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Abstra
t

We present a se
ure unauthenti
ated as well as an authenti
ated multi party key agreement proto
ol.

The unauthenti
ated version of our proto
ol uses ternary trees and is based on bilinear maps and Joux's

three party proto
ol. The number of rounds, 
omputation/
ommuni
ation 
omplexity of our proto
ol


ompares favourably with previously known proto
ols. The authenti
ated version of our proto
ol also

uses ternary trees and is based on publi
 IDs and Key Generation Centres. The authenti
ated version

of our proto
ol is more eÆ
ient than all previously known authenti
ated key agreement proto
ols.

Keywords : group key agreement, authenti
ated key agreement, pairing based 
ryptography, ID based


ryptography.

1 Introdu
tion

Key agreement is one of the fundamental 
ryptographi
 primitives. This is required in situations where

two or more parties want to 
ommuni
ate se
urely among themselves. The situation where three or more

parties share a se
ret key is often 
alled 
onferen
e keying. In this situation, the parties 
an se
urely send

and re
eive messages from ea
h other. An adversary not having a

ess to the se
ret key will not be able

to de
rypt the message.

Key agreement proto
ols fall naturally into two 
lasses { authenti
ated and unauthenti
ated. The �rst

two party key agreement proto
ol was introdu
ed by DiÆe-Hellman in their seminal paper [14℄. This is

an unauthenti
ated proto
ol in the sense that an adversary who has 
ontrol over the 
hannel 
an use the

man-in-the-middle atta
k to agree upon two separate keys with the two users without the users being

aware of this. This situation is usually ta
kled by adding some form of authenti
ation me
hanism to the

proto
ol.

Unauthenti
ated key agreement proto
ols 
onsider the adversary to be passive, i.e., the adversary 
an

listen to the traÆ
 on the network, but 
annot alter it. On the other hand, authenti
ated key agreement

proto
ols 
onsider the adversary to be a
tive, i.e., the adversary 
an alter/repla
e the messages 
owing

through the network. Thus the se
urity requirements for authenti
ated key agreement is more stringent.

Some of the desirable properties in authenti
ated key agreement are mutual impli
it key authenti
ation,

known key se
urity, forward se
re
y, key 
ompromise impersonation and key 
ontrol.

Apart from authenti
ation, the other aspe
ts of key agreement proto
ols are 
omputation and 
ommu-

ni
ation eÆ
ien
y. When the number of parties is more than two, the proto
ol is usually a multi-round

proto
ol. In ea
h round some or all of the users send messages to the other users and at the end of all

the rounds, all the users should agree upon a 
ommon key. The total number of bits ex
hanged in the

proto
ol is a 
ru
ial parameter in judging the eÆ
ien
y of the proto
ol. Further, in ea
h round, ea
h user

has to perform some 
omputation like an exponentiation or a s
alar multipli
ation. The total amount of


omputation required by all the users is another measure of eÆ
ien
y of the proto
ol.
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In this paper, we present a se
ure multi-party key agreement proto
ol. The proto
ol 
an be used for

both authenti
ated and unauthenti
ated key agreement. For n parties, n > 2, the number of rounds

required for our proto
ol is dlog

3

ne for both authenti
ated and unauthenti
ated key agreement. For

unauthenti
ated key agreement, the total number of messages ex
hanged and the total number of s
alar

multipli
ations (over a suitable ellipti
 
urve) is less than

5

2

(n� 1). Additionally, ndlog

3

ne pairings have

to be 
omputed. For authenti
ated version of our proto
ol, the 
ombined message size is two times more

than the unauthenti
ated version, the number of s
alar multipli
ations is at most 9(n� 1) and pairings is

around �ve times more than the unauthenti
ated version.

Our proto
ol is based on bilinear maps. In one of the breakthroughs in key agreement proto
ols,

Joux [17℄ proposed a three party, single round key agreement proto
ol. An authenti
ated version of this

proto
ol has been proposed in [2℄, [28℄. The basi
 Joux proto
ol is at the heart of our (unauthenti
ated)

proto
ol. We group the users into three user sets using top down re
ursive pro
edure so that user sets with

two users appear only at the �rst round. The Joux proto
ol is invoked for ea
h set of three users to agree

upon a 
ommon key. For the set of two users (if any), one of them generates randomly another short term

private key to have two keys. These two keys and the short term private key of the other user is used in

another invo
ation of Joux's proto
ol. A set of one user is kept un
hanged. Our proto
ol then pro
eeds

over several rounds and ea
h round 
onsists of several invo
ations of Joux's proto
ol. Ultimately, we are left

with three user sets and Joux's proto
ol is invoked on
e more to 
omplete the proto
ol. The authenti
ated

version of our proto
ol is stru
turally same as the unauthenti
ated version. The only di�eren
e is that the

invo
ations of the two and three party proto
ol now involves the authenti
ated version of these proto
ols.

Thus our multi party proto
ol is essentially a 
ombination of Joux's tripartite DiÆe-Hellman proto
ol

and tree based group key agreement using ternary tree stru
ture. Even though the idea of 
ombining

Joux's proto
ol and tree based group key agreement is a natural extension of Joux's original proto
ol,

it is nontrivial to obtain a se
urity proof for the proto
ol against passive adversary. One of our major


ontribution is to provide su
h a proof using te
hniques from [5℄, [18℄, [27℄. In fa
t, any se
ure two or three

party proto
ol 
an be used with the ternary tree stru
ture to obtain a se
ure multi party proto
ol. Our

se
urity analysis against passive adversaries is also a kind of redu
tion. We argue that if the underlying

two and three party proto
ols are se
ure, then our multi party proto
ol is also se
ure.

The authenti
ated version of our proto
ol is an ID-based proto
ol. ID-based 
ryptography was proposed

by Shamir [25℄ and there has been a spurt of papers in this area. The authenti
ated version of our proto
ol


an be seen as another 
ontribution to this �eld. The unauthenti
ated version of our proto
ol uses pairing

based 
ryptography, whi
h was introdu
ed by Boneh and Franklin [6℄.

Previous Work : As mentioned before, the �rst two party unauthenti
ated key agreement proto
ol was

proposed by DiÆe-Hellman in their seminal paper [14℄. This was modi�ed into an authenti
ated key agree-

ment proto
ol by Matsumoto, Takashima and Imai in [22℄. Later, Law, Menezes, Qu, Solinas and Vanstone

showed in [21℄ that some of the proto
ols of [22℄ are not se
ure and proposed a new proto
ol for authenti-


ated key agreement. There have been a number of proposals for authenti
ated and unauthenti
ated key

agreement [23℄, [26℄, [11℄.

Among the previously known multi party key agreement proto
ols only two proto
ols have number of

rounds less than our proto
ol. In [8℄, Boneh and Silverberg proposed a single round multi party key agree-

ment proto
ol. This proto
ol is based on the existen
e of multi-linear maps. Currently, no su
h suitable

maps are known and the existen
e of su
h maps is presently a resear
h problem [8℄. The other proto
ol

whi
h requires less number of rounds is due to Burmester and Desmedt [9℄. This is an unauthenti
ated

proto
ol and requires two rounds. However, the 
omputation 
omplexity is higher and the total number

of exponentiations required is around n

2

. Also the authors indi
ate that zero-knowledge proof te
hniques

are required to 
onvert this proto
ol into an authenti
ated proto
ol.

The total number of messages ex
hanged in our proto
ol is less than all other known proto
ols. Further,

the total number of s
alar multipli
ations/exponentiation required by our proto
ol is also less than other
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known proto
ols. However, our proto
ol requires a number of pairings and hen
e in 
ertain 
ases 
an be


omputationally less eÆ
ient than some of the previously known proto
ols.

The remainder of the paper is organized as follows. Se
tion 2 brie
y explains the 
ryptographi
 bilinear

map and the basi
 requirements of our proto
ol. Se
tion 3 des
ribes the proto
ol. The se
urity analysis

is provided in Se
tion 4. Se
tion 5 dis
usses the eÆ
ien
y. Se
tion 6 
ompares with other key agreement

proto
ols. Finally Se
tion 7 
on
ludes the paper. Membership operations insertion and deletion are

dis
ussed in the Appendix.

2 Preliminaries

2.1 Cryptographi
 Bilinear Maps

Let G

1

; G

2

be two groups of the same prime order q. We view G

1

as an additive group and G

2

as a

multipli
ative group. Let P be an arbitrary generator of G

1

. Assume that dis
rete logarithm problem

(DLP) is hard in both G

1

and G

2

. A mapping e : G

2

1

! G

2

satisfying the following properties is 
alled a

bilinear map from a 
ryptographi
 point of view :

Bilinearity : e(aP; bQ) = e(P;Q)

ab

for all P;Q 2 G

1

and a; b 2 Z

�

q

.

Non-degenera
y : If P is a generator of G

1

, then e(P; P ) is a generator of G

2

. In other words, e(P; P ) 6= 1.

Computable : There exists an eÆ
ient algorithm to 
ompute e(P;Q) for all P;Q 2 G

1

.

Modi�ed Weil Pairing [6℄ and Tate Pairing [4℄, [16℄ are the examples of 
ryptographi
 bilinear maps.

2.2 DiÆe Hellman Assumptions

In this subse
tion we spe
ify some versions of DiÆe-Hellman problems of whi
h the last one is newly intro-

du
ed. Consider hG

1

; G

2

; ei where G

1

; G

2

are two 
y
li
 subgroups of a large prime order q and e : G

2

1

! G

2

is a 
ryptographi
 bilinear map. We take G

1

as an additive group and G

2

as a multipli
ative group. (By

a2

R

Z

�

q

, we mean a is randomly 
hosen from Z

�

q

.)

1: De
isional DiÆe-Hellman (DDH) problem in G

1

:

Instan
e : (P; aP; bP; 
P ) for some a; b; 
 2 Z

�

q

.

Solution : Output yes if 
 = ab mod q and output no otherwise.

DDH problem in G

1

is easy : DDH problem in G

1


an be solved in polynomial time by verifying

e(aP; bP ) = e(P; 
P ). This is the well known MOV redu
tion [6℄ : The DLP in G

1

is no harder than the

DLP in G

2

.

DDH assumption : There exists no polynomial time algorithm whi
h 
an solve the DDH problem in G

2

with non-negligible probability of su

ess. See [13℄ for a detailed dis
ussion.

2: Hash De
isional DiÆe-Hellman (HDH) problem in G

1

:

Instan
e : (P; aP; bP; r) for some a; b; 
; r 2 Z

�

q

and a one way hash fun
tion H : G

1

! Z

�

q

.

Solution : Output yes if r = H(abP ) mod q and output no otherwise.

This problem was introdu
ed by Abdalla, Bellare and Rogaway in [1℄. The only di�eren
e is that the


o-domain set for the hash fun
tion used by them is a set of �nite (�xed) length strings whereas in our

version, we take it to be the set Z

�

q

.

The advantage of any probabilisti
 , polynomial time, 0/1-valued algorithm A in solving HDH problem in

G

1

is de�ned to be :

Adv

HDH

A

= jProb[A(P; aP; bP; r) = 1 : a; b; 
; r2

R

Z

�

q

℄ �Prob[A(P; aP; bP;H(abP )) = 1 : a; b2

R

Z

�

q

℄j

HDH assumption : There exists no polynomial time algorithm whi
h 
an solve the HDH problem in

G

1

with non-negligible probability of su

ess. In otherwords, for every probabilisti
, polynomial time,

0/1-valued algorithm A, Adv

HDH

A

<

1

m

l

for every �xed l > 0 and suÆ
iently large m. For more details,
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see [1℄.

3: Bilinear DiÆe-Hellman (BDH) problem in hG

1

; G

2

; ei :

Instan
e : (P; aP; bP; 
P ) for some a; b; 
 2 Z

�

q

Solution : Output e(P; P )

ab


.

BDH assumption : There exists no polynomial time algorithm whi
h 
an solve the BDH problem in

hG

1

; G

2

; ei with non-negligible probability of su

ess. See [6℄ for more details.

4: De
isional Hash Bilinear DiÆe-Hellman (DHBDH) problem in hG

1

; G

2

; ei :

Instan
e : (P; aP; bP; 
P; r)) for some a; b; 
; r 2 Z

�

q

and a one way hash fun
tion H : G

2

! Z

�

q

.

Solution : Output yes if r = H(e(P; P )

ab


) mod q and output no otherwise.

Similar to the HDH problem already introdu
ed in [1℄ whi
h is a hash version of DDH problem, the DHBDH

problem in hG

1

; G

2

; ei is also a hash version of the de
isional BDH problem in hG

1

; G

2

; ei .

The advantage of any probabilisti
, polynomial time, 0/1-valued algorithm A in solving DHBDH problem

in hG

1

; G

2

; ei is de�ned to be :

Adv

DHBDH

A

= jProb[A(P; aP; bP; 
P; r) = 1 : a; b; 
; r2

R

Z

�

q

℄ �Prob[A(P; aP; bP; 
P;H(e(P; P )

ab


)) = 1 :

a; b; 
2

R

Z

�

q

℄j

DHBDH assumption : There exists no polynomial time algorithm whi
h 
an solve the DHBDH prob-

lem with non-negligible probability of su

ess. In otherwords, for every probabilisti
, polynomial time,

0/1-valued algorithm A, Adv

DHBDH

A

<

1

m

l

for every �xed l > 0 and suÆ
iently large m.

The DHBDH assumption is a \natural" 
ombination of the HDH and BDH assumption and hen
e appears

to be a reasonable assumption to make.

2.3 Proto
ol Requirements

Consider the n users who wish to agree upon a 
onferen
e key to be the set f1; 2; : : : ; ng. Let s

1

; s

2

; : : : ; s

n

2

Z

�

q

, be their respe
tive private keys. Let U be a subset of f1; 2; : : : ; ng 
onsisting of 
onse
utive integers. We


all U a user set. Let Rep(U) stand for the representative of the set U . To be spe
i�
, let Rep(U) = min(U).

We use the notation A[1; : : : ; n℄ for an array of n elements A

1

; : : : ; A

n

and write A[i℄ and A

i

inter
hangeably.

We take G

1

to be a 
y
li
 subgroup of an ellipti
 
urve group of some large prime order q and the bilinear

map e : G

2

1

! G

2

to be either a modi�ed Weil pairing or a Tate pairing [4℄, [16℄. Let P be an arbitrary

generator of G

1

. Choose a hash fun
tion H : G

2

! Z

�

q

. The system parameters for the unauthenti
ated

proto
ol are params = hG

1

; G

2

; e; q; P;Hi.

For ID-based authenti
ated key agreement, we will additionally require the followings:

1. Hash fun
tions

b

H : G

1

! Z

�

q

, H

1

: f0; 1g

�

! G

1

.

2. A key generation 
entre (KGC) whi
h 
hooses a random s 2 Z

�

q

and sets P

pub

= sP . It publishes

P

pub

as a system parameter and keeps s as se
ret whi
h it treates as the master key. Ea
h user i

has an identity ID

i

2 f0; 1g

�

and long term publi
 key Q

i

= H

1

(ID

i

). User i sends Q

i

to KGC and

KGC sends ba
k the long term private key S

i

= sQ

i

to user i.

3. The keys s

1

; s

2

; : : : ; s

n

are short term private keys.

The system parameters for the authenti
ated proto
ol are params = hG

1

; G

2

; e; q; P; P

pub

;H;

b

H;H

1

i.
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3 Proto
ol

In this se
tion, we present a three-group and a two-group DiÆe-Hellman key agreement proto
ol Combi-

neThree and CombineTwo respe
tively together with an n-party re
ursive algorithm KeyAgreement whi
h

makes use of CombineThree and CombineTwo. The boxed portions are exe
uted for the authenti
ated version.

The three-group DiÆe-Hellman key agreement for unauthenti
ated as well as ID-based authenti
ated

versions are jointly given by the subroutine CombineThree as des
ribed below. In this subroutine, when


ardinality of ea
h of these three groups is one, then the ID-based authenti
ated version is simply the

three-party proto
ol proposed by Zhang, Liu, Kim in [28℄ while the unauthenti
ated version is the Joux [17℄

three-party key agreement proto
ol using bilinear map.

pro
edure CombineThree(U [1; 2; 3℄; s[1; 2; 3℄)

i = 1 to 3 do

Rep(U

i

) 
omputes P

i

= s

i

P

and T

Rep(U

i

)

=

b

H(P

i

)S

Rep(U

i

)

+ s

i

P

i

;

Let fj; kg = f1; 2; 3gnfig;

Rep(U

i

) sends P

i

, T

Rep(U

i

)

to all members of both U

j

; U

k

;

end do

i = 1 to 3 do

Let fj; kg = f1; 2; 3gnfig;

ea
h member of U

i

veri�es : e(T

Rep(U

j

)

+ T

Rep(U

k

)

; P ) = e(

b

H(P

j

)Q

Rep(U

j

)

+

b

H(P

k

)Q

Rep(U

k

)

; P

pub

)e(P

j

; P

j

)e(P

k

; P

k

) and


omputes H(e(P

j

; P

k

)

s

i

);

end do

end CombineThree

This subroutine does a key agreement among three user sets U

1

; U

2

; U

3

with s

1

; s

2

; s

3

respe
tively as their

private keys (short term for ID-based ) with 
ommon key H(e(P; P )

s

1

s

2

s

3

).

Similarly, the two-group DiÆe-Hellman key agreement for unauthenti
ated as well as ID-based au-

thenti
ated versions are jointly given by the subroutine CombineTwo as des
ribed below. This subroutine

redu
es to a two-party DiÆe-Hellman key agreement proto
ol when ea
h of the two groups has 
ardinality

one.

pro
edure CombineTwo(U [1; 2℄; s[1; 2℄)

i = 1 to 2 do

Rep(U

i

) 
omputes P

i

= s

i

P

and T

Rep(U

i

)

=

b

H(P

i

)S

Rep(U

i

)

+ s

i

P

i

;

end do

Rep(U

1

) generates s2

R

Z

�

q

and sends sP

and T

Rep(U

1

)

=

b

H(sP )S

Rep(U

1

)

+ s

2

P to the rest of the users;

ea
h member of U

1

; U

2

ex
ept Rep(U

1

) veri�es :

e(T

Rep(U

1

)

; P ) = e(

b

H(sP )Q

Rep(U

1

)

; P

pub

)e(sP; sP );

Rep(U

1

) sends P

1

, T

Rep(U

1

)

to all members of U

2

;
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Rep(U

2

) sends P

2

, T

Rep(U

2

)

to all members of U

1

;

ea
h member of U

1

veri�es : e(T

Rep(U

2

)

; P ) = e(

b

H(P

2

)Q

Rep(U

2

)

; P

pub

)e(P

2

; P

2

) and


omputes H(e(P

2

; sP )

s

1

);

ea
h member of U

2

veri�es : e(T

Rep(U

1

)

; P ) = e(

b

H(P

1

)Q

Rep(U

1

)

; P

pub

)e(P

1

; P

1

) and


omputes H(e(P

1

; sP )

s

2

);

end CombineTwo

This subroutine does a key agreement among two user sets U

1

; U

2

with s

1

; s

2

respe
tively as their private

keys (short term for ID-based) with 
ommon key H(e(P; P )

s

1

s

2

s

) where s is generated randomly by the

representative of the user set U

1

. Thus, this subroutine is essentially the Joux's proto
ol invoked for two

user sets.

Next we des
ribe the tree stru
ture KeyAgreement as a top down re
ursive pro
edure whi
h uses the

above two subroutines CombineTwo and CombineThree.

pro
edure KeyAgreement(m;U [i + 1; : : : ; i+m℄)

if (m = 1) then

KEY = s[i+ 1℄;

end if

if (m = 2) then


all CombineTwo(U [i + 1; i+ 2℄; s[i + 1; i+ 2℄);

Let KEY be the agreed key between user sets U

i+1

; U

i+2

;

end if

n

0

= 0; n

1

= b

m

3


; n

3

= d

m

3

e; n

2

= m� n

1

� n

3

;

j = 1 to 3 do


all KeyAgreement(n

j

; U [i + n

j�1

+ 1; : : : ; i+ n

j�1

+ n

j

℄);

b

U

j

= U [i+ n

j�1

+ 1; : : : ; i+ n

j�1

+ n

j

℄;

b

s

j

= KEY ; n

j

= n

j�1

+ n

j

;

end do;


all CombineThree(

b

U [1; 2; 3℄;

b

s[1; 2; 3℄);

Let KEY be the agreed key among user sets

b

U

1

;

b

U

2

;

b

U

3

;

end KeyAgreement

The start of the re
ursive proto
ol KeyAgreement is made by the following two statements:

1. U

j

= j for 1 � j � n;

2. 
all KeyAgreement(n;U [1; : : : ; n℄);

The algorithm is re
ursive and goes through several levels starting with level 0. In ea
h level, there are

sets of users who have (or agree upon) a 
ommon se
ret key. In level 0, ea
h user is in a set by himself/

herself and the se
ret key of the singleton set is the se
ret key of the 
on
erned user. For n users, let

the levels be numbered 0; : : : ; R(n). In level i, let the number of user sets be n

i

. Thus n

0

= n, and

n

k

= 1, where k = R(n). We identify the rounds of the algorithm as follows. There are R(n) rounds of


omputation. The i

th

round of 
omputation takes the state of the algorithm from level i� 1 to level i for

i = 1; : : : ; R(n). We introdu
e some notations for 
onvenien
e of analysing the algorithm.

{U

(i)

j

: the j-th user set at level i; 0 � i � R(n); 1 � j � n

i

,

6



{s

(i)

j

: 
ommon se
ret key agreed upon by users in the user set U

(i)

j

,

{P

(i)

j

: i-th level j-th publi
 key, i.e. P

(i)

j

= s

(i)

j

P .

Let p = b

n

3


 and r = n mod 3. We partition the set of users U

(k)

1

= f1; : : : ; ng into three user sets

U

(k�1)

1

; U

(k�1)

2

; U

(k�1)

3

with 
ardinality p; p; p respe
tively if r = 0, with 
ardinality p; p; p + 1 respe
tively

if r = 1 or with 
ardinality p; p+ 1; p+ 1 respe
tively if r = 2. We use this top down re
ursive pro
edure

for ea
h user set U

(i)

j

to split it into three user sets for 1 < i < k; 1 � j � n

i

and for i = 1, ea
h su
h user

set is partioned into either one user set, or two user sets or three user sets depending on n. Note that with

this tree stru
ture, an user set with two users appears only at level 1 and so CombineTwo is never invoked

for round � 2. For n = 10, the working of the algorithm (unauthenti
ated version) is shown in �gure 1.

s 1
(3)

s2
(2)

s3
(2)

s s s

s s s s s s

sss s s s

s s s s

1
(1)

2
(1)

3
(1)

1
(0)

2
(0)

3
(0)

4
(1)

5
(1)

6
(1)

7
(1)

8

(1)

9
(1)

4
(0)

5
(0)

6
(0)

7
(0)

8
(0)

9
(0)

10
(0)

s P s P

s P

s P s P s P s P

s P, s P9

(0)

9

−
10

(0)

7

(1)

8

(1)
4

(1)

5

(1)

1

(1)

2

(1)

1

(2) s P2

(2)

s  P

s1
(2)

s P3

(1) s P6

(1)

s P3

(2)

(1)
s P9

Figure 1: Key agreement among n = 10 parties, user 9 generates s

9

randomly and sends s

9

P to user 10 at

the �rst level.

Lemma 3.1 The �nal agreed key KEY among n users in the subroutine KeyAgreement is

KEY = s

(k)

1

= H(e(P; P )

s

(k�1)

1

s

(k�1)

2

s

(k�1)

3

)

where k = R(n), n > 2.

Lemma 3.2 Ea
h member of U

(i)

j


an 
ompute s

(i)

j

for 1 � j � n

i

, i � k where k = R(n): Consequently,

all users are able to 
ompute the 
ommon key KEY = s

(k)

1

.

Proof : We prove this lemma by indu
tion on i.

Base Step : Initially U

(0)

j

= j and private key s

(0)

j

are assigned to ea
h user for 1 � j � n

0

. So ea
h

member of U

(1)

j

; 1 � j � n

1


an 
ompute s

(1)

j

.

Indu
tion Step: Let for 2 � i � k; 1 � j � n

i�1

, ea
h member of user set U

(i�1)

j

has 
omputed s

(i�1)

j

at

the (i � 1)

th

round. Note that KeyAgreement never 
alls CombineTwo for round i � 2. Now at the i-th

round, for j = 1; : : : ; n

i

, KeyAgreement 
alls CombineThree in whi
h user set U

(i)

j


omputes s

(i)

j

using the


orresponding s of the (i�1)

th

round and user set U

(i)

j


onsists of all members of U

(i�1)

3j�2

; U

(i�1)

3j�1

and U

(i�1)

3j

7



all of who know the 
orresponding s by indu
tion hypothesis. So ea
h member of U

(i)

j


an 
ompute the

required s

(i)

j

. Hen
e the proof follows.

One question arises here: How does user u (1 � u � n), in a 
ertain round i � 1 determine to whi
h user

set he belongs and whether he is the representative of that user set? Using the above re
ursions, user u


an easily 
ompute all the user sets U

(i)

j

; 1 � j � n

i

, of this round and 
an eÆ
iently 
he
k its position.

Note that ea
h U

(i)

j

is a subset of f1; 2; : : : ; ng 
onsisting of 
onse
utive integers. So if u 2 U

(i)

j

for some

j; 1 � j � n

i

, user u veri�es whether u equals min(U

(i)

j

) and if so, u is the representative of the user set

U

(i)

j

.

4 Se
urity Analysis

4.1 Se
urity Against Passive Adversary

A se
ure key agreement proto
ol should withstand both passive and a
tive atta
ks. In this subse
tion we

de�ne the De
isional ternary tree group key agreement (DTGKA) problem for our unauthenti-


ated proto
ol and show that this problem is hard for the passive adversary by redu
ing the hardness of

this problem to the hardness of DHBDH problem following the te
hnique used in [5℄, [18℄, [27℄. The au-

thenti
ation is introdu
ed in our unauthenti
ated proto
ol using a spe
ial signature s
heme to get se
urity

against an a
tive adversary whi
h has been dis
ussed in the next subse
tion.

Given a ternary tree T of height at most k with n leaf nodes (n > 2) and X = (s

1

; s

2

; : : : ; s

n

) for s

i

2 Z

�

q

,

the publi
 and se
ret values are 
olle
tively de�ned as follows :

{vw(k;X; T ) := fP

(i)

j

where j and i are de�ned a

ording to Tg

{K(k;X; T ) := KEY = H(e(P; P )

s

(k�1)

1

s

(k�1)

2

s

(k�1)

3

)

vw(k;X; T ) is exa
tly the view of the passive adversary in the ternary tree T where �nal key is K(k;X; T ).

We 
all the key K(k;X; T ) a DHBDH key. Our goal is to show that this DHBDH key generated by the

unauthenti
ated proto
ol 
an not be distinguished by a polynomial time algorithm from a random number

if all the transmitted values during a proto
ol run are known.

Suppose T

k

is the set of all ternary trees of height k having stru
ture of KeyAgreement. A tree T of height k

is 
hosen randomly from T

k

and let X2

R

(Z

�

q

)

n

(n � 3

k

) be the labels of (short term private keys asso
iated

with) the leaf nodes of T . Then k is the number of rounds with n users. Let us de�ne two random variables

A

k

;

b

A

k

as follows :

{A

k

:= (vw(k;X; T ); y); y2

R

Z

�

q

{

b

A

k

:= (vw(k;X; T );K(k;X; T ))

Let S

k

= f(T;X) : T2

R

T

k

and X2

R

(Z

�

q

)

n

; where n is the number of leaf level nodes in Tg. Let B

T

be

the number of edges in the ternary tree T . For (T;X) 2 S

k

, de�ne �(T;X) to be the ordered tuple of all

publi
 information along the ar
s of T . Clearly, �(T;X) � (G

1

)

B

T

. Then the random variable A

k

takes

values from the sample spa
e (G

1

)

B

T

�Z

�

q

a

ording to the uniform probability distribution and

b

A

k

takes

values from the sample spa
e �(T;X)� Z

�

q

� (G

1

)

B

T

� Z

�

q

with the uniform probability distribution.

De�nition 4.1 Consider hG

1

; G

2

; ei . Let n > 2 be a positive integer, X = (s

1

; s

2

; : : : ; s

n

) for s

i

2 Z

�

q

and T be a ternary tree of height k with n leaf nodes labeled by X, and A

k

;

b

A

k

are de�ned as above.

A De
isional ternary tree group key agreement (DTGKA) algorithm F for hG

1

; G

2

; ei is a

8



probabilisti
 polynomial time algorithm that outputs either 0 or 1, satisfying, for some �xed l > 0 and

suÆ
iently large m :

jProb[F(A

k

) = 1℄� Prob[F(

b

A

k

) = 1℄j >

1

m

l

:

We 
all F a polynomial time distinguisher that distinguishes A

k

and

b

A

k

.

The DTGKA problem is to �nd a polynomial time distinguisher F for A

k

and

b

A

k

de�ned above.

Theorem 4.2 If the DHBDH problem in hG

1

; G

2

; ei is hard, then A

k

and

b

A

k

are polynomially indistin-

guishable.

Proof : First let us provide a plan of the proof. The proof is by indu
tion on k.

Base Step : k = 1 : Distinguishing A

1

and

b

A

1

implies \solving" DHBDH problem in hG

1

; G

2

; ei . Thus it

is not possible to distinguish A

1

and

b

A

1

assuming DHBDH problem is hard in hG

1

; G

2

; ei .

Indu
tion Hypothesis : Assume that for some k � 2, it is not possible to distinguish A

k�1

and

b

A

k�1

.

Indu
tion Step : We show that the ability to distinguish A

k

and

b

A

k

implies either (a) \solving" DHBDH

problem in hG

1

; G

2

; ei or (b) ability to distinguish A

k�1

and

b

A

k�1

. Sin
e (a) is given to be hard and (b)

is hard by indu
tion hypothesis, it follows that it is not possible to distinguish between A

k

and

b

A

k

.

Now we turn to a proof of the indu
tion step. Let T2

R

T

k

be a ternary tree of height k with n leaf nodes.

Let X2

R

(Z

�

q

)

n

be the labels of the leaf nodes of T . Let T

1

; T

2

; T

3

respe
tively be the left, middle and

right subtree of height at most k � 1 of the tree T . This implies that at least one of these subtrees has

height exa
tly k � 1. If X

1

= (s

1

; : : : ; s

l

);X

2

= (s

l+1

; : : : ; s

m

) and X

3

= (s

m+1

; : : : ; s

n

), where s

1

through

s

l

are asso
iated with T

1

, s

l+1

through s

m

with T

2

and s

m+1

through s

n

with T

3

, then A

k

and

b

A

k


an be

rewritten as :

A

k

:= (vw(k;X; T ); y) for random y 2 Z

�

q

= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); P

(k�1)

1

; P

(k�1)

2

; P

(k�1)

3

; y)

= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); s

(k�1)

1

P; s

(k�1)

2

P; s

(k�1)

3

P; y)

b

A

k

:= (vw(k;X; T );K(k;X; T ))

= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); P

(k�1)

1

; P

(k�1)

2

; P

(k�1)

3

;KEY )

= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); s

(k�1)

1

P; s

(k�1)

2

P; s

(k�1)

3

P;KEY )

Let us 
onsider the following random variables:

A

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); s

(k�1)

1

P; s

(k�1)

2

P; s

(k�1)

3

P; y)

B

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); r

1

P; s

(k�1)

2

P; s

(k�1)

3

P; y)

C

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); r

1

P; r

2

P; s

(k�1)

3

P; y)

D

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); r

1

P; r

2

P; r

3

P; y)

b

D

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); r

1

P; r

2

P; r

3

P;K

1

)

b

C

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); r

1

P; r

2

P; s

(k�1)

3

P;K

2

)

b

B

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); r

1

P; s

(k�1)

2

P; s

(k�1)

3

P;K

3

)

b

A

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); s

(k�1)

1

P; s

(k�1)

2

P; s

(k�1)

3

P;KEY )

where r

1

; r

2

; r

3

2

R

Z

�

q

andK

1

= H(e(P; P )

r

1

r

2

r

3

),K

2

= H(e(P; P )

r

1

r

2

s

(k�1)

3

) andK

3

= H(e(P; P )

r

1

s

(k�1)

2

s

(k�1)

3

).

Claim : If A

k

;

b

A

k

are distinguishable in polynomial time, then at least one of the followings 
an be dis-

tinguished : (A

k

; B

k

); (B

k

; C

k

), (C

k

;D

k

); (D

k

;

b

D

k

), (

b

D

k

;

b

C

k

), (

b

C

k

;

b

B

k

) or (

b

B

k

;

b

A

k

).

Proof of the Claim : Let a

1

= Prob[F(A

k

) = 1℄, a

2

= Prob[F(B

k

) = 1℄, a

3

= Prob[F(C

k

) = 1℄,

9



a

4

= Prob[F(D

k

) = 1℄, a

5

= Prob[F(

b

D

k

) = 1℄, a

6

= Prob[F(

b

C

k

) = 1℄, a

7

= Prob[F(

b

B

k

) = 1℄,

a

8

= Prob[F(

b

A

k

) = 1℄: Sin
e A

k

and

b

A

k

are distinguishable in polynomial time, ja

1

� a

8

j >

1

m

l

for

suÆ
iently large m and for a �xed l > 0. Now we will show that at least one of the followings must hold :

ja

i

� a

i+1

j >

1

m

l+1

for i = 1; : : : ; 7. If not, let ja

i

� a

i+1

j �

1

m

l+1

for all i = 1; : : : ; 7.

Then ja

1

� a

8

j � ja

1

� a

2

j+ � � �+ ja

7

� a

8

j �

7

m

l+1

�

1

m

l

, a 
ontradi
tion, if m � 7.

We shall show that the ability to distinguish any one of (A

k

; B

k

), (B

k

; C

k

), (C

k

;D

k

), (

b

D

k

;

b

C

k

), (

b

C

k

;

b

B

k

)

or (

b

B

k

;

b

A

k

) redu
es to solving DTGKA problem with height k � 1 and ability of distinguishing (D

k

;

b

D

k

)

redu
es to solving the DHBDH problem in hG

1

; G

2

; ei . The proof of the two 
ases : (A

k

; B

k

) and (D

k

;

b

D

k

)

are dis
ussed here in details. A proof similar to the 
ase (A

k

; B

k

) follows for others.

Case : Distinguish (A

k

; B

k

) : Suppose F

AB

k

is a polynomial time distinguisher that 
an distinguish

A

k

and B

k

in polynomial time. We will show that F

AB

k


an be used to solve DTGKA problem with

height k � 1. We 
onstru
t a polynomial time distinguisher F

A

b

A

k�1

that distinguishes A

k�1

and

b

A

k�1

in

polynomial time as follows :

Let V

�

k�1

= (vw(k�1;X

�

; T

�

); r

�

) where T

�

is a ternary tree of height k�1 with jX

�

j = n having stru
ture

of KeyAgreement. The distinguisher F

A

b

A

k�1

�rst 
onstru
ts two ternary trees

e

T and T with leaf level se
ret

key distribution

e

X and X respe
tively in the following manner : if n = 3

k

, then take j

e

X j = jX j = n, else

take either j

e

X j = jXj = n or j

e

X j = n; jX j = n+ 1 or j

e

X j = jX j = n+1. Then F

A

b

A

k�1


onstru
ts a tree of

height k with jX

�

j + j

e

X j + jX j users and T

�

;

e

T ; T as the left, middle and right subtree respe
tively. The

resulting tree is 
learly a random member of T

k

. Next F

A

b

A

k�1

sets :

V

�

k

= (vw(k�1;X

�

; T

�

); vw(k�1;

e

X;

e

T ); vw(k�1; X; T ); r

�

P;

f

KP;KP; y), where

f

K = K(k�1;

e

X;

e

T );K =

K(k�1; X; T ), y2

R

Z

�

q

and runsF

AB

k

on input V

�

k

. Now Prob[F

AB

k

(A

k

= V

�

k

) = 1℄ = Prob[F

A

b

A

k�1

(

b

A

k�1

=

V

�

k�1

) = 1℄ and Prob[F

AB

k

(B

k

= V

�

k

) = 1℄ = Prob[F

A

b

A

k�1

(A

k�1

= V

�

k�1

) = 1℄:

Consequently, jProb[F

A

b

A

k�1

(

b

A

k�1

= V

�

k�1

) = 1℄� Prob[F

A

b

A

k�1

(A

k�1

= V

�

k�1

) = 1℄j

= jProb[F

AB

k

(A

k

= V

�

k

) = 1℄ � Prob[F

AB

k

(B

k

= V

�

k

) = 1℄j. Hen
e if F

AB

k


an distinguish between A

k

and B

k

, then F

A

b

A

k�1


an distinguish between A

k�1

and

b

A

k�1

.

Case : Distinguish (D

k

;

b

D

k

) : Suppose F

D

b

D

k

is a polynomial time distinguisher that 
an distinguish

D

k

and

b

D

k

in polynomial time. We shall show that F

D

b

D

k


an be used to 
onstru
t a polynomial time

algorithm A that solves the DHBDH problem in hG

1

; G

2

; ei . Note that r

1

P and r

2

P are independent

variables from vw(k � 1;X

1

; T

1

) and vw(k � 1;X

2

; T

2

).

Given V

�

k�1

= (P; r

�

P;

e

rP; rP;H(e(P; P )

r

)), the algorithm A has to de
ide whether r = r

�

e

rr mod q (A

outputs yes in this 
ase) or r is random (A outputs no in this 
ase) where r

�

;

e

r; r2

R

Z

�

q

. For this, A �rst

generates a tree of height k having stru
ture of KeyAgreement with three subtrees T

�

,

e

T and T . The leaf

level se
ret key distribution of these subtrees are X

�

,

e

X and X respe
tively. Then A sets :

V

�

k

= (vw(k � 1;X

�

; T

�

); vw(k � 1;

e

X;

e

T ); vw(k � 1; X; T ); r

�

P;

e

rP; rP;H(e(P; P )

r

)) and runs F

D

b

D

k

on

input V

�

k

. Now Prob[A outputs no on input V

�

k�1

℄ = Prob[F

D

b

D

k

(D

k

= V

�

k

) = 1℄

and Prob[A outputs yes on input V

�

k�1

℄ = Prob[F

D

b

D

k

(

b

D

k

= V

�

k

) = 1℄:

Consequently, jProb[A outputs no on input V

�

k�1

℄� Prob[A outputs yes on input V

�

k�1

℄j

= jProb[F

D

b

D

k

(D

k

= V

�

k

) = 1℄ � Prob[F

D

b

D

k

(

b

D

k

= V

�

k

) = 1℄j. Hen
e if F

D

b

D

k


an distinguish between D

k

and

b

D

k

, then A solves DHBDH problem in hG

1

; G

2

; ei .
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4.2 Se
urity Against A
tive Adversary

This is dis
ussed in the Appendix.

5 EÆ
ien
y

This involves the 
ommuni
ation and 
omputation eÆ
ien
y. In ea
h round, a user may have to transmit

publi
ly an element of G

1

to some or all the other users. Also it has to perform some operations like s
alar

multipli
ations, pairing 
omputations. The number of rounds, total group elements sent, total messages

ex
hanged provides the 
ommuni
ation overhead in the proto
ol whereas total pairing 
omputation, total

s
alar multipli
ations used in
urs the 
omputation 
osts.

First 
onsider the unauthenti
ated version. Let R(n) denote the total number of rounds, P (n) the total

pairings 
omputed, B(n) the 
ombined message size and E(n) the total number of s
alar multipli
ations.

If an user sends publi
ly an element of G

1

to some or all remaining users, then this 
ounts one to B(n).

Thus B(n) is the total number of su
h group elements. Proofs of the following results will be provided in

the full version of the paper.

Lemma 5.1 For n > 2, the following re
ursions and bounds hold for R(n); B(n); E(n) and P (n) :

1. R(3n) = 1 + R(n); R(3n + 1) = 1 + R(n + 1); R(3n + 2) = 1 + R(n + 1); with initial 
onditions

R(1) = 0; R(2) = 1. Consequently, R(n) = dlog

3

ne for all n.

2. B(3n) = 3 + 3B(n); B(3n + 1) = 3 + 2B(n) + B(n + 1); B(3n + 2) = 3 + B(n) + 2B(n + 1); with

initial 
onditions B(1) = 0; B(2) = 3: Consequently, B(n) <

5

2

(n� 1) for n > 2.

3. E(3n) = 3 + 3E(n); E(3n + 1) = 3 + 2E(n) + E(n + 1); E(3n + 2) = 3 + E(n) + 2E(n + 1); with

initial 
onditions E(1) = 0; E(2) = 3. Consequently, E(n) <

5

2

(n� 1) for n > 2.

4. P (3n) = 3n+3P (n); P (3n+1) = 3n+1+2P (n)+P (n+1); P (3n+2) = 3n+2+P (n)+2P (n+1);

with initial 
onditions P (1) = 0; P (2) = 2. Consequently, P (n) � ndlog

3

ne.

For authenti
ated version, let R

a

(n), B

a

(n), E

a

(n) and P

a

(n) be the 
orresponding terms of the unauthen-

ti
ated version.

Lemma 5.2 For n > 2, the following relations hold for R

a

(n), B

a

(n), E

a

(n) and P

a

(n) :

1. R

a

(n) = R(n). Consequently, R

a

(n) � ndlog

3

ne.

2. B

a

(n) = 2B(n). Consequently, B

a

(n) < 5(n� 1) for n > 2.

3. E

a

(3n) = 9 + E

a

(n); E

a

(3n + 1) = 9 + 2E

a

(n) + E

a

(n+ 1); E

a

(3n + 2) = 9 + E

a

(n) + 2E

a

(n + 1);

with E

a

(1) = 0, E

a

(2) = 12. Consequently, E

a

(n) � 9(n� 1) for n > 2.

4. P

a

(3n) = 5(3n) + 3P

a

(n) for n > 2; P

a

(3n + 1) = 5(3n + 1) + 2P

a

(n) + P

a

(n + 1); P

a

(3n + 2) =

5(3n+ 2) + P

a

(n) + 2P

a

(n+ 1); with P

a

(1) = 0; P

a

(2) = 11. Also P

a

(n) � 5P (n) + 3. Consequently,

P

a

(n) � 5ndlog

3

ne+ 3:

6 Comparison

In this se
tion, we 
ompare our proto
ol to some of the previously known proto
ols. Burmester and

Desmedt present in [9℄ an eÆ
ient multi-party proto
ol that 
an be exe
uted only in two rounds. A 
lass

of generi
 n-party DiÆe-Hellman proto
ols (n > 2) is de�ned in [27℄. The entire proto
ol 
lass is shown
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to be se
ure against passive adversaries based on the intra
tability of the DDH problem. One group key

distribution proto
ols introdu
ed in [27℄ is GDH-3. A tree based DiÆe-Hellman group key agreement

proto
ol TGDH has been proposed by Kim, Perrig and Tsudik in [18℄ whi
h is shown to be se
ure against

passive adversaries. We note that the se
urity assumptions behind the various proto
ols are di�erent and

hen
e in a stri
t sense an eÆ
ien
y 
omparison might not be meaningful. However, we believe that the

dis
ussion presented below does provide some idea of the relative eÆ
ien
y of the various proto
ols. Table

1 
ompares the unauthenti
ated version of our proto
ol with these proto
ols. (Inv stands for total number

of modular inversions and Mul stands for Total number of multipli
ations used).

R(n) B(n) E(n) P (n) Inv

BD [9℄ 2 2n n(n+ 1) { n

GDH-3 [27℄ n+ 1 3(n� 1) 5n� 6 { {

TGDH [18℄ dlog

2

ne ndlog

2

ne ndlog

2

ne { {

Our Proto
ol dlog

3

ne <

5

2

(n� 1) <

5

2

(n� 1) � ndlog

3

ne {

Table 1 : Proto
ol Comparison (unauthenti
ated versions).

Points to note for unauthenti
ated proto
ols :

1: The underlying group of GDH-3 and BD proto
ol is a multipli
ative subgroup of Z

�

p

of order q where p

and q both are prime.

2: The 
ommuni
ation 
omplexity is measured by R(n) and B(n) and our proto
ol a
hieves the minimum

for both among all known proto
ols, ex
ept BD proto
ol. The 
omputation 
omplexity of our proto
ol


onsists of two parts { exponentiation and pairing. The number of exponentiation is less than all other

proto
ols, but additionally ndlog

3

ne pairings are required. Assuming that ea
h pairing 
omputation is ap-

proximately equal to three exponentiations [4℄, [16℄, the TGDH and GDH-3 algorithms are more eÆ
ient

than ours. This is based on the 
urrent state of the art in the algorithm for 
omputing pairings. Any

improvement in pairing 
omputation algorithms will improve the eÆ
ien
y of our proto
ol with respe
t to

both TGDH and GDH-3

3: Moreover, all the above proto
ols give DH-key ex
ept BD proto
ol.

It is not a trivial task to provide authenti
ation in BD proto
ol. The authors indi
ate that zero-knowledge

proofs are required to 
onvert this proto
ol into an authenti
ated proto
ol. We 
ompare the authenti
ated

version of our proto
ol with the existing authenti
ated DiÆe-Hellman based group key agreement proto
ols

SA-GDH-2 [3℄ and ID-AGKA [15℄ in Table 2.

R

a

(n) B

a

(n) E

a

(n) P

a

(n) Inv Mul

SA-GDH-2 [3℄ n n

2

n

2

{ n 2n

2

� 2n

ID-AGKA [15℄ dlog

2

ne 3ndlog

2

ne � 2ndlog

2

ne+ 4n� 2 2ndlog

2

ne { {

Our ID-based dlog

3

ne < 5(n� 1) � 9(n� 1) � 5ndlog

3

ne+ 3 { {

auth. prot.

Table 2 : Proto
ol Comparison (authenti
ated version).

Points to note for authenti
ated proto
ols :

1: The underlying group of SA-GDH-2 proto
ol is multipli
ative subgroup of Z

�

p

of order q where both p

and q are prime.

2: Number of rounds and 
ombined message size in our proto
ol is less as 
ompared to other proto
ols.

Number of exponentiations or EC s
alar multipli
ation in our proto
ol is also less than that required for

other proto
ols. Pairing 
omputations of our proto
ol is slightly more than that for ID-AGKA.

12



7 Con
lusion

We have des
ribed an unauthenti
ated as well as a ID-based authenti
ated multi-party key agreement

proto
ol using pairing. In fa
t, our proto
ol 
an use any se
ure two and three party proto
ol and provides

all the desirable se
urity attributes possessed by both of them. Thus the se
urity analysis of our proto
ol

against an a
tive adversary relies on the se
urity of the underlying two and three party proto
ols. Fur-

thermore, the 
omputation and 
ommuni
ation 
omplexity of our proto
ol 
ompares favourably with other

known proto
ols.
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A Se
urity Against A
tive Adversary

The two and three party proto
ols are the subroutines invoked by the main algorithm KeyAgreement. The

�rst thing to note is that the se
urity of KeyAgreement is based on the se
urity of the underlying two and

three party proto
ols. If these two proto
ols are repla
ed by some other two and three party proto
ols,

then we also obtain a se
ure multiparty proto
ol.

In a
tive atta
k, an adversary not only just re
ords the data, but also 
an alter, inje
t, inter
ept and replay
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messages. The goal of the authenti
ation me
hanism is to instill 
on�den
e in a user that the persons (s)he

is 
ommuni
ating with are indeed the persons they 
laim to be. In the authenti
ated version of our proto-


ol, this is done by sending a spe
ial signature, 
alled authenti
ator, on ea
h publi
 key. For a parti
ular

round, if user j is a representative and s is the 
ommon se
ret key shared by ea
h user in the user set

to whi
h j belongs in this round (or random se
ret key generated by user j), then this authenti
ation is

provided by sending sP together with a spe
ial signature T

j

on sP given by T

j

=

b

H(sP )S

j

+ s

2

P; where

S

j

is the long term private key of user j as generated by the KGC.

The 
on
rete se
urity goals against an a
tive adversary are as follows:

Impli
it Key Authenti
ation : Impli
it key authenti
ation to a user A implies that only the users

with whom A wants to agree upon a 
ommon key may be able to 
ompute a parti
ular key. This is a

fundamental se
urity goal for any authenti
ated proto
ol and is independent of the proto
ol details.

Known Session Key Se
urity : A proto
ol is 
alled known session key se
ure, if an adversary, having

obtained some previous session keys, still 
an't get the session keys of the 
urrent run of the proto
ol.

(Perfe
t) Forward Se
re
y : A proto
ol is said to satisfy forward se
re
y if 
ompromise of the long

term private keys of one or more users does not a�e
t the se
urity of the previous session keys. If this

property holds even when the private keys of all the parti
ipating users are 
ompromised, we say the pro-

to
ol satis�es perfe
t forward se
re
y.

No Key-
ompromise Impersonation : A proto
ol resists key-
ompromise impersonation when the


ompromise of one user's long term private key does not imply that the private keys of other users will

also be 
ompromised. The adversary may impersonate the 
ompromised user in the subsequent proto
ols,

but 
annot impersonate other users.

No Unknown Key-share : We say that a proto
ol is subje
ted to unknown key-share atta
k if an

adversary 
onvin
es a group of users that they share a key with the adversary, whereas in fa
t the key is

shared between the group and another party.

No Key Control : A proto
ol is said to have no key 
ontrol if it is not possible to 
ontrol or predi
t the

value of the session key by any parti
ipant (or an adversary).

Next we argue that the authenti
ated version of the proto
ol KeyAgreement satis�es the above properties.

Our argument pro
eeds as follows for impli
it key authenti
ation. A similar argument 
an be given for

other properties.

From level 0 to level 1 : The user sets are triplets or sets with a pair of users or singleton sets. For a

triplet U

(0)

j

; U

(0)

j+1

; U

(0)

j+2

{ authenti
ated key agreement takes pla
e among these three users a

ording to

the tripartite algorithm of Zhang et.al. in [28℄. They have used a spe
ial signature s
heme on ea
h publi


key to provide this authenti
ation. The signature s
heme used by them is se
ure against existential forgery

under an adaptively 
hosen message atta
k in the random ora
le model. They have argued heuristi
ally

that this signature s
heme provides in their proto
ol all the se
urity attributes stated above against an

a
tive adversary. For a pair U

(0)

j

; U

(0)

j+1

{ Rep(U

(0)

j

) whi
h in this 
ase is user j, generates randomly another

short term se
ret key s

j

so that user j has now two keys s

(0)

j

; s

j

. These two keys and the key s

(0)

j+1

of user

set U

(0)

j+1

is used in another invo
ation of Joux's proto
ol to agree a 
ommon se
ret key. The same spe
ial

signature s
heme is used on the transmitted publi
 values to provide authenti
ation and using heuristi
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arguments, this two party proto
ol 
an be shown to have all the se
urity attributes stated above against

an a
tive adversary following [28℄.

From level i� 1 to level i : Suppose user u 2 U

(i�1)

j

wants to agree upon a 
ommon se
ret key with users

in the user sets U

(i�1)

j+1

; U

(i�1)

j+2

. User u re
eives the authenti
ators T

j

2

; T

j

3

, where j

2

= Rep(U

(i�1)

j+1

) and

j

3

= Rep(U

(i�1)

j+2

). Let j

1

= Rep(U

(i�1)

j

). User u veri�es T

j

2

and T

j

3

using Q

j

2

and Q

j

3

. Thus u gains


on�den
e that the 
ommuni
ation is taking pla
e among users j

1

; j

2

and j

3

. Also users j

2

and j

3

will

respe
tively be using the 
ommon se
ret key for user sets U

(i�1)

j+1

and U

(i�1)

j+2

to provide this 
on�den
e. User

u uses the 
ommon se
ret key of user set U

(i�1)

j

to 
ompute the new 
ommon se
ret key for the user set

U

(i�1)

j

S

U

(i�1)

j+1

S

U

(i�1)

j+2

in the next level. Thus user u, agreeing upon a se
ret key with users j

2

and j

3

, gains


on�den
e that he has agreed upon a 
ommon key with all users in the user set U

(i�1)

j

S

U

(i�1)

j+1

S

U

(i�1)

j+2

and with none outside this set. This 
on�den
e is attained without verifying the IDs of all users in U

(i�1)

j+1

and U

(i�1)

j+2

. Thus an a
tive adversary, without knowing the long term se
ret keys of the users j

1

; j

2

; j

3

, is

not able to 
ompute this 
ommon se
ret key. This provides impli
it key authenti
ation property at this

round.

B Dynami
 Membership Operations : Member Insert, Member Delete :

Suppose T is a keytree for n users f1; 2; : : : ; ng having stru
ture of KeyAgreement with t = R(n) rounds

and let a new user n+ 1 with private key s

(0)

n+1

requests for join.

pro
edure Insert(T; n)

//�nding keypath

p = b

n

3


; k = R(n); T

0

= T ;

while ( k > 1) do

Let T

L

; T

M

; T

R

be respe
tively the left, middle and right subtrees of T

0

;

if (jT

L

j = jT

M

j = jT

R

j = p) then

T

0

= T

R

; output (k;R);

end if

if (jT

L

j = jT

M

j = p; jT

R

j = p+ 1) then

T

0

= T

M

; output (k;M);

end if

if (jT

L

j = p; jT

M

j = jT

R

j = p+ 1) then

T

0

= T

L

; output (k; L);

end if

p = b

p

3


; k = k � 1;

end do

Let the keypath be (t; B

1

); (t� 1; B

2

); : : : ; (2; B

t�1

) where B

i

= L or M or R for 1 � i � t� 1);

Let this path rea
hes a node at level 1 having m(� 3) 
hildren (leaf nodes).

//updating keypath

if (m = 1) then

Let U

(0)

i�1

be the user set at level 0;

b

U

1

= U

(0)

i�1

;

b

U

2

= n+ 1; ŝ

1

= s

(0)

i�1

; ŝ

2

= s

(0)

n+1

;


all CombineTwo (

b

U [1; 2℄; ŝ[1; 2℄);

Let s

(1)

j

be the agreed key between user sets

b

U

1

;

b

U

2

; U

(1)

j

=

b

U [1; 2℄;

end if
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if (m = 2) then

Let U

(0)

i�2

; U

(0)

i�1

be the user sets at level 0;

b

U

1

= U

(0)

i�2

;

b

U

2

= U

(0)

i�1

;

b

U

3

= n+ 1; ŝ

1

= s

(0)

i�2

; ŝ

2

= s

(0)

i�1

; ŝ

3

= s

(0)

n+1

;


all CombineThree (

b

U [1; 2; 3℄; ŝ[1; 2; 3℄);

Let s

(1)

j

be the agreed key among user sets

b

U

1

;

b

U

2

;

b

U

3

; U

(1)

j

=

b

U [1; 2; 3℄;

enf if

if (m = 3) then

Let U

(0)

i�2

; U

(0)

i�1

and U

(0)

i

be the user sets at level 0;

b

U

1

= U

(0)

i

;

b

U

2

= n+ 1; ŝ

1

= s

(0)

i

; ŝ

2

= s

(0)

n+1

;


all CombineTwo (

b

U [1; 2℄; ŝ[1; 2℄);

Let KEY be the agreed key between user sets

b

U

1

;

b

U

2

; s

(0)

i

= KEY ;U

(0)

i

=

b

U [1; 2℄;


all CombineThree (U

(0)

[i� 2; i� 1; i℄; s

(0)

[i� 2; i � 1; i℄);

Let s

(1)

j

be the agreed key among user sets U

(0)

i�2

; U

(0)

i�1

, U

(0)

i

; U

(1)

j

= U

(0)

[i� 2; i� 1; i℄;

end if

l = 1 to t� 1 do

if (B

t�l

= L) then


all CombineThree (U

(l)

[j; j + 1; j + 2℄; s

(l)

[j; j + 1; j + 2℄);

Let s

(l+1)

m

be the agreed key among user sets U

(l)

j

; U

(l)

j+1

; U

(l)

j+2

; U

(l+1)

m

= U

(l)

[j; j + 1; j + 2℄;

end if

if (B

t�l

=M) then


all CombineThree (U

(l)

[j � 1; j; j + 1℄; s

(l)

[j � 1; j; j + 1℄);

Let s

(l+1)

m

be the agreed key among user sets U

(l)

j�1

; U

(l)

j

; U

(l)

j+1

; U

(l+1)

m

= U

(l)

[j � 1; j; j + 1℄;

end if

if (B

t�l

= R) then


all CombineThree (U

(l)

[j � 2; j � 1; j℄; s

(l)

[j � 2; j � 1; j℄);

Let s

(l+1)

m

be the agreed key among user sets U

(l)

j�2

; U

(l)

j�1

and U

(l)

j

; U

(l+1)

m

= U

(l)

[j � 2; j � 1; j℄);

end if

j = m;

end do

end Insert

Suppose T

L

; T

M

; T

R

are respe
tively the left, middle and right subtree of key tree T with n leaf nodes

f1; 2; : : : ; ng. The tree T has the stru
ture of KeyAgreement and so has ea
h of it's subtrees. Now suppose

a member i, 1 � i � n, wants to leave the group.

pro
edure Delete (T; n; i)

p = b

n

3


;

Case 1 : jT

L

j = jT

M

j = jT

R

j = p

if (i is the leaf node of T

L

) then

remove it from T

L

; adjust the resulting subtree T

0

L

su
h that the stru
ture of KeyAgreement

is preserved in T

0

L

and update the key paths;

end if

if (i is the leaf node of T

M

) then
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remove it from T

M

; adjust the resulting subtree T

0

M

to preserve it's stru
ture of KeyAgreement

and update the key paths;

T

temp

= T

0

M

; T

0

M

= T

L

; T

L

= T

temp

;

end if

if (i is the leaf node of T

R

) then

remove it from T

R

; adjust the resulting subtree T

0

R

so that the stru
ture of KeyAgreement

is preserved in T

0

R

and update the key paths;

T

temp

= T

0

R

; T

0

R

= T

L

; T

L

= T

temp

;

end if

Case 2 : jT

L

j = jT

M

j = p; jT

R

j = p+ 1

if (i is the leaf node of T

L

) then

remove it from T

L

; extra
t one leaf node of T

R

in su
h a way that the resulting right subtree T

0

R

has the stru
ture of KeyAgreement and minimum number of key path updates are required;

insert this extra
ted node to T

L

as the i

th

leaf node resulting the left subtree T

0

L

having

stru
ture of KeyAgreement and �nally update the key paths.

end if

if (i is the leaf node of T

M

) then

remove it from T

M

; extra
t one leaf node of T

R

in su
h a way that the resulting right subtree T

0

R

has the stru
ture of KeyAgreement and minimum number of key path updates are required;

insert this extra
ted node to T

M

as the i

th

leaf node resulting the middle subtree T

0

M

having

stru
ture of KeyAgreement and �nally update the key paths.

end if

if (i is the leaf node of T

R

) then

remove it from T

R

; adjust the resulting subtree T

0

R

su
h that the stru
ture of KeyAgreement

is preserved in T

0

R

and update the key paths.

end if

Case 3 : jT

L

j = p; jT

M

j = jT

R

j = p+ 1;

if (i is the leaf node of T

L

) then

remove it from T

L

; extra
t one leaf node of T

M

so that the resulting middle subtree T

0

M

has the stru
ture of KeyAgreement and minimum number of key path uptates;

insert this extra
ted node to T

L

as the i

th

leaf node resulting in the left subtree T

0

L

having

stru
ture of KeyAgreement and �nally update the key paths.

end if

if (i is the leaf node of T

M

) then

remove it from T

M

; adjust the resulting subtree T

0

M

in su
h a way that the stru
ture of KeyAgreement

is preserved in T

0

M

and update the key paths.

end if

if (i is the leaf node of T

R

) then

remove it from T

R

; adjust the resulting subtree T

0

R

so that it has the stru
ture of KeyAgreement

and update the key paths.

T

temp

= T

0

R

; T

0

R

= T

M

; T

M

= T

temp

;

end if

end Delete
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