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Abstra
t. In this paper we determine the number of isomorphism 
lasses of

Pi
ard 
urves, i.e., superellipti
 
urves y

3

= f(x) of genus three, over �nite

�elds of 
hara
teristi
 di�erent from 3. In the pro
ess of doing this we also

provide redu
ed forms of Pi
ard 
urves together the number of su
h forms up

to isomorphism. In addition to its own theoreti
al meaning it has appli
ations

to 
ryptography.

1. Introdu
tion

Starting in around 1985, the theory of ellipti
 and hyperellipti
 
urves over �nite

�elds has been of interest for 
onstru
tion of 
ryptosystems based on the dis
rete

logarithm problem, and ellipti
 
urve 
ryptography is now at the stage of 
ommer-


ial interest. One of the main reason for interest in these 
urves is that they provides

us a number of �nite abelian groups | the so-
alled Ja
obian groups, on whi
h the

dis
rete logarithm problem seems to be far more 
omputationally infeasible than

on the multipli
ative groups of �nite �elds.

Re
ently a new 
lass of 
urves, whi
h are 
alled superellipti
 
urves and are gen-

eralizations of hyperellipti
 
urves when the ground �eld has an odd 
hara
teristi
,

has suggested for 
onstru
ting publi
 key 
ryptosystems by Galbraith, Paulus and

Smart in [8℄. Besides providing an algorithm for the arithmeti
 on the Ja
obian of

the superellipti
 
urves, in the same paper they proved the method of Adleman,

DeMarrais and Huang [1℄ 
an be extended to the superellipti
 
urve 
ase. This

leads us to restri
t our attention to superellipti
 
urves of small genus. The �rst

su
h a non-hyperellipti
 example is the superellipti
 
urves of genus three asso-


iated to a 
ubi
 fun
tion �eld, whi
h has a spe
ial name the Pi
ard 
urve. Like

ellipti
 
urve and hyperellipti
 
urve of genus 2, a Pi
ard 
urves admits a geometri


interpretation of the arithmeti
 on its Ja
obian group whi
h 
an be exploited for

an eÆ
ient arithmeti
 as des
ribed in [3℄. Furthermore, the fa
t that the Ja
obian

group is isomorphi
 to the ideal 
lass group of the fun
tion �eld 
an be used to get

an expli
it formula whi
h makes the arithmeti
 more eÆ
ient [2, 4℄.

In addition to its own theoreti
al importan
e, the 
omputation of isomorphism


lasses of the above-mentioned 
urves has a 
rytographi
al meaning. Before setting


ryptosystem based on the 
urves it may useful to know how many essentially

di�erent 
hoi
e of 
urves we may have. Isomorphism 
lasses of ellipti
 
urves [14,
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12, 11℄ and hyperellipti
 
urves of genus two over �nite �elds [7, 5, 6℄ are now

well-understood. In this paper, we determine the number of isomorphism 
lasses of

Pi
ard 
urves over �nite �elds. In the pro
ess of doing this we also provide redu
ed

forms of Pi
ard 
urves together the number of su
h forms up to isomorphism.

The remainder of the paper is organized as follows. After giving the basi
 no-

tions and properties of Pi
ard 
urves in the next se
tion, we 
ount the number

of isomorphism 
lasses of Pi
ard 
urves over �nite �elds of 
hara
teristi
 di�erent

from 2 and 3 in se
tion 3. Finally, in se
tion 4 we do the same thing for Pi
ard


urves over �nite �elds of even 
hara
teristi
.

2. The Pi
ard 
urves

To simplify the exposition, we start with an algebrai
 fun
tion �eld K over a

�eld k, that is, a �nitely generated extension �eld of k with trans
endental degree

one in whi
h k is algebrai
ally 
losed. If p is a pla
e (i.e., a dis
rete valuation ring

between k and K) of K, we denote by v

p

the dis
rete valuation of K 
orresponding

to it. The degree, deg p, of a pla
e p is de�ned as the extension degree of the

residue �eld of p over k. For a divisor D =

P

n

p

p (that is, a �nite formal sum of

pla
es of K) on K, we write L(D) for the k-ve
tor spa
e of elements f 2 K with

v

p

(f) + n

p

� 0 for all pla
es p of K. Details of algebrai
 fun
tion �elds 
an be

found in [13℄.

The abstra
t 
urve C

K

of K is the (
o�nite) topologi
al spa
e 
onsisting of the

pla
es of K that is trivial on k together with a sheaf of k-algebras. Two abstra
t


urves C

K

and C

K

0

are said to be isomorphi
 (over k) if the algebrai
 fun
tion

�elds K and K

0

are isomorphi
 as k-algebras. For more details 
on
erning with

abstra
t 
urves, one may 
onsult Hartshorne's book [9℄

De�nition 2.1. Let k be a �eld with 
hark 6= 3. A Pi
ard 
urve over k is

the abstra
t 
urve of an algebrai
 fun
tion �eld of the form k(x; y) with relation

y

3

= f(x), where f(X) 2 k[X ℄ is a separable moni
 polynomial of degree 4.

In what follows, whenever we refer to \a Pi
ard 
urve y

3

= f(x) over k", the

abstra
t 
urve of the algebrai
 fun
tion �eld K = k(x; y) with relation y

3

= f(x)

is always intended.

Remarks 2.2. 1) Let p

1

be a pla
e of K lying over the in�nite pla
e of k(x).

From the relation y

3

= f(x) it follows that v

p

1

(x) = �3n and v

p

1

(y) = �4n for

some positive integer n. On the other hand, one 
an show that

3n � v

p

1

(1=x) � deg(p

1

) � [K : k(1=x)℄ � 3

and hen
e we must have n = 1. This means that Y

3

� f(x) is the minimal poly-

nomial of y over k(x), that the in�nite pla
e of k(x) totally rami�es in K and that

the degree of the pla
e p

1

is 1.

2) As a 
onsequen
e of Riemann-Hurwitz theorem the genus of the Pi
ard 
urve

is given by

�2 +

1

2

X

p

(3� g
d(3; v

p

(f))) deg p;

where the p runs through the pla
es of k(x); for a proof see [13, III.7.4℄. So, the

Pi
ard 
urve has genus 3.
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Let C : y

3

= x

4

+ a

3

x

3

+ a

6

x

2

+ a

9

x+ a

12

be a Pi
ard 
urve over k, and let p

1

denote the unique pla
e of the fun
tion �eld of C lying over the in�nite pla
e of

k(x). Then x 2 L(3p

1

) and y 2 L(4p

1

). Sin
e deg p

1

= 1 and sin
e the genus of

the Pi
ard 
urves is 3, by virtue of Riemann-Ro
h theorem and Cli�ord's theorem

we see that

L(3p

1

) = k � kx and L(4p

1

) = k � kx� ky:

Let

^

C : ŷ

3

= x̂

4

+ â

3

x̂

3

+ â

6

x̂

2

+ â

9

x̂+ â

12

be another Pi
ard 
urve over k whi
h is

isomorphi
 to C. Identifying the fun
tion �elds of C and

^

C as k-algebras yields

k � kx = k � kx̂ and k � kx� ky = k � kx̂� kŷ:

So, we have x = �

3

x̂+ � and y = �

4

ŷ + 
x̂+ Æ for some �

3

; �

4

; �; 
; Æ 2 k with �

3

and �

4

nonzero. Here, in order to get the equation of

^

C by this 
hange of variables

we must have �

3

= �

3

, �

4

= �

4

for some nonzero � 2 k, and 
 = Æ = 0. This

proves:

Proposition 2.3. Let k be a �eld with 
hark 6= 3. Two Pi
ard 
urves C : y

3

=

x

4

+ a

3

x

3

+ a

6

x

2

+ a

9

x + a

12

and

^

C : ŷ

3

= x̂

4

+ â

3

x̂

3

+ â

6

x̂

2

+ â

9

x̂ + â

12

over k

are isomorphi
 over k if and only if x = �

3

x̂+� and y = �

4

ŷ for some � 2 k

�

and

� 2 k.

Under the 
hange of variables in the proposition, the 
oeÆ
ients of the Pi
ard


urves satisfy the following system of equations:

(2.1)

8

>

>

<

>

>

:

�

3

â

3

= 4� + a

3

�

6

â

6

= 6�

2

+ 3�a

3

+ a

6

�

9

â

9

= 4�

3

+ 3�

2

a

3

+ 2�a

6

+ a

9

�

12

â

12

= �

4

+ �

3

a

3

+ �

2

a

6

+ �a

9

+ a

12

3. Isomorphism Classes when 
har(F

q

) 6= 2; 3

In this se
tion we 
ount the isomorphism 
lasses of Pi
ard 
urves over a �nite �eld

F

q

of odd 
hara
teristi
. The basis idea is as follows. We will 
onsider a 
olle
tion

P of Pi
ard 
urves of spe
ial form for whi
h any Pi
ard 
urves is isomorphi
 to one

of elements of P and the multipli
ative group F

�

q

a
ts on P su
h that two 
urves in

P are isomorphi
 if and only if they are in the same orbit. We then get the number

of isomorphism 
lasses of Pi
ard 
urves in terms of the number of orbits in P under

the a
tion of F

�

q

.

Sin
e 
harF

q

6= 2, via 
hange of variables x = x̂ +

a

3

4

and y = ŷ, ea
h Pi
ard


urve y

3

= x

4

+ a

6

x

2

+ a

9

x + a

12

is isomorphi
 to a Pi
ard 
urve of the form

y

3

= x

4

+ ax

2

+ bx + 
. Let P denote the set of all Pi
ard 
urves of this form. If

two 
urves in the set P are isomorphi
, then a possible 
hange of variable between

them is x = �

3

x̂ and y = �

4

ŷ for some nonzero element � in F

q

, in whi
h 
ase the

system of equations (2.1) be
omes

(3.1)

8

<

:

�

6

â

6

= a

6

�

9

â

9

= a

9

�

12

â

12

= a

12

Hen
e, the multipli
ative group F

�

q

is regarded as to a
t on P by

� : y

3

= x

4

+ ax

2

+ bx+ 
 7! y

3

= x

4

+

a

�

6

x

2

+

b

�

9

x+




�

12

:
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Note that by de�nition two Pi
ard 
urves in P are isomorphi
 if and only if they

are in an orbit under this a
tion.

So as to determine the number of orbits in P we �rst need to know the size of

the set P and the following result tells us that it is q

3

� q

2

.

Lemma 3.1. Let F

q

be the �nite �eld of odd 
hara
teristi
 with q elements. Then

the number of non-separable polynomials with 
oeÆ
ients in F

q

of the following

form is q

2

:

(3.2) x

4

+ ax

2

+ bx+ 
:

Proof. Let N be the set of all non-separable polynomials of the form (3.2). Write

N as a disjoint union N = N

1

t N

2

, where N

1


onsists of the polynomials in N

whi
h have a multiple root in F

q

. We �rst determine the 
ardinality of the set N

2

.

For this, 
onsider f(x) 2 N

2

and let � be a multiple root of it. Then, sin
e f(x) is

to have all of the 
onjugates of � over F

q

as its multiple roots, it should be of the

form f(x) = (x

2

� A)

2

, where A 2 F

q

and x

2

� A is irredu
ible over F

q

. Clearly,

any polynomial of this form belongs to N

2

. So, the 
ardinality of N

2

is equal to the

number of quadrati
 non-residue in F

�

q

and hen
e jN

2

j =

q�1

2

. Now, to determine

jN

1

j we 
onsider g(x) = x

4

+ ax

2

+ bx+ 
 2 N

1

with a multiple root � in F

q

. Then

we 
an write g(x) = (x� �)

2

(x

2

+ 2�x+ �) for some � 2 F

q

with

(3.3) a = �3�

2

+ �; b = 2�

3

� 2��; 
 = �

2

�:

So, we have a legitimate surje
tive map  : F

q

� F

q

! N

1

given by (�; �) 7!

(x��)

2

(x

2

+2�x+�). It follow easily from the equation (3.3) that two pairs (�; �)

and (�

1

; �

1

) are sent to the same non-separable polynomial by  if and only if

�

2

= �

2

1

= � = �

1

. This means that ea
h element in N

1

has at most two preimages,

and that the number of elements of N

2

whi
h have two preimages is the same as

the number of quadrati
 non-resides in F

q

. Therefore, we have jN

1

j = q

2

�

q�1

2

,

whi
h proves the lemma. �

Theorem 3.2. Let F

q

be a �nite �eld of 
hara
teristi
 6= 2; 3 with q elements.

Then the number of isomorphism 
lasses of Pi
ard 
urves over F

q

is

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

q

2

+ q � 1 if q � 1 � 2; 10; 14; 22; 26; 34 (mod 36);

q

2

+ q + 1 if q � 1 � 4; 8; 16; 20; 28; 32 (mod 36);

3(q

2

+ q � 1) if q � 1 � 6; 30 (mod 36);

3(q

2

+ q + 1) if q � 1 � 12; 18; 24 (mod 36);

3(q

2

+ q + 3) if q � 1 � 0 (mod 36):

Proof. We divide the set P into four disjoint subsets:

P

4

=

�

y

3

= x

4

+ ax

2

+ bx+ 
 2 P j a = b = 0 6= 


	

;

P

3

=

�

y

3

= x

4

+ ax

2

+ bx+ 
 2 P j a = 
 = 0 6= b

	

;

P

2

=

�

y

3

= x

4

+ ax

2

+ bx+ 
 2 P j b = 0; a 6= 0 6= 


	

;

and P

1

= P�

S

4

i=2

P

i

. Clearly, jP

4

j = jP

3

j = q�1. Sin
e a polynomialX

4

+aX

2

+


is non-separable if and only if (

a

2

)

2

= 
, we have jP

2

j = (q�1)(q�2) and hen
e by the

lemma jP

1

j = q(q�1)

2

. For ea
h i, the set P

i

is stable under the a
tion of F

�

q

on P



ISOMORPHISM CLASSES OF PICARD CURVES OVER FINITE FIELDS 5

and by (3.1) ea
h 
urve in P

i

has the same isotropy group G

i

=

�

� 2 F

q

j �

3i

= 1

	

.

Hen
e the number of orbits in P is

1

q � 1

4

X

i=1

jP

i

jjG

i

j = jG

4

j+ jG

3

j+ (q � 2)jG

2

j+ (q

2

� q)jG

1

j:

From the fa
t that jG

i

j = g
d(3i; q� 1), the theorem now follows immediately. �

4. Isomorphism Classes when 
har(F

q

) = 2

In this �nal se
tion we 
ount the number of isomorphism 
lasses of Pi
ard 
urve

over a �nite of even 
hara
teristi
. To this end, we �rst 
onsider three sets of

Pi
ard 
urves su
h that two 
urves in di�erent sets 
annot be isomorphi
 and any

ismorphism 
lass of Pi
ard 
urves 
an be represented by a 
urve in the union of the

sets. We then a
hieve our goal by 
ounting the isomorphism 
lasses in ea
h set.

Throughout this se
tion, unless spe
i�ed otherwise, whenever we refer to �nite

�elds, �nite �elds of 
hara
teristi
 2 are understood.

Let F

q

be a �nite �eld of 
hara
teristi
 2. Then any Pi
ard 
urve over F

q

is

isomorphi
 to one and only one of the following types:

y

3

= x

4

+ ax

3

+ bx+ 
 with a 6= 0;(4.1)

y

3

= x

4

+ ax

2

+ bx+ 
 with a 6= 0 6= b;(4.2)

y

3

= x

4

+ ax+ b with a 6= 0:(4.3)

Indeed, let a Pi
ard 
urve C : y

3

= x

4

+ a

3

x

3

+ a

2

6

+ a

9

x + a

12

over F

q

be given.

First we note that, sin
e 
harF

q

= 2, the system of equations (2.1) be
omes

(4.4)

8

>

>

<

>

>

:

�

3

â

3

= a

3

�

6

â

6

= �a

3

+ a

6

�

9

â

9

= �

2

a

3

+ a

9

�

12

â

12

= �

4

+ �

3

a

3

+ �

2

a

6

+ �a

9

+ a

12

from whi
h we see that any two Pi
ard 
urves of di�erent types 
annot be iso-

morphi
 to ea
h other. If a

3

is nonzero, then, taking � = 1 and � 2 F

q

su
h

that �a

3

+ a

6

= 0, we see that the 
urve is isomorphi
 to a Pi
ard 
urve of the

form (4.1); in this 
ase we say C is of type A. If a

3

= 0 and a

6

6= 0, in order

for X

4

+ a

3

X

3

+ a

6

X

2

+ a

9

X + a

12

to be seprable the 
oeÆ
ient a

6

should be

nonzero; in this 
ase C is said to be of type B. If a

3

= a

6

= 0, in order for

X

4

+ a

3

X

3

+ a

6

X

2

+ a

9

X + a

12

to be separable a

9

should be nonzero; in this 
ase

C is said to be of type C.

We �rst 
ount isomorphism 
lasses of Pi
ard 
urves of type A in terms of iso-

morphism 
lasses of Pi
ard 
urves of the form (4.1). For this, we need to know the

number of su
h 
urves.

Lemma 4.1. The number of separable polynomials over F

q

of the following form

is q(q � 1)

2

:

(4.5) x

4

+ ax

3

+ bx+ 
 (a 6= 0):

Proof. We prove this lemma by 
ounting the number of non-separable polynomial

of the given form is q(q � 1). Let f(x) be a non-separable polynomial of the form

(4.5). Then any multiple root, say �, of it should be in F

q

. In this 
ase, f(x) 
an
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be written as f(x) = (x � �)

2

(x + �x + �

2

) for some nonzero � 2 F

q

. So, we get

a surje
tive map from F

q

� F

�

q

to the set of non-separable polynomial of the form

(4.5) de�ned by (�; �) 7! (x� �)

2

(x+ �x+ �

2

), whi
h 
an be easily 
he
ked to be

inje
tive. This 
ompletes the proof. �

Proposition 4.2. The number of isomorphism 
lasses of Pi
ard 
urves over F

q

=

F

2

m

of type A is given by

(

q(q � 1) if m is odd;

3q(q � 1) if m is even:

Proof. The multipli
ative group F

�

q


anoni
ally a
ts on the set, say � of Pi
ard 
urve

of the form (4.1). Ea
h 
urve in the set � has the same isotropy G =

�

� j �

3

= 1

	

.

So, the number of isomorphism 
lasses in � is

j�j

(F

�

q

:G)

. On the other hand, a

ording

to the previous lemma, j�j = q(q � 1)

2

. Now, the result follows immediately. �

We now 
ount the number of isomorphism 
lasses of Pi
ard 
urves of type B.

Let B denote the set of Pi
ard 
urves of the form (4.2). The group F

�

q

� F

q

a
ts on

B in the following manner:

(�; �) : y

3

= x

4

+ a

6

x

2

+ a

9

x+ a

12

7! ŷ

3

= x̂

4

+ â

6

x̂

2

+ â

9

x̂+ â

12

;

where

(4.6)

8

<

:

�

6

â

6

= a

6

�

9

â

9

= a

9

�

12

â

12

= �

4

+ �

2

a

6

+ �a

9

+ a

12

:

The isotropy group of a Pi
ard 
urve y

3

= x

4

+ a

3

x

3

+ a

9

x + a

12

in B under

this a
tion is the produ
t G

3

�G

a

6

;a

9

, where G

3

=

�

� 2 F

q

j �

3

= 1

	

and G

a

6

;a

9

=

�

� 2 F

q

j �

4

+ a

6

�

2

+ a

9

� = 0

	

. Note that the separability of the polynomial X

4

+

a

6

X

2

+ a

9

X implies jG

a

6

;a

9

j = 1; 2 or 4. So, we 
an write

B = B

1

t B

2

t B

4

;

where ea
h B

n


onsists of Pi
ard 
urves y

3

= x

4

+ a

3

x

3

+ a

9

x+ a

12

of type B su
h

that jG

a

6

;a

9

j = n.

Lemma 4.3. Let G

3

and B

i

be as above. Then we have jB

2

j =

1

2

q

2

(q � 1) and

jB

4

j =

1

2

q(q � 1)(q � 1� jG

3

j).

Proof. We �rst 
ompute jB

2

j by 
ounting the number of 
ubi
 polynomials of the

form

(4.7) x

3

+ ax+ b (a; b 2 F

�

q

)

with only one solution in F

q

. Let f(x) be su
h a polynomial and let � denote its

unique root lies in F

q

. Then we have a following fa
torization

f(x) = (x � �)(x

2

+ �x+ �)

for some nonzero � 2 F

q

su
h that x

2

+ �x + � is irredu
ible. Sin
e x

2

+ �x + �

is irredu
ible if and only if the absolute tra
e of

�

�

2

is nonzero and sin
e there are

exa
tly

q

2

elements of F

q

with nonzero absolute tra
e, the number of polynomials

of the form 4.7 with only one roots in F

q

is

1

2

q(q � 1) and hen
e jB

2

j =

1

2

q

2

(q � 1).
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To determine jB

4

j, we 
onsider three distin
t nonzero elements �; � and 
 of F

q

.

To say that the polynomial (x� �)(x� �)(x� 
) is of the form (4.7) is equivalent

to saying that they satisfy the relations � + � + 
 = 0 and �

2

+ �� + �

2

6= 0. So,

the 
ardinality of B

4

is equal to q times the number of ways to �nd two distin
t

nonzero elements �; � 2 F

q

su
h that (

�

�

)

2

+

�

�

+ 1 6= 0. Given nonzero � 2 F

q

,

the number of nonzero element � 2 F

q

di�erent from � su
h that (

�

�

)

2

+

�

�

+1 6= 0

is q � 1 � jG

3

j and hen
e the number of 
ubi
 polynomials of the form (4.7) is

1

2

(q � 1)(q � 1� jG

3

j); therefore, we obtain the 
laimed 
ardinality of B

4

. �

Proposition 4.4. The number of isomorphism 
lasses of Pi
ard 
urves over F

q

=

F

2

m

of type B is given by

(

3q � 4 if m is odd;

9q � 21 if m is even:

Proof. A

ording to the rule (4.6) of 
hange of variables and our 
onstru
tion of

the sets B

i

, it 
an be 
he
ked easily that the sets B

i

are stable under the a
tion of

F

�

q

� F

q

on B. The isotropy group of ea
h element in B

i

has the 
ardinality jG

3

j � i.

Hen
e, the number of isomorphism 
lasses of Pi
ard 
urves of type B is

1

q(q � 1)

(jB

1

jjG

3

j+ 2jB

2

jjG

3

j+ 4jB

4

jjG

3

j)

=

jG

3

j

q(q � 1)

(jBj+ jB

2

j+ 3jB

4

j)

= jG

3

j

�

q � 1 +

q

2

+

3

2

(q � 1� jG

3

j)

�

:

The remaining of the proof now follows easily. �

It now remains to 
ount isomorphism 
lasses of the Pi
ard 
urves of type C. Let

C be the set of all Pi
ard 
urves over F

q

of the form (4.3). Proposition 2.3 allows

us to regard the group F

�

q

� F

q

as to a
t on C as follows:

(�; �) : y

3

= x

4

+ a

9

x+ a

12

7! ŷ

3

= x̂

4

+ â

9

x̂+ â

12

;

where

(4.8)

�

�

9

â

9

= a

9

�

12

â

12

= �

4

+ �a

9

+ a

12

:

The isopropy group of a Pi
ard 
urve y

3

= x

4

+ a

9

x+ a

12

of type C is

G =

�

(�; �) 2 F

�

q

� F

q

j �

9

= 1; �

4

+ a

9

� + a

12

(�

3

� 1) = 0

	

:

Let G

9

=

�

� 2 F

q

j �

9

= 1

	

. We 
onsider three 
ases depending on the size of G

9

.

Case I: jG

9

j = 1. The binomial X

3

+ a

9

is redu
ible and, sin
e F

q


ontains no

primitive third root of unity, has only one root in F

q

. Hen
e, jGj = 2.

Case II: jG

9

j = 3. Sin
e F

q


ontains a primitive third root of unity we have

jGj =

(

3 if X

3

+ a

9

is irredu
ible over F

q

;

12 otherwise:

Case III: jG

9

j = 9. If X

3

+a

9

is irredu
ible, then for any b 2 F

q

the polynomial

X

4

+ a

9

X + b is the produ
t of linear polynomial and an irredu
ible polynomial
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(see [10, Theorem 3.83℄) and hen
e in this 
ase we have jGj = 9 � 1 = 9. Now, we

suppose that X

3

+ a

9

is redu
ible and say a

9

= A

3

, where A 2 F

q

. Let � denote

a generator of G

9

. One 
an show that X

4

+ X + b (b 2 F

q

) has a root in F

q

if

and only if Tr(b) = 0. So, X

4

+ a

9

X + a

12

(�

3n

� 1) has a root in F

q

if and only if

Tr

�

a

12

(�

3n

�1)

A

4

�

= 0, in whi
h 
ase all of its four distin
t roots are 
ontained in F

q

.

Note that, sin
e �

6

+ �

3

+ 1 = 0,

Tr

�

a

12

�

6

A

4

�

+Tr

�

a

12

�

3

A

4

�

= Tr

�

a

12

A

4

�

and that, as n runs from 1 to 9, �

3n

assumes ea
h of 1; �

3

; �

6

exa
tly three times.

If Tr

�

a

12

A

4

�

= 1, then either Tr

�

a

12

�

3

A

4

�

= 0 or Tr

�

a

12

�

6

A

4

�

= 0 but not both and

hen
e jGj = 3 � 4 = 12. If Tr

�

a

12

A

4

�

= 0, we have two possibilities

Tr

�

a

12

�

6

A

4

�

= Tr

�

a

12

�

3

A

4

�

= 0

or

Tr

�

a

12

�

6

A

4

�

= Tr

�

a

12

�

3

A

4

�

= 1;

in the former 
ase jGj = 9 � 4 = 36 and in the latter 
ase jGj = 3 � 4 = 12.

Proposition 4.5. The number of isomorphism 
lasses of Pi
ard 
urves over a

�nite �eld F

q

= F

2

m

of type C is

8

>

<

>

:

2 if m is odd;

6 if m � 2; 4 (mod 6);

12 if m � 0 (mod 6):

Proof. When m is odd, sin
e the 
ardinality of the isotropy group of any 
urve in

C is 2, that is, sin
e all the orbits in C have 
onstant length

1

2

q(q � 1), there are

two orbits in C.

Suppose that m � 2; 4 (mod 6), equivalently that jG

9

j = 3. We divide C into

two subsets whi
h are stable under the a
tion on C:

C

3;1

=

�

y

3

= x

4

+ ax+ b j a =2 F

3

q

	

;

C

3;2

=

�

y

3

= x

4

+ ax+ b j a 2 F

3

q

	

:

It follows easily that jC

3;1

j =

2

3

q(q� 1) and jC

3;2

j =

1

3

q(q� 1). Sin
e the 
ardinality

of isotropy groups of the 
urves in C

3;1

(resp. C

3;2

) is 
onstant, so is the length of

orbits and this 
onstant value is given by

1

3

q(q � 1) (resp.

1

12

q(q � 1)). Hen
e the

number of isomorphism 
lasses in the sets C

3;1

and C

3;2

are 2 and 4, respe
tively.

Now, �nally we 
onsider the 
ase whenm � 0 (mod 6), equivalently when jG

9

j =

9. We partition C into four subsets C

9;i

whi
h are stable under the a
tion of F

�

q

�F

q

,
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where

C

9;1

=

�

y

3

= x

4

+ ax+ b j a =2 F

3

q

	

;

C

9;2

=

n

y

3

= x

4

+ ax+ b j a 2 F

3

q

;Tr(ba

�4=3

) = 1

o

;

C

9;3

=

n

y

3

= x

4

+ ax+ b j a 2 F

3

q

;Tr(b�

3

a

�4=3

) = Tr(b�

6

a

�4=3

) = 0

o

;

C

9;4

=

n

y

3

= x

4

+ ax+ b j a 2 F

3

q

;Tr(b�

3

a

�4=3

) = Tr(b�

6

a

�4=3

) = 1

o

:

Here, � denotes a generator of G

9

. Clearly, jC

9;1

j =

2

3

q(q�1) and jC

9;2

j =

1

6

q(q�1).

A simple dimension argument shows that jC

9;3

j =

1

12

q(q � 1) and hen
e we have

jC

9;4

j =

1

12

q(q � 1). On the other hand, the isotropy groups of 
urves in C

9;i

have

the same size as proved and given above. After the very similar argument in the

previous paragraph, we see that the number of isomorphism 
lasses in C

9;i

are

6; 2; 3; 1. This 
ompletes the proof. �

Finally, 
ombining Propositions 4.2, 4.4 and 4.5, we get the main result of this

se
tion.

Theorem 4.6. The number of isomorphism 
lasses of Pi
ard 
urves over a �nite

�eld F

q

= F

2

m

is given by

8

>

<

>

:

q

2

+ 2q � 2 if m is odd;

3(q

2

� 5) if m � 2; 4 (mod 6);

3(q

2

� 3) if m � 0 (mod 6):
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