
Goldbach’s Conjecture on ECDSA Protocols
N Vijayarangan, S Kasilingam, Nitin Agarwal

Abstract - In this paper, an algorithm on

Goldbach’s conjecture is newly defined for

computing a large even number as a sum of two

primes or a sum of prime and composite. Using the

conjecture, an ECDSA (Elliptic Curve Digital

Signature Algorithm) protocol is newly proposed

for authentication. The protocol describes the

process of key generation, signature generation and

signature verification as well as security issues.

Index Terms - Elliptic curves, Digital signature,

Multi - precision integer, Goldbach’s conjecture,

ANSI X9.62

1. INTRODUCTION

Goldbach's original conjecture (sometimes

called the "ternary" Goldbach conjecture),

written in a June 7, 1742 letter to Euler, states
that every integer is the sum of three primes

[1]. As re-expressed by Euler, an equivalent of

this conjecture (called the "strong" or "binary"

Goldbach conjecture) asserts that all positive
even can be expressed as the sum of two

primes. Later [2,3], we could find any large

even number into a sum of numbers p and q
where p is prime and q may be either

composite or prime. The prime p or q plays an

important role in the proposed ECDSA
protocols.

2. ELLIPTIC CURVES

In our application, we have taken reduced

form of elliptic curves over prime. Let p > 3 be
prime. The elliptic curve y

2
 = x

3
 + ax + b

over zp is the set of solutions (x,y) ε zp Χ zp

to the congruence y
2
 ≡ x

3
 + ax + b (mod p),

where a,b ε zp are constants such that 4 a
3
 + 27

b
2 ≠ 0 (mod p), together with a special point O

called the point at infinity.
An elliptic curve E can be made into an

abelian group by defining a suitable operation

on its points. The operation is written

additively, and is defined as follows (where all
arithmetic operations are performed in zp):

The authors are with the PKI Group, Core R&D,

ITI Limited, Bangalore, India.
E-mail: {vijayrangan_2005, kasilingam_s, nitagl}

@yahoo.com

Suppose P = (x1 , y1) and Q = (x2 , y2) are

points on E. If x2 = x1 and y2 = - y1, then
P + Q = O; otherwise P + Q = (x3 , y3), where

x3 = λ2
 - x1 – x2, y3 = λ(x1 – x3) – y1,

and

 (y2 - y1)

 λ = ---------- if P ≠ Q
 (x2 – x1)

 (3x1
2
 + a)

 λ = ----------- if P = Q.
 2y1

Finally, define P + Q = O = Q + P for all P ε
E. With this definition of addition, it can be

shown that E is an abelian group with identity
element O.

Note that inverses are very easy to compute.

The inverse of (x,y) (which we write as –(x,y)
since the group operation is additive) is (x,-y)

for all (x,y) ε E.

 The following ECDSA protocol is based on
quadratic residue and Goldbach’s conjecture.

It is different from ANSI standard [9,10] and

computational complexities are involved in

this method.

3. PARTITION ALGORITHM I

The following algorithm gives the sum of two

primes for 32-bit even number n. This method

lists out various combination of sum of two
primes (partitions) for the same n. Let partition

={ p1, p2 } and count = {number of partitions}.

1. Input n, count = 0.

2. Find a suitable ks such that 6 ks + ε = n or

6 ks - ε = n, where ε > 0.
3. Construct a sequence S = {1,2,3,6k±1}

where k = 1 to ks.

4. Apply Miller-Rabin method to S to

remove composite numbers.
Then construct a sequence of primes P =

{p1,p2,…,pm}.

5. For j = 1 to m
5.1 Fix pj

 5.2 For i = 1 to m, i ≠ j
 5.2.1 If pj + pi = n, then count = count + 1,

 partition = { pt, pi }. Break.

5.3 Next j

The following C program is given below for

partition algorithm I. Only important functions
are mentioned, not complete code.

/* The following function miller()performs
the Miller-Rabin Test to filter out
composite numbers
 Input to the function is the given number
n.
*/
int miller(unsigned long n)
{

 unsigned long r;
 unsigned long a = 2;
 unsigned int s=0;

 if(n==2)
 return 1;
 else if(n==1)
 return 0;

 if(!(n&1))
 {
 if(n==0)
 {
 printf("\n 0 is not prime\n");
 return 0;
 }
 printf("\n number n is even it cannot
be prime.\n");
 return 0;
 }

 r=n-1;

 while(!(r&1))
 {
 r>>=1;
 s+=1;
 }

 if(IsPrime(r,n,s)==1)
 return 1;

 //printf("\n program is in progress");
 return 0;

}

/* The following IsPrime function supports
Miller-Rabin test */

 Fo a base a, m is computed from n-1 =
(2^s)*m. Then test the condition (a^m)mod n
not equal to 1. If so, then declare that n
is composite.*/

int IsPrime(unsigned long r, unsigned long
n, unsigned int s)
{
 unsigned long a = 2;
 unsigned long k=1;
 unsigned long i;
 unsigned int j;

 for(i=0; i<r;i++)

 {
 k=(k*a)%n;
 }
 k=k%n;

 if(k==1 || k==(n-1))
 return 1;
 else
 {
 j = 1;

 while((j<s) && (k!=n-1))
 {
 k= ((k%n)*(k%n))%n;
 if(k==1)
 return 0;
 j+=1;
 }
 if(k!=(n-1))
 return 0;
 }
 return 1;
}

/* primes()splits n into p1 + p2 from which
first summand p1 is taken.
(Goldbach's conjecture), where p1 is the
first prime and
 p2 the second */

unsigned long primes(unsigned long n)
{
unsigned long k;
unsigned long k1;
unsigned long t;
k=n;
t=(k-1)/6;

while(!miller(6*t+1))
{
 t-=1;
 k=6*t+1;
 k1=6*t-1;
 if(miller(k1))
 return (k1);
}
return(6*t+1);
}

/* The following function verifies p2 is
prime or composite. This is an optional
case to test p2 */

unsigned long primeadd(unsigned long n,
unsigned long prime1)
{
 unsigned long k;

 k=n-prime1;

 if(miller(k))
 return(k);
 else
 return 0;
}

In 32-bit, any even number can be expressed
as a sum of two primes. Whereas in multi-

precision integers (MPI), we are not sure. So,

we can represent an MPI even number into a
sum of two primes or a sum of prime and

composite.

The following algorithm is for multi-precision

integer to compute Goldbach’s conjecture.

4. PARTITION ALGORITHM II

1. Input n, count = 0.

2. Find a suitable ks such that 6 ks + ε = n or

6 ks - ε = n, where ε > 0.
3. Construct a sequence S = {1,2,3,6k±1}

where k = 1 to ks.

4. Make S into disjoint sets S1∪ S2∪ … ∪ Sm .

4. For each Sj, perform step 5 (as in Partition

 Algorithm I) in parallel processing

6. Find {n = pk + pr, count}.

Algorithm II computes any even number into a

sum of two primes or a sum of prime and
composite. In each Sj consists of collection of

primes and odd composites and passes into

step 5 of Algorithm I. These computations

should be done in parallel processing setup.

Using algorithm I or II, we have proposed the

following ECDSA protocols.

5. ECDSA PROTOCOL BASED ON

GOLDBACH's BINARY CONJECTURE

METHOD

Key Generation

E is an elliptic curve defined over zp, and P is a

point of prime order n on the curve E; these
are system-wide parameters.

Each sender (A) has to do the following
procedures:

1. Select a random integer d in the interval

[1, n-1].
2. Compute Q = d P.

3. A’s public key is Q; A’s private key is d.

The following protocols are proposed for

ECDSA in the process of signing and

verification:

Signature Generation

1. Select a random integer k1 in the interval

[1, n-1]

2. Compute k1 P = (x1, y1) and r1 = x1 (mod
n) (where x1 is regarded as an integer

between 0 and p-1).

3. Compute k1
-1

 (mod n).

4. Compute s1 = k1
-1

{ h(m) + d r1 } (mod n).
If s1 = 0, then go back to step 1. (where h

is the secure hash algorithm).

5. The signature for the message m is the pair

of integers (r1, s1).
6. Choose k2 as prime from Goldbach’s

conjecture i.e., k2 is chosen p1 or p2 from

the equation int (k1/2) = p1 + p2 where p1

(prime), p2 (prime or composite) and int()

returns integral part. It is our choice to

choose prime p1 or p2. Assume that p1 > p2.
7. Select k2 = p2 and compute k2 P = (x2, y2)

and r2 = x2 (mod p1) (where x2 is

regarded as an integer between 0 and p1-

1).
8. Compute k2

-1
(mod p1).

9. Compute s2 = k2
-1

{ h(m) + d r2 } (mod p1).

If s2 = 0, then go back to step 1.
10. The signature for the message m is the

pair of integers.

11. Compute (r,s) = ((r1 + r2) mod n, (s1 + s2)
mod n) and send this pair to the receiver

(B).

 Fig.1: ANSI-Goldbach Signature generation

Signature Verification

To verify A’s signature (r,s) on m, B should do

the following:

1. Take the public key Q.
2. Compute w1 = s1

-1
 (mod n) and h(m).

3. Compute u1 = (h(m) w1) mod n and u2 =

r1w1 (mod n).

4. Compute (u1 P + u2 Q) = (xα , yα) and v1 =

xα (mod n).

5. Get the prime p1 from the sender (A).
6. Compute w2 = s2

-1
 (mod p1).

7. Compute u3 = (h(m) w2) mod p1 and u4 = r2

w2 (mod p1).

8. Compute (u3 P + u4 Q) = (xβ , yβ) and v2 =

xβ (mod p1).
9. Compute v= (v1 + v2) mod n.
10. Accept the signature if and only if v = r.

 Goldbach’s

signature generation

(r2, s2)

ANSI signature

generation

(r1, s1)

 (r,s) = ((r1 + r2) mod n, (s1 + s2) mod n)

Fig.2: ANSI-Goldbach signature verification

In the above protocol, we have computed two

pairs (r1, s1) and (r2, s2) where (r1, s1) follows

from ANSI standard ECDSA protocol and (r2,

s2) follows from Goldbach’s binary conjecture
method. Then the signature is verified by

taking (v1 + v2) mod n ≡ (r1 + r2) mod n. The
above authentication scheme also performs

well if we set Goldbach signature generation
and verification alone (called Goldbach

ECDSA). Hence we have two new protocols:

ANSI-Goldbach ECDSA and Goldbach

ECDSA. Security on these protocols is
discussed in due course.

Example: Let us take an elliptic curve E: y
2
 =

x
3
 + ax + b (mod p), where a = 1, b=1, p = 11.

Take an elliptic point P = (2,7) of order n = 13

and set a public key Q = 10P = (8,8). First, we

choose k1 = 11 ε [1, n]. Then choose a prime
number k2 = 2 from the function int (k1/2) = p1
+ p2 (where p1 = 3 and p2 = 2). Proceed as in

the above ECDSA procedure, we can easily

verify the signature for any message.

Note: It is also tested that ANSI-Goldbach

ECDSA and Goldbach ECDSA perform well

when chosen number for p2 is composite.

6. SECURITY

In ANSI-Goldbach ECDSA protocol, the
security lies on finding out k1 and k2. It is

practically difficult to find a prime or

composite number taken for k2, since many
partitions on Goldbach’s binary conjecture are

available for each k2.

The basis for the security of ANSI ECDSA is
the apparent intractability of the elliptic curve

discrete logarithm problem (ECDLP): given an

elliptic curve E defined over zp, a point P ε

E(zp) of order n, and a point R ε E(zp),

determine the integer k ε [0, n-1], such that R
= k P. The Pollard-rho algorithm reduces the

determination of k to modulo each of the

prime factors of n. The computing power

required to compute ECDLP with the Pollard–

rho method is (Π n/2)
0.5

 for every n-bit.
Whereas, in our protocol, the computing

ECDLP takes (Π n/2)
0.5

 + δ for every n-bit

(where δ depends on the size of k2). So, the
computational effort in finding discrete

logarithm problem in the ANSI-Goldbach

ECDSA protocol is more.

Time analysis is taken on signing and

verification process of ANSI-Goldbach and

Goldbach ECDSA. It is computed in Pentium
III 700 MHz. See Table 1 & 2.

Table 1 : ANSI-Goldbach ECDSA

Bit

length

Signature

generation

 mSec

Signature

verification

mSec

192 100 60

512 700 550

1024 4000 2800

Table 2 : Goldbach ECDSA

Bit

length

Signature

generation

 mSec

Signature

verification

mSec

192 70 37

512 580 400

1024 3000 1800

7. CONCLUSION

We have shown that ANSI-Goldbach
authentication scheme is more secure than

ANSI ECDSA. Practically, it is being proved

that ANSI ECDSA and Goldbach ECDSA are
almost equivalent (why?). The reason is that

ANSI ECDSA is based on the (large) random

value k ε [1, n-1] whereas in Goldbach
ECDSA, chosen k is prime or composite

which is obtained from Goldbach’s conjecture.
Hence finding out k becomes ECDLP in both

cases.

 Goldbach’s

signature

verification v2

 ANSI signature

verification v1

Signature is verified by

v = r where

v= (v1 + v2) mod n.

8. REFERENCES

[1] Caldwell, C. K. "Prime Links++."
http://primes.utm.edu/links/theory/conjectures/

Goldbach/

[2] Chen, J.R, "On the representation of a large

even integer as the sum of a prime and the

product of at most two primes". [Chinese] J.
Kexuse Tongbao 17 (1966), 385-386.

[3] Chen, J.R: "On the representation of a

large even integer as the sum a prime and the
product of at most two primes", Sci. Sinica

16(1973) 157-176.

 [4] Douglas R. Stinson, "Cryptography :

Theory and Practice", CRC press, 1995.

[5] Eric Bach and Jeffrey Shallit,

"Algorithmic Number Theory", The MIT

Press, 1996.

[6] L.E. Dickson, "Goldbach’s Theorem in:

History of the theory of numbers"

Washington (1919), pp.421- 424.

[7] N. Koblitz, "Elliptic curve cryptosystems",

Mathematics of Computation, Vol.48 (1989)

pp. 139-150.

[8] N. Koblitz, "Algebraic Aspects of

Cryptography", Springer-Verlag (1998).

[9] N. Koblitz, "Towards a quarter-century of

public key cryptography", Kluwer Academic
Publishers (2000).

[10] National Institute for Standards and

Technology, "Digital signature standard",
FIPS Publication 186 (1993).

[11] J. Richstein, in: Bosma, W. (Ed.),
"Computing the Number of Goldbach

Partitions up to 5x10
8
", Proceedings of the 4th

Symposium on Algorithmic Number Theory,
Leiden, The Netherlands, July 2-7, 2000

(Springer LNCS 1838)

[12] J. Richstein, "Verifying Goldbach's
conjecture up to 4x10

14
", Math. Comp., to

appear (Institute of Informatics, Germany).

[13] Y. Saouter, "Checking the odd Goldbach
conjecture up to" , Math. Comp. 67 (1998)

863-866.

