Extending Joux’s Protocol to Multi Party Key Agreement

Rana Barua, Ratna Dutta and Palash Sarkar
Cryptology Research Group
Stat-Math and Applied Statistics Unit
203, B.T. Road, Kolkata
India 700108
e-mail:{rana,ratna_r,palash }Qisical.ac.in

Abstract

We present a secure unauthenticated as well as an authenticated multi party key agreement protocol.
The unauthenticated version of our protocol uses ternary trees and is based on bilinear maps and Joux’s
three party protocol. The number of rounds, computation/communication complexity of our protocol
compares favourably with previously known protocols. The authenticated version of our protocol also
uses ternary trees and is based on public IDs and Key Generation Centres. The authenticated version
of our protocol is more efficient than all previously known authenticated key agreement protocols.
Keywords : group key agreement, authenticated key agreement, pairing based cryptography, ID based

cryptography.

1 Introduction

Key agreement is one of the fundamental cryptographic primitives. This is required in situations where
two or more parties want to communicate securely among themselves. The situation where three or more
parties share a secret key is often called conference keying. In this situation, the parties can securely send
and receive messages from each other. An adversary not having access to the secret key will not be able
to decrypt the message.

Key agreement protocols fall naturally into two classes — authenticated and unauthenticated. The first
two party key agreement protocol was introduced by Diffie-Hellman in their seminal paper [14]. This is
an unauthenticated protocol in the sense that an adversary who has control over the channel can use the
man-in-the-middle attack to agree upon two separate keys with the two users without the users being
aware of this. This situation is usually tackled by adding some form of authentication mechanism to the
protocol.

Unauthenticated key agreement protocols consider the adversary to be passive, i.e., the adversary can
listen to the traffic on the network, but cannot alter it. On the other hand, authenticated key agreement
protocols consider the adversary to be active, i.e., the adversary can alter/replace the messages flowing
through the network. Thus the security requirements for authenticated key agreement is more stringent.
Some of the desirable properties in authenticated key agreement are mutual implicit key authentication,
known key security, forward secrecy, key compromise impersonation and key control.

Apart from authentication, the other aspects of key agreement protocols are computation and commu-
nication efficiency. When the number of parties is more than two, the protocol is usually a multi-round
protocol. In each round some or all of the users send messages to the other users and at the end of all
the rounds, all the users should agree upon a common key. The total number of bits exchanged in the
protocol is a crucial parameter in judging the efficiency of the protocol. Further, in each round, each user
has to perform some computation like an exponentiation or a scalar multiplication. The total amount of
computation required by all the users is another measure of efficiency of the protocol.



In this paper, we present a secure multi-party key agreement protocol. The protocol can be used for
both authenticated and unauthenticated key agreement. For n parties, n > 2, the number of rounds
required for our protocol is [logzn]| for both authenticated and unauthenticated key agreement. For
unauthenticated key agreement, the total number of messages exchanged and the total number of scalar
multiplications (over a suitable elliptic curve) is less than 3(n — 1). Additionally, n[logzn] pairings have
to be computed. For authenticated version of our protocol, the combined message size is two times more
than the unauthenticated version, the number of scalar multiplications is at most 9(n — 1) and pairings is
around five times more than the unauthenticated version.

Our protocol is based on bilinear maps. In one of the breakthroughs in key agreement protocols,
Joux [17] proposed a three party, single round key agreement protocol. An authenticated version of this
protocol has been proposed in [2], [28]. The basic Joux protocol is at the heart of our (unauthenticated)
protocol. We group the users into three user sets using top down recursive procedure so that user sets with
two users appear only at the first round. The Joux protocol is invoked for each set of three users to agree
upon a common key. For the set of two users (if any), one of them generates randomly another short term
private key to have two keys. These two keys and the short term private key of the other user is used in
another invocation of Joux’s protocol. A set of one user is kept unchanged. Our protocol then proceeds
over several rounds and each round consists of several invocations of Joux’s protocol. Ultimately, we are left
with three user sets and Joux’s protocol is invoked once more to complete the protocol. The authenticated
version of our protocol is structurally same as the unauthenticated version. The only difference is that the
invocations of the two and three party protocol now involves the authenticated version of these protocols.

Thus our multi party protocol is essentially a combination of Joux’s tripartite Diffie-Hellman protocol
and tree based group key agreement using ternary tree structure. Even though the idea of combining
Joux’s protocol and tree based group key agreement is a natural extension of Joux’s original protocol,
it is nontrivial to obtain a security proof for the protocol against passive adversary. One of our major
contribution is to provide such a proof using techniques from [5], [18], [27]. In fact, any secure two or three
party protocol can be used with the ternary tree structure to obtain a secure multi party protocol. Our
security analysis against passive adversaries is also a kind of reduction. We argue that if the underlying
two and three party protocols are secure, then our multi party protocol is also secure.

The authenticated version of our protocol is an ID-based protocol. ID-based cryptography was proposed

by Shamir [25] and there has been a spurt of papers in this area. The authenticated version of our protocol
can be seen as another contribution to this field. The unauthenticated version of our protocol uses pairing
based cryptography, which was introduced by Boneh and Franklin [6].
Previous Work : As mentioned before, the first two party unauthenticated key agreement protocol was
proposed by Diffie-Hellman in their seminal paper [14]. This was modified into an authenticated key agree-
ment protocol by Matsumoto, Takashima and Imai in [22]. Later, Law, Menezes, Qu, Solinas and Vanstone
showed in [21] that some of the protocols of [22] are not secure and proposed a new protocol for authenti-
cated key agreement. There have been a number of proposals for authenticated and unauthenticated key
agreement [23], [26], [11].

Among the previously known multi party key agreement protocols only two protocols have number of
rounds less than our protocol. In [8], Boneh and Silverberg proposed a single round multi party key agree-
ment protocol. This protocol is based on the existence of multi-linear maps. Currently, no such suitable
maps are known and the existence of such maps is presently a research problem [8]. The other protocol
which requires less number of rounds is due to Burmester and Desmedt [9]. This is an unauthenticated
protocol and requires two rounds. However, the computation complexity is higher and the total number
of exponentiations required is around n2. Also the authors indicate that zero-knowledge proof techniques
are required to convert this protocol into an authenticated protocol.

The total number of messages exchanged in our protocol is less than all other known protocols. Further,
the total number of scalar multiplications/exponentiation required by our protocol is also less than other



known protocols. However, our protocol requires a number of pairings and hence in certain cases can be
computationally less efficient than some of the previously known protocols.

The remainder of the paper is organized as follows. Section 2 briefly explains the cryptographic bilinear
map and the basic requirements of our protocol. Section 3 describes the protocol. The security analysis
is provided in Section 4. Section 5 discusses the efficiency. Section 6 compares with other key agreement
protocols. Finally Section 7 concludes the paper. Membership operations insertion and deletion are
discussed in the Appendix.

2 Preliminaries

2.1 Cryptographic Bilinear Maps

Let G1,G> be two groups of the same prime order q. We view G as an additive group and G2 as a
multiplicative group. Let P be an arbitrary generator of G;. Assume that discrete logarithm problem
(DLP) is hard in both G| and G3. A mapping e : G2 — G5 satisfying the following properties is called a
bilinear map from a cryptographic point of view :

Bilinearity : e(aP,bQ) = e(P, Q) for all P,Q € Gy and a,b € Zy.

Non-degeneracy : If P is a generator of G, then e(P, P) is a generator of G2. In other words, e(P, P) # 1.
Computable : There exists an efficient algorithm to compute e(P, Q) for all P,Q € G;.

Modified Weil Pairing [6] and Tate Pairing [4], [16] are the examples of cryptographic bilinear maps.

2.2 Diffie Hellman Assumptions

In this subsection we specify some versions of Diffie-Hellman problems of which the last one is newly intro-
duced. Consider (G, G, e) where G, G are two cyclic subgroups of a large prime order g and e : G? — G
is a cryptographic bilinear map. We take G as an additive group and G9 as a multiplicative group. (By
a€RrZy, we mean a is randomly chosen from Zj.)

1. Decisional Diffie-Hellman (DDH) problem in G :

Instance : (P, aP,bP,cP) for some a,b,c € Z.

Solution : OQutput yes if ¢ = ab mod ¢ and output no otherwise.

DDH problem in (G is easy : DDH problem in G; can be solved in polynomial time by verifying
e(aP,bP) = e(P,cP). This is the well known MOV reduction [6] : The DLP in G is no harder than the
DLP in Gs.

DDH assumption : There exists no polynomial time algorithm which can solve the DDH problem in G4
with non-negligible probability of success. See [13] for a detailed discussion.

2. Hash Decisional Diffie-Hellman (HDH) problem in G, :

Instance : (P, aP,bP,r) for some a,b,c,r € Z; and a one way hash function H : G1 — Z;.

Solution : Output yes if r = H(abP) mod ¢ and output no otherwise.

This problem was introduced by Abdalla, Bellare and Rogaway in [1]. The only difference is that the
co-domain set for the hash function used by them is a set of finite (fixed) length strings whereas in our
version, we take it to be the set Z;.

The advantage of any probabilistic , polynomial time, 0/1-valued algorithm A in solving HDH problem in
G is defined to be :

Adv!{P" = |ProblA(P,aP,bP,r) = 1: a,b,c,r€rZ;] —ProblA(P,aP,bP,H(abP)) = 1: a,berZ}]|

HDH assumption : There exists no polynomial time algorithm which can solve the HDH problem in
(G with non-negligible probability of success. In otherwords, for every probabilistic, polynomial time,
0/1-valued algorithm A, AdvTPH < # for every fixed [ > 0 and sufficiently large m. For more details,
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see [1].

3. Bilinear Diffie-Hellman (BDH) problem in (G, G2,e) :

Instance : (P, aP,bP,cP) for some a,b,c € Z;

Solution : Output e(P, P)*%.

BDH assumption : There exists no polynomial time algorithm which can solve the BDH problem in
(G1,G2,e) with non-negligible probability of success. See [6] for more details.

4. Decisional Hash Bilinear Diffie-Hellman (DHBDH) problem in (G, G2,e€) :

Instance : (P,aP,bP,cP,r)) for some a,b,c,r € Z; and a one way hash function H : Go — Z;.

Solution : Qutput yes if r = H(e(P, P)**) mod ¢ and output no otherwise.

Similar to the HDH problem already introduced in [1] which is a hash version of DDH problem, the DHBDH
problem in (G, G4, e) is also a hash version of the decisional BDH problem in (G, Gs,e) .

The advantage of any probabilistic, polynomial time, 0/1-valued algorithm A in solving DHBDH problem
in (G1,Ga,e) is defined to be :

AdvRHBPH — | Probl A(P,aP,bP,cP,r) = 1 : a,b, c,r€rZy] —ProblA(P,aP,bP,cP, H(e(P, P)ec)) =1 :
a,b, ce RZ;”

DHBDH assumption : There exists no polynomial time algorithm which can solve the DHBDH prob-
lem with non-negligible probability of success. In otherwords, for every probabilistic, polynomial time,
0/1-valued algorithm A, AdvRQHBPH < # for every fixed [ > 0 and sufficiently large m.

The DHBDH assumption is a. “natural” combination of the HDH and BDH assumption and hence appears
to be a reasonable assumption to make.

2.3 Protocol Requirements

Consider the n users who wish to agree upon a conference key to be the set {1,2,...,n}. Let s1,89,...,8, €
Z,, be their respective private keys. Let U be a subset of {1,2,...,n} consisting of consecutive integers. We
call U a user set. Let Rep(U) stand for the representative of the set U. To be specific, let Rep(U) = min(U).
We use the notation A[l,...,n] for an array of n elements Ay,..., A, and write A[i] and A; interchangeably.
We take G; to be a cyclic subgroup of an elliptic curve group of some large prime order ¢ and the bilinear
map e : G? — G2 to be either a modified Weil pairing or a Tate pairing [4], [16]. Let P be an arbitrary
generator of G1. Choose a hash function H : Go — Z;. The system parameters for the unauthenticated
protocol are params = (G1,Gs,e,q, P, H).
For ID-based authenticated key agreement, we will additionally require the followings:

1. Hash functions H : Gy — ZF, Hy : {0,1}* = G1.

2. A key generation centre (KGC) which chooses a random s € Z; and sets P,,;, = sP. It publishes
P,y as a system parameter and keeps s as secret which it treates as the master key. Each user 4
has an identity ID; € {0,1}* and long term public key Q; = Hy(ID;). User i sends @; to KGC and
KGC sends back the long term private key S; = sQ; to user i.

3. The keys s1, 92, ..., S, are short term private keys.

The system parameters for the authenticated protocol are params = (G1,G2,e,q, P, Py, H, ET, Hy).



3 Protocol

In this section, we present a three-group and a two-group Diffie-Hellman key agreement protocol Combi-
neThree and CombineTwo respectively together with an n-party recursive algorithm KeyAgreement which
makes use of CombineThree and CombineTwo. The bozed portions are executed for the authenticated version.

The three-group Diffie-Hellman key agreement for unauthenticated as well as ID-based authenticated
versions are jointly given by the subroutine CombineThree as described below. In this subroutine, when
cardinality of each of these three groups is one, then the ID-based authenticated version is simply the
three-party protocol proposed by Zhang, Liu, Kim in [28] while the unauthenticated version is the Joux [17]
three-party key agreement protocol using bilinear map.

procedure CombineThree(U[1,2, 3], s[1,2, 3])
1=1to 3 do
Rep(U;) computes P; = s; P
and Trep,) = H(P)Spepy) + 5
Let {j,k} = {1,2,3}\{i};
Rep(U;) sends P;, | Trep(r;) | to all members of both Uy, Uy;
end do

1=1to 3 do
Let {j,k} = {1,2,3}\{i};
each member of U;
verifies : e(TRep(Uj) + TRep(Uk)a P) = 6(I—I(PJ')QRep(U]-) + H(Pk:)QRep(Uk)a Ppub)e(Pjv Pj)e(Pka Pk:) and
computes H(e(P}, Py)%);
end do

end CombineThree

This subroutine does a key agreement among three user sets Uy, Uy, U3z with s1, s9, s3 respectively as their
private keys (short term for ID-based ) with common key H (e(P, P)*15253).

Similarly, the two-group Diffie-Hellman key agreement for unauthenticated as well as ID-based au-
thenticated versions are jointly given by the subroutine CombineTwo as described below. This subroutine
reduces to a two-party Diffie-Hellman key agreement protocol when each of the two groups has cardinality
one.

procedure CombineTwo(U[1, 2], s[1, 2])
1=1to2do
Rep(U;) computes P; = s; P

and Trepr) = H(Pi)Srepu) + sil%;
end do
Rep(U1) generates 5€gZ, and sends 5P

and TRep(Ul) = fI(EP)SRep(Ul) +32P | to the rest of the users;

each member of Uy, Uz except Rep(Uy) verifies :
e(TRep(Ul)ap) = e(H(EP)QRep(Ul)aPpub)e(gpa EP);
Rep(Uy) sends Py, | Trep(o,) | to all members of Us;




Rep(Us) sends P, | Tgep(1,) | to all members of Uy;

each member of U;

verifies : e(Trep(tr,), P) = e(ﬁ(Pg)QRep(U2),Ppub)e(Pg,Pg) and
computes H(e(Py,3P)*");

each member of U,

verifies : e(Trep(ur), P) = e(H (P1)Qrep(ur)» Pous)e(Pr, P1) and
computes H(e(Py,35P)%2);

end CombineTwo

This subroutine does a key agreement among two user sets Uy, Us with s, so respectively as their private
keys (short term for ID-based) with common key H (e(P, P)®*2%) where 5 is generated randomly by the
representative of the user set U;. Thus, this subroutine is essentially the Joux’s protocol invoked for two
user sets.

Next we describe the tree structure KeyAgreement as a top down recursive procedure which uses the
above two subroutines CombineTwo and CombineThree.

procedure KeyAgreement(m,Uli +1,...,i + m])
if (m=1) then
KEY = s[i +1];
end if
if (m = 2) then
call CombineTwo(U[i + 1,i + 2], s[i + 1,7 + 2]);
Let KEY be the agreed key between user sets U;y1,U;12;

end if
no =0;n1 = [F|ing=[%]; no=m—n1 —ng;
j=1to3 do

call KeyAgreement(n;, Ui +nj—1 +1,...,i 4+ nj_1 +n;]);
ﬁj =Uli +n;1+1...,04+n5 -I-nj]; 5j=KEY;nj=mnj;_1+nj
end do;
call CombineThree(U[1,2,3],3[1,2,3]);
Let KEY be the agreed key among user sets 171, 172, 173;
end KeyAgreement

The start of the recursive protocol KeyAgreement is made by the following two statements:
L.Uj=jforl1<j<m
2. call KeyAgreement(n,U[l,...,n]);

The algorithm is recursive and goes through several levels starting with level 0. In each level, there are
sets of users who have (or agree upon) a common secret key. In level 0, each user is in a set by himself/
herself and the secret key of the singleton set is the secret key of the concerned user. For n users, let
the levels be numbered 0,...,R(n). In level 4, let the number of user sets be n;. Thus ny = n, and
ng = 1, where £k = R(n). We identify the rounds of the algorithm as follows. There are R(n) rounds of
computation. The i*? round of computation takes the state of the algorithm from level i — 1 to level 4 for
i=1,...,R(n). We introduce some notations for convenience of analysing the algorithm.

fU](i) : the j-th user set at level 3,0 <i < R(n),1 <j < n,,



(%)

—s;’ : common secret key agreed upon by users in the user set Uj(i),

PV : i-th level j-th public key, i.c. P\ = s P.

Let p = |5] and r = nmod 3. We partition the set of users Ul(k) = {1,...,n} into three user sets
Ul(k_l), Z(k_l), ék_l) with cardinality p, p,p respectively if r = 0, with cardinality p,p,p + 1 respectively
if r = 1 or with cardinality p,p + 1,p + 1 respectively if r = 2. We use this top down recursive procedure
for each user set U](Z) to split it into three user sets for 1 <1 < k,1 < 5 < n; and for 1 = 1, each such user
set is partioned into either one user set, or two user sets or three user sets depending on n. Note that with
this tree structure, an user set with two users appears only at level 1 and so CombineTwo is never invoked

for round > 2. For n = 10, the working of the algorithm (unauthenticated version) is shown in figure 1.
@ 2 @
s P SP $P

(1{3 () @) (1), él) %)p
SR A $P

S

Figure 1: Key agreement among n = 10 parties, user 9 generates S9 randomly and sends S9P to user 10 at
the first level.

Lemma 3.1 The final agreed key KEY among n users in the subroutine KeyAgreement is

(k) . (k_l)sgk_l)sgk_l)

KEY = s{") = H(e(P, P)* )

where k = R(n), n > 2.

Lemma 3.2 Each member of U]@ can compute ng') for 1 < j <mnj;, i <k where k = R(n). Consequently,
(k)

all users are able to compute the common key KEY = s;

Proof : We prove this lemma by induction on 3.

Base Step : Initially Ul — 7 and private key s are assigned to each user for 1 < j < ng. So each

J J
member of U](I),l < j < np can compute sg-l).
Induction Step: Let for 2 < i < k,1 < j < n;_1, each member of user set U](i_l) has computed sg-i_l) at

the (i — 1)"* round. Note that KeyAgreement never calls CombineTwo for round i > 2. Now at the i-th
round, for j = 1,...,n;, KeyAgreement calls CombineThree in which user set UJ@ computes sy) using the

(4) (i—

corresponding s of the (i — 1) round and user set sz’ consists of all members of Ué;:;), 3;-711) and U:)E;-_l)
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all of who know the corresponding s by induction hypothesis. So each member of U can compute the

: J
required ng)_ Hence the proof follows. [ |
One question arises here: How does user u (1 < u < n), in a certain round i > 1 determine to which user

set he belongs and whether he is the representative of that user set? Using the above recursions, user u

can easily compute all the user sets UJ(Z),l < j < my, of this round and can efficiently check its position.

Note that each U](i) is a subset of {1,2,...,n} consisting of consecutive integers. So if u € UJ@ for some
j, 1 <7 < mj;, user u verifies whether u equals min(U(i)) and if so, u is the representative of the user set

(i ’
v,

4 Security Analysis

4.1 Security Against Passive Adversary

A secure key agreement protocol should withstand both passive and active attacks. In this subsection we
define the Decisional ternary tree group key agreement (DTGKA) problem for our unauthenti-
cated protocol and show that this problem is hard for the passive adversary by reducing the hardness of
this problem to the hardness of DHBDH problem following the technique used in [5], [18], [27]. The au-
thentication is introduced in our unauthenticated protocol using a special signature scheme to get security
against an active adversary which has been discussed in the next subsection.

Given a ternary tree T' of height at most & with n leaf nodes (n > 2) and X = (s1,s2,...,sy) for s; € Z,
the public and secret values are collectively defined as follows :
—vw(k, X, T) := {Pj(l) where j and i are defined according to T'}

,K(k,X, T) = KFEY = H(e(P, P)sgk’l)sg’“*l)sgk*”)

vw(k, X, T) is exactly the view of the passive adversary in the ternary tree T where final key is K (k, X, T).
We call the key K(k,X,T) a DHBDH key. Our goal is to show that this DHBDH key generated by the
unauthenticated protocol can not be distinguished by a polynomial time algorithm from a random number
if all the transmitted values during a protocol run are known.

Suppose T is the set of all ternary trees of height &£ having structure of KeyAgreement. A tree T of height %
is chosen randomly from 7 and let X€pr(Z;)" (n < 3%) be the labels of (short term private keys associated
with) the leaf nodes of T'. Then k is the number of rounds with n users. Let us define two random variables
Ayg, Ak as follows :

~Ay, = (vw(k, X, T),y),yErZ,

~Ay, == (vw(k, X, T),K(k, X, T))

Let S, = {(T,X) : T€rTy and X€R(Z;)", where n is the number of leaf level nodes in T'}. Let Br be
the number of edges in the ternary tree T. For (T, X) € Sk, define I'(T, X') to be the ordered tuple of all
public information along the arcs of T. Clearly, I'(T, X) C (G1)P7. Then the random variable A, takes
values from the sample space (G1)PT x Z, according to the uniform probability distribution and Ak takes
values from the sample space I'(T, X) x Z; C (G1)Br x Z, with the uniform probability distribution.

Definition 4.1 Consider (G1,G2,¢) . Let n > 2 be a positive integer, X = (s1,52,...,8n) for s; € Z;

and T be a ternary tree of height k with n leaf nodes labeled by X, and Ak,ﬁk are defined as above.
A Decisional ternary tree group key agreement (DTGKA) algorithm F for (Gy,Ga,e) is a



probabilistic polynomial time algorithm that outputs either 0 or 1, satisfying, for some fized I > 0 and

sufficiently large m :
1

|Prob[F(Ag) = 1] — Prob[]-"(Ak) =1]| > it
We call F a polynomial time distinguisher that distinguishes Ay and Ak.
The DTGKA problem is to find a polynomial time distinguisher F for A; and ﬁk defined above.

Theorem 4.2 [f the DHBDH problem in (G1,Ga,e) is hard, then Ay and Ak are polynomially indistin-
guishable.

Proof : First let us provide a plan of the proof. The proof is by induction on k.

Base Step : k£ =1 : Distinguishing Ay and A, implies “solving” DHBDH problem in (G1,G2,¢e) . Thus it
is not possible to distinguish 4; and A assuming DHBDH problem is hard in (G, Ga,e€) .

Induction Hypothesis : Assume that for some k > 2, it is not possible to distinguish Ay ; and ﬁk,l.
Induction Step : We show that the ability to distinguish A and Ay, implies either (a) “solving” DHBDH
problem in (G1,G2,¢e) or (b) ability to distinguish Ay ; and Ay 1. Since (a) is given to be hard and (b)
is hard by induction hypothesis, it follows that it is not possible to distinguish between Aj; and ﬁk

Now we turn to a proof of the induction step. Let TERTi be a ternary tree of height k& with n leaf nodes.
Let XGR(Z;‘)” be the labels of the leaf nodes of T'. Let Ty,T5, T3 respectively be the left, middle and
right subtree of height at most k& — 1 of the tree T. This implies that at least one of these subtrees has
height exactly k — 1. If X3 = (s1,...,5), X2 = (Si41,--,8m) and X3 = (Sm41,.-.,Sn), where s; through
s; are associated with T7, s;41 through s, with 75 and s, 41 through s, with T3, then A; and ﬁk can be
rewritten as :

Ay, := (vw(k, X,T),y) for random y € Z

= (ww(k — 1, X1, T1),vw(k — 1, X5, Ty),vw(k — 1, X3, T3), PE PFD pik=b 4y

= (vw(k — 1, X1, T1),vw(k — 1, Xo,Ty), vw(k — 1, X3, T3), s VP s p sV p )

Ay, = (ww(k, X, T), K (k, X,T))
— (ww(k — 1, X1, T1), vw(k — 1, Xo, To),vw(k — 1, X3, T3), P&V p*-1 pk=b gpy
1 2 3
(ww(k — 1, X1, 1), vw(k — 1, X2, T), vw(k — 1, X3,T3), sV P, sV P s p K BY)

Let us consider the following random variables:

Ap == (vw(k — 1, X1, T1),vw(k — 1, X, Ta), vw(k — 1, X3, T3), s\ VP, sV p s p g
By = (vw(k — 1, X1, Th),vw(k — 1, X9, To),vw(k — 1, X3, 3),7‘1P 32 )P sgk_l)P,y)

Cp = (vw(k — 1, X1, T1),vow(k — 1, Xo, To), vw(k — 1, X3, T3), 71 P,m5 P, s$ VP, y)

Dy := (vw(k — 1, X1, Th),vw(k — 1, X, T2),vw(k — 1, X3,T3),m P, o P, 73 P, y)

Dk (vw( — ]_,Xl, 1),’0’10( — ]_,X2, 2),'()’([)(]{2 — 1,X3, 3),’]“1P ’I“QP ’1“3P Kl)

Cr = (vw(k — 1, X1, T1),vw(k — 1, Xo, To), vw(k — 1, X3, T3), 71 P,ro P, s$ VP, Ky)

Ek (’U’UJ( -1 X1,T1),vw( -1 XQ,TQ),’U’LU(k— 1,X3, 3) 7‘1P 82k 1)P, gk_l)P,Kg)

A = (vw(k — 1, X1, T0), vw(k — 1, X0, Ts),vw(k — 1, X3, T3), s\* ,sg’“*”P, s VP KEY)

(k—1) (k- 1)

where 11,75, r5€r Z5 and Ky = H(e(P, P)"1™73), Ky = H(e(P,P)""™%" ) and K3 = H(e(P, P)"* ).
Claim : If Ay, Ek are distinguishable in polynomial time, then at least one ofA the followings can be dis-
tinguished : (Ay, Bk), (Bk, Ck), (Ck, Di), (Dk, Di), (Dk, Ck), (Ck, Bi) or (By, Ag).

Proof of the Claim : Let a1 = Prob[F(Ax) = 1], aa = Prob[F(B;) = 1], a3 = Prob[F(Cy) = 1],



ay = Prob[F(Dy) = 1], as = Prob[F(Dy) = 1], ag = Prob[F(Cy) = 1], ay = Prob[F(By) = 1],
ag = Prob[]—"(ﬁk) = 1]. Since Aj and Ay, are distinguishable in polynomial time, |a; — ag| > # for
sufficiently large m and for a fixed [ > 0. Now we will show that at least one of the followings must hold :
la; — aip1] > # fori=1,...,7. If not, let |a; — a;j+1] < # foralli=1,...,7.

Then |a1 — ag| < |a1 — ag| + -+ + |a7 — ag| < m,7+1 < #, a contradiction, if m > 7.

We shall show that the ability to distinguish any one of (A, B), (B, Ck), (Ck, D), (Dy., C), (CA’,C,E,C)
or (Bg, Ax) reduces to solving DTGKA problem with height & — 1 and ability of distinguishing (D, Dy,)
reduces to solving the DHBDH problem in (G, G, e) . The proof of the two cases : (Ag, Bi) and (D, D)
are discussed here in details. A proof similar to the case (A, By) follows for others.

Case : Distinguish (A, Bi) : Suppose F4p, is a polynomial time distinguisher that can distinguish
A and By in polynomial time. We will show that F4p, can be used to solve DTGKA problem with
height £ — 1. We construct a polynomial time distinguisher F AR that distinguishes A 1 and ﬁk,l in
polynomial time as follows :

Let V' | = (vw(k—1,X*,T*),r*) where T* is a ternary tree of height £ —1 with | X*| = n having structure
of KeyAgreement. The distinguisher 7 , A, first constructs two ternary trees T and T with leaf level secret
key distribution X and X respectively in the following manner : if n = 3, then take |)Z' | = |X| = n, else
take either |X| = |X|=nor |X| =n,|X|=n+1or |X|=|X|=n+1. Then F \z. . constructs a tree of

height k with |X*| + | X |+ |X| users and T*,T,T as the left, middle and right subtree respectively. The

resulting tree is clearly a random member of 7;. Next F, A, sets :

Vi = (vw(k—1,X*,T*),0w(k—1,X,T),vw(k—1,X,T),r* P, KP,K P,y), where K = K (k—1,X,T),K =
K(k—1,X,T), yerZ; and runs Fap, oninput V;'. Now Prob[Fap, (Ax = V}) = 1] = PTOb[]:AA\k_l(Ak—l =
Vi) =1] and Prob[Fap, (B, =V}) =1] = PTOb[}-AKk,I(Ak—l =V, =1].

Consequently, |Pr0b[‘7:AZk,l(Ak*1 =V, =1- PrOb[]:AZk,l(Ak*1 =Vr ) =1]

= |Prob[Fap, (Ax = Vi7) = 1] — Prob[Fap, (By = V;’) = 1]|. Hence if Fap, can distinguish between Ay

and By, then ‘7:,4& | can distinguish between A;_1 and Aj_1.

Case : Distinguish (Dk,ﬁk) : Suppose F DB, is a polynomial time distinguisher that can distinguish
Dy, and lA?k in polynomial time. We shall show that F pp, can be used to construct a polynomial time
algorithm A that solves the DHBDH problem in (Gy,G9,¢e) . Note that 1 P and roP are independent
variables from vw(k — 1, X1, T}) and vw(k — 1, X9, T5).

Given V;* | = (P,r*P,7P,7P,H(e(P, P)")), the algorithm A has to decide whether r = 7*77 mod ¢ (A
outputs yes in this case) or r is random (A outputs no in this case) where r*,7,7€gZ;. For this, A first
generates a tree of height k having structure of KeyAgreement with three subtrees 7™, T and T. The leaf
level secret key distribution of these subtrees are X*, X and X respectively. Then A sets :

Vi = (vw(k — 1, X*,T*),vw(k — 1, X,T),vw(k — 1,X,T),r*P,7P,7P, H(e(P, P)")) and runs ]:Dﬁk on
input V;*. Now Prob[A outputs no on input V;* ] = Prob[]—"Dﬁk (Dy =V)) =1]

and Prob[A outputs yes on input V;* ] = Prob[]—"Dﬁk(lA)k =V =1].

Consequently, |Prob[.A outputs no on input Yk*_l] — Prob[A outputs yes on input V;*_]|

= |PiOb[‘7:Dﬁk(Dk =V =1 - Prob[TDﬁk(Dk = V) = 1]|. Hence if Fpp, can distinguish between Dy
and Dy, then A solves DHBDH problem in (G, Ga,€) . [
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4.2 Security Against Active Adversary
This is discussed in the Appendix.

5 [Efficiency

This involves the communication and computation efficiency. In each round, a user may have to transmit
publicly an element of G to some or all the other users. Also it has to perform some operations like scalar
multiplications, pairing computations. The number of rounds, total group elements sent, total messages
exchanged provides the communication overhead in the protocol whereas total pairing computation, total
scalar multiplications used incurs the computation costs.

First consider the unauthenticated version. Let R(n) denote the total number of rounds, P(n) the total
pairings computed, B(n) the combined message size and E(n) the total number of scalar multiplications.
If an user sends publicly an element of G to some or all remaining users, then this counts one to B(n).
Thus B(n) is the total number of such group elements. Proofs of the following results will be provided in
the full version of the paper.

Lemma 5.1 For n > 2, the following recursions and bounds hold for R(n), B(n), E(n) and P(n) :

1. R(3n) =1+ R(n); RBn+1) =14+ R(n+1); R(3n +2) =1+ R(n + 1); with initial conditions
R(1) =0,R(2) = 1. Consequently, R(n) = [logsn] for all n.

2. B(3n) =34+ 3B(n); B3n+1) =3+4+2B(n)+ B(n+1); B(3n+2) =3+ B(n) 4+ 2B(n + 1); with
initial conditions B(1) = 0,B(2) = 3. Consequently, B(n) < 2(n — 1) for n > 2.

3. E(3n) =34+ 3E(n); EBn+1) =3+4+2E(n)+ E(n+1); E(3n+2) =3+ E(n) + 2E(n + 1); with
initial conditions E(1) = 0, E(2) = 3. Consequently, E(n) < 3(n — 1) for n > 2.

4. P(3n) =3n+3P(n); P(3n+1) =3n+1+2P(n)+P(n+1); P(3n+2) =3n+2+P(n)+2P(n+1);
with initial conditions P(1) = 0, P(2) = 2. Consequently, P(n) < n[logsn].
a(n

For authenticated version, let R,(n), B
ticated version.

), Eqo(n) and P,(n) be the corresponding terms of the unauthen-

Lemma 5.2 For n > 2, the following relations hold for R,(n), Bs(n), Eq(n) and P,(n) :

1. Ry(n) = R(n). Consequently, Ry(n) < n[logzn].

2. By(n) = 2B(n). Consequently, B,(n) < 5(n — 1) for n > 2.

3. Eo(3n) =94 Eq(n); Ea(3n+1) =9+ 2E,(n) + Eo(n+1); E,(3n +2) =9+ E,(n) + 2E,(n + 1);
with E,(1) =

0, E4(2) = 12. Consequently, E4(n) < 9(n —1) for n > 2.
_l_

4. Py(3n) = 5(3n) + 3P,(n) for n > 2; P(3n+ 1) =
5038n+2) + P,(n) +2P,(n+1); with P,(1) =0, Py(2
P,(n) < 5nllogzn| + 3.

53n + 1) + 2P,(n) + Pa(n + 1); Pa(3n +2) =
) =11. Also P,(n) < 5P(n) + 3. Consequently,

6 Comparison
In this section, we compare our protocol to some of the previously known protocols. Burmester and

Desmedt present in [9] an efficient multi-party protocol that can be executed only in two rounds. A class
of generic n-party Diffie-Hellman protocols (n > 2) is defined in [27]. The entire protocol class is shown
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to be secure against passive adversaries based on the intractability of the DDH problem. One group key
distribution protocols introduced in [27] is GDH-3. A tree based Diffie-Hellman group key agreement
protocol TGDH has been proposed by Kim, Perrig and Tsudik in [18] which is shown to be secure against
passive adversaries. We note that the security assumptions behind the various protocols are different and
hence in a strict sense an efficiency comparison might not be meaningful. However, we believe that the
discussion presented below does provide some idea of the relative efficiency of the various protocols. Table
1 compares the unauthenticated version of our protocol with these protocols. (Inv stands for total number
of modular inversions and Mul stands for Total number of multiplications used).

R(n) B(n) E(n) P(n) Inv
BD [9] 2 2n n(n +1) - n
GDH3 [27] | n+1 | 3(n—1) 5n — 6 - -

TGDH [18] | [logan] | n[logyn] nflogyn]| - -
Our Protocol | [loggn] [ <2(n—1) | <2(n—1) | <nfloggn] | -

Table 1 : Protocol Comparison (unauthenticated versions).

Points to note for unauthenticated protocols :

1. The underlying group of GDH-3 and BD protocol is a multiplicative subgroup of Z; of order ¢ where p
and g both are prime.

2. The communication complexity is measured by R(n) and B(n) and our protocol achieves the minimum
for both among all known protocols, except BD protocol. The computation complexity of our protocol
consists of two parts — exponentiation and pairing. The number of exponentiation is less than all other
protocols, but additionally n[logs n] pairings are required. Assuming that each pairing computation is ap-
proximately equal to three exponentiations [4], [16], the TGDH and GDH-3 algorithms are more efficient
than ours. This is based on the current state of the art in the algorithm for computing pairings. Any
improvement in pairing computation algorithms will improve the efficiency of our protocol with respect to
both TGDH and GDH-3

3. Moreover, all the above protocols give DH-key except BD protocol.

It is not a trivial task to provide authentication in BD protocol. The authors indicate that zero-knowledge
proofs are required to convert this protocol into an authenticated protocol. We compare the authenticated
version of our protocol with the existing authenticated Diffie-Hellman based group key agreement protocols
SA-GDH-2 [3] and ID-AGKA [15] in Table 2.

R,(n) Bgy(n) E,(n) P,(n) Inv Mul
SA-GDH-2 [3] n n? n? - n | 2n% —2n
ID-AGKA [15] | [logan] | 3n[logsn] | < 2n[logsn] + 4n — 2 2n[logy n| - -
Our ID-based | [logsn] | < 5(n —1) <9(n-—1) <5nflogsn] +3 | — -
auth. prot.

Table 2 : Protocol Comparison (authenticated version).

Points to note for authenticated protocols :

1. The underlying group of SA-GDH-2 protocol is multiplicative subgroup of Z; of order ¢ where both p
and g are prime.

2. Number of rounds and combined message size in our protocol is less as compared to other protocols.
Number of exponentiations or EC scalar multiplication in our protocol is also less than that required for
other protocols. Pairing computations of our protocol is slightly more than that for ID-AGKA.
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7 Conclusion

We have described an unauthenticated as well as a ID-based authenticated multi-party key agreement
protocol using pairing. In fact, our protocol can use any secure two and three party protocol and provides
all the desirable security attributes possessed by both of them. Thus the security analysis of our protocol
against an active adversary relies on the security of the underlying two and three party protocols. Fur-
thermore, the computation and communication complexity of our protocol compares favourably with other
known protocols.
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A Security Against Active Adversary

The two and three party protocols are the subroutines invoked by the main algorithm KeyAgreement. The
first thing to note is that the security of KeyAgreement is based on the security of the underlying two and
three party protocols. If these two protocols are replaced by some other two and three party protocols,
then we also obtain a secure multiparty protocol.

In active attack, an adversary not only just records the data, but also can alter, inject, intercept and replay
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messages. The goal of the authentication mechanism is to instill confidence in a user that the persons (s)he
is communicating with are indeed the persons they claim to be. In the authenticated version of our proto-
col, this is done by sending a special signature, called authenticator, on each public key. For a particular
round, if user j is a representative and s is the common secret key shared by each user in the user set
to which j belongs in this round (or random secret key generated by user j), then this authentication is
provided by sending sP together with a special signature T; on sP given by T; = H (sP)Sj + s*P, where
S; is the long term private key of user j as generated by the KGC.

The concrete security goals against an active adversary are as follows:

Implicit Key Authentication : Implicit key authentication to a user A implies that only the users
with whom A wants to agree upon a common key may be able to compute a particular key. This is a
fundamental security goal for any authenticated protocol and is independent of the protocol details.

Known Session Key Security : A protocol is called known session key secure, if an adversary, having
obtained some previous session keys, still can’t get the session keys of the current run of the protocol.

(Perfect) Forward Secrecy : A protocol is said to satisfy forward secrecy if compromise of the long
term private keys of one or more users does not affect the security of the previous session keys. If this
property holds even when the private keys of all the participating users are compromised, we say the pro-
tocol satisfies perfect forward secrecy.

No Key-compromise Impersonation : A protocol resists key-compromise impersonation when the
compromise of one user’s long term private key does not imply that the private keys of other users will
also be compromised. The adversary may impersonate the compromised user in the subsequent protocols,
but cannot impersonate other users.

No Unknown Key-share : We say that a protocol is subjected to unknown key-share attack if an
adversary convinces a group of users that they share a key with the adversary, whereas in fact the key is
shared between the group and another party.

No Key Control : A protocol is said to have no key control if it is not possible to control or predict the
value of the session key by any participant (or an adversary).

Next we argue that the authenticated version of the protocol KeyAgreement satisfies the above properties.
Our argument proceeds as follows for implicit key authentication. A similar argument can be given for
other properties.

From level 0 to level 1 : The user sets are triplets or sets with a pair of users or singleton sets. For a
triplet UJ(O), Ug(?i-)lﬂ UJ@Q — authenticated key agreement takes place among these three users according to
the tripartite algorithm of Zhang et.al. in [28]. They have used a special signature scheme on each public
key to provide this authentication. The signature scheme used by them is secure against existential forgery
under an adaptively chosen message attack in the random oracle model. They have argued heuristically

that this signature scheme provides in their protocol all the security attributes stated above against an

active adversary. For a pair U](O), U](E)r)l - Rep(U](O)) which in this case is user j, generates randomly another
(0)

short term secret key 5; so that user j has now two keys 35-0),39-. These two keys and the key s,/

set U](O)l is used in another invocation of Joux’s protocol to agree a common secret key. The same special

signature scheme is used on the transmitted public values to provide authentication and using heuristic

of user
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arguments, this two party protocol can be shown to have all the security attributes stated above against
an active adversary following [28].

(i-1)

From level ¢ — 1 to level 7 : Suppose user u € U;

in the user sets U]( 1 ), U;Zl). User u receives the authenticators Tj,,T},, where jo = Rep(U](i:ll)) and
_1))

j3 = Rep(U](_i_2 . Let j1 = Rep(U(t 1)). User u verifies T}, and T}, using @, and Qj,. Thus u gains
confidence that the communication is taking place among users ji, ]2 and j3. Also users jo and j3 will

1)

wants to agree upon a common secret key with users

respectively be using the common secret key for user sets Ut j+1 an nd U( 21) to provide this confidence. User

(i=1)

u uses the common secret key of user set Uj to compute the new common secret key for the user set

(i-1) U U " 1 U Uji; in the next level. Thus user u, agreeing upon a secret key with users jg and 73, gains
conﬁdence that he has agreed upon a common key with all users in the user set U(Z b Uuu J +1 U U] +2

and with none outside this set. This confidence is attained without verifying the IDs of all users in U]( 11 2
1)

and U](ﬁr; . Thus an active adversary, without knowing the long term secret keys of the users ji, ja, js3, is
not able to compute this common secret key. This provides implicit key authentication property at this
round.

B Dynamic Membership Operations : Member Insert, Member Delete :

Suppose T is a keytree for n users {1,2,...,n} having structure of KeyAgreement with ¢t = R(n) rounds
and let a new user n + 1 with private key snOJrl requests for join.

procedure Insert(T,n)

//finding keypath
p=|3];k=R(n); T'=T;
while ( £ > 1) do
Let T, Ty, Tr be respectively the left, middle and right subtrees of T”;
if (|7, | = [Tu| = [Tl = p) then
T' = Tg; output (k, R);
end if
if (|T| = [Tm| = p; |Tr| = p+ 1) then
T" = Tyr; output (k, M);
end if
if (|Tr| = p; |Tm| = |Tr| = p+ 1) then
T' = Ty; output (k, L);
end if
p=ELk=k-1
end do
Let the keypath be (¢, By),(t — 1, B3),...,(2,B;—1) where B;=L or M or R for 1 <i <t¢—1);
Let this path reaches a node at level 1 having m(< 3) children (leaf nodes).
//updating keypath
if (m =1) then
Let Ui(g)l be the user set at level 0;
ﬁl = Ui(g)l; ﬁg =n+1; 8§ = Sz(o_)l; §9 = SElOJ)rl;
call CombineTwo (U1, 2], 8[1,2]);
Let 35-1) be the agreed key between user sets Uy, Us; UJO) = ﬁ[l, 2);
end if
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if (m 2) then
)2 U(O) be the user sets at level 0;
U1 ( )2, Uy = Uz(—)l/\v Us=n+1; 5 = SZ(O_)Q; §9 = Sz(o_)l; §3 = SElOJ)rl;
call ComblneThree (U[1,2,3],3[1,2,3]);
Let 35-1) be the agreed key among user sets Uy, Uy, Us; UJO) = ﬁ[l, 2,3];
enf if
if (m = 3) then
Let Ui(E)Q, U(O)1 and Ui(o) be the user sets at level 0;
ﬁl = Ui(o), Us=n+1; 5 = SZ(O);§2 = SElOJ)rl;
call CombineTwo (U1, 2], 8[1,2]);
Let KEY be the agreed key between user sets Uy, Us; EO) = KEY, Ui(o) = ﬁ[l, 2);
call CombineThree (Ui — 2,7 —1,i],s0[i —2,i — 1,4]);
Let 35-1) be the agreed key among user sets Ui( ) Ul(o)l, UZ(O), J( ) =y [i —2,1—1,14];
end if
I=1tot—1do
if (B;_; = L) then
call CombineThree (UM [j,5 + 1,5 4+ 2], sO[j,5 + 1,5 + 2]);
Let s( Y be the agreed key among user sets U() UJ(Ql, U](QQ, UH) =yl )[j j+1,5+2];
end if
if (B;_; = M) then
call CombineThree (UW[j —1,75,5 4+ 1],sO[j — 1,4,7 + 1]);
Let sgn Y be the agreed key among user sets U( ) U](l) U](le,
end if
if (B;_; = R) then
call CombineThree (UN[j — 2,5 —1,4],sO[j — 2,5 — 1,4]);
Let sV be the agreed key among user sets U](_)Q, Uj(l)1 and U( ) D =UO[j —2,5 —1,4]);
end if
j = m’
end do

Ut = U0 - 1,45 + 1];

end Insert

Suppose 11, T, Tk are respectively the left, middle and right subtree of key tree T' with n leaf nodes
{1,2,...,n}. The tree T has the structure of KeyAgreement and so has each of it’s subtrees. Now suppose
a member ¢, 1 <1 < n, wants to leave the group.

procedure Delete (T, n,i)

p=13l;
Case 1 : |TL| = |TM| = |TR| =
if (7 is the leaf node of T7,) then
remove it from T7; adjust the resulting subtree T} such that the structure of KeyAgreement
is preserved in T} and update the key paths;
end if
if (7 is the leaf node of Tys) then
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remove it from Tyr; adjust the resulting subtree T}, to preserve it’s structure of KeyAgreement
and update the key paths;
Ttemp = T]I\/[; T]I\/[ =T; T = Ttemp;
end if
if (7 is the leaf node of Tg) then
remove it from Tg; adjust the resulting subtree T, so that the structure of KeyAgreement
is preserved in T}, and update the key paths;
Ttemp = T}I{; Tllz =Ty; T = Ttemp;
end if

Case 2 : |TL| = |TM| =D, |TR| =p+1

if (i is the leaf node of T7) then
remove it from 7T7,; extract one leaf node of Tg in such a way that the resulting right subtree T},
has the structure of KeyAgreement and minimum number of key path updates are required;
insert this extracted node to T}, as the i leaf node resulting the left subtree T; having
structure of KeyAgreement and finally update the key paths.

end if

if (7 is the leaf node of Th) then
remove it from Tyy; extract one leaf node of Tg in such a way that the resulting right subtree T},
has the structure of KeyAgreement and minimum number of key path updates are required;
insert this extracted node to Ty as the it leaf node resulting the middle subtree T}, having
structure of KeyAgreement and finally update the key paths.

end if

if (7 is the leaf node of Tg) then
remove it from Tg; adjust the resulting subtree T}, such that the structure of KeyAgreement
is preserved in T}, and update the key paths.

end if

Case 3 : |T1| =p; |[Tm| = |Tr| =p + 1;
if (7 is the leaf node of T7) then
remove it from T7,; extract one leaf node of Ty so that the resulting middle subtree T]'V[
has the structure of KeyAgreement and minimum number of key path uptates;
insert this extracted node to T}, as the i*" leaf node resulting in the left subtree T; having
structure of KeyAgreement and finally update the key paths.
end if
if (7 is the leaf node of T);) then
remove it from Tys; adjust the resulting subtree T}, in such a way that the structure of KeyAgreement
is preserved in T}, and update the key paths.
end if
if (i is the leaf node of Tg) then
remove it from Tg; adjust the resulting subtree T}, so that it has the structure of KeyAgreement
and update the key paths.
Ttemp = T}Iz; T1,2 =Ty; Ty = Ttemp;
end if
end Delete
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