
EAX: A Conventional Authentiated-Enryption Mode

M. Bellare

�

P. Rogaway

y

D. Wagner

z

September 9, 2003

Abstrat

We propose a blok-ipher mode of operation, alled EAX, for authentiated-enryption

with assoiated-data (AEAD). Given a none N , a message M , and a header H , the mode

protets the privay of M and the authentiity of both M and H . Strings N;M;H 2 f0; 1g

�

are arbitrary, and the mode uses 2djM j=ne+ djH j=ne+ djN j=ne blok-ipher alls when these

strings are nonempty and n is the blok length of the underlying blok ipher. Among EAX's

harateristis are that it is on-line (the length of a message isn't needed to begin proessing it)

and a �xed header an be pre-proessed, e�etively removing the per-message ost of binding

it to the iphertext. EAX is obtained by instantiating a simple generi-omposition method,

EAX2, and then ollapsing its two keys into one. EAX is provably seure under a standard

omplexity-theoreti assumption.

EAX was designed in response to the expressed need of several standardization bodies,

inluding NIST, IETF and IEEE 802.11, for a patent-free AEAD sheme. Suh a sheme would

have to be onventional, meaning it would make two passes, one aimed at ahieving privay and

one aimed at ahieving authentiity. EAX aims to �ll this need by doing as well as possible

within the spae of onventional shemes with regard to issues of eÆieny, simpliity, elegane,

ease of orret use, and provable-seurity guarantees. EAX is an alternative to CCM [19℄.

Keywords: Authentiated enryption, message authentiation, CBC MAC, modes of operation,

OMAC, provable seurity.

�

Department of Computer Siene & Engineering, University of California at San Diego, 9500 Gilman Drive,

La Jolla, California 92093, USA. E-mail: mihir�s.usd.edu WWW: www-se.usd.edu/users/mihir/

y

Department of Computer Siene, University of California at Davis, Davis, California 95616, USA; and De-

partment of Computer Siene, Faulty of Siene, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail:

rogaway�s.udavis.edu WWW: www.s.udavis.edu/~rogaway/

z

Department of Eletrial Engineering and Computer Siene, University of California at Berkeley, Berkeley,

California 94720, USA. E-mail: daw�s.berkeley.edu WWW: http://www.s.berkeley.edu/~daw/

1



Contents

1 Introdution 3

2 The EAX Algorithm 4

3 Disussion of EAX 7

4 Intelletual Property Statement 9

5 EAX2 Algorithm 11

6 De�nitions 11

7 Seurity Results 13

8 Aknowledgments 15

A Proofs of seurity of EAX2 17

B Proof of Seurity of the Tweakable-OMAC Extension 23

C Proofs of seurity of EAX 31

D Reommended API 33

E Test Vetors 38

2



1 Introdution

AE and AEAD. An authentiated enryption (AE) sheme is a symmetri-key mehanism by

whih a message M is a transformed into a iphertext CT with the goal that CT protet both

privay and authentiity of M . The last few years have seen inreasing interest and development

e�ort in this domain. For the purposes of this paper it is useful to distinguish two lasses of

shemes. The �rst are shemes that make two passes through the data, one aimed at providing

privay and the other at providing authentiity. We all suh shemes onventional. A ommon

method of designing onventional shemes is by \generi omposition," where one pass is based on

a (privay-only) symmetri-enryption sheme and the other pass on a message authentiation ode

(MAC), eah using a di�erent key. Comparative analyses of various generi omposition methods

an be found in [5, 6, 14℄. The seond, more modern lass of shemes, that we all unonventional

make only a single pass through the data, using a single key, and have ost about half that of

onventional shemes. These inlude IAPM [12℄, OCB [17℄ and XCBC [9℄.

After the emergene of these new AE shemes, it was realized that often times not all the data

should be enrypted|in many appliations we have a mixture of seret and non-seret data, and it

would be nie to have a mode of operation that provides privay for the seret data and authentiity

for both types of data. Thus was born the notion of authentiated-enryption with assoiated-data

(AEAD) [16℄. The non-seret data is alled the assoiated data or the header. Conventional AEAD

shemes may again be designed via generi omposition. An unonventional one, based on OCB,

is dot-OCB [16℄.

The need for a new onventional sheme. Numerous bodies, inluding NIST, IETF and

IEEE802.11, are interested in standardizing an AEAD sheme, but have been deterred from stan-

dardizing any of the new unonventional (one pass) shemes due to patents related to them. To be

patent-avoiding, a sheme would have to be onventional (two pass). The need has aordingly been

expressed for a onventional AEAD sheme that is \as good as possible" subjet to this onstraint.

While a generi omposition based sheme is an obvious solution, it would not be onsidered

adequate sine it entails two keys instead of one. What is envisaged is a blok-ipher based, single-

key using sheme. One suh proposal, by Whiting, Housley, and Ferguson [19℄, is the AEAD sheme

alled CCM. But CCM embodies limitations that have nothing to do with the Intelletual Property

(IP) that it works to avoid [18℄.

This paper makes two ontributions. First, we isolate various goals that we onsider important

for a onventional AEAD sheme suitable for standardization. Seond, we speify a new AEAD

sheme, EAX, that ahieves all these goals. These goals relate to issues of eÆieny, simpliity,

elegane, ease of orret use, and provable-seurity guarantees. We will see that unlike EAX, CCM

does not ahieve all these goals.

EAX goals. We want a none-using, blok-ipher-based AEAD sheme. It should provide both

privay, in the sense of indistinguishability from random bits, and integrity, in the sense of an adver-

sary's inability to produe a new but valid (none, header, iphertext) triple [16℄. Nothing should

be assumed about the nones exept that they are non-repeating. Seurity must be demonstrated

using the standard, provable-seurity approah. The sheme should employ no tool beyond a blok

ipher E : Key�f0; 1g

n

! f0; 1g

n

that it is based on. We should assume nothing about E beyond

its seurity in the sense of a pseudorandom permutation (PRP). We expet that E will often be

instantiated by AES, but we should make no restritions in this diretion (suh as insisting that

n = 128). The sheme should be simple and natural (so, in partiular, it should avoid ompliated

length-annotation). It should be a \onventional" AEAD sheme, making a separate privay pass

and authentiity pass, using no known IP.

3



We wanted our AEAD sheme to be exible in the funtionality it provides. It should support

arbitrary-length messages: the message spae should be f0; 1g

�

. The key spae of the AEAD should

be the key spae Key of the underlying blok ipher. We wanted to support nones as long as the

blok length

1

; that is, the none spae should inlude f0; 1g

n

. Any tag length � 2 [0::n℄ should be

possible, to allow eah user to selet how muh seurity she wants from the integrity guarantees and

how many bits she has to pay for this.

2

The above onsiderations imply that the only user-tunable

parameters should be E and � .

We took on some fairly aggressive performane goals. First, message expansion should be no

more than required: the length of the iphertext (whih, following the onventions of [17℄, exludes

the none) should be only � bits more than the length of the plaintext. Implementations should be

able to pro�tably pre-proess stati assoiated data; for example, if we have an unhanging header

attahed to every paket, authentiating this header should have no signi�ant ost after a single

pre-omputation. There should be an eÆient pseudorandom funtion (PRF) diretly aessible

through the de�ned interfae of the AEAD sheme|as eÆient as other onventional PRFs. Key-

setup should be eÆient and all blok-ipher alls should use the same underlying key, so that we

do not inur the ost of key sheduling more than one. For both enryption and deryption, we

want to use only the forward diretion of the blok ipher, so that hardware implementations do

not need to implement the deryption funtionality of the blok ipher. The sheme should be

on-line for both the plaintext M and the assoiated data H, whih means that one an proess

streaming data on-the-y, using onstant memory, not knowing when the stream will stop.

EAX rationale. EAX ahieves all the above goals. Still, one might ask why EAX as opposed

to the dot-OCB AEAD sheme of [16℄? The latter not only ahieves these goals but makes about

half the number of blok ipher alls made by CCM and EAX. The reason, as we have already

disussed, is that the unonventional (one pass) shemes like dot-OCB are subjet to patents,

and standardization bodies have (for whatever reason) expressed the intent of standardizing a

onventional (two pass) sheme, even at the ost of the fator of two in performane, in order to

avoid patents. The merit of this judgment is debatable, and one an debate it, but the pragmati

reality is that there emerges a need for a onventional sheme, like EAX, that is as good as possible

subjet to the two-pass onstraint. Lak of a sheme like EAX will simply lead to an inferior

sheme being standardized, whih is to the disadvantage of the user ommunity. Aordingly,

EAX addresses a very real and pratial, even if somewhat unonventionally motivated, rypto-

engineering problem, and has the potential for widespread usage and adoption.

2 The EAX Algorithm

Preliminaries. All strings in this paper are over the binary alphabet f0; 1g. For L a set of

strings and n � 0 a number, we let L

n

and L

�

have their usual meanings. The onatenation of

strings X and Y is denoted X k Y or simply X Y . The string of length 0, alled the empty string,

is denoted ". If X 2 f0; 1g

�

we let jXj denote its length, in bits. If X 2 f0; 1g

�

and ` � jXj

then the �rst ` bits of X are denoted X [�rst ` bits℄. When X 2 f0; 1g

n

is a nonempty string and

t 2 N is a number we let X+ t be the n-bit string that results from regarding X as a nonnegative

number x (binary notation, most-signi�ant-bit �rst), adding x to t, taking the result modulo 2

n

,

and onverting this number bak into an n-bit string. If t 2 [0::2

n

� 1℄ we let [t℄

n

denote the

enoding of t into an n-bit binary string (msb �rst, lsb last). If X and P are strings then we let

1

Here we will over-ahieve, allowing a none spae of f0; 1g

�

.

2

Note that sine our AEAD sheme is bit-oriented and not byte-oriented, � is the number of bits, not bytes, of

the tag.

4



Algorithm CBC

K

(M)

10 Let M

1

� � �M

m

 M where jM

i

j = n

11 C

0

 0

n

12 for i 1 to m do

13 C

i

 E

K

(M

i

�C

i�1

)

14 return C

m

Algorithm CTR

N

K

(M)

20 m djM j=ne

21 S  E

K

(N) kE

K

(N+1) k � � � kE

K

(N+m�1)

22 C  M � S [�rst jM j bits℄

23 return C

Algorithm pad (M ; B;P )

30 if jM j 2 fn; 2n; 3n; : : :g

31 then return M �! B,

32 else return (M k 10

n�1�(jM j mod n)

) �! P

Algorithm OMAC

K

(M)

40 L E

K

(0

n

); B  2L; P  4L

41 return CBC

K

(pad (M ; B;P ))

Algorithm OMAC

t

K

(M)

50 return OMAC

K

([t℄

n

kM)

Figure 1: Basi building bloks. The blok ipher E : Key � f0; 1g

n

! f0; 1g

n

is �xed and K 2 Key. For

CBC, M 2 (f0; 1g

n

)

+

. For CTR, M 2 f0; 1g

�

and N 2 f0; 1g

n

. For pad, M 2 f0; 1g

�

and B;P 2 f0; 1g

n

and �! xors the shorter string into the end of longer one. For OMAC, M 2 f0; 1g

�

and t 2 [0::2

n

� 1℄ and the

multipliation of a number by a string L is done in GF(2

n

).

X �! P (the xor-at-the-end operator) denote the string of length ` = maxfjXj; jP jg bits that is

obtained by prepending

�

�

jXj � jP j

�

�

zero-bits to the shorter string and then xoring this with the

other string. (In other words, xor the shorter string into the end of the longer string.) A blok

ipher is a funtion E : Key�f0; 1g

n

! f0; 1g

n

where Key is a �nite, nonempty set and n � 1 is a

number and E

K

(�) = E(K; �) is a permutation on f0; 1g

n

. The number n is alled the blok length.

Throughout this note we �x suh a blok ipher E.

Building bloks. In Figure 1 we de�ne the algorithms CBC, CTR, pad, OMAC (no supersript),

and OMAC

�

(with supersript). The algorithms CBC (the CBC MAC) and CTR (ounter-mode

enryption) are standard. Algorithm pad is used only to de�ne OMAC. Algorithm OMAC [10℄ is

a pseudorandom funtion (PRF) that is a one-key variant of the algorithm XCBC [8℄. Algorithm

OMAC

�

is like OMAC but takes an extra argument, the integer t. This algorithm is a \tweakable"

PRF [15℄, tweaked in the most simple way possible.

We explain the notation used in the de�nition of OMAC. The value of iL (line 40: i an integer

in f2; 4g and L 2 f0; 1g

n

) is the n-bit string that is obtained by multiplying L by the n-bit string

that represents the number i. The multipliation is done in the �nite �eld GF(2

n

) using a anonial

polynomial to represent �eld points. The anonial polynomial we selet is the lexiographially

�rst polynomial among the irreduible polynomials of degree n that have a minimum number of

nonzero oeÆients. For n = 128 the indiated polynomial is x

128

+ x

7

+ x

2

+ x+ 1. In that ase,

2L = L<<1 if the �rst bit of L is 0 and 2L = (L<<1)� 0

120

10000111 otherwise, where L<<1 means

the left shift of L by one position (the �rst bit vanishing and a zero entering into the last bit). The

value of 4L is simply 2(2L). We warn that to avoid side-hannel attaks one must implement the

doubling operation in a onstant-time manner.

We have made a small modi�ation to the OMAC algorithm as it was originally presented,

hanging one of its two onstants. Spei�ally, the onstant 4 at line 40 was the onstant 1=2 (the

multipliative inverse of 2) in the original de�nition of OMAC [10℄. The OMAC authors indiate

5



Algorithm EAX:Enrypt

N H

K

(M)

10 N OMAC

0

K

(N)

11 H OMAC

1

K

(H)

12 C  CTR

N

K

(M)

13 C OMAC

2

K

(C)

14 Tag  N�C�H

15 T  Tag [�rst � bits℄

16 return CT  C k T

Algorithm EAX:Derypt

N H

K

(CT )

20 if jCT j < � then return Invalid

21 Let C k T  CT where jT j = �

22 N OMAC

0

K

(N)

23 H OMAC

1

K

(H)

24 C OMAC

2

K

(C)

25 Tag

0

 N�C�H

26 T

0

 Tag

0

[�rst � bits℄

27 if T 6= T

0

then return Invalid

28 M  CTR

N

K

(C)

29 return M

Figure 2: Enryption and deryption under EAX mode. The plaintext is M , the iphertext is CT , the key is K,

the none is N , and the header is H . The mode depends on a blok ipher E (that CTR and OMAC impliitly

use) and a tag length � .

N

T

OMAC

0

K

C

HM

N

H

C

CTR

K

OMAC

1

K

OMAC

2

K

Figure 3: Enryption under EAX mode. The message is M , the key is K, and the header is H . The iphertext

is C k T .

6



that they will promulgate this modi�ation [11℄, whih slightly simpli�es implementations.

EAX. Fix a blok ipher E : Key�f0; 1g

n

! f0; 1g

n

and a tag length � 2 [0::n℄. These parameters

should be �xed at the beginning of a partiular session that will use EAX mode. Typially, the

parameters would be agreed to in an authentiated manner between the sender and the reeiver,

or they would be �xed for all time for some partiular appliation. Given these parameters, EAX

provides a none-based AEAD sheme EAX[E; � ℄ whose enryption algorithm has signature Key�

None�Header�Plaintext! Ciphertext and whose deryption algorithm has signature Key�None�

Header�Ciphertext! Plaintext[ fInvalidg where None, Header, Plaintext, and Ciphertext are all

f0; 1g

�

. The EAX algorithm is spei�ed in Figure 2 and a piture illustrating EAX enryption is

given in Figure 3.

3 Disussion of EAX

We disuss various features of our algorithm and hoies underlying the design.

No enodings. We have avoided any nontrivial enoding of multiple strings into a single one.

3

Some other approahes that we onsidered required a PRF to be applied to what was logially

a tuple, like (N;H;C). Doing this raises enoding issues we did not want to deal with beause,

ultimately, there is no eÆient, ompelling, on-line way to enode multiple strings into a single one.

Alternatively, one ould avoid enodings and onsider a new kind of primitive, a multi-argument

PRF. But this would be a non-standard tool and we didn't want to use any non-standard tools.

All in all, it seemed best to �nd a way to sidestep the need to do enodings, whih is what we have

done.

Why not generi omposition? Why have we spei�ed a blok-ipher based (BC-based) AEAD

sheme instead of following the generi-omposition approah of ombining a (privay-only) en-

ryption method and a message authentiation ode? There are reasonable arguments in favor of

generi omposition, based on aestheti or arhitetural sensibilities. One an argue that generi

omposition better separates oneptually independent elements (privay and authentiity) and,

orrespondingly, allows greater implementation exibility [6, 14℄. Corretness beomes muh sim-

pler and learer as well. The argument does have validity. Still, BC-based AEAD modes have

some important advantages. BC-based AEAD makes it easier to use a ryptosystem orretly and

interoperably|for example, presenting a more diretly useful API for developers. BC-based AEAD

redues the risk that implementors will hoose inseure parameters. It makes it easier for imple-

mentors to use a sheme without knowing a lot of ryptography. It saves on key bits and key-setup

time, as generi-omposition methods invariably require a pair of separate keys.

All of that said, EAX an be viewed as having been derived from a generi-omposition sheme

we all EAX2, desribed in Setion 5. Spei�ally, one instantiates the generi-omposition sheme

EAX2 with CTR mode (ounter mode) and OMAC, and then ollapses the two keys into one. If

one does favor generi omposition, EAX2 is a nie algorithm for it.

On-line. Here, we say that an algorithm is on-line if it is able to proess a stream of data as it

arrives, with onstant memory, not knowing in advane when the stream will end. Observe then

that on-line methods should not require knowledge of the length of a message until the message is

�nished. A failure to be on-line has been regarded as a signi�ant defet for an enryption sheme

3

One ould view the pre�xing of [t℄

n

toM in the de�nition of OMAC

t

K

(M) as an enoding, but [t℄

n

is a onstant,

�xed-length string, and the aim here is just to \tweak" the PRF. That is very di�erent from needing to enode an

arbitrary-length message M and an arbitrary-length header H into a single string, for example.

7



CCM EAX

Funtionality Authentiated Enryption with AD Authentiated Enryption with AD

Built from Blok ipher E with 128-bit bloksize Blok ipher E with n-bit bloksize

Parameters Blok ipher E

Tag length � 2 f4; 6; 8; 10; 12; 14; 16g

Length of msg length �eld � 2 [2::8℄

Blok ipher E

Tag length � 2 [0::n℄

Message spae Parameterized: 7 hoies: � 2 [2::8℄.

Eah possible message spae a sub-

set of Byte

�

, from Byte

2

16

�1

to

Byte

<2

64

�1

f0; 1g

�

None spae Parameterized, with a value of 15��

bytes. From 56 bits to 104 bits

f0; 1g

�

Key spae One blok-ipher key One blok-ipher key

Ciphertext expansion � bytes � bits

Blok-ipher alls 2

l

jM j

128

m

+

l

jHj

128

m

+2+ Æ, for Æ 2 f0; 1g 2

l

jM j

n

m

+

l

jHj

n

m

+

l

jN j

n

m

Blok-ipher alls

with stati header

2

l

jM j

128

m

+

l

jHj

128

m

+2+ Æ, for Æ 2 f0; 1g 2

l

jM j

n

m

+

l

jN j

n

m

Key setup Blok ipher subkeys Blok ipher subkeys

3 blok-ipher alls

IV requirements Non-repeating none Non-repeating none

Parallelizable? No No

On-line? No Yes

Preproessing (/msg) Limited (key stream only) Limited (key stream and header only)

Memory rqmts Small onstant Small onstant

Provable seurity? Yes: redution from blok-ipher's

PRP seurity, bound of �(�

2

=2

128

)

Yes: redution from blok-ipher's

PRP seurity, bound of �(�

2

=2

n

)

Patent-enumbered? No No

Figure 4: A omparison of basi harateristis of CCM and EAX. The ount on blok-ipher alls for EAX

ignores key-setup osts. By the set Byte we mean f0; 1g

8

.

8



or a MAC. EAX is on-line.

Now it is true that in many ontexts where one would be enrypting a string one does know

the length of the string in advane. For example, many protools will already have \pakaged up"

the string length at a lower level. In e�et, suh strings have been represented in the omputing

system as sequene of bytes and a ount of those bytes. But there are also ontexts where one does

not know the length of a message in advane of getting an indiation that it is over. For examples,

a printable string is often represented in omputer systems as a sequene of non-zero bytes followed

by a terminal zero-byte. Certainly one should be able to eÆiently enrypt a string whih has been

represented in this way.

Ability to proess a stati AD. In many senarios the assoiated data H will be stati over the

ourse of a ommuniations session. For example, the assoiated data may inluding information

suh as the IP address of the sender, the reeiver, and �xed ryptographi parameters assoiated

to this session. In suh a ase one would like that the amount of time to ompute Enrypt

N H

K

(M)

and Derypt

N H

K

(C) should be independent of jHj, disregarding the work done in a preproessing

step. (The signi�ane of this goal was already explained in [16℄.) EAX ahieves this goal.

Fast verifiation. Invalid messages an be rejeted at half the ost of deryption. This is one

of the bene�ts of following what is basially an enrypt-then-authentiate approah as opposed to

a authentiate-then-enrypt approah.

Surfaing a MAC.One an obtain a MAC as eÆient as the PRF underlying EAX via MAC

K

(H) =

Enrypt

0

n

H

K

(").

Comparison with CCM. Figure 4 ompares EAX and CCM along various dimensions. We

elaborate on some of these points here.

While EAX is on-line, CCM is not. One needs to know the length of both the plaintext and

the assoiated data before one an proeed with enryption.

While EAX allows pre-proessing of stati assoiated data, CCM does not, beause it enodes

the none N and the message length kMk

n

before H rather than after it.

CCM has a more omplex parameterization than does EAX due to the introdution of a message-

length parameter.

CCM's none length is restrited in an undesirable way. For parameter hoies that allow

enrypting long messages with CCM, the none length is so limited that CCM with these parameters

might not provide adequate seurity when nones are hosen randomly. EAX does not have this

problem.

CCM disrupts word alignment in the assoiated data. (CCM prepends 18 or 22 bytes of meta-

data to the header H before proessing it, whih is not a multiple of most mahine's word length.)

As a result, CCM implementations ould su�er a performane hit when proessing long assoiated

data strings, a problem that EAX avoids.

For more information on the limitations of CCM, see [18℄.

4 Intelletual Property Statement

The authors neither have, nor are of aware of, any patents or pending patents relevant to EAX. We

do not intend to apply for any patents overing this tehnology. Our work for this note is hereby

plaed in the publi domain. As far as we know, EAX is free and unenumbered for all uses.

9



Algorithm EAX2:Enrypt

N H

K1;K2

(M)

10 N F

0

K1

(N)

11 H F

1

K1

(H)

12 C  E

N

K2

(M)

13 C F

2

K1

(C)

14 Tag  N�C�H

15 T  Tag [�rst � bits℄

16 return CT  C k T

Algorithm EAX2:Derypt

N H

K1;K2

(CT )

20 if jCT j < � then return Invalid

21 Let C k T  CT where jT j = �

22 N F

0

K1

(N)

23 H F

1

K1

(H)

24 C F

2

K1

(C)

25 Tag

0

 N�C�H

26 T

0

 Tag

0

[�rst � bits℄

27 if T 6= T

0

then return Invalid

28 M  D

N

K2

(C)

29 return M

Figure 5: The generi omposition sheme EAX2[�; F; � ℄. The sheme is built from a PRF F : Key1�f0; 1g

�

!

f0; 1g

n

and an IV-based enryption sheme � = (E ;D) having key spae Key2 and message spae f0; 1g

�

.

N

C

HM

N

H

C

T

F

0

K1

F

1

K1

F

2

K1

E

K2

Figure 6: Enrypting under EAX2. The plaintext is M and the key is (K1;K2) and the header is H . The

iphertext is C k T . By F

i

K

we mean the funtion where F

i

K

(M) = F

K

([i℄

n

kM).

10



5 EAX2 Algorithm

This setion is not neessary to understand or implement EAX, but it is neessary for understanding

the proof of seurity of EAX as well as the general approah taken for its design. That approah

has been to �rst design a generi-omposition sheme, EAX2, and then \ollapse" to a single key

for the partiular ase of CTR enryption and OMAC authentiation.

EAX2 omposition. Let F : Key1 � f0; 1g

�

! f0; 1g

n

be a PRF, where n � 2. Let � = (E ;D)

be an IV-based enryption sheme having key spae Key2 and IV spae f0; 1g

n

. This means that

E : Key2 � f0; 1g

n

� f0; 1g

�

! f0; 1g

�

and D : Key2 � f0; 1g

n

� f0; 1g

�

! f0; 1g

�

and Key2 is

a set of keys and for every K 2 Key2 and N 2 f0; 1g

n

and M 2 f0; 1g

�

, if C = E

N

K

(M) then

D

N

K

(C) = M . Let � � n be a number. Now given F and � and � we de�ne an AEAD sheme

EAX2[�; F; � ℄ = (EAX2:Enrypt;EAX2:Derypt) as follows. Set F

t

K

(M) = F

K

([t℄

n

k M). Set

Key = Key1�Key2. Then the enryption algorithm EAX2:Enrypt : Key�f0; 1g

�

�f0; 1g

�

! f0; 1g

�

and the deryption algorithm EAX2:Derypt : Key � f0; 1g

�

� f0; 1g

�

! f0; 1g

�

[ fInvalidg are

de�ned in Figure 5 and the former is illustrated in Figure 6. EAX2[�; F; � ℄ is provably seure under

natural assumptions about � and F . See Setion 7.

EAX1 omposition. Let EAX1 be the single-key variant of EAX2 where one insists that Key1 =

Key2 and where one keys F , E , and D with a single key K 2 Key = Key1 = Key2. That is,

one assoiates to F and �, as above, the sheme EAX1[�; F; � ℄ that is de�ned as with EAX2

but where the key spae is Key = Key1 = Key2 and the one key K keys everything. Notie that

EAX[E; � ℄ = EAX1[CTR[E℄;OMAC[E℄; � ℄. This is a useful way to look at EAX.

6 De�nitions

The seurity results we state and prove later rely on the de�nitions here.

AEAD shemes. A set of keys is a nonempty set having a distribution (the uniform distribution

when the set is �nite). A (none-based) authentiated-enryption with assoiated-data (AEAD)

sheme is a pair of algorithms � = (E;D) where E is a deterministi enryption algorithm

E : Key � None � Header � Plaintext ! Ciphertext and a D is a deterministi deryption algo-

rithm D : Key�None�Header�Ciphertext! Plaintext[fInvalidg. The key spae Key is a set of

keys while the none spae None and the header spae Header (also alled the spae of assoiated

data) are nonempty sets of strings. We write E

N H

K

(M) for E(K;N;H;M) and D

N H

K

(CT ) for

D(K;N;H;CT ). We require that D

N H

K

(E

N H

K

(M)) = M for all K 2 Key and N 2 None and

H 2 Header and M 2 Plaintext. In this note we assume, for notational simpliity, that None,

Header, Plaintext, and Ciphertext are all f0; 1g

�

and that jE

N H

K

(M)j = jM j. An adversary is a

program with aess to one or more orales.

None-respeting. Suppose A is an adversary with aess to an enryption orale E

� �

K

(�). This

orale, on input (N;H;M), returns E

N H

K

(M). Let (N

1

;H

1

;M

1

); : : : ; (N

q

;H

q

;M

q

) denote its orale

queries. The adversary is said to be none-respeting if N

1

; : : : ; N

q

are always distint, regardless

of orale responses and regardless of A's internal oins.

Privay of AEAD shemes. We onsider adversaries with aess to an enryption orale E

� �

K

(�).

We assume that any privay-attaking adversary is none-respeting. The advantage of suh an

adversary A in violating the privay of AEAD sheme � = (E;D) having key spae Key is

Adv

priv

�

(A) = Pr

h

K

$

 Key : A

E

� �

K

(�)

= 1

i

� Pr

h

K

$

 Key : A

$

� �

(�)

= 1

i

11



where $

� �

(�) denotes the orale that on input (N;H;M) returns a random string of length jM j.

Authentiity of AEAD shemes. This time we provide the adversary with two orales, an

enryption orale E

� �

K

(�) as above and also a veri�ation orale

b

D

� �

K

(�). The latter orale takes input

(N;H;CT ) and returns 1 if D

N H

K

(CT ) 2 Plaintext and returns 0 if D

N H

K

(CT ) = Invalid. The

adversary is assumed to satisfy three onditions, and these must hold regardless of the responses

to its orale queries and regardless of A's internal oins:

� A must be none-respeting. (The ondition is understood to apply only to the adversary's en-

ryption orale. Thus a none used in an enryption-orale query may be used in a veri�ation-

orale query).

� A must all its veri�ation-orale exatly one and not all its enryption orale after it has

made its veri�ation orale query. (That is, it makes a sequene of enryption-orale queries,

then a veri�ation-orale query, and halts.)

� A must never make a veri�ation-orale query (N;H;CT ) suh that the enryption orale

had previously returned CT in response to a query (N;H;M).

We say that suh an A forges if its veri�ation orale returns 1 in response to the single query

made to it. The advantage of suh an adversary A in violating the authentiity of AEAD sheme

� = (E;D) having key spae Key is

Adv

auth

�

(A) = Pr

h

K

$

 Key : A

E

� �

K

(�);

b

D

� �

K

(�)

forges

i

:

IV-based enryption. An IV-based enryption sheme (an IVE sheme) is a pair of algorithms

� = (E ;D) where E : Key� IV�Plaintext! Ciphertext is a deterministi enryption algorithm and

D : Key � IV � Ciphertext ! Plaintext [ fInvalidg is a deterministi deryption algorithm. The

key spae Key is a set of keys and the plaintext spae Plaintext and iphertext spae Ciphertext and

IV spae IV are all nonempty sets of strings. We write E

R

K

(M) for E(K;R;M) and D

R

K

(C) for

D(K;R;C). We require that D

R

K

(E

R

K

(M)) =M for all K 2 Key and R 2 IV and M 2 Plaintext. We

assume, as before, that Plaintext = Ciphertext = f0; 1g

�

and that jE

R

K

(M)j = jM j. We also assume

that IV = f0; 1g

n

for some n � 1 alled the IV length.

Privay of IVE shemes with random IVs. Let � = (E ;D) be an IVE sheme with key

spae Key and IV spae IV = f0; 1g

n

. Let E

$

be the probabilisti algorithm de�ned from E that,

on input K and M , hooses an IV R at random from f0; 1g

n

, omputes C  E

R

K

(M), and then

returns C along with the hosen IV:

Algorithm E

$

K

(M) // The probabilisti enryption sheme built from IVE sheme E

R

$

 f0; 1g

n

; C  E

R

K

(M) ; return R k C

Then we de�ne the advantage of an adversary A in violating the privay of � (as an enryption

sheme using random IV) by

Adv

priv

�

(A) = Pr

h

K

$

 Key : A

E

$

K

(�)

= 1

i

� Pr

h

K

$

 Key : A

$(�)

= 1

i

where $(�) denotes the orale that on input M returns a random string of length n+ jM j. This is

just the ind$-privay of the randomized symmetri enryption sheme assoiated to �. We again

require the adversary A to be none-respeting, whih now means that, whatever the adversary's

orale does, the adversary may make no (N;M) query that follows an earlier (N;M

0

) query. We

omment that we have used a supersript of \priv" for an IVE sheme and \priv" (bold font) for

an AEAD sheme.

12



Pseudorandom funtions. A family of funtions, or a pseudorandom funtion (PRF), is a

map F : Key � D ! f0; 1g

n

where Key is a set of keys and D is a nonempty set of strings. We

all n the output length of F . We write F

K

for the funtion F (K; �) and we write f

$

 F to mean

K

$

 Key ; f  F

K

. We denote by R

�

n

the set of all funtions with domain f0; 1g

�

and range

f0; 1g

n

; by R

n

n

the set of all funtions with domain f0; 1g

n

and range f0; 1g

n

; and by R

I

n

the set of

all funtions with domain I and range f0; 1g

n

. We identify a funtion with its key, making R

n

n

, R

�

n

andR

I

n

pseudorandom funtions. The advantage of adversary A in violating the pseudorandomness

of the family of funtions F : Key � f0; 1g

�

! f0; 1g

n

is

Adv

prf

F

(A) = Pr

h

K

$

 Key : A

F

K

(�)

= 1

i

� Pr

h

�

$

 R

�

n

: A

�(�)

= 1

i

A family of funtions E : Key � D ! f0; 1g

n

is a blok ipher if D = f0; 1g

n

and eah E

K

is a

permutation. We let P

n

denote all the permutations on f0; 1g

n

and de�ne

Adv

prp

E

(A) = Pr

h

K

$

 Key : A

E

K

(�)

= 1

i

� Pr

h

�

$

 P

n

: A

�(�)

= 1

i

Resoures. If xxx is an advantage notion for whih Adv

xxx

�

(A) has been de�ned we write

Adv

xxx

�

(R) for the maximal value ofAdv

xxx

�

(A) over all adversaries A that use resoures at most R.

When ounting the resoure usage of an adversary, one maximizes over all possible orale responses,

inluding those that ould not be returned by any experiment we have spei�ed for adversarial ad-

vantage. Resoures of interest are: t|the running time; q|the total number of orale queries;

q

e

|the number of orale queries to the adversary's �rst orale; and �|the data omplexity. The

running time t of an algorithm is its atual running time (relative to some �xed RAM model of

omputation) plus its desription size (relative to some standard enoding of algorithms). The data

omplexity � is de�ned as the sum of the lengths of all strings enoded in the adversary's orale

queries, plus the number of these strings (but only if more than one).

4

In this paper the length

of strings is measured in n-bit bloks, for some understood value n. The number of bloks in a

string M is de�ned as kMk

n

= maxf1; djM j=neg, so that the empty string ounts as one blok. As

an example, an adversary that asks queries (N

1

;H

1

;M

1

); (N

2

;H

2

;M

2

) to its �rst orale and query

(N;H;M) to its seond orale has data omplexity kN

1

k

n

+ kH

1

k

n

+ kM

1

k

n

+ kN

2

k

n

+ kH

2

k

n

+

kM

2

k

n

+kNk

n

+kHk

n

+kMk

n

+9. We always assume that � � n. The name of a resoure measure

(t, t

0

, q, et.) will be enough to make lear what resoure it refers to.

We write

e

O(f(x)) for O(f(x) lg(f(x)) and the onstant hidden inside the notation is understood

to be an absolute onstant. When F is a funtion we write Time

F

(�)) for the maximal amount

of time to ompute the funtion F over inputs of total length �. When � = (E ;D) is an AEAD

sheme or an IVE sheme with key spae Key we write Time

E

(�) for the time to ompute a random

element K

$

 Key plus the maximal amount of time to ompute the funtion E

K

on arguments of

total length �.

7 Seurity Results

We �rst obtain results about the seurity of EAX2 and then prove a result about the seurity of a

tweakable-OMAC extension. These results are applied to derive results about the seurity of EAX.

The notation and seurity measures referred to below are de�ned in Setion 6.

Seurity of EAX2. We begin by onsidering the EAX2[�; F; � ℄ sheme with F being equal to R

n

n

,

the set of all funtions with domain f0; 1g

n

and range f0; 1g

n

. In other words, we are onsidering

4

There is a ertain amount of arbitrariness in this onvention, but it is reasonable and simpli�es subsequent

aounting.

13



the ase where F

K1

is a random funtion with domain f0; 1g

n

and range f0; 1g

n

. First we show

that EAX2[�;R

n

n

; � ℄ inherits the privay of the underlying IVE sheme �.

Lemma 1 [Privay of EAX2 with a random PRF℄ Let � be an IVE sheme with IV spae

f0; 1g

n

and let � 2 [0::n℄. Then

Adv

priv

EAX2[�;R

n

n

;� ℄

(t; q; �) � Adv

priv

�

(t

0

; q; �)

where t

0

= t+

e

O(�). 2

The proof of the above lemma is in Appendix A. We now turn to the authentiity of EAX2[�;R

n

n

; � ℄.

The following shows that EAX2[�;R

n

n

; � ℄ provides authentiity under the assumption that the

underlying IVE sheme � provides privay.

Lemma 2 [Authentiity of EAX2 with a random PRF℄ Let � be an IVE sheme with IV

spae f0; 1g

n

and let � 2 [0::n℄. Then

Adv

auth

EAX2[�;R

n

n

;� ℄

(t; q; �) � 2

��

+Adv

priv

�

(t

0

; q; �)

where t

0

= t+

e

O(�). 2

The proof of the above lemma is in Appendix A. The results above allow us to obtain results about

the seurity of the general EAX2[�; F; � ℄ sheme based on assumptions about the seurity of the

omponent shemes.

Theorem 3 [Seurity of EAX2℄ Let F : Key1 � f0; 1g

�

! f0; 1g

n

be a family of funtions, let

� = (E ;D) be an IVE sheme with IV spae f0; 1g

n

and let � 2 [0::n℄. Then

Adv

auth

EAX2[�;F;� ℄

(t; q; �) � 2

��

+Adv

priv

�

(t

2

; q; �) +Adv

prf

F

(t

1

; 3q + 3; �) (1)

Adv

priv

EAX2[�;F;� ℄

(t; q; �) � Adv

priv

�

(t

2

; q; �) +Adv

prf

F

(t

3

; 3q; �) (2)

where t

1

= t+Time

E

(�) +

e

O(�) and t

2

= t+

e

O(� + nq) and t

3

= t+Time

E

(�) +

e

O(�). 2

The proof of the above theorem is in Appendix A.

Seurity of a Tweakable-OMAC Extension. This setion develops the ore result underlying

why key-reuse \works" aross OMAC and CTR modes. To do this, we onsider the following

extension of the tweakable-OMAC onstrution. Fix n � 1 and let t 2 f0; 1; 2g and � 2 R

n

n

and

M 2 f0; 1g

�

and s 2 N. Then de�ne

Algorithm OM A C [�℄ (t;M; s)

10 R OMAC

t

�

(M)

11 for j  0 to s� 1 do S

j

 �(R+ j)

12 return R S

0

S

1

� � �S

s�1

In other words, an OM A C [�℄ orale, when asked (t;M; s), returns not only R = OMAC[�℄

t

(M) but

also a key stream S

0

S

1

: : : S

s

formed using CTR-mode and start-index R. We emphasize that the

key stream is formed using the same funtion � (that is, the same key) that underlies the OMAC

omputation. Note too that we have limited the tweak t to a small set, f0; 1; 2g.

14



We imagine providing an adversary A with one of two kinds of orales. The �rst is an orale

OMAC

�

(�; �; �) for a randomly hosen � 2 R

n

n

. The seond is an orale $

n

(�; �; �) that, on input

(t;M; s), returns n(s + 1) random bits. Either way, we assume that the adversary is length-

respeting : if the adversary asks a query (t;M; s) it does not ask any subsequent query (t;M; s

0

)

for s

0

6= s. As the adversary runs, it asks some sequene of queries (t

1

;M

1

; s

1

); : : : ; (t

q

;M

q

; s

q

).

The resoures of interest to us are the sum of the blok lengths of the messages being MACed,

�

1

=

P

kM

i

k

n

, and the total number �

2

=

P

s

i

of key-stream bloks that the adversary requests.

We laim that a reasonable adversary will have little advantage in telling apart the two orales,

and we bound its distinguishing probability in terms of the resoures �

1

and �

2

that it expends.

Reall that for orales X and Y and an adversary A we measure A's ability to distinguish between

orales X and Y by the number Adv

dist

X;Y

(A) = Pr[A

X

= 1℄� Pr[A

Y

= 1℄.

Lemma 4 [Pseudorandomness of OM A C ℄ Fix n � 2. Then, for length-respeting adversaries,

Adv

dist

OM A C [R

n

n

℄;$

n

(�

1

; �

2

) �

(�

1

+ �

2

+ 3)

2

2

n

2

The proof of the above lemma is in Appendix B.

Seurity of EAX. We are now ready to prove the seurity of EAX.

Theorem 5 [Seurity of EAX℄ Let n � 2 and � 2 [0::n℄. Then

Adv

priv

EAX[R

n

n

;� ℄

(�) �

9�

2

2

n

Adv

auth

EAX[R

n

n

;� ℄

(�) �

10:5�

2

2

n

+

1

2

�

2

The proof of the above is in Appendix C. Finally, we may, in the ustomary way, pass to the

orresponding omplexity-theoreti result where we start with an arbitrary blok ipher E.

Corollary 6 [Seurity of EAX℄ Let n � 2 and E : Key�f0; 1g

n

�f0; 1g

n

be a blok ipher and

let � 2 [0::n℄. Then

Adv

priv

EAX[E;� ℄

(t; �) �

9:5�

2

2

n

+Adv

prp

E

(t

0

; �)

Adv

auth

EAX[E;� ℄

(t; �) �

11�

2

2

n

+

1

2

�

+Adv

prp

E

(t

0

; �)

where t

0

= t+O(�). 2

We omit the proof, whih is ompletely standard.

8 Aknowledgments

We reeived omments from Niels Ferguson, Jak Lloyd, David MGrew, Jesse Walker, and Doug

Whiting. Jak provided an initial set of test vetors for us.

Mihir Bellare's work was funded by NSF grants CCR-0098123 and ANR-0129617, and by an

IBM Faulty Partnership Development Award. Phil Rogaway's work was funded by NSF CCR-

0208842 and a gift from CISCO Systems. David Wagner's work was funded by NSF CCR-0113941.

15



Referenes

[1℄ M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A onrete seurity treatment of symmetri enryp-

tion: Analysis of the DES modes of operation. Proeedings of the 38th Symposium on Foundations

of Computer Siene, IEEE, 1997. Available as http://www-se.usd.edu/users/mihir/papers/

sym-en.html.

[2℄ M. Bellare, R. Gu�erin, and P. Rogaway. XOR MACs: New methods for message authentiation

using �nite pseudorandom funtions. Advanes in Cryptology { CRYPTO '95, Leture Notes in

Computer Siene Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995. Available as and http:

//www-se.usd.edu/users/mihir/papers/xormas.html

[3℄ M. Bellare, O. Goldreih, and H. Krawzyk. Stateless evaluation of pseudorandom funtions: Seurity

beyond the birthday barrier. Advanes in Cryptology { CRYPTO '96, Leture Notes in Computer

Siene Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996. Available as http://www-se.usd.edu/

users/mihir/papers/otp.html.

[4℄ M. Bellare, J. Kilian, and P. Rogaway. The seurity of the ipher blok haining message authentia-

tion ode. Journal of Computer and System Sienes (JCSS), vol. 61, no. 3, pp. 362{399, De 2000.

Available as http://www-se.usd.edu/users/mihir/papers/b.html.

[5℄ M. Bellare, T. Kohno, and C. Namprempre. Authentiated enryption in SSH: provably �xing the SSH

binary paket protool. Proeedings of the 9th Annual Conferene on Computer and Communiations

Seurity , ACM, 2002. Available as http://www-se.usd.edu/users/mihir/papers/ssh.html

[6℄ M. Bellare and C. Namprempre. Authentiated enryption: Relations among notions and analysis

of the generi omposition paradigm. Advanes in Cryptology { ASIACRYPT '00, Leture Notes in

Computer Siene Vol. 1976, T. Okamoto ed., Springer-Verlag, 2000. Available as http://www-se.

usd.edu/users/mihir/papers/oem.html

[7℄ M. Bellare and P. Rogaway. Enode-then-enipher enryption: How to exploit nones or redundany

in plaintexts for eÆient enryption. Advanes in Cryptology { ASIACRYPT '00, Leture Notes in

Computer Siene Vol. 1976, T. Okamoto ed., Springer-Verlag, 2000. Available as http://www-se.

usd.edu/users/mihir/papers/ee.html

[8℄ J. Blak and P. Rogaway. CBC MACs for arbitrary-length messages: The three-key onstrutions.

Advanes in Cryptology { CRYPTO '00, Leture Notes in Computer Siene Vol. 1880, M. Bellare

ed., Springer-Verlag, 2000. Available as http://www.s.udavis.edu/~rogaway/papers/3k.html

[9℄ V. Gligor and P. Donesu. Fast enryption and authentiation: XCBC enryption and XECB au-

thentiation modes. Presented at the 2nd NIST Workshop on AES Modes of Operation, Santa Bar-

bara, CA, August 24, 2001. http://www.glue.umd.edu/afs/glue.umd.edu/home/enee/faulty/

gligor/pub/NIST-submissionRev.ps.

[10℄ T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. Fast Software Enryption '03, Leture

Notes in Computer Siene Vol. ?? , T. Johansson ed., Springer-Verlag, 2003. Also Cryptology

ePrint arhive Report 2002/180, http://eprint.iar.org/2002/180

[11℄ T. Iwata and K. Kurosawa. Personal ommuniations, January 2002.

[12℄ C. Jutla. Enryption modes with almost free message integrity. Advanes in Cryptology { EURO-

CRYPT '01, Leture Notes in Computer Siene Vol. 2045 , B. P�tzmann ed., Springer-Verlag, 2001.

Also Cryptology ePrint arhive Report 2000/039, http://eprint.iar.org/2000/039/

[13℄ J. Katz and M. Yung. Unforgeable enryption and adaptively seure modes of operation. Fast Software

Enryption '00, Leture Notes in Computer Siene Vol. 1978, B. Shneier ed., Springer-Verlag, 2000.

16



Adversary P

e(�)

Initially, f is everywhere unde�ned

Run A

When A makes orale query (N;H;M) answer the query as follows:

N k C

$

 e(M) // where jNj = n

f([0℄

n

kN) N

if f([1℄

n

kH) is unde�ned then f([1℄

n

kH)

$

 f0; 1g

n

H f([1℄

n

kH)

if f([2℄

n

k C) is unde�ned then f([2℄

n

k C)

$

 f0; 1g

n

C f([2℄

n

k C)

Let T be the �rst � bits of N�H�C

Return CT  C k T as the orale response

When A outputs a bit, d, return d

Figure 7: Adversary P attaking the privay of IVE sheme � using as subroutine adversary A attaking the

privay of � = EAX2[�;R

n

n

; � ℄.

[14℄ H. Krawzyk. The order of enryption and authentiation for proteting ommuniations (or: how

Seure is SSL?). Advanes in Cryptology { CRYPTO '01, Leture Notes in Computer Siene

Vol. 2139, J. Kilian ed., Springer-Verlag, 2001. Also Cryptology ePrint arhive Report 2001/045,

http://eprint.iar.org/2001/045

[15℄ M. Liskov, R. Rivest, and D. Wagner. Advanes in Cryptology { CRYPTO '02, Leture Notes in

Computer Siene, vol. 2442, pp. 31{46. Springer-Verlag, 2002. See www.s.berkeley.edu/�daw

[16℄ P. Rogaway. Authentiated-enryption with assoiated-data. Proeedings of the 9th Annual Con-

ferene on Computer and Communiations Seurity , ACM, 2002. Available as http://www.s.

udavis.edu/~rogaway/papers/ad.html

[17℄ P. Rogaway, M. Bellare, J. Blak, and T. Krovetz. OCB: A blok-ipher mode of operation for eÆient

authentiated enryption. Proeedings of the 8th Annual Conferene on Computer and Communia-

tions Seurity , ACM, 2001. Available as http://www.s.udavis.edu/~rogaway/papers/ob.htm

[18℄ P. Rogaway and D. Wagner. A ritique of CCM. Manusript, February 2003. http://www.s.

udavis.edu/~rogaway/papers/m.html.

[19℄ D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). June 2002. Available at

http://sr.nist.gov/enryption/modes/proposedmodes/

A Proofs of seurity of EAX2

Proof of Lemma 1: Let Key2 be the key spae of the IVE sheme � = (E ;D). Let A be an

adversary attaking the privay of the AEAD sheme � = (E;D) where � = EAX2[�;R

n

n

; � ℄.

Assume that A makes at most q orale queries, has data omplexity at most �, and running time at

most t. Using A, we onstrut an adversary P , de�ned in Figure 7, for attaking the privay of �.

Observe that P makes at most q orale queries, has data omplexity �, and running time at most

t

0

. Regarding the design of P , our �rst laim is that its assignment of a value to f([0℄

n

kN), made

17



in answering an orale query of A, is legitimate beause f([0℄

n

k N) was not previously de�ned.

This is true beause A is none-respeting. Now we laim that

Pr

h

K2

$

 Key2 : P

E

$

K2

(�)

= 1

i

= Pr

h

f

$

 R

n

n

; K2

$

 Key2 : A

E

�;�

f;K2

(�)

= 1

i

(3)

Pr

h

K2

$

 Key2 : P

$(�)

= 1

i

= Pr

h

f

$

 R

n

n

; K2

$

 Key2 : A

$

�;�

(�)

= 1

i

: (4)

Subtrating, we get

Adv

priv

�

(B) = Adv

priv

�

(A)

whih onludes the proof. We now justify the two equations above. The �rst is lear from the

de�nitions. With regarding Equation (4), we need to hek that when P 's orale is $(�), the orale-

responses returned to A are uniformly and independently distributed. Suh a response has the

form C k T . We know that C is random beause it is hosen by P 's orale. The reason T is also

random is that it is the xor of some quantities with N and the latter, being returned by P 's orale,

is random.

Towards the proof of Lemma 2 we onsider a new game and a lemma about it. The game is

parameterized by integers m; � � 1. Let I denote the set of all strings of length at most m and

let f : I ! f0; 1g

�

. We onsider an adversary with aess to two orales, XTag

f

(�) and XVf

f

(�; �).

The xor-tag orale XTag

f

(�) takes input a set S � I and returns

P

x2S

f(x), the sum here being

modulo two, ie. XOR. The xor-verify orale XVf

f

(�; �) takes input a set S � I and a string T . It

returns 1 if T =

P

x2S

f(x) and 0 otherwise. We require that A make exatly one query to its

xor-verify orale and that this be its last orale query. (That is, it makes a sequene of queries to

its xor-tag orale, then a query to its xor-verify orale, and then halts.) We say that A forges if its

query to its xor-verify orale results in the orale returning 1. We let

Adv

xtag

m;�

(A) = Pr

h

f

$

 R

I

�

: A

XTag

f

(�);XVf

f

(�;�)

forges

i

:

Towards stating the lemma we need about this advantage, we need some notation. Let  = jIj

and let x

1

; : : : ; x



denote a lexiographi ordering of I. If S � I we let ChV(S) denote its -bit

harateristi vetor, meaning ChV(S)[j℄ = 1 if x

j

2 S and 0 otherwise (1 � j � ). Suppose

adversary A makes xor-tag queries S

1

; : : : ; S

q

and �nally a xor-verify query (S; T ). We say that

A is rank respeting if ChV(S) is not a linear ombination of ChV(S

1

); : : : ;ChV(S

q

). (This must

be true regardless of orale responses and regardless of A's internal oins.) In onsidering linear

ombinations we are working over the �eld of two elements.

Lemma 7 Let m; � � 1 be integers and let A be a rank-respeting adversary. Then

Adv

xtag

m;�

(A) � 2

��

:

2

Proof of Lemma 7: This lemma is pretty muh impliit in [2, 3℄, but for ompleteness we provide

a proof here. First, some notation. Let I be the set of all strings of length at mostm and let  = jIj.

When we write a sum of vetors, we mean the vetors are being added omponentwise modulo 2.

When we write a sum of � -bit strings, we mean the bitwise XOR.

We begin by onsidering the adversary B depited in Figure 8. It has the following features:

� Adv

xtag

m;�

(B) = Adv

xtag

m;�

(A).

� B makes exatly � 1 xor-tag orale queries.

18



Adversary B

XTag

f

(�);XVf

f

(�;�)

i 0 ;

Run A

When A makes an xor-tag query S

if ChV(S) is linearly dependent on ChV(S

1

); : : : ;ChV(S

i

)

then Let L � f1; : : : ; ig be suh that ChV(S) =

P

l2L

ChV(S

l

) ; A

i

 

P

l2L

A

l

else i i+ 1 ; S

i

 S ; A

i

 XTag

f

(S

i

)

Return A

i

to A as the orale response

When A makes an xor-verify query (S; T )

for j = i+ 1; : : : ; � 1 do

Pik some S

j

� I suh that ChV(S);ChV(S

1

); : : : ;ChV(S

j

) are linearly independent

A

j

 XTag

f

(S

j

)

Return XVf

f

(S; T ) to A as the orale response

Figure 8: Adversary for the proof of Lemma 7.

� B makes exatly one xor-verify query and this is the last orale query it makes.

� Let S

1

; : : : ; S

�1

be the xor-tag orale queries made by B, and let S



be the �rst omponent of

the pair that onstitutes the xor-verify orale query made by B. Then ChV(S

1

); : : : ;ChV(S



)

are linearly independent.

To omplete the proof we will show that Adv

xtag

m;�

(B) � 2

��

.

Let f : I ! f0; 1g

�

denote the funtion hosen at random in the game. Let S

i

be the random

variable taking value the i-th xor-tag orale query made by B (1 � i � �1), and let S



denote the

random variable taking value the �rst omponent of the pair that onstitutes the xor-verify orale

query made by B. For 1 � i �  let A

i

be the random variable taking value the response returned

by the game to xor-tag orale query S

i

. (Query S



is not made to the xor-tag orale by B, but we

de�ne the random variable whose value is its response anyway). That is:

A

i

=

X

x2S

i

f(x) (1 � i � ) :

Let S

1

; : : : ; S

�1

be any sequene of xor-tag queries made by B, and let A

1

; : : : ; A

�1

be responses

returned to them. Let S



be the �rst omponent of the pair onstituting a following xor-verify

query made by B. Let A



be any � -bit strings. We laim that

Pr [A



= A



j (S

1

; : : : ;S



;A

1

; : : : ;A

�1

) = (S

1

; : : : ; S



; A

1

; : : : ; A

�1

) ℄ = 2

��

; (5)

the probability being over the hoie of the funtion f alone. This implies that Adv

xtag

m;�

(B) = 2

��

,

whih ompletes the proof. It remains to justify Equation (5).

Let M be the  � 1 by  matrix whose i-th row is ChV(S

i

) (1 � i �  � 1) and let M be the

 by  matrix whose i-th row is ChV(S

i

) (1 � i � ). Sine ChV(S

1

); : : : ;ChV(S



) are linearly

independent, M is non-singular. Let x

1

; : : : ; x



denote a lexiographi ordering of I. We identify

f with the (olumn) vetor f = (f(x

1

); : : : ; f(x



)). Below we use \�" to denote matrix-vetor

19



multipliation. Then we have

Pr [A



= A



j (S

1

; : : : ;S



;A

1

; : : : ;A

�1

) = (S

1

; : : : ; S



; A

1

; : : : ; A

�1

) ℄

=

jf f 2 R

I

�

: M � f = (A

1

; : : : ; A



) gj

jf f 2 R

I

�

: M � f = (A

1

; : : : ; A

�1

) gj

=

jf f 2 R

I

�

: M � f = (A

1

; : : : ; A



) gj

P

A2f0;1g

�

jf f 2 R

I

�

: M � f = (A

1

; : : : ; A

�1

; A) gj

=

1

P

A2f0;1g

�

1

(6)

=

1

2

�

:

Above, Equation (6) is true beause M is non-singular.

We will now use Lemma 7 to prove Lemma 2.

Proof of Lemma 2: Let B be an adversary attaking the authentiity of EAX2[�;R

n

n

; � ℄. Assume

it makes at most q

e

enryption orale queries, has data omplexity at most �, and running time

at most t. Let m be large enough that no string in an orale query of B has length exeeding m,

regardless of orale responses and regardless of A's internal oins. Let I be the set of all strings of

length at most m. For any f : I ! f0; 1g

n

we de�ne:

Algorithm EE

N H

f

(M)

N f([0℄

n

kN)

H f([1℄

n

kH)

C

$

 f0; 1g

jM j

C f([2℄

n

k C)

Tag  N�C�H

T  Tag [�rst � bits℄

return CT  C k T

Algorithm

d

DD

N H

f

(CT )

if jCT j < � then return Invalid

Let C k T  CT where jT j = �

N f([0℄

n

kN)

H f([1℄

n

kH)

C f([2℄

n

k C)

Tag

0

 N�C�H

T

0

 Tag

0

[�rst � bits℄

if T 6= T

0

then return Invalid else return 1

We let

Adv

rauth

(B) = Pr

h

f

$

 R

I

n

: B

EE

� �

f

(�);

d

DD

� �

f

(�)

forges

i

:

We will onstrut a rank-respeting adversary A suh that

Adv

rauth

(B) � Adv

xtag

m;�

(A) : (7)

We will also onstrut an adversary P , using resoures t

0

; q; � and attaking the privay of �, suh

that

Adv

auth

EAX2[�;R

n

n

;� ℄

(B)�Adv

rauth

(B) � Adv

priv

�

(P ) : (8)

Thus we have

Adv

auth

EAX2[�;R

n

n

;� ℄

(B) = Adv

rauth

(B) +

�

Adv

auth

EAX2[�;R

n

n

;� ℄

(B)�Adv

rauth

(B)

�

� Adv

xtag

m;�

(A) +Adv

priv

�

(P )

� 2

��

+Adv

priv

�

(t

0

; q; �) ;

20



where the last inequality uses Lemma 7. This ompletes the proof of the lemma. It remains to

onstrut the adversaries A and P indiated above.

Adversary A

XTag

f

(�);XVf

f

(�;�)

de�nes the following subroutines:

Subroutine SimE

N H

(M)

C

$

 f0; 1g

jM j

S  f [0℄

n

kN; [1℄

n

kH; [2℄

n

k C g

T  XTag

f

(S)

return CT  C k T

Subroutine SimD

N H

(CT )

if jCT j < � then return Invalid

Let C k T  CT where jT j = �

S  f [0℄

n

kN; [1℄

n

kH; [2℄

n

k C g

if XVf

f

(S; T ) = 0 then return Invalid

else return 1

Adversary A then runs B

SimE

� �

(�);SimD

� �

(�)

. Equation (7) is true beause for any hoie of the

underlying funtion f we have SimE

� �

(�) = EE

� �

f

(�) and SimD

� �

(�) =

d

DD

� �

f

(�). It remains to show

that A is rank-respeting. Let  = jIj and let x

1

; : : : ; x



denote a lexiographi ordering of I. For

1 � i � q let (N

i

;H

i

;M

i

) be the i-th enryption-orale query made by B, leading to A making xor-

tag query S

i

, and let (N;H;CT ) denote the veri�ation query made by B, leading to A making

xor-verify query (S; T ). Let CT = C k T where jT j = � . Imagine a matrix whose i-th row is

ChV(S

i

) (1 � i � q) and whose (q + 1)-th row is ChV(S). Column j is alled a l-olumn if x

j

is

pre�xed by [l℄

n

(0 � l � 2 and 1 � j � ). Sine A is none-respeting there exists a set D of q

0-olumns suh that the submatrix formed by the �rst q rows of the matrix and the olumns in

D is a q by q identity matrix. Sine ChV(S) has exatly one 1 in a 0-olumn, the only way that

ChV(S) ould be a linear ombination of ChV(S

1

); : : : ;ChV(S

q

) is that it equals ChV(S

i

) for some

i (1 � i � q). This means that N = N

i

, H = H

i

and the response to B's i-th orale query was

CT . But this ontradits the ondition we imposed on B that disallowed a veri�ation-orale query

(N;H;CT ) suh that CT had been obtained in response to an enryption-orale query (N;H;M).

(It is important here that we required the ondition to hold regardless of the responses to orale

queries and the oin tosses of B.) So ChV(S) annot equal ChV(S

i

). This ompletes the proof

that A is rank-respeting.

We now turn to the design of adversary P . It is depited in Figure 9. It is an extension of

the adversary onstruted in the proof of Lemma 1 that also handles veri�ation-orale queries.

A ruial feature of EAX2 we have exploited in order to be able to respond to veri�ation-orale

queries is that the validity of a iphertext an be veri�ed without derypting under the IVE sheme.

Regarding the design of P , our �rst laim is that its assignment of a value to f([0℄

n

k N), made

in answering an enryption-orale query of B, is legitimate beause f([0℄

n

kN) was not previously

de�ned. This is true for two reasons. The �rst is that B is none-respeting. The seond is that B

does not make any enryption-orale queries after it has made its veri�ation-orale query. (The

veri�ation-orale query might de�ne f([0℄

n

kN), but sine no enryption-orale queries follow we

do not have to be onerned about f([0℄

n

kN) being de�ned at the time of answering one of them.)

Now we turn to the analysis. Let Key2 be the key-spae of �. It is easy to see that

Pr

h

K2

$

 Key2 : P

E

$

K2

(�)

= 1

i

= Adv

auth

EAX2[�;R

n

n

;� ℄

(B) (9)

Pr

h

K2

$

 Key2 : P

$(�)

= 1

i

= Adv

rauth

(B) : (10)

Subtrating, we get Equation (8), and this onludes the proof.

Proof of Theorem 3: Let A be an adversary using resoures at most (t; q; �) that attaks

the authentiity of � = (E;D) = EAX2[�; F; � ℄. Using A, we onstrut an adversary B for

21



Adversary P

e(�)

Initially, f is everywhere unde�ned

Run B

When B makes enryption-orale query (N;H;M):

N k C

$

 e(M) // where jNj = n

f([0℄

n

kN) N

if f([1℄

n

kH) is unde�ned then H f([1℄

n

kH)

$

 f0; 1g

n

if f([2℄

n

k C) is unde�ned then C f([2℄

n

k C)

$

 f0; 1g

n

Let T be the �rst � bits of N�H�C

Return CT  C k T to B as the orale response

When B makes veri�ation-orale query (N;H;CT ):

if jCT j < � then return Invalid to B as the orale response

Let C k T  CT where jT j = �

if f([0℄

n

kN) is unde�ned then f([0℄

n

kN)

$

 f0; 1g

n

N f([0℄

n

kN)

if f([1℄

n

kH) is unde�ned then f([1℄

n

kH)

$

 f0; 1g

n

H f([1℄

n

kH)

if f([2℄

n

k C) is unde�ned then f([2℄

n

k C)

$

 f0; 1g

n

C f([2℄

n

k C)

Let T

0

be the �rst � bits of N�H�C

if T = T

0

then d 1 else d 0

if d = 0

then return Invalid to B as the orale response

else return 1 to B as the orale response

return d

Figure 9: Adversary P attaking the privay of IVE sheme � in the proof of Lemma 2.

distinguishing f

$

 F from f

$

 R

n

n

. Adversary B, whih has orale f , works as follows. At the

beginning of B's exeution it hooses K2

$

 Key2 where Key2 is the key spae of �. Then B

runs A. When A makes an orale query (N

i

;H

i

;M

i

) adversary B omputes N

i

 f([0℄

n

kN

i

) and

C

i

 E

N

i

K2

(M

i

) and H

i

 f([1℄

n

kH

i

) and C

i

 f([2℄

n

k C

i

) and T

i

 (N

i

�C

i

�H

i

) [�rst � bits℄

and CT

i

 C

i

kT

i

and then B returns to A the string CT

i

. When A halts, outputting an attempted

forgery (N;H;C k T ), adversary B heks if this is a valid forgery: (1) it heks if (N;H;C k T ) is

distint from every (N

i

;H

i

; C

i

k T

i

) that has been omputed; (2) it omputes N f([0℄

n

kN) and

H f([1℄

n

kH) and C f([2℄

n

k C) and sees if T = (N�H�C) [�rst � bits℄. If both onditions

hold then B returns the bit 1 (it guesses that f = F

K1

for a random K1) and otherwise it outputs

the bit 0 (it guesses that f is a random funtion from R

n

n

).

Note that B makes a total of 3q + 3 orale alls. The total length of those queries is �. (Reall

our onvention that we inlude in � the output length and the number of omponents in eah

vetor that is queried.) The running time of B is t

1

= t+Time

E

(�) +

e

O(�). Finally, adversary B

22



provides A a perfet simulation of EAX2[�; F; � ℄ if f is seleted by f

$

 F while B provides A a

perfet simulation of EAX2[�;R

n

n

; � ℄ if f

$

 R

n

n

. Thus using Lemma 2 we have that

Adv

auth

EAX2[�;F;� ℄

(A)

=

�

Adv

auth

EAX2[�;F;� ℄

(A) �Adv

auth

EAX2[�;R

n

n

;� ℄

(A)

�

+Adv

auth

EAX2[�;R

n

n

;� ℄

(A)

�

�

Pr[f

$

 F : B

f

= 1℄� Pr[f

$

 R

n

n

: B

f

= 1℄

�

+ 2

��

+Adv

priv

�

(t

2

; q; �)

= Adv

prf

F

(B) +Adv

priv

�

(t

2

; q; �) + 2

��

� Adv

prf

F

(t

1

; 3q + 3; �) +Adv

priv

�

(t

2

; q; �) + 2

��

:

This ompletes the proof of Equation (1).

Reusing the name, let A be an adversary that attaks the privay of � = (E;D) and uses resoures

at most (t; q; �). Reusing the name, we onstrut an adversary B for attaking the pseudorandom-

ness of F .

Adversary B, whih has an orale for f , is onstruted as follows. At the beginning of B's exeution

it hooses K2

$

 Key2 where Key2 is the key spae of �. Then B runs A. When A makes an orale

all (N

i

;H

i

;M

i

) adversary B omputes N

i

 f([0℄

n

kN

i

) and C

i

 E

N

i

K2

(M

i

) and H

i

 f([1℄

n

kH

i

)

and C

i

 f([2℄

n

k C

i

) and T

i

 (N

i

�C

i

�H

i

) [�rst � bits℄ and CT

i

 C

i

k T

i

and then B returns

to A the string CT

i

. When A halts, outputting a bit b, adversary B outputs the same bit b.

The total number of orale queries made by B is 3q. The total length of these queries is at most �.

The running time of B is t

3

= t + Time

E

(�) +

e

O(�). Finally, adversary B provides A a perfet

simulation of EAX2[�; F; � ℄ if f is seleted by f

$

 F while B provides A a perfet simulation of

EAX2[�;R

n

n

; � ℄ if f

$

 R

n

n

. Now using Lemma 1 we have that

Adv

priv

EAX2[�;F;� ℄

(A) =

�

Adv

priv

EAX2[�;F;� ℄

(A)�Adv

priv

EAX2[�;R

n

n

;� ℄

(A)

�

+Adv

priv

EAX2[�;R

n

n

;� ℄

(A)

�

�

Pr[f

$

 F : B

f

= 1℄� Pr[f

$

 R

n

n

: B

f

= 1℄

�

+Adv

priv

�

(t

2

; q; �)

= Adv

prf

�

(B) +Adv

priv

�

(t

2

; q; �)

� Adv

prf

�

(t

3

; 3q; �) +Adv

priv

�

(t

2

; q; �)

This ompletes the proof of Equation (2).

B Proof of Seurity of the Tweakable-OMAC Extension

Proof of Lemma 4: Let A be a length-respeting adversary for distinguishing OM A C [R

n

n

℄ from

a random funtion. Assume that A uses resoures (�

1

; �

2

). Without loss of generality we assume

that A is deterministi and makes no repeated queries. We simulate the behavior of an OM A C [R

n

n

℄

orale as show in Figure 10. That �gure depits a mehanism, game Q1, that oinides with the

de�nition of OM A C [R

n

n

℄. As before, we use the notation

e

X for the padded version of the string X,

namely

e

X = X10

n�jXj�1

.

Game Q1 is not the most obvious simulation of an OM A C [R

n

n

℄ orale. In partiular, the game

distinguishes among the following ases: one-blok messages that are a full n bits (line 10); one-

blok messages that fall short of n bits (line 11); messages with two or more bloks where the �nal

23



Initialization

00 �

$

 R

n

n

01 L

0

 �([0℄

n

) ; L

1

 �([1℄

n

) ; L

2

 �([2℄

n

)

On query (t; M; s), where t 2 f0; 1; 2g and M =M

1

� � �M

m

and s 2 N

10 if jM j = n then T  �(M

1

�L

t

� 2L

0

)

20 elseif jM j < n then T  �(

f

M

1

�L

t

� 4L

0

)

30 else if Y [t; M

1

℄ is unde�ned then Y [t; M

1

℄ �(M

1

�L

t

)

31 u the largest number in [1 :: m� 1℄ s.t. Y [t; M

1::u

℄ is de�ned

32 for j  u+ 1 to m� 1 do Y [t; M

1::j

℄ �(Y [t; M

1::j�1

℄�M

j

)

33 if jM

m

j = n then T  �(Y [t; M

1::m�1

℄�M

m

� 2L

0

)

34 if jM

m

j < n then T  �(Y [t; M

1::m�1

℄�

g

M

m

� 4L

0

)

40 for j  0 to s� 1 do S

j

 �(T+j�1)

50 return T k S

0

� � � S

s�1

Figure 10: Game Q1, whih perfetly simulates an OMAC

t

�

orale for t 2 f0; 1; 2g and � a random funtion

from R

n

n

.

blok is a full blok (line 33); and messages with two or more bloks where the �nal blok is a short

blok (line 34). In addition to breaking into these ases, we implement memoization by way of the

array Y . In partiular, when a query M

1

: : :M

m

is asked we reord (memoize) the intermediate

values that we get as we CBC our way downM

1

� � �M

m�1

. If any of pre�xesM

1

;M

1::2

; : : : ;M

1::m�1

should arise again with the same tweak we will not re-ompute the values needed as we hain down

the message, looking up the answer in the array Y instead. Notie that memoization stops one

blok short of the �nal blok M

m

and that the memoization is tweak-dependent.

To help us understand the behavior of game Q1 we make some hanges to it, yielding game Q2,

de�ned in Figure 11. As is standard, gameQ2 avoids hoosing �

$

 R

n

n

at the beginning and instead

�lls in values inrementally. Any time we need a �(X) value, if it is not yet de�ned then we hoose

a value at random from f0; 1g

n

and make this to be �(X). Any time we need a value for �(X) that

has been de�ned already, we use that old value. In the latter ase we also set a ag bad. The ag

bad e�ets nothing visible to the adversary, but it is entral to our subsequent analysis. It is easy

to verify that games Q1 and Q2 provide idential views to any adversary that interats with them,

so Pr[A

Q1

= 1℄ = Pr[A

Q2

= 1℄.

Also de�ned in Figure 11 is gameR1. This game is obtained by dropping the highlighted statements

from game Q1. We only omit statements that immediately follow the setting of the ag bad. The

game R1 is easily seen to return n(s � 1) random bits in response to any query (t;M; s). Thus

Adv

dist

Q2;R1

(A) = jPr[A

Q2

= 1g � jPr[A

R1

= 1gj � Pr[A

R1

sets bad ℄. This is the standard setup

for analyses within the game-playing paradigm.

To more easily understand game R1 we rewrite it a bit, resulting in the game R2 shown in

Figure 12. To understand the hange from game R1 to game R2 notie that, having eliminated

the seven highlighted statements of game Q2, the �(X)-values are no longer atually used in

game R1: all that one needs to keep trak of is whether or not a point X has already been plaed

into the the domain of �. Thus game R2 eases to keep trak of �-values; instead, we reord in the

variable R what would be the domain of � at this point in time. So R starts o� as f[0℄

n

; [1℄

n

; [2℄

n

g

24



Initialization

00 L

0

$

 f0; 1g

n

; L

1

$

 f0; 1g

n

; L

2

$

 f0; 1g

n

01 �([0℄

n

) L

0

; �([1℄

n

) L

1

; �([2℄

n

) L

2

02 bad false

On query (t; M; s), where t 2 f0; 1; 2g and M =M

1

� � �M

m

and s 2 N

05 T

$

 f0; 1g

n

10 if jM j = n then

11 X

1

 M

1

�L

t

� 2L

0

; if X

1

2 Domain(�) then bad true , T  �(X

1

)

12 �(X

1

) T

20 elseif jM j < n then

21 X

1

 

f

M

1

�L

t

� 4L

0

; if X

1

2 Domain(�) then bad true , T  �(X

1

)

22 �(X

1

) T

30 else if Y [t; M

1

℄ is unde�ned then

31 X

1

 M

1

�L

t

; Y [t; M

1

℄

$

 f0; 1g

n

32 if X

1

2 Domain(�) then bad true , Y [t; M

1

℄ �(X

1

)

33 �(X

1

) Y [t; M

1

℄

40 u the largest number in [1 :: m� 1℄ s.t. Y [t; M

1::u

℄ is de�ned

41 for j  u+ 1 to m� 1 do

42 X

j

 Y [t; M

1::j�1

℄�M

j

; Y [t; M

1::j

℄

$

 f0; 1g

n

43 if �(X

j

) is de�ned then bad true , Y [t; M

1::j

℄ �(X

j

)

44 �(X

m

) Y [t; M

1::j

℄

50 if jM

m

j = n then

51 X

m

 Y [t; M

1::m�1

℄�M

m

� 2L

0

52 if X

m

2 Domain(�) then bad true , T  �(X

m

)

53 �(X

m

) T

60 if jM

m

j < n then

61 X

m

 Y [t; M

1::m�1

℄�

g

M

m

� 4L

0

62 if X

m

2 Domain(�) then bad true , T  �(X

m

)

63 �(X

m

) T

70 for j  0 to s� 1 do

71 S

j

$

 f0; 1g

n

72 if T+j�1 2 Domain(�) then bad true , S

j

 �(T+j�1)

73 �(T+j�1) S

j

80 return T k S

0

� � �S

s�1

Figure 11: Game Q2, whih is equivalent to game Q1. Game R1 is obtained by omitting the highlighted

statements.

25



(orresponding to the fat that �([0℄

n

), �([1℄

n

), and �([2℄

n

) are de�ned in game R1) and then,

whenever a point X would have been plaed into the domain of �, with some value being assigned

to �(X), we simply add X to the set R, not bothering with anything else. Instead of testing if a

given point is in the domain of � we test if it is in R. At this point we notie that the random

value T is not used until the �nal lines of the game, so, for added larity, we move down in the

program the hoosing of the random value T . We have that Pr[A

R1

sets bad ℄ = Pr[A

R2

sets bad ℄.

Given what we have said so far, Adv

prf

OM A C [R

n

n

℄

(A) = Adv

dist

Q1;R2

(A) � Pr[A

R2

sets bad℄. Our job

has been redued to understanding the adversary's hane of setting bad in game R2.

Let us dispense right away with the the hane that bad is set at line 73. The value T is hosen at

random at line 70 and then we see if any of the s points T; T + 1; : : : ; T + s � 1 are in the set R.

Now jRj � �

1

+ �

2

+ 3 throughout the exeution of game R2 and we are testing for the presene

of at most �

2

points in R, and so

Pr[bad gets set at line 73 of game R2℄ �

�

2

(�

1

+ �

2

+ 3)

2

n

(11)

Let game R3 oinide with game R2 exept for eliminating line 73. The probability that bad

gets set in game R2 is at most the probability that bad gets set in line 73 of game R2 plus the

probability that bad gets set in a line other than line 73 of game R2. So by equation (11) we have

that

Pr[bad gets set in game R2℄ � Pr[bad gets set in game R3℄ +

�

2

(�

1

+ �

2

+ 3)

2

n

(12)

We proeed with the analysis of game R3.

The values S

j

returned to the adversary in game R3 have no impat on any internal variable

maintained by the game (these values are hosen, returned to the adversary, and never used again).

The only signi�ane of the q T -values returned to the adversary is to de�ne some �

2

R-values|

values that the adversary does not ontrol

5

. Thus we will only be giving the adversary more power

if we allow it to selet an initial set of �

2

+3 values for R (the \+3" reeting the three values that

were assigned to R at line 01) and have it interat no further with the game, sine everything is at

that point determined. In other words, the game is made noninterative, but we maximize over all

possible hoies fR

1

; : : : ;R

�

2

+3

g of initial values for R. The adversary's orresponding queries are

now �xed. The modi�ed game is shown in Figure 13. We regard all of q and t

1

; : : : ; t

q

2 f0; 1; 2g

and strings M

1

; : : : ; M

q

having blok lengths m

1

; : : : ; m

q

and strings R

1

; � � � ;R

�

2

+3

2 f0; 1g

n

as �xed

onstants assoiated to the game. We must bound the probability that bad gets set to true in

game S. We do that with a ase analysis.

If the ag bad gets set in game S it is beause a point X

s

j

gets omputed in one of lines 11, 21, 31,

41, 51, 61 (six possibilities), but that point was already plaed in R by an earlier exeution of one

of lines 01, 12, 22, 33, 43, 53, 63 (seven possibilities). This gives a total of 6 � 7 = 42 ases. We

refer to the \urrent" point as X

s

j

and the \earlier" point as X

r

i

. The urrent point must follow

the earlier point under the natural ordering. The urrent point X

s

j

and the earlier point X

r

i

an

be set as any of the following:

5

Stritly speaking, the attaker an ontrol s for eah invoation. However, it is still true that we are only giving

the adversary more power if we allow the adversary to selet �

2

+ 3 values in advane rather than observing the S-

and T -values as we go.

26



Initialization

00 L

0

$

 f0; 1g

n

; L

1

$

 f0; 1g

n

; L

2

$

 f0; 1g

n

01 R f[0℄

n

; [1℄

n

; [2℄

n

g

02 bad false

On query (t; M; s), where t 2 f0; 1; 2g and M =M

1

� � �M

m

and s 2 N

10 if jM j = n then

11 X

1

 M

1

�L

t

� 2L

0

; if X

1

2 R then bad true

12 R R [ fX

1

g

20 elseif jM j < n then

21 X

1

 

f

M

1

�L

t

� 4L

0

; if X

1

2 R then bad true

22 R R [ fX

1

g

30 else if Y [t; M

1

℄ is unde�ned then

31 X

1

 M

1

�L

t

; Y [t; M

1

℄

$

 f0; 1g

n

32 if X

1

2 R then bad true

33 R R [ fX

1

g

40 u the largest number in [1 :: m� 1℄ s.t. Y [t; M

1::u

℄ is de�ned

41 for j  u+ 1 to m� 1 do

42 X

j

 Y [t; M

1::j�1

℄�M

j

; Y [t; M

1::j

℄

$

 f0; 1g

n

43 if X

j

2 R then bad true

44 R R [ fX

j

g

50 if jM

m

j = n then

51 X

m

 Y [t; M

1::m�1

℄�M

m

� 2L

0

52 if X

m

2 R then bad true

53 R R [ fX

m

g

60 if jM

m

j < n then

61 X

m

 Y [t; M

1::m�1

℄�

g

M

m

� 4L

0

62 if X

m

2 R then bad true

63 R R [ fX

m

g

70 T

$

 f0; 1g

n

71 for j  0 to s� 1 do

72 S

j

$

 f0; 1g

n

73 if T+j�1 2 R then bad true

74 R R [ fT; T+1; : : : ; T+s�1g

80 return T k S

0

� � � S

s�1

Figure 12: Game R2, whih is equivalent to R1 but no longer maintains the funtion �.

27



00 L

0

$

 f0; 1g

n

; L

1

$

 f0; 1g

n

; L

2

$

 f0; 1g

n

01 R fR

1

; : : : ;R

�

2

+3

g

02 bad false

05 for s 1 to q do

10 if jM

s

j = n then

11 X

s

1

 M

s

1

�L

t

s

� 2L

0

; if X

s

1

2 R then bad true

12 R R [ fX

s

1

g

20 elseif jM

s

j < n then

21 X

s

1

 

e

M

s

1

�L

t

s

� 4L

0

; if X

s

1

2 R then bad true

22 R R [ fX

s

1

g

30 else if Y [t

s

; M

s

1

℄ is unde�ned then

31 X

s

1

 M

s

1

�L

t

s

; Y [t

s

; M

s

1

℄

$

 f0; 1g

n

32 if X

s

1

2 R then bad true

33 R R [ fX

s

1

g

35 u the largest number in [1 :: m

s

� 1℄ s.t. Y [t

s

; M

s

1::u

℄ is de�ned

40 for j  u+ 1 to m

s

� 1 do

41 X

s

j

 Y [t

s

; M

s

1::j�1

℄�M

s

j

; Y [t

s

; M

s

1::j

℄

$

 f0; 1g

n

42 if X

s

j

2 R then bad true

43 R R [ fX

s

j

g

50 if jM

s

m

s

j = n then

51 X

s

m

s

 Y [t

s

; M

s

1::m

s

�1

℄�M

s

m

s

� 2L

0

52 if X

s

m

s

2 R then bad true

53 R R [ fX

s

m

s

g

60 if jM

s

m

s

j < n then

61 X

s

m

s

 Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

m

s

� 4L

0

62 if X

s

m

s

2 R then bad true

63 R R [ fX

s

m

s

g

Figure 13: Game S, the noninterative game that the analysis fouses on.

28



ase earlier point X

r

i

urrent point X

s

j

Pr[X

r

i

= X

s

j

℄ explanation

1 R

`

M

s

1

�L

t

s

� 2L

0

2

�n

randomness of L

0

2 M

r

1

�L

t

r

� 2L

0

M

s

1

�L

t

s

� 2L

0

0 or 2

�n

no repeated queries /

randomness of L

t

s

3

f

M

r

1

�L

t

r

� 4L

0

M

s

1

�L

t

s

� 2L

0

2

�n

randomness of L

0

4 M

r

1

�L

t

r

M

s

1

�L

t

s

� 2L

0

2

�n

randomness of L

0

5 Y [t

r

; M

r

1::i�1

℄� M

r

i

M

s

1

�L

t

s

� 2L

0

2

�n

randomness of L

0

6 Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

M

s

1

�L

t

s

� 2L

0

2

�n

randomness of Y [t

r

; M

r

1::m

r

�1

℄

7 Y [t

r

; M

s

1::m

r

�1

℄�

f

M

r

i

� 4L

0

M

s

1

�L

t

s

� 2L

0

2

�n

randomness of Y [t

r

; M

r

1::m

r

�1

℄

8 R

`

f

M

s

1

�L

t

s

� 4L

0

2

�n

randomness of L

0

9 M

r

1

�L

t

r

� 2L

0

f

M

s

1

�L

t

s

� 4L

0

2

�n

randomness of L

0

10

f

M

r

1

�L

t

r

� 4L

0

f

M

s

1

�L

t

s

� 4L

0

0 or 2

�n

no repeated queries /

randomness of L

t

s

11 M

r

1

�L

t

r

f

M

s

1

�L

t

s

� 4L

0

2

�n

randomness of L

0

12 Y [t

r

; M

r

1::i�1

℄� M

r

i

f

M

s

1

�L

t

s

� 4L

0

2

�n

randomness of L

0

13 Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

f

M

s

1

�L

t

s

� 4L

0

2

�n

randomness of Y [t

r

; M

r

1::m

r

�1

℄

14 Y [t

r

; M

s

1::m

r

�1

℄�

f

M

r

i

� 4L

0

f

M

s

1

�L

t

s

� 4L

0

2

�n

randomness of Y [t

r

; M

r

1::m

r

�1

℄

15 R

`

M

s

1

�L

t

s

2

�n

randomness of L

t

s

16 M

r

1

�L

t

r

� 2L

0

M

s

1

�L

t

s

2

�n

randomness of L

0

17

f

M

r

1

�L

t

r

� 4L

0

M

s

1

�L

t

s

2

�n

randomness of L

0

18 M

r

1

�L

t

r

M

s

1

�L

t

s

0 or 2

�n

memoization /

randomness of L

t

s

19 Y [t

r

; M

r

1::i�1

℄� M

r

i

M

s

1

�L

t

s

2

�n

randomness of L

t

s

20 Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

M

s

1

�L

t

s

2

�n

randomness of Y [t

r

; M

r

1::m

r

�1

℄

21 Y [t

r

; M

s

1::m

r

�1

℄�

f

M

r

i

� 4L

0

M

s

1

�L

t

s

2

�n

randomness of Y [t

r

; M

r

1::m

r

�1

℄

22 R

`

Y [t

s

; M

s

1::j�1

℄� M

s

j

2

�n

randomness of Y [t

s

; M

s

1::j�1

℄

23 M

r

1

�L

t

r

� 2L

0

Y [t

s

; M

s

1::j�1

℄� M

s

j

2

�n

randomness of Y [t

s

; M

s

1::j�1

℄

24

f

M

r

1

�L

t

r

� 4L

0

Y [t

s

; M

s

1::j�1

℄� M

s

j

2

�n

randomness of Y [t

s

; M

s

1::j�1

℄

25 M

r

1

�L

t

r

Y [t

s

; M

s

1::j�1

℄� M

s

j

2

�n

randomness of Y [t

s

; M

s

1::j�1

℄

26 Y [t

r

; M

r

1::i�1

℄� M

r

i

Y [t

s

; M

s

1::j�1

℄� M

s

j

0 or 2

�n

memoization /

randomness of L

t

s

27 Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

Y [t

s

; M

s

1::j�1

℄� M

s

j

2

�n

randomness of L

0

28 Y [t

r

; M

s

1::m

r

�1

℄�

f

M

r

i

� 4L

0

Y [t

s

; M

s

1::j�1

℄� M

s

j

2

�n

randomness of L

0

29 R

`

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

30 M

r

1

�L

t

r

� 2L

0

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

31

f

M

r

1

�L

t

r

� 4L

0

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

32 M

r

1

�L

t

r

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

33 Y [t

r

; M

r

1::i�1

℄� M

r

i

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

2

�n

randomness of L

0

34 Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

0 or 2

�n

no repeated queries /

randomness of Y [t

s

; M

s

1::m

s

�1

℄

35 Y [t

r

; M

s

1::m

r

�1

℄�

f

M

r

i

� 4L

0

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

2

�n

randomness of L

0

36 R

`

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

37 M

r

1

�L

t

r

� 2L

0

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

38

f

M

r

1

�L

t

r

� 4L

0

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

39 M

r

1

�L

t

r

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

2

�n

randomness of Y [t

s

; M

s

1::m

s

�1

℄

40 Y [t

r

; M

r

1::i�1

℄� M

r

i

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

2

�n

randomness of L

0

41 Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

2

�n

randomness of L

0

42 Y [t

r

; M

s

1::m

r

�1

℄�

f

M

r

i

� 4L

0

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

0 or 2

�n

no repeated queries /

randomness of Y [t

s

; M

s

1::m

s

�1

℄

Figure 14: Case analysis for the proof of OM A C

29



line 01 X

0

`

R

`

line 12 X

r

1

M

r

1

�L

t

r

� 2L

0

line 22 X

r

1

f

M

r

1

�L

t

r

� 4L

0

line 33 X

r

1

M

r

1

�L

t

r

line 44 X

r

i

Y [t

r

; M

r

1::i�1

℄� M

r

i

line 53 X

r

m

r

Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

line 63 X

r

m

r

Y [t

r

; M

r

1::m

r

�1

℄�

f

M

r

i

� 4L

0

line 11 X

s

1

M

s

1

�L

t

s

� 2L

0

line 21 X

s

1

f

M

s

1

�L

t

s

� 4L

0

line 31 X

s

1

M

s

1

�L

t

s

line 41 X

s

j

Y [t

s

; M

s

1::j�1

℄� M

s

j

line 51 X

s

m

s

Y [t

s

; M

s

1::m

s

�1

℄� M

s

j

� 2L

0

line 61 X

s

m

s

Y [t

s

; M

s

1::m

s

�1

℄�

f

M

s

j

� 4L

0

Eah urrent point X

s

j

that gets onsidered during game S has a \type" whih is one of the six

possibilities above. Eah earlier pointX

r

i

likewise has a \type" whih is one of the seven possibilities

above. The type of a point does not depend on random hoies made during the exeution of the

game S; the type of a point is determined one the onstants assoiated to the game are �xed.

If we look at a pair of earlier/urrent points (X

r

i

;X

s

j

) eah point will have some one partiular

type|there are 42 pairs of types in all.

We now laim that for any urrent point X

s

j

and any earlier point X

r

i

, the probability that the

values assigned to these two points are the same is at most 2

�n

. This is veri�ed by a ase analysis,

going over all 42 possibilities for the type of X

r

i

and X

s

i

. The ase analysis is outlined in Figure 14.

We add justi�ation to three representative examples:

Case 2. We are trying to bound Pr[M

r

1

�L

t

r

� 2L

0

= M

s

1

�L

t

s

� 2L

0

℄ = Pr[M

r

1

�M

s

1

= L

t

r

�L

t

s

℄

where r < s. Here jM

r

j < n and jM

s

j < n. Subase 2A: if t

r

= t

s

then M

r

6= M

s

beause

of the onstraint that adversary A was allowed to make no (t;M; s) query following an earlier

(t;M; r) query, and so the indiated probability is 0. Subase 2B: if t

r

6= t

s

then L

t

r

and L

t

s

are random and independent, and so Pr[M

r

1

�M

s

1

= L

t

r

�L

t

s

℄ = 2

�n

.

Case 9. We are bounding Pr[M

r

1

�L

t

r

� 2L

0

=

f

M

s

1

�L

t

s

� 4L

0

℄ = Pr[M

r

1

�

f

M

s

1

= L

t

r

�L

t

s

� 6L

0

℄.

If t

r

= t

s

then this is Pr[M

r

1

�

f

M

s

1

= 6L

0

℄ = 2

�n

beause L

0

is random and independent of the

left-hand side. If t

r

= 0 and t

s

6= 0 then this is Pr[M

r

1

�

f

M

s

1

�L

t

s

= 7L

0

℄ = 2

�n

beause L

0

is random and independent of the left-hand side. The ase for t

r

6= 0 and t

s

= 0 is the same

way, as is the ase for t

r

6= 0 and t

s

6= 0 and t

r

6= t

s

.

Case 34. This ase arises for messages M

r

and M

s

having two or more bloks and both messages

having a full �nal blok. We want to bound Pr[Y [t

r

; M

r

1::m

r

�1

℄� M

r

i

� 2L

0

= Y [t

s

; M

s

1::m

s

�1

℄�

M

s

j

� 2L

0

℄ whih is Pr[M

r

i

� M

s

j

= Y [t

r

; M

r

1::m

r

�1

℄�Y [t

s

; M

s

1::m

s

�1

℄℄. Observe that Y [t

r

; M

r

1::m

r

�1

℄

and Y [t

s

; M

s

1::m

s

�1

℄ are random from f0; 1g

n

, being hosen from this set in an earlier exeution

of line 41 or line 31. If they are the idential random variable, that is, t

r

= t

s

and M

r

less its

�nal blok is idential to M

s

less its �nal blok, then Pr[M

r

i

�M

s

j

= 0℄ = 0 beause there are

no repeated queries. If they are di�erent random variables then they are independent and

Pr[M

r

i

� M

s

j

= Y [t

r

; M

r

1::m

r

�1

℄�Y [t

s

; M

s

1::m

s

�1

℄℄ = 2

�n

.

The justi�ations for the remaining 39 ases are analogous. We leave the reader to hek the table,

whih is the tehnial heart of the proof.

We are now ready to onlude the proof. As the �

1

urrent points X

s

j

are onsidered the probability

that the kth urrent point X

s

j

ollides with a given earlier one of the k�1+�

2

+3 earlier points X

r

i

is at most 1=2

n

. Thus the probability that the kth urrent point oinides with some earlier point

is at most (k + �

2

+ 2)=2

n

. So the probability that some urrent point oinides with some earlier

one is at most

P

�

1

k=1

(k+ �

2

+2)=2

n

= �

1

(�

2

+3)=2

n

+

P

�

1

k=1

(k� 1)=2

n

� (�

1

�

2

+3�

1

+0:5�

2

1

)=2

n

.

30



Combining with Equation (12) and the prior arguments we onlude that

Adv

dist

OM A C [R

n

n

℄;$

n

(�

1

; �

2

) �

�

1

�

2

+ 3�

1

+ 0:5�

2

1

2

n

+

�

2

(�

1

+ �

2

+ 3)

2

n

=

0:5�

2

1

+ 2�

1

�

2

+ �

2

2

+ 3�

1

+ 3�

2

2

n

�

(�

1

+ �

2

+ 3)

2

2

n

This ompletes the proof.

C Proofs of seurity of EAX

Proof of Theorem 5: We begin with the privay laim. Let A be an adversary using resoures

(q; �) that is trying to distinguish EAX[R

n

n

; � ℄ from a soure of random bits. We onstrut an

adversary B that distinguishes OM A C [R

n

n

℄ from a soure of random bits. Adversary B has an

orale g that responds to queries (t;M; s) 2 f0; 1; 2g � f0; 1g

�

� N with a string RS

0

S

1

� � �S

s�1

,

eah named omponent an n-bit string. Adversary B works as follows:

Algorithm B

g

10 Run A

11 When A makes an orale all (N

i

; H

i

; M

i

), do the following:

12 s djM

i

j=ne

13 N

i

S

0

: : : S

s�1

 g(0; N

i

; s)

14 C

i

 M

i

� (S

0

� � �S

s�1

[�rst jM

i

j bits℄)

15 H

i

 g(1; H

i

; 0)

16 C

i

 g(2; C

i

; 0)

17 T

i

 N

i

�C

i

�H

i

[�rst � bits℄

18 Return, in response to A's query, C

i

k T

i

19 When A halts, outputting a bit b, return b

We may assume that adversary A makes q > 1 queries sine, otherwise, the result follows im-

mediately. Then, under our onventions for the data omplexity, adversary B uses resoures at

most (2� � 3; �). Observe that Pr[A

EAX[R

n

n

;� ℄

= 1℄ = Pr[B

OM A C [R

n

n

℄

= 1℄. Also, sine A is none

respeting, B is length-respeting and Pr[A

$

= 1℄ = Pr[B

$

n

= 1℄. Using Lemma 4 we onlude

that

Adv

priv

EAX[R

n

n

;� ℄

(A) = Pr[A

EAX[R

n

n

;� ℄

= 1℄� Pr[A

$

= 1℄

= Pr[B

OM A C [R

n

n

℄

= 1℄� Pr[B

$

n

= 1℄

� Adv

dist

OM A C [R

n

n

;$

n

℄

(2� � 3; �)

�

(3�)

2

2

n

�

9�

2

2

n

This ompletes the privay laim.

31



Moving on to authentiity and reusing the name, letA be an adversary for attaking the authentiity

of EAX[R

n

n

; � ℄ that uses resoures at most �. Let

�

1

= Adv

auth

EAX[R

n

n

;� ℄

(A)

�

2

= Adv

auth

EAX2[CTR[R

n

n

℄;R

�

n

;� ℄

(A)

Æ = �

1

� �

2

By Lemma 2 and known results about the privay of CTR (f. [1℄) we have

�

2

�

1

2

�

+Adv

priv

CTR[R

n

n

℄

(�)

�

1

2

�

+

�

2

2

n

:

Hene

�

1

= �

2

+ Æ � Æ +

�

2

2

n

+

1

2

�

:

We now turn to bounding Æ. To do this, reusing the name, we onstrut from A (the authentiity-

attaking adversary) an adversaryB (with an orale for g and intended for distinguishingOM A C [R

n

n

℄

from a soure of random bits):

Algorithm B

g

10 Run A

20 When A makes an orale all (N

i

; H

i

; M

i

), do the following:

21 s djM

i

j=ne

22 N

i

S

0

: : : S

s�1

 g(0; N

i

; s)

23 C

i

 M

i

� (S

0

� � �S

m�1

[�rst jM

i

j bits℄)

24 H

i

 g(1; H

i

; 0)

25 C

i

 g(2; C

i

; 0)

26 T

i

 N

i

�C

i

�H

i

27 In response to A's query, return C

i

k T

i

30 When A outputs a forgery attempt (N; H; C k T ) and halts:

31  djCj=ne

32 N g(0; N; 0)

33 H g(1; H; 0)

34 C g(2; C; 0)

35 T

0

 N�C�H [�rst � bits℄

36 if T = T

0

and (N;H;C k T ) 6= (N

i

;H

i

; C

i

k T

i

) for all i

37 then return 1 else return 0

As before, one may assume that A makes q > 1 queries and, aording to our onventions, the

omplexity ofB will then be at most (2��3; �). Also, �

1

= Adv

auth

EAX[R

n

n

;� ℄

(A) = Pr[B

OM A C [R

n

n

℄

= 1℄.

Next, de�ne the funtion E[�; f ℄ : f0; 1; 2g � f0; 1g

�

� N ! f0; 1g

�

by

Algorithm E[�; f ℄ (t;M; s)

10 R f([t℄

n

jjM)

11 for j  0 to s� 1 do S

j

 �(R+ j)

12 return R S

0

S

1

� � �S

s�1

32



Note that

�

2

= Adv

auth

EAX2[CTR[R

n

n

℄;R

�

n

;� ℄

(A) = Pr[B

E[R

n

n

;R

�

n

℄

= 1℄:

Moreover,

Adv

dist

$

n

;E[R

n

n

;R

�

n

℄

�

�

2

2

2

n+1

for all adversaries that request a total of �

2

keystreams, sine E[R

n

n

;R

�

n

℄ an only be distinguished

from $

n

if there is a ollision in the inputs to �, and there are �

2

inputs to �. As a trivial onsequene,

Pr[B

E[R

n

n

;R

�

n

℄

= 1℄ � Pr[B

$

n

= 1℄�

�

2

2

n+1

and thus

�

2

= Adv

auth

EAX2[CTR[R

n

n

℄;R

�

n

;� ℄

(A) � Pr[B

$

n

= 1℄�

�

2

2

n+1

:

Also, B is length-respeting, sine A is none-respeting (we use here the fat that the last three

queries B makes all take the form g(�; �; 0), so those last three queries annot violate the length-

respeting ondition). So, using Lemma 4, we onlude that

Æ = �

1

� �

2

�

(3�)

2

2

n

+

�

2

2

n+1

�

9:5�

2

2

n

This ompletes the authentiity laim and the proof.

D Reommended API

Some important features of EAX an only be utilized if one aesses EAX funtionality through

an appropriate user interfae. In this setion we therefore put forward an API that permits (a) in-

remental enryption, (b) inremental deryption, () authentiity veri�ation without iphertext

reovery, and (d) stati headers with negligible per-message ost. Providing of these features results

in an API that is a bit more elaborate than some programmers may want or need, so we also inlude

some simpler, \all-in-one" alls.

/*

* We provide two interfaes:

* 1. A simple interfae that does not support streaming data.

* 2. An inremental interfae that supports streaming data.

* See below for doumentation on both.

*/

/*********************************************************************

* -- How to enrypt, the simplified interfae --

* First, all

* eax_init()

* to setup the key and set the parameters.

* Then, for eah paket, all

* eax_enrypt()

* When all done, all

* eax_zeroize()

*********************************************************************

* -- How to derypt, the simplified interfae --

33



* First, all

* eax_init()

* to setup the key and set the parameters.

* Then, for eah paket:

* eax_derypt()

* When all done, all

* eax_zeroize()

* It is the aller's responsibility to hek tag validity

* by examining the return value of eax_derypt().

********************************************************************/

/*********************************************************************

* -- How to enrypt, inrementally --

* First, all

* eax_init()

* to setup the key and set the parameters.

* Then, for eah paket, all

* eax_provide_none()

* {eax_provide_header(), eax_ompute_iphertext()}*

* eax_ompute_tag()

* Here {x,y} means x or y, and z* means any number of iterations of z.

* When all done, all

* eax_zeroize()

*

* Note that enryption an be done on the fly, and header and message data

* may be provided in any order and in arbitrary hunks.

*********************************************************************

* -- How to derypt, inrementally --

* First, all

* eax_init()

* to setup the key and set the parameters.

* Then, for eah paket:

* eax_provide_none()

* {eax_provide_header(), eax_provide_iphertext()}*

* eax_hek_tag()

* eax_ompute_plaintext() // only do this if tag was valid

* When all done, all

* eax_zeroize()

* Note that deryption may be done on the fly, and header and message data

* may be provided in any order and in arbitrary hunks.

* It is the aller's responsibility to hek tag validity

* by examining the return value of eax_hek_tag().

********************************************************************/

typedef enum {AES128,AES192,AES256} blok_ipher; /* "standard" iphers */

typedef unsigned har byte;

typedef void eax_state; /* EAX ontext; opaque */

/*********************************************************************

* Calls ommon to inremental and non-inremental API

********************************************************************/

34



/*

* eax_init

*

* Key and parameter setup to init a EAX ontext data struture.

* If you don't know what to pass for t,E, use t=16, E=AES128.

*/

eax_state *

eax_init(

byte* Key, // The key, as a string.

unsigned int t, // The tag length, in bytes.

blok_ipher E // Enumerated that indiates what ipher to use.

);

/*

* eax_provide_header

*

* Supply a message header. The header "grows" with eah all

* until a eax_provide_header() all is made that follows a

* eax_enrypt(), eax_derypt(), eax_provide_plaintext(),

* eax_provide_iphertext() or eax_ompute_plaintext() all.

* That starts reinitializes the header.

*/

int

eax_provide_header(

eax_state *K, // The EAX ontext.

byte *H, // The header (assoiated data) (possibly more to ome)

unsigned int h // having h bytes

);

/*

* eax_zeroize

*

* Session is over; destroy all key material and leanup!

*/

void

eax_zeroize(

eax_state *K // The EAX ontext to remove

);

/*********************************************************************

* All-in-one, non-inremental interfae

********************************************************************/

/*

* eax_enrypt

*

* Enrypt the given message with the given key, none and header.

* Speify the header (if nonempty) with eax_provide_header().

*/

int

eax_enrypt(

eax_state *K, // The aller provides the EAX ontext,

byte* N, // the none and

35



unsigned int n, // its length (in bytes), and

byte* M, // the plaintext and

unsigned int m, // its length (in bytes).

byte* C, // The m-byte iphertext

byte* T // and the tag T are returned.

);

/*

* eax_derypt()

*

* Derypt the given iphertext with the given key, none and header.

* Speify the header (if nonempty) with eax_provide_header().

* Returns 1 for a valid iphertext, 0 for an invalid iphertext.

*/

int

eax_derypt(

eax_state *K, // The aller provides the EAX ontext,

byte* N, // the none and

unsigned int n, // its length (in bytes), and

byte* C, // the iphertext and

unsigned int , // its length (in bytes), and the

byte* T, // tag.

byte* P // If valid, return the -byte plaintext.

);

/*********************************************************************

* Inremental interfae

********************************************************************/

/*

* eax_provide_none

*

* Provide a none. For enryption, do this before alling

* eax_ompute_iphertext() and eax_ompute_tag();

* for deryption, do this before alling

* eax_provide_iphertext(), eax_hek_tag, or eax_ompute_plaintext().

*/

int

eax_provide_none(

eax_state *K, // The EAX ontext,

byte* N, // the none, and

unsigned int n // the length of the none (in bytes).

);

/*

* eax_ompute_iphertext

*

* Enrypt a message or a part of a message.

* The none needs already to have been

* speified by a all to eax_provide_none().

*/

36



int

eax_ompute_iphertext( // Enrypt (part of) a message

eax_state *K, // Given a EAX ontext K

byte *M, // and a message M (possibly more to ome)

unsigned int m, // having m bytes.

byte *C // Return a iphertext body C also having m bytes.

);

/*

* eax_ompute_tag

*

* Message and header finished: ompute the authentiation tag that is a part

* of the omplete iphertext.

*/

int

eax_ompute_tag(

eax_state *K, // Given a EAX ontext

byte *T // ompute the tag T for it.

);

/*

* eax_provide_iphertext

*

* Supply the iphertext, or the next piee of iphertext.

* This is used to hek for the subsequent authentiity hek eax_hek_tag().

*/

int

eax_provide_iphertext(

eax_state *K, // Given a EAX ontext

byte *C, // and a iphertext C (possibly more to ome)

unsigned int  // having  bytes.

);

/*

* eax_hek_tag

*

* The none, iphertext and header have all been fully provided; hek if

* they are valid for the given tag.

* Returns 1 for a valid iphertext, 0 for an invalid iphertext

* (in whih ase plaintext/iphertext might be zeroized as well).

*/

int

eax_hek_tag(

eax_state *K, // Given a EAX ontext and

byte *T // the tag that aompanied the iphertext.

);

/*

* eax_ompute_plaintext

*

37



* Reover the plaintext from the provided iphertext.

* A all to eax_provide_none() needs to preede this all.

* The aller is responsible for separately heking if the iphertext is valid.

* Normally this would be done before omputing the plaintext with

* eax_ompute_plaintext().

*/

int

eax_ompute_plaintext(

eax_state *K, // Given a EAX ontext

byte *C, // and a iphertext C (possibly more to ome)

unsigned int , // having  bytes,

byte *M // return the orresponding  bytes of plaintext.

);

E Test Vetors

The following EAX-AES128 test vetors have been graiously provided by Jak Lloyd. We have

not yet veri�ed these values. If you do, please send us email. If you provide ode, we will hapilly

make it available on the web.

MSG:

KEY: 233952DEE4D5ED5F9B9C6D6FF80FF478

NONCE: 62EC67F9C3A4A407FCB2A8C49031A8B3

HEADER: 6BFB914FD07EAE6B

CIPHER: E037830E8389F27B025A2D6527E79D01

MSG: F7FB

KEY: 91945D3F4DCBEE0BF45EF52255F095A4

NONCE: BECAF043B0A23D843194BA972C66DEBD

HEADER: FA3BFD4806EB53FA

CIPHER: 19DD5C4C9331049D0BDAB0277408F67967E5

MSG: 1A47CB4933

KEY: 01F74AD64077F2E704C0F60ADA3DD523

NONCE: 70C3DB4F0D26368400A10ED05D2BFF5E

HEADER: 234A3463C1264AC6

CIPHER: D851D5BAE03A59F238A23E39199DC9266626C40F80

MSG: 481C9E39B1

KEY: D07CF6CBB7F313BDDE66B727AFD3C5E8

NONCE: 8408DFFF3C1A2B1292DC199E46B7D617

HEADER: 33CCE2EABFF5A79D

CIPHER: 632A9D131AD4C168A4225D8E1FF755939974A7BEDE

MSG: 40D0C07DA5E4

KEY: 35B6D0580005BBC12B0587124557D2C2

NONCE: FDB6B06676EEDC5C61D74276E1F8E816

HEADER: AEB96EAEBE2970E9

CIPHER: 071DFE16C675CB0677E536F73AFE6A14B74EE49844DD

MSG: 4DE3B35C3FC039245BD1FB7D

KEY: BD8E6E11475E60B268784C38C62FEB22

NONCE: 6EAC5C93072D8E8513F750935E46DA1B

HEADER: D4482D1CA78DCE0F

CIPHER: 835BB4F15D743E350E728414ABB8644FD6CCB86947C5E10590210A4F

38



MSG: 8B0A79306C9CE7ED99DAE4F87F8DD61636

KEY: 7C77D6E813BED5AC98BAA417477A2E7D

NONCE: 1A8C98DCD73D38393B2BF1569DEEFC19

HEADER: 65D2017990D62528

CIPHER: 02083E3979DA014812F59F11D52630DA30137327D10649B0AA6E1C181DB617D7F2

MSG: 1BDA122BCE8A8DBAF1877D962B8592DD2D56

KEY: 5FFF20CAFAB119CA2FC73549E20F5B0D

NONCE: DDE59B97D722156D4D9AFF2BC7559826

HEADER: 54B9F04E6A09189A

CIPHER: 2EC47B2C4954A489AFC7BA4897EDCDAE8CC33B60450599BD02C96382902AEF7F832A

MSG: 6CF36720872B8513F6EAB1A8A44438D5EF11

KEY: A4A4782BCFFD3EC5E7EF6D8C34A56123

NONCE: B781FCF2F75FA5A8DE97A9CA48E522EC

HEADER: 899A175897561D7E

CIPHER: 0DE18FD0FDD91E7AF19F1D8EE8733938B1E8E7F6D2231618102FDB7FE55FF1991700

MSG: CA40D7446E545FFAED3BD12A740A659FFBBB3CEAB7

KEY: 8395FCF1E95BEBD697BD010BC766AAC3

NONCE: 22E7ADD93CFC6393C57EC0B3C17D6B44

HEADER: 126735FCC320D25A

CIPHER: CB8920F87A6C75CFF39627B56E3ED197C552D295A7CFC46AFC253B4652B1AF3795B124AB6E

39


