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Abstra
t. In this paper, we 
onsider the statisti
al de
ision pro
esses

behind a linear and a di�erential 
ryptanalysis. By applying te
hniques

and 
on
epts of statisti
al hypothesis testing, we des
ribe pre
isely the

shape of optimal linear and di�erential distinguishers and we improve

known results of Vaudenay 
on
erning their asymptoti
 behaviour. Fur-

thermore, we formalize the 
on
ept of \sequential distinguisher" and we

illustrate potential appli
ations of su
h tools in various statisti
al at-

ta
ks.
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1 Introdu
tion

Histori
ally, statisti
al pro
edures are indisso
iable of 
ryptanalyti
 atta
ks a-

gainst blo
k 
iphers. One of the �rst atta
k exploiting statisti
al 
orrelations in

the 
ore of DES [24℄ is Davies and Murphy's atta
k [10℄. Biham and Shamir's dif-

ferential 
ryptanalysis [1{3℄, Matsui's atta
k against DES [17, 18℄, Vaudenay's

statisti
al and �

2


ryptanalysis [29℄, Harpes and Massey's partitioning 
rypt-

analysis [14℄, and Gilbert-Minier sto
hasti
 
ryptanalysis [21℄ are atta
ks using

statisti
al pro
edures in their 
ore.

To the best of our knowledge, Murphy et al., in an unpublished report [22℄,

proposed for the �rst time a general statisti
al framework for the analysis of

blo
k 
iphers using the te
hnique of likelihood estimation. Other examples 
an

be found in the �eld of 
ryptology: re
ently, Coppersmith, Halevi and Jutla [7℄

have devised a general statisti
al framework for analysing stream 
iphers; they

use the 
on
ept of statisti
al hypothesis testing for systemati
ally distinguishing



a stream 
ipher from a random fun
tion. Other examples (this list being non-

exhaustive) in
lude Maurer's analysis of Simmon's authenti
ation theory [19, 20℄

and Ca
hin's theoreti
al treatment of steganography [4, 5℄.

In a parallel way, some attempts of formalizing resistan
e of blo
k 
iphers

towards 
ryptanalyti
 atta
ks have been proposed: for instan
e, Pornin [25℄ pro-

poses a general 
riterion of resistan
e against the Davies and Murphy atta
k; for

this purpose, he makes use of statisti
al hypothesis testing. Vaudenay, in a se-

quen
e of papers (e.g. [30, 31, 28℄) proposes the de
orrelation theory as a generi


te
hnique for estimating the strength of blo
k 
iphers against various kinds of

atta
ks. In these papers, he notably derives bounds on the best advantage of any

linear and di�erential distinguishers, however without using statisti
al hypothe-

sis testing 
on
epts.

As pointed out by many authors, statisti
al hypothesis tests are 
onvenient in

the analysis of statisti
al problems, sin
e, in 
ertain 
ases, well-known optimality

results (like the Neyman-Pearson lemma, for instan
e) 
an be applied.

1.1 Contributions of this Paper

In this paper, we 
onsider the resistan
e of blo
k 
iphers against linear and

di�erential 
ryptanalysis as a statisti
al hypothesis testing problem, whi
h allows

us to improve Vaudenay's asymptoti
 bounds on the best advantage of any linear

and di�erential distinguishers and to give optimality results on the de
ision

pro
esses involved during these atta
ks.

For this, we re
all some well-known statisti
al 
on
epts in Se
tion x2. In

Se
tion x3, we treat linear distinguishers and we derive a Cherno�-like bound,

whi
h gives the right asymptoti
 behaviour of the best advantage of su
h distin-

guishers. In x4, we do the same for di�erential distinguishers. In x5, we formalize

the notion of sequential distinguisher ; this kind of statisti
al pro
edure has been

re
ognized quite early as potentially useful (in [22, 10℄, for instan
e). We restate

this by showing, with help of a toy-example (a linear 
ryptanalysis of 5-rounds

DES), that sequential sampling pro
edures may divide the needed number of

plaintext-
iphertext pairs by a non-negligible fa
tor in 
ertain statisti
al 
rypt-

analysis. In x6, we dis
uss potential appli
ations of statisti
al hypothesis testing


on
epts in various atta
ks, and �nally, we 
on
lude in x7.

1.2 Notation

The following notation will be used throughout this paper. Random variables

1

X;Y; : : : are denoted by 
apital letters, while realizations x 2 X ; y 2 Y ; : : : of

random variables are denoted by small letters; random ve
tors X;Y; : : : and

their realizations x;y; : : : are denoted in bold 
hara
ters. The fa
t for a random

variable X to follow a distribution D is denoted X  D, while its probability

fun
tion is denoted by Pr

X

[x℄. Finally, as usual, \iid" means \independent and

identi
ally distributed".

1

In this paper, we are only dealing with dis
rete random variables.



2 Statisti
al Hypothesis Testing

We re
all some well-known fa
ts about statisti
al hypothesis testing, both in the


lassi
al and in the Bayesian approa
hes; details 
an be found in any good book

on statisti
s (e.g. see [26℄).

2.1 Classi
al Approa
h

Let D

0

and D

1

be two di�erent probability distributions de�ned on the same �-

nite set X . In a binary hypothesis testing problem, one is given an element x 2 X

whi
h was drawn a

ording either to D

0

or to D

1

and one has to de
ide whi
h

is the 
ase. For this purpose, one de�nes a so-
alled de
ision rule, whi
h is a

fun
tion Æ : X ! f0; 1g taking a sample of X as input and de�ning what should

be the guess for ea
h possible x 2 X . Asso
iated to this de
ision rule are two dif-

ferent types of error probabilities: � , Pr

X

0

[Æ(x) = 1℄ and � , Pr

X

1

[Æ(x) = 0℄.

The de
ision rule Æ de�nes a partition of X in two subsets whi
h we denote by A

and A, i.e. A[A = X ; A is 
alled the a

eptan
e region of Æ. We re
all now the

Neyman-Pearson lemma whi
h derives the shape of the optimal statisti
al test

Æ between two simple hypotheses, i.e. whi
h gives the optimal de
ision region A

(in terms of error probability).

Lemma 1 (Neyman-Pearson). Let X be a random variable drawn a

ording

to a probability distribution D and let be the de
ision problem 
orresponding to

hypotheses X  D

0

and X  D

1

. For � � 0, let A be de�ned by

A ,

�

x 2 X :

Pr

X

0

[x℄

Pr

X

1

[x℄

� �

�

(1)

Let �

�

, Pr

X

0

�

A

�

and �

�

, Pr

X

1

[A℄. Let B be any other de
ision region with

asso
iated probabilities of error � and �. If � � �

�

, then � � �

�

.

Hen
e, the Neyman-Pearson lemma indi
ates that the optimum test (regarding

error probabilities) in 
ase of a binary de
ision problem is the likelihood-ratio

test. All these 
onsiderations are summarized in De�nition 1.

De�nition 1 (Optimal Binary Hypothesis Test). To test X  D

0

against

X  D

1

, 
hoose a 
onstant � > 0 depending on � and � and de�ne the likelihood

ratio

lr(x) ,

Pr

X

0

[x℄

Pr

X

1

[x℄

(2)

The optimal de
ision fun
tion is then de�ned by

Æ

opt

,

�

0 (i:e a

ept X  D

0

) if lr(x) � �

1 (i:e: a

ept X  D

1

) if lr(x) < �

(3)

We note that Lemma 1 does not 
onsider any spe
ial hypothesis on the ob-

served random variableX . In the following, we will assume that we are interested

in taking a de
ision about the distribution of a random ve
torX , (X

1

; : : : ; X

n

)



where X

1

; : : : ; X

n

are iid random variables, i.e. X  D

n

is a random ve
tor of

n independent samples of the random variable X . This is a typi
al situation

during a known-plaintext atta
k.

When dealing with error probabilities, one usually pro
eeds as follows in the


lassi
al approa
h: one of the two possible error probabilities is �xed, and one

minimizes the other error probability. In this 
ase, Stein's lemma (we refer to [8℄

for more details) gives the best error probability expression. As this approa
h

la
ks symmetry, we won't des
ribe it in more details.

2.2 Bayesian Approa
h

The other possibility is to follow a Bayesian approa
h and to assign prior prob-

abilities �

0

and �

1

to both hypotheses, respe
tively, and 
osts �

i;j

� 0 to the

possible de
isions i 2 f0; 1g and states of nature j 2 f0; 1g. In this 
ase, we

would like to minimize the expe
ted 
ost. If we assign �

0;0

= �

1;1

, 0 and

�

0;1

= �

1;0

, 1, i.e. 
orre
t de
isions are not penalized, while in
orre
t de
isions

are penalized equally, then the optimal Bayesian de
ision rule is given by

Æ(x) ,

�

0 if �

0

Pr

X

n

0

[x℄ � �

1

Pr

X

n

1

[x℄

1 if �

0

Pr

X

n

0

[x℄ < �

1

Pr

X

n

1

[x℄

(4)

Clearly, the overall error probability P

(n)

e

, �

0

�

(n)

+ �

1

�

(n)

of su
h an optimal

Bayesian distinguisher must de
rease towards zero as the number n of samples

in
reases. It turns out that the de
rease asymptoti
ally approa
hes an exponen-

tial in the number of samples drawn before the de
ision, the exponent being

given by the so-
alled Cherno� bound (see Theorem 1; in Appendix A, we give

some information-theoreti
 results justifying this bound, and we refer to [8℄ for

a detailed and 
omplete treatment).

Theorem 1 (Cherno�). The best probability of error of the Bayesian de
ision

rule de�ned in (4) satis�es

lim

n!+1

1

n

log

P

(n)

e

2

�n�

= 0 (5)

where � = C(D

0

;D

1

) is the Cherno� information between D

0

and D

1

de�ned by

C(D

0

;D

1

) , � min

0���1

log

 

X

x2X

Pr

X

0

[x℄

�

Pr

X

1

[x℄

1��

!

(6)

Note that the Bayesian error exponent does not depend on the a
tual value of �

0

and �

1

, as long as they are non-zero: essentially, the e�e
t of the prior is washed

out for large sample sizes.

3 Linear Distinguishers

In this se
tion, we 
onsider the 
lassi
al model of a linear distinguisher and we

present several new results derived using tools of statisti
al hypothesis testing.



3.1 Introdu
tion

A linear distinguisher Æ

lin

is a (possibly 
omputationally unbounded) Turing

ma
hine whi
h 
an play with an ora
le 
 implementing a permutation C; Æ

lin

is

bounded in the number n of queries to the ora
le 
. Furthermore, it uses a linear


hara
teristi
 (a;b) whi
h is a pair of boolean ve
tors. Algorithm 1 de�nes the


lassi
al modelization of a linear distinguisher (see [30, 31, 28℄).

1: Parameters: a 
omplexity n, a 
hara
teristi
 (a;b), an a

eptan
e region A

(n)

2: Input: an ora
le 
 whi
h implements a permutation C

3: Initialize a 
ounter u to 0.

4: for i = 1 : : : n do

5: Pi
k uniformly at random x and query C(x) to the ora
le 
.

6: if a � x = b � C(x) then

7: In
rement u

8: end if

9: end for

10: if u 2 A

(n)

then

11: Output 0

12: else

13: Output 1

14: end if

Algorithm 1: Modelization of a linear distinguisher Æ

lin

.

The statisti
al game is the following. One gives an ora
le 
 to Algorithm

1, whi
h is with probability �

0

=

1

2

the permutation C or, with probability

�

1

=

1

2

, a permutation C

�

2

U

C

m

drawn uniformly at random from the set C

m

of all permutations over inputs of size m (C

�

is often refereed as the \Perfe
t

Cipher"). The goal of Algorithm 1 is to de
ide whether 
 implements C or C

�

.

One measures the performan
e of a distinguisher Æ

lin

by the expression

Adv

n

Æ

lin

(C;C

�

) ,

�

�

�

Pr

C

[Æ

lin

(x) = 1℄� Pr

C

�

[Æ

lin

(x) = 1℄

�

�

�

=

�

�

�

2P

(n)

e

� 1

�

�

�

(7)

where x = (x

1

; : : : ; x

n

) is the ve
tor of the values queried to the ora
le. The

distinguisher's 
ore is the a

eptan
e region A

(n)

: it de�nes the set of values

(x

1

; : : : ; x

n

) whi
h lead to output 0 (i.e. it de
ides that the ora
le implements

C) or 1 (i.e. it de
ides that the ora
le implements C

�

).

As pointed out by Chabaud and Vaudenay in [6℄, linear 
ryptanalysis is based

on the quantity

LP

C

(a;b) ,

�

2 � Pr

X

[a �X = b � C(X)℄� 1

�

2

(8)

This value depends of the (�xed) permutation C and of the distribution of plain-

text, whi
h is usually de�ned to be uniform. A
tually, most of the time, a 
rypt-

analyst does not possess any information about the permutation (i.e. about the



key), so one is more interested in the average LP

C

(a;b) over the permutation

spa
e C

m

(or, equivalently, over the key spa
e K); this quantity is denoted

ELP(a;b) , E

�

LP

C

(a;b)

�

(9)

where the expe
tation is taken over the permutation distribution.

When studying linear distinguishers, one is interested in bounding the advan-

tage of any linear distinguisher in terms of ELP(a;b). We review now a known

result of Vaudenay (see [28℄, for instan
e).

Theorem 2 (Vaudenay). For any distinguisher in the model of Algorithm 1

BestAdv

n

Æ

lin

(C;C

�

) � 2:78

3

p

n � ELP(a;b) + 2:78

3

r

n

2

m

� 1

(10)

where m is the blo
k size of the permutation.

In the 
ase of a pra
ti
al linear 
ryptanalysis of DES [18℄, we have ELP(a;b) �

4 �

�

1:19 � 2

�21

�

2

� 1:288 � 10

�12

and m = 64, whi
h means that (10) is useful as

long as n � 2

35

. Thus, although of great theoreti
al interest, we note that (10)

is not tight for large n, or, in other words, does not 
apture the asymptoti
al

behavior of the advantage. In the next part, we re
onsider this problem in the

statisti
al hypothesis testing framework and we derive an asymptoti
ally tight

Cherno�-like bound on the best advantage of any linear distinguisher.

3.2 New Asymptoti
 Bounds

First, we note that if Æ

lin

is optimal, then P

(n)

e

�

1

2

for all n > 0 (otherwise, we


ould modify it su
h that it outputs the opposite de
ision as de�ned in Algorithm

1 and get a smaller error probability). Thus, we have

Adv

n

Æ

lin

(C;C

�

) = 1� 2P

(n)

e

(11)

As outlined before, the 
ru
ial part of Æ

lin

is the a

eptan
e region A

(n)

. The

following lemma, whi
h is a dire
t appli
ation of Lemma 1, gives the optimal

A

(n)

opt

, i.e. the region produ
ing the smallest overall error probability. Without

loss of generality, we assume that

E

h

Pr

X

[a �X = b � C(X)℄

i

,

1

2

+ � with � > 0 (12)

where the expe
tation is taken over the key spa
e K in 
ase of a uniformly

distributed plaintext spa
e X .

Lemma 2. The optimal a

eptan
e region for Æ

lin

is

A

(n)

opt

=

�

u 2 f0; : : : ; ng : u � n �

log

2

(1� 2�)

log

2

(1� 2�)� log

2

(1 + 2�)

�

(13)

where u is de�ned in Algorithm 1.



Proof. Following Lemma 1, the optimal de
ision region is given by (4) where

�

0

= �

1

=

1

2

. In other words, Æ

lin

must de
ide that 
 implements C if

�

1

2

+ �

�

u

�

1

2

� �

�

n�u

�

1

2

n

(14)

whi
h is equivalent to

u � log

2

�

1 + 2�

1� 2�

�

+ n � log

2

(1� 2�) � 0 (15)

The lemma follows if we take into a

ount that � > 0. �

Note that, for � small, one 
an approximate (13) with

A

(n)

opt

�

�

u 2 f0; : : : ; ng : u � n �

�

1

2

+

�

2

��

(16)

Using a pre
ise version of Cherno�'s theorem 1, we 
an bound the advantage of

the best linear distinguisher as follows:

Theorem 3. Let m be the blo
k size of the involved permutations. For any dis-

tinguisher in the model of Algorithm 1

1�

(n+ 1)

2

n��1

� BestAdv

n

Æ

lin

(C;C

�

) � 1�

1

(n+ 1) � 2

n��1

(17)

where � = C(D

0

;D

1

) is the Cherno� information between D

0

, a binary distribu-

tion having a bias equal to maxf

1

2

m

�1

; �g su
h that ELP

C

(a;b) = 4�

2

and the

uniform binary distribution D

1

.

Proof. From this point, X = K , f0; 1g. We modelize by binary random vari-

ables U and V the events whether the 
ounter u (see lines 6-7 of Algorithm 1) is

in
remented or not after an ora
le response when the ora
le implements C and

C

�

, respe
tively:

U ,

�

0 if a � x 6= b � C(x)

1 if a � x = b � C(x)

V ,

�

0 if a � x 6= b � C

�

(x)

1 if a � x = b � C

�

(x)

(18)

We have to distinguish between two 
ases: if the ora
le implements C

�

, then

V depends on two random values: the plaintext x 2 X

m

and the permutation,

whi
h is a permutation drawn uniformly at random in C

m

and is parametered

by a key k 2 K

`

, where ` is the key length; in the se
ond 
ase, if the ora
le

implements C, the key k is �xed and U depends on the plaintext x only. More

pre
isely,

U :

�

Pr[U = 0℄ ,

1

2

� �

Pr[U = 1℄ ,

1

2

+ �

with � 6= 0 (19)



and

V :

�

Pr[V = 0℄ ,

1

2

� �(K)

Pr[V = 1℄ ,

1

2

+ �(K)

(20)

Here, the �-value of (19) is related to LP

C

(a;b) as

LP

C

(a;b) = 4�

2

(21)

for uniformly distributed plaintexts. We note that we lose information about

�, i.e. its sign. However, this does not play a role during the derivation of the

Cherno� information between the two distributions of interest.

As usually, we will assume that the keys are modelized by a uniformly dis-

tributed random variable on K and that they are statisti
ally independent of the

plaintext. We have

E[�(K)℄ = 0 (22)

where the expe
tation is taken over the key spa
e. To summarize, we have to

distinguish between a uniformly distributed binary random variable (when 


implements C

�

) and a biased binary random variable (when 
 implements C).

In order to show the bounds given in Theorem 3, we use a more pre
ise

version of Sanov's Theorem tailored to binary random variables. Let A

(n)

opt

be

the optimal a

eptan
e region for Æ

lin

de�ned in Lemma 2. Let E

�

(n)

2 P

n

be

the set of types (see Appendix A for more information about the method of

types) su
h that

E

�

(n)

,

n

x 2 P

n

: D

x

62 A

(n)

opt

o

(23)

when x D

X

n

0

. Similarly,

E

�

(n)

,

n

x 2 P

n

: D

x

2 A

(n)

opt

o

(24)

when x D

X

n

1

. Then,

Pr

X

n

0

[E

�

(n)

℄ =

X

D

X

2E

�

(n)

\P

n

Pr

X

n

0

[T (D

X

)℄ (25)

�

X

D

X

2E

�

(n)

\P

n

2

�nD(D

X

jjX

0

)

(26)

�

X

D

X

2E

�

(n)

\P

n

max

D

X

2E

�

(n)

\P

n

2

�nD(D

X

jjX

0

)

(27)

=

X

D

X

2E

�

(n)

\P

n

2

�nmin

D

X

2E

�

(n)

\P

n

D(D

X

jjX

0

)

(28)

�

X

D

X

2E

�

(n)

\P

n

2

�nmin

D

X

2E

�

(n)

D(D

X

jjX

0

)

(29)

=

X

D

X

2E

�

(n)

\P

n

2

�nD(D

X

� jjX

0

)

(30)

� (n+ 1) � 2

�nD(D

X

� jjX

0

)

(31)



where the last inequality 
omes from

jP

n

j =

�

n+ jX j � 1

jX j � 1

�

(32)

The 
omputation for upper bounding Pr

X

n

1

[E

�

(n)

℄ are similar.

For the lower bound, we need a set E

�

(n)

su
h that for all large n, we 
an

�nd a distribution in E

�

(n)

\ P

n

whi
h is 
lose to D

X

�

. As E

�

(n)

is the 
losure

of its interior (thus the interior must be non-empty), then sin
e

S

n

P

n

is dense

in the set of all distributions, it follows that E

�

(n)

\ P

n

is non-empty for all

n � n

0

for some n

0

. We 
an then �nd a sequen
e of distributions D

X

n

su
h that

D

X

n

2 E

�

(n)

\ P

n

and D(D

X

n

jjD

X

n

0

)! D(D

X

�

jj

X

n

0

). For ea
h n � n

0

,

Pr

X

n

0

[E

�

(n)

℄ =

X

D

X

2E

�

(n)

\P

n

Pr

X

n

0

[T (D

X

)℄ (33)

� Pr

X

n

0

[T (D

X

)℄ (34)

�

2

�nD(D

X

n

jjD

X

0

)

n+ 1

(35)

Consequently,

lim inf

1

n

Pr

X

n

0

[E

�

(n)

℄ � lim inf

�

�

log(n+ 1)

n

�D(D

X

n

jjX

0

)

�

(36)

= �D(D

X

�

jjD

X

0

) (37)

The 
omputations are similar for lower bounding Pr

X

n

1

[E

�

(n)

℄ Combining the

upper bounds derived before and this lower bound, and the 
omputations of

Appendix A.3 yields Theorem 3. �

Generally, the Cherno� information 
annot be expressed expli
itely, be
ause one

has to solve a trans
endental equation. However, in the 
ase whi
h interests us,

�(�) , 2

��

� ((

1

2

+ �)

�

+ (

1

2

� �)

�

) and

C(D

0

;D

1

) = �(�

�

) for �

�

=

log

�

�

log(1�2�)

log(1+2�)

�

log

�

1+2�

1�2�

�

(38)

We give now a numeri
al illustration: for � = 1:19 � 2

�21

(whi
h is the bias of the

best linear approximation of 14 rounds of DES), we obtain a useful lower bound

only for n � 2

48:2

; unfortunately, even if it 
aptures the asymptoti
 exponential

shape of the best advantage 
urve, it is not pra
ti
ally useful for \interesting"

values of n; for whi
h 
on
erns the upper bound, it is useful for all n but it is

not tight: one may give a tighter lower bound using Bernstein's inequality (see

Theorem 4 and [12℄ for a proof). In the following, we will assume that � is small

and thus that one is using (16) as a

eptan
e region.



Theorem 4 (Bernstein's Inequality). Let X

i

be iid dis
rete random vari-

ables following a Bernoulli law with parameter 0 � p � 1 and let S

n

,

P

i

X

i

.

Then

Pr [S

n

� n(p+ �)℄ � e

�

1

4

n�

2

for � > 0 (39)

This allows to derive in an easy way the following lower bound:

Theorem 5. Let m be the blo
k size of the involved permutations. For any dis-

tinguisher in the model of Algorithm 1

BestAdv

n

Æ

lin

(C;C

�

) � 1� e

�

n�

2

16

(40)

where � , maxf

1

2

m

�1

; �g su
h that ELP

C

(a;b) = 4�

2

.

4 Di�erential Distinguishers

Similarly, one 
an study di�erential distinguishers with the same tools. A dif-

ferential distinguisher Æ

di�

is a (possibly 
omputationally unbounded) Turing

ma
hine whi
h is able to submit 
hosen pairs of plaintexts to an ora
le 
, im-

plementing with probability �

0

=

1

2

a �xed permutation C or, with probability

�

1

=

1

2

, a permutation drawn uniformly at random from the set C

m

of all permu-

tations on m-bit blo
ks. Although the 
ryptanalyti
 settings are quite di�erent

(Æ

di�


an submit 
hosen pairs of plaintext), in a statisti
al point of view, the

distinguishing pro
ess is very similar to linear distinguishers. In Algorithm 2,

the 
lassi
al modelization of a di�erential distinguisher [30, 31℄ is given.

If we look at Algorithm 2, we note that, although the 
omplexity n is given in

advan
e as input and is (impli
itly) �xed, the e�e
tive number of queries to the

ora
le is merely a random variable. In other words, Æ

di�

does not make use of all

the information that it 
ould exploit. In fa
t, we 
an see the 
lass of distinguishers

submitting a random number of queries to the ora
le as a generalization of

the 
lass of distinguishers submitting a �xed number of queries. We will 
all

this generalization sequential distinguishers ; this new 
on
ept is formalized and

studied in Se
tion 5.

1: Parameters: a 
omplexity n, a 
hara
teristi
 (a; b)

2: Input: an ora
le 
 whi
h implements a permutation C

3: for i = 1 : : : n do

4: Pi
k uniformly at random x and query C(x) and C(x+ a) to the ora
le 
.

5: if C(x+ a) = C(x) + b then

6: Output 0 and stop.

7: end if

8: end for

9: Output 1.

Algorithm 2: Classi
al modelization of a di�erential distinguisher Æ

di�

.



In order to better understand the statisti
al de
ision pro
esses, we give in Al-

gorithm 3 an \unorthodox" modelization, denoted Æ

0

di�

, whi
h is very similar to

the linear one. As for linear distinguishers, it is well-known [23℄ that di�erential

1: Parameters: a 
omplexity n, a 
hara
teristi
 (a; b), an a

eptan
e region A

(n)

2: Input: an ora
le 
 whi
h implements a permutation C

3: Initialize a 
ounter u to 0.

4: for i = 1 : : : n do

5: Pi
k uniformly at random x and query C(x) and C(x+ a) to the ora
le 
.

6: if C(x+ a) = C(x) + b then

7: In
rement u

8: end if

9: end for

10: if u 2 A

(n)

then

11: Output 0

12: else

13: Output 1

14: end if

Algorithm 3: Unorthodox modelization of a di�erential distinguisher Æ

0

di�

.


ryptanalysis depends on the quantity DP

C

(a; b) , Pr

X

[C(X + a) = C(X) + b℄,

where the plaintext spa
e X is uniformly distributed. As this value depends on

the 
hoi
e of the 
ipher (i.e. on the key), one de�nes EDP(a; b) , E

�

DP

C

(a; b)

�

,

where the expe
tation is taken over the permutation spa
e. We note that Al-

gorithm 2 outputs 1 if and only if no di�erential event o

urs. As for linear

distinguishers, and 
onsidering this time Algorithm 3, one 
an de�ne the op-

timal a

eptan
e region using Lemma 1 and whi
h is given by Lemma 3. As

EDP

C

�

(a; b) =

1

2

m

�1

(where m is the blo
k size of the permutation), and, typ-

i
ally, DP

C

(a; b) ,

1+�

2

m

�1

with 0 < � � 2

m

� 2, we 
an note that the optimal

a

eptan
e region will make Æ

di�

output 0 if

�

n

u

��

1 + �

2

m

� 1

�

u

�

1�

1 + �

2

m

� 1

�

n�u

�

�

n

u

��

1

2

m

� 1

�

u

�

2

m

� 2

2

m

� 1

�

n�u

whi
h gives the following result.

Lemma 3. The optimal a

eptan
e region for Æ

0

di�

is

A

(n)

opt

=

�

u 2 f0; : : : ; ng : u � n �

log(2

m

� 2)� log(2

m

� 2� �)

log((2

m

� 2)(1 + �))� log(2

m

� 2� �)

�

(41)

where u is de�ned in Algorithm 3.

For small �, (41) may be approximated by

A

(n)

opt

�

�

u 2 f0; : : : ; ng : u � n �

�

1

2

m

� 1

+

2

m�1

� 1

(2

m

� 2)(2

m

� 1)

� �

��

(42)

Thus, we have



Corollary 1. Æ

di�

is an optimal di�erential distinguisher submitting n queries

to the ora
le if and only if (41) is satis�ed for all u 2 N with 1 < u � n and for

all 0 < � � 2

m

� 2.

It is not diÆ
ult to build arti�
ially a situation where Algorithm 2 is not optimal:

it is suÆ
ient to take a 
hara
teristi
 (a; b) with DP

C

(a; b) having a very high

probability. In this 
ase, it is not suÆ
ient for Æ

di�

to wait for only one di�erential

event and to stop, sin
e if it is unique during the n samplings, it would have been

better to output 1. However, if we have a look at (42), we 
an note that Algorithm

2 
aptures well real-world situations, where exploited di�erential probabilities are

only slightly greater than ideal ones.

A very similar proof of Theorem 3 leads to

Theorem 6. For any distinguisher in the model of Æ

0

di�

,

1�

n+ 1

2

n��1

� BestAdv

n

Æ

0

diff

(C;C

�

) � 1�

1

(n+ 1) � 2

n��1

(43)

where � = C(D

0

;D

1

) is the Cherno� information between D

0

, a binary distri-

bution with Pr

X

0

[X

0

= 0℄ = 1 � Pr

X

0

[X

0

= 1℄ = DP

C

(a; b), and D

1

, a binary

distribution with Pr

X

1

[X

1

= 0℄ = 1� Pr

X

0

[X

1

= 1℄ =

1

2

m

�1

.

Usually, in the 
ontext of di�erential 
ryptanalysis, one en
ounters the 
on
ept of

signal-to-noise ratio, whi
h was used by Biham and Shamir in the papers de�ning

the di�erential 
ryptanalysis [1{3℄; it is de�ned as being the ratio of probability

of the right (sub-)key being suggested by a right pair and the probability of a

random (sub-)key being suggested by a random pair, given the initial di�eren
e.

By empiri
al eviden
e, they suggested that when this ratio is around 1-2, about

20-40 right pairs are suÆ
ient for a su

essful atta
k, and when this ratio is

higher, even 3-4 right pairs are enough; 
learly, this is a (impli
itly de�ned)

likelihood-ratio test, whi
h turns out to be optimal in terms of error probabilities.

5 Sequential Distinguishers

In this se
tion, we formalize the 
on
epts of generi
 sequential non-adaptive

distinguisher (GSNAD) and of n-limited generi
 sequential non-adaptive distin-

guisher (n-limited GSNAD). These kinds of distinguishers use sequential sam-

pling pro
edures as their statisti
al 
ore. We note that this idea was used earlier

by Davies and Murphy (see Appendix of [10℄) in an attempt to de
rease the


omplexity of their atta
k against DES.

In the Luby-Ra
ko� model [16℄, a non-adaptive atta
ker (whi
h may be mod-

elized by an n-limited GNAD as des
ribed in Algorithm 4) is an in�nitely pow-

erful Turing ma
hine whi
h has a

ess to an ora
le 
. It aims at distinguishing

a 
ipher C from the \Perfe
t Cipher" C

�

by querying 
, and with a limited

number n of inputs. The atta
ker must �nally take a de
ision; usually, one is

interested in measuring the ability (i.e. the advantage as de�ned in (7)) to dis-

tinguish C from C

�

for a given, �xed amount n of queries. Clearly, in this model,

one is interested in maximizing the advantage given a �xed number of queries.



In a more \real-life" situation, a 
ryptanalyst pro
eeds usually in an inverse

manner: given a �xed su

ess probability (i.e. a given advantage), she may look

for minimizing the amount of queries to 
, sin
e su
h queries are typi
ally expen-

sive. With this model in head, we 
an now de�ne a n-limited generi
 sequential

non-adaptive distinguisher (see Algorithm 5), whi
h turns out to be more eÆ-


ient in terms of the average number of ora
le queries than Algorithm 4 given a

�xed advantage. In fa
t, su
h a distinguisher is adaptive regarding the de
ision

pro
ess.

After having re
eived the i-th response from the ora
le, the distinguisher


ompare the i responses it has at disposal towards an a

eptan
e set A

i

and a

reje
tion set B

i

, whi
h depend on the number of queries and on the (�xed in

advan
e) advantage, and 
an then take three di�erent de
isions: either it de
ides

to output \0" or \1" and to stop, or to query one more question to the ora
le

and to repeat the de
ision pro
ess, until it has queried n questions. Note that

A

i

� Y

i

and B

i

� Y

i

are disjoint sets for all 1 � i � n and that A

n

[ B

n

= Y

n

.

In statisti
s, this pro
ess is known as a sequential de
ision pro
edure.

We note that Algorithm 2 
an be viewed as a sequential di�erential distin-

guisher whi
h does not take expli
itely into a

ount a de
ision region, sin
e it

always outputs 0 as soon as it observes a \di�erential event".

5.1 Sequential Statisti
al Inferen
e

We des
ribe now formally the sequential de
ision pro
edure behind Algorithm 5.

Let D be the set of possible de
isions.

De�nition 2 (Sequential de
ision pro
edure). Let X

1

; X

2

; : : : be random

variables observed sequentially. A sequential de
ision pro
edure 
onsists in:

1. a stopping rule �

n

whi
h spe
i�es whether a de
ision must be taken without

taking any further observation. If at least one observation is taken, this rule

spe
i�es for every set of observed values (x

1

; : : : ; x

n

), with n � 1, whether to

stop sampling and take a de
ision out of D or to take another observation

x

n+1

.

2. a de
ision rule Æ

n

whi
h spe
i�es the de
ision to be taken. If n � 1 observa-

tions have been taken, then one takes an a
tion Æ

n

(x

1

; : : : ; x

n

) 2 D. On
e a

de
ision has been taken, the sampling pro
ess is stopped.

1: Parameters: a 
omplexity n, an a

eptan
e set A.

2: Input: an ora
le 
 implementing a permutation C

3: Compute some messages x = (x

1

; : : : ; x

n

).

4: Query y = (C(x

1

); : : : ; C(x

n

)) to 
.

5: if y 2 A then

6: Output 0

7: else

8: Output 1

9: end if

Algorithm 4: A n-limited generi
 non-adaptive distinguisher (GNAD)



1: Parameters: a 
omplexity n, a

eptan
e sets A

i

; 1 � i � n and reje
tion sets

B

i

; 1 � i � n.

2: Input: an ora
le 
 implementing a permutation C

3: i 1

4: repeat

5: Sele
t non-adaptively a message x

i

and get y

i

= C(x

i

).

6: if (y

1

; : : : ; y

i

) 2 A

i

then

7: Output 0 and stop.

8: else if (y

1

; : : : ; y

i

) 2 B

i

then

9: Output 1 and stop.

10: end if

11: i i+ 1

12: until i = n � 1

13: Sele
t non-adaptively a message x

n

and get y

n

= C(x

n

).

14: if (y

1

; : : : ; y

n

) 2 A

n

then

15: Output 0.

16: else if (y

1

; : : : ; y

n

) 2 B

n

then

17: Output 1.

18: end if

Algorithm 5: A n-limited sequential generi
 non-adaptive distinguisher

If we 
onsider Algorithm 5 at the light of this formalism, D = f0; 1g,

Æ

n

(x

1

; : : : ; x

n

) =

�

0 if (x

1

; : : : ; x

n

) 2 A

n

1 if (x

1

; : : : ; x

n

) 2 B

n

(44)

and

�

n

(x

1

; : : : ; x

n

) =

�


ontinue sampling if (x

1

; : : : ; x

n

) 62 A

n

[ B

n

stop sampling if (x

1

; : : : ; x

n

) 2 A

n

[ B

n

(45)

5.2 Sequential De
ision Pro
edures

We have seen that Lemma 1 de�nes the shape of the optimal a

eptan
e region

for binary hypothesis testing. Theoreti
ally, if one is able to 
ompute the exa
t

joint probability distribution of the ora
le's responses when it implements both


iphers, one is able to 
ompute the optimal a

eptan
e region A for a generi


n-limited distinguisher. Pra
ti
ally, one should noti
e that it seems 
onsider-

ably easier to 
ompute joint probability distributions when the distinguisher is

non-adaptive, sin
e one 
an use some (maybe heuristi
) statisti
al independen
e

assumptions.

A sequential likelihood-ratio test uses exa
tly the same pro
ess to de�ne

two types of a

eptan
e regions, denoted A and B, respe
tively. So, it is always

possible to de�ne a sequential test when one has a 
lassi
al test at disposal. In

few words, a sequential test has three alternatives on
e it has re
eived a response

from the ora
le: either it 
an 
on
lude for one of both hypotheses, or it 
an de
ide

to query more samples. In its simpler de�nition, a sequential ratio test has the



possibility to query as many samples as it is needed to take a de
ision, given

a �xed error probability. The expe
ted number of queries required to rea
h one

of the two possible de
ision turns out to be less than it would need in order to

make the same de
ision on the basis of a single �xed-size sample set. Of 
ourse

it may happen that the sequential pro
edure will take more queries than the

�xed-size one, but sequential sampling is a de�nitely e
onomi
al pro
edure.

One may de�ne Algorithm 5, as a trun
ated sequential test, i.e. one �xes an

upper-bound n on the number of queries; it is still 
lear that su
h a sequential

pro
edure 
annot be worse than a �xed-size sampling pro
edure. In the following,

we state some de�nitions and results about sequential hypothesis tests.

De�nition 3 (Sequential Likelihood-Ratio Test). To test X D

0

against

X D

1

, de�ne two 
onstants �

up

> �

down

> 0 depending on � and �, and de�ne

the likelihood ratio

lr(x) ,

f

X

1

(x)

f

X

0

(x)

The de
ision fun
tion at i-th step is

Æ

opt

,

8

<

:

1 (i:e a

ept X D

1

) if lr(x

(i)

) � �

up

0 (i:e: a

ept X D

0

) if lr(x

(i)

) � �

down

; query another sample otherwise

(46)

When the observations are independent and identi
ally distributed, then sequen-

tial likelihood-ratio tests have the following ni
e property (we refer to [27℄ as an

ex
ellent treatment of sequential pro
edure and for the proof of the following

three theorems):

Theorem 7. For testing a simple hypothesis against a simple alternative with

independent, identi
ally distributed observations, a sequential probability ratio

test is optimal in the sense of minimizing the expe
ted sample size among all

tests having no larger error probabilities.

The following results relate error probabilities � and � to �

up

and �

down

, and

give an approximation of the expe
ted number of samples.

Theorem 8. Let be a sequential likelihood-ratio test with stopping bounds �

up

and �

down

, with �

up

> �

down

and error probabilities 0 < � < 1 and 0 < � < 1,

then

�

down

�

�

1� �

and �

up

�

1� �

�

(47)

The approximation �

down

,

�

1��

and �

up

,

1��

�

is known as \Wald's approxi-

mation". The following theorem gives some 
redit to this approximation.

Theorem 9. Let us assume we sele
t for given �; � 2℄0; 1[, where �+� � 1, the

stopping bounds �

0

down

,

�

1��

and �

0

up

,

1��

�

. Then it holds that the sequential

likelihood-ratio test with stopping bounds �

0

down

and �

0

up

has error probabilities �

0

and �

0

where

�

0

�

�

1� �

; �

0

�

�

1� �

and �

0

+ �

0

� �+ � (48)



By taking into a

ount Wald's approximation, we 
an 
ompute approximations

of the expe
ted number of queries:

E

X

0

[N ℄ �

� log

�

1��

�

�

+ (1� �) log

�

�

1��

�

E

X

1

[log(f

X

0

(x))� log(f

X

0

(x))℄

(49)

and

E

X

1

[N ℄ �

(1� �) log

�

1��

�

�

+ � log

�

�

1��

�

E

X

1

[log(f

X

1

(x))� log(f

X

0

(x))℄

(50)

5.3 A Toy-Example on DES

In order to illustrate advantages of sequential linear distinguishers, we have

implemented a linear 
ryptanalysis of DES redu
ed to �ve rounds whi
h uses a

sequential distinguisher for de
iding the parity of the linear approximation, i.e.

the parity of the sum of involved key bits.

Using a stati
 test, we needed 2800 known plaintext-
iphertext pairs in order

to get a su

ess probability of 97 %. Using a sequential strategy and for the same

su

ess probability, only 1218 samples were ne
essary on average. We give here

both the stati
 and the sequential de
ision rules.

Let S

n

denote the number of times that Matsui's best linear 
hara
teristi


[17℄ on 5-rounds DES evaluates to 0, where n is the number of known plaintext-


iphertext pairs at disposal. This linear approximation holds with probability

1

2

+ 0:01907. The stati
 de
ision rule is given by

�

Output \key parity = 0" if S

n

�

n

2

Output \key parity = 1" if S

n

<

n

2

(51)

With 2800 known pairs at disposal, the stati
 rule is su

essful in 97% of the


ases.

For � = � , 0:025, Wald's approximation gives �

up

= 48 and �

down

=

1

48

.

The sequential rule is then de�ned by

8

>

>

<

>

>

:

Output \key parity = 1" if S

n

�

n

2

�

log �

up

2 log

(

1+2�

1�2�

)

Output \key parity = 0" if S

n

�

n

2

+

log �

down

2 log

(

1�2�

1+2�

)

Query another sample, otherwise.

(52)

where � = 0:01907. We repeated this experiment 1'000'000 times for 5 di�erent

keys and got the following results:

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Pr[ stati
 distinguisher su

essful ℄ 0.9689 0.9687 0.9684 0.9686 0.9688

Pr[ sequential distinguisher su

essful ℄ 0.9686 0.9684 0.9683 0.9682 0.9684

Average number of queries 1218.7 1218.7 1218.3 1219.1 1218.8



6 Links to Other Statisti
al Atta
ks

Potential appli
ations in 
ryptanalysis of sequential distinguishers are numerous.

As soon as one is able to derive underlying probability distributions, it is possible

to de�ne likelihood-ratios, and thus to use a sequential distinguisher. However,

deriving even approximations of probability distributions may not be a trivial

task in 
ertain 
ases.

Furthermore, even if one has the probability distributions in hand, one should

not negle
t the amount of 
omputations ne
essary to get the information whi
h

will be fed into the likelihood-ratio.

Under the light of the hypothesis testing paradigm, several known statisti
al

atta
ks 
an be summarized (for whi
h 
on
erns their de
isional part), and thus

potentially analyzed in a simple way. The �

2

statisti
al test, proposed in [29℄ for

the �rst time and then used in many 
ryptanalyti
 
ontributions (e.g. see [13,

15, 11, 21℄), is 
losely related to generalized likelihood-ratio tests.

Indeed, as outlined in Se
tion x2, likelihood ratio tests are optimal for testing

a simple versus a simple hypothesis. It is possible to develop a generalization of

this test for use in situations in whi
h the hypotheses are not simple (e.g. one

tests a probability distribution depending of a parameter � 2 !

0

against � 2 !

1

where !

0

and !

1

are disjoint subsets of possible parameters. Su
h tests are not

generally optimal, but they are typi
ally non-optimal in situations for whi
h no

optimal test exists, and they usually perform reasonably well.

It is well-known (see for instan
e [26℄) that Pearson's �

2

statisti
 and a gen-

eralized likelihood-ratio test for a multinomial distribution are asymptoti
ally

equivalent. Thus, the underlying statisti
al de
ision pro
esses in linear, di�eren-

tial, statisti
al, �

2

- and sto
hasti
 
ryptanalysis are all equivalent in a statisti
al

point of view: they try to distinguish two di�erent (families of) probability dis-

tributions with help of a generalized likelihood-ratio test.

Another interesting atta
k is Harpes and Massey's partitioning 
ryptanaly-

sis [14℄. In su
h an atta
k, one de�nes the imbalan
e of a random variable as

being a non-uniformity measure, i.e. as measure of distan
e between a uniform

distribution and the distribution obtained through the partitioning pro
ess. In

[14℄, two di�erent imbalan
e measures are 
onsidered, namely the peak imbalan
e

and the squared Eu
lidean imbalan
e: one 
ould 
onsider a �

2

-value or, equiva-

lently, a generalized likelihood-ratio value as well (and maybe slightly improve

its performan
es). Thus, the statisti
al problem behind this atta
k remains the

same.

7 Con
lusion

In this paper, we have used the power of some tools proposed by the theory of

statisti
al tests for 
onsidering various situations in well-known 
ryptanalyti
 at-

ta
ks, like linear and di�erential 
ryptanalysis; we improve known bounds on the

asymptoti
al behavior of the best advantage of distinguishers implementing these

atta
ks. Furthermore, we formalize the 
on
ept of \sequential distinguisher" and



we illustrate its potential power in a toy-example. Finally, we dis
uss the appli-


ation of the statisti
al tools in a 
ouple of known atta
ks; this suggests that

statisti
al hypothesis testing theory may be a mean to unify, to 
hara
terize and

to analyze most of the known atta
ks against blo
k 
iphers.
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A Statisti
al Information Theory

In this se
tion, we re
all some well-known results about Csisz�ar and K�orner's

method of types [9℄ and we apply them to derive Cherno�'s information. We


losely follow the organization of Chapter 12 in [8℄.

A.1 Method of Types

The type D

x

(or empiri
al probability distribution) of a sequen
e

x = (x

1

; : : : ; x

n

) with x

i

2 X for all i 2 f1; : : : ; ng (53)



of n symbols from a set X = fa

1

; : : : ; a

jX j

g is the relative proportion of o

ur-

ren
es of ea
h symbol of X , i.e.

Pr

x

[a℄ ,

N(ajx)

n

8a 2 X (54)

whereN(ajx) is the number of times the symbol a o

urs in the sequen
e x 2 X

n

.

We denote by P

n

the set of types with denominator n. If D

P

2 P

n

, then the set

of sequen
es of length n and type D

P

is 
alled the type 
lass of D

P

, and is noted

T (D

P

), i.e.

T (D

P

) , fx 2 X

n

: D

x

= D

P

g (55)

The essential power of the method of types arises from the following result, whi
h

shows that the number of types is at most polynomial in n.

Theorem 10.

jP

n

j � (n+ 1)

jX j

(56)

From this point, we will assume that the sequen
e X

1

; : : : ; X

n

is drawn indepen-

dently and identi
ally distributed a

ording to a distribution D

P

. All sequen
es

with the same type have the same probability, as shown in the following theorem.

Theorem 11. If X

1

; : : : ; X

n

are drawn iid a

ording to D

P

, then the probability

of x depends only on its type and is given by

Pr

P

n

[x℄ =

n

Y

i=1

Pr

P

[x

i

℄ = 2

�n(H(x)+D(D

x

jjD

P

))

(57)

where H(x) is the entropy

2

of x and D(D

x

jjD

P

) is the Kullba
k-Leibler dis-

tan
e

3

between the distributions D

x

and D

P

.

The following theorem allows to give useful bounds on the size of a type 
lass.

Theorem 12. For any D

P

2 P

n

,

1

(n+ 1)

jX j

2

nH(D

P

)

� jT (D

P

)j � 2

nH(D

P

)

(58)

With help of Theorem 12, it is possible to prove the following result.

Theorem 13. For any D

P

2 P

n

, and any distribution D

Q

, the probability of

the type 
lass T (D

P

) under D

Q

n

satis�es

1

(n+ 1)

jX j

2

�nD(D

P

jjD

Q

)

� Pr

Q

n

[T (D

P

)℄ � 2

�nD(D

P

jjD

Q

)

(59)

2

The entropy of a dis
rete random variable X  D

X

is de�ned by H(X) ,

�

P

x2X

Pr

X

[x℄ log

2

(Pr

X

[x℄).

3

The Kullba
k-Leibler distan
e between two dis
rete probability distributions D

P

and

D

Q

is de�ned to be D(D

P

jjD

Q

) ,

P

x2X

Pr

P

[x℄ log

2

�

Pr

P

[x℄

Pr

Q

[x℄

�

.



A.2 Sanov's Theorem

The method of types and above summarized results 
an be used to show Sanov's

Theorem (see Theorem 14). We re
all �rst some notions of topology. A family

� of subsets of a set X is a topology of ; 2 � , if X 2 � , if any union of sets of

� belongs to � , and if any �nite interse
tion of elements of � belongs to � . Sets

that belongs to � are 
alled open sets, while 
omplements of open sets are 
alled


losed sets. The interior of a subset A � X is the union of the open subsets of

A. The 
losure of A, is the interse
tion of all 
losed sets 
ontaining A.

Theorem 14 (Sanov). Let X

1

; : : : ; X

n

be n iid random variables distributed

a

ording D

Q

. Let E � P

n

be a set of probability distributions. Then

Pr

Q

n

[E ℄ = Pr

Q

n

[E \ P

n

℄ � (n+ 1)

jX j

2

�nD(D

P

� jjD

Q

)

(60)

where

D

P

�

= arg min

D

P

2E

D(D

P

jjD

Q

) (61)

is the distribution in E that is 
losest to D

Q

in relative entropy. If, in addition,

the set E is the 
losure of its interior, then

lim

n!+1

1

n

log Pr

Q

n

[E ℄ = �D(D

P

�

jjD

Q

) (62)

A.3 Cherno�'s Information

We re
all now the derivation of the highest a
hievable exponent for the probabil-

ity of error of an optimal de
ision region when sampling n times the same random

variable. From Lemma 1, we know that the optimum test is a likelihood-ratio

test. We 
an rewrite this ratio lr(x) as

Pr

X

n

0

[x℄

Pr

X

n

1

[x℄

� � () D(D

x

jjD

X

n

1

)�D(D

x

jjD

X

n

0

) �

1

n

log � (63)

or, in other words, it is possible to rewrite the log-likelihood ratio as the di�eren
e

between th relative entropy distan
e of the sample type to ea
h of the two

possible distributions. Let A denote the set on whi
h hypothesis x  D

X

n

0

is

a

epted. Then, sin
e the set A is 
onvex, one 
an use Theorem 14 to show that

the error probability

�

(n)

= Pr

X

n

0

[x 2 A℄ (64)

is essentially determined by the relative entropy of the 
losest member D

X

�

0

of

A to D

X

0

:

lim

n!1

1

n

log

�

(n)

2

�nD(D

X

�

0

jjD

X

0

)

= 0 (65)

Similarly,

lim

n!1

1

n

log

�

(n)

2

�nD(D

X

�

1

jjD

X

1

)

= 0 (66)



where �

(n)

= Pr

X

n

1

[x 2 A℄ and D

X

�

1

is the 
losest element in A to distribution

D

X

1

.

Now, minimizing D(D

X

jjD

X

1

) subje
t to the 
onstraint

D(D

X

jjD

X

1

)�D(D

X

jjD

X

0

) �

1

n

log � (67)

will result in the type in A that is 
losest to D

X

1

. Setting up the minimization of

D

X

1

subje
t to D(D

X

jjD

X

1

)�D(D

X

jjD

X

0

) =

1

n

log � using Lagrange multipliers,

we obtain that the minimizing D

X

is of the form

Pr

X

�

1

[x℄ , Pr

�

�

[x℄ =

Pr

X

0

[x℄

�

Pr

X

1

[x℄

1��

P

a2X

Pr

X

0

[a℄

�

Pr

X

1

[a℄

1��

(68)

where � is 
hosen so that D(D

X

�

�

jjD

X

0

)�D(D

X

�

�

jjD

X

1

) =

log �

n

. Furthermore,

from the symmetry of the above equation, we have D

X

�

0

= D

X

�

1

.

We 
ome ba
k to our de
ision problem. In the Bayesian 
ase, the overall

probability of error is the weighted sum of the two probabilities of error, and we

have

lim

n!+1

1

n

log

�

0

�

(n)

+ �

1

�

(n)

2

�nminfD(D

X

�

jjD

X

0

);D(D

X

�

jjD

X

1

)g

(69)

where D

X

�

has the form of (68). Sin
e D(D

X

�

jjD

X

0

) in
reases with � and

D(D

X

�

jjD

X

1

) de
reases with �, the maximum value of

minfD(D

X

�

jjD

X

0

); D(D

X

�

jjD

X

1

)g (70)

is attained when they are equal. So 
hoosing � su
h that

D(D

X

�

jjD

X

0

) = D(D

X

�

jjD

X

1

) , C(D

X

0

;D

X

1

) (71)

yields the highest a
hievable exponent for the probability error and is 
alled the

Cherno�'s information.


