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Abstract - In this paper, an algorithm on 

Goldbach’s conjecture is newly defined for 

computing a large even number as a sum of two 

primes or a sum of prime and composite. Using the 

conjecture, an ECDSA (Elliptic Curve Digital 

Signature Algorithm) protocol is newly proposed 

for authentication. The protocol describes the 

process of key generation, signature generation and 

signature verification as well as security issues.  

 
Index Terms - Elliptic curves, Digital signature,  

Multi - precision integer, Goldbach’s conjecture, 

ANSI X9.62 

 

1. INTRODUCTION 

    
Goldbach's original conjecture (sometimes 

called the "ternary" Goldbach conjecture), 

written in a June 7, 1742 letter to Euler, states 
that every integer is the sum of three primes 

[1]. As re-expressed by Euler, an equivalent of 

this conjecture (called the "strong" or "binary" 

Goldbach conjecture) asserts that all positive 
even can be expressed as the sum of two 

primes. Later [2,3], we could find any large 

even number into a sum of numbers p and q 
where p is prime and q may be either 

composite or prime. The prime p or q plays an 

important role in the proposed ECDSA 
protocols. 

 

2. ELLIPTIC CURVES 

 
In our application, we have taken reduced 

form of elliptic curves over prime. Let p > 3 be 
prime. The elliptic curve y

2
  = x

3
   + ax + b 

over  zp is the set of solutions (x,y) ε  zp  Χ  zp 

to the congruence y
2
 ≡ x

3
   + ax + b  (mod p),  

where a,b ε zp  are constants such that 4 a
3
 + 27 

b
2 ≠ 0 (mod p), together with a special point O 

called the point at infinity. 
An elliptic curve E can be made into an 

abelian group by defining a suitable operation 

on its points. The operation is written 

additively, and is defined as follows (where all 
arithmetic operations are performed in zp):  
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Suppose P = (x1 , y1) and Q = (x2 , y2)   are 

points on E. If x2  = x1 and y2 = - y1, then 
P + Q = O; otherwise P + Q = (x3 , y3), where  

x3  = λ2
 - x1 – x2,  y3 = λ(x1 – x3) – y1, 

and  

 

         (y2  - y1)               

 λ  =  ----------  if   P ≠ Q 
         (x2 – x1)       

 

         (3x1
2
  + a)   

 λ =   ----------- if P = Q. 
              2y1 

 

Finally, define P + Q = O = Q + P  for all P  ε   
E.  With this definition of addition, it can be 

shown that E is an abelian group with identity 
element O. 

 

Note that inverses are very easy to compute. 

The inverse of (x,y) (which we write as  –(x,y) 
since the group operation is additive) is (x,-y) 

for all (x,y) ε   E. 
 

 The following ECDSA protocol is based on 
quadratic residue and Goldbach’s conjecture. 

It is different from ANSI standard [9,10] and 

computational complexities are involved in 

this method. 
 

3. PARTITION ALGORITHM I 

 
The following algorithm gives the sum of two 

primes for 32-bit even number n. This method 

lists out various combination of sum of two 
primes (partitions) for the same n. Let partition 

={ p1, p2 } and count = {number of partitions}. 

 
1. Input n, count = 0. 

2. Find a suitable ks such that 6 ks + ε = n or 

6 ks - ε = n, where ε > 0. 
3. Construct a sequence S = {1,2,3,6k±1} 

where k = 1 to ks. 

4. Apply Miller-Rabin method to S to 

remove composite numbers.  
Then construct a sequence of primes P = 

{p1,p2,…,pm}. 

5. For j = 1 to m 
5.1 Fix pj 



      5.2 For i = 1 to m, i ≠ j 
 5.2.1 If pj + pi = n, then count = count + 1,  

          partition = { pt, pi }. Break. 

5.3 Next j 
 

The following C program is given below for 

partition algorithm I. Only important functions 
are mentioned, not complete code. 

 
/* The following function miller()performs 
the Miller-Rabin Test to filter out 
composite numbers  
 Input to the function is the given number 
n. 
*/ 
int miller(unsigned long n) 
{ 
 
 unsigned long r; 
 unsigned long a = 2; 
 unsigned int s=0; 
 
 if(n==2) 
 return 1; 
 else if(n==1) 
  return 0; 
  
 if(!(n&1)) 
 { 
  if(n==0) 
  { 
   printf("\n 0 is not prime\n"); 
   return 0; 
  } 
  printf("\n number n is even it cannot 
be prime.\n"); 
  return 0; 
 } 
  
 r=n-1; 
 
 while(!(r&1)) 
 { 
  r>>=1; 
  s+=1; 
 } 
   
 if(IsPrime(r,n,s)==1) 
 return 1; 
  
 //printf("\n program is in progress"); 
 return 0; 
  
} 

 
/* The following IsPrime function supports 
Miller-Rabin test */  
           
 Fo a base a, m is computed from n-1 = 
(2^s)*m. Then test the condition (a^m)mod n 
not equal to 1. If so, then declare that n 
is composite.*/ 
 
int IsPrime(unsigned long r, unsigned long 
n, unsigned int s) 
{ 
 unsigned long a = 2; 
 unsigned long k=1; 
 unsigned long i; 
 unsigned int j; 
   
 for(i=0; i<r;i++) 

 { 
  k=(k*a)%n; 
 } 
 k=k%n; 
  
 if(k==1 || k==(n-1)) 
  return 1; 
 else 
 {  
  j = 1; 
 
  while((j<s) && (k!=n-1)) 
  { 
   k= ((k%n)*(k%n))%n; 
   if(k==1) 
    return 0; 
   j+=1; 
  } 
  if(k!=(n-1)) 
   return 0; 
 } 
 return 1; 
} 
 
/* primes()splits n into p1 + p2 from which 
first summand p1 is taken.       
(Goldbach's conjecture), where p1 is the 
first prime and 
 p2 the second */ 
 
unsigned long primes(unsigned long n) 
{ 
unsigned long k; 
unsigned long k1; 
unsigned long t; 
k=n; 
t=(k-1)/6; 
 
while(!miller(6*t+1)) 
{ 
 t-=1; 
 k=6*t+1; 
 k1=6*t-1; 
 if(miller(k1)) 
  return (k1); 
} 
return(6*t+1); 
} 

 
/* The following function verifies p2 is 
prime or composite. This is an optional 
case to test p2 */ 
 
unsigned long primeadd(unsigned long n, 
unsigned long prime1) 
{ 
 unsigned long k; 
 
 k=n-prime1; 
 
 if(miller(k)) 
  return(k); 
 else 
  return 0; 
} 

 
In 32-bit, any even number can be expressed 
as a sum of two primes. Whereas in multi-

precision integers (MPI), we are not sure. So, 

we can represent an MPI even number into a 
sum of two primes or a sum of prime and 

composite. 
  



The following algorithm is for multi-precision 

integer to compute Goldbach’s conjecture. 
 

4. PARTITION ALGORITHM II 
 

1. Input n, count = 0. 

2. Find a suitable ks such that 6 ks + ε = n or 

6 ks - ε = n, where ε > 0. 
3. Construct a sequence S = {1,2,3,6k±1} 

where k = 1 to ks. 

4.   Make S into disjoint sets S1∪ S2∪  … ∪ Sm .  

4. For each Sj, perform step 5 (as in Partition  

      Algorithm I) in parallel processing 

6. Find {n = pk + pr, count}. 
 

Algorithm II computes any even number into a 

sum of two primes or a sum of prime and 
composite. In each Sj consists of collection of 

primes and odd composites and passes into 

step 5 of Algorithm I. These computations 

should be done in parallel processing setup. 
 

Using algorithm I or II, we have proposed the 

following ECDSA protocols.  
 

5. ECDSA PROTOCOL BASED ON 

GOLDBACH's BINARY CONJECTURE 

METHOD 
 

Key Generation 
 

E is an elliptic curve defined over zp, and P is a 

point of prime order n on the curve E; these 
are system-wide parameters.  

 

Each sender (A) has to do the following 
procedures: 

 

1. Select a random integer d in the interval 

[1, n-1]. 
2. Compute Q = d P. 

3. A’s public key is Q; A’s private key is d. 

 
The following protocols are proposed for 

ECDSA in the process of signing and 

verification: 
 

Signature Generation 

 
1. Select  a random integer k1 in the interval 

[1, n-1] 

2. Compute k1 P = (x1, y1) and  r1 = x1 (mod 
n) ( where x1 is regarded as an integer 

between 0 and p-1). 

3. Compute k1
-1

 (mod n). 

4. Compute s1 = k1
-1

{ h(m) + d r1 } (mod n). 
If s1 = 0, then go back to step 1. (where h 

is the secure hash algorithm). 

5. The signature for the message m is the pair 

of integers (r1, s1). 
6. Choose k2 as prime from Goldbach’s 

conjecture i.e., k2 is chosen p1 or p2 from 

the equation int (k1/2) = p1 + p2 where p1 

(prime), p2 (prime or composite) and int( ) 

returns integral part. It is our choice to 

choose prime p1 or p2.  Assume that p1 > p2. 
7. Select k2 = p2 and compute k2 P = (x2, y2) 

and  r2 = x2 (mod p1) ( where x2 is 

regarded as an integer between 0 and p1-

1). 
8. Compute k2

-1
(mod p1). 

9. Compute  s2 = k2
-1

{ h(m) + d r2 } (mod p1). 

If s2 = 0, then go back to step 1. 
10.  The signature for the message m is the 

pair of integers. 

11. Compute (r,s) = ((r1 + r2) mod n, (s1 + s2) 
mod n) and send this pair to the receiver 

(B). 
 

 

 

 
              
              
              
              
              
              

             

 Fig.1: ANSI-Goldbach Signature generation 
  

Signature Verification 

 
To verify A’s signature (r,s) on m, B should do 

the following: 

 

1. Take  the public key Q. 
2. Compute w1 =  s1

-1
 ( mod n)  and h(m). 

3. Compute u1 = (h(m) w1) mod n   and  u2 = 

r1w1 ( mod n). 

4. Compute (u1 P + u2 Q) = (xα , yα) and v1 = 

xα (mod n). 

5. Get the prime p1 from the sender (A). 
6. Compute w2 = s2

-1
 (mod p1). 

7. Compute u3 = (h(m) w2) mod p1 and u4 = r2 

w2 ( mod p1). 

8. Compute (u3 P + u4 Q) = (xβ , yβ) and v2 = 

xβ (mod p1). 
9. Compute v= (v1 + v2) mod n. 
10. Accept the signature if and only if v = r. 

 Goldbach’s 

signature generation 

(r2, s2) 

ANSI signature 

generation  

(r1, s1) 

 (r,s) =  ((r1 + r2) mod n, (s1 + s2)   mod n) 



 
 
 
 
              

              
              
              
              
              
              
              
              

              
              
  

Fig.2: ANSI-Goldbach signature verification  

 

In the above protocol, we have computed two 

pairs (r1, s1) and (r2, s2) where (r1, s1) follows 

from ANSI standard ECDSA protocol and (r2, 

s2) follows from Goldbach’s binary conjecture 
method. Then the signature is verified by 

taking (v1 + v2) mod n ≡ (r1 + r2) mod n. The 
above authentication scheme also performs 

well if we set Goldbach signature generation 
and verification alone (called Goldbach 

ECDSA). Hence we have two new protocols: 

ANSI-Goldbach ECDSA and Goldbach 

ECDSA. Security on these protocols is 
discussed in due course.  

 

Example: Let us take an elliptic curve E: y
2
 = 

x
3
 + ax + b (mod p), where a = 1, b=1, p = 11. 

Take an elliptic point  P = (2,7) of order n = 13 

and set a public key Q =  10P = (8,8). First, we 

choose k1 = 11 ε [1, n]. Then choose a prime 
number k2 = 2 from the function int (k1/2) = p1 
+ p2 (where p1 = 3 and p2 = 2). Proceed as in 

the above ECDSA procedure, we can easily 

verify the signature for any message. 

 

Note: It is also tested that ANSI-Goldbach 

ECDSA and Goldbach ECDSA perform well 

when chosen number for p2 is composite. 

 
6. SECURITY 

 
In ANSI-Goldbach ECDSA protocol, the 
security lies on finding out k1 and k2. It is 

practically difficult to find a prime or 

composite number taken for k2, since many 
partitions on Goldbach’s binary conjecture are 

available for each k2. 

The basis for the security of ANSI ECDSA is 
the apparent intractability of the elliptic curve 

discrete logarithm problem (ECDLP): given an 

elliptic curve E defined over zp, a point P ε 

E(zp) of order n, and a point R ε E(zp), 

determine the integer k ε [0, n-1], such that R 
= k P. The Pollard-rho algorithm reduces the 

determination of k to modulo each of the 

prime factors of n. The computing power 

required to compute ECDLP with the Pollard–

rho method  is (Π n/2)
0.5

 for every n-bit. 
Whereas, in our protocol, the computing 

ECDLP takes (Π n/2)
0.5

 + δ for every n-bit 

(where δ depends on the size of k2 ). So, the 
computational effort in finding discrete 

logarithm problem in the ANSI-Goldbach 

ECDSA protocol is more. 

 
Time analysis is taken on signing and 

verification process of ANSI-Goldbach and 

Goldbach ECDSA. It is computed in Pentium 
III 700 MHz. See Table 1 & 2. 
             

Table 1 : ANSI-Goldbach ECDSA 

Bit 

length 

Signature 

generation 

 mSec 

Signature 

verification 

mSec 

192 100 60 

512 700 550 

1024 4000 2800 
 

Table 2 : Goldbach ECDSA 

Bit 

length 

Signature 

generation 

 mSec 

Signature 

verification 

mSec 

192 70 37 

512 580 400 

1024 3000 1800 
 

 

7. CONCLUSION 

 

We have shown that ANSI-Goldbach 
authentication scheme is more secure than 

ANSI ECDSA. Practically, it is being proved 

that ANSI ECDSA and Goldbach ECDSA are 
almost equivalent (why?). The reason is that 

ANSI ECDSA is based on the (large) random 

value k ε [1, n-1] whereas in Goldbach 
ECDSA, chosen k is prime or composite 

which is obtained from Goldbach’s conjecture. 
Hence finding out k becomes ECDLP in both 

cases. 

 

 
 

 Goldbach’s 

signature 

verification v2

 ANSI signature 

verification v1 

Signature is verified by  

v = r where 

v= (v1 + v2) mod n. 
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