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Abstrat. In this paper, we onsider the statistial deision proesses

behind a linear and a di�erential ryptanalysis. By applying tehniques

and onepts of statistial hypothesis testing, we desribe preisely the

shape of optimal linear and di�erential distinguishers and we improve

known results of Vaudenay onerning their asymptoti behaviour. Fur-

thermore, we formalize the onept of \sequential distinguisher" and we

illustrate potential appliations of suh tools in various statistial at-

taks.
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1 Introdution

Historially, statistial proedures are indissoiable of ryptanalyti attaks a-

gainst blok iphers. One of the �rst attak exploiting statistial orrelations in

the ore of DES [24℄ is Davies and Murphy's attak [10℄. Biham and Shamir's dif-

ferential ryptanalysis [1{3℄, Matsui's attak against DES [17, 18℄, Vaudenay's

statistial and �

2

ryptanalysis [29℄, Harpes and Massey's partitioning rypt-

analysis [14℄, and Gilbert-Minier stohasti ryptanalysis [21℄ are attaks using

statistial proedures in their ore.

To the best of our knowledge, Murphy et al., in an unpublished report [22℄,

proposed for the �rst time a general statistial framework for the analysis of

blok iphers using the tehnique of likelihood estimation. Other examples an

be found in the �eld of ryptology: reently, Coppersmith, Halevi and Jutla [7℄

have devised a general statistial framework for analysing stream iphers; they

use the onept of statistial hypothesis testing for systematially distinguishing



a stream ipher from a random funtion. Other examples (this list being non-

exhaustive) inlude Maurer's analysis of Simmon's authentiation theory [19, 20℄

and Cahin's theoretial treatment of steganography [4, 5℄.

In a parallel way, some attempts of formalizing resistane of blok iphers

towards ryptanalyti attaks have been proposed: for instane, Pornin [25℄ pro-

poses a general riterion of resistane against the Davies and Murphy attak; for

this purpose, he makes use of statistial hypothesis testing. Vaudenay, in a se-

quene of papers (e.g. [30, 31, 28℄) proposes the deorrelation theory as a generi

tehnique for estimating the strength of blok iphers against various kinds of

attaks. In these papers, he notably derives bounds on the best advantage of any

linear and di�erential distinguishers, however without using statistial hypothe-

sis testing onepts.

As pointed out by many authors, statistial hypothesis tests are onvenient in

the analysis of statistial problems, sine, in ertain ases, well-known optimality

results (like the Neyman-Pearson lemma, for instane) an be applied.

1.1 Contributions of this Paper

In this paper, we onsider the resistane of blok iphers against linear and

di�erential ryptanalysis as a statistial hypothesis testing problem, whih allows

us to improve Vaudenay's asymptoti bounds on the best advantage of any linear

and di�erential distinguishers and to give optimality results on the deision

proesses involved during these attaks.

For this, we reall some well-known statistial onepts in Setion x2. In

Setion x3, we treat linear distinguishers and we derive a Cherno�-like bound,

whih gives the right asymptoti behaviour of the best advantage of suh distin-

guishers. In x4, we do the same for di�erential distinguishers. In x5, we formalize

the notion of sequential distinguisher ; this kind of statistial proedure has been

reognized quite early as potentially useful (in [22, 10℄, for instane). We restate

this by showing, with help of a toy-example (a linear ryptanalysis of 5-rounds

DES), that sequential sampling proedures may divide the needed number of

plaintext-iphertext pairs by a non-negligible fator in ertain statistial rypt-

analysis. In x6, we disuss potential appliations of statistial hypothesis testing

onepts in various attaks, and �nally, we onlude in x7.

1.2 Notation

The following notation will be used throughout this paper. Random variables

1

X;Y; : : : are denoted by apital letters, while realizations x 2 X ; y 2 Y ; : : : of

random variables are denoted by small letters; random vetors X;Y; : : : and

their realizations x;y; : : : are denoted in bold haraters. The fat for a random

variable X to follow a distribution D is denoted X  D, while its probability

funtion is denoted by Pr

X

[x℄. Finally, as usual, \iid" means \independent and

identially distributed".

1

In this paper, we are only dealing with disrete random variables.



2 Statistial Hypothesis Testing

We reall some well-known fats about statistial hypothesis testing, both in the

lassial and in the Bayesian approahes; details an be found in any good book

on statistis (e.g. see [26℄).

2.1 Classial Approah

Let D

0

and D

1

be two di�erent probability distributions de�ned on the same �-

nite set X . In a binary hypothesis testing problem, one is given an element x 2 X

whih was drawn aording either to D

0

or to D

1

and one has to deide whih

is the ase. For this purpose, one de�nes a so-alled deision rule, whih is a

funtion Æ : X ! f0; 1g taking a sample of X as input and de�ning what should

be the guess for eah possible x 2 X . Assoiated to this deision rule are two dif-

ferent types of error probabilities: � , Pr

X

0

[Æ(x) = 1℄ and � , Pr

X

1

[Æ(x) = 0℄.

The deision rule Æ de�nes a partition of X in two subsets whih we denote by A

and A, i.e. A[A = X ; A is alled the aeptane region of Æ. We reall now the

Neyman-Pearson lemma whih derives the shape of the optimal statistial test

Æ between two simple hypotheses, i.e. whih gives the optimal deision region A

(in terms of error probability).

Lemma 1 (Neyman-Pearson). Let X be a random variable drawn aording

to a probability distribution D and let be the deision problem orresponding to

hypotheses X  D

0

and X  D

1

. For � � 0, let A be de�ned by

A ,

�

x 2 X :

Pr

X

0

[x℄

Pr

X

1

[x℄

� �

�

(1)

Let �

�

, Pr

X

0

�

A

�

and �

�

, Pr

X

1

[A℄. Let B be any other deision region with

assoiated probabilities of error � and �. If � � �

�

, then � � �

�

.

Hene, the Neyman-Pearson lemma indiates that the optimum test (regarding

error probabilities) in ase of a binary deision problem is the likelihood-ratio

test. All these onsiderations are summarized in De�nition 1.

De�nition 1 (Optimal Binary Hypothesis Test). To test X  D

0

against

X  D

1

, hoose a onstant � > 0 depending on � and � and de�ne the likelihood

ratio

lr(x) ,

Pr

X

0

[x℄

Pr

X

1

[x℄

(2)

The optimal deision funtion is then de�ned by

Æ

opt

,

�

0 (i:e aept X  D

0

) if lr(x) � �

1 (i:e: aept X  D

1

) if lr(x) < �

(3)

We note that Lemma 1 does not onsider any speial hypothesis on the ob-

served random variableX . In the following, we will assume that we are interested

in taking a deision about the distribution of a random vetorX , (X

1

; : : : ; X

n

)



where X

1

; : : : ; X

n

are iid random variables, i.e. X  D

n

is a random vetor of

n independent samples of the random variable X . This is a typial situation

during a known-plaintext attak.

When dealing with error probabilities, one usually proeeds as follows in the

lassial approah: one of the two possible error probabilities is �xed, and one

minimizes the other error probability. In this ase, Stein's lemma (we refer to [8℄

for more details) gives the best error probability expression. As this approah

laks symmetry, we won't desribe it in more details.

2.2 Bayesian Approah

The other possibility is to follow a Bayesian approah and to assign prior prob-

abilities �

0

and �

1

to both hypotheses, respetively, and osts �

i;j

� 0 to the

possible deisions i 2 f0; 1g and states of nature j 2 f0; 1g. In this ase, we

would like to minimize the expeted ost. If we assign �

0;0

= �

1;1

, 0 and

�

0;1

= �

1;0

, 1, i.e. orret deisions are not penalized, while inorret deisions

are penalized equally, then the optimal Bayesian deision rule is given by

Æ(x) ,

�

0 if �

0

Pr

X

n

0

[x℄ � �

1

Pr

X

n

1

[x℄

1 if �

0

Pr

X

n

0

[x℄ < �

1

Pr

X

n

1

[x℄

(4)

Clearly, the overall error probability P

(n)

e

, �

0

�

(n)

+ �

1

�

(n)

of suh an optimal

Bayesian distinguisher must derease towards zero as the number n of samples

inreases. It turns out that the derease asymptotially approahes an exponen-

tial in the number of samples drawn before the deision, the exponent being

given by the so-alled Cherno� bound (see Theorem 1; in Appendix A, we give

some information-theoreti results justifying this bound, and we refer to [8℄ for

a detailed and omplete treatment).

Theorem 1 (Cherno�). The best probability of error of the Bayesian deision

rule de�ned in (4) satis�es

lim

n!+1

1

n

log

P

(n)

e

2

�n�

= 0 (5)

where � = C(D

0

;D

1

) is the Cherno� information between D

0

and D

1

de�ned by

C(D

0

;D

1

) , � min

0���1

log

 

X

x2X

Pr

X

0

[x℄

�

Pr

X

1

[x℄

1��

!

(6)

Note that the Bayesian error exponent does not depend on the atual value of �

0

and �

1

, as long as they are non-zero: essentially, the e�et of the prior is washed

out for large sample sizes.

3 Linear Distinguishers

In this setion, we onsider the lassial model of a linear distinguisher and we

present several new results derived using tools of statistial hypothesis testing.



3.1 Introdution

A linear distinguisher Æ

lin

is a (possibly omputationally unbounded) Turing

mahine whih an play with an orale 
 implementing a permutation C; Æ

lin

is

bounded in the number n of queries to the orale 
. Furthermore, it uses a linear

harateristi (a;b) whih is a pair of boolean vetors. Algorithm 1 de�nes the

lassial modelization of a linear distinguisher (see [30, 31, 28℄).

1: Parameters: a omplexity n, a harateristi (a;b), an aeptane region A

(n)

2: Input: an orale 
 whih implements a permutation C

3: Initialize a ounter u to 0.

4: for i = 1 : : : n do

5: Pik uniformly at random x and query C(x) to the orale 
.

6: if a � x = b � C(x) then

7: Inrement u

8: end if

9: end for

10: if u 2 A

(n)

then

11: Output 0

12: else

13: Output 1

14: end if

Algorithm 1: Modelization of a linear distinguisher Æ

lin

.

The statistial game is the following. One gives an orale 
 to Algorithm

1, whih is with probability �

0

=

1

2

the permutation C or, with probability

�

1

=

1

2

, a permutation C

�

2

U

C

m

drawn uniformly at random from the set C

m

of all permutations over inputs of size m (C

�

is often refereed as the \Perfet

Cipher"). The goal of Algorithm 1 is to deide whether 
 implements C or C

�

.

One measures the performane of a distinguisher Æ

lin

by the expression

Adv

n

Æ

lin

(C;C

�

) ,

�

�

�

Pr

C

[Æ

lin

(x) = 1℄� Pr

C

�

[Æ

lin

(x) = 1℄

�

�

�

=

�

�

�

2P

(n)

e

� 1

�

�

�

(7)

where x = (x

1

; : : : ; x

n

) is the vetor of the values queried to the orale. The

distinguisher's ore is the aeptane region A

(n)

: it de�nes the set of values

(x

1

; : : : ; x

n

) whih lead to output 0 (i.e. it deides that the orale implements

C) or 1 (i.e. it deides that the orale implements C

�

).

As pointed out by Chabaud and Vaudenay in [6℄, linear ryptanalysis is based

on the quantity

LP

C

(a;b) ,

�

2 � Pr

X

[a �X = b � C(X)℄� 1

�

2

(8)

This value depends of the (�xed) permutation C and of the distribution of plain-

text, whih is usually de�ned to be uniform. Atually, most of the time, a rypt-

analyst does not possess any information about the permutation (i.e. about the



key), so one is more interested in the average LP

C

(a;b) over the permutation

spae C

m

(or, equivalently, over the key spae K); this quantity is denoted

ELP(a;b) , E

�

LP

C

(a;b)

�

(9)

where the expetation is taken over the permutation distribution.

When studying linear distinguishers, one is interested in bounding the advan-

tage of any linear distinguisher in terms of ELP(a;b). We review now a known

result of Vaudenay (see [28℄, for instane).

Theorem 2 (Vaudenay). For any distinguisher in the model of Algorithm 1

BestAdv

n

Æ

lin

(C;C

�

) � 2:78

3

p

n � ELP(a;b) + 2:78

3

r

n

2

m

� 1

(10)

where m is the blok size of the permutation.

In the ase of a pratial linear ryptanalysis of DES [18℄, we have ELP(a;b) �

4 �

�

1:19 � 2

�21

�

2

� 1:288 � 10

�12

and m = 64, whih means that (10) is useful as

long as n � 2

35

. Thus, although of great theoretial interest, we note that (10)

is not tight for large n, or, in other words, does not apture the asymptotial

behavior of the advantage. In the next part, we reonsider this problem in the

statistial hypothesis testing framework and we derive an asymptotially tight

Cherno�-like bound on the best advantage of any linear distinguisher.

3.2 New Asymptoti Bounds

First, we note that if Æ

lin

is optimal, then P

(n)

e

�

1

2

for all n > 0 (otherwise, we

ould modify it suh that it outputs the opposite deision as de�ned in Algorithm

1 and get a smaller error probability). Thus, we have

Adv

n

Æ

lin

(C;C

�

) = 1� 2P

(n)

e

(11)

As outlined before, the ruial part of Æ

lin

is the aeptane region A

(n)

. The

following lemma, whih is a diret appliation of Lemma 1, gives the optimal

A

(n)

opt

, i.e. the region produing the smallest overall error probability. Without

loss of generality, we assume that

E

h

Pr

X

[a �X = b � C(X)℄

i

,

1

2

+ � with � > 0 (12)

where the expetation is taken over the key spae K in ase of a uniformly

distributed plaintext spae X .

Lemma 2. The optimal aeptane region for Æ

lin

is

A

(n)

opt

=

�

u 2 f0; : : : ; ng : u � n �

log

2

(1� 2�)

log

2

(1� 2�)� log

2

(1 + 2�)

�

(13)

where u is de�ned in Algorithm 1.



Proof. Following Lemma 1, the optimal deision region is given by (4) where

�

0

= �

1

=

1

2

. In other words, Æ

lin

must deide that 
 implements C if

�

1

2

+ �

�

u

�

1

2

� �

�

n�u

�

1

2

n

(14)

whih is equivalent to

u � log

2

�

1 + 2�

1� 2�

�

+ n � log

2

(1� 2�) � 0 (15)

The lemma follows if we take into aount that � > 0. �

Note that, for � small, one an approximate (13) with

A

(n)

opt

�

�

u 2 f0; : : : ; ng : u � n �

�

1

2

+

�

2

��

(16)

Using a preise version of Cherno�'s theorem 1, we an bound the advantage of

the best linear distinguisher as follows:

Theorem 3. Let m be the blok size of the involved permutations. For any dis-

tinguisher in the model of Algorithm 1

1�

(n+ 1)

2

n��1

� BestAdv

n

Æ

lin

(C;C

�

) � 1�

1

(n+ 1) � 2

n��1

(17)

where � = C(D

0

;D

1

) is the Cherno� information between D

0

, a binary distribu-

tion having a bias equal to maxf

1

2

m

�1

; �g suh that ELP

C

(a;b) = 4�

2

and the

uniform binary distribution D

1

.

Proof. From this point, X = K , f0; 1g. We modelize by binary random vari-

ables U and V the events whether the ounter u (see lines 6-7 of Algorithm 1) is

inremented or not after an orale response when the orale implements C and

C

�

, respetively:

U ,

�

0 if a � x 6= b � C(x)

1 if a � x = b � C(x)

V ,

�

0 if a � x 6= b � C

�

(x)

1 if a � x = b � C

�

(x)

(18)

We have to distinguish between two ases: if the orale implements C

�

, then

V depends on two random values: the plaintext x 2 X

m

and the permutation,

whih is a permutation drawn uniformly at random in C

m

and is parametered

by a key k 2 K

`

, where ` is the key length; in the seond ase, if the orale

implements C, the key k is �xed and U depends on the plaintext x only. More

preisely,

U :

�

Pr[U = 0℄ ,

1

2

� �

Pr[U = 1℄ ,

1

2

+ �

with � 6= 0 (19)



and

V :

�

Pr[V = 0℄ ,

1

2

� �(K)

Pr[V = 1℄ ,

1

2

+ �(K)

(20)

Here, the �-value of (19) is related to LP

C

(a;b) as

LP

C

(a;b) = 4�

2

(21)

for uniformly distributed plaintexts. We note that we lose information about

�, i.e. its sign. However, this does not play a role during the derivation of the

Cherno� information between the two distributions of interest.

As usually, we will assume that the keys are modelized by a uniformly dis-

tributed random variable on K and that they are statistially independent of the

plaintext. We have

E[�(K)℄ = 0 (22)

where the expetation is taken over the key spae. To summarize, we have to

distinguish between a uniformly distributed binary random variable (when 


implements C

�

) and a biased binary random variable (when 
 implements C).

In order to show the bounds given in Theorem 3, we use a more preise

version of Sanov's Theorem tailored to binary random variables. Let A

(n)

opt

be

the optimal aeptane region for Æ

lin

de�ned in Lemma 2. Let E

�

(n)

2 P

n

be

the set of types (see Appendix A for more information about the method of

types) suh that

E

�

(n)

,

n

x 2 P

n

: D

x

62 A

(n)

opt

o

(23)

when x D

X

n

0

. Similarly,

E

�

(n)

,

n

x 2 P

n

: D

x

2 A

(n)

opt

o

(24)

when x D

X

n

1

. Then,

Pr

X

n

0

[E

�

(n)

℄ =

X

D

X

2E

�

(n)

\P

n

Pr

X

n

0

[T (D

X

)℄ (25)

�

X

D

X

2E

�

(n)

\P

n

2

�nD(D

X

jjX

0

)

(26)

�

X

D

X

2E

�

(n)

\P

n

max

D

X

2E

�

(n)

\P

n

2

�nD(D

X

jjX

0

)

(27)

=

X

D

X

2E

�

(n)

\P

n

2

�nmin

D

X

2E

�

(n)

\P

n

D(D

X

jjX

0

)

(28)

�

X

D

X

2E

�

(n)

\P

n

2

�nmin

D

X

2E

�

(n)

D(D

X

jjX

0

)

(29)

=

X

D

X

2E

�

(n)

\P

n

2

�nD(D

X

� jjX

0

)

(30)

� (n+ 1) � 2

�nD(D

X

� jjX

0

)

(31)



where the last inequality omes from

jP

n

j =

�

n+ jX j � 1

jX j � 1

�

(32)

The omputation for upper bounding Pr

X

n

1

[E

�

(n)

℄ are similar.

For the lower bound, we need a set E

�

(n)

suh that for all large n, we an

�nd a distribution in E

�

(n)

\ P

n

whih is lose to D

X

�

. As E

�

(n)

is the losure

of its interior (thus the interior must be non-empty), then sine

S

n

P

n

is dense

in the set of all distributions, it follows that E

�

(n)

\ P

n

is non-empty for all

n � n

0

for some n

0

. We an then �nd a sequene of distributions D

X

n

suh that

D

X

n

2 E

�

(n)

\ P

n

and D(D

X

n

jjD

X

n

0

)! D(D

X

�

jj

X

n

0

). For eah n � n

0

,

Pr

X

n

0

[E

�

(n)

℄ =

X

D

X

2E

�

(n)

\P

n

Pr

X

n

0

[T (D

X

)℄ (33)

� Pr

X

n

0

[T (D

X

)℄ (34)

�

2

�nD(D

X

n

jjD

X

0

)

n+ 1

(35)

Consequently,

lim inf

1

n

Pr

X

n

0

[E

�

(n)

℄ � lim inf

�

�

log(n+ 1)

n

�D(D

X

n

jjX

0

)

�

(36)

= �D(D

X

�

jjD

X

0

) (37)

The omputations are similar for lower bounding Pr

X

n

1

[E

�

(n)

℄ Combining the

upper bounds derived before and this lower bound, and the omputations of

Appendix A.3 yields Theorem 3. �

Generally, the Cherno� information annot be expressed expliitely, beause one

has to solve a transendental equation. However, in the ase whih interests us,

�(�) , 2

��

� ((

1

2

+ �)

�

+ (

1

2

� �)

�

) and

C(D

0

;D

1

) = �(�

�

) for �

�

=

log

�

�

log(1�2�)

log(1+2�)

�

log

�

1+2�

1�2�

�

(38)

We give now a numerial illustration: for � = 1:19 � 2

�21

(whih is the bias of the

best linear approximation of 14 rounds of DES), we obtain a useful lower bound

only for n � 2

48:2

; unfortunately, even if it aptures the asymptoti exponential

shape of the best advantage urve, it is not pratially useful for \interesting"

values of n; for whih onerns the upper bound, it is useful for all n but it is

not tight: one may give a tighter lower bound using Bernstein's inequality (see

Theorem 4 and [12℄ for a proof). In the following, we will assume that � is small

and thus that one is using (16) as aeptane region.



Theorem 4 (Bernstein's Inequality). Let X

i

be iid disrete random vari-

ables following a Bernoulli law with parameter 0 � p � 1 and let S

n

,

P

i

X

i

.

Then

Pr [S

n

� n(p+ �)℄ � e

�

1

4

n�

2

for � > 0 (39)

This allows to derive in an easy way the following lower bound:

Theorem 5. Let m be the blok size of the involved permutations. For any dis-

tinguisher in the model of Algorithm 1

BestAdv

n

Æ

lin

(C;C

�

) � 1� e

�

n�

2

16

(40)

where � , maxf

1

2

m

�1

; �g suh that ELP

C

(a;b) = 4�

2

.

4 Di�erential Distinguishers

Similarly, one an study di�erential distinguishers with the same tools. A dif-

ferential distinguisher Æ

di�

is a (possibly omputationally unbounded) Turing

mahine whih is able to submit hosen pairs of plaintexts to an orale 
, im-

plementing with probability �

0

=

1

2

a �xed permutation C or, with probability

�

1

=

1

2

, a permutation drawn uniformly at random from the set C

m

of all permu-

tations on m-bit bloks. Although the ryptanalyti settings are quite di�erent

(Æ

di�

an submit hosen pairs of plaintext), in a statistial point of view, the

distinguishing proess is very similar to linear distinguishers. In Algorithm 2,

the lassial modelization of a di�erential distinguisher [30, 31℄ is given.

If we look at Algorithm 2, we note that, although the omplexity n is given in

advane as input and is (impliitly) �xed, the e�etive number of queries to the

orale is merely a random variable. In other words, Æ

di�

does not make use of all

the information that it ould exploit. In fat, we an see the lass of distinguishers

submitting a random number of queries to the orale as a generalization of

the lass of distinguishers submitting a �xed number of queries. We will all

this generalization sequential distinguishers ; this new onept is formalized and

studied in Setion 5.

1: Parameters: a omplexity n, a harateristi (a; b)

2: Input: an orale 
 whih implements a permutation C

3: for i = 1 : : : n do

4: Pik uniformly at random x and query C(x) and C(x+ a) to the orale 
.

5: if C(x+ a) = C(x) + b then

6: Output 0 and stop.

7: end if

8: end for

9: Output 1.

Algorithm 2: Classial modelization of a di�erential distinguisher Æ

di�

.



In order to better understand the statistial deision proesses, we give in Al-

gorithm 3 an \unorthodox" modelization, denoted Æ

0

di�

, whih is very similar to

the linear one. As for linear distinguishers, it is well-known [23℄ that di�erential

1: Parameters: a omplexity n, a harateristi (a; b), an aeptane region A

(n)

2: Input: an orale 
 whih implements a permutation C

3: Initialize a ounter u to 0.

4: for i = 1 : : : n do

5: Pik uniformly at random x and query C(x) and C(x+ a) to the orale 
.

6: if C(x+ a) = C(x) + b then

7: Inrement u

8: end if

9: end for

10: if u 2 A

(n)

then

11: Output 0

12: else

13: Output 1

14: end if

Algorithm 3: Unorthodox modelization of a di�erential distinguisher Æ

0

di�

.

ryptanalysis depends on the quantity DP

C

(a; b) , Pr

X

[C(X + a) = C(X) + b℄,

where the plaintext spae X is uniformly distributed. As this value depends on

the hoie of the ipher (i.e. on the key), one de�nes EDP(a; b) , E

�

DP

C

(a; b)

�

,

where the expetation is taken over the permutation spae. We note that Al-

gorithm 2 outputs 1 if and only if no di�erential event ours. As for linear

distinguishers, and onsidering this time Algorithm 3, one an de�ne the op-

timal aeptane region using Lemma 1 and whih is given by Lemma 3. As

EDP

C

�

(a; b) =

1

2

m

�1

(where m is the blok size of the permutation), and, typ-

ially, DP

C

(a; b) ,

1+�

2

m

�1

with 0 < � � 2

m

� 2, we an note that the optimal

aeptane region will make Æ

di�

output 0 if

�

n

u

��

1 + �

2

m

� 1

�

u

�

1�

1 + �

2

m

� 1

�

n�u

�

�

n

u

��

1

2

m

� 1

�

u

�

2

m

� 2

2

m

� 1

�

n�u

whih gives the following result.

Lemma 3. The optimal aeptane region for Æ

0

di�

is

A

(n)

opt

=

�

u 2 f0; : : : ; ng : u � n �

log(2

m

� 2)� log(2

m

� 2� �)

log((2

m

� 2)(1 + �))� log(2

m

� 2� �)

�

(41)

where u is de�ned in Algorithm 3.

For small �, (41) may be approximated by

A

(n)

opt

�

�

u 2 f0; : : : ; ng : u � n �

�

1

2

m

� 1

+

2

m�1

� 1

(2

m

� 2)(2

m

� 1)

� �

��

(42)

Thus, we have



Corollary 1. Æ

di�

is an optimal di�erential distinguisher submitting n queries

to the orale if and only if (41) is satis�ed for all u 2 N with 1 < u � n and for

all 0 < � � 2

m

� 2.

It is not diÆult to build arti�ially a situation where Algorithm 2 is not optimal:

it is suÆient to take a harateristi (a; b) with DP

C

(a; b) having a very high

probability. In this ase, it is not suÆient for Æ

di�

to wait for only one di�erential

event and to stop, sine if it is unique during the n samplings, it would have been

better to output 1. However, if we have a look at (42), we an note that Algorithm

2 aptures well real-world situations, where exploited di�erential probabilities are

only slightly greater than ideal ones.

A very similar proof of Theorem 3 leads to

Theorem 6. For any distinguisher in the model of Æ

0

di�

,

1�

n+ 1

2

n��1

� BestAdv

n

Æ

0

diff

(C;C

�

) � 1�

1

(n+ 1) � 2

n��1

(43)

where � = C(D

0

;D

1

) is the Cherno� information between D

0

, a binary distri-

bution with Pr

X

0

[X

0

= 0℄ = 1 � Pr

X

0

[X

0

= 1℄ = DP

C

(a; b), and D

1

, a binary

distribution with Pr

X

1

[X

1

= 0℄ = 1� Pr

X

0

[X

1

= 1℄ =

1

2

m

�1

.

Usually, in the ontext of di�erential ryptanalysis, one enounters the onept of

signal-to-noise ratio, whih was used by Biham and Shamir in the papers de�ning

the di�erential ryptanalysis [1{3℄; it is de�ned as being the ratio of probability

of the right (sub-)key being suggested by a right pair and the probability of a

random (sub-)key being suggested by a random pair, given the initial di�erene.

By empirial evidene, they suggested that when this ratio is around 1-2, about

20-40 right pairs are suÆient for a suessful attak, and when this ratio is

higher, even 3-4 right pairs are enough; learly, this is a (impliitly de�ned)

likelihood-ratio test, whih turns out to be optimal in terms of error probabilities.

5 Sequential Distinguishers

In this setion, we formalize the onepts of generi sequential non-adaptive

distinguisher (GSNAD) and of n-limited generi sequential non-adaptive distin-

guisher (n-limited GSNAD). These kinds of distinguishers use sequential sam-

pling proedures as their statistial ore. We note that this idea was used earlier

by Davies and Murphy (see Appendix of [10℄) in an attempt to derease the

omplexity of their attak against DES.

In the Luby-Rako� model [16℄, a non-adaptive attaker (whih may be mod-

elized by an n-limited GNAD as desribed in Algorithm 4) is an in�nitely pow-

erful Turing mahine whih has aess to an orale 
. It aims at distinguishing

a ipher C from the \Perfet Cipher" C

�

by querying 
, and with a limited

number n of inputs. The attaker must �nally take a deision; usually, one is

interested in measuring the ability (i.e. the advantage as de�ned in (7)) to dis-

tinguish C from C

�

for a given, �xed amount n of queries. Clearly, in this model,

one is interested in maximizing the advantage given a �xed number of queries.



In a more \real-life" situation, a ryptanalyst proeeds usually in an inverse

manner: given a �xed suess probability (i.e. a given advantage), she may look

for minimizing the amount of queries to 
, sine suh queries are typially expen-

sive. With this model in head, we an now de�ne a n-limited generi sequential

non-adaptive distinguisher (see Algorithm 5), whih turns out to be more eÆ-

ient in terms of the average number of orale queries than Algorithm 4 given a

�xed advantage. In fat, suh a distinguisher is adaptive regarding the deision

proess.

After having reeived the i-th response from the orale, the distinguisher

ompare the i responses it has at disposal towards an aeptane set A

i

and a

rejetion set B

i

, whih depend on the number of queries and on the (�xed in

advane) advantage, and an then take three di�erent deisions: either it deides

to output \0" or \1" and to stop, or to query one more question to the orale

and to repeat the deision proess, until it has queried n questions. Note that

A

i

� Y

i

and B

i

� Y

i

are disjoint sets for all 1 � i � n and that A

n

[ B

n

= Y

n

.

In statistis, this proess is known as a sequential deision proedure.

We note that Algorithm 2 an be viewed as a sequential di�erential distin-

guisher whih does not take expliitely into aount a deision region, sine it

always outputs 0 as soon as it observes a \di�erential event".

5.1 Sequential Statistial Inferene

We desribe now formally the sequential deision proedure behind Algorithm 5.

Let D be the set of possible deisions.

De�nition 2 (Sequential deision proedure). Let X

1

; X

2

; : : : be random

variables observed sequentially. A sequential deision proedure onsists in:

1. a stopping rule �

n

whih spei�es whether a deision must be taken without

taking any further observation. If at least one observation is taken, this rule

spei�es for every set of observed values (x

1

; : : : ; x

n

), with n � 1, whether to

stop sampling and take a deision out of D or to take another observation

x

n+1

.

2. a deision rule Æ

n

whih spei�es the deision to be taken. If n � 1 observa-

tions have been taken, then one takes an ation Æ

n

(x

1

; : : : ; x

n

) 2 D. One a

deision has been taken, the sampling proess is stopped.

1: Parameters: a omplexity n, an aeptane set A.

2: Input: an orale 
 implementing a permutation C

3: Compute some messages x = (x

1

; : : : ; x

n

).

4: Query y = (C(x

1

); : : : ; C(x

n

)) to 
.

5: if y 2 A then

6: Output 0

7: else

8: Output 1

9: end if

Algorithm 4: A n-limited generi non-adaptive distinguisher (GNAD)



1: Parameters: a omplexity n, aeptane sets A

i

; 1 � i � n and rejetion sets

B

i

; 1 � i � n.

2: Input: an orale 
 implementing a permutation C

3: i 1

4: repeat

5: Selet non-adaptively a message x

i

and get y

i

= C(x

i

).

6: if (y

1

; : : : ; y

i

) 2 A

i

then

7: Output 0 and stop.

8: else if (y

1

; : : : ; y

i

) 2 B

i

then

9: Output 1 and stop.

10: end if

11: i i+ 1

12: until i = n � 1

13: Selet non-adaptively a message x

n

and get y

n

= C(x

n

).

14: if (y

1

; : : : ; y

n

) 2 A

n

then

15: Output 0.

16: else if (y

1

; : : : ; y

n

) 2 B

n

then

17: Output 1.

18: end if

Algorithm 5: A n-limited sequential generi non-adaptive distinguisher

If we onsider Algorithm 5 at the light of this formalism, D = f0; 1g,

Æ

n

(x

1

; : : : ; x

n

) =

�

0 if (x

1

; : : : ; x

n

) 2 A

n

1 if (x

1

; : : : ; x

n

) 2 B

n

(44)

and

�

n

(x

1

; : : : ; x

n

) =

�

ontinue sampling if (x

1

; : : : ; x

n

) 62 A

n

[ B

n

stop sampling if (x

1

; : : : ; x

n

) 2 A

n

[ B

n

(45)

5.2 Sequential Deision Proedures

We have seen that Lemma 1 de�nes the shape of the optimal aeptane region

for binary hypothesis testing. Theoretially, if one is able to ompute the exat

joint probability distribution of the orale's responses when it implements both

iphers, one is able to ompute the optimal aeptane region A for a generi

n-limited distinguisher. Pratially, one should notie that it seems onsider-

ably easier to ompute joint probability distributions when the distinguisher is

non-adaptive, sine one an use some (maybe heuristi) statistial independene

assumptions.

A sequential likelihood-ratio test uses exatly the same proess to de�ne

two types of aeptane regions, denoted A and B, respetively. So, it is always

possible to de�ne a sequential test when one has a lassial test at disposal. In

few words, a sequential test has three alternatives one it has reeived a response

from the orale: either it an onlude for one of both hypotheses, or it an deide

to query more samples. In its simpler de�nition, a sequential ratio test has the



possibility to query as many samples as it is needed to take a deision, given

a �xed error probability. The expeted number of queries required to reah one

of the two possible deision turns out to be less than it would need in order to

make the same deision on the basis of a single �xed-size sample set. Of ourse

it may happen that the sequential proedure will take more queries than the

�xed-size one, but sequential sampling is a de�nitely eonomial proedure.

One may de�ne Algorithm 5, as a trunated sequential test, i.e. one �xes an

upper-bound n on the number of queries; it is still lear that suh a sequential

proedure annot be worse than a �xed-size sampling proedure. In the following,

we state some de�nitions and results about sequential hypothesis tests.

De�nition 3 (Sequential Likelihood-Ratio Test). To test X D

0

against

X D

1

, de�ne two onstants �

up

> �

down

> 0 depending on � and �, and de�ne

the likelihood ratio

lr(x) ,

f

X

1

(x)

f

X

0

(x)

The deision funtion at i-th step is

Æ

opt

,

8

<

:

1 (i:e aept X D

1

) if lr(x

(i)

) � �

up

0 (i:e: aept X D

0

) if lr(x

(i)

) � �

down

; query another sample otherwise

(46)

When the observations are independent and identially distributed, then sequen-

tial likelihood-ratio tests have the following nie property (we refer to [27℄ as an

exellent treatment of sequential proedure and for the proof of the following

three theorems):

Theorem 7. For testing a simple hypothesis against a simple alternative with

independent, identially distributed observations, a sequential probability ratio

test is optimal in the sense of minimizing the expeted sample size among all

tests having no larger error probabilities.

The following results relate error probabilities � and � to �

up

and �

down

, and

give an approximation of the expeted number of samples.

Theorem 8. Let be a sequential likelihood-ratio test with stopping bounds �

up

and �

down

, with �

up

> �

down

and error probabilities 0 < � < 1 and 0 < � < 1,

then

�

down

�

�

1� �

and �

up

�

1� �

�

(47)

The approximation �

down

,

�

1��

and �

up

,

1��

�

is known as \Wald's approxi-

mation". The following theorem gives some redit to this approximation.

Theorem 9. Let us assume we selet for given �; � 2℄0; 1[, where �+� � 1, the

stopping bounds �

0

down

,

�

1��

and �

0

up

,

1��

�

. Then it holds that the sequential

likelihood-ratio test with stopping bounds �

0

down

and �

0

up

has error probabilities �

0

and �

0

where

�

0

�

�

1� �

; �

0

�

�

1� �

and �

0

+ �

0

� �+ � (48)



By taking into aount Wald's approximation, we an ompute approximations

of the expeted number of queries:

E

X

0

[N ℄ �

� log

�

1��

�

�

+ (1� �) log

�

�

1��

�

E

X

1

[log(f

X

0

(x))� log(f

X

0

(x))℄

(49)

and

E

X

1

[N ℄ �

(1� �) log

�

1��

�

�

+ � log

�

�

1��

�

E

X

1

[log(f

X

1

(x))� log(f

X

0

(x))℄

(50)

5.3 A Toy-Example on DES

In order to illustrate advantages of sequential linear distinguishers, we have

implemented a linear ryptanalysis of DES redued to �ve rounds whih uses a

sequential distinguisher for deiding the parity of the linear approximation, i.e.

the parity of the sum of involved key bits.

Using a stati test, we needed 2800 known plaintext-iphertext pairs in order

to get a suess probability of 97 %. Using a sequential strategy and for the same

suess probability, only 1218 samples were neessary on average. We give here

both the stati and the sequential deision rules.

Let S

n

denote the number of times that Matsui's best linear harateristi

[17℄ on 5-rounds DES evaluates to 0, where n is the number of known plaintext-

iphertext pairs at disposal. This linear approximation holds with probability

1

2

+ 0:01907. The stati deision rule is given by

�

Output \key parity = 0" if S

n

�

n

2

Output \key parity = 1" if S

n

<

n

2

(51)

With 2800 known pairs at disposal, the stati rule is suessful in 97% of the

ases.

For � = � , 0:025, Wald's approximation gives �

up

= 48 and �

down

=

1

48

.

The sequential rule is then de�ned by

8

>

>

<

>

>

:

Output \key parity = 1" if S

n

�

n

2

�

log �

up

2 log

(

1+2�

1�2�

)

Output \key parity = 0" if S

n

�

n

2

+

log �

down

2 log

(

1�2�

1+2�

)

Query another sample, otherwise.

(52)

where � = 0:01907. We repeated this experiment 1'000'000 times for 5 di�erent

keys and got the following results:

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Pr[ stati distinguisher suessful ℄ 0.9689 0.9687 0.9684 0.9686 0.9688

Pr[ sequential distinguisher suessful ℄ 0.9686 0.9684 0.9683 0.9682 0.9684

Average number of queries 1218.7 1218.7 1218.3 1219.1 1218.8



6 Links to Other Statistial Attaks

Potential appliations in ryptanalysis of sequential distinguishers are numerous.

As soon as one is able to derive underlying probability distributions, it is possible

to de�ne likelihood-ratios, and thus to use a sequential distinguisher. However,

deriving even approximations of probability distributions may not be a trivial

task in ertain ases.

Furthermore, even if one has the probability distributions in hand, one should

not neglet the amount of omputations neessary to get the information whih

will be fed into the likelihood-ratio.

Under the light of the hypothesis testing paradigm, several known statistial

attaks an be summarized (for whih onerns their deisional part), and thus

potentially analyzed in a simple way. The �

2

statistial test, proposed in [29℄ for

the �rst time and then used in many ryptanalyti ontributions (e.g. see [13,

15, 11, 21℄), is losely related to generalized likelihood-ratio tests.

Indeed, as outlined in Setion x2, likelihood ratio tests are optimal for testing

a simple versus a simple hypothesis. It is possible to develop a generalization of

this test for use in situations in whih the hypotheses are not simple (e.g. one

tests a probability distribution depending of a parameter � 2 !

0

against � 2 !

1

where !

0

and !

1

are disjoint subsets of possible parameters. Suh tests are not

generally optimal, but they are typially non-optimal in situations for whih no

optimal test exists, and they usually perform reasonably well.

It is well-known (see for instane [26℄) that Pearson's �

2

statisti and a gen-

eralized likelihood-ratio test for a multinomial distribution are asymptotially

equivalent. Thus, the underlying statistial deision proesses in linear, di�eren-

tial, statistial, �

2

- and stohasti ryptanalysis are all equivalent in a statistial

point of view: they try to distinguish two di�erent (families of) probability dis-

tributions with help of a generalized likelihood-ratio test.

Another interesting attak is Harpes and Massey's partitioning ryptanaly-

sis [14℄. In suh an attak, one de�nes the imbalane of a random variable as

being a non-uniformity measure, i.e. as measure of distane between a uniform

distribution and the distribution obtained through the partitioning proess. In

[14℄, two di�erent imbalane measures are onsidered, namely the peak imbalane

and the squared Eulidean imbalane: one ould onsider a �

2

-value or, equiva-

lently, a generalized likelihood-ratio value as well (and maybe slightly improve

its performanes). Thus, the statistial problem behind this attak remains the

same.

7 Conlusion

In this paper, we have used the power of some tools proposed by the theory of

statistial tests for onsidering various situations in well-known ryptanalyti at-

taks, like linear and di�erential ryptanalysis; we improve known bounds on the

asymptotial behavior of the best advantage of distinguishers implementing these

attaks. Furthermore, we formalize the onept of \sequential distinguisher" and



we illustrate its potential power in a toy-example. Finally, we disuss the appli-

ation of the statistial tools in a ouple of known attaks; this suggests that

statistial hypothesis testing theory may be a mean to unify, to haraterize and

to analyze most of the known attaks against blok iphers.
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A Statistial Information Theory

In this setion, we reall some well-known results about Csisz�ar and K�orner's

method of types [9℄ and we apply them to derive Cherno�'s information. We

losely follow the organization of Chapter 12 in [8℄.

A.1 Method of Types

The type D

x

(or empirial probability distribution) of a sequene

x = (x

1

; : : : ; x

n

) with x

i

2 X for all i 2 f1; : : : ; ng (53)



of n symbols from a set X = fa

1

; : : : ; a

jX j

g is the relative proportion of our-

renes of eah symbol of X , i.e.

Pr

x

[a℄ ,

N(ajx)

n

8a 2 X (54)

whereN(ajx) is the number of times the symbol a ours in the sequene x 2 X

n

.

We denote by P

n

the set of types with denominator n. If D

P

2 P

n

, then the set

of sequenes of length n and type D

P

is alled the type lass of D

P

, and is noted

T (D

P

), i.e.

T (D

P

) , fx 2 X

n

: D

x

= D

P

g (55)

The essential power of the method of types arises from the following result, whih

shows that the number of types is at most polynomial in n.

Theorem 10.

jP

n

j � (n+ 1)

jX j

(56)

From this point, we will assume that the sequene X

1

; : : : ; X

n

is drawn indepen-

dently and identially distributed aording to a distribution D

P

. All sequenes

with the same type have the same probability, as shown in the following theorem.

Theorem 11. If X

1

; : : : ; X

n

are drawn iid aording to D

P

, then the probability

of x depends only on its type and is given by

Pr

P

n

[x℄ =

n

Y

i=1

Pr

P

[x

i

℄ = 2

�n(H(x)+D(D

x

jjD

P

))

(57)

where H(x) is the entropy

2

of x and D(D

x

jjD

P

) is the Kullbak-Leibler dis-

tane

3

between the distributions D

x

and D

P

.

The following theorem allows to give useful bounds on the size of a type lass.

Theorem 12. For any D

P

2 P

n

,

1

(n+ 1)

jX j

2

nH(D

P

)

� jT (D

P

)j � 2

nH(D

P

)

(58)

With help of Theorem 12, it is possible to prove the following result.

Theorem 13. For any D

P

2 P

n

, and any distribution D

Q

, the probability of

the type lass T (D

P

) under D

Q

n

satis�es
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(n+ 1)

jX j

2

�nD(D

P

jjD

Q

)

� Pr

Q

n
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(59)

2

The entropy of a disrete random variable X  D

X

is de�ned by H(X) ,

�

P

x2X

Pr

X

[x℄ log

2

(Pr

X

[x℄).

3

The Kullbak-Leibler distane between two disrete probability distributions D

P

and

D

Q

is de�ned to be D(D
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jjD

Q

) ,

P

x2X

Pr
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[x℄ log
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A.2 Sanov's Theorem

The method of types and above summarized results an be used to show Sanov's

Theorem (see Theorem 14). We reall �rst some notions of topology. A family

� of subsets of a set X is a topology of ; 2 � , if X 2 � , if any union of sets of

� belongs to � , and if any �nite intersetion of elements of � belongs to � . Sets

that belongs to � are alled open sets, while omplements of open sets are alled

losed sets. The interior of a subset A � X is the union of the open subsets of

A. The losure of A, is the intersetion of all losed sets ontaining A.

Theorem 14 (Sanov). Let X

1

; : : : ; X

n

be n iid random variables distributed

aording D

Q

. Let E � P

n

be a set of probability distributions. Then

Pr

Q

n

[E ℄ = Pr

Q

n

[E \ P

n

℄ � (n+ 1)

jX j
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�nD(D

P

� jjD

Q
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(60)

where

D

P

�

= arg min

D

P

2E

D(D

P

jjD

Q

) (61)

is the distribution in E that is losest to D

Q

in relative entropy. If, in addition,

the set E is the losure of its interior, then

lim

n!+1

1

n

log Pr
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n

[E ℄ = �D(D

P

�

jjD

Q

) (62)

A.3 Cherno�'s Information

We reall now the derivation of the highest ahievable exponent for the probabil-

ity of error of an optimal deision region when sampling n times the same random

variable. From Lemma 1, we know that the optimum test is a likelihood-ratio

test. We an rewrite this ratio lr(x) as

Pr

X

n

0

[x℄

Pr

X

n

1

[x℄

� � () D(D

x

jjD

X

n

1

)�D(D

x

jjD

X

n

0

) �

1

n

log � (63)

or, in other words, it is possible to rewrite the log-likelihood ratio as the di�erene

between th relative entropy distane of the sample type to eah of the two

possible distributions. Let A denote the set on whih hypothesis x  D

X

n

0

is

aepted. Then, sine the set A is onvex, one an use Theorem 14 to show that

the error probability

�

(n)

= Pr

X

n

0

[x 2 A℄ (64)

is essentially determined by the relative entropy of the losest member D

X

�

0

of

A to D
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0
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Similarly,
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1
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= 0 (66)



where �

(n)

= Pr

X

n

1

[x 2 A℄ and D

X

�

1

is the losest element in A to distribution

D

X

1

.
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X
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will result in the type in A that is losest to D

X

1

. Setting up the minimization of

D
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1

subjet to D(D

X

jjD

X

1

)�D(D

X

jjD

X

0

) =

1

n

log � using Lagrange multipliers,

we obtain that the minimizing D

X

is of the form
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where � is hosen so that D(D

X

�

�

jjD

X

0

)�D(D
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�
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jjD

X

1

) =

log �

n

. Furthermore,

from the symmetry of the above equation, we have D

X

�

0

= D

X

�

1

.

We ome bak to our deision problem. In the Bayesian ase, the overall

probability of error is the weighted sum of the two probabilities of error, and we

have
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where D

X

�

has the form of (68). Sine D(D

X
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X
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) inreases with � and
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jjD
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1

) dereases with �, the maximum value of

minfD(D
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is attained when they are equal. So hoosing � suh that

D(D

X

�

jjD

X

0

) = D(D

X

�

jjD

X

1

) , C(D

X

0

;D

X

1

) (71)

yields the highest ahievable exponent for the probability error and is alled the

Cherno�'s information.


