
EAX: A Conventional Authenti
ated-En
ryption Mode

M. Bellare

�

P. Rogaway

y

D. Wagner

z

September 9, 2003

Abstra
t

We propose a blo
k-
ipher mode of operation,
alled EAX, for authenti
ated-en
ryption

with asso
iated-data (AEAD). Given a non
e N , a message M , and a header H , the mode

prote
ts the priva
y of M and the authenti
ity of both M and H . Strings N;M;H 2 f0; 1g

�

are arbitrary, and the mode uses 2djM j=ne+ djH j=ne+ djN j=ne blo
k-
ipher
alls when these

strings are nonempty and n is the blo
k length of the underlying blo
k
ipher. Among EAX's

hara
teristi
s are that it is on-line (the length of a message isn't needed to begin pro
essing it)

and a �xed header
an be pre-pro
essed, e�e
tively removing the per-message
ost of binding

it to the
iphertext. EAX is obtained by instantiating a simple generi
-
omposition method,

EAX2, and then
ollapsing its two keys into one. EAX is provably se
ure under a standard

omplexity-theoreti
 assumption.

EAX was designed in response to the expressed need of several standardization bodies,

in
luding NIST, IETF and IEEE 802.11, for a patent-free AEAD s
heme. Su
h a s
heme would

have to be
onventional, meaning it would make two passes, one aimed at a
hieving priva
y and

one aimed at a
hieving authenti
ity. EAX aims to �ll this need by doing as well as possible

within the spa
e of
onventional s
hemes with regard to issues of eÆ
ien
y, simpli
ity, elegan
e,

ease of
orre
t use, and provable-se
urity guarantees. EAX is an alternative to CCM [19℄.

Keywords: Authenti
ated en
ryption, message authenti
ation, CBC MAC, modes of operation,

OMAC, provable se
urity.

�

Department of Computer S
ien
e & Engineering, University of California at San Diego, 9500 Gilman Drive,

La Jolla, California 92093, USA. E-mail: mihir�
s.u
sd.edu WWW: www-
se.u
sd.edu/users/mihir/

y

Department of Computer S
ien
e, University of California at Davis, Davis, California 95616, USA; and De-

partment of Computer S
ien
e, Fa
ulty of S
ien
e, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail:

rogaway�
s.u
davis.edu WWW: www.
s.u
davis.edu/~rogaway/

z

Department of Ele
tri
al Engineering and Computer S
ien
e, University of California at Berkeley, Berkeley,

California 94720, USA. E-mail: daw�
s.berkeley.edu WWW: http://www.
s.berkeley.edu/~daw/

1

Contents

1 Introdu
tion 3

2 The EAX Algorithm 4

3 Dis
ussion of EAX 7

4 Intelle
tual Property Statement 9

5 EAX2 Algorithm 11

6 De�nitions 11

7 Se
urity Results 13

8 A
knowledgments 15

A Proofs of se
urity of EAX2 17

B Proof of Se
urity of the Tweakable-OMAC Extension 23

C Proofs of se
urity of EAX 31

D Re
ommended API 33

E Test Ve
tors 38

2

1 Introdu
tion

AE and AEAD. An authenti
ated en
ryption (AE) s
heme is a symmetri
-key me
hanism by

whi
h a message M is a transformed into a
iphertext CT with the goal that CT prote
t both

priva
y and authenti
ity of M . The last few years have seen in
reasing interest and development

e�ort in this domain. For the purposes of this paper it is useful to distinguish two
lasses of

s
hemes. The �rst are s
hemes that make two passes through the data, one aimed at providing

priva
y and the other at providing authenti
ity. We
all su
h s
hemes
onventional. A
ommon

method of designing
onventional s
hemes is by \generi

omposition," where one pass is based on

a (priva
y-only) symmetri
-en
ryption s
heme and the other pass on a message authenti
ation
ode

(MAC), ea
h using a di�erent key. Comparative analyses of various generi

omposition methods

an be found in [5, 6, 14℄. The se
ond, more modern
lass of s
hemes, that we
all un
onventional

make only a single pass through the data, using a single key, and have
ost about half that of

onventional s
hemes. These in
lude IAPM [12℄, OCB [17℄ and XCBC [9℄.

After the emergen
e of these new AE s
hemes, it was realized that often times not all the data

should be en
rypted|in many appli
ations we have a mixture of se
ret and non-se
ret data, and it

would be ni
e to have a mode of operation that provides priva
y for the se
ret data and authenti
ity

for both types of data. Thus was born the notion of authenti
ated-en
ryption with asso
iated-data

(AEAD) [16℄. The non-se
ret data is
alled the asso
iated data or the header. Conventional AEAD

s
hemes may again be designed via generi

omposition. An un
onventional one, based on OCB,

is dot-OCB [16℄.

The need for a new
onventional s
heme. Numerous bodies, in
luding NIST, IETF and

IEEE802.11, are interested in standardizing an AEAD s
heme, but have been deterred from stan-

dardizing any of the new un
onventional (one pass) s
hemes due to patents related to them. To be

patent-avoiding, a s
heme would have to be
onventional (two pass). The need has a

ordingly been

expressed for a
onventional AEAD s
heme that is \as good as possible" subje
t to this
onstraint.

While a generi

omposition based s
heme is an obvious solution, it would not be
onsidered

adequate sin
e it entails two keys instead of one. What is envisaged is a blo
k-
ipher based, single-

key using s
heme. One su
h proposal, by Whiting, Housley, and Ferguson [19℄, is the AEAD s
heme

alled CCM. But CCM embodies limitations that have nothing to do with the Intelle
tual Property

(IP) that it works to avoid [18℄.

This paper makes two
ontributions. First, we isolate various goals that we
onsider important

for a
onventional AEAD s
heme suitable for standardization. Se
ond, we spe
ify a new AEAD

s
heme, EAX, that a
hieves all these goals. These goals relate to issues of eÆ
ien
y, simpli
ity,

elegan
e, ease of
orre
t use, and provable-se
urity guarantees. We will see that unlike EAX, CCM

does not a
hieve all these goals.

EAX goals. We want a non
e-using, blo
k-
ipher-based AEAD s
heme. It should provide both

priva
y, in the sense of indistinguishability from random bits, and integrity, in the sense of an adver-

sary's inability to produ
e a new but valid (non
e, header,
iphertext) triple [16℄. Nothing should

be assumed about the non
es ex
ept that they are non-repeating. Se
urity must be demonstrated

using the standard, provable-se
urity approa
h. The s
heme should employ no tool beyond a blo
k

ipher E : Key�f0; 1g

n

! f0; 1g

n

that it is based on. We should assume nothing about E beyond

its se
urity in the sense of a pseudorandom permutation (PRP). We expe
t that E will often be

instantiated by AES, but we should make no restri
tions in this dire
tion (su
h as insisting that

n = 128). The s
heme should be simple and natural (so, in parti
ular, it should avoid
ompli
ated

length-annotation). It should be a \
onventional" AEAD s
heme, making a separate priva
y pass

and authenti
ity pass, using no known IP.

3

We wanted our AEAD s
heme to be
exible in the fun
tionality it provides. It should support

arbitrary-length messages: the message spa
e should be f0; 1g

�

. The key spa
e of the AEAD should

be the key spa
e Key of the underlying blo
k
ipher. We wanted to support non
es as long as the

blo
k length

1

; that is, the non
e spa
e should in
lude f0; 1g

n

. Any tag length � 2 [0::n℄ should be

possible, to allow ea
h user to sele
t how mu
h se
urity she wants from the integrity guarantees and

how many bits she has to pay for this.

2

The above
onsiderations imply that the only user-tunable

parameters should be E and � .

We took on some fairly aggressive performan
e goals. First, message expansion should be no

more than required: the length of the
iphertext (whi
h, following the
onventions of [17℄, ex
ludes

the non
e) should be only � bits more than the length of the plaintext. Implementations should be

able to pro�tably pre-pro
ess stati
 asso
iated data; for example, if we have an un
hanging header

atta
hed to every pa
ket, authenti
ating this header should have no signi�
ant
ost after a single

pre-
omputation. There should be an eÆ
ient pseudorandom fun
tion (PRF) dire
tly a

essible

through the de�ned interfa
e of the AEAD s
heme|as eÆ
ient as other
onventional PRFs. Key-

setup should be eÆ
ient and all blo
k-
ipher
alls should use the same underlying key, so that we

do not in
ur the
ost of key s
heduling more than on
e. For both en
ryption and de
ryption, we

want to use only the forward dire
tion of the blo
k
ipher, so that hardware implementations do

not need to implement the de
ryption fun
tionality of the blo
k
ipher. The s
heme should be

on-line for both the plaintext M and the asso
iated data H, whi
h means that one
an pro
ess

streaming data on-the-
y, using
onstant memory, not knowing when the stream will stop.

EAX rationale. EAX a
hieves all the above goals. Still, one might ask why EAX as opposed

to the dot-OCB AEAD s
heme of [16℄? The latter not only a
hieves these goals but makes about

half the number of blo
k
ipher
alls made by CCM and EAX. The reason, as we have already

dis
ussed, is that the un
onventional (one pass) s
hemes like dot-OCB are subje
t to patents,

and standardization bodies have (for whatever reason) expressed the intent of standardizing a

onventional (two pass) s
heme, even at the
ost of the fa
tor of two in performan
e, in order to

avoid patents. The merit of this judgment is debatable, and one
an debate it, but the pragmati

reality is that there emerges a need for a
onventional s
heme, like EAX, that is as good as possible

subje
t to the two-pass
onstraint. La
k of a s
heme like EAX will simply lead to an inferior

s
heme being standardized, whi
h is to the disadvantage of the user
ommunity. A

ordingly,

EAX addresses a very real and pra
ti
al, even if somewhat un
onventionally motivated,
rypto-

engineering problem, and has the potential for widespread usage and adoption.

2 The EAX Algorithm

Preliminaries. All strings in this paper are over the binary alphabet f0; 1g. For L a set of

strings and n � 0 a number, we let L

n

and L

�

have their usual meanings. The
on
atenation of

strings X and Y is denoted X k Y or simply X Y . The string of length 0,
alled the empty string,

is denoted ". If X 2 f0; 1g

�

we let jXj denote its length, in bits. If X 2 f0; 1g

�

and ` � jXj

then the �rst ` bits of X are denoted X [�rst ` bits℄. When X 2 f0; 1g

n

is a nonempty string and

t 2 N is a number we let X+ t be the n-bit string that results from regarding X as a nonnegative

number x (binary notation, most-signi�
ant-bit �rst), adding x to t, taking the result modulo 2

n

,

and
onverting this number ba
k into an n-bit string. If t 2 [0::2

n

� 1℄ we let [t℄

n

denote the

en
oding of t into an n-bit binary string (msb �rst, lsb last). If X and P are strings then we let

1

Here we will over-a
hieve, allowing a non
e spa
e of f0; 1g

�

.

2

Note that sin
e our AEAD s
heme is bit-oriented and not byte-oriented, � is the number of bits, not bytes, of

the tag.

4

Algorithm CBC

K

(M)

10 Let M

1

� � �M

m

 M where jM

i

j = n

11 C

0

 0

n

12 for i 1 to m do

13 C

i

 E

K

(M

i

�C

i�1

)

14 return C

m

Algorithm CTR

N

K

(M)

20 m djM j=ne

21 S E

K

(N) kE

K

(N+1) k � � � kE

K

(N+m�1)

22 C M � S [�rst jM j bits℄

23 return C

Algorithm pad (M ; B;P)

30 if jM j 2 fn; 2n; 3n; : : :g

31 then return M �! B,

32 else return (M k 10

n�1�(jM j mod n)

) �! P

Algorithm OMAC

K

(M)

40 L E

K

(0

n

); B 2L; P 4L

41 return CBC

K

(pad (M ; B;P))

Algorithm OMAC

t

K

(M)

50 return OMAC

K

([t℄

n

kM)

Figure 1: Basi
 building blo
ks. The blo
k
ipher E : Key � f0; 1g

n

! f0; 1g

n

is �xed and K 2 Key. For

CBC, M 2 (f0; 1g

n

)

+

. For CTR, M 2 f0; 1g

�

and N 2 f0; 1g

n

. For pad, M 2 f0; 1g

�

and B;P 2 f0; 1g

n

and �! xors the shorter string into the end of longer one. For OMAC, M 2 f0; 1g

�

and t 2 [0::2

n

� 1℄ and the

multipli
ation of a number by a string L is done in GF(2

n

).

X �! P (the xor-at-the-end operator) denote the string of length ` = maxfjXj; jP jg bits that is

obtained by prepending

�

�

jXj � jP j

�

�

zero-bits to the shorter string and then xoring this with the

other string. (In other words, xor the shorter string into the end of the longer string.) A blo
k

ipher is a fun
tion E : Key�f0; 1g

n

! f0; 1g

n

where Key is a �nite, nonempty set and n � 1 is a

number and E

K

(�) = E(K; �) is a permutation on f0; 1g

n

. The number n is
alled the blo
k length.

Throughout this note we �x su
h a blo
k
ipher E.

Building blo
ks. In Figure 1 we de�ne the algorithms CBC, CTR, pad, OMAC (no supers
ript),

and OMAC

�

(with supers
ript). The algorithms CBC (the CBC MAC) and CTR (
ounter-mode

en
ryption) are standard. Algorithm pad is used only to de�ne OMAC. Algorithm OMAC [10℄ is

a pseudorandom fun
tion (PRF) that is a one-key variant of the algorithm XCBC [8℄. Algorithm

OMAC

�

is like OMAC but takes an extra argument, the integer t. This algorithm is a \tweakable"

PRF [15℄, tweaked in the most simple way possible.

We explain the notation used in the de�nition of OMAC. The value of iL (line 40: i an integer

in f2; 4g and L 2 f0; 1g

n

) is the n-bit string that is obtained by multiplying L by the n-bit string

that represents the number i. The multipli
ation is done in the �nite �eld GF(2

n

) using a
anoni
al

polynomial to represent �eld points. The
anoni
al polynomial we sele
t is the lexi
ographi
ally

�rst polynomial among the irredu
ible polynomials of degree n that have a minimum number of

nonzero
oeÆ
ients. For n = 128 the indi
ated polynomial is x

128

+ x

7

+ x

2

+ x+ 1. In that
ase,

2L = L<<1 if the �rst bit of L is 0 and 2L = (L<<1)� 0

120

10000111 otherwise, where L<<1 means

the left shift of L by one position (the �rst bit vanishing and a zero entering into the last bit). The

value of 4L is simply 2(2L). We warn that to avoid side-
hannel atta
ks one must implement the

doubling operation in a
onstant-time manner.

We have made a small modi�
ation to the OMAC algorithm as it was originally presented,

hanging one of its two
onstants. Spe
i�
ally, the
onstant 4 at line 40 was the
onstant 1=2 (the

multipli
ative inverse of 2) in the original de�nition of OMAC [10℄. The OMAC authors indi
ate

5

Algorithm EAX:En
rypt

N H

K

(M)

10 N OMAC

0

K

(N)

11 H OMAC

1

K

(H)

12 C CTR

N

K

(M)

13 C OMAC

2

K

(C)

14 Tag N�C�H

15 T Tag [�rst � bits℄

16 return CT C k T

Algorithm EAX:De
rypt

N H

K

(CT)

20 if jCT j < � then return Invalid

21 Let C k T CT where jT j = �

22 N OMAC

0

K

(N)

23 H OMAC

1

K

(H)

24 C OMAC

2

K

(C)

25 Tag

0

 N�C�H

26 T

0

 Tag

0

[�rst � bits℄

27 if T 6= T

0

then return Invalid

28 M CTR

N

K

(C)

29 return M

Figure 2: En
ryption and de
ryption under EAX mode. The plaintext is M , the
iphertext is CT , the key is K,

the non
e is N , and the header is H . The mode depends on a blo
k
ipher E (that CTR and OMAC impli
itly

use) and a tag length � .

N

T

OMAC

0

K

C

HM

N

H

C

CTR

K

OMAC

1

K

OMAC

2

K

Figure 3: En
ryption under EAX mode. The message is M , the key is K, and the header is H . The
iphertext

is C k T .

6

that they will promulgate this modi�
ation [11℄, whi
h slightly simpli�es implementations.

EAX. Fix a blo
k
ipher E : Key�f0; 1g

n

! f0; 1g

n

and a tag length � 2 [0::n℄. These parameters

should be �xed at the beginning of a parti
ular session that will use EAX mode. Typi
ally, the

parameters would be agreed to in an authenti
ated manner between the sender and the re
eiver,

or they would be �xed for all time for some parti
ular appli
ation. Given these parameters, EAX

provides a non
e-based AEAD s
heme EAX[E; � ℄ whose en
ryption algorithm has signature Key�

Non
e�Header�Plaintext! Ciphertext and whose de
ryption algorithm has signature Key�Non
e�

Header�Ciphertext! Plaintext[fInvalidg where Non
e, Header, Plaintext, and Ciphertext are all

f0; 1g

�

. The EAX algorithm is spe
i�ed in Figure 2 and a pi
ture illustrating EAX en
ryption is

given in Figure 3.

3 Dis
ussion of EAX

We dis
uss various features of our algorithm and
hoi
es underlying the design.

No en
odings. We have avoided any nontrivial en
oding of multiple strings into a single one.

3

Some other approa
hes that we
onsidered required a PRF to be applied to what was logi
ally

a tuple, like (N;H;C). Doing this raises en
oding issues we did not want to deal with be
ause,

ultimately, there is no eÆ
ient,
ompelling, on-line way to en
ode multiple strings into a single one.

Alternatively, one
ould avoid en
odings and
onsider a new kind of primitive, a multi-argument

PRF. But this would be a non-standard tool and we didn't want to use any non-standard tools.

All in all, it seemed best to �nd a way to sidestep the need to do en
odings, whi
h is what we have

done.

Why not generi

omposition? Why have we spe
i�ed a blo
k-
ipher based (BC-based) AEAD

s
heme instead of following the generi
-
omposition approa
h of
ombining a (priva
y-only) en-

ryption method and a message authenti
ation
ode? There are reasonable arguments in favor of

generi

omposition, based on aestheti
 or ar
hite
tural sensibilities. One
an argue that generi

omposition better separates
on
eptually independent elements (priva
y and authenti
ity) and,

orrespondingly, allows greater implementation
exibility [6, 14℄. Corre
tness be
omes mu
h sim-

pler and
learer as well. The argument does have validity. Still, BC-based AEAD modes have

some important advantages. BC-based AEAD makes it easier to use a
ryptosystem
orre
tly and

interoperably|for example, presenting a more dire
tly useful API for developers. BC-based AEAD

redu
es the risk that implementors will
hoose inse
ure parameters. It makes it easier for imple-

mentors to use a s
heme without knowing a lot of
ryptography. It saves on key bits and key-setup

time, as generi
-
omposition methods invariably require a pair of separate keys.

All of that said, EAX
an be viewed as having been derived from a generi
-
omposition s
heme

we
all EAX2, des
ribed in Se
tion 5. Spe
i�
ally, one instantiates the generi
-
omposition s
heme

EAX2 with CTR mode (
ounter mode) and OMAC, and then
ollapses the two keys into one. If

one does favor generi

omposition, EAX2 is a ni
e algorithm for it.

On-line. Here, we say that an algorithm is on-line if it is able to pro
ess a stream of data as it

arrives, with
onstant memory, not knowing in advan
e when the stream will end. Observe then

that on-line methods should not require knowledge of the length of a message until the message is

�nished. A failure to be on-line has been regarded as a signi�
ant defe
t for an en
ryption s
heme

3

One
ould view the pre�xing of [t℄

n

toM in the de�nition of OMAC

t

K

(M) as an en
oding, but [t℄

n

is a
onstant,

�xed-length string, and the aim here is just to \tweak" the PRF. That is very di�erent from needing to en
ode an

arbitrary-length message M and an arbitrary-length header H into a single string, for example.

7

CCM EAX

Fun
tionality Authenti
ated En
ryption with AD Authenti
ated En
ryption with AD

Built from Blo
k
ipher E with 128-bit blo
ksize Blo
k
ipher E with n-bit blo
ksize

Parameters Blo
k
ipher E

Tag length � 2 f4; 6; 8; 10; 12; 14; 16g

Length of msg length �eld � 2 [2::8℄

Blo
k
ipher E

Tag length � 2 [0::n℄

Message spa
e Parameterized: 7
hoi
es: � 2 [2::8℄.

Ea
h possible message spa
e a sub-

set of Byte

�

, from Byte

2

16

�1

to

Byte

<2

64

�1

f0; 1g

�

Non
e spa
e Parameterized, with a value of 15��

bytes. From 56 bits to 104 bits

f0; 1g

�

Key spa
e One blo
k-
ipher key One blo
k-
ipher key

Ciphertext expansion � bytes � bits

Blo
k-
ipher
alls 2

l

jM j

128

m

+

l

jHj

128

m

+2+ Æ, for Æ 2 f0; 1g 2

l

jM j

n

m

+

l

jHj

n

m

+

l

jN j

n

m

Blo
k-
ipher
alls

with stati
 header

2

l

jM j

128

m

+

l

jHj

128

m

+2+ Æ, for Æ 2 f0; 1g 2

l

jM j

n

m

+

l

jN j

n

m

Key setup Blo
k
ipher subkeys Blo
k
ipher subkeys

3 blo
k-
ipher
alls

IV requirements Non-repeating non
e Non-repeating non
e

Parallelizable? No No

On-line? No Yes

Prepro
essing (/msg) Limited (key stream only) Limited (key stream and header only)

Memory rqmts Small
onstant Small
onstant

Provable se
urity? Yes: redu
tion from blo
k-
ipher's

PRP se
urity, bound of �(�

2

=2

128

)

Yes: redu
tion from blo
k-
ipher's

PRP se
urity, bound of �(�

2

=2

n

)

Patent-en
umbered? No No

Figure 4: A
omparison of basi

hara
teristi
s of CCM and EAX. The
ount on blo
k-
ipher
alls for EAX

ignores key-setup
osts. By the set Byte we mean f0; 1g

8

.

8

or a MAC. EAX is on-line.

Now it is true that in many
ontexts where one would be en
rypting a string one does know

the length of the string in advan
e. For example, many proto
ols will already have \pa
kaged up"

the string length at a lower level. In e�e
t, su
h strings have been represented in the
omputing

system as sequen
e of bytes and a
ount of those bytes. But there are also
ontexts where one does

not know the length of a message in advan
e of getting an indi
ation that it is over. For examples,

a printable string is often represented in
omputer systems as a sequen
e of non-zero bytes followed

by a terminal zero-byte. Certainly one should be able to eÆ
iently en
rypt a string whi
h has been

represented in this way.

Ability to pro
ess a stati
 AD. In many s
enarios the asso
iated data H will be stati
 over the

ourse of a
ommuni
ations session. For example, the asso
iated data may in
luding information

su
h as the IP address of the sender, the re
eiver, and �xed
ryptographi
 parameters asso
iated

to this session. In su
h a
ase one would like that the amount of time to
ompute En
rypt

N H

K

(M)

and De
rypt

N H

K

(C) should be independent of jHj, disregarding the work done in a prepro
essing

step. (The signi�
an
e of this goal was already explained in [16℄.) EAX a
hieves this goal.

Fast verifi
ation. Invalid messages
an be reje
ted at half the
ost of de
ryption. This is one

of the bene�ts of following what is basi
ally an en
rypt-then-authenti
ate approa
h as opposed to

a authenti
ate-then-en
rypt approa
h.

Surfa
ing a MAC.One
an obtain a MAC as eÆ
ient as the PRF underlying EAX via MAC

K

(H) =

En
rypt

0

n

H

K

(").

Comparison with CCM. Figure 4
ompares EAX and CCM along various dimensions. We

elaborate on some of these points here.

While EAX is on-line, CCM is not. One needs to know the length of both the plaintext and

the asso
iated data before one
an pro
eed with en
ryption.

While EAX allows pre-pro
essing of stati
 asso
iated data, CCM does not, be
ause it en
odes

the non
e N and the message length kMk

n

before H rather than after it.

CCM has a more
omplex parameterization than does EAX due to the introdu
tion of a message-

length parameter.

CCM's non
e length is restri
ted in an undesirable way. For parameter
hoi
es that allow

en
rypting long messages with CCM, the non
e length is so limited that CCM with these parameters

might not provide adequate se
urity when non
es are
hosen randomly. EAX does not have this

problem.

CCM disrupts word alignment in the asso
iated data. (CCM prepends 18 or 22 bytes of meta-

data to the header H before pro
essing it, whi
h is not a multiple of most ma
hine's word length.)

As a result, CCM implementations
ould su�er a performan
e hit when pro
essing long asso
iated

data strings, a problem that EAX avoids.

For more information on the limitations of CCM, see [18℄.

4 Intelle
tual Property Statement

The authors neither have, nor are of aware of, any patents or pending patents relevant to EAX. We

do not intend to apply for any patents
overing this te
hnology. Our work for this note is hereby

pla
ed in the publi
 domain. As far as we know, EAX is free and unen
umbered for all uses.

9

Algorithm EAX2:En
rypt

N H

K1;K2

(M)

10 N F

0

K1

(N)

11 H F

1

K1

(H)

12 C E

N

K2

(M)

13 C F

2

K1

(C)

14 Tag N�C�H

15 T Tag [�rst � bits℄

16 return CT C k T

Algorithm EAX2:De
rypt

N H

K1;K2

(CT)

20 if jCT j < � then return Invalid

21 Let C k T CT where jT j = �

22 N F

0

K1

(N)

23 H F

1

K1

(H)

24 C F

2

K1

(C)

25 Tag

0

 N�C�H

26 T

0

 Tag

0

[�rst � bits℄

27 if T 6= T

0

then return Invalid

28 M D

N

K2

(C)

29 return M

Figure 5: The generi

omposition s
heme EAX2[�; F; � ℄. The s
heme is built from a PRF F : Key1�f0; 1g

�

!

f0; 1g

n

and an IV-based en
ryption s
heme � = (E ;D) having key spa
e Key2 and message spa
e f0; 1g

�

.

N

C

HM

N

H

C

T

F

0

K1

F

1

K1

F

2

K1

E

K2

Figure 6: En
rypting under EAX2. The plaintext is M and the key is (K1;K2) and the header is H . The

iphertext is C k T . By F

i

K

we mean the fun
tion where F

i

K

(M) = F

K

([i℄

n

kM).

10

5 EAX2 Algorithm

This se
tion is not ne
essary to understand or implement EAX, but it is ne
essary for understanding

the proof of se
urity of EAX as well as the general approa
h taken for its design. That approa
h

has been to �rst design a generi
-
omposition s
heme, EAX2, and then \
ollapse" to a single key

for the parti
ular
ase of CTR en
ryption and OMAC authenti
ation.

EAX2
omposition. Let F : Key1 � f0; 1g

�

! f0; 1g

n

be a PRF, where n � 2. Let � = (E ;D)

be an IV-based en
ryption s
heme having key spa
e Key2 and IV spa
e f0; 1g

n

. This means that

E : Key2 � f0; 1g

n

� f0; 1g

�

! f0; 1g

�

and D : Key2 � f0; 1g

n

� f0; 1g

�

! f0; 1g

�

and Key2 is

a set of keys and for every K 2 Key2 and N 2 f0; 1g

n

and M 2 f0; 1g

�

, if C = E

N

K

(M) then

D

N

K

(C) = M . Let � � n be a number. Now given F and � and � we de�ne an AEAD s
heme

EAX2[�; F; � ℄ = (EAX2:En
rypt;EAX2:De
rypt) as follows. Set F

t

K

(M) = F

K

([t℄

n

k M). Set

Key = Key1�Key2. Then the en
ryption algorithm EAX2:En
rypt : Key�f0; 1g

�

�f0; 1g

�

! f0; 1g

�

and the de
ryption algorithm EAX2:De
rypt : Key � f0; 1g

�

� f0; 1g

�

! f0; 1g

�

[fInvalidg are

de�ned in Figure 5 and the former is illustrated in Figure 6. EAX2[�; F; � ℄ is provably se
ure under

natural assumptions about � and F . See Se
tion 7.

EAX1
omposition. Let EAX1 be the single-key variant of EAX2 where one insists that Key1 =

Key2 and where one keys F , E , and D with a single key K 2 Key = Key1 = Key2. That is,

one asso
iates to F and �, as above, the s
heme EAX1[�; F; � ℄ that is de�ned as with EAX2

but where the key spa
e is Key = Key1 = Key2 and the one key K keys everything. Noti
e that

EAX[E; � ℄ = EAX1[CTR[E℄;OMAC[E℄; � ℄. This is a useful way to look at EAX.

6 De�nitions

The se
urity results we state and prove later rely on the de�nitions here.

AEAD s
hemes. A set of keys is a nonempty set having a distribution (the uniform distribution

when the set is �nite). A (non
e-based) authenti
ated-en
ryption with asso
iated-data (AEAD)

s
heme is a pair of algorithms � = (E;D) where E is a deterministi
 en
ryption algorithm

E : Key � Non
e � Header � Plaintext ! Ciphertext and a D is a deterministi
 de
ryption algo-

rithm D : Key�Non
e�Header�Ciphertext! Plaintext[fInvalidg. The key spa
e Key is a set of

keys while the non
e spa
e Non
e and the header spa
e Header (also
alled the spa
e of asso
iated

data) are nonempty sets of strings. We write E

N H

K

(M) for E(K;N;H;M) and D

N H

K

(CT) for

D(K;N;H;CT). We require that D

N H

K

(E

N H

K

(M)) = M for all K 2 Key and N 2 Non
e and

H 2 Header and M 2 Plaintext. In this note we assume, for notational simpli
ity, that Non
e,

Header, Plaintext, and Ciphertext are all f0; 1g

�

and that jE

N H

K

(M)j = jM j. An adversary is a

program with a

ess to one or more ora
les.

Non
e-respe
ting. Suppose A is an adversary with a

ess to an en
ryption ora
le E

� �

K

(�). This

ora
le, on input (N;H;M), returns E

N H

K

(M). Let (N

1

;H

1

;M

1

); : : : ; (N

q

;H

q

;M

q

) denote its ora
le

queries. The adversary is said to be non
e-respe
ting if N

1

; : : : ; N

q

are always distin
t, regardless

of ora
le responses and regardless of A's internal
oins.

Priva
y of AEAD s
hemes. We
onsider adversaries with a

ess to an en
ryption ora
le E

� �

K

(�).

We assume that any priva
y-atta
king adversary is non
e-respe
ting. The advantage of su
h an

adversary A in violating the priva
y of AEAD s
heme � = (E;D) having key spa
e Key is

Adv

priv

�

(A) = Pr

h

K

$

 Key : A

E

� �

K

(�)

= 1

i

� Pr

h

K

$

 Key : A

$

� �

(�)

= 1

i

11

where $

� �

(�) denotes the ora
le that on input (N;H;M) returns a random string of length jM j.

Authenti
ity of AEAD s
hemes. This time we provide the adversary with two ora
les, an

en
ryption ora
le E

� �

K

(�) as above and also a veri�
ation ora
le

b

D

� �

K

(�). The latter ora
le takes input

(N;H;CT) and returns 1 if D

N H

K

(CT) 2 Plaintext and returns 0 if D

N H

K

(CT) = Invalid. The

adversary is assumed to satisfy three
onditions, and these must hold regardless of the responses

to its ora
le queries and regardless of A's internal
oins:

� A must be non
e-respe
ting. (The
ondition is understood to apply only to the adversary's en-

ryption ora
le. Thus a non
e used in an en
ryption-ora
le query may be used in a veri�
ation-

ora
le query).

� A must
all its veri�
ation-ora
le exa
tly on
e and not
all its en
ryption ora
le after it has

made its veri�
ation ora
le query. (That is, it makes a sequen
e of en
ryption-ora
le queries,

then a veri�
ation-ora
le query, and halts.)

� A must never make a veri�
ation-ora
le query (N;H;CT) su
h that the en
ryption ora
le

had previously returned CT in response to a query (N;H;M).

We say that su
h an A forges if its veri�
ation ora
le returns 1 in response to the single query

made to it. The advantage of su
h an adversary A in violating the authenti
ity of AEAD s
heme

� = (E;D) having key spa
e Key is

Adv

auth

�

(A) = Pr

h

K

$

 Key : A

E

� �

K

(�);

b

D

� �

K

(�)

forges

i

:

IV-based en
ryption. An IV-based en
ryption s
heme (an IVE s
heme) is a pair of algorithms

� = (E ;D) where E : Key� IV�Plaintext! Ciphertext is a deterministi
 en
ryption algorithm and

D : Key � IV � Ciphertext ! Plaintext [fInvalidg is a deterministi
 de
ryption algorithm. The

key spa
e Key is a set of keys and the plaintext spa
e Plaintext and
iphertext spa
e Ciphertext and

IV spa
e IV are all nonempty sets of strings. We write E

R

K

(M) for E(K;R;M) and D

R

K

(C) for

D(K;R;C). We require that D

R

K

(E

R

K

(M)) =M for all K 2 Key and R 2 IV and M 2 Plaintext. We

assume, as before, that Plaintext = Ciphertext = f0; 1g

�

and that jE

R

K

(M)j = jM j. We also assume

that IV = f0; 1g

n

for some n � 1
alled the IV length.

Priva
y of IVE s
hemes with random IVs. Let � = (E ;D) be an IVE s
heme with key

spa
e Key and IV spa
e IV = f0; 1g

n

. Let E

$

be the probabilisti
 algorithm de�ned from E that,

on input K and M ,
hooses an IV R at random from f0; 1g

n

,
omputes C E

R

K

(M), and then

returns C along with the
hosen IV:

Algorithm E

$

K

(M) // The probabilisti
 en
ryption s
heme built from IVE s
heme E

R

$

 f0; 1g

n

; C E

R

K

(M) ; return R k C

Then we de�ne the advantage of an adversary A in violating the priva
y of � (as an en
ryption

s
heme using random IV) by

Adv

priv

�

(A) = Pr

h

K

$

 Key : A

E

$

K

(�)

= 1

i

� Pr

h

K

$

 Key : A

$(�)

= 1

i

where $(�) denotes the ora
le that on input M returns a random string of length n+ jM j. This is

just the ind$-priva
y of the randomized symmetri
 en
ryption s
heme asso
iated to �. We again

require the adversary A to be non
e-respe
ting, whi
h now means that, whatever the adversary's

ora
le does, the adversary may make no (N;M) query that follows an earlier (N;M

0

) query. We

omment that we have used a supers
ript of \priv" for an IVE s
heme and \priv" (bold font) for

an AEAD s
heme.

12

Pseudorandom fun
tions. A family of fun
tions, or a pseudorandom fun
tion (PRF), is a

map F : Key � D ! f0; 1g

n

where Key is a set of keys and D is a nonempty set of strings. We

all n the output length of F . We write F

K

for the fun
tion F (K; �) and we write f

$

 F to mean

K

$

 Key ; f F

K

. We denote by R

�

n

the set of all fun
tions with domain f0; 1g

�

and range

f0; 1g

n

; by R

n

n

the set of all fun
tions with domain f0; 1g

n

and range f0; 1g

n

; and by R

I

n

the set of

all fun
tions with domain I and range f0; 1g

n

. We identify a fun
tion with its key, making R

n

n

, R

�

n

andR

I

n

pseudorandom fun
tions. The advantage of adversary A in violating the pseudorandomness

of the family of fun
tions F : Key � f0; 1g

�

! f0; 1g

n

is

Adv

prf

F

(A) = Pr

h

K

$

 Key : A

F

K

(�)

= 1

i

� Pr

h

�

$

 R

�

n

: A

�(�)

= 1

i

A family of fun
tions E : Key � D ! f0; 1g

n

is a blo
k
ipher if D = f0; 1g

n

and ea
h E

K

is a

permutation. We let P

n

denote all the permutations on f0; 1g

n

and de�ne

Adv

prp

E

(A) = Pr

h

K

$

 Key : A

E

K

(�)

= 1

i

� Pr

h

�

$

 P

n

: A

�(�)

= 1

i

Resour
es. If xxx is an advantage notion for whi
h Adv

xxx

�

(A) has been de�ned we write

Adv

xxx

�

(R) for the maximal value ofAdv

xxx

�

(A) over all adversaries A that use resour
es at most R.

When
ounting the resour
e usage of an adversary, one maximizes over all possible ora
le responses,

in
luding those that
ould not be returned by any experiment we have spe
i�ed for adversarial ad-

vantage. Resour
es of interest are: t|the running time; q|the total number of ora
le queries;

q

e

|the number of ora
le queries to the adversary's �rst ora
le; and �|the data
omplexity. The

running time t of an algorithm is its a
tual running time (relative to some �xed RAM model of

omputation) plus its des
ription size (relative to some standard en
oding of algorithms). The data

omplexity � is de�ned as the sum of the lengths of all strings en
oded in the adversary's ora
le

queries, plus the number of these strings (but only if more than one).

4

In this paper the length

of strings is measured in n-bit blo
ks, for some understood value n. The number of blo
ks in a

string M is de�ned as kMk

n

= maxf1; djM j=neg, so that the empty string
ounts as one blo
k. As

an example, an adversary that asks queries (N

1

;H

1

;M

1

); (N

2

;H

2

;M

2

) to its �rst ora
le and query

(N;H;M) to its se
ond ora
le has data
omplexity kN

1

k

n

+ kH

1

k

n

+ kM

1

k

n

+ kN

2

k

n

+ kH

2

k

n

+

kM

2

k

n

+kNk

n

+kHk

n

+kMk

n

+9. We always assume that � � n. The name of a resour
e measure

(t, t

0

, q, et
.) will be enough to make
lear what resour
e it refers to.

We write

e

O(f(x)) for O(f(x) lg(f(x)) and the
onstant hidden inside the notation is understood

to be an absolute
onstant. When F is a fun
tion we write Time

F

(�)) for the maximal amount

of time to
ompute the fun
tion F over inputs of total length �. When � = (E ;D) is an AEAD

s
heme or an IVE s
heme with key spa
e Key we write Time

E

(�) for the time to
ompute a random

element K

$

 Key plus the maximal amount of time to
ompute the fun
tion E

K

on arguments of

total length �.

7 Se
urity Results

We �rst obtain results about the se
urity of EAX2 and then prove a result about the se
urity of a

tweakable-OMAC extension. These results are applied to derive results about the se
urity of EAX.

The notation and se
urity measures referred to below are de�ned in Se
tion 6.

Se
urity of EAX2. We begin by
onsidering the EAX2[�; F; � ℄ s
heme with F being equal to R

n

n

,

the set of all fun
tions with domain f0; 1g

n

and range f0; 1g

n

. In other words, we are
onsidering

4

There is a
ertain amount of arbitrariness in this
onvention, but it is reasonable and simpli�es subsequent

a

ounting.

13

the
ase where F

K1

is a random fun
tion with domain f0; 1g

n

and range f0; 1g

n

. First we show

that EAX2[�;R

n

n

; � ℄ inherits the priva
y of the underlying IVE s
heme �.

Lemma 1 [Priva
y of EAX2 with a random PRF℄ Let � be an IVE s
heme with IV spa
e

f0; 1g

n

and let � 2 [0::n℄. Then

Adv

priv

EAX2[�;R

n

n

;� ℄

(t; q; �) � Adv

priv

�

(t

0

; q; �)

where t

0

= t+

e

O(�). 2

The proof of the above lemma is in Appendix A. We now turn to the authenti
ity of EAX2[�;R

n

n

; � ℄.

The following shows that EAX2[�;R

n

n

; � ℄ provides authenti
ity under the assumption that the

underlying IVE s
heme � provides priva
y.

Lemma 2 [Authenti
ity of EAX2 with a random PRF℄ Let � be an IVE s
heme with IV

spa
e f0; 1g

n

and let � 2 [0::n℄. Then

Adv

auth

EAX2[�;R

n

n

;� ℄

(t; q; �) � 2

��

+Adv

priv

�

(t

0

; q; �)

where t

0

= t+

e

O(�). 2

The proof of the above lemma is in Appendix A. The results above allow us to obtain results about

the se
urity of the general EAX2[�; F; � ℄ s
heme based on assumptions about the se
urity of the

omponent s
hemes.

Theorem 3 [Se
urity of EAX2℄ Let F : Key1 � f0; 1g

�

! f0; 1g

n

be a family of fun
tions, let

� = (E ;D) be an IVE s
heme with IV spa
e f0; 1g

n

and let � 2 [0::n℄. Then

Adv

auth

EAX2[�;F;� ℄

(t; q; �) � 2

��

+Adv

priv

�

(t

2

; q; �) +Adv

prf

F

(t

1

; 3q + 3; �) (1)

Adv

priv

EAX2[�;F;� ℄

(t; q; �) � Adv

priv

�

(t

2

; q; �) +Adv

prf

F

(t

3

; 3q; �) (2)

where t

1

= t+Time

E

(�) +

e

O(�) and t

2

= t+

e

O(� + nq) and t

3

= t+Time

E

(�) +

e

O(�). 2

The proof of the above theorem is in Appendix A.

Se
urity of a Tweakable-OMAC Extension. This se
tion develops the
ore result underlying

why key-reuse \works" a
ross OMAC and CTR modes. To do this, we
onsider the following

extension of the tweakable-OMAC
onstru
tion. Fix n � 1 and let t 2 f0; 1; 2g and � 2 R

n

n

and

M 2 f0; 1g

�

and s 2 N. Then de�ne

Algorithm OM A C [�℄ (t;M; s)

10 R OMAC

t

�

(M)

11 for j 0 to s� 1 do S

j

 �(R+ j)

12 return R S

0

S

1

� � �S

s�1

In other words, an OM A C [�℄ ora
le, when asked (t;M; s), returns not only R = OMAC[�℄

t

(M) but

also a key stream S

0

S

1

: : : S

s

formed using CTR-mode and start-index R. We emphasize that the

key stream is formed using the same fun
tion � (that is, the same key) that underlies the OMAC

omputation. Note too that we have limited the tweak t to a small set, f0; 1; 2g.

14

We imagine providing an adversary A with one of two kinds of ora
les. The �rst is an ora
le

OMAC

�

(�; �; �) for a randomly
hosen � 2 R

n

n

. The se
ond is an ora
le $

n

(�; �; �) that, on input

(t;M; s), returns n(s + 1) random bits. Either way, we assume that the adversary is length-

respe
ting : if the adversary asks a query (t;M; s) it does not ask any subsequent query (t;M; s

0

)

for s

0

6= s. As the adversary runs, it asks some sequen
e of queries (t

1

;M

1

; s

1

); : : : ; (t

q

;M

q

; s

q

).

The resour
es of interest to us are the sum of the blo
k lengths of the messages being MACed,

�

1

=

P

kM

i

k

n

, and the total number �

2

=

P

s

i

of key-stream blo
ks that the adversary requests.

We
laim that a reasonable adversary will have little advantage in telling apart the two ora
les,

and we bound its distinguishing probability in terms of the resour
es �

1

and �

2

that it expends.

Re
all that for ora
les X and Y and an adversary A we measure A's ability to distinguish between

ora
les X and Y by the number Adv

dist

X;Y

(A) = Pr[A

X

= 1℄� Pr[A

Y

= 1℄.

Lemma 4 [Pseudorandomness of OM A C ℄ Fix n � 2. Then, for length-respe
ting adversaries,

Adv

dist

OM A C [R

n

n

℄;$

n

(�

1

; �

2

) �

(�

1

+ �

2

+ 3)

2

2

n

2

The proof of the above lemma is in Appendix B.

Se
urity of EAX. We are now ready to prove the se
urity of EAX.

Theorem 5 [Se
urity of EAX℄ Let n � 2 and � 2 [0::n℄. Then

Adv

priv

EAX[R

n

n

;� ℄

(�) �

9�

2

2

n

Adv

auth

EAX[R

n

n

;� ℄

(�) �

10:5�

2

2

n

+

1

2

�

2

The proof of the above is in Appendix C. Finally, we may, in the
ustomary way, pass to the

orresponding
omplexity-theoreti
 result where we start with an arbitrary blo
k
ipher E.

Corollary 6 [Se
urity of EAX℄ Let n � 2 and E : Key�f0; 1g

n

�f0; 1g

n

be a blo
k
ipher and

let � 2 [0::n℄. Then

Adv

priv

EAX[E;� ℄

(t; �) �

9:5�

2

2

n

+Adv

prp

E

(t

0

; �)

Adv

auth

EAX[E;� ℄

(t; �) �

11�

2

2

n

+

1

2

�

+Adv

prp

E

(t

0

; �)

where t

0

= t+O(�). 2

We omit the proof, whi
h is
ompletely standard.

8 A
knowledgments

We re
eived
omments from Niels Ferguson, Ja
k Lloyd, David M
Grew, Jesse Walker, and Doug

Whiting. Ja
k provided an initial set of test ve
tors for us.

Mihir Bellare's work was funded by NSF grants CCR-0098123 and ANR-0129617, and by an

IBM Fa
ulty Partnership Development Award. Phil Rogaway's work was funded by NSF CCR-

0208842 and a gift from CISCO Systems. David Wagner's work was funded by NSF CCR-0113941.

15

Referen
es

[1℄ M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
on
rete se
urity treatment of symmetri
 en
ryp-

tion: Analysis of the DES modes of operation. Pro
eedings of the 38th Symposium on Foundations

of Computer S
ien
e, IEEE, 1997. Available as http://www-
se.u
sd.edu/users/mihir/papers/

sym-en
.html.

[2℄ M. Bellare, R. Gu�erin, and P. Rogaway. XOR MACs: New methods for message authenti
ation

using �nite pseudorandom fun
tions. Advan
es in Cryptology { CRYPTO '95, Le
ture Notes in

Computer S
ien
e Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995. Available as and http:

//www-
se.u
sd.edu/users/mihir/papers/xorma
s.html

[3℄ M. Bellare, O. Goldrei
h, and H. Kraw
zyk. Stateless evaluation of pseudorandom fun
tions: Se
urity

beyond the birthday barrier. Advan
es in Cryptology { CRYPTO '96, Le
ture Notes in Computer

S
ien
e Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996. Available as http://www-
se.u
sd.edu/

users/mihir/papers/otp.html.

[4℄ M. Bellare, J. Kilian, and P. Rogaway. The se
urity of the
ipher blo
k
haining message authenti
a-

tion
ode. Journal of Computer and System S
ien
es (JCSS), vol. 61, no. 3, pp. 362{399, De
 2000.

Available as http://www-
se.u
sd.edu/users/mihir/papers/
b
.html.

[5℄ M. Bellare, T. Kohno, and C. Namprempre. Authenti
ated en
ryption in SSH: provably �xing the SSH

binary pa
ket proto
ol. Pro
eedings of the 9th Annual Conferen
e on Computer and Communi
ations

Se
urity , ACM, 2002. Available as http://www-
se.u
sd.edu/users/mihir/papers/ssh.html

[6℄ M. Bellare and C. Namprempre. Authenti
ated en
ryption: Relations among notions and analysis

of the generi

omposition paradigm. Advan
es in Cryptology { ASIACRYPT '00, Le
ture Notes in

Computer S
ien
e Vol. 1976, T. Okamoto ed., Springer-Verlag, 2000. Available as http://www-
se.

u
sd.edu/users/mihir/papers/oem.html

[7℄ M. Bellare and P. Rogaway. En
ode-then-en
ipher en
ryption: How to exploit non
es or redundan
y

in plaintexts for eÆ
ient en
ryption. Advan
es in Cryptology { ASIACRYPT '00, Le
ture Notes in

Computer S
ien
e Vol. 1976, T. Okamoto ed., Springer-Verlag, 2000. Available as http://www-
se.

u
sd.edu/users/mihir/papers/ee.html

[8℄ J. Bla
k and P. Rogaway. CBC MACs for arbitrary-length messages: The three-key
onstru
tions.

Advan
es in Cryptology { CRYPTO '00, Le
ture Notes in Computer S
ien
e Vol. 1880, M. Bellare

ed., Springer-Verlag, 2000. Available as http://www.
s.u
davis.edu/~rogaway/papers/3k.html

[9℄ V. Gligor and P. Dones
u. Fast en
ryption and authenti
ation: XCBC en
ryption and XECB au-

thenti
ation modes. Presented at the 2nd NIST Workshop on AES Modes of Operation, Santa Bar-

bara, CA, August 24, 2001. http://www.glue.umd.edu/afs/glue.umd.edu/home/enee/fa
ulty/

gligor/pub/NIST-submissionRev.ps.

[10℄ T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. Fast Software En
ryption '03, Le
ture

Notes in Computer S
ien
e Vol. ?? , T. Johansson ed., Springer-Verlag, 2003. Also Cryptology

ePrint ar
hive Report 2002/180, http://eprint.ia
r.org/2002/180

[11℄ T. Iwata and K. Kurosawa. Personal
ommuni
ations, January 2002.

[12℄ C. Jutla. En
ryption modes with almost free message integrity. Advan
es in Cryptology { EURO-

CRYPT '01, Le
ture Notes in Computer S
ien
e Vol. 2045 , B. P�tzmann ed., Springer-Verlag, 2001.

Also Cryptology ePrint ar
hive Report 2000/039, http://eprint.ia
r.org/2000/039/

[13℄ J. Katz and M. Yung. Unforgeable en
ryption and adaptively se
ure modes of operation. Fast Software

En
ryption '00, Le
ture Notes in Computer S
ien
e Vol. 1978, B. S
hneier ed., Springer-Verlag, 2000.

16

Adversary P

e(�)

Initially, f is everywhere unde�ned

Run A

When A makes ora
le query (N;H;M) answer the query as follows:

N k C

$

 e(M) // where jNj = n

f([0℄

n

kN) N

if f([1℄

n

kH) is unde�ned then f([1℄

n

kH)

$

 f0; 1g

n

H f([1℄

n

kH)

if f([2℄

n

k C) is unde�ned then f([2℄

n

k C)

$

 f0; 1g

n

C f([2℄

n

k C)

Let T be the �rst � bits of N�H�C

Return CT C k T as the ora
le response

When A outputs a bit, d, return d

Figure 7: Adversary P atta
king the priva
y of IVE s
heme � using as subroutine adversary A atta
king the

priva
y of � = EAX2[�;R

n

n

; � ℄.

[14℄ H. Kraw
zyk. The order of en
ryption and authenti
ation for prote
ting
ommuni
ations (or: how

Se
ure is SSL?). Advan
es in Cryptology { CRYPTO '01, Le
ture Notes in Computer S
ien
e

Vol. 2139, J. Kilian ed., Springer-Verlag, 2001. Also Cryptology ePrint ar
hive Report 2001/045,

http://eprint.ia
r.org/2001/045

[15℄ M. Liskov, R. Rivest, and D. Wagner. Advan
es in Cryptology { CRYPTO '02, Le
ture Notes in

Computer S
ien
e, vol. 2442, pp. 31{46. Springer-Verlag, 2002. See www.
s.berkeley.edu/�daw

[16℄ P. Rogaway. Authenti
ated-en
ryption with asso
iated-data. Pro
eedings of the 9th Annual Con-

feren
e on Computer and Communi
ations Se
urity , ACM, 2002. Available as http://www.
s.

u
davis.edu/~rogaway/papers/ad.html

[17℄ P. Rogaway, M. Bellare, J. Bla
k, and T. Krovetz. OCB: A blo
k-
ipher mode of operation for eÆ
ient

authenti
ated en
ryption. Pro
eedings of the 8th Annual Conferen
e on Computer and Communi
a-

tions Se
urity , ACM, 2001. Available as http://www.
s.u
davis.edu/~rogaway/papers/o
b.htm

[18℄ P. Rogaway and D. Wagner. A
ritique of CCM. Manus
ript, February 2003. http://www.
s.

u
davis.edu/~rogaway/papers/

m.html.

[19℄ D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). June 2002. Available at

http://
sr
.nist.gov/en
ryption/modes/proposedmodes/

A Proofs of se
urity of EAX2

Proof of Lemma 1: Let Key2 be the key spa
e of the IVE s
heme � = (E ;D). Let A be an

adversary atta
king the priva
y of the AEAD s
heme � = (E;D) where � = EAX2[�;R

n

n

; � ℄.

Assume that A makes at most q ora
le queries, has data
omplexity at most �, and running time at

most t. Using A, we
onstru
t an adversary P , de�ned in Figure 7, for atta
king the priva
y of �.

Observe that P makes at most q ora
le queries, has data
omplexity �, and running time at most

t

0

. Regarding the design of P , our �rst
laim is that its assignment of a value to f([0℄

n

kN), made

17

in answering an ora
le query of A, is legitimate be
ause f([0℄

n

k N) was not previously de�ned.

This is true be
ause A is non
e-respe
ting. Now we
laim that

Pr

h

K2

$

 Key2 : P

E

$

K2

(�)

= 1

i

= Pr

h

f

$

 R

n

n

; K2

$

 Key2 : A

E

�;�

f;K2

(�)

= 1

i

(3)

Pr

h

K2

$

 Key2 : P

$(�)

= 1

i

= Pr

h

f

$

 R

n

n

; K2

$

 Key2 : A

$

�;�

(�)

= 1

i

: (4)

Subtra
ting, we get

Adv

priv

�

(B) = Adv

priv

�

(A)

whi
h
on
ludes the proof. We now justify the two equations above. The �rst is
lear from the

de�nitions. With regarding Equation (4), we need to
he
k that when P 's ora
le is $(�), the ora
le-

responses returned to A are uniformly and independently distributed. Su
h a response has the

form C k T . We know that C is random be
ause it is
hosen by P 's ora
le. The reason T is also

random is that it is the xor of some quantities with N and the latter, being returned by P 's ora
le,

is random.

Towards the proof of Lemma 2 we
onsider a new game and a lemma about it. The game is

parameterized by integers m; � � 1. Let I denote the set of all strings of length at most m and

let f : I ! f0; 1g

�

. We
onsider an adversary with a

ess to two ora
les, XTag

f

(�) and XVf

f

(�; �).

The xor-tag ora
le XTag

f

(�) takes input a set S � I and returns

P

x2S

f(x), the sum here being

modulo two, ie. XOR. The xor-verify ora
le XVf

f

(�; �) takes input a set S � I and a string T . It

returns 1 if T =

P

x2S

f(x) and 0 otherwise. We require that A make exa
tly one query to its

xor-verify ora
le and that this be its last ora
le query. (That is, it makes a sequen
e of queries to

its xor-tag ora
le, then a query to its xor-verify ora
le, and then halts.) We say that A forges if its

query to its xor-verify ora
le results in the ora
le returning 1. We let

Adv

xtag

m;�

(A) = Pr

h

f

$

 R

I

�

: A

XTag

f

(�);XVf

f

(�;�)

forges

i

:

Towards stating the lemma we need about this advantage, we need some notation. Let
 = jIj

and let x

1

; : : : ; x

denote a lexi
ographi
 ordering of I. If S � I we let ChV(S) denote its
-bit

hara
teristi
 ve
tor, meaning ChV(S)[j℄ = 1 if x

j

2 S and 0 otherwise (1 � j �
). Suppose

adversary A makes xor-tag queries S

1

; : : : ; S

q

and �nally a xor-verify query (S; T). We say that

A is rank respe
ting if ChV(S) is not a linear
ombination of ChV(S

1

); : : : ;ChV(S

q

). (This must

be true regardless of ora
le responses and regardless of A's internal
oins.) In
onsidering linear

ombinations we are working over the �eld of two elements.

Lemma 7 Let m; � � 1 be integers and let A be a rank-respe
ting adversary. Then

Adv

xtag

m;�

(A) � 2

��

:

2

Proof of Lemma 7: This lemma is pretty mu
h impli
it in [2, 3℄, but for
ompleteness we provide

a proof here. First, some notation. Let I be the set of all strings of length at mostm and let
 = jIj.

When we write a sum of ve
tors, we mean the ve
tors are being added
omponentwise modulo 2.

When we write a sum of � -bit strings, we mean the bitwise XOR.

We begin by
onsidering the adversary B depi
ted in Figure 8. It has the following features:

� Adv

xtag

m;�

(B) = Adv

xtag

m;�

(A).

� B makes exa
tly
� 1 xor-tag ora
le queries.

18

Adversary B

XTag

f

(�);XVf

f

(�;�)

i 0 ;

Run A

When A makes an xor-tag query S

if ChV(S) is linearly dependent on ChV(S

1

); : : : ;ChV(S

i

)

then Let L � f1; : : : ; ig be su
h that ChV(S) =

P

l2L

ChV(S

l

) ; A

i

P

l2L

A

l

else i i+ 1 ; S

i

 S ; A

i

 XTag

f

(S

i

)

Return A

i

to A as the ora
le response

When A makes an xor-verify query (S; T)

for j = i+ 1; : : : ;
� 1 do

Pi
k some S

j

� I su
h that ChV(S);ChV(S

1

); : : : ;ChV(S

j

) are linearly independent

A

j

 XTag

f

(S

j

)

Return XVf

f

(S; T) to A as the ora
le response

Figure 8: Adversary for the proof of Lemma 7.

� B makes exa
tly one xor-verify query and this is the last ora
le query it makes.

� Let S

1

; : : : ; S

�1

be the xor-tag ora
le queries made by B, and let S

be the �rst
omponent of

the pair that
onstitutes the xor-verify ora
le query made by B. Then ChV(S

1

); : : : ;ChV(S

)

are linearly independent.

To
omplete the proof we will show that Adv

xtag

m;�

(B) � 2

��

.

Let f : I ! f0; 1g

�

denote the fun
tion
hosen at random in the game. Let S

i

be the random

variable taking value the i-th xor-tag ora
le query made by B (1 � i �
�1), and let S

denote the

random variable taking value the �rst
omponent of the pair that
onstitutes the xor-verify ora
le

query made by B. For 1 � i �
 let A

i

be the random variable taking value the response returned

by the game to xor-tag ora
le query S

i

. (Query S

is not made to the xor-tag ora
le by B, but we

de�ne the random variable whose value is its response anyway). That is:

A

i

=

X

x2S

i

f(x) (1 � i �
) :

Let S

1

; : : : ; S

�1

be any sequen
e of xor-tag queries made by B, and let A

1

; : : : ; A

�1

be responses

returned to them. Let S

be the �rst
omponent of the pair
onstituting a following xor-verify

query made by B. Let A

be any � -bit strings. We
laim that

Pr [A

= A

j (S

1

; : : : ;S

;A

1

; : : : ;A

�1

) = (S

1

; : : : ; S

; A

1

; : : : ; A

�1

) ℄ = 2

��

; (5)

the probability being over the
hoi
e of the fun
tion f alone. This implies that Adv

xtag

m;�

(B) = 2

��

,

whi
h
ompletes the proof. It remains to justify Equation (5).

Let M be the
 � 1 by
 matrix whose i-th row is ChV(S

i

) (1 � i �
 � 1) and let M be the

 by
 matrix whose i-th row is ChV(S

i

) (1 � i �
). Sin
e ChV(S

1

); : : : ;ChV(S

) are linearly

independent, M is non-singular. Let x

1

; : : : ; x

denote a lexi
ographi
 ordering of I. We identify

f with the (
olumn) ve
tor f = (f(x

1

); : : : ; f(x

)). Below we use \�" to denote matrix-ve
tor

19

multipli
ation. Then we have

Pr [A

= A

j (S

1

; : : : ;S

;A

1

; : : : ;A

�1

) = (S

1

; : : : ; S

; A

1

; : : : ; A

�1

) ℄

=

jf f 2 R

I

�

: M � f = (A

1

; : : : ; A

) gj

jf f 2 R

I

�

: M � f = (A

1

; : : : ; A

�1

) gj

=

jf f 2 R

I

�

: M � f = (A

1

; : : : ; A

) gj

P

A2f0;1g

�

jf f 2 R

I

�

: M � f = (A

1

; : : : ; A

�1

; A) gj

=

1

P

A2f0;1g

�

1

(6)

=

1

2

�

:

Above, Equation (6) is true be
ause M is non-singular.

We will now use Lemma 7 to prove Lemma 2.

Proof of Lemma 2: Let B be an adversary atta
king the authenti
ity of EAX2[�;R

n

n

; � ℄. Assume

it makes at most q

e

en
ryption ora
le queries, has data
omplexity at most �, and running time

at most t. Let m be large enough that no string in an ora
le query of B has length ex
eeding m,

regardless of ora
le responses and regardless of A's internal
oins. Let I be the set of all strings of

length at most m. For any f : I ! f0; 1g

n

we de�ne:

Algorithm EE

N H

f

(M)

N f([0℄

n

kN)

H f([1℄

n

kH)

C

$

 f0; 1g

jM j

C f([2℄

n

k C)

Tag N�C�H

T Tag [�rst � bits℄

return CT C k T

Algorithm

d

DD

N H

f

(CT)

if jCT j < � then return Invalid

Let C k T CT where jT j = �

N f([0℄

n

kN)

H f([1℄

n

kH)

C f([2℄

n

k C)

Tag

0

 N�C�H

T

0

 Tag

0

[�rst � bits℄

if T 6= T

0

then return Invalid else return 1

We let

Adv

rauth

(B) = Pr

h

f

$

 R

I

n

: B

EE

� �

f

(�);

d

DD

� �

f

(�)

forges

i

:

We will
onstru
t a rank-respe
ting adversary A su
h that

Adv

rauth

(B) � Adv

xtag

m;�

(A) : (7)

We will also
onstru
t an adversary P , using resour
es t

0

; q; � and atta
king the priva
y of �, su
h

that

Adv

auth

EAX2[�;R

n

n

;� ℄

(B)�Adv

rauth

(B) � Adv

priv

�

(P) : (8)

Thus we have

Adv

auth

EAX2[�;R

n

n

;� ℄

(B) = Adv

rauth

(B) +

�

Adv

auth

EAX2[�;R

n

n

;� ℄

(B)�Adv

rauth

(B)

�

� Adv

xtag

m;�

(A) +Adv

priv

�

(P)

� 2

��

+Adv

priv

�

(t

0

; q; �) ;

20

where the last inequality uses Lemma 7. This
ompletes the proof of the lemma. It remains to

onstru
t the adversaries A and P indi
ated above.

Adversary A

XTag

f

(�);XVf

f

(�;�)

de�nes the following subroutines:

Subroutine SimE

N H

(M)

C

$

 f0; 1g

jM j

S f [0℄

n

kN; [1℄

n

kH; [2℄

n

k C g

T XTag

f

(S)

return CT C k T

Subroutine SimD

N H

(CT)

if jCT j < � then return Invalid

Let C k T CT where jT j = �

S f [0℄

n

kN; [1℄

n

kH; [2℄

n

k C g

if XVf

f

(S; T) = 0 then return Invalid

else return 1

Adversary A then runs B

SimE

� �

(�);SimD

� �

(�)

. Equation (7) is true be
ause for any
hoi
e of the

underlying fun
tion f we have SimE

� �

(�) = EE

� �

f

(�) and SimD

� �

(�) =

d

DD

� �

f

(�). It remains to show

that A is rank-respe
ting. Let
 = jIj and let x

1

; : : : ; x

denote a lexi
ographi
 ordering of I. For

1 � i � q let (N

i

;H

i

;M

i

) be the i-th en
ryption-ora
le query made by B, leading to A making xor-

tag query S

i

, and let (N;H;CT) denote the veri�
ation query made by B, leading to A making

xor-verify query (S; T). Let CT = C k T where jT j = � . Imagine a matrix whose i-th row is

ChV(S

i

) (1 � i � q) and whose (q + 1)-th row is ChV(S). Column j is
alled a l-
olumn if x

j

is

pre�xed by [l℄

n

(0 � l � 2 and 1 � j �
). Sin
e A is non
e-respe
ting there exists a set D of q

0-
olumns su
h that the submatrix formed by the �rst q rows of the matrix and the
olumns in

D is a q by q identity matrix. Sin
e ChV(S) has exa
tly one 1 in a 0-
olumn, the only way that

ChV(S)
ould be a linear
ombination of ChV(S

1

); : : : ;ChV(S

q

) is that it equals ChV(S

i

) for some

i (1 � i � q). This means that N = N

i

, H = H

i

and the response to B's i-th ora
le query was

CT . But this
ontradi
ts the
ondition we imposed on B that disallowed a veri�
ation-ora
le query

(N;H;CT) su
h that CT had been obtained in response to an en
ryption-ora
le query (N;H;M).

(It is important here that we required the
ondition to hold regardless of the responses to ora
le

queries and the
oin tosses of B.) So ChV(S)
annot equal ChV(S

i

). This
ompletes the proof

that A is rank-respe
ting.

We now turn to the design of adversary P . It is depi
ted in Figure 9. It is an extension of

the adversary
onstru
ted in the proof of Lemma 1 that also handles veri�
ation-ora
le queries.

A
ru
ial feature of EAX2 we have exploited in order to be able to respond to veri�
ation-ora
le

queries is that the validity of a
iphertext
an be veri�ed without de
rypting under the IVE s
heme.

Regarding the design of P , our �rst
laim is that its assignment of a value to f([0℄

n

k N), made

in answering an en
ryption-ora
le query of B, is legitimate be
ause f([0℄

n

kN) was not previously

de�ned. This is true for two reasons. The �rst is that B is non
e-respe
ting. The se
ond is that B

does not make any en
ryption-ora
le queries after it has made its veri�
ation-ora
le query. (The

veri�
ation-ora
le query might de�ne f([0℄

n

kN), but sin
e no en
ryption-ora
le queries follow we

do not have to be
on
erned about f([0℄

n

kN) being de�ned at the time of answering one of them.)

Now we turn to the analysis. Let Key2 be the key-spa
e of �. It is easy to see that

Pr

h

K2

$

 Key2 : P

E

$

K2

(�)

= 1

i

= Adv

auth

EAX2[�;R

n

n

;� ℄

(B) (9)

Pr

h

K2

$

 Key2 : P

$(�)

= 1

i

= Adv

rauth

(B) : (10)

Subtra
ting, we get Equation (8), and this
on
ludes the proof.

Proof of Theorem 3: Let A be an adversary using resour
es at most (t; q; �) that atta
ks

the authenti
ity of � = (E;D) = EAX2[�; F; � ℄. Using A, we
onstru
t an adversary B for

21

Adversary P

e(�)

Initially, f is everywhere unde�ned

Run B

When B makes en
ryption-ora
le query (N;H;M):

N k C

$

 e(M) // where jNj = n

f([0℄

n

kN) N

if f([1℄

n

kH) is unde�ned then H f([1℄

n

kH)

$

 f0; 1g

n

if f([2℄

n

k C) is unde�ned then C f([2℄

n

k C)

$

 f0; 1g

n

Let T be the �rst � bits of N�H�C

Return CT C k T to B as the ora
le response

When B makes veri�
ation-ora
le query (N;H;CT):

if jCT j < � then return Invalid to B as the ora
le response

Let C k T CT where jT j = �

if f([0℄

n

kN) is unde�ned then f([0℄

n

kN)

$

 f0; 1g

n

N f([0℄

n

kN)

if f([1℄

n

kH) is unde�ned then f([1℄

n

kH)

$

 f0; 1g

n

H f([1℄

n

kH)

if f([2℄

n

k C) is unde�ned then f([2℄

n

k C)

$

 f0; 1g

n

C f([2℄

n

k C)

Let T

0

be the �rst � bits of N�H�C

if T = T

0

then d 1 else d 0

if d = 0

then return Invalid to B as the ora
le response

else return 1 to B as the ora
le response

return d

Figure 9: Adversary P atta
king the priva
y of IVE s
heme � in the proof of Lemma 2.

distinguishing f

$

 F from f

$

 R

n

n

. Adversary B, whi
h has ora
le f , works as follows. At the

beginning of B's exe
ution it
hooses K2

$

 Key2 where Key2 is the key spa
e of �. Then B

runs A. When A makes an ora
le query (N

i

;H

i

;M

i

) adversary B
omputes N

i

 f([0℄

n

kN

i

) and

C

i

 E

N

i

K2

(M

i

) and H

i

 f([1℄

n

kH

i

) and C

i

 f([2℄

n

k C

i

) and T

i

 (N

i

�C

i

�H

i

) [�rst � bits℄

and CT

i

 C

i

kT

i

and then B returns to A the string CT

i

. When A halts, outputting an attempted

forgery (N;H;C k T), adversary B
he
ks if this is a valid forgery: (1) it
he
ks if (N;H;C k T) is

distin
t from every (N

i

;H

i

; C

i

k T

i

) that has been
omputed; (2) it
omputes N f([0℄

n

kN) and

H f([1℄

n

kH) and C f([2℄

n

k C) and sees if T = (N�H�C) [�rst � bits℄. If both
onditions

hold then B returns the bit 1 (it guesses that f = F

K1

for a random K1) and otherwise it outputs

the bit 0 (it guesses that f is a random fun
tion from R

n

n

).

Note that B makes a total of 3q + 3 ora
le
alls. The total length of those queries is �. (Re
all

our
onvention that we in
lude in � the output length and the number of
omponents in ea
h

ve
tor that is queried.) The running time of B is t

1

= t+Time

E

(�) +

e

O(�). Finally, adversary B

22

provides A a perfe
t simulation of EAX2[�; F; � ℄ if f is sele
ted by f

$

 F while B provides A a

perfe
t simulation of EAX2[�;R

n

n

; � ℄ if f

$

 R

n

n

. Thus using Lemma 2 we have that

Adv

auth

EAX2[�;F;� ℄

(A)

=

�

Adv

auth

EAX2[�;F;� ℄

(A) �Adv

auth

EAX2[�;R

n

n

;� ℄

(A)

�

+Adv

auth

EAX2[�;R

n

n

;� ℄

(A)

�

�

Pr[f

$

 F : B

f

= 1℄� Pr[f

$

 R

n

n

: B

f

= 1℄

�

+ 2

��

+Adv

priv

�

(t

2

; q; �)

= Adv

prf

F

(B) +Adv

priv

�

(t

2

; q; �) + 2

��

� Adv

prf

F

(t

1

; 3q + 3; �) +Adv

priv

�

(t

2

; q; �) + 2

��

:

This
ompletes the proof of Equation (1).

Reusing the name, let A be an adversary that atta
ks the priva
y of � = (E;D) and uses resour
es

at most (t; q; �). Reusing the name, we
onstru
t an adversary B for atta
king the pseudorandom-

ness of F .

Adversary B, whi
h has an ora
le for f , is
onstru
ted as follows. At the beginning of B's exe
ution

it
hooses K2

$

 Key2 where Key2 is the key spa
e of �. Then B runs A. When A makes an ora
le

all (N

i

;H

i

;M

i

) adversary B
omputes N

i

 f([0℄

n

kN

i

) and C

i

 E

N

i

K2

(M

i

) and H

i

 f([1℄

n

kH

i

)

and C

i

 f([2℄

n

k C

i

) and T

i

 (N

i

�C

i

�H

i

) [�rst � bits℄ and CT

i

 C

i

k T

i

and then B returns

to A the string CT

i

. When A halts, outputting a bit b, adversary B outputs the same bit b.

The total number of ora
le queries made by B is 3q. The total length of these queries is at most �.

The running time of B is t

3

= t + Time

E

(�) +

e

O(�). Finally, adversary B provides A a perfe
t

simulation of EAX2[�; F; � ℄ if f is sele
ted by f

$

 F while B provides A a perfe
t simulation of

EAX2[�;R

n

n

; � ℄ if f

$

 R

n

n

. Now using Lemma 1 we have that

Adv

priv

EAX2[�;F;� ℄

(A) =

�

Adv

priv

EAX2[�;F;� ℄

(A)�Adv

priv

EAX2[�;R

n

n

;� ℄

(A)

�

+Adv

priv

EAX2[�;R

n

n

;� ℄

(A)

�

�

Pr[f

$

 F : B

f

= 1℄� Pr[f

$

 R

n

n

: B

f

= 1℄

�

+Adv

priv

�

(t

2

; q; �)

= Adv

prf

�

(B) +Adv

priv

�

(t

2

; q; �)

� Adv

prf

�

(t

3

; 3q; �) +Adv

priv

�

(t

2

; q; �)

This
ompletes the proof of Equation (2).

B Proof of Se
urity of the Tweakable-OMAC Extension

Proof of Lemma 4: Let A be a length-respe
ting adversary for distinguishing OM A C [R

n

n

℄ from

a random fun
tion. Assume that A uses resour
es (�

1

; �

2

). Without loss of generality we assume

that A is deterministi
 and makes no repeated queries. We simulate the behavior of an OM A C [R

n

n

℄

ora
le as show in Figure 10. That �gure depi
ts a me
hanism, game Q1, that
oin
ides with the

de�nition of OM A C [R

n

n

℄. As before, we use the notation

e

X for the padded version of the string X,

namely

e

X = X10

n�jXj�1

.

Game Q1 is not the most obvious simulation of an OM A C [R

n

n

℄ ora
le. In parti
ular, the game

distinguishes among the following
ases: one-blo
k messages that are a full n bits (line 10); one-

blo
k messages that fall short of n bits (line 11); messages with two or more blo
ks where the �nal

23

Initialization

00 �

$

 R

n

n

01 L

0

 �([0℄

n

) ; L

1

 �([1℄

n

) ; L

2

 �([2℄

n

)

On query (t; M; s), where t 2 f0; 1; 2g and M =M

1

� � �M

m

and s 2 N

10 if jM j = n then T �(M

1

�L

t

� 2L

0

)

20 elseif jM j < n then T �(

f

M

1

�L

t

� 4L

0

)

30 else if Y [t; M

1

℄ is unde�ned then Y [t; M

1

℄ �(M

1

�L

t

)

31 u the largest number in [1 :: m� 1℄ s.t. Y [t; M

1::u

℄ is de�ned

32 for j u+ 1 to m� 1 do Y [t; M

1::j

℄ �(Y [t; M

1::j�1

℄�M

j

)

33 if jM

m

j = n then T �(Y [t; M

1::m�1

℄�M

m

� 2L

0

)

34 if jM

m

j < n then T �(Y [t; M

1::m�1

℄�

g

M

m

� 4L

0

)

40 for j 0 to s� 1 do S

j

 �(T+j�1)

50 return T k S

0

� � � S

s�1

Figure 10: Game Q1, whi
h perfe
tly simulates an OMAC

t

�

ora
le for t 2 f0; 1; 2g and � a random fun
tion

from R

n

n

.

blo
k is a full blo
k (line 33); and messages with two or more blo
ks where the �nal blo
k is a short

blo
k (line 34). In addition to breaking into these
ases, we implement memoization by way of the

array Y . In parti
ular, when a query M

1

: : :M

m

is asked we re
ord (memoize) the intermediate

values that we get as we CBC our way downM

1

� � �M

m�1

. If any of pre�xesM

1

;M

1::2

; : : : ;M

1::m�1

should arise again with the same tweak we will not re-
ompute the values needed as we
hain down

the message, looking up the answer in the array Y instead. Noti
e that memoization stops one

blo
k short of the �nal blo
k M

m

and that the memoization is tweak-dependent.

To help us understand the behavior of game Q1 we make some
hanges to it, yielding game Q2,

de�ned in Figure 11. As is standard, gameQ2 avoids
hoosing �

$

 R

n

n

at the beginning and instead

�lls in values in
rementally. Any time we need a �(X) value, if it is not yet de�ned then we
hoose

a value at random from f0; 1g

n

and make this to be �(X). Any time we need a value for �(X) that

has been de�ned already, we use that old value. In the latter
ase we also set a
ag bad. The
ag

bad e�e
ts nothing visible to the adversary, but it is
entral to our subsequent analysis. It is easy

to verify that games Q1 and Q2 provide identi
al views to any adversary that intera
ts with them,

so Pr[A

Q1

= 1℄ = Pr[A

Q2

= 1℄.

Also de�ned in Figure 11 is gameR1. This game is obtained by dropping the highlighted statements

from game Q1. We only omit statements that immediately follow the setting of the
ag bad. The

game R1 is easily seen to return n(s � 1) random bits in response to any query (t;M; s). Thus

Adv

dist

Q2;R1

(A) = jPr[A

Q2

= 1g � jPr[A

R1

= 1gj � Pr[A

R1

sets bad ℄. This is the standard setup

for analyses within the game-playing paradigm.

To more easily understand game R1 we rewrite it a bit, resulting in the game R2 shown in

Figure 12. To understand the
hange from game R1 to game R2 noti
e that, having eliminated

the seven highlighted statements of game Q2, the �(X)-values are no longer a
tually used in

game R1: all that one needs to keep tra
k of is whether or not a point X has already been pla
ed

into the the domain of �. Thus game R2
eases to keep tra
k of �-values; instead, we re
ord in the

variable R what would be the domain of � at this point in time. So R starts o� as f[0℄

n

; [1℄

n

; [2℄

n

g

24

Initialization

00 L

0

$

 f0; 1g

n

; L

1

$

 f0; 1g

n

; L

2

$

 f0; 1g

n

01 �([0℄

n

) L

0

; �([1℄

n

) L

1

; �([2℄

n

) L

2

02 bad false

On query (t; M; s), where t 2 f0; 1; 2g and M =M

1

� � �M

m

and s 2 N

05 T

$

 f0; 1g

n

10 if jM j = n then

11 X

1

 M

1

�L

t

� 2L

0

; if X

1

2 Domain(�) then bad true , T �(X

1

)

12 �(X

1

) T

20 elseif jM j < n then

21 X

1

f

M

1

�L

t

� 4L

0

; if X

1

2 Domain(�) then bad true , T �(X

1

)

22 �(X

1

) T

30 else if Y [t; M

1

℄ is unde�ned then

31 X

1

 M

1

�L

t

; Y [t; M

1

℄

$

 f0; 1g

n

32 if X

1

2 Domain(�) then bad true , Y [t; M

1

℄ �(X

1

)

33 �(X

1

) Y [t; M

1

℄

40 u the largest number in [1 :: m� 1℄ s.t. Y [t; M

1::u

℄ is de�ned

41 for j u+ 1 to m� 1 do

42 X

j

 Y [t; M

1::j�1

℄�M

j

; Y [t; M

1::j

℄

$

 f0; 1g

n

43 if �(X

j

) is de�ned then bad true , Y [t; M

1::j

℄ �(X

j

)

44 �(X

m

) Y [t; M

1::j

℄

50 if jM

m

j = n then

51 X

m

 Y [t; M

1::m�1

℄�M

m

� 2L

0

52 if X

m

2 Domain(�) then bad true , T �(X

m

)

53 �(X

m

) T

60 if jM

m

j < n then

61 X

m

 Y [t; M

1::m�1

℄�

g

M

m

� 4L

0

62 if X

m

2 Domain(�) then bad true , T �(X

m

)

63 �(X

m

) T

70 for j 0 to s� 1 do

71 S

j

$

 f0; 1g

n

72 if T+j�1 2 Domain(�) then bad true , S

j

 �(T+j�1)

73 �(T+j�1) S

j

80 return T k S

0

� � �S

s�1

Figure 11: Game Q2, whi
h is equivalent to game Q1. Game R1 is obtained by omitting the highlighted

statements.

25

(
orresponding to the fa
t that �([0℄

n

), �([1℄

n

), and �([2℄

n

) are de�ned in game R1) and then,

whenever a point X would have been pla
ed into the domain of �, with some value being assigned

to �(X), we simply add X to the set R, not bothering with anything else. Instead of testing if a

given point is in the domain of � we test if it is in R. At this point we noti
e that the random

value T is not used until the �nal lines of the game, so, for added
larity, we move down in the

program the
hoosing of the random value T . We have that Pr[A

R1

sets bad ℄ = Pr[A

R2

sets bad ℄.

Given what we have said so far, Adv

prf

OM A C [R

n

n

℄

(A) = Adv

dist

Q1;R2

(A) � Pr[A

R2

sets bad℄. Our job

has been redu
ed to understanding the adversary's
han
e of setting bad in game R2.

Let us dispense right away with the the
han
e that bad is set at line 73. The value T is
hosen at

random at line 70 and then we see if any of the s points T; T + 1; : : : ; T + s � 1 are in the set R.

Now jRj � �

1

+ �

2

+ 3 throughout the exe
ution of game R2 and we are testing for the presen
e

of at most �

2

points in R, and so

Pr[bad gets set at line 73 of game R2℄ �

�

2

(�

1

+ �

2

+ 3)

2

n

(11)

Let game R3
oin
ide with game R2 ex
ept for eliminating line 73. The probability that bad

gets set in game R2 is at most the probability that bad gets set in line 73 of game R2 plus the

probability that bad gets set in a line other than line 73 of game R2. So by equation (11) we have

that

Pr[bad gets set in game R2℄ � Pr[bad gets set in game R3℄ +

�

2

(�

1

+ �

2

+ 3)

2

n

(12)

We pro
eed with the analysis of game R3.

The values S

j

returned to the adversary in game R3 have no impa
t on any internal variable

maintained by the game (these values are
hosen, returned to the adversary, and never used again).

The only signi�
an
e of the q T -values returned to the adversary is to de�ne some �

2

R-values|

values that the adversary does not
ontrol

5

. Thus we will only be giving the adversary more power

if we allow it to sele
t an initial set of �

2

+3 values for R (the \+3" re
e
ting the three values that

were assigned to R at line 01) and have it intera
t no further with the game, sin
e everything is at

that point determined. In other words, the game is made nonintera
tive, but we maximize over all

possible
hoi
es fR

1

; : : : ;R

�

2

+3

g of initial values for R. The adversary's
orresponding queries are

now �xed. The modi�ed game is shown in Figure 13. We regard all of q and t

1

; : : : ; t

q

2 f0; 1; 2g

and strings M

1

; : : : ; M

q

having blo
k lengths m

1

; : : : ; m

q

and strings R

1

; � � � ;R

�

2

+3

2 f0; 1g

n

as �xed

onstants asso
iated to the game. We must bound the probability that bad gets set to true in

game S. We do that with a
ase analysis.

If the
ag bad gets set in game S it is be
ause a point X

s

j

gets
omputed in one of lines 11, 21, 31,

41, 51, 61 (six possibilities), but that point was already pla
ed in R by an earlier exe
ution of one

of lines 01, 12, 22, 33, 43, 53, 63 (seven possibilities). This gives a total of 6 � 7 = 42
ases. We

refer to the \
urrent" point as X

s

j

and the \earlier" point as X

r

i

. The
urrent point must follow

the earlier point under the natural ordering. The
urrent point X

s

j

and the earlier point X

r

i

an

be set as any of the following:

5

Stri
tly speaking, the atta
ker
an
ontrol s for ea
h invo
ation. However, it is still true that we are only giving

the adversary more power if we allow the adversary to sele
t �

2

+ 3 values in advan
e rather than observing the S-

and T -values as we go.

26

Initialization

00 L

0

$

 f0; 1g

n

; L

1

$

 f0; 1g

n

; L

2

$

 f0; 1g

n

01 R f[0℄

n

; [1℄

n

; [2℄

n

g

02 bad false

On query (t; M; s), where t 2 f0; 1; 2g and M =M

1

� � �M

m

and s 2 N

10 if jM j = n then

11 X

1

 M

1

�L

t

� 2L

0

; if X

1

2 R then bad true

12 R R [fX

1

g

20 elseif jM j < n then

21 X

1

f

M

1

�L

t

� 4L

0

; if X

1

2 R then bad true

22 R R [fX

1

g

30 else if Y [t; M

1

℄ is unde�ned then

31 X

1

 M

1

�L

t

; Y [t; M

1

℄

$

 f0; 1g

n

32 if X

1

2 R then bad true

33 R R [fX

1

g

40 u the largest number in [1 :: m� 1℄ s.t. Y [t; M

1::u

℄ is de�ned

41 for j u+ 1 to m� 1 do

42 X

j

 Y [t; M

1::j�1

℄�M

j

; Y [t; M

1::j

℄

$

 f0; 1g

n

43 if X

j

2 R then bad true

44 R R [fX

j

g

50 if jM

m

j = n then

51 X

m

 Y [t; M

1::m�1

℄�M

m

� 2L

0

52 if X

m

2 R then bad true

53 R R [fX

m

g

60 if jM

m

j < n then

61 X

m

 Y [t; M

1::m�1

℄�

g

M

m

� 4L

0

62 if X

m

2 R then bad true

63 R R [fX

m

g

70 T

$

 f0; 1g

n

71 for j 0 to s� 1 do

72 S

j

$

 f0; 1g

n

73 if T+j�1 2 R then bad true

74 R R [fT; T+1; : : : ; T+s�1g

80 return T k S

0

� � � S

s�1

Figure 12: Game R2, whi
h is equivalent to R1 but no longer maintains the fun
tion �.

27

00 L

0

$

 f0; 1g

n

; L

1

$

 f0; 1g

n

; L

2

$

 f0; 1g

n

01 R fR

1

; : : : ;R

�

2

+3

g

02 bad false

05 for s 1 to q do

10 if jM

s

j = n then

11 X

s

1

 M

s

1

�L

t

s

� 2L

0

; if X

s

1

2 R then bad true

12 R R [fX

s

1

g

20 elseif jM

s

j < n then

21 X

s

1

e

M

s

1

�L

t

s

� 4L

0

; if X

s

1

2 R then bad true

22 R R [fX

s

1

g

30 else if Y [t

s

; M

s

1

℄ is unde�ned then

31 X

s

1

 M

s

1

�L

t

s

; Y [t

s

; M

s

1

℄

$

 f0; 1g

n

32 if X

s

1

2 R then bad true

33 R R [fX

s

1

g

35 u the largest number in [1 :: m

s

� 1℄ s.t. Y [t

s

; M

s

1::u

℄ is de�ned

40 for j u+ 1 to m

s

� 1 do

41 X

s

j

 Y [t

s

; M

s

1::j�1

℄�M

s

j

; Y [t

s

; M

s

1::j

℄

$

 f0; 1g

n

42 if X

s

j

2 R then bad true

43 R R [fX

s

j

g

50 if jM

s

m

s

j = n then

51 X

s

m

s

 Y [t

s

; M

s

1::m

s

�1

℄�M

s

m

s

� 2L

0

52 if X

s

m

s

2 R then bad true

53 R R [fX

s

m

s

g

60 if jM

s

m

s

j < n then

61 X

s

m

s

 Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

m

s

� 4L

0

62 if X

s

m

s

2 R then bad true

63 R R [fX

s

m

s

g

Figure 13: Game S, the nonintera
tive game that the analysis fo
uses on.

28

ase earlier point X

r

i

urrent point X

s

j

Pr[X

r

i

= X

s

j

℄ explanation

1 R

`

M

s

1

�L

t

s

� 2L

0

2

�n

randomness of L

0

2 M

r

1

�L

t

r

� 2L

0

M

s

1

�L

t

s

� 2L

0

0 or 2

�n

no repeated queries /

randomness of L

t

s

3

f

M

r

1

�L

t

r

� 4L

0

M

s

1

�L

t

s

� 2L

0

2

�n

randomness of L

0

4 M

r

1

�L

t

r

M

s

1

�L

t

s

� 2L

0

2

�n

randomness of L

0

5 Y [t

r

; M

r

1::i�1

℄� M

r

i

M

s

1

�L

t

s

� 2L

0

2

�n

randomness of L

0

6 Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

M

s

1

�L

t

s

� 2L

0

2

�n

randomness of Y [t

r

; M

r

1::m

r

�1

℄

7 Y [t

r

; M

s

1::m

r

�1

℄�

f

M

r

i

� 4L

0

M

s

1

�L

t

s

� 2L

0

2

�n

randomness of Y [t

r

; M

r

1::m

r

�1

℄

8 R

`

f

M

s

1

�L

t

s

� 4L

0

2

�n

randomness of L

0

9 M

r

1

�L

t

r

� 2L

0

f

M

s

1

�L

t

s

� 4L

0

2

�n

randomness of L

0

10

f

M

r

1

�L

t

r

� 4L

0

f

M

s

1

�L

t

s

� 4L

0

0 or 2

�n

no repeated queries /

randomness of L

t

s

11 M

r

1

�L

t

r

f

M

s

1

�L

t

s

� 4L

0

2

�n

randomness of L

0

12 Y [t

r

; M

r

1::i�1

℄� M

r

i

f

M

s

1

�L

t

s

� 4L

0

2

�n

randomness of L

0

13 Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

f

M

s

1

�L

t

s

� 4L

0

2

�n

randomness of Y [t

r

; M

r

1::m

r

�1

℄

14 Y [t

r

; M

s

1::m

r

�1

℄�

f

M

r

i

� 4L

0

f

M

s

1

�L

t

s

� 4L

0

2

�n

randomness of Y [t

r

; M

r

1::m

r

�1

℄

15 R

`

M

s

1

�L

t

s

2

�n

randomness of L

t

s

16 M

r

1

�L

t

r

� 2L

0

M

s

1

�L

t

s

2

�n

randomness of L

0

17

f

M

r

1

�L

t

r

� 4L

0

M

s

1

�L

t

s

2

�n

randomness of L

0

18 M

r

1

�L

t

r

M

s

1

�L

t

s

0 or 2

�n

memoization /

randomness of L

t

s

19 Y [t

r

; M

r

1::i�1

℄� M

r

i

M

s

1

�L

t

s

2

�n

randomness of L

t

s

20 Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

M

s

1

�L

t

s

2

�n

randomness of Y [t

r

; M

r

1::m

r

�1

℄

21 Y [t

r

; M

s

1::m

r

�1

℄�

f

M

r

i

� 4L

0

M

s

1

�L

t

s

2

�n

randomness of Y [t

r

; M

r

1::m

r

�1

℄

22 R

`

Y [t

s

; M

s

1::j�1

℄� M

s

j

2

�n

randomness of Y [t

s

; M

s

1::j�1

℄

23 M

r

1

�L

t

r

� 2L

0

Y [t

s

; M

s

1::j�1

℄� M

s

j

2

�n

randomness of Y [t

s

; M

s

1::j�1

℄

24

f

M

r

1

�L

t

r

� 4L

0

Y [t

s

; M

s

1::j�1

℄� M

s

j

2

�n

randomness of Y [t

s

; M

s

1::j�1

℄

25 M

r

1

�L

t

r

Y [t

s

; M

s

1::j�1

℄� M

s

j

2

�n

randomness of Y [t

s

; M

s

1::j�1

℄

26 Y [t

r

; M

r

1::i�1

℄� M

r

i

Y [t

s

; M

s

1::j�1

℄� M

s

j

0 or 2

�n

memoization /

randomness of L

t

s

27 Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

Y [t

s

; M

s

1::j�1

℄� M

s

j

2

�n

randomness of L

0

28 Y [t

r

; M

s

1::m

r

�1

℄�

f

M

r

i

� 4L

0

Y [t

s

; M

s

1::j�1

℄� M

s

j

2

�n

randomness of L

0

29 R

`

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

30 M

r

1

�L

t

r

� 2L

0

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

31

f

M

r

1

�L

t

r

� 4L

0

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

32 M

r

1

�L

t

r

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

33 Y [t

r

; M

r

1::i�1

℄� M

r

i

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

2

�n

randomness of L

0

34 Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

0 or 2

�n

no repeated queries /

randomness of Y [t

s

; M

s

1::m

s

�1

℄

35 Y [t

r

; M

s

1::m

r

�1

℄�

f

M

r

i

� 4L

0

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

2

�n

randomness of L

0

36 R

`

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

37 M

r

1

�L

t

r

� 2L

0

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

38

f

M

r

1

�L

t

r

� 4L

0

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

39 M

r

1

�L

t

r

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

40 Y [t

r

; M

r

1::i�1

℄� M

r

i

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

2

�n

randomness of L

0

41 Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

2

�n

randomness of L

0

42 Y [t

r

; M

s

1::m

r

�1

℄�

f

M

r

i

� 4L

0

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

0 or 2

�n

no repeated queries /

randomness of Y [t

s

; M

s

1::m

s

�1

℄

Figure 14: Case analysis for the proof of OM A C

29

line 01 X

0

`

R

`

line 12 X

r

1

M

r

1

�L

t

r

� 2L

0

line 22 X

r

1

f

M

r

1

�L

t

r

� 4L

0

line 33 X

r

1

M

r

1

�L

t

r

line 44 X

r

i

Y [t

r

; M

r

1::i�1

℄� M

r

i

line 53 X

r

m

r

Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

line 63 X

r

m

r

Y [t

r

; M

r

1::m

r

�1

℄�

f

M

r

i

� 4L

0

line 11 X

s

1

M

s

1

�L

t

s

� 2L

0

line 21 X

s

1

f

M

s

1

�L

t

s

� 4L

0

line 31 X

s

1

M

s

1

�L

t

s

line 41 X

s

j

Y [t

s

; M

s

1::j�1

℄� M

s

j

line 51 X

s

m

s

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

line 61 X

s

m

s

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

Ea
h
urrent point X

s

j

that gets
onsidered during game S has a \type" whi
h is one of the six

possibilities above. Ea
h earlier pointX

r

i

likewise has a \type" whi
h is one of the seven possibilities

above. The type of a point does not depend on random
hoi
es made during the exe
ution of the

game S; the type of a point is determined on
e the
onstants asso
iated to the game are �xed.

If we look at a pair of earlier/
urrent points (X

r

i

;X

s

j

) ea
h point will have some one parti
ular

type|there are 42 pairs of types in all.

We now
laim that for any
urrent point X

s

j

and any earlier point X

r

i

, the probability that the

values assigned to these two points are the same is at most 2

�n

. This is veri�ed by a
ase analysis,

going over all 42 possibilities for the type of X

r

i

and X

s

i

. The
ase analysis is outlined in Figure 14.

We add justi�
ation to three representative examples:

Case 2. We are trying to bound Pr[M

r

1

�L

t

r

� 2L

0

= M

s

1

�L

t

s

� 2L

0

℄ = Pr[M

r

1

�M

s

1

= L

t

r

�L

t

s

℄

where r < s. Here jM

r

j < n and jM

s

j < n. Sub
ase 2A: if t

r

= t

s

then M

r

6= M

s

be
ause

of the
onstraint that adversary A was allowed to make no (t;M; s) query following an earlier

(t;M; r) query, and so the indi
ated probability is 0. Sub
ase 2B: if t

r

6= t

s

then L

t

r

and L

t

s

are random and independent, and so Pr[M

r

1

�M

s

1

= L

t

r

�L

t

s

℄ = 2

�n

.

Case 9. We are bounding Pr[M

r

1

�L

t

r

� 2L

0

=

f

M

s

1

�L

t

s

� 4L

0

℄ = Pr[M

r

1

�

f

M

s

1

= L

t

r

�L

t

s

� 6L

0

℄.

If t

r

= t

s

then this is Pr[M

r

1

�

f

M

s

1

= 6L

0

℄ = 2

�n

be
ause L

0

is random and independent of the

left-hand side. If t

r

= 0 and t

s

6= 0 then this is Pr[M

r

1

�

f

M

s

1

�L

t

s

= 7L

0

℄ = 2

�n

be
ause L

0

is random and independent of the left-hand side. The
ase for t

r

6= 0 and t

s

= 0 is the same

way, as is the
ase for t

r

6= 0 and t

s

6= 0 and t

r

6= t

s

.

Case 34. This
ase arises for messages M

r

and M

s

having two or more blo
ks and both messages

having a full �nal blo
k. We want to bound Pr[Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

= Y [t

s

; M

s

1::m

s

�1

℄�

M

s

j

� 2L

0

℄ whi
h is Pr[M

r

i

� M

s

j

= Y [t

r

; M

r

1::m

r

�1

℄�Y [t

s

; M

s

1::m

s

�1

℄℄. Observe that Y [t

r

; M

r

1::m

r

�1

℄

and Y [t

s

; M

s

1::m

s

�1

℄ are random from f0; 1g

n

, being
hosen from this set in an earlier exe
ution

of line 41 or line 31. If they are the identi
al random variable, that is, t

r

= t

s

and M

r

less its

�nal blo
k is identi
al to M

s

less its �nal blo
k, then Pr[M

r

i

�M

s

j

= 0℄ = 0 be
ause there are

no repeated queries. If they are di�erent random variables then they are independent and

Pr[M

r

i

� M

s

j

= Y [t

r

; M

r

1::m

r

�1

℄�Y [t

s

; M

s

1::m

s

�1

℄℄ = 2

�n

.

The justi�
ations for the remaining 39
ases are analogous. We leave the reader to
he
k the table,

whi
h is the te
hni
al heart of the proof.

We are now ready to
on
lude the proof. As the �

1

urrent points X

s

j

are
onsidered the probability

that the kth
urrent point X

s

j

ollides with a given earlier one of the k�1+�

2

+3 earlier points X

r

i

is at most 1=2

n

. Thus the probability that the kth
urrent point
oin
ides with some earlier point

is at most (k + �

2

+ 2)=2

n

. So the probability that some
urrent point
oin
ides with some earlier

one is at most

P

�

1

k=1

(k+ �

2

+2)=2

n

= �

1

(�

2

+3)=2

n

+

P

�

1

k=1

(k� 1)=2

n

� (�

1

�

2

+3�

1

+0:5�

2

1

)=2

n

.

30

Combining with Equation (12) and the prior arguments we
on
lude that

Adv

dist

OM A C [R

n

n

℄;$

n

(�

1

; �

2

) �

�

1

�

2

+ 3�

1

+ 0:5�

2

1

2

n

+

�

2

(�

1

+ �

2

+ 3)

2

n

=

0:5�

2

1

+ 2�

1

�

2

+ �

2

2

+ 3�

1

+ 3�

2

2

n

�

(�

1

+ �

2

+ 3)

2

2

n

This
ompletes the proof.

C Proofs of se
urity of EAX

Proof of Theorem 5: We begin with the priva
y
laim. Let A be an adversary using resour
es

(q; �) that is trying to distinguish EAX[R

n

n

; � ℄ from a sour
e of random bits. We
onstru
t an

adversary B that distinguishes OM A C [R

n

n

℄ from a sour
e of random bits. Adversary B has an

ora
le g that responds to queries (t;M; s) 2 f0; 1; 2g � f0; 1g

�

� N with a string RS

0

S

1

� � �S

s�1

,

ea
h named
omponent an n-bit string. Adversary B works as follows:

Algorithm B

g

10 Run A

11 When A makes an ora
le
all (N

i

; H

i

; M

i

), do the following:

12 s djM

i

j=ne

13 N

i

S

0

: : : S

s�1

 g(0; N

i

; s)

14 C

i

 M

i

� (S

0

� � �S

s�1

[�rst jM

i

j bits℄)

15 H

i

 g(1; H

i

; 0)

16 C

i

 g(2; C

i

; 0)

17 T

i

 N

i

�C

i

�H

i

[�rst � bits℄

18 Return, in response to A's query, C

i

k T

i

19 When A halts, outputting a bit b, return b

We may assume that adversary A makes q > 1 queries sin
e, otherwise, the result follows im-

mediately. Then, under our
onventions for the data
omplexity, adversary B uses resour
es at

most (2� � 3; �). Observe that Pr[A

EAX[R

n

n

;� ℄

= 1℄ = Pr[B

OM A C [R

n

n

℄

= 1℄. Also, sin
e A is non
e

respe
ting, B is length-respe
ting and Pr[A

$

= 1℄ = Pr[B

$

n

= 1℄. Using Lemma 4 we
on
lude

that

Adv

priv

EAX[R

n

n

;� ℄

(A) = Pr[A

EAX[R

n

n

;� ℄

= 1℄� Pr[A

$

= 1℄

= Pr[B

OM A C [R

n

n

℄

= 1℄� Pr[B

$

n

= 1℄

� Adv

dist

OM A C [R

n

n

;$

n

℄

(2� � 3; �)

�

(3�)

2

2

n

�

9�

2

2

n

This
ompletes the priva
y
laim.

31

Moving on to authenti
ity and reusing the name, letA be an adversary for atta
king the authenti
ity

of EAX[R

n

n

; � ℄ that uses resour
es at most �. Let

�

1

= Adv

auth

EAX[R

n

n

;� ℄

(A)

�

2

= Adv

auth

EAX2[CTR[R

n

n

℄;R

�

n

;� ℄

(A)

Æ = �

1

� �

2

By Lemma 2 and known results about the priva
y of CTR (
f. [1℄) we have

�

2

�

1

2

�

+Adv

priv

CTR[R

n

n

℄

(�)

�

1

2

�

+

�

2

2

n

:

Hen
e

�

1

= �

2

+ Æ � Æ +

�

2

2

n

+

1

2

�

:

We now turn to bounding Æ. To do this, reusing the name, we
onstru
t from A (the authenti
ity-

atta
king adversary) an adversaryB (with an ora
le for g and intended for distinguishingOM A C [R

n

n

℄

from a sour
e of random bits):

Algorithm B

g

10 Run A

20 When A makes an ora
le
all (N

i

; H

i

; M

i

), do the following:

21 s djM

i

j=ne

22 N

i

S

0

: : : S

s�1

 g(0; N

i

; s)

23 C

i

 M

i

� (S

0

� � �S

m�1

[�rst jM

i

j bits℄)

24 H

i

 g(1; H

i

; 0)

25 C

i

 g(2; C

i

; 0)

26 T

i

 N

i

�C

i

�H

i

27 In response to A's query, return C

i

k T

i

30 When A outputs a forgery attempt (N; H; C k T) and halts:

31
 djCj=ne

32 N g(0; N; 0)

33 H g(1; H; 0)

34 C g(2; C; 0)

35 T

0

 N�C�H [�rst � bits℄

36 if T = T

0

and (N;H;C k T) 6= (N

i

;H

i

; C

i

k T

i

) for all i

37 then return 1 else return 0

As before, one may assume that A makes q > 1 queries and, a

ording to our
onventions, the

omplexity ofB will then be at most (2��3; �). Also, �

1

= Adv

auth

EAX[R

n

n

;� ℄

(A) = Pr[B

OM A C [R

n

n

℄

= 1℄.

Next, de�ne the fun
tion E[�; f ℄ : f0; 1; 2g � f0; 1g

�

� N ! f0; 1g

�

by

Algorithm E[�; f ℄ (t;M; s)

10 R f([t℄

n

jjM)

11 for j 0 to s� 1 do S

j

 �(R+ j)

12 return R S

0

S

1

� � �S

s�1

32

Note that

�

2

= Adv

auth

EAX2[CTR[R

n

n

℄;R

�

n

;� ℄

(A) = Pr[B

E[R

n

n

;R

�

n

℄

= 1℄:

Moreover,

Adv

dist

$

n

;E[R

n

n

;R

�

n

℄

�

�

2

2

2

n+1

for all adversaries that request a total of �

2

keystreams, sin
e E[R

n

n

;R

�

n

℄
an only be distinguished

from $

n

if there is a
ollision in the inputs to �, and there are �

2

inputs to �. As a trivial
onsequen
e,

Pr[B

E[R

n

n

;R

�

n

℄

= 1℄ � Pr[B

$

n

= 1℄�

�

2

2

n+1

and thus

�

2

= Adv

auth

EAX2[CTR[R

n

n

℄;R

�

n

;� ℄

(A) � Pr[B

$

n

= 1℄�

�

2

2

n+1

:

Also, B is length-respe
ting, sin
e A is non
e-respe
ting (we use here the fa
t that the last three

queries B makes all take the form g(�; �; 0), so those last three queries
annot violate the length-

respe
ting
ondition). So, using Lemma 4, we
on
lude that

Æ = �

1

� �

2

�

(3�)

2

2

n

+

�

2

2

n+1

�

9:5�

2

2

n

This
ompletes the authenti
ity
laim and the proof.

D Re
ommended API

Some important features of EAX
an only be utilized if one a

esses EAX fun
tionality through

an appropriate user interfa
e. In this se
tion we therefore put forward an API that permits (a) in-

remental en
ryption, (b) in
remental de
ryption, (
) authenti
ity veri�
ation without
iphertext

re
overy, and (d) stati
 headers with negligible per-message
ost. Providing of these features results

in an API that is a bit more elaborate than some programmers may want or need, so we also in
lude

some simpler, \all-in-one"
alls.

/*

* We provide two interfa
es:

* 1. A simple interfa
e that does not support streaming data.

* 2. An in
remental interfa
e that supports streaming data.

* See below for do
umentation on both.

*/

/***

* -- How to en
rypt, the simplified interfa
e --

* First,
all

* eax_init()

* to setup the key and set the parameters.

* Then, for ea
h pa
ket,
all

* eax_en
rypt()

* When all done,
all

* eax_zeroize()

* -- How to de
rypt, the simplified interfa
e --

33

* First,
all

* eax_init()

* to setup the key and set the parameters.

* Then, for ea
h pa
ket:

* eax_de
rypt()

* When all done,
all

* eax_zeroize()

* It is the
aller's responsibility to
he
k tag validity

* by examining the return value of eax_de
rypt().

**/

/***

* -- How to en
rypt, in
rementally --

* First,
all

* eax_init()

* to setup the key and set the parameters.

* Then, for ea
h pa
ket,
all

* eax_provide_non
e()

* {eax_provide_header(), eax_
ompute_
iphertext()}*

* eax_
ompute_tag()

* Here {x,y} means x or y, and z* means any number of iterations of z.

* When all done,
all

* eax_zeroize()

*

* Note that en
ryption
an be done on the fly, and header and message data

* may be provided in any order and in arbitrary
hunks.

* -- How to de
rypt, in
rementally --

* First,
all

* eax_init()

* to setup the key and set the parameters.

* Then, for ea
h pa
ket:

* eax_provide_non
e()

* {eax_provide_header(), eax_provide_
iphertext()}*

* eax_
he
k_tag()

* eax_
ompute_plaintext() // only do this if tag was valid

* When all done,
all

* eax_zeroize()

* Note that de
ryption may be done on the fly, and header and message data

* may be provided in any order and in arbitrary
hunks.

* It is the
aller's responsibility to
he
k tag validity

* by examining the return value of eax_
he
k_tag().

**/

typedef enum {AES128,AES192,AES256} blo
k_
ipher; /* "standard"
iphers */

typedef unsigned
har byte;

typedef void eax_state; /* EAX
ontext; opaque */

/***

* Calls
ommon to in
remental and non-in
remental API

**/

34

/*

* eax_init

*

* Key and parameter setup to init a EAX
ontext data stru
ture.

* If you don't know what to pass for t,E, use t=16, E=AES128.

*/

eax_state *

eax_init(

byte* Key, // The key, as a string.

unsigned int t, // The tag length, in bytes.

blo
k_
ipher E // Enumerated that indi
ates what
ipher to use.

);

/*

* eax_provide_header

*

* Supply a message header. The header "grows" with ea
h
all

* until a eax_provide_header()
all is made that follows a

* eax_en
rypt(), eax_de
rypt(), eax_provide_plaintext(),

* eax_provide_
iphertext() or eax_
ompute_plaintext()
all.

* That starts reinitializes the header.

*/

int

eax_provide_header(

eax_state *K, // The EAX
ontext.

byte *H, // The header (asso
iated data) (possibly more to
ome)

unsigned int h // having h bytes

);

/*

* eax_zeroize

*

* Session is over; destroy all key material and
leanup!

*/

void

eax_zeroize(

eax_state *K // The EAX
ontext to remove

);

/***

* All-in-one, non-in
remental interfa
e

**/

/*

* eax_en
rypt

*

* En
rypt the given message with the given key, non
e and header.

* Spe
ify the header (if nonempty) with eax_provide_header().

*/

int

eax_en
rypt(

eax_state *K, // The
aller provides the EAX
ontext,

byte* N, // the non
e and

35

unsigned int n, // its length (in bytes), and

byte* M, // the plaintext and

unsigned int m, // its length (in bytes).

byte* C, // The m-byte
iphertext

byte* T // and the tag T are returned.

);

/*

* eax_de
rypt()

*

* De
rypt the given
iphertext with the given key, non
e and header.

* Spe
ify the header (if nonempty) with eax_provide_header().

* Returns 1 for a valid
iphertext, 0 for an invalid
iphertext.

*/

int

eax_de
rypt(

eax_state *K, // The
aller provides the EAX
ontext,

byte* N, // the non
e and

unsigned int n, // its length (in bytes), and

byte* C, // the
iphertext and

unsigned int
, // its length (in bytes), and the

byte* T, // tag.

byte* P // If valid, return the
-byte plaintext.

);

/***

* In
remental interfa
e

**/

/*

* eax_provide_non
e

*

* Provide a non
e. For en
ryption, do this before
alling

* eax_
ompute_
iphertext() and eax_
ompute_tag();

* for de
ryption, do this before
alling

* eax_provide_
iphertext(), eax_
he
k_tag, or eax_
ompute_plaintext().

*/

int

eax_provide_non
e(

eax_state *K, // The EAX
ontext,

byte* N, // the non
e, and

unsigned int n // the length of the non
e (in bytes).

);

/*

* eax_
ompute_
iphertext

*

* En
rypt a message or a part of a message.

* The non
e needs already to have been

* spe
ified by a
all to eax_provide_non
e().

*/

36

int

eax_
ompute_
iphertext(// En
rypt (part of) a message

eax_state *K, // Given a EAX
ontext K

byte *M, // and a message M (possibly more to
ome)

unsigned int m, // having m bytes.

byte *C // Return a
iphertext body C also having m bytes.

);

/*

* eax_
ompute_tag

*

* Message and header finished:
ompute the authenti
ation tag that is a part

* of the
omplete
iphertext.

*/

int

eax_
ompute_tag(

eax_state *K, // Given a EAX
ontext

byte *T //
ompute the tag T for it.

);

/*

* eax_provide_
iphertext

*

* Supply the
iphertext, or the next pie
e of
iphertext.

* This is used to
he
k for the subsequent authenti
ity
he
k eax_
he
k_tag().

*/

int

eax_provide_
iphertext(

eax_state *K, // Given a EAX
ontext

byte *C, // and a
iphertext C (possibly more to
ome)

unsigned int
 // having
 bytes.

);

/*

* eax_
he
k_tag

*

* The non
e,
iphertext and header have all been fully provided;
he
k if

* they are valid for the given tag.

* Returns 1 for a valid
iphertext, 0 for an invalid
iphertext

* (in whi
h
ase plaintext/
iphertext might be zeroized as well).

*/

int

eax_
he
k_tag(

eax_state *K, // Given a EAX
ontext and

byte *T // the tag that a

ompanied the
iphertext.

);

/*

* eax_
ompute_plaintext

*

37

* Re
over the plaintext from the provided
iphertext.

* A
all to eax_provide_non
e() needs to pre
ede this
all.

* The
aller is responsible for separately
he
king if the
iphertext is valid.

* Normally this would be done before
omputing the plaintext with

* eax_
ompute_plaintext().

*/

int

eax_
ompute_plaintext(

eax_state *K, // Given a EAX
ontext

byte *C, // and a
iphertext C (possibly more to
ome)

unsigned int
, // having
 bytes,

byte *M // return the
orresponding
 bytes of plaintext.

);

E Test Ve
tors

The following EAX-AES128 test ve
tors have been gra
iously provided by Ja
k Lloyd. We have

not yet veri�ed these values. If you do, please send us email. If you provide
ode, we will hapilly

make it available on the web.

MSG:

KEY: 233952DEE4D5ED5F9B9C6D6FF80FF478

NONCE: 62EC67F9C3A4A407FCB2A8C49031A8B3

HEADER: 6BFB914FD07EAE6B

CIPHER: E037830E8389F27B025A2D6527E79D01

MSG: F7FB

KEY: 91945D3F4DCBEE0BF45EF52255F095A4

NONCE: BECAF043B0A23D843194BA972C66DEBD

HEADER: FA3BFD4806EB53FA

CIPHER: 19DD5C4C9331049D0BDAB0277408F67967E5

MSG: 1A47CB4933

KEY: 01F74AD64077F2E704C0F60ADA3DD523

NONCE: 70C3DB4F0D26368400A10ED05D2BFF5E

HEADER: 234A3463C1264AC6

CIPHER: D851D5BAE03A59F238A23E39199DC9266626C40F80

MSG: 481C9E39B1

KEY: D07CF6CBB7F313BDDE66B727AFD3C5E8

NONCE: 8408DFFF3C1A2B1292DC199E46B7D617

HEADER: 33CCE2EABFF5A79D

CIPHER: 632A9D131AD4C168A4225D8E1FF755939974A7BEDE

MSG: 40D0C07DA5E4

KEY: 35B6D0580005BBC12B0587124557D2C2

NONCE: FDB6B06676EEDC5C61D74276E1F8E816

HEADER: AEB96EAEBE2970E9

CIPHER: 071DFE16C675CB0677E536F73AFE6A14B74EE49844DD

MSG: 4DE3B35C3FC039245BD1FB7D

KEY: BD8E6E11475E60B268784C38C62FEB22

NONCE: 6EAC5C93072D8E8513F750935E46DA1B

HEADER: D4482D1CA78DCE0F

CIPHER: 835BB4F15D743E350E728414ABB8644FD6CCB86947C5E10590210A4F

38

MSG: 8B0A79306C9CE7ED99DAE4F87F8DD61636

KEY: 7C77D6E813BED5AC98BAA417477A2E7D

NONCE: 1A8C98DCD73D38393B2BF1569DEEFC19

HEADER: 65D2017990D62528

CIPHER: 02083E3979DA014812F59F11D52630DA30137327D10649B0AA6E1C181DB617D7F2

MSG: 1BDA122BCE8A8DBAF1877D962B8592DD2D56

KEY: 5FFF20CAFAB119CA2FC73549E20F5B0D

NONCE: DDE59B97D722156D4D9AFF2BC7559826

HEADER: 54B9F04E6A09189A

CIPHER: 2EC47B2C4954A489AFC7BA4897EDCDAE8CC33B60450599BD02C96382902AEF7F832A

MSG: 6CF36720872B8513F6EAB1A8A44438D5EF11

KEY: A4A4782BCFFD3EC5E7EF6D8C34A56123

NONCE: B781FCF2F75FA5A8DE97A9CA48E522EC

HEADER: 899A175897561D7E

CIPHER: 0DE18FD0FDD91E7AF19F1D8EE8733938B1E8E7F6D2231618102FDB7FE55FF1991700

MSG: CA40D7446E545FFAED3BD12A740A659FFBBB3CEAB7

KEY: 8395FCF1E95BEBD697BD010BC766AAC3

NONCE: 22E7ADD93CFC6393C57EC0B3C17D6B44

HEADER: 126735FCC320D25A

CIPHER: CB8920F87A6C75CFF39627B56E3ED197C552D295A7CFC46AFC253B4652B1AF3795B124AB6E

39

