
How to Predit the Output of a

Hardware Random Number Generator

Markus Dihtl

Siemens AG, Corporate Tehnology

Email: Markus.Dihtl�siemens.om

Abstrat. A hardware random number generator was desribed at CHES 2002 in [Tka03℄.

In this paper, we analyze its method of generating randomness and, as a onsequene of the

analysis, we desribe how, in priniple, an attak on the generator an be exeuted.

1 Introdution

Both designs for hardware random number generators and the evaluation of hardware random

number generators have not been treated often in publiations. This means a serious ontrast

between { on the one hand { the importane of hardware random number generation and their

evaluation for the seurity of appliations and { on the other hand { the little attention this topi

has found in the published literature.

One ase where the absene of a suitable physial random number generator reeived onsider-

able publi attention were the defets found in the random number generation for SSL implemented

in an early version of the Netsape browser. The time of the day used as the only soure of true

randomness did not provide enough entropy. This lak of entropy ould be used for a spetaular

attak [GW96℄.

Physial random number generators deriving their randomness from a physial random proess,

are also alled true random number generators (TRNGs). TRNGS have to be distinguished from

pseudo random number generators (PRNGs). PRNGs derive their output algorithmially from

a seret initial state. The unpreditability of PRNGs relies on the omputational infeasibilty of

trying all possible initial states, and on some assumptions on the algorithm used.

We will see that the hardware random number generator desribed at CHES 2002 in [Tka03℄ is

a ombination of TRNG and PRNG elements. Therefore we just all it the RNG (random number

generator) in this paper.

We will show that the RNG in some ases produes very little entropy, so that its output an

be predited. This is in ontrast with one of the design requirements for the generator ited in

[Tka03℄.

This paper provides theoretial analysis based on the properties of the RNG desribed in

[Tka03℄; no experiments on a real hip were made.

2 A hardware random number generator

The RNG desribed in [Tka03℄ uses two free running osillators, implemented as ring osillators,

to lok two deterministi �nite state mahines.

One of the �nite state mahines is a binary linear feedbak shift register (LFSR) of length 47.

The feedbak polynomial of the LFSR is primitive.

The other �nite state mahine is a one dimensional binary ellular automaton (CA) with a

neighbourhood of 3. The CA onsists of 37 ells. All ells exept one follow one rule to derive

their next state: The new value is the XOR of the old values of the two neighbouring ells. Only

ell 28 is subjet to another, albeit similar, rule: Its new value is the XOR sum of its old value

and the old values of its two neighbours. For the two ells at the border of the CA, null boundary

onditions are used; that is those neighbouring ells whih are required by the CA rules, but whih



are beyond the limits of the CA, are assumed to have the �xed value 0. If started from a not all

zeros state, this CA has a yle length of 2

37

� 1.

When the RNG has to produe a random number, 32 bits of the LFSR and 32 bits of the

CA are taken from �xed positions of those �nite state mahines. The 32 bits from the LFSR are

XORed with the 32 bits from the CA in order to reeive the 32 bit output word.

3 Where does the randomness in the RNG ome from?

The main elements of the RNG are two free running osillators, a linear feedbak shift register, and

a ellular automaton. Free running osillators an be a basis of TRNGs, whereas linear feedbak

shift registers and ellular automata, whih are deterministi, are frequently used in the onstru-

tion of PRNGs. In order to get a lear understanding of the origin of randomness in the RNG, the

TRNG parts and the PRNG parts have to be separated mentally.

The linear feedbak shift register used in the RNG an be seen as a speial ounter with a

period length of 2

43

�1. The ounter states are not represented as the familiar binary numbers, but

are enoded as subsequent shift register states. Clearly the onversion between the representation

of a ounter state as a binary number and a shift register state is ompletely deterministi.

Analogously, the ellular automaton used in the RNG an be seen as a speial ounter with a

period length of 2

37

� 1. Here, the ounter state is represented as a ellular automaton state, but

again, the onversion between these ellular automaton states and the familiar binary numbers is

ompletely deterministi.

Hene, the only soure of entropy in the RNG are the initial states of the registers in the linear

feedbak shift register and the ellular automaton, and the number of loks that ourred for

the linear feedbak shift register and for the ellular automaton. The number of loks for the

linear feedbak shift register is only relevant modulo 2

43

� 1, the number of loks for the ellular

automaton modulo 2

37

� 1.

4 How random is this?

As we have identi�ed the soures of entropy in the RNG, the question arises how muh entropy

they provide.

The �rst soure of randomness are the undetermined initial states of the registers. Even if eah

register assumed the 0 and 1 state with probability 1=2 eah time the RNG is initialized, and

even if there were no dependenies between the states of the registers at di�erent initializations,

this would not help the RNG muh on the long run, beause a good TRNG has to must produe

ontinually new entropy as it runs, and not rely on an initial stok of entropy. However, the initial

states of ip ops turn out to be no reliable soure of entropy. Due to manufatoring variations,

they are not ompletely symmetrial and as a onsequene, most ip ops have an initial state

whih they initially take with a probability lose to 1.

The other soures of randomness are the number of loks ourring for the ellular automaton

(modulo 2

37

�1) and for the linear feedbak shift register (modulo 2

43

�1) sine the initialization.

When an attaker Alie knows the frequenies of the free running osillators loking the

LFSR and the CA only with limited preision, the RNG beomes ompletely unpreditable after

a suÆiently long waiting time.

Let us assume Alie knows the frequenies of the free running osillators with a preision of

10 perent, and that she also knows the initial state of the CA. Roughly speaking she looses all

information about the state of the CA after about 10 � (2

37

� 1) � 10

12

loks of the CA. Even if

the CA were loked with 1 GHz, this would mean a waiting time of about 22 minutes. And in

order to ahieve ompletely independent CA states, one would also need waiting times of about

22 minutes between eah 32 bit blok of random values generated.

In [Tka03℄, too, a minimum sampling period for the subsequent generation of 32 bit bloks

of random values is given. It is onsiderably smaller than 10

12

, namely 86 yles of the osillator

loking the LFSR. Subsequently, we shall study the preditability of the RNG when this minimum

sampling period is used.

2



5 How to predit the RNG bits

5.1 How well does an attaker know the frequenies of the free running loking

osillators?

Evidently, the better the attaker Alie knows the frequenies of the free running osillators lok-

ing the LFSR and the CA, the better she an predit the numbers of loks ourring for the

LSFR and the CA.

The knowledge of these frequenies depends heavily on the irumstanes of the attak. The

main environmental parameters inuening the frequenies of free running osillators are the tem-

perature and the supply voltage. Sometimes these parameters are diÆult to predit for Alie. In

other appliations, she may know these parameters preisely , or may even hoose them. For exam-

ple, professionally run trust enters tend to have their omputers in stable air onditioned environ-

ments without muh variation in temperature or supply voltage. On the other hand, smartards

will enounter enormous variations in environmental onditions, but when the user of a smartard

wants to attak the physial random number generator of the smartard, she may hoose the

environment temperature and the supply voltage at her will.

But even when Alie knows the operating onditions of the osillators perfetly, their fre-

quenies annot be predited perfetly, beause of non-deterministi e�ets in the osillators. For

example, there are physially unavoidable noise voltages in the transistors of the osillator. This

noise inuenes to some degree the exat moments when the transistors swith.

In order to infer the loking frequenies from the environmental data, the attaker an either

perform experiments on a hip with the hardware random number generator, or she must know

the design details of the osillators. The manufaturer of the hip of ourse knows these design

details, and the outome of a good hardware random number generator should be unpreditable

even for the manufaturer of the hardware.

We will not elaborate a statistial model for the attaker's knowledge of the loking frequen-

ies, beause this is not ruial for the attak. As we will see later on, we an easily inrease

the number of tries to guess the number of loks ourring for the LFSR and the CA if our

assummptions about the knowledge of the loking frequenies are wrong.

In order to make the attak as eÆient as possible, we onentrate on the ase where the RNG

is subsequently sampled as fast as possible. In [Tka03℄, the minimum time between the sampling

of two output words is de�ned by the requirement that both state mahines (CA and LFSR) lok

at least twie their length.

For our attak we also need to assume an upper bound on the ratio of the frequeny of

the faster free running osillator and the slower osillator. This is not an arbitrary restrition,

but performane and power onsumption onsiderations make it advisable to hoose the loking

frequenies of both osillators in the same order of magnitude. If a very fast osillator is used for

one �nite state mahine and a slow osillator for the other, one gets a RNG with a low data rate

but high power onsumption. The low data rate is aused by the slow osillator and the design

rule that the �nite state mahine must be loked twie its length before it an be sampled again.

The high power onsumption is due to the fast osillator, beause power onsumption and loking

frequeny of the state mahine are roughly proportional. Subsequently, we assume an upper bound

of 3 for the frequeny ratio of the osillators. If the frequeny ratio were higher, more guesses would

be needed to �nd the orret number of loks. A lower bound would speed up the attak.

In the senario where the attaker de�nes the environmental onditions, she should be able

to know the lok frequenies with a preision of 1 perent. If the attaker does not ontrol the

environmental onditions, she might be able to determine the loking frequenies with a preision

of 10 perent.

5.2 Guessing the number of loks

Subsequently, we will onsider three 32 bit words sampled from the RNG at top speed. This means

that we have to onsider the number of loks ourring between the �rst and seond sample, and

3



between the seond and third sample, for eah osillator. We use f

CA

and f

LFSR

to denote the

lok frequenies of the CA and the LFSR, respetively.

Case A Here we onsider the ase f

LFSR

� f

CA

. IN this ase, the maximumsampling frequeny

is limited by the rule that the LFSR must lok twie its length before it an be sampled again.

This means that at top speed the LFSR loks 86 times, or, sine Alie knows the frequeny only

with a preision of one perent in the senario of an environment ontrolled by her, there may

also our 85 or 87 loks. By our bound of 3 on the frequeny ratio between the osillators, the

number of CA loks is bounded by 258. With an error of one perent in Alies knowledge of the

frequeny, this leads to at most 7 possible numbers of CA loks. Analogously, with a 10 perent

inseurity for the frequenies, there are 19 possibilities for the number of LFSR loks, and at

most 53 for the number of CA loks.

Case B Here we onsider the ase f

LFSR

> f

CA

. We have to distinguish two subases.

Case B1 When 37f

LFSR

� 43f

CA

holds, that is f

LFSR

is only slightly larger than f

CA

, the

maximum sampling rate allowed for the RNG is still determined by the LFSR frequeny. As in

ase A, we have 3 possibilities for the number of LFSR loks, if we know the frequenies with a

preision of 1 perent. Sine the CA is loked at a lower rate, at most 3 numbers of CA loks

are possible. For the senario of a 10 perent preision in the knowledge of the frequenies, we get

19 possible numbers of LFSR loks and also 19 possible numbers of CA loks.

Case B2 When 37f

LFSR

> 43f

CA

holds, the maximum sampling rate is determined by the CA.

If the attaker knows the frequenies with a preision of 1 perent, this leads to 3 possible numbers

of CA loks, and to at most 7 possible numbers of LFSR loks. With a 10 perent auray in

the frequenies, there are 19 possible numbers of CA loks, and 46 possible numbers of LFSR

loks.

In the ase of frequenies known with a preision of 1 perent, the worst ase is that we have a

total of 21 possibilities for the numbers of loks for both �nite state mahines. With a presision

of 10 perent, the worst ase are 1007 possibilities.

Sine we need the numbers of loks ourring between the �rst and seond sample, and between

the seond and third sample, we get a total of 441 ases (1 perent ase) or 1014049 (10 perent

ase). This numbers are just a very oarse upper bound on the number of ases to onsider, beause

the numbers of loks between the di�erent samples are strongly dependend. If, for example, the

attaker knows that the number of LFSR loks is between 200 and 240, she should not begin with

200 for the number of loks between the �rst and seond sample, and 240 for the number of loks

between the seond and third sample. This ombination is quite improbable to our, beause the

frequenies of the osillators do not hange suddenly from very low to very high. Instead, the best

strategy for the attaker is to assume that the lok frequeny hanged only very little from the

seond to the third sample. So, ombinations of numbers of loks with small di�erenes should

be tried �rst.

5.3 Determining the internal states of the CA and the LFSR

In this setion we assume that we have orretly guessed the number of loks of both the CA

and the LFSR ourring between three top speed samplings of the RNG. We try to �nd out the

internal states of the mahines from the three 32 bit output words.

Sine we assume that we know the number of loks ourring we ould try a brute fore

approah. The almost 2

43+37

possible intial states make this quite impratial. An eÆient solution

must rely on the properties of the state mahines.

A loser inspetion of the two �nite state mahines makes the solution very easy: both are

linear in GF(2). The funtion ombining bits from eah �nite state mahine to ompute the RNG

4



output is also linear. We have to solve a system of 96 linear equations in order to determine the

80 bits of the states of the CA and the LFSR.

The fat that the number of equations exeeds the number of variables by 16, helps to eliminate

wrong guesses of the number of loks of the �nite state mahines. With a probability of 1�1=2

16

,

a wrong guess results in a system of linear equations without a solution.

When one tries to write down the linear equations, one enounters a minor problem: [Tka03℄

does not speify whih 32 bits from eah �nite state mahine are used and how they are permuted.

An attaker ould reverse engineer the hip in order to reeive this information. The information

is also known to the manufaturer of the hip. And, as already mentioned above, the output of a

good RNG should be unpreditable even for the manufaturer of the hip. In our further analysis,

we assume that the attaker knows whih bits of the �nite state mahines are used for the output,

and how they are permuted.

To determine the time required to �nd the solution a system of equations as desribed above,

�xed random hoies of bits and �xed random permutations were used. Clearly these hoies do

not have essential inuene on the omplexity of solving the system of linear equations.

On a 400 MHz Pentium II, Mathematia 4.2 solved the system of equations in 0.06 seonds

using the funtion LinearSolve[℄ . This time an de�nitively be improved signi�antly by using a

faster PC or dediated software for solving systems of linear equations over GF(2). But even when

it takes 0.06 seonds to solve the system of linear equations, in the senario of lok frequenies

known with a preision of 1 perent, all 441 possible systems an be solved in 27 seonds. In the

10 perent senario, it takes 17 hours to try all 1014049 possibilities. But as pointed out above,

many ombinations of numbers of loks are quite improbable, so a good strategy for ordering

the tries will enable the attaker to �nd the solution muh faster. If the attaker tries all 1014049

possibilties, she will �nd about 15 solutions not orresponding to the internal states of the �nite

mahines. The reason is that wrong guesses lead to a solvable system of linear equations with a

probabilty of 1=2

16

. The attaker should prefer solutions for whih the di�erenes in the number

of loks are small.

5.4 Prediting bits

One the attaker knows the internal states of the �nite mahines, she is well o�. In order to predit

the next output bits, she just has to guess the numbers of loks of the �nite state mahines until

the time the next random sample was generated. We have seen above that the number of ases

to onsider is quite small. But now the task of �nding the right number of loks is easier in two

ways, ompared to �nding the orret number of loks to determine the state. To be able to get

the equations, Alie had to guess the right number of loks for two samples. Here the number

of loks for one sample is suÆient. Alie an also pro�t from knowledge aquired when �nding

out the internal states of the �nite mahines. She may have started with little knowledge of the

osillator frequenies, but now she knows them with high preision, beause she knows for whih

numbers of loks the system of linear equations ould be solved. This good knowledge of the

osillator frequenies leads to very few possibilities for the numbers of loks for the �nite state

mahines. Alie applies these numbers of loks to a simulation of the �nite state mahines in

order to ompute the next output of the RNG.

6 Is the desribed attak pratially relevant?

The attak desribed above enables an attaker to predit output bits from the RNG after having

seen some earlier output bits. The question is whether there are pratial seurity appliations

where suh an attak ould be applied.

One straight forward appliation of ryptographi RNGs is the generation of keys for symmetri

ryptography. When a number of keys is generated subsequently for di�erent users, the reipient

Alie of a key ould �nd out the key generated for the next user by applying the tehnique

desribed above. Today, symmetri keys usually have 128 bits or more, so Alie an use her own

5



key to determine the state of the RNG and only has to try a very small number of possible keys

for the next user. Of ourse she does not have to stop there, she an ontinue with the next user

but one, and so on.

In the senario just desribed, the attaker had to partiipate atively in a protool in order to

get her own key, from whih she ould derive they keys of other users. Can the attak of setion

5 also be used by a passive attaker? For suh an attak we need a protool whih generates and

ommuniates random numbers in plaintext, and subsequently uses the RNG to generate a seret.

This turns out to our very often, namely the generation of a random hallenge for hallenge and

response authentiation, and subsequently the generation of a session key.

7 Conlusion

We showed that the random number generator desribed in [Tka03℄ is a ombination of TRNG and

PRNG elements. The TRNG elements produe little entropy when the random number generator

is sampled at top rates. The output of the devie an be predited by taking into aount both

the small amount of entropy generated and the linearity of the PRNG elements.

How an these problems be overome? Obviously by strengthening the TRNG elements and/or

the PRNG elements.

The problem with the TRNG elements is that at top sampling rates the amount of state

information it outputs largely exeeds the amount of entropy it generates. This an be ured by

sampling less frequently, or by sampling less bits eah time. We have seen in setion 4 that the

required redution of the sampling frequeny is rather impratial. To sample less bits eah time

the RNG is invoked, is more eÆient. For example, if only one bit of output is generated in eah

output of the RNG, the data rate drops to 1=32 of the original design. But attaks like the one

desribed above are impossible, beause the devie produes more entropy than it outputs state

information.

Conerning the PRNG elements, non-linear omponents ould be used to prevent attaks like

the one desribed above. The disadvantage of only �xing the PRNG parts of the RNG is that this

provides only omputational seurity. Attaks are in priniple still possible but require a large {

hopefully too large for pratial appliation { omputational e�ort. In ontrast, TRNGs provide

information theoretial seurity.

Referenes

[GW96℄ I. Goldberg and D. Wagner, Randomness and the Netsape browser, Dr. Dobb's Journal (1996),

66{70.

[Tka03℄ T. E. Tkaik, A hardware random number generator, Cryptographi Hardware and Embedded

Systems - CHES 2002 (B. S. Kaliski Jr., C. K. Ko�, and Chr. Paar, eds.), Leture Notes in

Computer Siene, vol. 2523, Springer-Verlag, 2003, pp. 450{453.

6


