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Abstract

PC(l) of order k is one of the most general cryptographic criteria
of secure Boolean functions. In this paper, we introduce its ǫ-almost
version. The new definition requires only that f(X) + f(X + ∆) is
almost uniformly distiributed (while the original definition of PC(l) of
order k requires that it is strictly uniformly distiributed). We next show
its construciton. Better parameters are then obtained than normal
PC(l) of order k functions.

(Keywords) Boolean functions, PC(l) of order k, ǫ-almost version

1 Introduction

Several cryptographic criteria of Boolean functions have been studied by
many researchers in order to design secure block ciphers. Among them,
PC(l) of order k [15, 16] is one of the most general criteria.

A Boolean function f(X) satisfies PC(l) if the output difference f(X)+
f(X + ∆) is uniformly distributed for any input difference ∆ such that the
Hamming weight ∆ is equal to l or less. (That is, 1 ≤ wt(∆) ≤ l, where
wt(∆) denotes the Hamming weight of ∆.) Further suppose that f(X)
satisfies PC(l) even if any k bits of X = (x1, · · · , xn) are fixed into any
constants. Then we say that f(X) satisfies PC(l) of order k.

The famous strict avalanche criterion (SAC), which was introduced as a
criterion of the security of S-boxes [17], is equivalent to PC(1). SAC(k) is
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equivalent to PC(1) of order k. Also, f(X) is a bent function [10] if and only
if f(X) satisfies PC(n) [15], where a bent function has the largest distance
from the set of affine (linear) functions. (Hence it is directly related to the
linear attack.) PC(l) of order k in general is directly related to the security
against differential attacks.

Kurosawa et al. gave a general method to design such functions by using
linear codes [9]. Carlet extended it to nonlinear codes [4].

Boolean functions, however, do not need to satisfy the strict definitions of
cryptographic criteria in general. These definitions are sometimes stronger
than what we want, i.e., attacks on block ciphers should be impossible. (It
is well-known that bent functions cannot be balanced.) Therefore, as far as
attacks are impossible, it will be better if better parameters are obtained by
relaxing the definitions.

From this point of view, this paper intoduces a notion of ǫ-almost PC(l)
of order k. It requires ony that f(X) + f(X + ∆) is almost uniformly
distiributed in the original definition of PC(l) of order k. We then show
that indeed better parameters are obtained than normal PC(l) of order k
functions.

We present a design method of ǫ-almost PC(l) of order k functions using
linear codes and a ǫ-biased sample spaces [11] which satisfy some property.
Our construction offers smaller input length n than normal PC(l) of order
k functions for the same (l, k). (The input size n of Sboxes can be smaller
for the security level (l, k).) In other words, we can obtain larger (l, k) for
the same input length n. (Higher security level (l, k) can be obtained for the
same input size n of Sboxes.) We further generalize our result to multiple
output bits Boolean functions.

Related works: Suppose that F (x1, · · · , xn) = (y1, · · · , ym) is uniformly
distributed even if any k bits of (x1, · · · , xn) are fixed into any constants.
We then say that F is an (n,m, k)-resilient function. This notion has been
studied by several researchers from a view point of key renewal [5, 2, 7, 13,
3, 14]. Especially, [8] introduced a notion of ǫ-almost k-resilient functions.
The authors presented its construction and showed that better parameters
are obtained than normal k-resilient functions. Dodis et al. improved it by
showing a probabilistic construction [6].

Our work can be considered as an extension of [8]. Indeed, we show that
an ǫ-almost PC(l) of order k function is obtained from a linear code and an
ǫ-almost k-resilient function which satisfies some special property. However,
we cannot use the previous constructions of ǫ-almost k-resilient functions
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[8, 6] because it is not known if they satisfy our special property.

2 Preliminaries

wt(∆) denotes the Hamming weight of a binary vector ∆. Let · denote the
inner product of two binary vectors over GF (2). For a set A, |A| denotes
the cardinality of A.

Let a linear [N,m, d]-code denote a binary linear code C of length N ,
dimension m and the minimum Hamming distance at least d. The dual code

C⊥ of a linear code C is defined as C⊥ △
= {u | u · v = 0 for all v ∈ C} .

The dual minimum Hamming distance d⊥ of C is defined as the minimum
Hamming distance of C⊥.

2.1 Resilient Functions

Definition 2.1 We say that F (X) = (y1, · · · , ym) is a (n,m, k)-resilient
function if F (X) is uniformly distributed even if any k variables xi1 , · · · , xik

are fixed into any constants. That is,

Pr[f(x1, . . . , xn) = (y1, . . . , ym) | xi1xi2 · · · xik = α] = 2−m

for any k positions i1 < · · · < ik, for any k-bit string α ∈ {0, 1}k and for
any (y1, · · · , ym) ∈ {0, 1}l, where the values xj (j 6∈ {i1, . . . , ik}) are chosen
independently at random.

Chor et al. showed that a (n,m, k)-resilient function can be obtained
from a linear [n,m, k + 1]-code [5].

Proposition 2.1 Let G be a generator matrix of a linear [n,m, k + 1]-code
C. Then F (X) = G · X is a (n,m, k)-resilient function.

(Proof) It is known that F (X) = (y1, · · · , ym) is a (n,m, k)-resilient function
if and only if

a1y1 + · · · + amym (1)

is a (n, 1, k)-resilient function for any (a1, · · · , am) 6= (0, · · · , 0). (See [5].) In
our case, eq.(1) becomes as follows.

(a1, · · · , am) · GX = (b1, · · · , bn) · X,
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where (b1, · · · , bn) = (a1, · · · , am) · G. Note that wt(b1, · · · , bn) ≥ k + 1
because (b1, · · · , bn) is a nonzero codeword of C. Then it is easy to see that
(b1, · · · , bn) · X is k-resilient.

Q.E.D.

2.2 PC(l) of order k

Definition 2.2 [15, 16] We say that f(X) satisfies PC(l) of order k if
f(X) + f(X + ∆) is k-resilient for any ∆ such that 1 ≤ wt(∆) ≤ l. (We
also say that f(X) is a PC(l) of order k function.)

Kurosawa et al. gave a general method to design PC(l) of order k
functions by using two linear codes [9].

Proposition 2.2 Suppose that there exist

1. a linear [n1,m, k + 1]-code C1 with the dual minimum Hamming dis-
tance at least l + 1 and

2. a linear [n2,m, k + 1]-code C2 with the dual minimum Hamming dis-
tance at least l + 1.

Then there exists a a PC(l) of order k function f(x1, · · · , xn) such that

n = n1 + n2.

3 Almost Resilient Functions

In [8], the authors introduced a notion of almost resilient functions and
showed its construction. Then better parameters are obtained than normal
resilient functions.

3.1 Almost k-Wise Independent Sample Space

Let Sn ⊆ {0, 1}n. We consider that Sn is a |Sn| × n binary matrix and each
row is randomly chosen.

Definition 3.1 Sn is ǫ-biased if
∣∣∣∣ Pr
X∈Sn

(X · α = 0) − Pr
X∈Sn

(X · α = 1)

∣∣∣∣ ≤ ǫ

for any α ∈ {0, 1}n \ {0n}.

4



Definition 3.2 (almost k-wise independence). Suppose that X = x1 · · · xN

is chosen randomly from SN . Then we say that SN is (ǫ, k)-independent if
for any k positions i1 < i2 < · · · < ik and any k-bit string α, we have

|Pr[xi1xi2 · · · xik = α] − 2−k| ≤ ǫ.

Proposition 3.1 [11] Suppose that Sn is ǫ-biased. Let H be a parity check
matrix of a [N,N − n, k + 1]-linear code C. Define

SN
△
= Sn · H

Then SN is (ǫ̃, k)-independent, where

ǫ̃ =

(
1 − 1

2k

)
· ǫ

3.2 Almost Resilient Functions

Definition 3.3 [8] The function f(X) is called an ǫ-almost (n,m, k)-resilient
function if

|Pr[f(x1, . . . , xn) = (y1, . . . , ym) | xi1xi2 · · · xik = α] − 2−m| ≤ ǫ

for any k positions i1 < · · · < ik, for any k-bit string α ∈ {0, 1}k and for
any (y1, · · · , ym) ∈ {0, 1}m, where the values xj (j 6∈ {i1, . . . , ik}) are chosen
independently at random.

Definition 3.4 [8] An (ǫ, k)-independent sample space SN is called t-systematic
if |SN | = 2t, and there exist t positions i1 < · · · < it such that each t-bit
string occurs in these positions for exactly one N -tuple in SN .

We define t-systematic ǫ-biased sample spaces similarly.

Proposition 3.2 [8, Theorem 4.4] If there exists a t-systematic (ǫ, k)-independent
sample space SN , then there exists a balanced δ-almost (N,N −t, k)-resilient
function, where δ = ǫ/2N−t−k.

The δ-almost (N,N − t, k)-resilient function given in Proposition 3.2 is
constructed as follows [8]. Without loss of generality, assume that the first t
positions in SN run through all possible t-bit strings. We then obtain 2N−t

sample spaces Eα indexed by α = (α1, . . . , αN−t) ∈ {0, 1}N−t by

Eα = SN + (0, 0, . . . , 0︸ ︷︷ ︸
t

, α1, . . . , αN−t).

5



Finally define a function φ : {0, 1}N → {0, 1}N−t by the rule

φ(x1, . . . , xm) = α if and only if (x1, . . . , xN ) ∈ Eα.

Then φ is a δ-almost (N,N − t, k)-resilient function, where δ is given in
Proposition 3.2.

4 Almost PC(l) of order k

In this section, we introduce a notion of almost PC(l) of order k functions.
We then show that an almost PC(l) of order k function is obtained from a
linear code and an ǫ-almost (n,m, k)-resilient function which satisfies some
property.

Definition 4.1 We say that f(X) satisfies ǫ-almost PC(l) of order k if
f(X) + f(X + ∆) is an ǫ-almost (n, 1, k)-resilient function for any ∆ such
that 1 ≤ wt(∆) ≤ l. (We also say that f(X) is an ǫ-almost PC(l) of order
k function.)

4.1 Basic Theorem

Definition 4.2 For Φ : {0, 1}n → {0, 1}m, we define the domain distance
dΦ as follows. Suppose that

Φ(β) 6= Φ(β + Ω)

for any β and any Ω such that 1 ≤ wt(Ω) ≤ l. Then dΦ ≥ l + 1.

Lemma 4.1 Let φ(X) = (y1, · · · , ym) be an ǫ-almost (n,m, k)-resilient func-
tion. Then φ(X) · ∆ is a (2m−1ǫ)-almost (n, 1, k)-resilient function for any
∆ 6= (0, · · · , 0).

(Proof) For any ∆ 6= (0, · · · , 0), let

A0 = {Y | Y · ∆ = 0}, A1 = {Y | Y · ∆ = 1}.

Then |A0| = |A1| = 2m−1. Therefore,

Pr(φ(X) · ∆ = 0) =
∑

α∈A0

Pr(φ(X) = α) ≥
∑

α∈A0

(2−m − ǫ) = 1/2 − 2m−1ǫ.
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Similarly we have

Pr(φ(X) · ∆ = 0) ≤ 1/2 + 2m−1ǫ.

Hence
|Pr(φ(X) · ∆ = 0) − 1/2| ≤ 2m−1ǫ.

Similarly,
|Pr(φ(X) · ∆ = 1) − 1/2| ≤ 2m−1ǫ.

Q.E.D.
Then our basic theorem is stated as follows.

Theorem 4.1 Suppose that there exist

1. a linear [n1,m, k + 1]-code C1 with the dual minimum Hamming dis-
tance at least l + 1 and

2. an ǫ-almost (n2,m, k)-resilient function Φ with the domain distance
dΦ ≥ l + 1.

Then there exists a (2m−1ǫ)-almost PC(l) of order k function f(x1, · · · , xn)
such that

n = n1 + n2.

(Proof) Let G1 be a generator matrix of C1. For X = (x1, · · · , xn1
) and

Y = (y1, · · · , yn2
), define

f(X,Y ) = Φ(Y ) · G1X + g(Y ),

where g(Y ) is any Boolean function. We show that f(X,Y ) satisfies (2m−1ǫ)-
almost PC(l) of order k. Let

f ′(X,Y ) = f(X,Y ) + f(X + ∆, Y + Ω),

then

f ′(X,Y ) = (Φ(Y ) + Φ(Y + Ω)) · G1X + Φ(Y + Ω) · G1∆

+g(Y ) + g(Y + Ω)

Case 1. Suppose that Ω = 0 and 1 ≤ wt(∆) ≤ l. In this case,

f ′(X,Y ) = Φ(Y ) · G1∆.

Then G1∆ 6= O because ∆ is not a codeword of C⊥
1 . Hence f ′(X,Y )

is (2m−1ǫ)-almost k-resilient from Lemma 4.1.
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Case 2. Suppose that Ω 6= 0 and 1 ≤ wt(∆) + wt(Ω) ≤ l. Then for any β,

f ′(X,β) = (Φ(β) + Φ(β + Ω)) · G1X + γ,

where γ = Φ(β + Ω) · G1∆ + g(β) + g(β + Ω) is a constant. Now
Φ(β) 6= Φ(β + Ω) because dΦ ≥ l + 1. Therefore, f ′(X,β) is k-resilient
from the proof of Proposition 2.1.

This means that f ′(X,Y ) is k-resilient.

Consequently, f(X,Y ) satisfies 2mǫ-almost PC(l) of order k. Q.E.D.

Remark 4.1 Kurosawa et al. [8] and Dodis et al. [6] showed how to con-
struct ǫ-almost (n,m, k)-resilient functions. However, it is not known if their
constructions satisfy our condition on the domain distance.

4.2 Discussion

Proposition 2.2 is obtained as a corollary of Theorem 4.1. Indeed, it is
easy to show that if there exists a linear [n2,m, k + 1]-code with the dual
minimum Hamming distance at least l + 1, then there exists a (n2,m, k)-
resilient function with the domain distance dΦ ≥ l + 1.

Now suppose that there exists a linear [n2,m, k+1]-code. In what follows,
we show that there exists an ǫ-almost (n′

2,m, k)-resilient function with the
domain distance dΦ ≥ l + 1 such that n′

2 < n2.
This means that we can obtain smaller input length n for the same (l, k).

In other words, we can obtain larger (l, k) for the same n.

5 Construction

5.1 Overview

In this section, we show how to achieve the second condition of Theorem 4.1,
i.e. how to construct an ǫ-almost (n,m, k)-resilient function with a domain
distance at least l + 1.

For a (ǫ, k)-independent sample space SN , we can consider a nonlinear
code C(SN ) such that each row of SN is a codeword.

Definition 5.1 For SN , let d be the minimum Hamming distance of C(SN ).
Then we say that SN has the domain distance d.
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1. We first show that the second condition of Theorem 4.1 is satisfied if
there exists a t-systematic (ǫ, k)-independent sample space SN whose
domain distance is at least l + 1.

2. We next show that such SN is obtained from a t-systematic ǫ-biased
sample space Sn and a linear [N,N − n, k + 1]-code with the dual
minimu Hamming distance at least l + 1.

3. We finally show how to construct such Sn by using Weil-Carlitz-Uchiyama
bound. (The same technique was used in [8] to construct a t-systematic
(ǫ, k)-independent sample space SN .)

5.2 General Construction

Theorem 5.1 Suppose that there exists a t-systematic (ǫ, k)-independent
sample space SN with the domain distance at least l+1. Then there exists a
balanced δ-almost (N,N − t, k)-resilient function φ with the domain distance
dφ at least l + 1, where δ = ǫ/2N−t−k.

(Proof) Construct φ from SN by using the method shown just after Propo-
sition 3.2. Suppose that dφ ≤ l. That is, φ(β) = φ(β +Ω) = α for some α, β
and Ω such that 1 ≤ wt(Ω) ≤ l. Then we see that

β + (0, · · · , 0, α) ∈ SN and β + Ω + (0, · · · , 0, α) ∈ SN .

This means that there are two codewords with the distance l or less in SN .
However, this is a contradiction because SN has the domain distance at least
l + 1.

Q.E.D.

Theorem 5.2 Suppose that there exists a t-systematic ǫ-biased sample space
Sn and a linear [N,N − n, k + 1]-code C with the dual minimum Hamming
distacen at least l + 1. Then there exists a t-systematic (̃ǫ, k)-independent
sample space SN with the domain distance at least l + 1, where

ǫ̃ =

(
1 − 1

2k

)
· ǫ.

(Proof) Let H = (In, H̃) be a parity check matrix of C, where In is the n×n
identity matrix. Let

SN = Sn · H. (2)
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Then SN is (ǫ̃, k)-independent from Propposition 3.1, where

ǫ̃ =

(
1 − 1

2k

)
· ǫ

Next it is easy to see that SN is t-systematic if Sn is t-systematic. Finally,
we show that SN has the domain distacen at least l+1. From eq.(2), we see
that SN is a subset of all codewords of C⊥. Therefore SN has the domain
distacen at least l + 1 becasue C has the dual distance at least l + 1.

Q.E.D.

5.3 Construction of Systematic ǫ-Biased Sample Space

We next show how to construct a t-systematic ǫ-biased sample space Sn by
using Weil-Carlitz-Uchiyama boumd. For x ∈ GF (2t), let

Tr(x)
△
= x + x2 + x22

+ · · · + x2t−1

.

It is well-known that Tr(x) = 0 or 1 and Tr(x1 + x2) = Tr(x1) + Tr(x2).

Proposition 5.1 (Weil-Carlitz-Uchiyama Bound) [18, 10] Let f(x) =
∑D

i=1 fix
i ∈

GF (2t)[x] be a polynomial such that f(x) 6= g(x)2 − g(x) + θ for any poly-
nomial g(x) ∈ GF (2t)[x] and for any constant θ ∈ F2t . Then

∣∣∣∣∣∣

∑

α∈GF (2t)

(−1)Tr(f(α))

∣∣∣∣∣∣
≤ (D − 1)

√
2t.

Remark 5.1 It is easy to see that if f(x) is an odd degree polynomial, then
f(x) 6= g(x)2 − g(x) + θ for any g(x) and any θ.

Now for two positive integers t and D′, let n = tD′ and D = 2D′ − 1,
g be a primitive element of GF (2t) and x1, x2, · · · , x2t be the elements of
GF (2t). For each xi ∈ GF (2t), let Xi be a string of length n = tD′ such
that

Xi
△
= (Zi,1, Zi,2, · · · , Zi,D′),

where
Zi,j

△
= (Tr(x2j−1

i ),Tr(gx2j−1
i ), · · · ,Tr(gt−1x2j−1

i )).

The proposed ǫ-biased sample space is defined as

Sn
△
= {X1,X2, · · · ,X2t}.
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Theorem 5.3 The above Sn ⊆ {0, 1}n is a t-systematic ǫ-biased sample
space such that n = tD′, |Sn| = 2t and

ǫ =
2(D′ − 1)√

2t
.

(Proof) First it is a well known fact [8, page 245] that

Yx = (Tr(x), T r(gx), . . . , T r(gt−1x))

runs through {0, 1}t when x runs through GF (2t). Hence Sn is t-systematic.
Next consider α ∈ {0, 1}n\{0n}. Let α = (Λ1,Λ2, · · · ,ΛD′) with

Λj = (α0,2j−1, α1,2j−1, · · · , αt−1,2j−1).

Then since αi,j is binary, we have that

Xi · α =
D′∑

j=1

(α0,2j−1Tr(x2j−1
i ) + · · · + αt−1,2j−1Tr(gt−1x2j−1

i ))

=
D′∑

j=1

Tr(α0,2j−1 + α1,2j−1g + · · · + αt−1,2j−1g
t−1)x2j−1

i ))

= Tr(a1xj + a3x
3
i + · · · + aDxD

i ), (3)

where
aj

△
= α0,j + α1,jg + · · · + αt−1,jg

t−1

Since g is a primitive element, aj = 0 if an only if (α0,j , α1,j , · · · , αt−1,j) =
(0, · · · , 0). This implies that (a1, · · · , aD) 6= (0, · · · , 0) because α 6= 0.

Now define
fi(x)

△
= a1xi + a3x

3
i + · · · + aDxD

i

Let
A0

△
= {xi|Tr(f(xi)) = 0}, A1

△
= {xi|Tr(f(xi)) = 1}.

Then we see that

|Pr(X · α = 0) − Pr(X · α = 1)| =

∣∣∣∣
|A0|
2t

− |A1|
2t

∣∣∣∣

=
1

2t

∣∣∣∣∣∣

∑

xi∈GF (2t)

(−1)Tr(f(xi))

∣∣∣∣∣∣
.
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Finally from Weil-Carlitz-Uchiyama bound (see Remark 5.1, too), we have

|Pr(X · α = 0) − Pr(X · α = 1)| ≤ (D − 1)
√

2t

2t
=

D − 1√
2t

.

Hence

ǫ =
D − 1√

2t
=

2(D′ − 1)

2t/2
.

Q.E.D.

5.4 Final Result

Corollary 5.1 Suppose there exists a [N,N−tD′, k+1]-code C with the dual
distance at least l + 1. Then there exists a balanced δ-almost (N,N − t, k)-
resilient function with the domain distance at least l + 1 such that

δ =

(
1 − 1

2k

)
2(D′ − 1)

√
2t

2N−k
.

(Proof) From Theorem 5.1, 5.2 and 5.3.
Q.E.D.

From Theorem 4.1 and Corollary 5.1, we finally obtain the following
corollary.

Corollary 5.2 Suppose that there exist

1. a linear [n′
1,m, k + 1]-code C ′

1 with the dual minimum Hamming dis-
tance at least l + 1 and

2. a linear [n′
2,m − (D′ − 1)t, k + 1]-code C′

2 with the dual minimum
Hamming distance at least l + 1

Then there exists a (2m−1δ)-almost PC(l) of order k function f(x1, · · · , xn)
such that

n′ = n′
1 + n′

2,

where

δ =

(
1 − 1

2k

)
2(D′ − 1)

√
2t

2N−k
.

12



6 Comparison

Let’s compare the parameters of our construction (Corollary 5.2) with nor-
mal PC(l) of order k functions (Proposition 2.2).

We first show that our construction has a smaller input length than
normal PC(l) of order k functions for the same (l, k). Let n′ denote the input
length of our construction and n denote the input length of Proposition 2.2.
We use C ′

1, C
′
2 to refer the linear codes of Corollary 5.2 and C1, C2 to refer

the linear codes of Proposition 2.2, respectively. Suppose that

1. C1 = C ′
1 (hence n1 = n′

1).

2. Each of C2 and C ′
2 has the minimum Hamming distances at least k+1

and the dual minimum Hamming distances at least l + 1.

Then

the dimension of C ′
2 = m − (D′ − 1)t,

the dimension of C2 = m

Therefore, n′
2 < n2 because m − (D′ − 1)t < m. Hence

n′ < n.

This shows that our construction has a smaller input length for the same
(l, k).

In other words, we can say that our construction has larger (l, k) for the
same input length n.

7 Generalization to Multiple Output Bits

In this section, we generalize our result to multiple output Boolean functions.

Definition 7.1 We say that F (X) = (f1, · · · , fp) satisfies ǫ-almost PC(l)
of order k if a1f1 + · · · + apfp satisfies ǫ-almost PC(l) of order k for any
(a1, · · · , ap) 6= (0, · · · , 0).

Theorem 7.1 Suppose that there exist

1. a linear [n1,m, k + 1]-code C1 with the dual minimum Hamming dis-
tance at least l + 1 and

13



2. a linear [n2,m − (D′ − 1)t, k + 1]-code C2 with the dual minimum
Hamming distance at least l + 1

Then there exists a (2m−1δ)-almost PC(l) of order k function F (x1, · · · , xn) =
(y1, · · · , ym) such that n = n1 + n2, where

δ =

(
1 − 1

2k

)
2(D′ − 1)

√
2t

2N−k
.

(Proof) Let G1 be a generator matrix of a linear [n1,m, k + 1]-code C1 with
the dual minimum Hamming distacne at least l+1. Let Φ(Y ) be an ǫ-almost
(n2,m, k)-resilient function with the domain distance dΦ ≥ l + 1.

Consider a linear feedback shift register of length m and with a primitive
feedback polynomial. Let S be the state transition matrix of such a shift
register. Let X = (x1, · · · , xn1

) and Y = (y1, · · · , yn2
). For i = 1, · · · ,m,

define
fi(X,Y )

△
= Φ(Y ) · Si−1G1X + gi(Y )

where gi(Y ) is any Boolean function. Then we show that F (X,Y ) =
(f1, · · · , fm) satisfies (2m−1ǫ)-almost PC(l) of order k.

For (a1, · · · , am) 6= (0, · · · , 0), we have

a1f1 + · · · amfm = Φ(Y ) · (a1I + a2S + · · · amSm−1)G1X

+a1g1(Y ) + · · · amgm(Y ).

It is easy to see that a1I + a2S + · · · amSm−1 is a permutation of the space
{0, 1}m, as pointed out by Nyberg [12]. Therefore, this matrix is nonsingular.
It implies that (a1I+a2D+· · · amDm−1)G1 is a generator matrix of the linear
code C1. Then from the proof of Theorem 4.1, we see that a1f1 + · · · amfm

satisfies (2m−1ǫ)-almost PC(l) of order k.
The rest of the proof is straitforward from Sec.5. Q.E.D.
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