
ISOMORPHISM CLASSES OF PICARD CURVES

OVER FINITE FIELDS

JONG WON LEE

Abstrat. In this paper we determine the number of isomorphism lasses of

Piard urves, i.e., superellipti urves y

3

= f(x) of genus three, over �nite

�elds of harateristi di�erent from 3. In the proess of doing this we also

provide redued forms of Piard urves together the number of suh forms up

to isomorphism. In addition to its own theoretial meaning it has appliations

to ryptography.

1. Introdution

Starting in around 1985, the theory of ellipti and hyperellipti urves over �nite

�elds has been of interest for onstrution of ryptosystems based on the disrete

logarithm problem, and ellipti urve ryptography is now at the stage of ommer-

ial interest. One of the main reason for interest in these urves is that they provides

us a number of �nite abelian groups | the so-alled Jaobian groups, on whih the

disrete logarithm problem seems to be far more omputationally infeasible than

on the multipliative groups of �nite �elds.

Reently a new lass of urves, whih are alled superellipti urves and are gen-

eralizations of hyperellipti urves when the ground �eld has an odd harateristi,

has suggested for onstruting publi key ryptosystems by Galbraith, Paulus and

Smart in [8℄. Besides providing an algorithm for the arithmeti on the Jaobian of

the superellipti urves, in the same paper they proved the method of Adleman,

DeMarrais and Huang [1℄ an be extended to the superellipti urve ase. This

leads us to restrit our attention to superellipti urves of small genus. The �rst

suh a non-hyperellipti example is the superellipti urves of genus three asso-

iated to a ubi funtion �eld, whih has a speial name the Piard urve. Like

ellipti urve and hyperellipti urve of genus 2, a Piard urves admits a geometri

interpretation of the arithmeti on its Jaobian group whih an be exploited for

an eÆient arithmeti as desribed in [3℄. Furthermore, the fat that the Jaobian

group is isomorphi to the ideal lass group of the funtion �eld an be used to get

an expliit formula whih makes the arithmeti more eÆient [2, 4℄.

In addition to its own theoretial importane, the omputation of isomorphism

lasses of the above-mentioned urves has a rytographial meaning. Before setting

ryptosystem based on the urves it may useful to know how many essentially

di�erent hoie of urves we may have. Isomorphism lasses of ellipti urves [14,
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12, 11℄ and hyperellipti urves of genus two over �nite �elds [7, 5, 6℄ are now

well-understood. In this paper, we determine the number of isomorphism lasses of

Piard urves over �nite �elds. In the proess of doing this we also provide redued

forms of Piard urves together the number of suh forms up to isomorphism.

The remainder of the paper is organized as follows. After giving the basi no-

tions and properties of Piard urves in the next setion, we ount the number

of isomorphism lasses of Piard urves over �nite �elds of harateristi di�erent

from 2 and 3 in setion 3. Finally, in setion 4 we do the same thing for Piard

urves over �nite �elds of even harateristi.

2. The Piard urves

To simplify the exposition, we start with an algebrai funtion �eld K over a

�eld k, that is, a �nitely generated extension �eld of k with transendental degree

one in whih k is algebraially losed. If p is a plae (i.e., a disrete valuation ring

between k and K) of K, we denote by v

p

the disrete valuation of K orresponding

to it. The degree, deg p, of a plae p is de�ned as the extension degree of the

residue �eld of p over k. For a divisor D =

P

n

p

p (that is, a �nite formal sum of

plaes of K) on K, we write L(D) for the k-vetor spae of elements f 2 K with

v

p

(f) + n

p

� 0 for all plaes p of K. Details of algebrai funtion �elds an be

found in [13℄.

The abstrat urve C

K

of K is the (o�nite) topologial spae onsisting of the

plaes of K that is trivial on k together with a sheaf of k-algebras. Two abstrat

urves C

K

and C

K

0

are said to be isomorphi (over k) if the algebrai funtion

�elds K and K

0

are isomorphi as k-algebras. For more details onerning with

abstrat urves, one may onsult Hartshorne's book [9℄

De�nition 2.1. Let k be a �eld with hark 6= 3. A Piard urve over k is

the abstrat urve of an algebrai funtion �eld of the form k(x; y) with relation

y

3

= f(x), where f(X) 2 k[X ℄ is a separable moni polynomial of degree 4.

In what follows, whenever we refer to \a Piard urve y

3

= f(x) over k", the

abstrat urve of the algebrai funtion �eld K = k(x; y) with relation y

3

= f(x)

is always intended.

Remarks 2.2. 1) Let p

1

be a plae of K lying over the in�nite plae of k(x).

From the relation y

3

= f(x) it follows that v

p

1

(x) = �3n and v

p

1

(y) = �4n for

some positive integer n. On the other hand, one an show that

3n � v

p

1

(1=x) � deg(p

1

) � [K : k(1=x)℄ � 3

and hene we must have n = 1. This means that Y

3

� f(x) is the minimal poly-

nomial of y over k(x), that the in�nite plae of k(x) totally rami�es in K and that

the degree of the plae p

1

is 1.

2) As a onsequene of Riemann-Hurwitz theorem the genus of the Piard urve

is given by

�2 +

1

2

X

p

(3� gd(3; v

p

(f))) deg p;

where the p runs through the plaes of k(x); for a proof see [13, III.7.4℄. So, the

Piard urve has genus 3.
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Let C : y

3

= x

4

+ a

3

x

3

+ a

6

x

2

+ a

9

x+ a

12

be a Piard urve over k, and let p

1

denote the unique plae of the funtion �eld of C lying over the in�nite plae of

k(x). Then x 2 L(3p

1

) and y 2 L(4p

1

). Sine deg p

1

= 1 and sine the genus of

the Piard urves is 3, by virtue of Riemann-Roh theorem and Cli�ord's theorem

we see that

L(3p

1

) = k � kx and L(4p

1

) = k � kx� ky:

Let

^

C : ŷ

3

= x̂

4

+ â

3

x̂

3

+ â

6

x̂

2

+ â

9

x̂+ â

12

be another Piard urve over k whih is

isomorphi to C. Identifying the funtion �elds of C and

^

C as k-algebras yields

k � kx = k � kx̂ and k � kx� ky = k � kx̂� kŷ:

So, we have x = �

3

x̂+ � and y = �

4

ŷ + x̂+ Æ for some �

3

; �

4

; �; ; Æ 2 k with �

3

and �

4

nonzero. Here, in order to get the equation of

^

C by this hange of variables

we must have �

3

= �

3

, �

4

= �

4

for some nonzero � 2 k, and  = Æ = 0. This

proves:

Proposition 2.3. Let k be a �eld with hark 6= 3. Two Piard urves C : y

3

=

x

4

+ a

3

x

3

+ a

6

x

2

+ a

9

x + a

12

and

^

C : ŷ

3

= x̂

4

+ â

3

x̂

3

+ â

6

x̂

2

+ â

9

x̂ + â

12

over k

are isomorphi over k if and only if x = �

3

x̂+� and y = �

4

ŷ for some � 2 k

�

and

� 2 k.

Under the hange of variables in the proposition, the oeÆients of the Piard

urves satisfy the following system of equations:

(2.1)

8

>

>

<

>

>

:

�

3

â

3

= 4� + a

3

�

6

â

6

= 6�

2

+ 3�a

3

+ a

6

�

9

â

9

= 4�

3

+ 3�

2

a

3

+ 2�a

6

+ a

9

�

12

â

12

= �

4

+ �

3

a

3

+ �

2

a

6

+ �a

9

+ a

12

3. Isomorphism Classes when har(F

q

) 6= 2; 3

In this setion we ount the isomorphism lasses of Piard urves over a �nite �eld

F

q

of odd harateristi. The basis idea is as follows. We will onsider a olletion

P of Piard urves of speial form for whih any Piard urves is isomorphi to one

of elements of P and the multipliative group F

�

q

ats on P suh that two urves in

P are isomorphi if and only if they are in the same orbit. We then get the number

of isomorphism lasses of Piard urves in terms of the number of orbits in P under

the ation of F

�

q

.

Sine harF

q

6= 2, via hange of variables x = x̂ +

a

3

4

and y = ŷ, eah Piard

urve y

3

= x

4

+ a

6

x

2

+ a

9

x + a

12

is isomorphi to a Piard urve of the form

y

3

= x

4

+ ax

2

+ bx + . Let P denote the set of all Piard urves of this form. If

two urves in the set P are isomorphi, then a possible hange of variable between

them is x = �

3

x̂ and y = �

4

ŷ for some nonzero element � in F

q

, in whih ase the

system of equations (2.1) beomes

(3.1)

8

<

:

�

6

â

6

= a

6

�

9

â

9

= a

9

�

12

â

12

= a

12

Hene, the multipliative group F

�

q

is regarded as to at on P by

� : y

3

= x

4

+ ax

2

+ bx+  7! y

3

= x

4

+

a

�

6

x

2

+

b

�

9

x+



�

12

:
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Note that by de�nition two Piard urves in P are isomorphi if and only if they

are in an orbit under this ation.

So as to determine the number of orbits in P we �rst need to know the size of

the set P and the following result tells us that it is q

3

� q

2

.

Lemma 3.1. Let F

q

be the �nite �eld of odd harateristi with q elements. Then

the number of non-separable polynomials with oeÆients in F

q

of the following

form is q

2

:

(3.2) x

4

+ ax

2

+ bx+ :

Proof. Let N be the set of all non-separable polynomials of the form (3.2). Write

N as a disjoint union N = N

1

t N

2

, where N

1

onsists of the polynomials in N

whih have a multiple root in F

q

. We �rst determine the ardinality of the set N

2

.

For this, onsider f(x) 2 N

2

and let � be a multiple root of it. Then, sine f(x) is

to have all of the onjugates of � over F

q

as its multiple roots, it should be of the

form f(x) = (x

2

� A)

2

, where A 2 F

q

and x

2

� A is irreduible over F

q

. Clearly,

any polynomial of this form belongs to N

2

. So, the ardinality of N

2

is equal to the

number of quadrati non-residue in F

�

q

and hene jN

2

j =

q�1

2

. Now, to determine

jN

1

j we onsider g(x) = x

4

+ ax

2

+ bx+  2 N

1

with a multiple root � in F

q

. Then

we an write g(x) = (x� �)

2

(x

2

+ 2�x+ �) for some � 2 F

q

with

(3.3) a = �3�

2

+ �; b = 2�

3

� 2��;  = �

2

�:

So, we have a legitimate surjetive map  : F

q

� F

q

! N

1

given by (�; �) 7!

(x��)

2

(x

2

+2�x+�). It follow easily from the equation (3.3) that two pairs (�; �)

and (�

1

; �

1

) are sent to the same non-separable polynomial by  if and only if

�

2

= �

2

1

= � = �

1

. This means that eah element in N

1

has at most two preimages,

and that the number of elements of N

2

whih have two preimages is the same as

the number of quadrati non-resides in F

q

. Therefore, we have jN

1

j = q

2

�

q�1

2

,

whih proves the lemma. �

Theorem 3.2. Let F

q

be a �nite �eld of harateristi 6= 2; 3 with q elements.

Then the number of isomorphism lasses of Piard urves over F

q

is

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

q

2

+ q � 1 if q � 1 � 2; 10; 14; 22; 26; 34 (mod 36);

q

2

+ q + 1 if q � 1 � 4; 8; 16; 20; 28; 32 (mod 36);

3(q

2

+ q � 1) if q � 1 � 6; 30 (mod 36);

3(q

2

+ q + 1) if q � 1 � 12; 18; 24 (mod 36);

3(q

2

+ q + 3) if q � 1 � 0 (mod 36):

Proof. We divide the set P into four disjoint subsets:

P

4

=

�

y

3

= x

4

+ ax

2

+ bx+  2 P j a = b = 0 6= 

	

;

P

3

=

�

y

3

= x

4

+ ax

2

+ bx+  2 P j a =  = 0 6= b

	

;

P

2

=

�

y

3

= x

4

+ ax

2

+ bx+  2 P j b = 0; a 6= 0 6= 

	

;

and P

1

= P�

S

4

i=2

P

i

. Clearly, jP

4

j = jP

3

j = q�1. Sine a polynomialX

4

+aX

2

+

is non-separable if and only if (

a

2

)

2

= , we have jP

2

j = (q�1)(q�2) and hene by the

lemma jP

1

j = q(q�1)

2

. For eah i, the set P

i

is stable under the ation of F

�

q

on P
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and by (3.1) eah urve in P

i

has the same isotropy group G

i

=

�

� 2 F

q

j �

3i

= 1

	

.

Hene the number of orbits in P is

1

q � 1

4

X

i=1

jP

i

jjG

i

j = jG

4

j+ jG

3

j+ (q � 2)jG

2

j+ (q

2

� q)jG

1

j:

From the fat that jG

i

j = gd(3i; q� 1), the theorem now follows immediately. �

4. Isomorphism Classes when har(F

q

) = 2

In this �nal setion we ount the number of isomorphism lasses of Piard urve

over a �nite of even harateristi. To this end, we �rst onsider three sets of

Piard urves suh that two urves in di�erent sets annot be isomorphi and any

ismorphism lass of Piard urves an be represented by a urve in the union of the

sets. We then ahieve our goal by ounting the isomorphism lasses in eah set.

Throughout this setion, unless spei�ed otherwise, whenever we refer to �nite

�elds, �nite �elds of harateristi 2 are understood.

Let F

q

be a �nite �eld of harateristi 2. Then any Piard urve over F

q

is

isomorphi to one and only one of the following types:

y

3

= x

4

+ ax

3

+ bx+  with a 6= 0;(4.1)

y

3

= x

4

+ ax

2

+ bx+  with a 6= 0 6= b;(4.2)

y

3

= x

4

+ ax+ b with a 6= 0:(4.3)

Indeed, let a Piard urve C : y

3

= x

4

+ a

3

x

3

+ a

2

6

+ a

9

x + a

12

over F

q

be given.

First we note that, sine harF

q

= 2, the system of equations (2.1) beomes

(4.4)

8

>

>

<

>

>

:

�

3

â

3

= a

3

�

6

â

6

= �a

3

+ a

6

�

9

â

9

= �

2

a

3

+ a

9

�

12

â

12

= �

4

+ �

3

a

3

+ �

2

a

6

+ �a

9

+ a

12

from whih we see that any two Piard urves of di�erent types annot be iso-

morphi to eah other. If a

3

is nonzero, then, taking � = 1 and � 2 F

q

suh

that �a

3

+ a

6

= 0, we see that the urve is isomorphi to a Piard urve of the

form (4.1); in this ase we say C is of type A. If a

3

= 0 and a

6

6= 0, in order

for X

4

+ a

3

X

3

+ a

6

X

2

+ a

9

X + a

12

to be seprable the oeÆient a

6

should be

nonzero; in this ase C is said to be of type B. If a

3

= a

6

= 0, in order for

X

4

+ a

3

X

3

+ a

6

X

2

+ a

9

X + a

12

to be separable a

9

should be nonzero; in this ase

C is said to be of type C.

We �rst ount isomorphism lasses of Piard urves of type A in terms of iso-

morphism lasses of Piard urves of the form (4.1). For this, we need to know the

number of suh urves.

Lemma 4.1. The number of separable polynomials over F

q

of the following form

is q(q � 1)

2

:

(4.5) x

4

+ ax

3

+ bx+  (a 6= 0):

Proof. We prove this lemma by ounting the number of non-separable polynomial

of the given form is q(q � 1). Let f(x) be a non-separable polynomial of the form

(4.5). Then any multiple root, say �, of it should be in F

q

. In this ase, f(x) an



6 JONG WON LEE

be written as f(x) = (x � �)

2

(x + �x + �

2

) for some nonzero � 2 F

q

. So, we get

a surjetive map from F

q

� F

�

q

to the set of non-separable polynomial of the form

(4.5) de�ned by (�; �) 7! (x� �)

2

(x+ �x+ �

2

), whih an be easily heked to be

injetive. This ompletes the proof. �

Proposition 4.2. The number of isomorphism lasses of Piard urves over F

q

=

F

2

m

of type A is given by

(

q(q � 1) if m is odd;

3q(q � 1) if m is even:

Proof. The multipliative group F

�

q

anonially ats on the set, say � of Piard urve

of the form (4.1). Eah urve in the set � has the same isotropy G =

�

� j �

3

= 1

	

.

So, the number of isomorphism lasses in � is

j�j

(F

�

q

:G)

. On the other hand, aording

to the previous lemma, j�j = q(q � 1)

2

. Now, the result follows immediately. �

We now ount the number of isomorphism lasses of Piard urves of type B.

Let B denote the set of Piard urves of the form (4.2). The group F

�

q

� F

q

ats on

B in the following manner:

(�; �) : y

3

= x

4

+ a

6

x

2

+ a

9

x+ a

12

7! ŷ

3

= x̂

4

+ â

6

x̂

2

+ â

9

x̂+ â

12

;

where

(4.6)

8

<

:

�

6

â

6

= a

6

�

9

â

9

= a

9

�

12

â

12

= �

4

+ �

2

a

6

+ �a

9

+ a

12

:

The isotropy group of a Piard urve y

3

= x

4

+ a

3

x

3

+ a

9

x + a

12

in B under

this ation is the produt G

3

�G

a

6

;a

9

, where G

3

=

�

� 2 F

q

j �

3

= 1

	

and G

a

6

;a

9

=

�

� 2 F

q

j �

4

+ a

6

�

2

+ a

9

� = 0

	

. Note that the separability of the polynomial X

4

+

a

6

X

2

+ a

9

X implies jG

a

6

;a

9

j = 1; 2 or 4. So, we an write

B = B

1

t B

2

t B

4

;

where eah B

n

onsists of Piard urves y

3

= x

4

+ a

3

x

3

+ a

9

x+ a

12

of type B suh

that jG

a

6

;a

9

j = n.

Lemma 4.3. Let G

3

and B

i

be as above. Then we have jB

2

j =

1

2

q

2

(q � 1) and

jB

4

j =

1

2

q(q � 1)(q � 1� jG

3

j).

Proof. We �rst ompute jB

2

j by ounting the number of ubi polynomials of the

form

(4.7) x

3

+ ax+ b (a; b 2 F

�

q

)

with only one solution in F

q

. Let f(x) be suh a polynomial and let � denote its

unique root lies in F

q

. Then we have a following fatorization

f(x) = (x � �)(x

2

+ �x+ �)

for some nonzero � 2 F

q

suh that x

2

+ �x + � is irreduible. Sine x

2

+ �x + �

is irreduible if and only if the absolute trae of

�

�

2

is nonzero and sine there are

exatly

q

2

elements of F

q

with nonzero absolute trae, the number of polynomials

of the form 4.7 with only one roots in F

q

is

1

2

q(q � 1) and hene jB

2

j =

1

2

q

2

(q � 1).
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To determine jB

4

j, we onsider three distint nonzero elements �; � and  of F

q

.

To say that the polynomial (x� �)(x� �)(x� ) is of the form (4.7) is equivalent

to saying that they satisfy the relations � + � +  = 0 and �

2

+ �� + �

2

6= 0. So,

the ardinality of B

4

is equal to q times the number of ways to �nd two distint

nonzero elements �; � 2 F

q

suh that (

�

�

)

2

+

�

�

+ 1 6= 0. Given nonzero � 2 F

q

,

the number of nonzero element � 2 F

q

di�erent from � suh that (

�

�

)

2

+

�

�

+1 6= 0

is q � 1 � jG

3

j and hene the number of ubi polynomials of the form (4.7) is

1

2

(q � 1)(q � 1� jG

3

j); therefore, we obtain the laimed ardinality of B

4

. �

Proposition 4.4. The number of isomorphism lasses of Piard urves over F

q

=

F

2

m

of type B is given by

(

3q � 4 if m is odd;

9q � 21 if m is even:

Proof. Aording to the rule (4.6) of hange of variables and our onstrution of

the sets B

i

, it an be heked easily that the sets B

i

are stable under the ation of

F

�

q

� F

q

on B. The isotropy group of eah element in B

i

has the ardinality jG

3

j � i.

Hene, the number of isomorphism lasses of Piard urves of type B is

1

q(q � 1)

(jB

1

jjG

3

j+ 2jB

2

jjG

3

j+ 4jB

4

jjG

3

j)

=

jG

3

j

q(q � 1)

(jBj+ jB

2

j+ 3jB

4

j)

= jG

3

j

�

q � 1 +

q

2

+

3

2

(q � 1� jG

3

j)

�

:

The remaining of the proof now follows easily. �

It now remains to ount isomorphism lasses of the Piard urves of type C. Let

C be the set of all Piard urves over F

q

of the form (4.3). Proposition 2.3 allows

us to regard the group F

�

q

� F

q

as to at on C as follows:

(�; �) : y

3

= x

4

+ a

9

x+ a

12

7! ŷ

3

= x̂

4

+ â

9

x̂+ â

12

;

where

(4.8)

�

�

9

â

9

= a

9

�

12

â

12

= �

4

+ �a

9

+ a

12

:

The isopropy group of a Piard urve y

3

= x

4

+ a

9

x+ a

12

of type C is

G =

�

(�; �) 2 F

�

q

� F

q

j �

9

= 1; �

4

+ a

9

� + a

12

(�

3

� 1) = 0

	

:

Let G

9

=

�

� 2 F

q

j �

9

= 1

	

. We onsider three ases depending on the size of G

9

.

Case I: jG

9

j = 1. The binomial X

3

+ a

9

is reduible and, sine F

q

ontains no

primitive third root of unity, has only one root in F

q

. Hene, jGj = 2.

Case II: jG

9

j = 3. Sine F

q

ontains a primitive third root of unity we have

jGj =

(

3 if X

3

+ a

9

is irreduible over F

q

;

12 otherwise:

Case III: jG

9

j = 9. If X

3

+a

9

is irreduible, then for any b 2 F

q

the polynomial

X

4

+ a

9

X + b is the produt of linear polynomial and an irreduible polynomial
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(see [10, Theorem 3.83℄) and hene in this ase we have jGj = 9 � 1 = 9. Now, we

suppose that X

3

+ a

9

is reduible and say a

9

= A

3

, where A 2 F

q

. Let � denote

a generator of G

9

. One an show that X

4

+ X + b (b 2 F

q

) has a root in F

q

if

and only if Tr(b) = 0. So, X

4

+ a

9

X + a

12

(�

3n

� 1) has a root in F

q

if and only if

Tr

�

a

12

(�

3n

�1)

A

4

�

= 0, in whih ase all of its four distint roots are ontained in F

q

.

Note that, sine �

6

+ �

3

+ 1 = 0,

Tr

�

a

12

�

6

A

4

�

+Tr

�

a

12

�

3

A

4

�

= Tr

�

a

12

A

4

�

and that, as n runs from 1 to 9, �

3n

assumes eah of 1; �

3

; �

6

exatly three times.

If Tr

�

a

12

A

4

�

= 1, then either Tr

�

a

12

�

3

A

4

�

= 0 or Tr

�

a

12

�

6

A

4

�

= 0 but not both and

hene jGj = 3 � 4 = 12. If Tr

�

a

12

A

4

�

= 0, we have two possibilities

Tr

�

a

12

�

6

A

4

�

= Tr

�

a

12

�

3

A

4

�

= 0

or

Tr

�

a

12

�

6

A

4

�

= Tr

�

a

12

�

3

A

4

�

= 1;

in the former ase jGj = 9 � 4 = 36 and in the latter ase jGj = 3 � 4 = 12.

Proposition 4.5. The number of isomorphism lasses of Piard urves over a

�nite �eld F

q

= F

2

m

of type C is

8

>

<

>

:

2 if m is odd;

6 if m � 2; 4 (mod 6);

12 if m � 0 (mod 6):

Proof. When m is odd, sine the ardinality of the isotropy group of any urve in

C is 2, that is, sine all the orbits in C have onstant length

1

2

q(q � 1), there are

two orbits in C.

Suppose that m � 2; 4 (mod 6), equivalently that jG

9

j = 3. We divide C into

two subsets whih are stable under the ation on C:

C

3;1

=

�

y

3

= x

4

+ ax+ b j a =2 F

3

q

	

;

C

3;2

=

�

y

3

= x

4

+ ax+ b j a 2 F

3

q

	

:

It follows easily that jC

3;1

j =

2

3

q(q� 1) and jC

3;2

j =

1

3

q(q� 1). Sine the ardinality

of isotropy groups of the urves in C

3;1

(resp. C

3;2

) is onstant, so is the length of

orbits and this onstant value is given by

1

3

q(q � 1) (resp.

1

12

q(q � 1)). Hene the

number of isomorphism lasses in the sets C

3;1

and C

3;2

are 2 and 4, respetively.

Now, �nally we onsider the ase whenm � 0 (mod 6), equivalently when jG

9

j =

9. We partition C into four subsets C

9;i

whih are stable under the ation of F

�

q

�F

q

,
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where

C

9;1

=

�

y

3

= x

4

+ ax+ b j a =2 F

3

q

	

;

C

9;2

=

n

y

3

= x

4

+ ax+ b j a 2 F

3

q

;Tr(ba

�4=3

) = 1

o

;

C

9;3

=

n

y

3

= x

4

+ ax+ b j a 2 F

3

q

;Tr(b�

3

a

�4=3

) = Tr(b�

6

a

�4=3

) = 0

o

;

C

9;4

=

n

y

3

= x

4

+ ax+ b j a 2 F

3

q

;Tr(b�

3

a

�4=3

) = Tr(b�

6

a

�4=3

) = 1

o

:

Here, � denotes a generator of G

9

. Clearly, jC

9;1

j =

2

3

q(q�1) and jC

9;2

j =

1

6

q(q�1).

A simple dimension argument shows that jC

9;3

j =

1

12

q(q � 1) and hene we have

jC

9;4

j =

1

12

q(q � 1). On the other hand, the isotropy groups of urves in C

9;i

have

the same size as proved and given above. After the very similar argument in the

previous paragraph, we see that the number of isomorphism lasses in C

9;i

are

6; 2; 3; 1. This ompletes the proof. �

Finally, ombining Propositions 4.2, 4.4 and 4.5, we get the main result of this

setion.

Theorem 4.6. The number of isomorphism lasses of Piard urves over a �nite

�eld F

q

= F

2

m

is given by

8

>

<

>

:

q

2

+ 2q � 2 if m is odd;

3(q

2

� 5) if m � 2; 4 (mod 6);

3(q

2

� 3) if m � 0 (mod 6):
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