EAX: A Conventional Authenticated-Encryption Mode

M. BELLARE* P. Rocaway? D. WAGNER?

September 9, 2003

Abstract

We propose a block-cipher mode of operation, called EAX, for authenticated-encryption
with associated-data (AEAD). Given a nonce N, a message M, and a header H, the mode
protects the privacy of M and the authenticity of both M and H. Strings N, M,H € {0,1}"
are arbitrary, and the mode uses 2[|M|/n] + [|H|/n] + [|N|/n] block-cipher calls when these
strings are nonempty and n is the block length of the underlying block cipher. Among EAX’s
characteristics are that it is on-line (the length of a message isn’t needed to begin processing it)
and a fixed header can be pre-processed, effectively removing the per-message cost of binding
it to the ciphertext. EAX is obtained by instantiating a simple generic-composition method,
EAX2, and then collapsing its two keys into one. EAX is provably secure under a standard
complexity-theoretic assumption.

EAX was designed in response to the expressed need of several standardization bodies,
including NIST, IETF and IEEE 802.11, for a patent-free AEAD scheme. Such a scheme would
have to be conventional, meaning it would make two passes, one aimed at achieving privacy and
one aimed at achieving authenticity. EAX aims to fill this need by doing as well as possible
within the space of conventional schemes with regard to issues of efficiency, simplicity, elegance,
ease of correct use, and provable-security guarantees. EAX is an alternative to CCM [19].

Keywords: Authenticated encryption, message authentication, CBC MAC, modes of operation,
OMAC, provable security.

*

Department of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive,
La Jolla, California 92093, USA. E-mail: mihir@cs.ucsd.edu WWW: www-cse.ucsd.edu/users/mihir/

* Department of Computer Science, University of California at Davis, Davis, California 95616, USA; and De-
partment of Computer Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail:
rogaway@cs.ucdavis.edu WWW: wuw.cs.ucdavis.edu/" rogaway/

i Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley,
California 94720, USA. E-mail: daw@cs.berkeley.edu WWW: http://wuw.cs.berkeley.edu/~ daw/

Contents

1

2

Qo

2 O a & »

Introduction

The EAX Algorithm

Discussion of EAX

Intellectual Property Statement
EAX2 Algorithm

Definitions

Security Results
Acknowledgments

Proofs of security of EAX2
Proof of Security of the Tweakable-OMAC Extension
Proofs of security of EAX
Recommended API

Test Vectors

11

11

13

15

17

23

31

33

38

1 Introduction

AE AND AEAD. An authenticated encryption (AE) scheme is a symmetric-key mechanism by
which a message M is a transformed into a ciphertext CT with the goal that C'T protect both
privacy and authenticity of M. The last few years have seen increasing interest and development
effort in this domain. For the purposes of this paper it is useful to distinguish two classes of
schemes. The first are schemes that make two passes through the data, one aimed at providing
privacy and the other at providing authenticity. We call such schemes conventional. A common
method of designing conventional schemes is by “generic composition,” where one pass is based on
a (privacy-only) symmetric-encryption scheme and the other pass on a message authentication code
(MAC), each using a different key. Comparative analyses of various generic composition methods
can be found in [5,6,14]. The second, more modern class of schemes, that we call unconventional
make only a single pass through the data, using a single key, and have cost about half that of
conventional schemes. These include IAPM [12], OCB [17] and XCBC [9].

After the emergence of these new AE schemes, it was realized that often times not all the data
should be encrypted—in many applications we have a mixture of secret and non-secret data, and it
would be nice to have a mode of operation that provides privacy for the secret data and authenticity
for both types of data. Thus was born the notion of authenticated-encryption with associated-data
(AEAD) [16]. The non-secret data is called the associated data or the header. Conventional AEAD
schemes may again be designed via generic composition. An unconventional one, based on OCB,
is dot-OCB [16].

THE NEED FOR A NEW CONVENTIONAL SCHEME. Numerous bodies, including NIST, IETF and
IEEES802.11, are interested in standardizing an AEAD scheme, but have been deterred from stan-
dardizing any of the new unconventional (one pass) schemes due to patents related to them. To be
patent-avoiding, a scheme would have to be conventional (two pass). The need has accordingly been
expressed for a conventional AEAD scheme that is “as good as possible” subject to this constraint.

While a generic composition based scheme is an obvious solution, it would not be considered
adequate since it entails two keys instead of one. What is envisaged is a block-cipher based, single-
key using scheme. One such proposal, by Whiting, Housley, and Ferguson [19], is the AEAD scheme
called CCM. But CCM embodies limitations that have nothing to do with the Intellectual Property
(IP) that it works to avoid [18].

This paper makes two contributions. First, we isolate various goals that we consider important
for a conventional AEAD scheme suitable for standardization. Second, we specify a new AEAD
scheme, KAX, that achieves all these goals. These goals relate to issues of efficiency, simplicity,
elegance, ease of correct use, and provable-security guarantees. We will see that unlike EAX, CCM
does not achieve all these goals.

EAX GoALs. We want a nonce-using, block-cipher-based AEAD scheme. It should provide both
privacy, in the sense of indistinguishability from random bits, and integrity, in the sense of an adver-
sary’s inability to produce a new but valid (nonce, header, ciphertext) triple [16]. Nothing should
be assumed about the nonces except that they are non-repeating. Security must be demonstrated
using the standard, provable-security approach. The scheme should employ no tool beyond a block
cipher £: Key x {0,1}" — {0,1}" that it is based on. We should assume nothing about £ beyond
its security in the sense of a pseudorandom permutation (PRP). We expect that E will often be
instantiated by AES, but we should make no restrictions in this direction (such as insisting that
n = 128). The scheme should be simple and natural (so, in particular, it should avoid complicated
length-annotation). It should be a “conventional” AEAD scheme, making a separate privacy pass
and authenticity pass, using no known IP.

We wanted our AEAD scheme to be flexible in the functionality it provides. It should support
arbitrary-length messages: the message space should be {0,1}". The key space of the AEAD should
be the key space Key of the underlying block cipher. We wanted to support nonces as long as the
block length! ; that is, the nonce space should include {0,1}". Any tag length 7 € [0..n] should be
possible, to allow each user to select how much security she wants from the integrity guarantees and
how many bits she has to pay for this.? The above considerations imply that the only user-tunable
parameters should be E and 7.

We took on some fairly aggressive performance goals. First, message expansion should be no
more than required: the length of the ciphertext (which, following the conventions of [17], excludes
the nonce) should be only 7 bits more than the length of the plaintext. Implementations should be
able to profitably pre-process static associated data; for example, if we have an unchanging header
attached to every packet, authenticating this header should have no significant cost after a single
pre-computation. There should be an efficient pseudorandom function (PRF) directly accessible
through the defined interface of the AEAD scheme—as efficient as other conventional PRFs. Key-
setup should be efficient and all block-cipher calls should use the same underlying key, so that we
do not incur the cost of key scheduling more than once. For both encryption and decryption, we
want to use only the forward direction of the block cipher, so that hardware implementations do
not need to implement the decryption functionality of the block cipher. The scheme should be
on-line for both the plaintext M and the associated data H, which means that one can process
streaming data on-the-fly, using constant memory, not knowing when the stream will stop.

EAX RATIONALE. EAX achieves all the above goals. Still, one might ask why EAX as opposed
to the dot-OCB AEAD scheme of [16]? The latter not only achieves these goals but makes about
half the number of block cipher calls made by CCM and EAX. The reason, as we have already
discussed, is that the unconventional (one pass) schemes like dot-OCB are subject to patents,
and standardization bodies have (for whatever reason) expressed the intent of standardizing a
conventional (two pass) scheme, even at the cost of the factor of two in performance, in order to
avoid patents. The merit of this judgment is debatable, and one can debate it, but the pragmatic
reality is that there emerges a need for a conventional scheme, like EAX, that is as good as possible
subject to the two-pass constraint. Lack of a scheme like EAX will simply lead to an inferior
scheme being standardized, which is to the disadvantage of the user community. Accordingly,
EAX addresses a very real and practical, even if somewhat unconventionally motivated, crypto-
engineering problem, and has the potential for widespread usage and adoption.

2 The EAX Algorithm

PRELIMINARIES. All strings in this paper are over the binary alphabet {0,1}. For £ a set of
strings and n > 0 a number, we let £ and L£* have their usual meanings. The concatenation of
strings X and Y is denoted X || Y or simply X Y. The string of length 0, called the empty string,
is denoted e. If X € {0,1}" we let |X| denote its length, in bits. If X € {0,1}" and ¢ < |X|
then the first £ bits of X are denoted X [first £ bits]. When X € {0,1}" is a nonempty string and
t € N is a number we let X 4 t be the n-bit string that results from regarding X as a nonnegative
number z (binary notation, most-significant-bit first), adding x to t, taking the result modulo 2",
and converting this number back into an n-bit string. If t € [0..2" — 1] we let [t],, denote the
encoding of ¢t into an n-bit binary string (msb first, Isb last). If X and P are strings then we let

! Here we will over-achieve, allowing a nonce space of {0,1}".
2 Note that since our AEAD scheme is bit-oriented and not byte-oriented, 7 is the number of bits, not bytes, of
the tag.

Algorithm CBCp (M) Algorithm CTRY (M)
10 Let My --- My, < M where |M;| =n 20 m < [|M]|/n]

11 Cp+ 0" 21 S« ExN)|Ek(N+D) || --- || Ek(N+m—1)
12 for i<+ 1tom do 22 C <« M o S [first | M| bits]
13 Ci <+ Ex(M;®Ciy) 23 return C

14 return C,,

Algorithm pad (M; B, P)
30 if |M| € {n,2n,3n,...} Algorithm OMACk (M)

31 then return M &> B, 40 L+ Ex(0"); B+« 2L; P+ 4L
32 else return (M || 107~ 1=(IMImodn)y @, p | 41 return CBCg(pad (M; B, P))

Algorithm OMAC, (M)
50 return OMACk([t], || M)

Figure 1: Basic building blocks. The block cipher E: Key x {0,1}" — {0,1}" is fixed and K € Key. For
CBC, M € ({0,1}")". For CTR, M € {0,1}" and N € {0,1}". For pad, M € {0,1}" and B,P € {0,1}"
and @3 xors the shorter string into the end of longer one. For OMAC, M € {0,1}" and ¢ € [0..2" — 1] and the
multiplication of a number by a string L is done in GF(2").

X @ P (the zor-at-the-end operator) denote the string of length ¢ = max{|X|, |P|} bits that is
obtained by prepending ||X| — |P|| zero-bits to the shorter string and then xoring this with the
other string. (In other words, xor the shorter string into the end of the longer string.) A block
cipher is a function E: Key x {0,1}" — {0,1}" where Key is a finite, nonempty set and n > 1 is a
number and Fk(-) = F(K,-) is a permutation on {0,1}". The number n is called the block length.
Throughout this note we fix such a block cipher E.

BUILDING BLOCKS. In Figure 1 we define the algorithms CBC, CTR, pad, OMAC (no superscript),
and OMAC® (with superscript). The algorithms CBC (the CBC MAC) and CTR (counter-mode
encryption) are standard. Algorithm pad is used only to define OMAC. Algorithm OMAC [10] is
a pseudorandom function (PRF) that is a one-key variant of the algorithm XCBC [8]. Algorithm
OMAC?* is like OMAC but takes an extra argument, the integer t. This algorithm is a “tweakable”
PRF [15], tweaked in the most simple way possible.

We explain the notation used in the definition of OMAC. The value of ¢L (line 40: ¢ an integer
in {2,4} and L € {0,1}") is the n-bit string that is obtained by multiplying L by the n-bit string
that represents the number ¢. The multiplication is done in the finite field GF(2") using a canonical
polynomial to represent field points. The canonical polynomial we select is the lexicographically
first polynomial among the irreducible polynomials of degree n that have a minimum number of
nonzero coefficients. For n = 128 the indicated polynomial is x'?® 4+ x7 4+ x? + x + 1. In that case,
2L = L<1 if the first bit of L is 0 and 2L = (L<1) & 0'2°10000111 otherwise, where L<1 means
the left shift of L by one position (the first bit vanishing and a zero entering into the last bit). The
value of 4L is simply 2(2L). We warn that to avoid side-channel attacks one must implement the
doubling operation in a constant-time manner.

We have made a small modification to the OMAC algorithm as it was originally presented,
changing one of its two constants. Specifically, the constant 4 at line 40 was the constant 1/2 (the
multiplicative inverse of 2) in the original definition of OMAC [10]. The OMAC authors indicate

Algorithm EAX.Encrypt® 2 (M) Algorithm EAX.Decrypt® 1 (CT)

10 N < OMACY(N) 20 if |CT| < 7 then return INVALID
11 H + OMAC}(H) 21 Let C || T < CT where |T| =7
12 C < CTRY (M) 22 N + OMAC2(N)

13 €+ OMACZ(0) 23 H + OMAC} (H)

14 Tag <~ NOCOH 24 €< OMACZ(C)

15 T < Tag [first 7 bits] 25 Tag' +~ NoCoKH

16 return CT < C || T 26 T' < Tag' [first T bits]

27 if T # T' then return INVALID
28 M < CTRY(C)
29 return M

Figure 2: Encryption and decryption under EAX mode. The plaintext is M/, the ciphertext is CT, the key is K,
the nonce is N, and the header is H. The mode depends on a block cipher E (that CTR and OMAC implicitly
use) and a tag length 7.

N M | H |

OMACY. OMAC

(N | CTR«

OMAC2

e]

]

Figure 3: Encryption under EAX mode. The message is M, the key is K, and the header is H. The ciphertext
is C||T.

that they will promulgate this modification [11], which slightly simplifies implementations.

EAX. Fix a block cipher E: Key x {0,1}" — {0,1}" and a tag length 7 € [0..n]. These parameters
should be fixed at the beginning of a particular session that will use EAX mode. Typically, the
parameters would be agreed to in an authenticated manner between the sender and the receiver,
or they would be fixed for all time for some particular application. Given these parameters, EAX
provides a nonce-based AEAD scheme EAX|[E, 7] whose encryption algorithm has signature Key x
Nonce x Header x Plaintext — Ciphertext and whose decryption algorithm has signature Key x Nonce x
Header x Ciphertext — Plaintext U {INVALID} where Nonce, Header, Plaintext, and Ciphertext are all
{0,1}". The EAX algorithm is specified in Figure 2 and a picture illustrating EAX encryption is
given in Figure 3.

3 Discussion of EAX

We discuss various features of our algorithm and choices underlying the design.

No ENCODINGS. We have avoided any nontrivial encoding of multiple strings into a single one.?

Some other approaches that we considered required a PRF to be applied to what was logically
a tuple, like (N, H,C). Doing this raises encoding issues we did not want to deal with because,
ultimately, there is no efficient, compelling, on-line way to encode multiple strings into a single one.
Alternatively, one could avoid encodings and consider a new kind of primitive, a multi-argument
PRF. But this would be a non-standard tool and we didn’t want to use any non-standard tools.
All in all, it seemed best to find a way to sidestep the need to do encodings, which is what we have
done.

WHY NOT GENERIC COMPOSITION? Why have we specified a block-cipher based (BC-based) AEAD
scheme instead of following the generic-composition approach of combining a (privacy-only) en-
cryption method and a message authentication code? There are reasonable arguments in favor of
generic composition, based on aesthetic or architectural sensibilities. One can argue that generic
composition better separates conceptually independent elements (privacy and authenticity) and,
correspondingly, allows greater implementation flexibility [6, 14]. Correctness becomes much sim-
pler and clearer as well. The argument does have validity. Still, BC-based AEAD modes have
some important advantages. BC-based AEAD makes it easier to use a cryptosystem correctly and
interoperably—for example, presenting a more directly useful API for developers. BC-based AEAD
reduces the risk that implementors will choose insecure parameters. It makes it easier for imple-
mentors to use a scheme without knowing a lot of cryptography. It saves on key bits and key-setup
time, as generic-composition methods invariably require a pair of separate keys.

All of that said, EAX can be viewed as having been derived from a generic-composition scheme
we call EAX2, described in Section 5. Specifically, one instantiates the generic-composition scheme
EAX2 with CTR mode (counter mode) and OMAC, and then collapses the two keys into one. If
one does favor generic composition, EAX2 is a nice algorithm for it.

ON-LINE. Here, we say that an algorithm is on-line if it is able to process a stream of data as it
arrives, with constant memory, not knowing in advance when the stream will end. Observe then
that on-line methods should not require knowledge of the length of a message until the message is
finished. A failure to be on-line has been regarded as a significant defect for an encryption scheme

% One could view the prefixing of [t], to M in the definition of OMAC (M) as an encoding, but [t], is a constant,
fixed-length string, and the aim here is just to “tweak” the PRF. That is very different from needing to encode an
arbitrary-length message M and an arbitrary-length header H into a single string, for example.

CCM

EAX

Functionality

Authenticated Encryption with AD

Authenticated Encryption with AD

Built from

Block cipher E with 128-bit blocksize

Block cipher E with n-bit blocksize

Parameters

Block cipher E
Tag length T € {4,6,8,10,12, 14,16}
Length of msg length field A € [2..8]

Block cipher E
Tag length 7 € [0..n]

Message space Parameterized: 7 choices: A € [2..8]. | {0,1}"
Each possible message space a sub-
16
set of BYTE®, from BYTE® ~' to
ByTe<2” 1
Nonce space Parameterized, with a value of 15— X | {0,1}"

bytes. From 56 bits to 104 bits

Key space

One block-cipher key

One block-cipher key

Ciphertext expansion

T bytes

T bits

Block-cipher calls

2| S|+ [] +2+0,for 5 € {0,1}

2[4+ 4]+ 4]

Block-cipher calls
with static header

2[M]+ [@]+2+6,forée {0,1}

128 128

[« [

Key setup

Block cipher subkeys

Block cipher subkeys
3 block-cipher calls

IV requirements

Non-repeating nonce

Non-repeating nonce

Parallelizable?

No

No

On-line?

No

Yes

Preprocessing (/msg)

Limited (key stream only)

Limited (key stream and header only)

Memory rqmts

Small constant

Small constant

Provable security?

Yes: reduction from block-cipher’s
PRP security, bound of ©(c?/2128)

Yes: reduction from block-cipher’s
PRP security, bound of ©(c?/2")

Patent-encumbered?

No

No

Figure 4: A comparison of basic characteristics of CCM and EAX. The count on block-cipher calls for EAX
ignores key-setup costs. By the set BYTE we mean {0, 1}5.

or a MAC. EAX is on-line.

Now it is true that in many contexts where one would be encrypting a string one does know
the length of the string in advance. For example, many protocols will already have “packaged up”
the string length at a lower level. In effect, such strings have been represented in the computing
system as sequence of bytes and a count of those bytes. But there are also contexts where one does
not know the length of a message in advance of getting an indication that it is over. For examples,
a printable string is often represented in computer systems as a sequence of non-zero bytes followed
by a terminal zero-byte. Certainly one should be able to efficiently encrypt a string which has been
represented in this way.

ABILITY TO PROCESS A STATIC AD. In many scenarios the associated data H will be static over the
course of a communications session. For example, the associated data may including information
such as the IP address of the sender, the receiver, and fixed cryptographic parameters associated
to this session. In such a case one would like that the amount of time to compute Encrypt® (M)
and Decrypt®-(C) should be independent of |H|, disregarding the work done in a preprocessing
step. (The significance of this goal was already explained in [16].) EAX achieves this goal.

FAST VERIFICATION. Invalid messages can be rejected at half the cost of decryption. This is one
of the benefits of following what is basically an encrypt-then-authenticate approach as opposed to
a authenticate-then-encrypt approach.

SURFACING A MAC. One can obtain a MAC as efficient as the PRF underlying EAX via MACk (H) =
Encrypt) 2 ().

COMPARISON WITH CCM. Figure 4 compares EAX and CCM along various dimensions. We
elaborate on some of these points here.

While EAX is on-line, CCM is not. One needs to know the length of both the plaintext and
the associated data before one can proceed with encryption.

While EAX allows pre-processing of static associated data, CCM does not, because it encodes
the nonce N and the message length ||M||,, before H rather than after it.

CCM has a more complex parameterization than does EAX due to the introduction of a message-
length parameter.

CCM’s nonce length is restricted in an undesirable way. For parameter choices that allow
encrypting long messages with CCM, the nonce length is so limited that CCM with these parameters
might not provide adequate security when nonces are chosen randomly. EAX does not have this
problem.

CCM disrupts word alignment in the associated data. (CCM prepends 18 or 22 bytes of meta-
data to the header H before processing it, which is not a multiple of most machine’s word length.)
As a result, CCM implementations could suffer a performance hit when processing long associated
data strings, a problem that EAX avoids.

For more information on the limitations of CCM, see [18].

4 Intellectual Property Statement

The authors neither have, nor are of aware of, any patents or pending patents relevant to EAX. We
do not intend to apply for any patents covering this technology. Our work for this note is hereby
placed in the public domain. As far as we know, EAX is free and unencumbered for all uses.

Algorithm EAX2.Encrypt%1{[K2 (M) Algorithm EAX2.Decrypt%fiIK2 (CT)

10 N+ F2,(N) 20 if |CT| < 7 then return INVALID
11 K+ FL (H) 21 Let C || T < CT where [T| =1

12 C + EX,(M) 22 N+ F2 (N)

13 C«+ F2,(0) 23 H « Fit (H)

14 Tag <~ N@CoH 24 C+ F2,(0)

15 T « Tag [first 7 bits] 25 Tag' «~ NoCpH

16 return CT < C || T 26 1" < Tag' [first T bits]

27 if T # T’ then return INVALID
28 M « DY, (C)
29 return M

Figure 5: The generic composition scheme EAX2[II, F, 7]. The scheme is built from a PRF F': Keylx{0,1}" —
{0,1}" and an IV-based encryption scheme II = (£, D) having key space Key2 and message space {0,1}".

N M | H |

S R

Figure 6: Encrypting under EAX2. The plaintext is M and the key is (K1, K2) and the header is H. The
ciphertext is C || T'. By F}. we mean the function where F (M) = Fk ([i], || M).

10

5 EAX2 Algorithm

This section is not necessary to understand or implement EAX, but it is necessary for understanding
the proof of security of EAX as well as the general approach taken for its design. That approach
has been to first design a generic-composition scheme, EAX2, and then “collapse” to a single key
for the particular case of CTR encryption and OMAC authentication.

EAX2 coMPOSITION. Let F': Keyl x {0,1}" — {0,1}" be a PRF, where n > 2. Let Il = (&£,D)
be an IV-based encryption scheme having key space Key2 and IV space {0,1}". This means that
E: Key2 x {0,1}" x {0,1}* — {0,1}" and D: Key2 x {0,1}" x {0,1}* — {0,1}" and Key2 is
a set of keys and for every K € Key2 and N € {0,1}" and M € {0,1}", if C = EX(M) then
DR(C) = M. Let 7 < n be a number. Now given F and II and 7 we define an AEAD scheme
EAX2[II, F, 7] = (EAX2.Encrypt, EAX2.Decrypt) as follows. Set Fit(M) = Fg([t], || M). Set
Key = KeylxKey2. Then the encryption algorithm EAX2.Encrypt: Keyx{0,1}"x{0,1}* — {0,1}"
and the decryption algorithm EAX2.Decrypt: Key x {0,1}" x {0,1}" — {0,1}" U {INVALID} are
defined in Figure 5 and the former is illustrated in Figure 6. EAX2[II, F, 7] is provably secure under
natural assumptions about II and F'. See Section 7.

EAX1 coMPOSITION. Let EAX1 be the single-key variant of EAX2 where one insists that Keyl =
Key2 and where one keys F, £, and D with a single key K € Key = Keyl = Key2. That is,
one associates to F' and II, as above, the scheme EAXIIII, F, 7| that is defined as with EAX2
but where the key space is Key = Keyl = Key2 and the one key K keys everything. Notice that
EAX[E, 7] = EAX1[CTR[E], OMACIE], 7]. This is a useful way to look at EAX.

6 Definitions

The security results we state and prove later rely on the definitions here.

AEAD SCHEMES. A set of keys is a nonempty set having a distribution (the uniform distribution
when the set is finite). A (nonce-based) authenticated-encryption with associated-data (AEAD)
scheme is a pair of algorithms II = (E,D) where E is a deterministic encryption algorithm
E: Key x Nonce x Header x Plaintext — Ciphertext and a D is a deterministic decryption algo-
rithm D : Key x Nonce x Header x Ciphertext — PlaintextU{INVALID}. The key space Key is a set of
keys while the nonce space Nonce and the header space Header (also called the space of associated
data) are nonempty sets of strings. We write EX (M) for E(K, N, H, M) and DY (CT) for
D(K,N,H,CT). We require that DX #(EX#(M)) = M for all K € Key and N € Nonce and
H € Header and M € Plaintext. In this note we assume, for notational simplicity, that Nonce,
Header, Plaintext, and Ciphertext are all {0,1}" and that |EX (M)| = |M|. An adversary is a
program with access to one or more oracles.

NONCE-RESPECTING. Suppose A is an adversary with access to an encryption oracle E; (). This
oracle, on input (N, H, M), returns EX # (M). Let (Ny, Hy, M), ..., (Ny, Hy, M,) denote its oracle
queries. The adversary is said to be nonce-respecting if N1,..., N, are always distinct, regardless
of oracle responses and regardless of A’s internal coins.

Privacy oF AEAD scHEMES. We consider adversaries with access to an encryption oracle Ej/ ().
We assume that any privacy-attacking adversary is nonce-respecting. The advantage of such an
adversary A in violating the privacy of AEAD scheme IT = (E, D) having key space Key is

AdVE™(4) = Pr[K & Key: AR =1] —Pr[K & Key: 4% 0 =1]

11

where $°(-) denotes the oracle that on input (NN, H, M) returns a random string of length |M|.

AUTHENTICITY OF AEAD sCcHEMES. This time we provide the adversary with two oracles, an
encryption oracle E;/(-) as above and also a verification oracle D (-). The latter oracle takes input
(N,H, CT) and returns 1 if DX (CT) € Plaintext and returns 0 if DY #(CT) = INVALID. The
adversary is assumed to satisfy three conditions, and these must hold regardless of the responses
to its oracle queries and regardless of A’s internal coins:

e A must be nonce-respecting. (The condition is understood to apply only to the adversary’s en-
cryption oracle. Thus a nonce used in an encryption-oracle query may be used in a verification-
oracle query).

e A must call its verification-oracle exactly once and not call its encryption oracle after it has
made its verification oracle query. (That is, it makes a sequence of encryption-oracle queries,
then a verification-oracle query, and halts.)

e A must never make a verification-oracle query (N, H, CT) such that the encryption oracle
had previously returned CT in response to a query (N, H, M).

We say that such an A forges if its verification oracle returns 1 in response to the single query
made to it. The advantage of such an adversary A in violating the authenticity of AEAD scheme
IT = (E, D) having key space Key is

AdVaHuth(A) — PrlK i Key : AEK():ﬁK() forges] .

IV-BASED ENCRYPTION. An [V-based encryption scheme (an IVE scheme) is a pair of algorithms
IT = (£,D) where £: Key x IV x Plaintext — Ciphertext is a deterministic encryption algorithm and
D: Key x IV x Ciphertext — Plaintext U {INVALID} is a deterministic decryption algorithm. The
key space Key is a set of keys and the plaintert space Plaintext and ciphertext space Ciphertext and
IV space IV are all nonempty sets of strings. We write E£(M) for £(K, R, M) and DE(C) for
D(K, R,C). We require that DE(EE(M)) = M for all K € Key and R € IV and M € Plaintext. We
assume, as before, that Plaintext = Ciphertext = {0,1}" and that |EE(M)| = |[M|. We also assume
that IV = {0,1}" for some n > 1 called the IV length.

Privacy OF IVE SCHEMES WITH RANDOM IVS. Let II = (£,D) be an IVE scheme with key
space Key and IV space IV = {0,1}". Let & 5 be the probabilistic algorithm defined from & that,
on input K and M, chooses an IV R at random from {0,1}", computes C + EE(M), and then
returns C' along with the chosen IV:

Algorithm £} (M) // The probabilistic encryption scheme built from IVE scheme &
R<&E{0,1}"; C « EE(M); return R| C

Then we define the advantage of an adversary A in violating the privacy of Il (as an encryption
scheme using random IV) by

AdvE™(A) = Pr|K & Key: A5K0) = 1} ~Pr [K & Key: A% = 1]
where $(-) denotes the oracle that on input M returns a random string of length n + |M|. This is
just the ind$-privacy of the randomized symmetric encryption scheme associated to II. We again
require the adversary A to be nonce-respecting, which now means that, whatever the adversary’s
oracle does, the adversary may make no (N, M) query that follows an earlier (N, M') query. We

comment that we have used a superscript of “priv” for an IVE scheme and “priv” (bold font) for
an AEAD scheme.

12

PSEUDORANDOM FUNCTIONS. A family of functions, or a pseudorandom function (PRF), is a
map F: Key x D — {0,1}" where Key is a set of keys and D is a nonempty set of strings. We

call n the output length of F. We write F for the function F(K,-) and we write f & F to mean

K < Key; f < Fg. We denote by R the set of all functions with domain {0,1}" and range
{0,1}"; by R" the set of all functions with domain {0,1}" and range {0,1}"; and by R the set of
all functions with domain I and range {0,1}". We identify a function with its key, making R?, R}
and R! pseudorandom functions. The advantage of adversary A in violating the pseudorandomness

of the family of functions F': Key x {0,1}* — {0,1}" is
Adv%rf(A) = Pr [K & Key: A0 = 1] —Pr [/Hi RE: APL) = 1]

A family of functions E: Key x D — {0,1}" is a block cipher if D = {0,1}" and each Ff is a
permutation. We let P,, denote all the permutations on {0,1}" and define

AdviP(A) = Pr [K & Key: APKO) = 1] —Pr [7r Ep, A0 = 1]

RESOURCES. If xxx is an advantage notion for which Advij*(A) has been defined we write
Advii*(R) for the maximal value of Advi{{™*(A) over all adversaries A that use resources at most R.
When counting the resource usage of an adversary, one maximizes over all possible oracle responses,
including those that could not be returned by any experiment we have specified for adversarial ad-
vantage. Resources of interest are: {—the running time; ¢—the total number of oracle queries;
ge—the number of oracle queries to the adversary’s first oracle; and o—the data complexity. The
running time ¢ of an algorithm is its actual running time (relative to some fixed RAM model of
computation) plus its description size (relative to some standard encoding of algorithms). The data
complexity o is defined as the sum of the lengths of all strings encoded in the adversary’s oracle
queries, plus the number of these strings (but only if more than one).? In this paper the length
of strings is measured in n-bit blocks, for some understood value n. The number of blocks in a
string M is defined as || M|, = max{1, [|M|/n]}, so that the empty string counts as one block. As
an example, an adversary that asks queries (N1, Hy, My), (No, Hy, My) to its first oracle and query
(N, H, M) to its second oracle has data complexity ||Ni|ln + [|H1|ln + | M1l|ln + | N2|ln + | H2|ln +
| Mal|p, + IN||n + | HI|n + || M|, +9. We always assume that o > n. The name of a resource measure
(t, t', g, etc.) will be enough to make clear what resource it refers to.

We write O(f(x)) for O(f(z)lg(f(z)) and the constant hidden inside the notation is understood
to be an absolute constant. When F' is a function we write Timep (o)) for the maximal amount
of time to compute the function F' over inputs of total length 0. When II = (£,D) is an AEAD
scheme or an IVE scheme with key space Key we write Timeg (o) for the time to compute a random

element K < Key plus the maximal amount of time to compute the function £x on arguments of
total length o.

7 Security Results

We first obtain results about the security of EAX2 and then prove a result about the security of a
tweakable-OMAC extension. These results are applied to derive results about the security of EAX.
The notation and security measures referred to below are defined in Section 6.

SECURITY OF EAX2. We begin by considering the EAX2[II, F, 7] scheme with F' being equal to R,
the set of all functions with domain {0,1}" and range {0,1}". In other words, we are considering

% There is a certain amount of arbitrariness in this convention, but it is reasonable and simplifies subsequent
accounting.

13

the case where F is a random function with domain {0,1}" and range {0,1}". First we show
that EAX2[IL, R}, 7] inherits the privacy of the underlying IVE scheme II.

Lemma 1 [Privacy of EAX2 with a random PRF] Let II be an IVE scheme with IV space
{0,1}" and let 7 € [0..n]. Then

AdvEX;’(Z[H,R%,T} (t, q, 0) < Adv%rlv (tla q, U)

where ¢/ =t + O(0). O

The proof of the above lemma is in Appendix A. We now turn to the authenticity of EAX2[II, R", 7].
The following shows that EAX2[II, R, 7] provides authenticity under the assumption that the
underlying IVE scheme II provides privacy.

Lemma 2 [Authenticity of EAX2 with a random PRF] Let II be an IVE scheme with IV
space {0,1}" and let 7 € [0..n]. Then

Adv%%)l&[H,Rﬁ,T] (t7 q, U) < 2774 AAdV%riv (tlu q, U)
where ¢/ =t + O(0). O

The proof of the above lemma is in Appendix A. The results above allow us to obtain results about
the security of the general EAX2[IL, F', 7| scheme based on assumptions about the security of the
component schemes.

Theorem 3 [Security of EAX2] Let F: Keyl x {0,1}* — {0,1}" be a family of functions, let
II = (£,D) be an IVE scheme with IV space {0,1}" and let 7 € [0..n]. Then

Adva® o p(tgo) <277+ AdvE(ty, ¢, 0) + Adv (1, 3¢+ 3, 0) (1)
.) "
Adv]%rAl;(g[H,F,T} (t,q,0) < Advpnrlv(t27 q, o) + Adv%r (t3, 3q, o) (2)
where ¢; = t + Timeg () + O(0) and to = ¢t + O(o + ng) and t3 = t + Timeg (o) + O(0). O

The proof of the above theorem is in Appendix A.

SECURITY OF A TWEAKABLE-OMAC EXTENSION. This section develops the core result underlying
why key-reuse “works” across OMAC and CTR modes. To do this, we consider the following
extension of the tweakable-OMAC construction. Fix n > 1 and let ¢t € {0,1,2} and p € R} and
M € {0,1}" and s € N. Then define

Algorithm OMAC|p] (t, M, s)

10 R+ OMAC) (M)
11 for j < 0tos—1do S; < p(R+})
12 return R SyS7---Ss_1

In other words, an OMAC|p] oracle, when asked (t, M, s), returns not only R = OMAC[p]*(M) but
also a key stream SyS; ... Ss formed using CTR-mode and start-index R. We emphasize that the
key stream is formed using the same function p (that is, the same key) that underlies the OMAC
computation. Note too that we have limited the tweak ¢ to a small set, {0, 1,2}.

14

We imagine providing an adversary A with one of two kinds of oracles. The first is an oracle
OMAC,(:,-,-) for a randomly chosen p € Rj. The second is an oracle $,(-,-,-) that, on input
(t,M,s), returns n(s + 1) random bits. Either way, we assume that the adversary is length-
respecting: if the adversary asks a query (t, M, s) it does not ask any subsequent query (t, M, s’)
for s" # s. As the adversary runs, it asks some sequence of queries (t1, M1,s1),..., (t5, My, Sq)-
The resources of interest to us are the sum of the block lengths of the messages being MACed,
o1 = Y. || Mi||n, and the total number o9 = > s; of key-stream blocks that the adversary requests.
We claim that a reasonable adversary will have little advantage in telling apart the two oracles,
and we bound its distinguishing probability in terms of the resources o1 and o9 that it expends.
Recall that for oracles X and Y and an adversary A we measure A’s ability to distinguish between
oracles X and Y by the number Adv%f{/(A) = Pr[AY = 1] - Pr[AY =1].

Lemma 4 [Pseudorandomness of OMAC] Fix n > 2. Then, for length-respecting adversaries,

(o1 + 02 + 3)?

AdvEiicry) s, (01,02) < o O
The proof of the above lemma is in Appendix B.
SECURITY OF EAX. We are now ready to prove the security of EAX.
Theorem 5 [Security of EAX] Let n > 2 and 7 € [0..n]. Then
i 902
Adviry (@) S 5
10502 1
h
Adv%%X[R%,T] (o) < on - o7 -

The proof of the above is in Appendix C. Finally, we may, in the customary way, pass to the
corresponding complexity-theoretic result where we start with an arbitrary block cipher E.

Corollary 6 [Security of EAX] Let n > 2 and E: Key x {0,1}" x {0,1}" be a block cipher and
let 7 € [0..n]. Then

9.502
2TL

AdvEX;[E,T} (t’ U)

IN

+ AdviP (', 0)

Advauth (t) < 1102 + i + Advprp(t’)
EAX[E,r]\LLO) = on o7 B (t,0o

where ¢ =t + O(0). O

We omit the proof, which is completely standard.

8 Acknowledgments

We received comments from Niels Ferguson, Jack Lloyd, David McGrew, Jesse Walker, and Doug
Whiting. Jack provided an initial set of test vectors for us.

Mihir Bellare’s work was funded by NSF grants CCR-0098123 and ANR-0129617, and by an
IBM Faculty Partnership Development Award. Phil Rogaway’s work was funded by NSF CCR-
0208842 and a gift from CISCO Systems. David Wagner’s work was funded by NSF CCR-0113941.

15

References

[1]

[4]

[7]

[10]

[11]

[12]

[13]

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryp-
tion: Analysis of the DES modes of operation. Proceedings of the 38th Symposium on Foundations
of Computer Science, IEEE, 1997. Available as http://www-cse.ucsd.edu/users/mihir/papers/
sym-enc.html.

M. Bellare, R. Guérin, and P. Rogaway. XOR MACs: New methods for message authentication
using finite pseudorandom functions. Advances in Cryptology — CRYPTO ’95, Lecture Notes in
Computer Science Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995. Available as and http:
//www-cse.ucsd.edu/users/mihir/papers/xormacs.html

M. Bellare, O. Goldreich, and H. Krawczyk. Stateless evaluation of pseudorandom functions: Security
beyond the birthday barrier. Advances in Cryptology — CRYPTO 96, Lecture Notes in Computer
Science Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996. Available as http://www-cse.ucsd.edu/
users/mihir/papers/otp.html.

M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message authentica-
tion code. Journal of Computer and System Sciences (JCSS), vol. 61, no. 3, pp. 362-399, Dec 2000.
Available as http://www-cse.ucsd.edu/users/mihir/papers/cbc.html.

M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in SSH: provably fixing the SSH
binary packet protocol. Proceedings of the 9th Annual Conference on Computer and Communications
Security, ACM, 2002. Available as http://www-cse.ucsd.edu/users/mihir/papers/ssh.html

M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis
of the generic composition paradigm. Advances in Cryptology — ASTACRYPT 00, Lecture Notes in
Computer Science Vol. 1976, T. Okamoto ed., Springer-Verlag, 2000. Available as http://wwwu-cse.
ucsd.edu/users/mihir/papers/oem.html

M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or redundancy
in plaintexts for efficient encryption. Advances in Cryptology — ASIACRYPT ’00, Lecture Notes in
Computer Science Vol. 1976, T. Okamoto ed., Springer-Verlag, 2000. Available as http://wwwu-cse.
ucsd.edu/users/mihir/papers/ee.html

J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three-key constructions.
Advances in Cryptology — CRYPTO °00, Lecture Notes in Computer Science Vol. 1880, M. Bellare
ed., Springer-Verlag, 2000. Available as http://www.cs.ucdavis.edu/ rogaway/papers/3k.html

V. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryption and XECB au-
thentication modes. Presented at the 2nd NIST Workshop on AES Modes of Operation, Santa Bar-
bara, CA, August 24, 2001. http://www.glue.umd.edu/afs/glue.umd.edu/home/enee/faculty/
gligor/pub/NIST-submissionRev.ps.

T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. Fast Software Encryption 03, Lecture
Notes in Computer Science Vol. 77 | T. Johansson ed., Springer-Verlag, 2003. Also Cryptology
ePrint archive Report 2002/180, http://eprint.iacr.org/2002/180

T. Iwata and K. Kurosawa. Personal communications, January 2002.

C. Jutla. Encryption modes with almost free message integrity. Advances in Cryptology — EURO-
CRYPT 01, Lecture Notes in Computer Science Vol. 2045 , B. Pfitzmann ed., Springer-Verlag, 2001.
Also Cryptology ePrint archive Report 2000/039, http://eprint.iacr.org/2000/039/

J. Katz and M. Yung. Unforgeable encryption and adaptively secure modes of operation. Fast Software
Encryption 00, Lecture Notes in Computer Science Vol. 1978, B. Schneier ed., Springer-Verlag, 2000.

16

Adversary P¢()

Initially, f is everywhere undefined

Run A
When A makes oracle query (N, H, M) answer the query as follows:
N | C & e(0) // where [N| =n
(Ol [| N) N

if f([1],, || H) is undefined then f([1], || H) & {0,1}"
He (Al H)
if f([2],, || C) is undefined then f([2], || C) & {0,1}"
e+ (2 11C)
Let T be the first 7 bits of N H d C
Return CT - C || T as the oracle response

When A outputs a bit, d, return d

Figure 7: Adversary P attacking the privacy of IVE scheme II using as subroutine adversary A attacking the
privacy of IT = EAX2[II, R}, 7].

[14]

[15]

[16]

[17]

[18]

[19]

H. Krawczyk. The order of encryption and authentication for protecting communications (or: how
Secure is SSL?). Advances in Cryptology — CRYPTO ’01, Lecture Notes in Computer Science
Vol. 2139, J. Kilian ed., Springer-Verlag, 2001. Also Cryptology ePrint archive Report 2001/045,
http://eprint.iacr.org/2001/045

M. Liskov, R. Rivest, and D. Wagner. Advances in Cryptology — CRYPTO ’02, Lecture Notes in
Computer Science, vol. 2442, pp. 31-46. Springer-Verlag, 2002. See www.cs.berkeley.edu/~daw

P. Rogaway. Authenticated-encryption with associated-data. Proceedings of the 9th Annual Con-
ference on Computer and Communications Security, ACM, 2002. Available as http://www.cs.
ucdavis.edu/"rogaway/papers/ad.html

P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation for efficient
authenticated encryption. Proceedings of the 8th Annual Conference on Computer and Communica-
tions Security, ACM, 2001. Available as http://www.cs.ucdavis.edu/ "rogaway/papers/ocb.htm

P. Rogaway and D. Wagner. A critique of CCM. Manuscript, February 2003. http://wuw.cs.
ucdavis.edu/ rogaway/papers/ccm.html.

D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). June 2002. Available at
http://csrc.nist.gov/encryption/modes/proposedmodes/

A Proofs of security of EAX2

Proof of Lemma 1: Let Key2 be the key space of the IVE scheme II = (£,D). Let A be an
adversary attacking the privacy of the AEAD scheme IT = (E,D) where IT = EAX2[II, R}, 7].
Assume that A makes at most q oracle queries, has data complexity at most o, and running time at
most ¢. Using A, we construct an adversary P, defined in Figure 7, for attacking the privacy of II.
Observe that P makes at most g oracle queries, has data complexity o, and running time at most
t'. Regarding the design of P, our first claim is that its assignment of a value to f([0], || V), made

17

in answering an oracle query of A, is legitimate because f([0], || V) was not previously defined.
This is true because A is nonce-respecting. Now we claim that

Pr [KZ & Key2: PEiol) — 1} — Pr [FERY K2 & Key2: ABRo0) = 1} (3)
Pr [KZ & Key2: PSO) = 1} — Pr [f SR K24 Key2: 480 = 1] . (4)

Subtracting, we get
AdviY(B) = AdvEY(4)

which concludes the proof. We now justify the two equations above. The first is clear from the
definitions. With regarding Equation (4), we need to check that when P’s oracle is $(-), the oracle-
responses returned to A are uniformly and independently distributed. Such a response has the
form C || T. We know that C is random because it is chosen by P’s oracle. The reason T is also
random is that it is the xor of some quantities with N and the latter, being returned by P’s oracle,
is random. 1

Towards the proof of Lemma 2 we counsider a new game and a lemma about it. The game is
parameterized by integers m,7 > 1. Let I denote the set of all strings of length at most m and
let f: I — {0,1}". We consider an adversary with access to two oracles, XTag/ (-) and XVf/(-,).
The zor-tag oracle XTag/(-) takes input a set S C I and returns > zes f(z), the sum here being
modulo two, ie. XOR. The zor-verify oracle XVf/(-,-) takes input a set S C I and a string 7. It
returns 1 if 7 =) s f(x) and 0 otherwise. We require that A make exactly one query to its
xor-verify oracle and that this be its last oracle query. (That is, it makes a sequence of queries to
its xor-tag oracle, then a query to its xor-verify oracle, and then halts.) We say that A forges if its
query to its xor-verify oracle results in the oracle returning 1. We let

Advy;*8(A) = Pr|f ERE: AXTag! (), XVE/ () forges

Towards stating the lemma we need about this advantage, we need some notation. Let ¢ = |I|
and let x1,...,z. denote a lexicographic ordering of I. If S C I we let ChV(S) denote its c-bit
characteristic vector, meaning ChV(S)[j] = 1 if z; € S and 0 otherwise (1 < j < ¢). Suppose
adversary A makes xor-tag queries Si,...,S; and finally a xor-verify query (S,7'). We say that
A is rank respecting if ChV(S) is not a linear combination of ChV(S;),...,ChV(S,). (This must
be true regardless of oracle responses and regardless of A’s internal coins.) In considering linear
combinations we are working over the field of two elements.

Lemma 7 Let m,7 > 1 be integers and let A be a rank-respecting adversary. Then

Adviss4) < 277, 0

Proof of Lemma 7: This lemma is pretty much implicit in [2, 3], but for completeness we provide
a proof here. First, some notation. Let I be the set of all strings of length at most m and let ¢ = |I|.
When we write a sum of vectors, we mean the vectors are being added componentwise modulo 2.
When we write a sum of 7-bit strings, we mean the bitwise XOR.

We begin by considering the adversary B depicted in Figure 8. It has the following features:
. Advxmt?E(B) = Advﬁ?E(A).

e B makes exactly ¢ — 1 xor-tag oracle queries.

18

Adversary BXTag! (), XV ()
14 0;
Run A
When A makes an xor-tag query S
if ChV(S) is linearly dependent on ChV(S;),...,ChV(S;)
then Let L C {1,...,i} be such that ChV(S) = >>,.; ChV(S)); A; < > .1 A
elsei+—i1+1; 5, +S; Ai%XTagf(Si)
Return A; to A as the oracle response
When A makes an xor-verify query (S,7")
forj=i+1,...,c—1do
Pick some S; C I such that ChV(S),ChV(S1),...,ChV(S;) are linearly independent
Aj + XTag/(S;)
Return XVf/(S,T) to A as the oracle response

Figure 8: Adversary for the proof of Lemma 7.

e B makes exactly one xor-verify query and this is the last oracle query it makes.

e Let S1,...,S5. 1 be the xor-tag oracle queries made by B, and let S, be the first component of
the pair that constitutes the xor-verify oracle query made by B. Then ChV(S;),...,ChV(S,)
are linearly independent.

To complete the proof we will show that Advi?&(B) < 277,

m,T
Let f: I — {0,1}" denote the function chosen at random in the game. Let S; be the random
variable taking value the i-th xor-tag oracle query made by B (1 < i < ¢—1), and let S, denote the
random variable taking value the first component of the pair that constitutes the xor-verify oracle
query made by B. For 1 < < ¢ let A; be the random variable taking value the response returned
by the game to xor-tag oracle query S;. (Query S. is not made to the xor-tag oracle by B, but we
define the random variable whose value is its response anyway). That is:

Ai =) fle) (1<i<o),

TES;

Let S1,...,S. 1 be any sequence of xor-tag queries made by B, and let Ay,..., A. 1 be responses
returned to them. Let S. be the first component of the pair constituting a following xor-verify
query made by B. Let A. be any 7-bit strings. We claim that

PI‘[ACZAC| (Sl,...,SC,Al,...,AC,1)=(Sl,...,SC,Al,...,Acfl)] = 277, (5)

the probability being over the choice of the function f alone. This implies that Advﬁ?f(B) =277,
which completes the proof. It remains to justify Equation (5).

Let M be the ¢ — 1 by ¢ matrix whose i-th row is ChV(S;) (1 < i < ¢ — 1) and let M be the
¢ by ¢ matrix whose i-th row is ChV(S;) (1 < ¢ < ¢). Since ChV(Sy),...,ChV(S,) are linearly
independent, M is non-singular. Let z1,...,z. denote a lexicographic ordering of I. We identify
f with the (column) vector f = (f(z1),...,f(zc)). Below we use “” to denote matrix-vector

19

multiplication. Then we have
PI‘[ACZAC| (Sl,...,SC,Al,...,AC,1)=(Sl,...,SC,Al,...,Acfl)]
|{f€R7I' : Mf:(A177AC)}|
|{f€R£ : M'f:(Alw"JAcfl)H
|{f€R7I'Mf (Ala"'aAC)H
EAE{O,l}THf E,R’7I' : Mf: (Ala"'aAC—laA) }|

S (6)
> acfoay !

_ 1

- .

Above, Equation (6) is true because M is non-singular. |
We will now use Lemma 7 to prove Lemma 2.

Proof of Lemma 2: Let B be an adversary attacking the authenticity of EAX2[II, R}!, 7]. Assume
it makes at most ¢, encryption oracle queries, has data complexity at most o, and running time
at most £. Let m be large enough that no string in an oracle query of B has length exceeding m,
regardless of oracle responses and regardless of A’s internal coins. Let I be the set of all strings of
length at most m. For any f: I — {0,1}" we define:

Algorithm EE} "' (M) | Algorithm DD, = (CT)
N« f([0]n [N) if |CT| < 7 then return INVALID
H— f([1n || H) Let C || T + CT where |T| =7
C < {0,131 N f([0]. | V)
e+ (21 0) 3 F([1]n || H)
Tag <~ NoCpH C«+ f([2]n] C)
T + Tag [first 7 bits] Tag' + N CpIH
return CT < C || T T' < Tag' [first T bits]
if T # T' then return INVALID else return 1

We let
Adv™(B) = Pr|f <& RL: BEES(DDr 0 forges
We will construct a rank-respecting adversary A such that
Adv™™(B) < AdviE(A) . (7)

We will also construct an adversary P, using resources t’,q, o and attacking the privacy of II, such
that

AdvE Ry rn 1 (B) — Adv™™(B) < Advi(P). (8)
Thus we have
AV 0 ((B) = AdvR(B) + (AdvESE, gy (B) — AdvE(B))
< AdvIRE(A) + AdviY(P)

N

27T + AdvariV(t', q,0) ,

20

where the last inequality uses Lemma 7. This completes the proof of the lemma. It remains to
construct the adversaries A and P indicated above.

Adversary AXTag! (), XVE () defines the following subroutines:

Subroutine SimEY ¥ (M) Subroutine SimDV# (CT)
c < {0,1}1M] if |CT| < 7 then return INVALID
S { [0l | N, [| H, [21a | C} | Let C||T < CT where |T| =7
T + XTag/(S) S {[00u | N, 1]n [H, [2]n | C'}
return CT « C || T if XVf/(S,T) = 0 then return INVALID
else return 1

Adversary A then runs BS™E(),5ImD”() " Equation (7) is true because for any choice of the

underlying function f we have SimE"’(-) = EEj(-) and SimD"'(-) = ﬁf)f() It remains to show
that A is rank-respecting. Let ¢ = |I| and let z1,...,z. denote a lexicographic ordering of I. For
1 < < qlet (N;, H;, M;) be the i-th encryption-oracle query made by B, leading to A making xor-
tag query S;, and let (N, H, CT) denote the verification query made by B, leading to A making
xor-verify query (S,7). Let CT = C || T where |T| = 7. Imagine a matrix whose i-th row is
ChV(S;) (1 < < ¢q) and whose (¢ + 1)-th row is ChV(S). Column j is called a I-column if z; is
prefixed by [{], (0 <1 <2and 1 <j <¢). Since A is nonce-respecting there exists a set D of ¢
0-columns such that the submatrix formed by the first ¢ rows of the matrix and the columns in
D is a g by q identity matrix. Since ChV(S) has exactly one 1 in a 0-column, the only way that
ChV(S) could be a linear combination of ChV(S;),...,ChV(S,) is that it equals ChV(S;) for some
i (1 <1 < q). This means that N = N;, H = H; and the response to B’s i-th oracle query was
CT. But this contradicts the condition we imposed on B that disallowed a verification-oracle query
(N, H, CT) such that CT had been obtained in response to an encryption-oracle query (N, H, M).
(It is important here that we required the condition to hold regardless of the responses to oracle
queries and the coin tosses of B.) So ChV(S) cannot equal ChV(S;). This completes the proof
that A is rank-respecting.

We now turn to the design of adversary P. It is depicted in Figure 9. It is an extension of
the adversary constructed in the proof of Lemma 1 that also handles verification-oracle queries.
A crucial feature of EAX2 we have exploited in order to be able to respond to verification-oracle
queries is that the validity of a ciphertext can be verified without decrypting under the IVE scheme.
Regarding the design of P, our first claim is that its assignment of a value to f([0], || V), made
in answering an encryption-oracle query of B, is legitimate because f([0], || N) was not previously
defined. This is true for two reasons. The first is that B is nonce-respecting. The second is that B
does not make any encryption-oracle queries after it has made its verification-oracle query. (The
verification-oracle query might define f([0], || V), but since no encryption-oracle queries follow we
do not have to be concerned about f([0], || V) being defined at the time of answering one of them.)
Now we turn to the analysis. Let Key2 be the key-space of 1I. It is easy to see that

br [K2 & Key2: Plil) = 1] = AdvERY Ry (B) (9)
Pr [KzﬁKeym P8O = 1] = Adv™ih(B) . (10)

Subtracting, we get Equation (8), and this concludes the proof. |

Proof of Theorem 3: Let A be an adversary using resources at most (¢,q,0) that attacks
the authenticity of II = (E,D) = EAX2[IL, F,7]. Using A, we construct an adversary B for

21

Adversary P¢()

Initially, f is everywhere undefined

Run B
When B makes encryption-oracle query (N, H, M):
N C & e(M) // where [N| =n
F(0ln I N) <N

if f([1],, || H) is undefined then H « f([1], || H) & {0,1}"
if £([2], || C) is undefined then €« f([2], || C) < {0,1}"
Let T be the first 7 bits of N H @ €
Return CT < C || T to B as the oracle response
When B makes verification-oracle query (N, H, CT):
if |CT| < 7 then return INVALID to B as the oracle response
Let C || T < CT where |T| =17
if £([0], || N) is undefined then f([0], || N) < {0,1}"
N« f([0l. [N)
if f([1], || H) is undefined then f([1], || H) < {0,1}"
5 f([L || H)
if £([2], || C) is undefined then f([2], || C) < {0,1}"
e f([2n I C)
Let T be the first 7 bits of N®H @ €
ifT=T"thend+«+ 1lelsed+ 0
ifd=0
then return INVALID to B as the oracle response
else return 1 to B as the oracle response
return d

Figure 9: Adversary P attacking the privacy of IVE scheme II in the proof of Lemma 2.

distinguishing f & F from f & R}. Adversary B, which has oracle f, works as follows. At the
beginning of B’s execution it chooses K2 & Key2 where Key2 is the key space of II. Then B
runs A. When A makes an oracle query (N;, H;, M;) adversary B computes N; < f([0], || IV;) and
Ci + Ex5(M;) and H; < f([U], || H;) and €; « f([2] ||) and T; + (N; @ €; @ H;) [first 7 bits]
and CT; < C;||T; and then B returns to A the string CT;. When A halts, outputting an attempted
forgery (N, H,C || T'), adversary B checks if this is a valid forgery: (1) it checks if (N, H,C | T) is
distinct from every (N;, H;, C; || T;) that has been computed; (2) it computes N < f([0], || N) and
H <+ f([1]n]| H) and € < f([2], || C) and sees if T' = (N@® H & C) [first 7 bits]. If both conditions
hold then B returns the bit 1 (it guesses that f = Fy for a random K1) and otherwise it outputs
the bit 0 (it guesses that f is a random function from R}!).

Note that B makes a total of 3¢ + 3 oracle calls. The total length of those queries is 0. (Recall
our convention that we include in o the output length and the number of components in each
vector that is queried.) The running time of B is ¢; = ¢ + Timeg (o) + O(c). Finally, adversary B

22

provides A a perfect simulation of EAX2[IL, F, 7] if f is selected by f & F while B provides A a
perfect simulation of EAX2[IT, R}, 7] if f & R}:. Thus using Lemma 2 we have that

Adv%‘z‘&‘;}}(lz[n,F,T] (4)
auth auth auth
= (AdvEAtXZ[H,F,T} (4) = AdvEX Ry (A)) + AdVERK Ry) (4)
< (Pr[f S F. Bl = 1] — Pr[f & Ry Bf = 1]) +277 + AdvariV(tg,q,a)

= AdVR(B) + AdvE (t9,q,0) + 277
< Adv2'(ty, 3¢ +3, o) + AV (t2,q,0) + 277 .

This completes the proof of Equation (1).

Reusing the name, let A be an adversary that attacks the privacy of IT = (E, D) and uses resources
at most (¢,q,0). Reusing the name, we construct an adversary B for attacking the pseudorandom-
ness of F.

Adversary B, which has an oracle for f, is constructed as follows. At the beginning of B’s execution
it chooses K2 < Key2 where Key2 is the key space of II. Then B runs A. When A makes an oracle
call (N;, H;, M;) adversary B computes N; < f([0], || NV;) and C; < E%E(Mz) and H; < f([1], || Hi)
and C; < f([2], || Ci) and T; < (N; ® C; @ H;) [first 7 bits] and CT; + C; || T; and then B returns
to A the string CT;. When A halts, outputting a bit b, adversary B outputs the same bit b.

The total number of oracle queries made by B is 3¢g. The total length of these queries is at most o.
The running time of B is t3 = ¢t + Timeg (o) + O(o). Finally, adversary B provides A a perfect
simulation of EAX2[IL, F, 7] if f is selected by f & F while B provides A a perfect simulation of
EAX2[IL, R, 7] if f < R". Now using Lemma 1 we have that

AdVEX;Q[H,F,T](A) = (AdVEXb[H,F,T} (4) = AdVEX;qH,Rg,T] (A)) + AdVEX;qH,Rg,T] (4)

< (Pr[f &F: Bl =1-Pi[f ER": B = 1]) +Advl " (t2,¢,0)
— AdvP(B) + AdvE™(ty,q,0)
< AdvP(ts,3q,0) + AdvE™ (2, 4, 0)

This completes the proof of Equation (2). |

B Proof of Security of the Tweakable-OMAC Extension

Proof of Lemma 4: Let A be a length-respecting adversary for distinguishing OMIAC[R]}] from
a random function. Assume that A uses resources (o1, 02). Without loss of generality we assume
that A is deterministic and makes no repeated queries. We simulate the behavior of an OMAC[R]!]
oracle as show in Figure 10. That figure depicts a mechanism, game Q1, that coincides with the
definition of OMAC[R]!]. As before, we use the notation X for the padded version of the string X,
namely X = X107 1XI-1,

Game Q1 is not the most obvious simulation of an OMAC[R]!| oracle. In particular, the game
distinguishes among the following cases: one-block messages that are a full n bits (line 10); one-
block messages that fall short of n bits (line 11); messages with two or more blocks where the final

23

Initialization

0 pE&RD

01 Lo < p([0]n) ; L1 = p([L]n) 5 L2 < p([2]n)

On query (t, M, s), where t € {0,1,2} and M = M;---M,, and s € N

10 if |[M|=n then T < p(M; & L ®2Ly)
20 elseif |M| < n then T < p(M; ® L, ®4Ly)
30 else if Y[t, M;] is undefined then Y [t, M| < p(M; @& L)

31 u < the largest number in [1..m — 1] s.t. Y'[t, M;_,] is defined
32 for j <~ u+1tom —1do Y[t, My j] + p(Y[t, M1 ;1] D M;)
33 if |IMy,| =n then T « p(Y[t, M1 m—1] D My, ®2Ly)
34 if (M| < n then T « p(Y[t, My.n_1]® M, ®4Lo)

40 for j«—0tos—1doS;« p(T'+j—1)
50 return T || Sp---Ss-1

Figure 10: Game Q1, which perfectly simulates an OMACf, oracle for t € {0,1,2} and p a random function
from R.

block is a full block (line 33); and messages with two or more blocks where the final block is a short
block (line 34). In addition to breaking into these cases, we implement memoization by way of the
array Y. In particular, when a query M; ... M, is asked we record (memoize) the intermediate
values that we get as we CBC our way down M, --- My, 1. If any of prefixes My, My 9,..., My m1
should arise again with the same tweak we will not re-compute the values needed as we chain down
the message, looking up the answer in the array Y instead. Notice that memoization stops one
block short of the final block M,, and that the memoization is tweak-dependent.

To help us understand the behavior of game Q1 we make some changes to it, yielding game QZ2,
defined in Figure 11. As is standard, game Q2 avoids choosing p & R at the beginning and instead
fills in values incrementally. Any time we need a p(X) value, if it is not yet defined then we choose
a value at random from {0,1}" and make this to be p(X). Any time we need a value for p(X) that
has been defined already, we use that old value. In the latter case we also set a flag bad. The flag
bad effects nothing visible to the adversary, but it is central to our subsequent analysis. It is easy
to verify that games Q1 and Q2 provide identical views to any adversary that interacts with them,
so Pr[AQ! = 1] = Pr[AQ2% = 1).

Also defined in Figure 11 is game R1. This game is obtained by dropping the highlighted statements
from game Q1. We only omit statements that immediately follow the setting of the flag bad. The
game R1 is easily seen to return n(s — 1) random bits in response to any query (t,M,s). Thus
Adv%iszt,Rl(A) = |Pr[AQ2 = 1} — |Pr[AR! = 1}| < Pr[AR! sets bad]. This is the standard setup
for analyses within the game-playing paradigm.

To more easily understand game R1 we rewrite it a bit, resulting in the game R2 shown in
Figure 12. To understand the change from game R1 to game R2 notice that, having eliminated
the seven highlighted statements of game Q2, the p(X)-values are no longer actually used in
game R1: all that one needs to keep track of is whether or not a point X has already been placed
into the the domain of p. Thus game R2 ceases to keep track of p-values; instead, we record in the
variable R what would be the domain of p at this point in time. So R starts off as {[0],, [1]n, [2]n}

24

Initialization

00 Lo+« {0,1}"; Ly ¢ {0,1}" ; Ly < {0,1}"

01 p([0]n) < Lo 5 p([1n) < L1 5 p([2]n) < Lo

02 bad + false

On query (t, M, s), where t € {0,1,2} and M = M, ---M,, and s € N
05 T < {0,1}"

10 if |[M|=n then

11 X1 My ®Li®2Ly ; if X; € Domain(p) then bad < true , T < p(X;)
12 p(X1) «T

20 elseif |[M| < n then

21 X, M, & L ®4Ly ; if X; € Domain(p) then bad < true , T + p(X;)
22 p(X1) «T

30 else if Y[t, M;] is undefined then

31 X, < My &L, ; Y[t, My] < {0,1}"

32 if X; € Domain(p) then bad < true, Y[t, Mi] < p(X1)
33 p(X1) < Y[t, M;]

40 u <+ the largest number in [1 .. m — 1] s.t. Y[t, M;] is defined
41 for j«—~u+1tom—1do

42 X; < Y[t, Mi_j_1]®M; ; Y[t, My_;] < {0,1}"

43 if p(X;) is defined then bad < true, Y[t, M;_j] <+ p(X;)
44 p(Xm) < Y[t, My_j]

50 if |M,,,| = n then

51 X Y[t, My 1] @ My, & 2Lg

52 if X,,, € Domain(p) then bad + true , T < p(X,,)

53 p(Xm) T

60 if |M,,| < n then

61 Xy < Y[t, My 1] & M,, ®4Lo

62 if X,,, € Domain(p) then bad + true , T < p(X,,)

63 p(Xm) T

70 for j+«+ 0tos—1do

71 S; < {0,1}"

72 if T'+j—1 € Domain(p) then bad < true , Sj < p(T'+j—1)

73 p(T+j—1) « S;

80 return T || Sy---Ss—1

Figure 11: Game Q2, which is equivalent to game Q1. Game R1 is obtained by omitting the highlighted
statements.

25

(corresponding to the fact that p([0],), p([1]n), and p([2],) are defined in game R1) and then,
whenever a point X would have been placed into the domain of p, with some value being assigned
to p(X), we simply add X to the set R, not bothering with anything else. Instead of testing if a
given point is in the domain of p we test if it is in R. At this point we notice that the random
value T is not used until the final lines of the game, so, for added clarity, we move down in the
program the choosing of the random value T. We have that Pr[AR? sets bad] = Pr[AR? sets bad].
Given what we have said so far, Adv((p]gJI AKC[R%](A) = Adv‘gsf,Rz(A) < Pr[AR? sets bad]. Our job
has been reduced to understanding the adversary’s chance of setting bad in game R2.

Let us dispense right away with the the chance that bad is set at line 73. The value 7T is chosen at
random at line 70 and then we see if any of the s points T,T + 1,...,T + s — 1 are in the set R.
Now |R| < 01 + 02 + 3 throughout the execution of game R2 and we are testing for the presence
of at most o9 points in R, and so

o9(o1 + 02 + 3)
271

Pr[bad gets set at line 73 of game R2] < (11)
Let game R3 coincide with game R2 except for eliminating line 73. The probability that bad
gets set in game R2 is at most the probability that bad gets set in line 73 of game R2 plus the
probability that bad gets set in a line other than line 73 of game R2. So by equation (11) we have
that

0'2(0'1 +02 + 3)

Pr[bad gets set in game R2] < Pr[bad gets set in game R3] + o

(12)

We proceed with the analysis of game R3.

The values S; returned to the adversary in game R3 have no impact on any internal variable
maintained by the game (these values are chosen, returned to the adversary, and never used again).
The only significance of the g T-values returned to the adversary is to define some g9 R-values—
values that the adversary does not control®. Thus we will only be giving the adversary more power
if we allow it to select an initial set of o9 + 3 values for R (the “+3” reflecting the three values that
were assigned to R at line 01) and have it interact no further with the game, since everything is at
that point determined. In other words, the game is made noninteractive, but we maximize over all
possible choices {R1,...,R,,+3} of initial values for R. The adversary’s corresponding queries are
now fixed. The modified game is shown in Figure 13. We regard all of q and t!,... t% € {0,1,2}
and strings M!, ... M% having block lengths m',... m3 and strings Ry, -+ ,R,,13 € {0,1}" as fixed
constants associated to the game. We must bound the probability that bad gets set to true in
game S. We do that with a case analysis.

If the flag bad gets set in game S it is because a point X ; gets computed in one of lines 11, 21, 31,
41, 51, 61 (six possibilities), but that point was already placed in R by an earlier execution of one
of lines 01, 12, 22, 33, 43, 53, 63 (seven possibilities). This gives a total of 6 x 7 = 42 cases. We
refer to the “current” point as X ; and the “earlier” point as X;. The current point must follow
the earlier point under the natural ordering. The current point X]5 and the earlier point X can
be set as any of the following;:

SStrictly speaking, the attacker can control s for each invocation. However, it is still true that we are only giving
the adversary more power if we allow the adversary to select o2 + 3 values in advance rather than observing the S-
and T-values as we go.

26

Initialization

00 Lo < {0,1}"; Ly <~ {0,1}"; Ly <> {0,1}"

01 R4 {[0]n, [1]n, [2]n}

02 bad <+ false

On query (t, M, s), where t € {0,1,2} and M = M;---M,, and s € N
10 if |[M|=n then

11 X1 M{®L:D2Ly ; if X; € R then bad <+ true
12 R—RU{X:}

20 elseif |M| < n then

21 X, + My ®L,®4Ly ; if X, € R then bad + true
22 R+—RU{X}

30 else if Y[t, M;] is undefined then

31 X, < My &Ly ; Y[t, My] < {0,1}"

32 if X, € R then bad < true

33 R—RU{X}

40 u <+ the largest number in [1..m — 1] s.t. Y[t, M;] is defined
41 for j«—~u+1tom—1do

42 X; « Y[t, My_j_1]®M; ; Y[t, My_;] < {0,1}"
43 if X; € R then bad < true

44 R+—RU{X;}

50 if |M,;,| = n then

51 X < Y[t, My 1] ® My, ®2Lo

52 if X,, € R then bad + true

53 R—RU{X,,}

60 if |[M,,| < n then

61 X < Y[t, My 1] My, ®4Lo

62 if X,, € R then bad < true

63 R—RU{X,;,}

70 T < {0,1}"
71 for j+ 0tos—1do

72 S; < {0,1}"
73 if T4+j5—1 € R then bad < true
4 R+ RU{T, T+1, ..., T+s—1}

80 return T | Sp---Ss_1

Figure 12: Game R2, which is equivalent to R1 but no longer maintains the function p.

27

00
01
02

05

10
11
12
20
21
22
30
31
32
33
35
40
41
42
43
50
51
52
53
60
61
62
63

Lo <= {0,1}" 5 Ly ¢ {0,1}" 5 Ly <= {0,1}"
R« {Rl, Cey Ra2+3}
bad < false

for s« 1toqdo
if |M*| = n then
X{ M@ Lis © 2Ly ; if X{ € R then bad < true
R—RU{X}]}
elseif |M°| < n then
X7 M @ Lys @ 4L ; if X{ € R then bad + true
R—RU{X}}
else if Y[t%, M]] is undefined then
X5 M@ Lo ; Y[t5, M5] & {0,1}"
if X7 € R then bad < true
R—RU{X]}
u < the largest number in [1..m* — 1] s.t. Yt*, M ,
for j < u+1tom’°—1do
st = Y[tsv Mi..j—l] GBM;) Y[tsv Mi..j] & {Ov l}n
if X7 € R then bad « true
R RU{XS}
if |M2s| = n then
X5« Y[t5, Mj (] ®M @ 2L
if XJs € R then bad < true
R—RU{XS}
if [MJs| <n then
X5+ Y[to, M5 | ©ME, ® 4Ly
if X’ € R then bad < true
R—RU{XZ}

] is defined

Figure 13: Game S, the noninteractive game that the analysis focuses on.

28

case earlier point X current point X7 Pr[X; = X7] | explanation
1 R, 1B Lys 2Ly 27" randomness of Lo
2 1@ Ly & 2L M{ & Ls ©2Lo 0or27" no repeated queries /
randomness of Lis
3 ﬁ{/ @ Ly ©4Lo 1® Les ®2Lo 27" randomness of Lo
4 M} & Lyr 1@ Lys 2L 27" randomness of Lo
5 Y[t", M{_ ;_,] DM M & Lys 2L 27" randomness of Ly
6 Y[t", Ml ar 1] ©M; ©2Lo 7@ Les ©2Lo 27" randomness of Y[t", M .r_1]
7 | Y[t", M - 1)@ M @4Lo 5@ Les ©2Lo 27" randomness of Y[t", M] .»_1]
8 R¢ M$ @ Lis ©4Lo 27" randomness of Lo
9 E’IVIEB Ly ®2Lg E’Ii @ Lys 4L 27" randomness of Lo
10 M] & L+ @4Lo M & L ®4Lo 0or27" no repeated queries /
randomness of Ls
11 M} @ Ly M @© L ©4Lo 27" randomness of Lo
12 Y[t", M{ ;_,] DM, M; @ Lis d4Lo 2= randomness of Lo
13 Y[t", M] 1] ®M; ©2Lo M; @ Les ®4Lo 27" randomness of Y[t", M] . _1]
14 | Y[t", M) r_1]® M ©4Lo M$ @ Les ®4Lo 27" randomness of Y[t", M] . _1]
15 Ry M; @ Lys 27" randomness of Lys
16 16 Ly B 2L M; & Lys 27" randomness of Lo
17 M} @ Ly ©4Lo 1@ Lys 27" randomness of Lo
18 M| @ Ly Mi @ Lis 0or2™" memoization /
randomness of Ls
19 Y[t", M{_ ;_,] DM, M{ B Lys 27" randomness of Lys
20 | Y[t", M{ or 1] ®M] ®2Lo 5D Lys 27" randomness of Y[t", M] .»_1]
21 | Y[t", M] o 1]® M ®4Ly M{ @ Lys 2=" randomness of Y[t", M] .r 1]
22 Re YI[t5, Mi ;] DM 2" randomness of Y[t*, M ;]
23 l‘ﬁ/@a Lo ®©2L Y, M)] DN 27" randomness of Y'[t*, M ;_]
24 M, @® Ly ©4Lo YI[t5, Mi ;] DM 27" randomness of Yt*, Mj ;_4]
25 M} @ Lyr Y, M)] DN 27" randomness of Y'[t*, M ;_]
26 Y[t", M{ ;1] ®M] Yt*, M 1| DN 0or2" memoization /
randomness of Ls
27 | Y[t", M o 1] BM ©2Lg Y, M)] DN 27" randomness of Lo
28 | Y[t", M] r1]® M ©4Lo Y[t*, Mi ;] DM 27" randomness of Lo
29 R¢ Y[t°, Mi s 1] ©M; ©2Lo 27" randomness of Y[t%, M s]
30 1@ L & 2L Y[t Mi 1] ©M; @ 2Lo 27" randomness of Y[t*, M] s _;]
31 M @ Ly ®4Lo Y[t5, M pe 1] OM @2Lo 27" randomness of Y[t*, M s 1]
32 M} @ Lyr Y[t Mi 1] ©M; ©2Lo 27" randomness of Y[t*, M] s _;]
33 Y[t", M{_ ;_,] ®M] Y[t°, Mi s 1] ©M; ©2Lo 27" randomness of Ly
34 | Y[t", M]] ®M] ®2Lo | Y[t°, M] ns_1] DM ®2Lo Oor2™" no repeated queries /
randomness of Y[t*, M] s _;]
35 | Y[t", M} o] ® M} ©4Lo | Y[t°, M o5 1] DM ©2Lo 27" randomness of Lo
36 R¢ Y[t M] ns 1] @ f’I\]“’/ @®4Lo 27" randomness of Y[t*, M] s _;]
37 1@ L & 2L Y[t M] ns 1] @ ﬁ;’/ @®4Lo 27" randomness of Y[t*, M] s _;]
38 M} @ Ly ©4Lo Y[t°, M] o5 1] D M @ 4Lo 27" randomness of Y[t*, M s 1]
39 M| @ Lyr Y[t*, M o 1]® M2 ©4Lo 27" randomness of Y[t*, M{ s _1]
40 YI[t", M,]OM Y, Mi o] F’I\;’/ @®4Lo 27" randomness of Lo
41 | Y[t", M) 1] ©OM ©2Lo | Y[t5, M5 oo 4] E ®4L 27" randomness of Loy
42 | Y[t", M o 1] M ©4Lo | Y[t*, M oo 1] ® M3 ©4Lo 0or2 " no repeated queries /
randomness of Y[t*, M s 1]

Figure 14: Case analysis for the proof of OMAC

29

: 0
line 01 | X, | Ry line 11 | X7 | M] @ Ls ®2Lg

: T T —_—

ine 121 X | M} © Ly & 2Lo line 21 | X; | M} & Ly @ 4L
line 221 Xi) My © Ly ©4Lo line 31 | X§ |] @ Ly

hne 33 X{ M{ @Ltr line 41 X5 Y[ts M5 .]@MS-
line 44 | X7 Y[t", My ; [©M; line 51 | X0, | v m s | @M o2L
line 53 | X7, m e A

r | Y[, M)] BM B 2L
m » l.m”—1 T : s s MS s
line 63 X:nT Y[tr’ qumr_l] @ M: @4_[10 llne 6]. X E] Y[t 9 Mlums,]_] @ M7 @4_[10

Each current point X7 that gets considered during game S has a “type” which is one of the six
possibilities above. Each earlier point X likewise has a “type” which is one of the seven possibilities
above. The type of a point does not depend on random choices made during the execution of the
game S; the type of a point is determined once the constants associated to the game are fixed.
If we look at a pair of earlier/current points (X;, X7?) each point will have some one particular
type—there are 42 pairs of types in all.

We now claim that for any current point X ; and any earlier point X7, the probability that the
values assigned to these two points are the same is at most 27". This is verified by a case analysis,
going over all 42 possibilities for the type of X and X;. The case analysis is outlined in Figure 14.
We add justification to three representative examples:

— Case 2. We are trying to bound Pr[M] & Ly @2Lg = M§ @ Lys @ 2Lo] = Pr[M] ®M; = Ly @ Lys|
where r < s. Here |M"| < n and |M*| < n. Subcase 2A: if t" = t* then M" # M*® because
of the constraint that adversary A was allowed to make no (¢, M, s) query following an earlier
(t, M, r) query, and so the indicated probability is 0. Subcase 2B: if t" # t* then Ly and Lys
are random and independent, and so Pr[M] ®M] = Ly @ Lys| = 27",

— Cuase 9. We are bounding Pr[M} @ Ly ©2Lo = M @ Lys @ 4Lo) = Pr[M; & M = Ly @& Lys @ 6Lo).
If t" =t then this is Pr[M] & ﬁ% = 6Lo] = 27" because Ly is random and independent of the
left-hand side. If t" = 0 and t* # 0 then this is Pr[M] & ﬁf ® Lis = TLg] = 27" because Ly
is random and independent of the left-hand side. The case for t" # 0 and t°* = 0 is the same
way, as is the case for t" # 0 and t° # 0 and t" # t°.

— (Cuase 34. This case arises for messages M" and M° having two or more blocks and both messages
having a full final block. We want to bound Pr[Y[t", M{ .. _]®M ®2Ly = Y[t*, M} . |]®
M; @ 2Lo] which is Pr[Mj @ M) = Y[t", M ,, J@Y[t", M] . ,]]. Observe that Y[t", M| .]
and Y[t*, M§ _._,] are random from {0,1}", being chosen from this set in an earlier execution
of line 41 or line 31. If they are the identical random variable, that is, t" = t¥ and M" less its
final block is identical to M* less its final block, then Pr[M; @M} = 0] = 0 because there are
no repeated queries. If they are different random variables then they are independent and
PrlM G = Y[t', M} (| @Y[E", 1 o] =277

The justifications for the remaining 39 cases are analogous. We leave the reader to check the table,
which is the technical heart of the proof.

We are now ready to conclude the proof. As the o1 current points X ; are considered the probability
that the kth current point X7 collides with a given earlier one of the kK — 1+ 09+ 3 earlier points X7
is at most 1/2". Thus the probability that the kth current point coincides with some earlier point
is at most (k + o2 4+ 2)/2". So the probability that some current point coincides with some earlier
one is at most Y 7L (k+02+2)/2" = 0y (02+3)/2" + Y71, (k —1)/2" < (0102 + 301 + 0.507) /2".

30

Combining with Equation (12) and the prior arguments we conclude that

This completes

dist
Adviiaciry) s, (01,02) <

IN

the proof. |

010'2+30'1+0.5U% 0'2(01+0'2+3)
2n + 2n
0.50% + 20109 + O’% + 301 + 309
on
(0'1 +O’2 +3)2
on

C Proofs of security of EAX

Proof of Theorem 5: We begin with the privacy claim. Let A be an adversary using resources
(q,0) that is trying to distinguish EAX[R]!, 7] from a source of random bits. We construct an
adversary B that distinguishes OMAC[R]| from a source of random bits. Adversary B has an
oracle g that responds to queries (¢, M,s) € {0,1,2} x {0,1}* x N with a string RS¢S;---Ss 1,
each named component an n-bit string. Adversary B works as follows:

10
11
12
13
14
15
16
17
18
19

Algorithm BY

Run A

When A makes an oracle call (N;, H;, M;), do the following:

s < [|Mi]/n]

Ni S() . Ss—l — g(O, Ni 8)

C;«+ M; ® (So - Se 1 [ﬁrSt |Mz| bitS])

9¢; ¢ g(1, H;, 0)

C; g(2, Ci, 0)

T; + N; ® C; @ H; [first 7 bits]

Return, in response to A’s query, C; || T;
When A halts, outputting a bit b, return b

We may assume that adversary A makes g > 1 queries since, otherwise, the result follows im-
mediately. Then, under our conventions for the data complexity, adversary B uses resources at
most (20 — 3,0). Observe that PrAPAXRET = 1] = pr[BOMACIRE] = 1], Also, since A is nonce
respecting, B is length-respecting and Pr[A® = 1] = Pr[B% = 1]. Using Lemma 4 we conclude

that

This completes

AdviyXiry (4 =

IN

IN

IN

the privacy claim.

Pr[APAXIRGET] — 1] — Pr[A® = 1]
Pr[BMACIRA] = 1] — Pr[B% = 1]
(30)°

277,
99"

2n

31

Moving on to authenticity and reusing the name, let A be an adversary for attacking the authenticity
of EAX[R}, 7] that uses resources at most o. Let

ay; = AdV%lXc)l(IZ[CTR[R%],RZ 7] (4)
6 = o] — (9

By Lemma 2 and known results about the privacy of CTR (cf. [1]) we have

1 .
as < ——I—Advgr%vR[Rm(a)

2T
1 o?
S ot
Hence
2
o 1
a1=a2+5 S 6+2_n+2_7'

We now turn to bounding §. To do this, reusing the name, we construct from A (the authenticity-
attacking adversary) an adversary B (with an oracle for g and intended for distinguishing OMAC[R]!]
from a source of random bits):

Algorithm BY

10 Run A

20 When A makes an oracle call (N;, H;, M;), do the following:
21 s « [|Mi]/n]

22 N;So... 81 %g(O, NZ',S)

23 Ci+— M; @ (S() < Sm—1 [ﬁI‘St |Mz| bitS])

24 H; g(l, H;, 0)

25 C; « g(2, Ci, 0)

26 T, < N CdH;

27 In response to A’s query, return Cj || T;

30 When A outputs a forgery attempt (N, H, C'|| T) and halts:
31 ¢+ [|C|/n]

32 N« g(0, N, 0)

33 H <+ g(l, H, 0)

34 C«+g(2, C,0)

35 T < N& Co H [first T bits]

36 ifT=T"and (N,H,C || T) # (N;, H;,C; || T;) for all ¢
37 then return 1 else return 0

As before, one may assume that A makes ¢ > 1 queries and, according to our conventions, the
complexity of B will then be at most (20—3,0). Also, a; = Adv%ﬁ‘fi‘mnﬁ] (A) = Pr[BOMACIRA] — 1],

Next, define the function E[p, f]:{0,1,2} x {0,1}* x N — {0,1}* by

Algorithm E|p, f] (t, M, s)

10 R« f([t]n]|M)
11 for j < 0tos—1doS; < p(R+})
12 return R SyS7---Ss_1

32

Note that
@2 = Advg)lx;)lil2[CTR[Rm,R;,q—] (A) = Pr[BPRaRal = 1.

Moreover,
d 3
ist
Advs pirpR:) S griT

for all adversaries that request a total of oy keystreams, since E[R]:, R}] can only be distinguished

from §,, if there is a collision in the inputs to p, and there are o9 inputs to p. As a trivial consequence,

2
n qIx o
and thus
auth $n 02
@y = AdVErxyoTR(RE) R 7] (A) 2 PrB™ = 1] — on+1

Also, B is length-respecting, since A is nonce-respecting (we use here the fact that the last three
queries B makes all take the form g(-,-,0), so those last three queries cannot violate the length-
respecting condition). So, using Lemma 4, we conclude that

5 = - (30)2 o? < 9.502
= a1t > on ont+l = on

This completes the authenticity claim and the proof. |

D Recommended API

Some important features of EAX can only be utilized if one accesses EAX functionality through
an appropriate user interface. In this section we therefore put forward an API that permits (a) in-
cremental encryption, (b) incremental decryption, (c¢) authenticity verification without ciphertext
recovery, and (d) static headers with negligible per-message cost. Providing of these features results
in an API that is a bit more elaborate than some programmers may want or need, so we also include
some simpler, “all-in-one” calls.

/*

* We provide two interfaces:

1. A simple interface that does not support streaming data.
2. An incremental interface that supports streaming data.

* See below for documentation on both.

*/

* ¥

/ sk ok ke ok sk sk s ok ok sk sk ke ok sk sk ke sk sk ok sk sk ok sk s ok ok sk s ok ks sk sk ok ki e ok sk sk o ok ok ok
* —-- How to encrypt, the simplified interface —-
* First, call
* eax_init ()
* to setup the key and set the parameters.
* Then, for each packet, call
* eax_encrypt ()
* When all done, call
* eax_zeroize()
st st ok sk s ke ks sk ek s ks s ke ks s sk ok ks ok ks s ok sk ok sk s ok sk sk o ok ok
* —- How to decrypt, the simplified interface —-

33

First, call
eax_init()
to setup the key and set the parameters.
Then, for each packet:
eax_decrypt ()
When all done, call
eax_zeroize()
It is the caller’s responsibility to check tag validity
by examining the return value of eax_decrypt().
stk ofeofeofeofeofe ok ok ok ok ok ok ok ok ok ok ok sk sk sk s s o e ke ke ok feok ok ok sk sk sk sk sk s s s s ke ke ok ok ok sk sk sk sk sk sk sk s s sk e ke ok /

* X X X X X X X x

/***

* -- How to encrypt, incrementally —-

* First, call

* eax_init ()

* to setup the key and set the parameters.

* Then, for each packet, call

* eax_provide_nonce()

* {eax_provide_header(), eax_compute_ciphertext()}*

* eax_compute_tag()

* Here {x,y} means x or y, and z* means any number of iterations of z.
* When all done, call

* eax_zeroize()

*

* Note that encryption can be done on the fly, and header and message data
* may be provided in any order and in arbitrary chunks.

st st ok sk s ke ks s sk ek s ok sk s e kst kst ok sk ok ks s ok sk ok sk s ok sk sk o ok ok
-- How to decrypt, incrementally —-
First, call
eax_init()
to setup the key and set the parameters.
Then, for each packet:
eax_provide_nonce ()
{eax_provide_header(), eax_provide_ciphertext()}*
eax_check_tag()
eax_compute_plaintext () // only do this if tag was valid
When all done, call
eax_zeroize()
Note that decryption may be done on the fly, and header and message data
may be provided in any order and in arbitrary chunks.
It is the caller’s responsibility to check tag validity
by examining the return value of eax_check_tag().
skt ok sk sk s ke ks sk ek sk s ke kst kst s ok skt ok ks ok sk ok sk sk sk sk s ke ok sk ok ok /

* X X X X X X X X X X X X * *

typedef enum {AES128,AES192,AES256} block_cipher; /* "standard" ciphers */
typedef unsigned char byte;
typedef void eax_state; /* EAX context; opaque */

/***

* Calls common to incremental and non-incremental API
st ok ok e ok ok ok ook sk ok sk ok ok sk ok ok ok ok sk s ok sk ok e ok ok sk sk ok ok ok ok sk ok sk ke ok sk ok ok sk ok ok ok sk ok ok ko ok ok /

34

/%

* eax_init

* Key and parameter setup to init a EAX context data structure.
* If you don’t know what to pass for t,E, use t=16, E=AES128.
*/
eax_state *
eax_init(
byte* Key, // The key, as a string.
unsigned int t, // The tag length, in bytes.
block_cipher E // Enumerated that indicates what cipher to use.

)
/*
* eax_provide_header
*
* Supply a message header. The header "grows" with each call
* until a eax_provide_header() call is made that follows a
* eax_encrypt(), eax_decrypt(), eax_provide_plaintext(),
* eax_provide_ciphertext() or eax_compute_plaintext() call.
* That starts reinitializes the header.
*/
int
eax_provide_header(
eax_state *K, // The EAX context.
byte *H, // The header (associated data) (possibly more to come)
unsigned int h // having h bytes
)
/*
* eax_zeroize
*
* Session is over; destroy all key material and cleanup!
*/
void
eax_zeroize(
eax_state *K // The EAX context to remove
);

/3K sk e ok sk sk e ok sk e ok sk sk e ok sk ke ok sk ok sk e ok sk e ok sk ok e ok sk ok s ok sk ok ok ok sk ok s ok sk ok k ok ok sk o ok sk ok ok sk ok o ok sk ok ok
* All-in-one, non-incremental interface
st ke ok sk ok ok ok ook sk e ok ok ok ok sk ok ok ok ok sk e ok sk ok ok ok sk sk s ok sk ke ok ok sk ok sk ok ok ok ok ke ok sk ok ok ok ok ok ok ko ok ok /

/%

* eax_encrypt

* Encrypt the given message with the given key, nonce and header.
* Specify the header (if nonempty) with eax_provide_header().

*/

int

eax_encrypt(
eax_state *K, // The caller provides the EAX context,
bytex N, // the nonce and

35

unsigned int n, // its length (in bytes), and

bytex M, // the plaintext and
unsigned int m, // its length (in bytes).
bytex C, // The m-byte ciphertext
bytex T // and the tag T are returned.
)
/*
* eax_decrypt()
*
* Decrypt the given ciphertext with the given key, nonce and header.
* Specify the header (if nonempty) with eax_provide_header().
* Returns 1 for a valid ciphertext, O for an invalid ciphertext.
*/
int
eax_decrypt(
eax_state *K, // The caller provides the EAX context,
bytex N, // the nonce and
unsigned int n, // its length (in bytes), and
byte* C, // the ciphertext and
unsigned int c, // its length (in bytes), and the
bytex T, // tag.
bytex P // If valid, return the c-byte plaintext.
)

/3 3k sk sk e sk ke ok sk ok sk sk e sk sk o sk ke ok sk s ok e ok sk e ok ks ok ok sk s ok e sk sk ke ok ko sk sk sk ok ook sk sk ok 3k ok ke ok ook sk ok
* Incremental interface
st ok sk ok e ok e ok e ok 3k ok e ok ook e ok ke ok e o ke ok sk sk ok sk ke ok ke ok ok sk ok s ok sk ok sk ke ok ook ok ok sk ok ok sk k ok ok /

/%

eax_provide_nonce

Provide a nonce. For encryption, do this before calling
eax_compute_ciphertext() and eax_compute_tag();

for decryption, do this before calling

eax_provide_ciphertext(), eax_check_tag, or eax_compute_plaintext().

* X X X X x

*/
int
eax_provide_nonce(
eax_state *K, // The EAX context,
bytex N, // the nonce, and
unsigned int n // the length of the nonce (in bytes).

/%

eax_compute_ciphertext

Encrypt a message or a part of a message.
The nonce needs already to have been
specified by a call to eax_provide_nonce().

* ¥ X X x

*/

36

int
eax_compute_ciphertext(// Encrypt (part of) a message

eax_state *K, // Given a EAX context K
byte *M, // and a message M (possibly more to come)
unsigned int m, // having m bytes.
byte *C // Return a ciphertext body C also having m bytes.
)
/*

* eax_compute_tag

* Message and header finished: compute the authentication tag that is a part
* of the complete ciphertext.

*/
int
eax_compute_tag(
eax_state *K, // Given a EAX context
byte *T // compute the tag T for it.
)3
/%

* eax_provide_ciphertext

* Supply the ciphertext, or the next piece of ciphertext.
* This is used to check for the subsequent authenticity check eax_check_tag().

*/

int
eax_provide_ciphertext(
eax_state *K, // Given a EAX context
byte *C, // and a ciphertext C (possibly more to come)
unsigned int c // having c bytes.
)
/*
* eax_check_tag
*
* The nonce, ciphertext and header have all been fully provided; check if
* they are valid for the given tag.
* Returns 1 for a valid ciphertext, O for an invalid ciphertext
* (in which case plaintext/ciphertext might be zeroized as well).
*/
int
eax_check_tag(
eax_state *K, // Given a EAX context and
byte *T // the tag that accompanied the ciphertext.
)
/*
* eax_compute_plaintext
*

37

Recover the plaintext from the provided ciphertext.

A call to eax_provide_nonce() needs to precede this call.

The caller is responsible for separately checking if the ciphertext is valid.
Normally this would be done before computing the plaintext with
eax_compute_plaintext().

* X X X x

*/
int
eax_compute_plaintext(
eax_state *K, // Given a EAX context

byte *C, // and a ciphertext C (possibly more to come)
unsigned int c, // having c bytes,
byte *M // return the corresponding c bytes of plaintext.

)

E Test Vectors

The following EAX-AES128 test vectors have been graciously provided by Jack Lloyd. We have
not yet verified these values. If you do, please send us email. If you provide code, we will hapilly
make it available on the web.

MSG:
KEY: 233952DEE4D5EDSFOBOC6D6FF80FF4A78
NONCE: 62EC67F9C3A4A407FCB2A8C49031A8B3

HEADER: 6BFB914FDO7EAEGB
CIPHER: E037830E8389F27B025A2D6527E79D01

MSG: F7FB
KEY: 91945D3F4DCBEEOBF45EF52255F095A4
NONCE: BECAF043B0A23D843194BA972C66DEBD

HEADER: FA3BFD4806EBS3FA
CIPHER: 19DD5C4C9331049D0OBDAB0277408F67967ED

MSG: 1A47CB4933
KEY: 01F74AD64077F2E704COF60ADA3DD523
NONCE: 70C3DB4F0D26368400A10EDO5SD2BFF5E

HEADER: 234A3463C1264AC6
CIPHER: D851D5BAEO3A59F238A23E39199DC9266626C40F80

MSG: 481C9E39B1
KEY: DO7CF6CBB7F313BDDE66B727AFD3C5E8
NONCE: 8408DFFF3C1A2B1292DC199E46B7D617

HEADER: 33CCE2EABFF5A79D
CIPHER: 632A9D131AD4C168A4225D8E1FF755939974A7BEDE

MSG: 40DOCO7DASE4
KEY: 35B6D0580005BBC12B0587124557D2C2
NONCE: FDB6B06676EEDC5C61D74276E1FSE816

HEADER: AEB96EAEBE2970E9
CIPHER: 071DFE16C675CB0677ES36F73AFE6A14B74EE49844DD

MSG: 4DE3B35C3FC039245BD1FB7D
KEY: BDBE6E11475E60B268784C38C62FEB22
NONCE: 6EAC5C93072D8E8513F750935E46DA1B

HEADER: D4482D1CA78DCEOF
CIPHER: 835BB4F15D743E350E728414ABB8644FD6CCB86947C5E10590210A4F

38

MSG:
KEY:
NONCE:

HEADER:
CIPHER:

MSG:
KEY:
NONCE:

HEADER:
CIPHER:

MSG:
KEY:
NONCE:

HEADER:
CIPHER:

MSG:
KEY:
NONCE:

HEADER:
CIPHER:

8BOA79306COCETED99DAE4F87F8DD61636
7C7T7D6E813BEDSACO8BAA417477A2ETD

1A8C98DCD73D38393B2BF1569DEEFC19

65D2017990D62528
02083E3979DA014812F59F11D52630DA30137327D10649BOAAGE1C181DB617D7F2

1BDA122BCE8ASDBAF1877D962B8592DD2D56
S5FFF20CAFAB119CA2FC73549E20F5B0OD

DDE59B97D722156D4D9AFF2BC7559826

54B9F04E6A09189A
2EC47B2C4954A489AFC7BA4897EDCDAESCC33B60450599BD02C96382902AEFTF832A

6CF36720872B8513F6EAB1A8A44438D5EF11
A4A4782BCFFD3ECSETEF6D8C34A56123

B781FCF2F75FASA8DEO7A9CA48ES22EC

899A175897561D7TE
ODE18FDOFDD91E7AF19F1D8EE8733938B1ESE7F6D2231618102FDB7FES5FF1991700

CA40D7446E545FFAED3BD12A740A659FFBBB3CEAB7
8395FCF1E95BEBD697BD010BC766AAC3

22E7ADD93CFC6393C57ECOB3C17D6B44

126735FCC320D25A
CB8920F87A6C75CFF39627B56E3ED197C552D295A7CFC46AFC253B4652B1AF3795B124AB6E

39

