to 3 possible numbers

of CA 
lo
ks, and to at most 7 possible numbers of LFSR 
lo
ks. With a 10 per
ent a

ura
y in

the frequen
ies, there are 19 possible numbers of CA 
lo
ks, and 46 possible numbers of LFSR


lo
ks.

In the 
ase of frequen
ies known with a pre
ision of 1 per
ent, the worst 
ase is that we have a

total of 21 possibilities for the numbers of 
lo
ks for both �nite state ma
hines. With a pre
sision

of 10 per
ent, the worst 
ase are 1007 possibilities.

Sin
e we need the numbers of 
lo
ks o

urring between the �rst and se
ond sample, and between

the se
ond and third sample, we get a total of 441 
ases (1 per
ent 
ase) or 1014049 (10 per
ent


ase). This numbers are just a very 
oarse upper bound on the number of 
ases to 
onsider, be
ause

the numbers of 
lo
ks between the di�erent samples are strongly dependend. If, for example, the

atta
ker knows that the number of LFSR 
lo
ks is between 200 and 240, she should not begin with

200 for the number of 
lo
ks between the �rst and se
ond sample, and 240 for the number of 
lo
ks

between the se
ond and third sample. This 
ombination is quite improbable to o

ur, be
ause the

frequen
ies of the os
illators do not 
hange suddenly from very low to very high. Instead, the best

strategy for the atta
ker is to assume that the 
lo
k frequen
y 
hanged only very little from the

se
ond to the third sample. So, 
ombinations of numbers of 
lo
ks with small di�eren
es should

be tried �rst.

5.3 Determining the internal states of the CA and the LFSR

In this se
tion we assume that we have 
orre
tly guessed the number of 
lo
ks of both the CA

and the LFSR o

urring between three top speed samplings of the RNG. We try to �nd out the

internal states of the ma
hines from the three 32 bit output words.

Sin
e we assume that we know the number of 
lo
ks o

urring we 
ould try a brute for
e

approa
h. The almost 2

43+37

possible intial states make this quite impra
ti
al. An eÆ
ient solution

must rely on the properties of the state ma
hines.

A 
loser inspe
tion of the two �nite state ma
hines makes the solution very easy: both are

linear in GF(2). The fun
tion 
ombining bits from ea
h �nite state ma
hine to 
ompute the RNG

4



output is also linear. We have to solve a system of 96 linear equations in order to determine the

80 bits of the states of the CA and the LFSR.

The fa
t that the number of equations ex
eeds the number of variables by 16, helps to eliminate

wrong guesses of the number of 
lo
ks of the �nite state ma
hines. With a probability of 1�1=2

16

,

a wrong guess results in a system of linear equations without a solution.

When one tries to write down the linear equations, one en
ounters a minor problem: [Tka03℄

does not spe
ify whi
h 32 bits from ea
h �nite state ma
hine are used and how they are permuted.

An atta
ker 
ould reverse engineer the 
hip in order to re
eive this information. The information

is also known to the manufa
turer of the 
hip. And, as already mentioned above, the output of a

good RNG should be unpredi
table even for the manufa
turer of the 
hip. In our further analysis,

we assume that the atta
ker knows whi
h bits of the �nite state ma
hines are used for the output,

and how they are permuted.

To determine the time required to �nd the solution a system of equations as des
ribed above,

�xed random 
hoi
es of bits and �xed random permutations were used. Clearly these 
hoi
es do

not have essential in
uen
e on the 
omplexity of solving the system of linear equations.

On a 400 MHz Pentium II, Mathemati
a 4.2 solved the system of equations in 0.06 se
onds

using the fun
tion LinearSolve[℄ . This time 
an de�nitively be improved signi�
antly by using a

faster PC or dedi
ated software for solving systems of linear equations over GF(2). But even when

it takes 0.06 se
onds to solve the system of linear equations, in the s
enario of 
lo
k frequen
ies

known with a pre
ision of 1 per
ent, all 441 possible systems 
an be solved in 27 se
onds. In the

10 per
ent s
enario, it takes 17 hours to try all 1014049 possibilities. But as pointed out above,

many 
ombinations of numbers of 
lo
ks are quite improbable, so a good strategy for ordering

the tries will enable the atta
ker to �nd the solution mu
h faster. If the atta
ker tries all 1014049

possibilties, she will �nd about 15 solutions not 
orresponding to the internal states of the �nite

ma
hines. The reason is that wrong guesses lead to a solvable system of linear equations with a

probabilty of 1=2

16

. The atta
ker should prefer solutions for whi
h the di�eren
es in the number

of 
lo
ks are small.

5.4 Predi
ting bits

On
e the atta
ker knows the internal states of the �nite ma
hines, she is well o�. In order to predi
t

the next output bits, she just has to guess the numbers of 
lo
ks of the �nite state ma
hines until

the time the next random sample was generated. We have seen above that the number of 
ases

to 
onsider is quite small. But now the task of �nding the right number of 
lo
ks is easier in two

ways, 
ompared to �nding the 
orre
t number of 
lo
ks to determine the state. To be able to get

the equations, Ali
e had to guess the right number of 
lo
ks for two samples. Here the number

of 
lo
ks for one sample is suÆ
ient. Ali
e 
an also pro�t from knowledge aquired when �nding

out the internal states of the �nite ma
hines. She may have started with little knowledge of the

os
illator frequen
ies, but now she knows them with high pre
ision, be
ause she knows for whi
h

numbers of 
lo
ks the system of linear equations 
ould be solved. This good knowledge of the

os
illator frequen
ies leads to very few possibilities for the numbers of 
lo
ks for the �nite state

ma
hines. Ali
e applies these numbers of 
lo
ks to a simulation of the �nite state ma
hines in

order to 
ompute the next output of the RNG.

6 Is the des
ribed atta
k pra
ti
ally relevant?

The atta
k des
ribed above enables an atta
ker to predi
t output bits from the RNG after having

seen some earlier output bits. The question is whether there are pra
ti
al se
urity appli
ations

where su
h an atta
k 
ould be applied.

One straight forward appli
ation of 
ryptographi
 RNGs is the generation of keys for symmetri



ryptography. When a number of keys is generated subsequently for di�erent users, the re
ipient

Ali
e of a key 
ould �nd out the key generated for the next user by applying the te
hnique

des
ribed above. Today, symmetri
 keys usually have 128 bits or more, so Ali
e 
an use her own

5



key to determine the state of the RNG and only has to try a very small number of possible keys

for the next user. Of 
ourse she does not have to stop there, she 
an 
ontinue with the next user

but one, and so on.

In the s
enario just des
ribed, the atta
ker had to parti
ipate a
tively in a proto
ol in order to

get her own key, from whi
h she 
ould derive they keys of other users. Can the atta
k of se
tion

5 also be used by a passive atta
ker? For su
h an atta
k we need a proto
ol whi
h generates and


ommuni
ates random numbers in plaintext, and subsequently uses the RNG to generate a se
ret.

This turns out to o

ur very often, namely the generation of a random 
hallenge for 
hallenge and

response authenti
ation, and subsequently the generation of a session key.

7 Con
lusion

We showed that the random number generator des
ribed in [Tka03℄ is a 
ombination of TRNG and

PRNG elements. The TRNG elements produ
e little entropy when the random number generator

is sampled at top rates. The output of the devi
e 
an be predi
ted by taking into a

ount both

the small amount of entropy generated and the linearity of the PRNG elements.

How 
an these problems be over
ome? Obviously by strengthening the TRNG elements and/or

the PRNG elements.

The problem with the TRNG elements is that at top sampling rates the amount of state

information it outputs largely ex
eeds the amount of entropy it generates. This 
an be 
ured by

sampling less frequently, or by sampling less bits ea
h time. We have seen in se
tion 4 that the

required redu
tion of the sampling frequen
y is rather impra
ti
al. To sample less bits ea
h time

the RNG is invoked, is more eÆ
ient. For example, if only one bit of output is generated in ea
h

output of the RNG, the data rate drops to 1=32 of the original design. But atta
ks like the one

des
ribed above are impossible, be
ause the devi
e produ
es more entropy than it outputs state

information.

Con
erning the PRNG elements, non-linear 
omponents 
ould be used to prevent atta
ks like

the one des
ribed above. The disadvantage of only �xing the PRNG parts of the RNG is that this

provides only 
omputational se
urity. Atta
ks are in prin
iple still possible but require a large {

hopefully too large for pra
ti
al appli
ation { 
omputational e�ort. In 
ontrast, TRNGs provide

information theoreti
al se
urity.

Referen
es

[GW96℄ I. Goldberg and D. Wagner, Randomness and the Nets
ape browser, Dr. Dobb's Journal (1996),

66{70.

[Tka03℄ T. E. Tka
ik, A hardware random number generator, Cryptographi
 Hardware and Embedded

Systems - CHES 2002 (B. S. Kaliski Jr., C. K. Ko�
, and Chr. Paar, eds.), Le
ture Notes in

Computer S
ien
e, vol. 2523, Springer-Verlag, 2003, pp. 450{453.

6


