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Abstrat

We present a seure unauthentiated as well as an authentiated multi party key agreement protool.

The unauthentiated version of our protool uses ternary trees and is based on bilinear maps and Joux's

three party protool. The number of rounds, omputation/ommuniation omplexity of our protool

ompares favourably with previously known protools. The authentiated version of our protool also

uses ternary trees and is based on publi IDs and Key Generation Centres. The authentiated version

of our protool is more eÆient than all previously known authentiated key agreement protools.

Keywords : group key agreement, authentiated key agreement, pairing based ryptography, ID based

ryptography.

1 Introdution

Key agreement is one of the fundamental ryptographi primitives. This is required in situations where

two or more parties want to ommuniate seurely among themselves. The situation where three or more

parties share a seret key is often alled onferene keying. In this situation, the parties an seurely send

and reeive messages from eah other. An adversary not having aess to the seret key will not be able

to derypt the message.

Key agreement protools fall naturally into two lasses { authentiated and unauthentiated. The �rst

two party key agreement protool was introdued by DiÆe-Hellman in their seminal paper [14℄. This is

an unauthentiated protool in the sense that an adversary who has ontrol over the hannel an use the

man-in-the-middle attak to agree upon two separate keys with the two users without the users being

aware of this. This situation is usually takled by adding some form of authentiation mehanism to the

protool.

Unauthentiated key agreement protools onsider the adversary to be passive, i.e., the adversary an

listen to the traÆ on the network, but annot alter it. On the other hand, authentiated key agreement

protools onsider the adversary to be ative, i.e., the adversary an alter/replae the messages owing

through the network. Thus the seurity requirements for authentiated key agreement is more stringent.

Some of the desirable properties in authentiated key agreement are mutual impliit key authentiation,

known key seurity, forward serey, key ompromise impersonation and key ontrol.

Apart from authentiation, the other aspets of key agreement protools are omputation and ommu-

niation eÆieny. When the number of parties is more than two, the protool is usually a multi-round

protool. In eah round some or all of the users send messages to the other users and at the end of all

the rounds, all the users should agree upon a ommon key. The total number of bits exhanged in the

protool is a ruial parameter in judging the eÆieny of the protool. Further, in eah round, eah user

has to perform some omputation like an exponentiation or a salar multipliation. The total amount of

omputation required by all the users is another measure of eÆieny of the protool.
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In this paper, we present a seure multi-party key agreement protool. The protool an be used for

both authentiated and unauthentiated key agreement. For n parties, n > 2, the number of rounds

required for our protool is dlog

3

ne for both authentiated and unauthentiated key agreement. For

unauthentiated key agreement, the total number of messages exhanged and the total number of salar

multipliations (over a suitable ellipti urve) is less than

5

2

(n� 1). Additionally, ndlog

3

ne pairings have

to be omputed. For authentiated version of our protool, the ombined message size is two times more

than the unauthentiated version, the number of salar multipliations is at most 9(n� 1) and pairings is

around �ve times more than the unauthentiated version.

Our protool is based on bilinear maps. In one of the breakthroughs in key agreement protools,

Joux [17℄ proposed a three party, single round key agreement protool. An authentiated version of this

protool has been proposed in [2℄, [28℄. The basi Joux protool is at the heart of our (unauthentiated)

protool. We group the users into three user sets using top down reursive proedure so that user sets with

two users appear only at the �rst round. The Joux protool is invoked for eah set of three users to agree

upon a ommon key. For the set of two users (if any), one of them generates randomly another short term

private key to have two keys. These two keys and the short term private key of the other user is used in

another invoation of Joux's protool. A set of one user is kept unhanged. Our protool then proeeds

over several rounds and eah round onsists of several invoations of Joux's protool. Ultimately, we are left

with three user sets and Joux's protool is invoked one more to omplete the protool. The authentiated

version of our protool is struturally same as the unauthentiated version. The only di�erene is that the

invoations of the two and three party protool now involves the authentiated version of these protools.

Thus our multi party protool is essentially a ombination of Joux's tripartite DiÆe-Hellman protool

and tree based group key agreement using ternary tree struture. Even though the idea of ombining

Joux's protool and tree based group key agreement is a natural extension of Joux's original protool,

it is nontrivial to obtain a seurity proof for the protool against passive adversary. One of our major

ontribution is to provide suh a proof using tehniques from [5℄, [18℄, [27℄. In fat, any seure two or three

party protool an be used with the ternary tree struture to obtain a seure multi party protool. Our

seurity analysis against passive adversaries is also a kind of redution. We argue that if the underlying

two and three party protools are seure, then our multi party protool is also seure.

The authentiated version of our protool is an ID-based protool. ID-based ryptography was proposed

by Shamir [25℄ and there has been a spurt of papers in this area. The authentiated version of our protool

an be seen as another ontribution to this �eld. The unauthentiated version of our protool uses pairing

based ryptography, whih was introdued by Boneh and Franklin [6℄.

Previous Work : As mentioned before, the �rst two party unauthentiated key agreement protool was

proposed by DiÆe-Hellman in their seminal paper [14℄. This was modi�ed into an authentiated key agree-

ment protool by Matsumoto, Takashima and Imai in [22℄. Later, Law, Menezes, Qu, Solinas and Vanstone

showed in [21℄ that some of the protools of [22℄ are not seure and proposed a new protool for authenti-

ated key agreement. There have been a number of proposals for authentiated and unauthentiated key

agreement [23℄, [26℄, [11℄.

Among the previously known multi party key agreement protools only two protools have number of

rounds less than our protool. In [8℄, Boneh and Silverberg proposed a single round multi party key agree-

ment protool. This protool is based on the existene of multi-linear maps. Currently, no suh suitable

maps are known and the existene of suh maps is presently a researh problem [8℄. The other protool

whih requires less number of rounds is due to Burmester and Desmedt [9℄. This is an unauthentiated

protool and requires two rounds. However, the omputation omplexity is higher and the total number

of exponentiations required is around n

2

. Also the authors indiate that zero-knowledge proof tehniques

are required to onvert this protool into an authentiated protool.

The total number of messages exhanged in our protool is less than all other known protools. Further,

the total number of salar multipliations/exponentiation required by our protool is also less than other

2



known protools. However, our protool requires a number of pairings and hene in ertain ases an be

omputationally less eÆient than some of the previously known protools.

The remainder of the paper is organized as follows. Setion 2 briey explains the ryptographi bilinear

map and the basi requirements of our protool. Setion 3 desribes the protool. The seurity analysis

is provided in Setion 4. Setion 5 disusses the eÆieny. Setion 6 ompares with other key agreement

protools. Finally Setion 7 onludes the paper. Membership operations insertion and deletion are

disussed in the Appendix.

2 Preliminaries

2.1 Cryptographi Bilinear Maps

Let G

1

; G

2

be two groups of the same prime order q. We view G

1

as an additive group and G

2

as a

multipliative group. Let P be an arbitrary generator of G

1

. Assume that disrete logarithm problem

(DLP) is hard in both G

1

and G

2

. A mapping e : G

2

1

! G

2

satisfying the following properties is alled a

bilinear map from a ryptographi point of view :

Bilinearity : e(aP; bQ) = e(P;Q)

ab

for all P;Q 2 G

1

and a; b 2 Z

�

q

.

Non-degeneray : If P is a generator of G

1

, then e(P; P ) is a generator of G

2

. In other words, e(P; P ) 6= 1.

Computable : There exists an eÆient algorithm to ompute e(P;Q) for all P;Q 2 G

1

.

Modi�ed Weil Pairing [6℄ and Tate Pairing [4℄, [16℄ are the examples of ryptographi bilinear maps.

2.2 DiÆe Hellman Assumptions

In this subsetion we speify some versions of DiÆe-Hellman problems of whih the last one is newly intro-

dued. Consider hG

1

; G

2

; ei where G

1

; G

2

are two yli subgroups of a large prime order q and e : G

2

1

! G

2

is a ryptographi bilinear map. We take G

1

as an additive group and G

2

as a multipliative group. (By

a2

R

Z

�

q

, we mean a is randomly hosen from Z

�

q

.)

1: Deisional DiÆe-Hellman (DDH) problem in G

1

:

Instane : (P; aP; bP; P ) for some a; b;  2 Z

�

q

.

Solution : Output yes if  = ab mod q and output no otherwise.

DDH problem in G

1

is easy : DDH problem in G

1

an be solved in polynomial time by verifying

e(aP; bP ) = e(P; P ). This is the well known MOV redution [6℄ : The DLP in G

1

is no harder than the

DLP in G

2

.

DDH assumption : There exists no polynomial time algorithm whih an solve the DDH problem in G

2

with non-negligible probability of suess. See [13℄ for a detailed disussion.

2: Hash Deisional DiÆe-Hellman (HDH) problem in G

1

:

Instane : (P; aP; bP; r) for some a; b; ; r 2 Z

�

q

and a one way hash funtion H : G

1

! Z

�

q

.

Solution : Output yes if r = H(abP ) mod q and output no otherwise.

This problem was introdued by Abdalla, Bellare and Rogaway in [1℄. The only di�erene is that the

o-domain set for the hash funtion used by them is a set of �nite (�xed) length strings whereas in our

version, we take it to be the set Z

�

q

.

The advantage of any probabilisti , polynomial time, 0/1-valued algorithm A in solving HDH problem in

G

1

is de�ned to be :

Adv

HDH

A

= jProb[A(P; aP; bP; r) = 1 : a; b; ; r2

R

Z

�

q

℄ �Prob[A(P; aP; bP;H(abP )) = 1 : a; b2

R

Z

�

q

℄j

HDH assumption : There exists no polynomial time algorithm whih an solve the HDH problem in

G

1

with non-negligible probability of suess. In otherwords, for every probabilisti, polynomial time,

0/1-valued algorithm A, Adv

HDH

A

<

1

m

l

for every �xed l > 0 and suÆiently large m. For more details,
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see [1℄.

3: Bilinear DiÆe-Hellman (BDH) problem in hG

1

; G

2

; ei :

Instane : (P; aP; bP; P ) for some a; b;  2 Z

�

q

Solution : Output e(P; P )

ab

.

BDH assumption : There exists no polynomial time algorithm whih an solve the BDH problem in

hG

1

; G

2

; ei with non-negligible probability of suess. See [6℄ for more details.

4: Deisional Hash Bilinear DiÆe-Hellman (DHBDH) problem in hG

1

; G

2

; ei :

Instane : (P; aP; bP; P; r)) for some a; b; ; r 2 Z

�

q

and a one way hash funtion H : G

2

! Z

�

q

.

Solution : Output yes if r = H(e(P; P )

ab

) mod q and output no otherwise.

Similar to the HDH problem already introdued in [1℄ whih is a hash version of DDH problem, the DHBDH

problem in hG

1

; G

2

; ei is also a hash version of the deisional BDH problem in hG

1

; G

2

; ei .

The advantage of any probabilisti, polynomial time, 0/1-valued algorithm A in solving DHBDH problem

in hG

1

; G

2

; ei is de�ned to be :

Adv

DHBDH

A

= jProb[A(P; aP; bP; P; r) = 1 : a; b; ; r2

R

Z

�

q

℄ �Prob[A(P; aP; bP; P;H(e(P; P )

ab

)) = 1 :

a; b; 2

R

Z

�

q

℄j

DHBDH assumption : There exists no polynomial time algorithm whih an solve the DHBDH prob-

lem with non-negligible probability of suess. In otherwords, for every probabilisti, polynomial time,

0/1-valued algorithm A, Adv

DHBDH

A

<

1

m

l

for every �xed l > 0 and suÆiently large m.

The DHBDH assumption is a \natural" ombination of the HDH and BDH assumption and hene appears

to be a reasonable assumption to make.

2.3 Protool Requirements

Consider the n users who wish to agree upon a onferene key to be the set f1; 2; : : : ; ng. Let s

1

; s

2

; : : : ; s

n

2

Z

�

q

, be their respetive private keys. Let U be a subset of f1; 2; : : : ; ng onsisting of onseutive integers. We

all U a user set. Let Rep(U) stand for the representative of the set U . To be spei�, let Rep(U) = min(U).

We use the notation A[1; : : : ; n℄ for an array of n elements A

1

; : : : ; A

n

and write A[i℄ and A

i

interhangeably.

We take G

1

to be a yli subgroup of an ellipti urve group of some large prime order q and the bilinear

map e : G

2

1

! G

2

to be either a modi�ed Weil pairing or a Tate pairing [4℄, [16℄. Let P be an arbitrary

generator of G

1

. Choose a hash funtion H : G

2

! Z

�

q

. The system parameters for the unauthentiated

protool are params = hG

1

; G

2

; e; q; P;Hi.

For ID-based authentiated key agreement, we will additionally require the followings:

1. Hash funtions

b

H : G

1

! Z

�

q

, H

1

: f0; 1g

�

! G

1

.

2. A key generation entre (KGC) whih hooses a random s 2 Z

�

q

and sets P

pub

= sP . It publishes

P

pub

as a system parameter and keeps s as seret whih it treates as the master key. Eah user i

has an identity ID

i

2 f0; 1g

�

and long term publi key Q

i

= H

1

(ID

i

). User i sends Q

i

to KGC and

KGC sends bak the long term private key S

i

= sQ

i

to user i.

3. The keys s

1

; s

2

; : : : ; s

n

are short term private keys.

The system parameters for the authentiated protool are params = hG

1

; G

2

; e; q; P; P

pub

;H;

b

H;H

1

i.
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3 Protool

In this setion, we present a three-group and a two-group DiÆe-Hellman key agreement protool Combi-

neThree and CombineTwo respetively together with an n-party reursive algorithm KeyAgreement whih

makes use of CombineThree and CombineTwo. The boxed portions are exeuted for the authentiated version.

The three-group DiÆe-Hellman key agreement for unauthentiated as well as ID-based authentiated

versions are jointly given by the subroutine CombineThree as desribed below. In this subroutine, when

ardinality of eah of these three groups is one, then the ID-based authentiated version is simply the

three-party protool proposed by Zhang, Liu, Kim in [28℄ while the unauthentiated version is the Joux [17℄

three-party key agreement protool using bilinear map.

proedure CombineThree(U [1; 2; 3℄; s[1; 2; 3℄)

i = 1 to 3 do

Rep(U

i

) omputes P

i

= s

i

P

and T

Rep(U

i

)

=

b

H(P

i

)S

Rep(U

i

)

+ s

i

P

i

;

Let fj; kg = f1; 2; 3gnfig;

Rep(U

i

) sends P

i

, T

Rep(U

i

)

to all members of both U

j

; U

k

;

end do

i = 1 to 3 do

Let fj; kg = f1; 2; 3gnfig;

eah member of U

i

veri�es : e(T

Rep(U

j

)

+ T

Rep(U

k

)

; P ) = e(

b

H(P

j

)Q

Rep(U

j

)

+

b

H(P

k

)Q

Rep(U

k

)

; P

pub

)e(P

j

; P

j

)e(P

k

; P

k

) and

omputes H(e(P

j

; P

k

)

s

i

);

end do

end CombineThree

This subroutine does a key agreement among three user sets U

1

; U

2

; U

3

with s

1

; s

2

; s

3

respetively as their

private keys (short term for ID-based ) with ommon key H(e(P; P )

s

1

s

2

s

3

).

Similarly, the two-group DiÆe-Hellman key agreement for unauthentiated as well as ID-based au-

thentiated versions are jointly given by the subroutine CombineTwo as desribed below. This subroutine

redues to a two-party DiÆe-Hellman key agreement protool when eah of the two groups has ardinality

one.

proedure CombineTwo(U [1; 2℄; s[1; 2℄)

i = 1 to 2 do

Rep(U

i

) omputes P

i

= s

i

P

and T

Rep(U

i

)

=

b

H(P

i

)S

Rep(U

i

)

+ s

i

P

i

;

end do

Rep(U

1

) generates s2

R

Z

�

q

and sends sP

and T

Rep(U

1

)

=

b

H(sP )S

Rep(U

1

)

+ s

2

P to the rest of the users;

eah member of U

1

; U

2

exept Rep(U

1

) veri�es :

e(T

Rep(U

1

)

; P ) = e(

b

H(sP )Q

Rep(U

1

)

; P

pub

)e(sP; sP );

Rep(U

1

) sends P

1

, T

Rep(U

1

)

to all members of U

2

;
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Rep(U

2

) sends P

2

, T

Rep(U

2

)

to all members of U

1

;

eah member of U

1

veri�es : e(T

Rep(U

2

)

; P ) = e(

b

H(P

2

)Q

Rep(U

2

)

; P

pub

)e(P

2

; P

2

) and

omputes H(e(P

2

; sP )

s

1

);

eah member of U

2

veri�es : e(T

Rep(U

1

)

; P ) = e(

b

H(P

1

)Q

Rep(U

1

)

; P

pub

)e(P

1

; P

1

) and

omputes H(e(P

1

; sP )

s

2

);

end CombineTwo

This subroutine does a key agreement among two user sets U

1

; U

2

with s

1

; s

2

respetively as their private

keys (short term for ID-based) with ommon key H(e(P; P )

s

1

s

2

s

) where s is generated randomly by the

representative of the user set U

1

. Thus, this subroutine is essentially the Joux's protool invoked for two

user sets.

Next we desribe the tree struture KeyAgreement as a top down reursive proedure whih uses the

above two subroutines CombineTwo and CombineThree.

proedure KeyAgreement(m;U [i + 1; : : : ; i+m℄)

if (m = 1) then

KEY = s[i+ 1℄;

end if

if (m = 2) then

all CombineTwo(U [i + 1; i+ 2℄; s[i + 1; i+ 2℄);

Let KEY be the agreed key between user sets U

i+1

; U

i+2

;

end if

n

0

= 0; n

1

= b

m

3

; n

3

= d

m

3

e; n

2

= m� n

1

� n

3

;

j = 1 to 3 do

all KeyAgreement(n

j

; U [i + n

j�1

+ 1; : : : ; i+ n

j�1

+ n

j

℄);

b

U

j

= U [i+ n

j�1

+ 1; : : : ; i+ n

j�1

+ n

j

℄;

b

s

j

= KEY ; n

j

= n

j�1

+ n

j

;

end do;

all CombineThree(

b

U [1; 2; 3℄;

b

s[1; 2; 3℄);

Let KEY be the agreed key among user sets

b

U

1

;

b

U

2

;

b

U

3

;

end KeyAgreement

The start of the reursive protool KeyAgreement is made by the following two statements:

1. U

j

= j for 1 � j � n;

2. all KeyAgreement(n;U [1; : : : ; n℄);

The algorithm is reursive and goes through several levels starting with level 0. In eah level, there are

sets of users who have (or agree upon) a ommon seret key. In level 0, eah user is in a set by himself/

herself and the seret key of the singleton set is the seret key of the onerned user. For n users, let

the levels be numbered 0; : : : ; R(n). In level i, let the number of user sets be n

i

. Thus n

0

= n, and

n

k

= 1, where k = R(n). We identify the rounds of the algorithm as follows. There are R(n) rounds of

omputation. The i

th

round of omputation takes the state of the algorithm from level i� 1 to level i for

i = 1; : : : ; R(n). We introdue some notations for onveniene of analysing the algorithm.

{U

(i)

j

: the j-th user set at level i; 0 � i � R(n); 1 � j � n

i

,
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{s

(i)

j

: ommon seret key agreed upon by users in the user set U

(i)

j

,

{P

(i)

j

: i-th level j-th publi key, i.e. P

(i)

j

= s

(i)

j

P .

Let p = b

n

3

 and r = n mod 3. We partition the set of users U

(k)

1

= f1; : : : ; ng into three user sets

U

(k�1)

1

; U

(k�1)

2

; U

(k�1)

3

with ardinality p; p; p respetively if r = 0, with ardinality p; p; p + 1 respetively

if r = 1 or with ardinality p; p+ 1; p+ 1 respetively if r = 2. We use this top down reursive proedure

for eah user set U

(i)

j

to split it into three user sets for 1 < i < k; 1 � j � n

i

and for i = 1, eah suh user

set is partioned into either one user set, or two user sets or three user sets depending on n. Note that with

this tree struture, an user set with two users appears only at level 1 and so CombineTwo is never invoked

for round � 2. For n = 10, the working of the algorithm (unauthentiated version) is shown in �gure 1.

s 1
(3)

s2
(2)

s3
(2)

s s s

s s s s s s

sss s s s

s s s s

1
(1)

2
(1)

3
(1)

1
(0)

2
(0)

3
(0)

4
(1)

5
(1)

6
(1)

7
(1)

8

(1)

9
(1)

4
(0)

5
(0)

6
(0)

7
(0)

8
(0)

9
(0)

10
(0)

s P s P

s P

s P s P s P s P

s P, s P9

(0)

9

−
10

(0)

7

(1)

8

(1)
4

(1)

5

(1)

1

(1)

2

(1)

1

(2) s P2

(2)

s  P

s1
(2)

s P3

(1) s P6

(1)

s P3

(2)

(1)
s P9

Figure 1: Key agreement among n = 10 parties, user 9 generates s

9

randomly and sends s

9

P to user 10 at

the �rst level.

Lemma 3.1 The �nal agreed key KEY among n users in the subroutine KeyAgreement is

KEY = s

(k)

1

= H(e(P; P )

s

(k�1)

1

s

(k�1)

2

s

(k�1)

3

)

where k = R(n), n > 2.

Lemma 3.2 Eah member of U

(i)

j

an ompute s

(i)

j

for 1 � j � n

i

, i � k where k = R(n): Consequently,

all users are able to ompute the ommon key KEY = s

(k)

1

.

Proof : We prove this lemma by indution on i.

Base Step : Initially U

(0)

j

= j and private key s

(0)

j

are assigned to eah user for 1 � j � n

0

. So eah

member of U

(1)

j

; 1 � j � n

1

an ompute s

(1)

j

.

Indution Step: Let for 2 � i � k; 1 � j � n

i�1

, eah member of user set U

(i�1)

j

has omputed s

(i�1)

j

at

the (i � 1)

th

round. Note that KeyAgreement never alls CombineTwo for round i � 2. Now at the i-th

round, for j = 1; : : : ; n

i

, KeyAgreement alls CombineThree in whih user set U

(i)

j

omputes s

(i)

j

using the

orresponding s of the (i�1)

th

round and user set U

(i)

j

onsists of all members of U

(i�1)

3j�2

; U

(i�1)

3j�1

and U

(i�1)

3j

7



all of who know the orresponding s by indution hypothesis. So eah member of U

(i)

j

an ompute the

required s

(i)

j

. Hene the proof follows.

One question arises here: How does user u (1 � u � n), in a ertain round i � 1 determine to whih user

set he belongs and whether he is the representative of that user set? Using the above reursions, user u

an easily ompute all the user sets U

(i)

j

; 1 � j � n

i

, of this round and an eÆiently hek its position.

Note that eah U

(i)

j

is a subset of f1; 2; : : : ; ng onsisting of onseutive integers. So if u 2 U

(i)

j

for some

j; 1 � j � n

i

, user u veri�es whether u equals min(U

(i)

j

) and if so, u is the representative of the user set

U

(i)

j

.

4 Seurity Analysis

4.1 Seurity Against Passive Adversary

A seure key agreement protool should withstand both passive and ative attaks. In this subsetion we

de�ne the Deisional ternary tree group key agreement (DTGKA) problem for our unauthenti-

ated protool and show that this problem is hard for the passive adversary by reduing the hardness of

this problem to the hardness of DHBDH problem following the tehnique used in [5℄, [18℄, [27℄. The au-

thentiation is introdued in our unauthentiated protool using a speial signature sheme to get seurity

against an ative adversary whih has been disussed in the next subsetion.

Given a ternary tree T of height at most k with n leaf nodes (n > 2) and X = (s

1

; s

2

; : : : ; s

n

) for s

i

2 Z

�

q

,

the publi and seret values are olletively de�ned as follows :

{vw(k;X; T ) := fP

(i)

j

where j and i are de�ned aording to Tg

{K(k;X; T ) := KEY = H(e(P; P )

s

(k�1)

1

s

(k�1)

2

s

(k�1)

3

)

vw(k;X; T ) is exatly the view of the passive adversary in the ternary tree T where �nal key is K(k;X; T ).

We all the key K(k;X; T ) a DHBDH key. Our goal is to show that this DHBDH key generated by the

unauthentiated protool an not be distinguished by a polynomial time algorithm from a random number

if all the transmitted values during a protool run are known.

Suppose T

k

is the set of all ternary trees of height k having struture of KeyAgreement. A tree T of height k

is hosen randomly from T

k

and let X2

R

(Z

�

q

)

n

(n � 3

k

) be the labels of (short term private keys assoiated

with) the leaf nodes of T . Then k is the number of rounds with n users. Let us de�ne two random variables

A

k

;

b

A

k

as follows :

{A

k

:= (vw(k;X; T ); y); y2

R

Z

�

q

{

b

A

k

:= (vw(k;X; T );K(k;X; T ))

Let S

k

= f(T;X) : T2

R

T

k

and X2

R

(Z

�

q

)

n

; where n is the number of leaf level nodes in Tg. Let B

T

be

the number of edges in the ternary tree T . For (T;X) 2 S

k

, de�ne �(T;X) to be the ordered tuple of all

publi information along the ars of T . Clearly, �(T;X) � (G

1

)

B

T

. Then the random variable A

k

takes

values from the sample spae (G

1

)

B

T

�Z

�

q

aording to the uniform probability distribution and

b

A

k

takes

values from the sample spae �(T;X)� Z

�

q

� (G

1

)

B

T

� Z

�

q

with the uniform probability distribution.

De�nition 4.1 Consider hG

1

; G

2

; ei . Let n > 2 be a positive integer, X = (s

1

; s

2

; : : : ; s

n

) for s

i

2 Z

�

q

and T be a ternary tree of height k with n leaf nodes labeled by X, and A

k

;

b

A

k

are de�ned as above.

A Deisional ternary tree group key agreement (DTGKA) algorithm F for hG

1

; G

2

; ei is a

8



probabilisti polynomial time algorithm that outputs either 0 or 1, satisfying, for some �xed l > 0 and

suÆiently large m :

jProb[F(A

k

) = 1℄� Prob[F(

b

A

k

) = 1℄j >

1

m

l

:

We all F a polynomial time distinguisher that distinguishes A

k

and

b

A

k

.

The DTGKA problem is to �nd a polynomial time distinguisher F for A

k

and

b

A

k

de�ned above.

Theorem 4.2 If the DHBDH problem in hG

1

; G

2

; ei is hard, then A

k

and

b

A

k

are polynomially indistin-

guishable.

Proof : First let us provide a plan of the proof. The proof is by indution on k.

Base Step : k = 1 : Distinguishing A

1

and

b

A

1

implies \solving" DHBDH problem in hG

1

; G

2

; ei . Thus it

is not possible to distinguish A

1

and

b

A

1

assuming DHBDH problem is hard in hG

1

; G

2

; ei .

Indution Hypothesis : Assume that for some k � 2, it is not possible to distinguish A

k�1

and

b

A

k�1

.

Indution Step : We show that the ability to distinguish A

k

and

b

A

k

implies either (a) \solving" DHBDH

problem in hG

1

; G

2

; ei or (b) ability to distinguish A

k�1

and

b

A

k�1

. Sine (a) is given to be hard and (b)

is hard by indution hypothesis, it follows that it is not possible to distinguish between A

k

and

b

A

k

.

Now we turn to a proof of the indution step. Let T2

R

T

k

be a ternary tree of height k with n leaf nodes.

Let X2

R

(Z

�

q

)

n

be the labels of the leaf nodes of T . Let T

1

; T

2

; T

3

respetively be the left, middle and

right subtree of height at most k � 1 of the tree T . This implies that at least one of these subtrees has

height exatly k � 1. If X

1

= (s

1

; : : : ; s

l

);X

2

= (s

l+1

; : : : ; s

m

) and X

3

= (s

m+1

; : : : ; s

n

), where s

1

through

s

l

are assoiated with T

1

, s

l+1

through s

m

with T

2

and s

m+1

through s

n

with T

3

, then A

k

and

b

A

k

an be

rewritten as :

A

k

:= (vw(k;X; T ); y) for random y 2 Z

�

q

= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); P

(k�1)

1

; P

(k�1)

2

; P

(k�1)

3

; y)

= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); s

(k�1)

1

P; s

(k�1)

2

P; s

(k�1)

3

P; y)

b

A

k

:= (vw(k;X; T );K(k;X; T ))

= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); P

(k�1)

1

; P

(k�1)

2

; P

(k�1)

3

;KEY )

= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); s

(k�1)

1

P; s

(k�1)

2

P; s

(k�1)

3

P;KEY )

Let us onsider the following random variables:

A

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); s

(k�1)

1

P; s

(k�1)

2

P; s

(k�1)

3

P; y)

B

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); r

1

P; s

(k�1)

2

P; s

(k�1)

3

P; y)

C

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); r

1

P; r

2

P; s

(k�1)

3

P; y)

D

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); r

1

P; r

2

P; r

3

P; y)

b

D

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); r

1

P; r

2

P; r

3

P;K

1

)

b

C

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); r

1

P; r

2

P; s

(k�1)

3

P;K

2

)

b

B

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); r

1

P; s

(k�1)

2

P; s

(k�1)

3

P;K

3

)

b

A

k

:= (vw(k � 1;X

1

; T

1

); vw(k � 1;X

2

; T

2

); vw(k � 1;X

3

; T

3

); s

(k�1)

1

P; s

(k�1)

2

P; s

(k�1)

3

P;KEY )

where r

1

; r

2

; r

3

2

R

Z

�

q

andK

1

= H(e(P; P )

r

1

r

2

r

3

),K

2

= H(e(P; P )

r

1

r

2

s

(k�1)

3

) andK

3

= H(e(P; P )

r

1

s

(k�1)

2

s

(k�1)

3

).

Claim : If A

k

;

b

A

k

are distinguishable in polynomial time, then at least one of the followings an be dis-

tinguished : (A

k

; B

k

); (B

k

; C

k

), (C

k

;D

k

); (D

k

;

b

D

k

), (

b

D

k

;

b

C

k

), (

b

C

k

;

b

B

k

) or (

b

B

k

;

b

A

k

).

Proof of the Claim : Let a

1

= Prob[F(A

k

) = 1℄, a

2

= Prob[F(B

k

) = 1℄, a

3

= Prob[F(C

k

) = 1℄,

9



a

4

= Prob[F(D

k

) = 1℄, a

5

= Prob[F(

b

D

k

) = 1℄, a

6

= Prob[F(

b

C

k

) = 1℄, a

7

= Prob[F(

b

B

k

) = 1℄,

a

8

= Prob[F(

b

A

k

) = 1℄: Sine A

k

and

b

A

k

are distinguishable in polynomial time, ja

1

� a

8

j >

1

m

l

for

suÆiently large m and for a �xed l > 0. Now we will show that at least one of the followings must hold :

ja

i

� a

i+1

j >

1

m

l+1

for i = 1; : : : ; 7. If not, let ja

i

� a

i+1

j �

1

m

l+1

for all i = 1; : : : ; 7.

Then ja

1

� a

8

j � ja

1

� a

2

j+ � � �+ ja

7

� a

8

j �

7

m

l+1

�

1

m

l

, a ontradition, if m � 7.

We shall show that the ability to distinguish any one of (A

k

; B

k

), (B

k

; C

k

), (C

k

;D

k

), (

b

D

k

;

b

C

k

), (

b

C

k

;

b

B

k

)

or (

b

B

k

;

b

A

k

) redues to solving DTGKA problem with height k � 1 and ability of distinguishing (D

k

;

b

D

k

)

redues to solving the DHBDH problem in hG

1

; G

2

; ei . The proof of the two ases : (A

k

; B

k

) and (D

k

;

b

D

k

)

are disussed here in details. A proof similar to the ase (A

k

; B

k

) follows for others.

Case : Distinguish (A

k

; B

k

) : Suppose F

AB

k

is a polynomial time distinguisher that an distinguish

A

k

and B

k

in polynomial time. We will show that F

AB

k

an be used to solve DTGKA problem with

height k � 1. We onstrut a polynomial time distinguisher F

A

b

A

k�1

that distinguishes A

k�1

and

b

A

k�1

in

polynomial time as follows :

Let V

�

k�1

= (vw(k�1;X

�

; T

�

); r

�

) where T

�

is a ternary tree of height k�1 with jX

�

j = n having struture

of KeyAgreement. The distinguisher F

A

b

A

k�1

�rst onstruts two ternary trees

e

T and T with leaf level seret

key distribution

e

X and X respetively in the following manner : if n = 3

k

, then take j

e

X j = jX j = n, else

take either j

e

X j = jXj = n or j

e

X j = n; jX j = n+ 1 or j

e

X j = jX j = n+1. Then F

A

b

A

k�1

onstruts a tree of

height k with jX

�

j + j

e

X j + jX j users and T

�

;

e

T ; T as the left, middle and right subtree respetively. The

resulting tree is learly a random member of T

k

. Next F

A

b

A

k�1

sets :

V

�

k

= (vw(k�1;X

�

; T

�

); vw(k�1;

e

X;

e

T ); vw(k�1; X; T ); r

�

P;

f

KP;KP; y), where

f

K = K(k�1;

e

X;

e

T );K =

K(k�1; X; T ), y2

R

Z

�

q

and runsF

AB

k

on input V

�

k

. Now Prob[F

AB

k

(A

k

= V

�

k

) = 1℄ = Prob[F

A

b

A

k�1

(

b

A

k�1

=

V

�

k�1

) = 1℄ and Prob[F

AB

k

(B

k

= V

�

k

) = 1℄ = Prob[F

A

b

A

k�1

(A

k�1

= V

�

k�1

) = 1℄:

Consequently, jProb[F

A

b

A

k�1

(

b

A

k�1

= V

�

k�1

) = 1℄� Prob[F

A

b

A

k�1

(A

k�1

= V

�

k�1

) = 1℄j

= jProb[F

AB

k

(A

k

= V

�

k

) = 1℄ � Prob[F

AB

k

(B

k

= V

�

k

) = 1℄j. Hene if F

AB

k

an distinguish between A

k

and B

k

, then F

A

b

A

k�1

an distinguish between A

k�1

and

b

A

k�1

.

Case : Distinguish (D

k

;

b

D

k

) : Suppose F

D

b

D

k

is a polynomial time distinguisher that an distinguish

D

k

and

b

D

k

in polynomial time. We shall show that F

D

b

D

k

an be used to onstrut a polynomial time

algorithm A that solves the DHBDH problem in hG

1

; G

2

; ei . Note that r

1

P and r

2

P are independent

variables from vw(k � 1;X

1

; T

1

) and vw(k � 1;X

2

; T

2

).

Given V

�

k�1

= (P; r

�

P;

e

rP; rP;H(e(P; P )

r

)), the algorithm A has to deide whether r = r

�

e

rr mod q (A

outputs yes in this ase) or r is random (A outputs no in this ase) where r

�

;

e

r; r2

R

Z

�

q

. For this, A �rst

generates a tree of height k having struture of KeyAgreement with three subtrees T

�

,

e

T and T . The leaf

level seret key distribution of these subtrees are X

�

,

e

X and X respetively. Then A sets :

V

�

k

= (vw(k � 1;X

�

; T

�

); vw(k � 1;

e

X;

e

T ); vw(k � 1; X; T ); r

�

P;

e

rP; rP;H(e(P; P )

r

)) and runs F

D

b

D

k

on

input V

�

k

. Now Prob[A outputs no on input V

�

k�1

℄ = Prob[F

D

b

D

k

(D

k

= V

�

k

) = 1℄

and Prob[A outputs yes on input V

�

k�1

℄ = Prob[F

D

b

D

k

(

b

D

k

= V

�

k

) = 1℄:

Consequently, jProb[A outputs no on input V

�

k�1

℄� Prob[A outputs yes on input V

�

k�1

℄j

= jProb[F

D

b

D

k

(D

k

= V

�

k

) = 1℄ � Prob[F

D

b

D

k

(

b

D

k

= V

�

k

) = 1℄j. Hene if F

D

b

D

k

an distinguish between D

k

and

b

D

k

, then A solves DHBDH problem in hG

1

; G

2

; ei .

10



4.2 Seurity Against Ative Adversary

This is disussed in the Appendix.

5 EÆieny

This involves the ommuniation and omputation eÆieny. In eah round, a user may have to transmit

publily an element of G

1

to some or all the other users. Also it has to perform some operations like salar

multipliations, pairing omputations. The number of rounds, total group elements sent, total messages

exhanged provides the ommuniation overhead in the protool whereas total pairing omputation, total

salar multipliations used inurs the omputation osts.

First onsider the unauthentiated version. Let R(n) denote the total number of rounds, P (n) the total

pairings omputed, B(n) the ombined message size and E(n) the total number of salar multipliations.

If an user sends publily an element of G

1

to some or all remaining users, then this ounts one to B(n).

Thus B(n) is the total number of suh group elements. Proofs of the following results will be provided in

the full version of the paper.

Lemma 5.1 For n > 2, the following reursions and bounds hold for R(n); B(n); E(n) and P (n) :

1. R(3n) = 1 + R(n); R(3n + 1) = 1 + R(n + 1); R(3n + 2) = 1 + R(n + 1); with initial onditions

R(1) = 0; R(2) = 1. Consequently, R(n) = dlog

3

ne for all n.

2. B(3n) = 3 + 3B(n); B(3n + 1) = 3 + 2B(n) + B(n + 1); B(3n + 2) = 3 + B(n) + 2B(n + 1); with

initial onditions B(1) = 0; B(2) = 3: Consequently, B(n) <

5

2

(n� 1) for n > 2.

3. E(3n) = 3 + 3E(n); E(3n + 1) = 3 + 2E(n) + E(n + 1); E(3n + 2) = 3 + E(n) + 2E(n + 1); with

initial onditions E(1) = 0; E(2) = 3. Consequently, E(n) <

5

2

(n� 1) for n > 2.

4. P (3n) = 3n+3P (n); P (3n+1) = 3n+1+2P (n)+P (n+1); P (3n+2) = 3n+2+P (n)+2P (n+1);

with initial onditions P (1) = 0; P (2) = 2. Consequently, P (n) � ndlog

3

ne.

For authentiated version, let R

a

(n), B

a

(n), E

a

(n) and P

a

(n) be the orresponding terms of the unauthen-

tiated version.

Lemma 5.2 For n > 2, the following relations hold for R

a

(n), B

a

(n), E

a

(n) and P

a

(n) :

1. R

a

(n) = R(n). Consequently, R

a

(n) � ndlog

3

ne.

2. B

a

(n) = 2B(n). Consequently, B

a

(n) < 5(n� 1) for n > 2.

3. E

a

(3n) = 9 + E

a

(n); E

a

(3n + 1) = 9 + 2E

a

(n) + E

a

(n+ 1); E

a

(3n + 2) = 9 + E

a

(n) + 2E

a

(n + 1);

with E

a

(1) = 0, E

a

(2) = 12. Consequently, E

a

(n) � 9(n� 1) for n > 2.

4. P

a

(3n) = 5(3n) + 3P

a

(n) for n > 2; P

a

(3n + 1) = 5(3n + 1) + 2P

a

(n) + P

a

(n + 1); P

a

(3n + 2) =

5(3n+ 2) + P

a

(n) + 2P

a

(n+ 1); with P

a

(1) = 0; P

a

(2) = 11. Also P

a

(n) � 5P (n) + 3. Consequently,

P

a

(n) � 5ndlog

3

ne+ 3:

6 Comparison

In this setion, we ompare our protool to some of the previously known protools. Burmester and

Desmedt present in [9℄ an eÆient multi-party protool that an be exeuted only in two rounds. A lass

of generi n-party DiÆe-Hellman protools (n > 2) is de�ned in [27℄. The entire protool lass is shown

11



to be seure against passive adversaries based on the intratability of the DDH problem. One group key

distribution protools introdued in [27℄ is GDH-3. A tree based DiÆe-Hellman group key agreement

protool TGDH has been proposed by Kim, Perrig and Tsudik in [18℄ whih is shown to be seure against

passive adversaries. We note that the seurity assumptions behind the various protools are di�erent and

hene in a strit sense an eÆieny omparison might not be meaningful. However, we believe that the

disussion presented below does provide some idea of the relative eÆieny of the various protools. Table

1 ompares the unauthentiated version of our protool with these protools. (Inv stands for total number

of modular inversions and Mul stands for Total number of multipliations used).

R(n) B(n) E(n) P (n) Inv

BD [9℄ 2 2n n(n+ 1) { n

GDH-3 [27℄ n+ 1 3(n� 1) 5n� 6 { {

TGDH [18℄ dlog

2

ne ndlog

2

ne ndlog

2

ne { {

Our Protool dlog

3

ne <

5

2

(n� 1) <

5

2

(n� 1) � ndlog

3

ne {

Table 1 : Protool Comparison (unauthentiated versions).

Points to note for unauthentiated protools :

1: The underlying group of GDH-3 and BD protool is a multipliative subgroup of Z

�

p

of order q where p

and q both are prime.

2: The ommuniation omplexity is measured by R(n) and B(n) and our protool ahieves the minimum

for both among all known protools, exept BD protool. The omputation omplexity of our protool

onsists of two parts { exponentiation and pairing. The number of exponentiation is less than all other

protools, but additionally ndlog

3

ne pairings are required. Assuming that eah pairing omputation is ap-

proximately equal to three exponentiations [4℄, [16℄, the TGDH and GDH-3 algorithms are more eÆient

than ours. This is based on the urrent state of the art in the algorithm for omputing pairings. Any

improvement in pairing omputation algorithms will improve the eÆieny of our protool with respet to

both TGDH and GDH-3

3: Moreover, all the above protools give DH-key exept BD protool.

It is not a trivial task to provide authentiation in BD protool. The authors indiate that zero-knowledge

proofs are required to onvert this protool into an authentiated protool. We ompare the authentiated

version of our protool with the existing authentiated DiÆe-Hellman based group key agreement protools

SA-GDH-2 [3℄ and ID-AGKA [15℄ in Table 2.

R

a

(n) B

a

(n) E

a

(n) P

a

(n) Inv Mul

SA-GDH-2 [3℄ n n

2

n

2

{ n 2n

2

� 2n

ID-AGKA [15℄ dlog

2

ne 3ndlog

2

ne � 2ndlog

2

ne+ 4n� 2 2ndlog

2

ne { {

Our ID-based dlog

3

ne < 5(n� 1) � 9(n� 1) � 5ndlog

3

ne+ 3 { {

auth. prot.

Table 2 : Protool Comparison (authentiated version).

Points to note for authentiated protools :

1: The underlying group of SA-GDH-2 protool is multipliative subgroup of Z

�

p

of order q where both p

and q are prime.

2: Number of rounds and ombined message size in our protool is less as ompared to other protools.

Number of exponentiations or EC salar multipliation in our protool is also less than that required for

other protools. Pairing omputations of our protool is slightly more than that for ID-AGKA.

12



7 Conlusion

We have desribed an unauthentiated as well as a ID-based authentiated multi-party key agreement

protool using pairing. In fat, our protool an use any seure two and three party protool and provides

all the desirable seurity attributes possessed by both of them. Thus the seurity analysis of our protool

against an ative adversary relies on the seurity of the underlying two and three party protools. Fur-

thermore, the omputation and ommuniation omplexity of our protool ompares favourably with other

known protools.
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A Seurity Against Ative Adversary

The two and three party protools are the subroutines invoked by the main algorithm KeyAgreement. The

�rst thing to note is that the seurity of KeyAgreement is based on the seurity of the underlying two and

three party protools. If these two protools are replaed by some other two and three party protools,

then we also obtain a seure multiparty protool.

In ative attak, an adversary not only just reords the data, but also an alter, injet, interept and replay
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messages. The goal of the authentiation mehanism is to instill on�dene in a user that the persons (s)he

is ommuniating with are indeed the persons they laim to be. In the authentiated version of our proto-

ol, this is done by sending a speial signature, alled authentiator, on eah publi key. For a partiular

round, if user j is a representative and s is the ommon seret key shared by eah user in the user set

to whih j belongs in this round (or random seret key generated by user j), then this authentiation is

provided by sending sP together with a speial signature T

j

on sP given by T

j

=

b

H(sP )S

j

+ s

2

P; where

S

j

is the long term private key of user j as generated by the KGC.

The onrete seurity goals against an ative adversary are as follows:

Impliit Key Authentiation : Impliit key authentiation to a user A implies that only the users

with whom A wants to agree upon a ommon key may be able to ompute a partiular key. This is a

fundamental seurity goal for any authentiated protool and is independent of the protool details.

Known Session Key Seurity : A protool is alled known session key seure, if an adversary, having

obtained some previous session keys, still an't get the session keys of the urrent run of the protool.

(Perfet) Forward Serey : A protool is said to satisfy forward serey if ompromise of the long

term private keys of one or more users does not a�et the seurity of the previous session keys. If this

property holds even when the private keys of all the partiipating users are ompromised, we say the pro-

tool satis�es perfet forward serey.

No Key-ompromise Impersonation : A protool resists key-ompromise impersonation when the

ompromise of one user's long term private key does not imply that the private keys of other users will

also be ompromised. The adversary may impersonate the ompromised user in the subsequent protools,

but annot impersonate other users.

No Unknown Key-share : We say that a protool is subjeted to unknown key-share attak if an

adversary onvines a group of users that they share a key with the adversary, whereas in fat the key is

shared between the group and another party.

No Key Control : A protool is said to have no key ontrol if it is not possible to ontrol or predit the

value of the session key by any partiipant (or an adversary).

Next we argue that the authentiated version of the protool KeyAgreement satis�es the above properties.

Our argument proeeds as follows for impliit key authentiation. A similar argument an be given for

other properties.

From level 0 to level 1 : The user sets are triplets or sets with a pair of users or singleton sets. For a

triplet U

(0)

j

; U

(0)

j+1

; U

(0)

j+2

{ authentiated key agreement takes plae among these three users aording to

the tripartite algorithm of Zhang et.al. in [28℄. They have used a speial signature sheme on eah publi

key to provide this authentiation. The signature sheme used by them is seure against existential forgery

under an adaptively hosen message attak in the random orale model. They have argued heuristially

that this signature sheme provides in their protool all the seurity attributes stated above against an

ative adversary. For a pair U

(0)

j

; U

(0)

j+1

{ Rep(U

(0)

j

) whih in this ase is user j, generates randomly another

short term seret key s

j

so that user j has now two keys s

(0)

j

; s

j

. These two keys and the key s

(0)

j+1

of user

set U

(0)

j+1

is used in another invoation of Joux's protool to agree a ommon seret key. The same speial

signature sheme is used on the transmitted publi values to provide authentiation and using heuristi
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arguments, this two party protool an be shown to have all the seurity attributes stated above against

an ative adversary following [28℄.

From level i� 1 to level i : Suppose user u 2 U

(i�1)

j

wants to agree upon a ommon seret key with users

in the user sets U

(i�1)

j+1

; U

(i�1)

j+2

. User u reeives the authentiators T

j

2

; T

j

3

, where j

2

= Rep(U

(i�1)

j+1

) and

j

3

= Rep(U

(i�1)

j+2

). Let j

1

= Rep(U

(i�1)

j

). User u veri�es T

j

2

and T

j

3

using Q

j

2

and Q

j

3

. Thus u gains

on�dene that the ommuniation is taking plae among users j

1

; j

2

and j

3

. Also users j

2

and j

3

will

respetively be using the ommon seret key for user sets U

(i�1)

j+1

and U

(i�1)

j+2

to provide this on�dene. User

u uses the ommon seret key of user set U

(i�1)

j

to ompute the new ommon seret key for the user set

U

(i�1)

j

S

U

(i�1)

j+1

S

U

(i�1)

j+2

in the next level. Thus user u, agreeing upon a seret key with users j

2

and j

3

, gains

on�dene that he has agreed upon a ommon key with all users in the user set U

(i�1)

j

S

U

(i�1)

j+1

S

U

(i�1)

j+2

and with none outside this set. This on�dene is attained without verifying the IDs of all users in U

(i�1)

j+1

and U

(i�1)

j+2

. Thus an ative adversary, without knowing the long term seret keys of the users j

1

; j

2

; j

3

, is

not able to ompute this ommon seret key. This provides impliit key authentiation property at this

round.

B Dynami Membership Operations : Member Insert, Member Delete :

Suppose T is a keytree for n users f1; 2; : : : ; ng having struture of KeyAgreement with t = R(n) rounds

and let a new user n+ 1 with private key s

(0)

n+1

requests for join.

proedure Insert(T; n)

//�nding keypath

p = b

n

3

; k = R(n); T

0

= T ;

while ( k > 1) do

Let T

L

; T

M

; T

R

be respetively the left, middle and right subtrees of T

0

;

if (jT

L

j = jT

M

j = jT

R

j = p) then

T

0

= T

R

; output (k;R);

end if

if (jT

L

j = jT

M

j = p; jT

R

j = p+ 1) then

T

0

= T

M

; output (k;M);

end if

if (jT

L

j = p; jT

M

j = jT

R

j = p+ 1) then

T

0

= T

L

; output (k; L);

end if

p = b

p

3

; k = k � 1;

end do

Let the keypath be (t; B

1

); (t� 1; B

2

); : : : ; (2; B

t�1

) where B

i

= L or M or R for 1 � i � t� 1);

Let this path reahes a node at level 1 having m(� 3) hildren (leaf nodes).

//updating keypath

if (m = 1) then

Let U

(0)

i�1

be the user set at level 0;

b

U

1

= U

(0)

i�1

;

b

U

2

= n+ 1; ŝ

1

= s

(0)

i�1

; ŝ

2

= s

(0)

n+1

;

all CombineTwo (

b

U [1; 2℄; ŝ[1; 2℄);

Let s

(1)

j

be the agreed key between user sets

b

U

1

;

b

U

2

; U

(1)

j

=

b

U [1; 2℄;

end if
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if (m = 2) then

Let U

(0)

i�2

; U

(0)

i�1

be the user sets at level 0;

b

U

1

= U

(0)

i�2

;

b

U

2

= U

(0)

i�1

;

b

U

3

= n+ 1; ŝ

1

= s

(0)

i�2

; ŝ

2

= s

(0)

i�1

; ŝ

3

= s

(0)

n+1

;

all CombineThree (

b

U [1; 2; 3℄; ŝ[1; 2; 3℄);

Let s

(1)

j

be the agreed key among user sets

b

U

1

;

b

U

2

;

b

U

3

; U

(1)

j

=

b

U [1; 2; 3℄;

enf if

if (m = 3) then

Let U

(0)

i�2

; U

(0)

i�1

and U

(0)

i

be the user sets at level 0;

b

U

1

= U

(0)

i

;

b

U

2

= n+ 1; ŝ

1

= s

(0)

i

; ŝ

2

= s

(0)

n+1

;

all CombineTwo (

b

U [1; 2℄; ŝ[1; 2℄);

Let KEY be the agreed key between user sets

b

U

1

;

b

U

2

; s

(0)

i

= KEY ;U

(0)

i

=

b

U [1; 2℄;

all CombineThree (U

(0)

[i� 2; i� 1; i℄; s

(0)

[i� 2; i � 1; i℄);

Let s

(1)

j

be the agreed key among user sets U

(0)

i�2

; U

(0)

i�1

, U

(0)

i

; U

(1)

j

= U

(0)

[i� 2; i� 1; i℄;

end if

l = 1 to t� 1 do

if (B

t�l

= L) then

all CombineThree (U

(l)

[j; j + 1; j + 2℄; s

(l)

[j; j + 1; j + 2℄);

Let s

(l+1)

m

be the agreed key among user sets U

(l)

j

; U

(l)

j+1

; U

(l)

j+2

; U

(l+1)

m

= U

(l)

[j; j + 1; j + 2℄;

end if

if (B

t�l

=M) then

all CombineThree (U

(l)

[j � 1; j; j + 1℄; s

(l)

[j � 1; j; j + 1℄);

Let s

(l+1)

m

be the agreed key among user sets U

(l)

j�1

; U

(l)

j

; U

(l)

j+1

; U

(l+1)

m

= U

(l)

[j � 1; j; j + 1℄;

end if

if (B

t�l

= R) then

all CombineThree (U

(l)

[j � 2; j � 1; j℄; s

(l)

[j � 2; j � 1; j℄);

Let s

(l+1)

m

be the agreed key among user sets U

(l)

j�2

; U

(l)

j�1

and U

(l)

j

; U

(l+1)

m

= U

(l)

[j � 2; j � 1; j℄);

end if

j = m;

end do

end Insert

Suppose T

L

; T

M

; T

R

are respetively the left, middle and right subtree of key tree T with n leaf nodes

f1; 2; : : : ; ng. The tree T has the struture of KeyAgreement and so has eah of it's subtrees. Now suppose

a member i, 1 � i � n, wants to leave the group.

proedure Delete (T; n; i)

p = b

n

3

;

Case 1 : jT

L

j = jT

M

j = jT

R

j = p

if (i is the leaf node of T

L

) then

remove it from T

L

; adjust the resulting subtree T

0

L

suh that the struture of KeyAgreement

is preserved in T

0

L

and update the key paths;

end if

if (i is the leaf node of T

M

) then

17



remove it from T

M

; adjust the resulting subtree T

0

M

to preserve it's struture of KeyAgreement

and update the key paths;

T

temp

= T

0

M

; T

0

M

= T

L

; T

L

= T

temp

;

end if

if (i is the leaf node of T

R

) then

remove it from T

R

; adjust the resulting subtree T

0

R

so that the struture of KeyAgreement

is preserved in T

0

R

and update the key paths;

T

temp

= T

0

R

; T

0

R

= T

L

; T

L

= T

temp

;

end if

Case 2 : jT

L

j = jT

M

j = p; jT

R

j = p+ 1

if (i is the leaf node of T

L

) then

remove it from T

L

; extrat one leaf node of T

R

in suh a way that the resulting right subtree T

0

R

has the struture of KeyAgreement and minimum number of key path updates are required;

insert this extrated node to T

L

as the i

th

leaf node resulting the left subtree T

0

L

having

struture of KeyAgreement and �nally update the key paths.

end if

if (i is the leaf node of T

M

) then

remove it from T

M

; extrat one leaf node of T

R

in suh a way that the resulting right subtree T

0

R

has the struture of KeyAgreement and minimum number of key path updates are required;

insert this extrated node to T

M

as the i

th

leaf node resulting the middle subtree T

0

M

having

struture of KeyAgreement and �nally update the key paths.

end if

if (i is the leaf node of T

R

) then

remove it from T

R

; adjust the resulting subtree T

0

R

suh that the struture of KeyAgreement

is preserved in T

0

R

and update the key paths.

end if

Case 3 : jT

L

j = p; jT

M

j = jT

R

j = p+ 1;

if (i is the leaf node of T

L

) then

remove it from T

L

; extrat one leaf node of T

M

so that the resulting middle subtree T

0

M

has the struture of KeyAgreement and minimum number of key path uptates;

insert this extrated node to T

L

as the i

th

leaf node resulting in the left subtree T

0

L

having

struture of KeyAgreement and �nally update the key paths.

end if

if (i is the leaf node of T

M

) then

remove it from T

M

; adjust the resulting subtree T

0

M

in suh a way that the struture of KeyAgreement

is preserved in T

0

M

and update the key paths.

end if

if (i is the leaf node of T

R

) then

remove it from T

R

; adjust the resulting subtree T

0

R

so that it has the struture of KeyAgreement

and update the key paths.

T

temp

= T

0

R

; T

0

R

= T

M

; T

M

= T

temp

;

end if

end Delete
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