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Abstra
t

We present a simple, natural random-ora
le (RO) model s
heme, for a pra
ti
al goal, that

is uninstantiable, meaning is proven in the RO model to meet its goal yet admits no standard-

model instantiation that meets this goal. The goal in question is IND-CCA-preserving asym-

metri
 en
ryption whi
h formally 
aptures se
urity of the most 
ommon pra
ti
al usage of

asymmetri
 en
ryption, namely to transport a symmetri
 key in su
h a way that symmetri


en
ryption under the latter remains se
ure. The s
heme is an ElGamal variant, 
alled Hash

ElGamal, that resembles numerous existing RO-model s
hemes, and on the surfa
e shows no

eviden
e of its anomalous properties.

More generally, we show that a 
ertain goal, that we 
all key-veri�able, 
iphertext-veri�able

IND-CCA-preserving asymmetri
 en
ryption, is a
hievable in the RO model (by Hash ElGamal

in parti
ular) but una
hievable in the standard model. This helps us better understand the

sour
e of the anomalies in Hash ElGamal and also lifts our uninstantiability result from being

about a spe
i�
 s
heme to being about a primitive or goal.

These results extend our understanding of the gap between the standard and RO models,

and bring 
on
erns raised by previous work 
loser to pra
ti
e by indi
ating that the problem of

RO-model s
hemes admitting no se
ure instantiation 
an arise in domains where RO s
hemes

are 
ommonly designed.
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1 Introdu
tion

A random-ora
le (RO) model s
heme is one whose algorithms have ora
le a

ess to a random

fun
tion. Its se
urity is evaluated with respe
t to an adversary with ora
le a

ess to the same

fun
tion. An \instantiation" of su
h a s
heme is the standard-model s
heme obtained by repla
ing

this fun
tion with a member of a polynomial-time 
omputable family of fun
tions, des
ribed by a

short key. The se
urity of the s
heme is evaluated with respe
t to an adversary given the same key.

In the random-ora
le paradigm, as enun
iated by Bellare and Rogaway [5℄, one �rst designs and

proves se
ure a s
heme in the RO model, and then instantiates it to get a (hopefully still se
ure)

standard-model s
heme.

The RO model has proven quite popular and there are now numerous pra
ti
al s
hemes designed

and proven se
ure in this model. But the important issue of whether su
h s
hemes 
an be se
urely

instantiated, and, if so, how, remains less 
lear. This paper adds to existing 
on
erns in this regard.

Let us begin by reviewing previous work and then explain our results.

1.1 Previous work

Let us 
all a RO-model s
heme uninstantiable, with respe
t to some underlying 
ryptographi
 goal,

if the s
heme 
an be proven to meet this goal in the random-ora
le model, but no instantiation of

the s
heme meets the goal in question.

Canetti, Goldrei
h and Halevi [7℄ provided the �rst examples of uninstantiable s
hemes, the goals

in question being IND-CPA-se
ure asymmetri
 en
ryption and digital signatures se
ure against


hosen-message atta
ks. Further examples followed: Nielsen [18℄ presented an uninstantiable RO-

model s
heme for the goal of non-intera
tive, non-
ommitting en
ryption [6℄, and Goldwasser and

Taumann [16℄ showed the existen
e of a 3-move proto
ol whi
h, when 
ollapsed via a RO as per

the Fiat-Shamir heuristi
 [13℄, yields an uninstantiable RO-model signature s
heme.

The results of [7℄ indi
ate that it is possible for the RO paradigm to fail to yield se
ure \real-

world" s
hemes. The example s
hemes provided by [7℄, however, are 
omplex and 
ontrived ones

that do not resemble the kinds of RO s
hemes typi
ally being designed. (Their s
hemes are designed

to return the se
ret key depending on the result of some test applied to an output of the ora
le, and

they use diagonalization and CS proofs [17℄.) The same is true of the s
heme of [16℄. In 
ontrast,

the s
heme of [18℄ is simple, but the goal, namely non-intera
tive, non-
ommitting en
ryption, is

somewhat distant from ones that are 
ommon pra
ti
al targets of RO-model designs. A

ordingly,

based on existing work, one might be tempted to think that \in pra
ti
e," or when 
on�ned to

\natural" s
hemes for pra
ti
al problems 
ommonly being targeted by RO-s
heme designers, the

RO paradigm is sound.

This paper suggests that even this might not always be true. For a pra
ti
al 
ryptographi


goal, we present an uninstantiable RO-model s
heme that is simple and natural, 
losely resembling

the types of s
hemes being designed in this domain. We begin below by dis
ussing the goal, whi
h

we 
all IND-CCA-preserving asymmetri
 en
ryption and whi
h arises in the domain of hybrid

en
ryption.

1.2 IND-CCA-preserving asymmetri
 en
ryption

In pra
ti
e, the most 
ommon usage of asymmetri
 en
ryption is to transport a symmetri
 key that

is later used for symmetri
 en
ryption of the a
tual data. The notion of an asymmetri
 en
ryption

s
heme AS being IND-CCA-preserving, that we introdu
e, 
aptures the se
urity attribute that AS

must possess in order to render this usage of AS se
ure. We now elaborate.
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En
ryption, in pra
ti
e, largely employs the \hybrid" paradigm. The version of this paradigm

that we 
onsider here is quite general. In a �rst phase, the sender pi
ks at random a \session" key

K for a symmetri
 en
ryption s
heme, en
rypts K asymmetri
ally under the re
eiver's publi
 key

to get a 
iphertext C

a

, and transfers C

a

to the re
eiver. In a se
ond phase, it 
an en
rypt messages

of its 
hoi
e symmetri
ally under K and transfer the 
orresponding 
iphertexts to the re
eiver. We


all this multi-message (mm) hybrid en
ryption.

1

A 
hoi
e of an asymmetri
 en
ryption s
heme AS and a symmetri
 en
ryption s
heme SS gives

rise to a parti
ular mm-hybrid s
heme. We introdu
e in Se
tion 2 a de�nition of the IND-CCA

se
urity of this mm-hybrid s
heme whi
h 
aptures the priva
y of the en
rypted messages even in

the presen
e of an adversary allowed 
hosen-
iphertext atta
ks on both 
omponent s
hemes and

allowed to 
hoose the messages to be en
rypted adaptively and as a fun
tion of the asymmetri



iphertext, denoted C

a

above, that transports the symmetri
 key.

Now let us say that an asymmetri
 en
ryption s
heme AS is IND-CCA preserving if the mm-

hybrid asso
iated to AS and symmetri
 en
ryption s
heme SS is IND-CCA se
ure for every IND-

CCA se
ure SS. This notion of se
urity for an asymmetri
 en
ryption s
heme 
aptures the se
urity

attribute of its being able to se
urely transport a session key for the purpose of mm-hybrid en
ryp-

tion. The goal we 
onsider is IND-CCA-preserving asymmetri
 en
ryption.

It is easy to see that any IND-CCA-se
ure asymmetri
 en
ryption s
heme is IND-CCA pre-

serving. (For 
ompleteness, this is proved in Appendix B.1.) IND-CCA preservation, however,

is a
tually a weaker requirement on an asymmetri
 en
ryption s
heme than IND-CCA se
urity

itself. In fa
t, sin
e the messages to be en
rypted using the asymmetri
 s
heme are randomly-


hosen symmetri
 keys, the en
ryption itself need not even be randomized. Hen
e there might

be IND-CCA-preserving asymmetri
 en
ryption s
hemes that are simpler and more eÆ
ient than

IND-CCA-se
ure ones. In parti
ular, it is natural to seek an eÆ
ient IND-CCA-preserving s
heme

in the RO model along the lines of existing hybrid en
ryption s
hemes su
h as those of [8, 9, 14, 19℄.

1.3 The Hash ElGamal s
heme and its se
urity

It is easy to see that the ElGamal en
ryption s
heme [12℄ is not IND-CCA preserving. An e�ort

to strengthen it to be IND-CCA preserving lead us to a variant that we 
all the Hash ElGamal

s
heme. It uses the idea underlying the Fujisaki-Okamoto [14℄ transformation, namely to en
rypt

under the original (ElGamal) s
heme using 
oins obtained by applying a random ora
le H to the

message. Spe
i�
ally, en
ryption of a message K under publi
 key (q; g;X) in the Hash ElGamal

s
heme is given by

AE

G;H

((q; g;X);K) = (g

H(K)

; G(X

H(K)

)�K) ; (1)

where G;H are random ora
les, q; 2q+1 are primes, g is a generator of the order q 
y
li
 subgroup

of Z

�

2q+1

, and the se
ret key is (q; g; x) where g

x

= X. De
ryption is performed in the natural way

as detailed in Figure 1.

The Hash ElGamal s
heme is very mu
h like pra
ti
al RO-model s
hemes presented in the

literature. In fa
t, it is a parti
ular 
ase of an asymmetri
 en
ryption s
heme proposed by Baek,

Lee and Kim [2, 3℄.

We note that the Hash ElGamal asymmetri
 en
ryption s
heme is not IND-CCA se
ure, or even

1

The term multi-message refers to the fa
t that multiple messages may be en
rypted, in the se
ond phase, under

the same session key. The main reason for using su
h a hybrid paradigm, as opposed to dire
tly en
rypting the

data asymmetri
ally under the re
eiver's publi
 key, is that the number-theoreti
 operations underlying popular

asymmetri
 en
ryption s
hemes are 
omputationally more expensive than the blo
k-
ipher operations underlying

symmetri
 en
ryption s
hemes, so hybrid en
ryption brings signi�
ant performan
e gains.
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IND-CPA se
ure, in parti
ular be
ause the en
ryption algorithm is deterministi
. But Theorem 3.1

guarantees that the Hash ElGamal asymmetri
 en
ryption s
heme is IND-CCA-preserving in the

RO model, if the Computational DiÆe-Hellman (CDH) problem is hard in the underlying group.

We follow this with Theorem 4.1, however, whi
h says that the Hash ElGamal s
heme is unin-

stantiable. In other words, the standard-model asymmetri
 en
ryption s
heme obtained by in-

stantiating the RO-model Hash ElGamal s
heme is not IND-CCA preserving, regardless of the


hoi
e of instantiating fun
tions.

2

(We allow these to be drawn from any family of polynomial-time


omputable fun
tions.)

1.4 A 
loser look

As noted above, we show that no instantiation of the Hash ElGamal s
heme is IND-CCA-preserving.

The way we establish this is the following. We let AS be some (any) instantiation of the Hash

ElGamal s
heme. Then, we 
onstru
t a parti
ular IND-CCA-se
ure symmetri
 en
ryption s
heme

SS su
h that the mm-hybrid asso
iated to AS and SS is not IND-CCA se
ure. The latter is proven

by presenting an expli
it atta
k on the mm-hybrid. We 
larify that the symmetri
 s
heme SS


onstru
ted in this proof is not a natural one. It is 
ontrived, but not parti
ularly 
omplex. We do

not view this as subtra
ting mu
h from the value of our result, whi
h lies rather in the nature of

the Hash ElGamal s
heme itself and the pra
ti
ality of the underlying goal.

What we suggest is interesting about the result is that the Hash ElGamal s
heme, on the

surfa
e, seems inno
uous enough. It does not seem to be making any \pe
uliar" use of its random

ora
le that would lead us to think it is \wrong." (Indeed, it uses random ora
les in ways they

have been used previously, in parti
ular by [14, 2, 3℄.) The s
heme is simple, eÆ
ient, and similar

to other RO-model s
hemes out there. In addition, we 
ontend that the de�nition of IND-CCA-

preserving asymmetri
 en
ryption is natural and 
aptures a pra
ti
al requirement. The fa
t that

the Hash ElGamal s
heme is uninstantiable thus points to the diÆ
ulty of being able to distinguish

uninstantiable RO-model s
hemes from ones that at least may be se
urely instantiable, even in the


ontext of natural and pra
ti
al goals.

1.5 Generalizations

Next we provide some results that generalize the above. We 
onsider the 
lass of IND-CCA-

preserving asymmetri
 en
ryption s
hemes that possess a pair of properties that we 
all key veri�-

ability and 
iphertext veri�ability. Key veri�ability means there is a way to re
ognize valid publi


keys in polynomial time. Ciphertext veri�ability means there is a polynomial-time pro
edure to

determine whether a given 
iphertext is an en
ryption of a given message under a given valid pub-

li
 key. Note that 
iphertext veri�ability 
ontradi
ts IND-CPA se
urity, but it need not prevent a

s
heme from being IND-CCA preserving, sin
e the latter notion 
onsiders the use of the asymmetri


s
heme only for the en
ryption of messages that are 
hosen at random.

Theorem 5.2 points out that the goal of key-veri�able, 
iphertext-veri�able IND-CCA-preserving

asymmetri
 en
ryption is a
hievable in the RO model, by the Hash El Gamal s
heme in parti
-

ular, assuming the CDH problem is hard in the underlying group. Theorem 5.3, however, says

that this goal is not a
hievable in the standard model. In other words, there exist RO-model

s
hemes meeting this goal, but there exist no standard-model s
hemes meeting it. Theorem 5.3

2

This result is based on the assumption that one-way fun
tions exist (equivalently, IND-CCA-se
ure symmetri


en
ryption s
hemes exist), sin
e, otherwise, by default, any asymmetri
 en
ryption s
heme is IND-CCA preserving,

and, indeed, the entire mm-hybrid en
ryption problem we are 
onsidering is va
uous. This assumption is made

impli
itly in all results in this paper.
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generalizes Theorem 4.1 be
ause any instantiation of the Hash ElGamal s
heme is key-veri�able

and 
iphertext-veri�able, and hen
e 
annot be IND-CCA-preserving.

Theorem 5.3 lifts our results from being about a parti
ular s
heme to being about a primitive,

or 
lass of s
hemes. The generalization also helps better understand what aspe
ts of the Hash

ElGamal s
heme lead to its admitting no IND-CCA-preserving instantiation. In parti
ular, we see

that this is not due to some \pe
uliar" use of random ora
les but rather due to some simply stated

properties of the resulting asymmetri
 en
ryption s
heme itself.

1.6 Related work

In the 
ryptographi
 
ommunity, the term \hybrid en
ryption" seems to be used quite broadly, to

refer to a variety of goals or methods in whi
h symmetri
 and asymmetri
 primitives are 
ombined

to a
hieve priva
y. We have 
onsidered one goal in this domain, namely mm-hybrid en
ryption.

We now dis
uss related work that has 
onsidered other goals or problems in this domain.

Works su
h as [8, 9, 14, 19, 11, 20℄ provide designs of IND-CCA-se
ure asymmetri
 en
ryption

s
hemes that are referred to as \hybrid en
ryption s
hemes" be
ause they 
ombine the use of

asymmetri
 and symmetri
 primitives. (Possible goals of su
h designs in
lude gaining eÆ
ien
y,

in
reasing the size of the message spa
e, or redu
ing the assumptions that must be made on the

asymmetri
 
omponent in order to guarantee the IND-CCA se
urity of the 
onstru
tion.) The

s
hemes of [8, 9, 14, 19℄ are in the RO model and, although addressing a di�erent goal, form an

important ba
kdrop for our work be
ause the Hash ElGamal s
heme is based on similar te
hniques

and usage of random ora
les. We stress, however, that we have no reason to believe that any of

these s
hemes, or that of [2, 3℄ of whi
h Hash ElGamal is a spe
ial 
ase, are uninstantiable.

2 De�nitions

Notation and 
onventions. If S is a randomized algorithm, then [S(x; y; : : :)℄ denotes the set

of all points having positive probability of being output by S on inputs x; y; : : :. If x is a binary

string, then jxj denotes its length, and if n � 1 is an integer, then jnj denotes the length of its

binary en
oding, meaning the unique integer ` su
h that 2

`�1

� n < 2

`

. The string-
on
atenation

operator is denoted \k".

Formal de�nitions in the RO model provide as an ora
le, to the algorithms and the adversary,

a single random fun
tion R mapping f0; 1g

�

to f0; 1g. S
hemes might, however, use and refer

to multiple random fun
tions of di�erent domains and ranges. These 
an be derived from R via

standard means [5℄.

Symmetri
 en
ryption. A symmetri
 en
ryption s
heme SS = (SK;SE;SD) is spe
i�ed by three

polynomial-time algorithms: via K

$

 SK(1

k

) one 
an generate a key; via C

$

 SE(K;M) one 
an

en
rypt a message M 2 f0; 1g

�

; and via M  SD(K;C) one 
an de
rypt a 
iphertext C. It is

required that SD(K;SE(K;M)) =M for allK 2 [SK(1

k

)℄ and allM 2 f0; 1g

�

. We assume (without

loss of generality) that [SK(1

k

)℄ � f0; 1g

k

. In the RO model, all algorithms have a

ess to the RO.

We de�ne se
urity following [4℄ and addressing the possibility of the symmetri
 s
heme being

in the RO model. Let LR(M

0

;M

1

; b) =M

b

if M

0

;M

1

are strings of equal length, and ? otherwise.

Asso
iate to SS, an adversary S, and k 2 N, the following experiment.

Experiment Exp

ind-

a

SS;S

(k)

Randomly 
hoose RO R

s

: f0; 1g

�

! f0; 1g

K

$

 SK

R

s

(1

k

) ; b

$

 f0; 1g
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Run S with input 1

k

and ora
les SE

R

s

(K;LR(�; �; b)), SD

R

s

(K; �), R

s

Let d denote the output of S

If d = b then return 1 else return 0.

We say that adversary S is legitimate if it never queries SD

R

s

(K; �) with a 
iphertext previously

returned by SE

R

s

(K;LR(�; �; b)). Symmetri
 en
ryption s
heme SS is said to be IND-CCA se
ure

if the fun
tion

Adv

ind-

a

SS;S

(k) = 2 � Pr

h

Exp

ind-

a

SS;S

(k) = 1

i

� 1

is negligible for all legitimate polynomial-time adversaries S.

Asymmetri
 en
ryption. An asymmetri
 en
ryption s
heme AS = (AK;AE;AD) is spe
i�ed

by three polynomial-time algorithms: via (pk; sk)

$

 AK(1

k

) one 
an generate keys; via C

$

 

AE(pk;K) one 
an en
rypt a message K 2 f0; 1g

k

; and via K  AD(sk; C) one 
an de
rypt a


iphertext C. (We denote the message by K be
ause we will set it to a key for a symmetri


en
ryption s
heme.) It is required that AD(sk;AE(pk;K)) = K for all (pk; sk) 2 [AK(1

k

)℄ and all

K 2 f0; 1g

k

. In the RO model, all algorithms have a

ess to the RO.

Dis
ussions and peripheral results in this paper sometimes refer to standard notions of se
urity

for su
h s
hemes like IND-CPA and IND-CCA, but these are not required for the main results and,

a

ordingly, are not de�ned here but re
alled in Appendix B.1.

IND-CCA-preserving asymmetri
 en
ryption. We provide the formal de�nitions �rst and ex-

planations later. A multi-message hybrid (mm-hybrid) en
ryption s
heme is simply a pair (AS;SS)


onsisting of an asymmetri
 en
ryption s
heme AS = (AK;AE;AD) and a symmetri
 en
ryption

s
heme SS = (SK;SE;SD). We asso
iate to (AS;SS), a hybrid adversary H , and k 2 N, the

following experiment.

Experiment Exp

ind-

a

AS;SS;H

(k)

Randomly 
hoose RO R: f0; 1g

�

! f0; 1g

De�ne ROs R

s

(�) = R(0k�) and R

a

(�) = R(1k�)

(pk; sk)

$

 AK

R

a

(1

k

) ; K

$

 SK

R

s

(1

k

) ; b

$

 f0; 1g

C

a

$

 AE

R

a

(pk;K)

Run H with inputs pk; C

a

and ora
les SE

R

s

(K;LR(�; �; b)), SD

R

s

(K; �), AD

R

a

(sk; �), R

Let d denote the output of H

If d = b then return 1 else return 0.

We say that adversary H is legitimate if it does not query SD

R

s

(K; �) on a 
iphertext previously

returned by SE

R

s

(K;LR(�; �; b)), and it does not query AD

R

a

(sk; �) on C

a

. Mm-hybrid en
ryption

s
heme (AS;SS) is said to be IND-CCA se
ure if the fun
tion

Adv

ind-

a

AS;SS;H

(k) = 2 � Pr

h

Exp

ind-

a

AS;SS;H

(k) = 1

i

� 1

is negligible for all legitimate polynomial-time adversaries H .

Finally, we say that an asymmetri
 en
ryption s
heme AS is IND-CCA preserving if the mm-

hybrid en
ryption s
heme (AS;SS) is IND-CCA se
ure for all IND-CCA-se
ure symmetri
 en
ryp-

tion s
hemes SS. Here, the set of symmetri
 en
ryption s
hemes over whi
h we quantify in
ludes

RO-model ones if AS is a RO-model s
heme, and in
ludes only standard-model ones if AS is a

standard-model s
heme.

Let us now explain the ideas behind these formalisms. Re
all that we are modelling the se
urity

of the following two-phase s
enario: in phase one, the sender pi
ks a key K for symmetri
 en
ryp-

7



tion, asymmetri
ally en
rypts it under the re
eiver's publi
 key to get a 
iphertext C

a

, and sends C

a

to the re
eiver; in phase two, the sender symmetri
ally en
rypts messages of its 
hoi
e under K and

transmits the resulting 
iphertexts to the re
eiver. The de�nition above 
aptures the requirement

of priva
y of the symmetri
ally en
rypted data under a 
hosen-
iphertext atta
k. Priva
y is for-

malized in terms of indistinguishability via left-or-right ora
les, and the 
hosen-
iphertext atta
k is

formalized via the adversary's a

ess to de
ryption ora
les for both the symmetri
 and asymmetri


s
hemes. The legitima
y requirement, as usual, disallows de
ryption queries on 
hallenge 
ipher-

texts sin
e they would lead to trivial adversary vi
tory. The experiment re
e
ts the possibility that

SS and AS are RO-model s
hemes by pi
king random ora
les for their en
ryption and de
ryption

algorithms. The standard model is the spe
ial 
ase where the algorithms of the s
hemes do not

refer to any ora
les, and thus the de�nition above 
overs se
urity in both models. The notion of

AS being IND-CCA preserving re
e
ts a valuable pragmati
 requirement, namely that one may

use, in 
onjun
tion with AS, any symmetri
 en
ryption s
heme and be guaranteed se
urity of the

mm-hybrid under the minimal assumption that the symmetri
 s
heme itself is se
ure.

Remark 2.1 Suppose we have two RO-model s
hemes, and are 
omposing them, or exe
uting

them in a 
ommon 
ontext. (Above, this is happening with the asymmetri
 en
ryption s
heme and

the symmetri
 en
ryption s
heme.) We 
laim that, in this 
ase, the ROs of the two s
hemes should

be 
hosen independently. (This does not mean that we need to assume two RO ora
les are given.

The formal model always provides just one RO. But one 
an easily derive several independent ROs

from a single one, as we did above.) The 
orre
tness of this prin
iple of independent instantiation

of ROs in a 
ommon 
ontext 
an be seen in many ways. First, it is easy to 
ome up with an

example of a pair of se
ure RO-model s
hemes that, when 
omposed, yield an inse
ure one if

the ROs in the two s
hemes are de�ned to be the same. Se
ond, one 
an reason by analogy

with the way we need to 
hoose keys in 
omposing primitives. For example, suppose we have a

MAC and symmetri
 en
ryption s
heme, ea
h individually se
ure. If we use them to 
onstru
t

an authenti
ated-en
ryption s
heme, we should use di�erent keys for the MAC and the symmetri


en
ryption s
heme. (There is no reason to think otherwise that the 
omposition will be se
ure.)

The prin
iple, for ROs, is exa
tly the same. They are just like keys provided to primitives.

The existen
e of IND-CCA-preserving asymmetri
 en
ryption s
hemes is easy to establish sin
e, as

Theorem B.1 indi
ates, any IND-CCA-se
ure asymmetri
 en
ryption s
heme is IND-CCA preserv-

ing. The interesting question is to �nd IND-CCA-preserving asymmetri
 en
ryption s
hemes that

are more eÆ
ient than existing IND-CCA-se
ure asymmetri
 en
ryption s
hemes. Hash El Gamal

is one su
h s
heme.

3 The HEG s
heme and its se
urity in the RO model

In this se
tion we introdu
e a variant of the ElGamal en
ryption s
heme [12℄ that, although not

IND-CCA se
ure, is IND-CCA preserving in the RO model under a standard assumption. In

Se
tion 4, we will show that this s
heme admits no IND-CCA-preserving instantiation.

Preliminaries. A 
y
li
-group generator is a randomized, polynomial-time algorithm CG whi
h

on input 1

k

outputs a pair (q; g), where q is a prime su
h that p = 2q + 1 is also a prime, g is a

generator of the 
y
li
, order q subgroup hgi of Z

�

p

, and jpj = k. Re
all that the Computational

DiÆe-Hellman (CDH) problem is said to be hard for CG if the fun
tion

Adv


dh

CG;C

(k) = Pr

h

(q; g)

$

 CG(1

k

) ; x; y

$

 Z

q

: C(q; g; g

x

; g

y

) = g

xy

i

is negligible for all polynomial-time 
dh adversaries C.
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AK(1

k

)

(q; g)

$

 CG(1

k

)

x

$

 Z

q

X  g

x

Return ((q; g;X); (q; g; x))

AE

G;H

((q; g;X);K)

y  H(K)

Y  g

y

T  G(X

y

)

W  T �K

Return (Y;W )

AD

G;H

((q; g; x); (Y;W ))

T  G(Y

x

)

K  T �W

If g

H(K)

= Y then

Return K

else Return ? EndIf

Figure 1: Algorithms of the RO-model asymmetri
 en
ryption s
heme HEG[CG℄ = (AK;AE;AD)

asso
iated to 
y
li
-group generator CG. Here G: hgi ! f0; 1g

k

and H : f0; 1g

k

! Z

q

are random

ora
les.

3.1 S
heme and result statement

To any 
y
li
-group generator CG we asso
iate the RO-model asymmetri
 en
ryption s
heme

HEG[CG℄ = (AK;AE;AD) whose 
onstituent algorithms are depi
ted in Figure 1. (The s
heme

makes referen
e to two ROs, namely G: hgi ! f0; 1g

k

and H : f0; 1g

k

! Z

q

, while the formal

de�nition of an asymmetri
 en
ryption s
heme provides a single RO R: f0; 1g

�

! f0; 1g, but G;H

may be implemented via R in standard ways [5℄.) We 
all this variant of the ElGamal en
ryption

s
heme the Hash ElGamal en
ryption s
heme asso
iated to CG. Our result about its se
urity in

the RO model is the following.

Theorem 3.1 If the CDH problem is hard for 
y
li
-group generator CG, then the asso
iated Hash

ElGamal asymmetri
 en
ryption s
heme HEG[CG℄ is IND-CCA preserving in the RO model.

For the de�nition of what it means to be IND-CCA preserving, we refer the reader to Se
tion 2.

Remarks. We note that the en
ryption algorithm AE of HEG[CG℄ is deterministi
. For this

reason alone, HEG[CG℄ is not an IND-CCA se
ure, or even IND-CPA se
ure, asymmetri
 en
ryption

s
heme. Nonetheless, Theorem 3.1 says that it is IND-CCA preserving as long as the CDH problem

is hard for CG. This is not a 
ontradi
tion. Very roughly, the reason HEG[CG℄ 
an preserve IND-

CCA while not itself being even IND-CPA is that the former notion 
onsiders the use of the s
heme

only for the en
ryption of messages that are symmetri
 keys, whi
h (as long as the asso
iated

symmetri
 en
ryption s
heme is se
ure) have relatively high entropy, and the entropy in these

messages 
ompensates for the la
k of any introdu
ed by AE. We add that previous work [8, 9, 14, 19℄

has shown that in the RO model, relatively weak asymmetri
 
omponents suÆ
e to ensure strong

se
urity properties of the hybrid based on them. Thus, it is not surprising that, although HEG[CG℄

is not se
ure with respe
t to standard measures like IND-CPA and IND-CCA, it is se
ure enough

to permit its use for transport of a symmetri
 en
ryption key as indi
ated by Theorem 3.1.

3.2 Proof overview

The full proof of Theorem 3.1 is in Appendix A. Here we provide an overview that highlights the

main areas of novelty.

Proof setup. Let AS = HEG[CG℄ and let AK;AE;AD denote its 
onstituent algorithms. Let

SS = (SK;SE;SD) be any IND-CCA-se
ure symmetri
 en
ryption s
heme. We need to show that

(AS;SS) is an IND-CCA-se
ure mm-hybrid en
ryption s
heme.
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LetH be a polynomial-time hybrid adversary atta
king (AS;SS). We will 
onstru
t polynomial-

time adversaries S and C su
h that

Adv

ind-

a

AS;SS;H

(k) � poly(k) � poly

�

Adv

ind-

a

SS;S

(k) ; Adv


dh

CG;C

(k)

�

+

poly(k)

2

k

: (2)

Sin
e SS is assumed IND-CCA se
ure and the CDH problem is hard for CG, the advantage fun
tions

related to S and C above are negligible, and thus so is the advantage fun
tion related to H . To


omplete the proof, we need to spe
ify adversaries S;C for whi
h Equation (2) is true.

Consider Exp

ind-

a

AS;SS;H

(k). Let (q; g;X) be the publi
 key and (q; g; x) the se
ret key 
hosen,

where X = g

x

. Let C

a

= (Y;W ) where Y = g

y

. Let K denote the symmetri
 en
ryption key


hosen. Let GH be the event that there is a time at whi
h g

xy

is queried to G but K has not been

queried to H; HG the event that there is a time at whi
h K is queried to H but g

xy

has not been

queried to G; and Su

(H) the event that H is su

essful at guessing the value of its 
hallenge bit

b. We will 
onstru
t C so that

Pr [ GH ℄ � poly(k) � Adv


dh

CG;C

(k) +

poly(k)

2

k

;

and we will 
onstru
t S so that

Pr [ HG _ (Su

(H) ^ :GH ^ :HG) ℄ � Adv

ind-

a

SS;S

(k) +

poly(k)

2

k

: (3)

Equation (2) follows.

The adversaries. The design of C relies mostly on standard te
hniques, and so we leave it to

Appendix A. We turn to S. The latter gets input 1

k

and ora
les SE

R

s

(K;LR(�; �; b)), SD

R

s

(K; �),

R

s

, and begins with the initializations

((q; g;X); (q; g; x))

$

 AK(1

k

) ; y

$

 Z

q

; Y  g

y

; W

$

 f0; 1g

k

; C

a

 (Y;W ) : (4)

It then runs H on inputs (q; g;X); C

a

, itself responding to the ora
le queries of the latter. Its aim

is to do this in su
h a way that the key K underlying S's ora
les plays the role of the quantity

of the same name for H . Eventually, it will output what H outputs. The diÆ
ulty fa
ed by this

adversary is that H might query K to H. (Other ora
le queries are dealt with in standard ways.)

In that 
ase, H expe
ts to be returned y. (And it 
annot be fooled sin
e, knowing Y = g

y

, it 
an

verify whether or not the value returned is y.) The diÆ
ulty for S is not that it does not know the

right answer |via Equation (4), it a
tually knows y| but rather that it is not 
lear how it would

know that a query being made to H equals the key K underlying its ora
les, so that it would know

when to return y as the answer to a query to H.

In order to \dete
t" when query K is made, we would, ideally, like a test that 
an be performed

on a value L, a

epting if L = K and reje
ting otherwise. However, it is not hard to see that, in

general, su
h a test does not exist.

3

Instead, we introdu
e a test that has a weaker property and

show that it suÆ
es for us.

Our test KeyTest takes input L and has a

ess to S's SE

R

s

(K;LR(�; �; b)) ora
le. It returns a pair

(de
; gs) su
h that: (1) If L = K then (de
; gs) = (1; b), meaning in this 
ase it 
orre
tly 
omputes

the 
hallenge bit b, and (2) If L 6= K then, with overwhelming probability, either de
 = 0 (the test

is saying L 6= K) or (de
; gs) = (1; b) (the test is saying it does not know whether or not L = K,

but it has su

essfully 
al
ulated the 
hallenge bit anyway). With KeyTest in hand, S 
an answer

a query L made to H as follows. It runs (de
; gs)

$

 KeyTest(L). If de
 = 0, it 
an safely assume

3

Suppose, for example, that algorithms SE; SD only depend on the �rst half of the bits of their k-bit key. This

is 
onsistent with their being IND-CCA se
ure (in the sense that, if there exists an IND-CCA-se
ure symmetri


en
ryption s
heme, there also exists one with this property), but now, any test has probability at most 2

�k=2

of being

able to di�erentiate between K and a key L 6= K that agrees with K in its �rst half.
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L 6= K and return a random answer, while if de
 = 1, it 
an output gs as its guess to 
hallenge bit

b and halt.

A pre
ise des
ription and analysis of KeyTest are in Appendix A, but we brie
y sket
h the ideas

here. The algorithm has two phases. In the �rst phase, it repeatedly tests whether or not

SD

R

s

(L;SE

R

s

(K;LR(T

0

; T

0

; b))) = T

0

and SD

R

s

(L;SE

R

s

(K;LR(T

1

; T

1

; b))) = T

1

;

where T

0

; T

1

are some distin
t \test" messages. If any of these 
he
ks fails, it knows that L 6= K

and returns (0; 0). (However, the 
he
ks 
an su

eed with high probability even if L 6= K.) In the

next phase, it repeatedly 
omputes SD

R

s

(L;SE

R

s

(K;LR(T

0

; T

1

; b))) and, if all these 
omputations

yield T

gs

for some bit gs, it returns (1; gs). The analysis shows that, 
onditional on the �rst phase

not returning (0; 0), the bit gs from the se
ond stage equals b with overwhelming probability.

A subtle point arises with relation to the test. Re
all that H is making queries to SD

R

s

(K; �).

S will answer these via its own ora
le of the same name. Now, 
onsider the event that H queries to

SD

R

s

(K; �) a 
iphertext C generated in some exe
ution of KeyTest. If S 
alls SD

R

s

(K;C) to obtain

the answer, it would immediately be
ome an illegitimate adversary and thus forgo its advantage,

sin
e C is a result of a 
all to SE

R

s

(K;LR(�; �; b)) made by S via subroutine KeyTest. There are

a few ways around this, and the one we use is to 
hoose the initial \test" messages randomly so

that H has low probability of being able to query a 
iphertext C generated in some exe
ution of

KeyTest.

We note that one might 
onsider an alternative solution to S's problem of wanting to \dete
t"

query K to H. Namely, reply to queries to H at random, then, after H terminates, pi
k one su
h

query L at random, de
rypt a 
hallenge 
iphertext via L, and use that to predi
t the 
hallenge

bit. Unfortunately, even though L = K with probability 1=poly(k), the advantage over one-half

obtained by S via the strategy just outlined 
ould be negligible be
ause the wrong answers from

the wrong random 
hoi
es 
ould overwhelm the right answer that arises when K is 
hosen.

We provide all the details and justify Equation (2) in Appendix A.

4 Uninstantiability of the Hash ElGamal s
heme

In this se
tion we show (
f. Theorem 4.1) that the RO-model Hash ElGamal s
heme admits no

IND-CCA-preserving instantiation. Below we begin by detailing what we mean by instantiation of

a RO-model asymmetri
 en
ryption s
heme. This will refer to a RO-model s
heme whi
h, as per

the formal de�nitions in Se
tion 2, uses a single random ora
le mapping f0; 1g

�

to f0; 1g.

Instantiating RO-model asymmetri
 en
ryption s
hemes. A poly-time family of fun
tions

F asso
iates to se
urity parameter k 2 N and key fk 2 f0; 1g

fkl(k)

a map F

k

(fk; �): f0; 1g

�

! f0; 1g.

The key length fkl of the family of fun
tions is a polynomial in k. We require that there exist a

polynomial t su
h that F

k

(fk; x) is 
omputable in t(k+ jxj) time for all k 2 N, fk 2 f0; 1g

fkl(k)

and

x 2 f0; 1g

�

.

An instantiation of a RO-model asymmetri
 en
ryption s
heme AS = (AK;AE;AD) via family

F is the standard-model asymmetri
 en
ryption s
heme AS = (AK;AE;AD) whose 
onstituent

algorithms are illustrated in Figure 2. As these indi
ate, the publi
 and se
ret keys of the original

s
heme are enhan
ed to also in
lude a key fk spe
ifying the fun
tion F

k

(fk; �), and 
alls to the

random ora
le are then repla
ed by evaluations of this fun
tion in all algorithms.

The uninstantiability result. The formal statement of the result is the following.
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AK(1

k

)

fk

$

 f0; 1g

fkl(k)

(pk; sk)

$

 AK

F

k

(fk;�)

(1

k

)

Return ((pk; fk); (sk; fk))

AE(pk;K)

Parse pk as (pk; fk)

C

$

 AE

F

k

(fk;�)

(pk;K)

Return C

AD(sk; C)

Parse sk as (sk; fk)

K  AD

F

k

(fk;�)

(sk; C)

Return K

Figure 2: Algorithms of the standard-model asymmetri
 en
ryption s
heme AS = (AK;AE;AD)

obtained by instantiating RO-model asymmetri
 en
ryption s
heme AS = (AK;AE;AD) via poly-

time family of fun
tions F .

Theorem 4.1 Let HEG[CG℄ = (AK;AE;AD) be the RO-model Hash ElGamal s
heme asso
iated

to a 
y
li
-group generator CG. Let HEG[CG℄ = (AK;AE;AD) be any instantiation of HEG[CG℄ via

a poly-time family of fun
tions. Then HEG[CG℄ is not IND-CCA preserving.

Proof of Theorem 4.1. Let F be the poly-time family of fun
tions used in HEG[CG℄ to repla
e

the random ora
le. We will 
onstru
t an IND-CCA-se
ure symmetri
 en
ryption s
heme SS su
h

that the mm-hybrid en
ryption s
heme (HEG[CG℄;SS) is not IND-CCA se
ure. This proves the

theorem.

Let us say that a value pk is a (HEG[CG℄; k)-valid publi
 key if there exists a value sk su
h that

(pk; sk) 2 [AK(1

k

)℄. We �rst de�ne two polynomial-time algorithms VfPK and VfCtxt

F

whi
h are

used by SS.

Algorithm VfPK, whi
h we 
all a key veri�er, takes inputs 1

k

and pk, and outputs 1 if and

only if pk is a (HEG[CG℄; k)-valid publi
 key. The algorithm works by parsing pk as ((q; g;X); fk),

where fk 2 f0; 1g

fkl

, and then returning 1 if and only if q and 2q + 1 are primes, g is a generator

of the order q 
y
li
 subgroup hgi of Z

�

2q+1

, j2q + 1j = k, and X 2 hgi. This algorithm 
an be

implemented in polynomial-time based on standard fa
ts from 
omputational number theory, and

even deterministi
ally, given the existen
e of polynomial-time primality tests [1℄. We omit the

details.

Algorithm VfCtxt

F

, whi
h we 
all a 
iphertext veri�er, takes inputs 1

k

;pk;K;C, where pk is a

(HEG[CG℄; k)-valid publi
 key and K 2 f0; 1g

k

. It runs AE(pk;K) and outputs 1 if the result is C,

and 0 otherwise. In other words, VfCtxt

F

veri�es whether C is indeed an en
ryption of message K

under the given publi
 key pk. This is possible be
ause the en
ryption algorithm AE of HEG[CG℄

(
f. Figure 1), and hen
e the en
ryption algorithm AE of HEG[CG℄, is deterministi
.

Let SS

0

= (SK

0

;SE

0

;SD

0

) be any standard-model IND-CCA-se
ure symmetri
 en
ryption

s
heme. (Re
all an impli
it assumption is that some su
h s
heme exists, sin
e otherwise all asym-

metri
 en
ryptions s
hemes are by default IND-CCA preserving and the entire problem we are


onsidering is moot.) The 
onstru
tion of SS is in terms of SS

0

and algorithms VfPK and VfCtxt

F

.

We use the notation h(�; �)i to denote an inje
tive, polynomial-time 
omputable en
oding of pairs

of strings as strings su
h that given h(M

1

;M

2

)i, M

1

and M

2


an be re
overed in polynomial time.

If s is a string and a � b are integers then s[a : : : b℄ denotes the string 
onsisting of bit positions

a through b of s. The algorithms 
onstituting SS = (SK;SE;SD) are depi
ted in Figure 3. To


on
lude the proof, we need only establish the following propositions.

Proposition 4.2 Symmetri
 en
ryption s
heme SS is IND-CCA se
ure.

Proposition 4.3 Multi-message hybrid en
ryption s
heme (HEG[CG℄;SS) is not IND-CCA se
ure.
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SK(1

k

)

K

0

$

 SK

0

(1

dk=2e

)

K

2

$

 f0; 1g

bk=2


Return K

0

jjK

2

SE(K;M)

k  jKj

K

0

 K[1 : : : dk=2e℄

K

2

 K[1 + dk=2e : : : k℄

C

0

 SE

0

(K

0

;M)

Parse M as h(M

1

;M

2

)i

If the parsing fails then

Return C

0

jj1 EndIf

p VfPK(1

k

;M

1

)


 VfCtxt

F

(1

k

;M

1

;K;M

2

)

If (p = 1 and 
 = 1) then

Return C

0

jj0

else Return C

0

jj1 EndIf

SD(K;C)

k  jKj

K

0

 K[1 : : : dk=2e℄

K

2

 K[1 + dk=2e : : : k℄

Parse C as C

0

jjd, where d 2 f0; 1g

M

0

 SD

0

(K

0

; C

0

)

Parse M

0

as h(M

1

;M

2

)i

If the parsing fails then

If d = 1 then Return M

0

else Return ? EndIf

p VfPK(1

k

;M

1

)


 VfCtxt

F

(1

k

;M

1

;K;M

2

)

If (d = 0 and p = 1 and 
 = 1) then

Return M

0

EndIf

If (d = 1 and (p 6= 1 or 
 6= 1)) then

Return M

0

EndIf

Return ?

Figure 3: Algorithms of the symmetri
 en
ryption s
heme SS = (SK;SE;SD) for the proof of

Theorem 4.1. Above, h(M

1

;M

2

)i denotes an en
oding of the pair of strings (M

1

;M

2

) as a string.

Proof of Proposition 4.2: Let us �rst provide some intuition. Note that on input M , en
ryp-

tion algorithm SE(K

0

1

jjK

2

; �) uses the en
ryption algorithm SE

0

of an IND-CCA-se
ure s
heme to


ompute C

0

$

 SE

0

(K

0

1

;M) and outputs C

0

jj0 or C

0

jj1, depending on whether M has some \spe-


ial" form or not. The 
iphertext ends with 0 if M parses as a pair (M

1

;M

2

) su
h that algorithms

VfPK;VfCtxt

F

indi
ate thatM

1

is a (HEG[CG℄; k)-valid publi
 key andM

2

2 [AE(M

1

;K

0

1

jjK

2

)℄. The

de
ryption algorithm SD(K

0

1

jjK

2

; �) on input C

0

jjd, where d is a bit, 
omputes M

0

 SD

0

(K

0

1

; C

0

)

and returnsM

0

only if eitherM

0

is of the spe
ial form and d = 0, orM

0

is not of this form and d = 1.

Therefore, an obvious strategy for an adversary against SS is to query its ora
le SE(K;LR(�; �; b))

on a pair of messages su
h that one of them is of this spe
ial form and the other is not. Using

the unique de
ryptability of AE and the fa
t that K

2

is 
hosen at random, independently from

the adversary's view, we show that it 
annot �nd su
h queries ex
ept with negligible probability.

Moreover, we show that any strategy for the adversary 
an be employed by an atta
ker against

s
heme SS

0

to win its game. Details follow.

Let S be a legitimate polynomial-time adversary atta
king SS. We will 
onstru
t a legitimate

polynomial-time adversary S

0

su
h that

Adv

ind-

a

SS;S

(k) � Adv

ind-

a

SS

0

;S

0

(dk=2e) +

O(Q(k))

2

bk=2


; (5)

where Q is a polynomial upper bounding the total number of queries made by S to its di�erent

ora
les. Sin
e SS

0

is assumed IND-CCA se
ure, the advantage fun
tion asso
iated to S

0

above is

negligible, and thus so is the advantage fun
tion asso
iated to S. To 
omplete the proof, we need

to spe
ify adversary S

0

and prove Equation (5).

Adversary S

0

is given input 1

dk=2e

and has a

ess to ora
les SE

0

(K

0

1

;LR(�; �; b)) and SD

0

(K

0

1

; �). Its

goal is to guess the bit b. It runs S on input 1

k

. In this pro
ess, S will query its two ora
les

SE(K;LR(�; �; b)) and SD(K; �). To answer a query to the �rst of these ora
les, S

0

forwards the

query to its ora
le SE

0

(K

0

1

;LR(�; �; b)), appends 1 to the ora
le's reply and returns the result to S.
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To answer a query to the se
ond ora
le, S

0


he
ks the last bit of the query. If it is 0, S

0

returns ?

to S. Otherwise, it removes the last bit, forwards the result to its ora
le SD

0

(K

0

1

; �), and returns

the answer to S. When S outputs its guess b

0

, S

0

returns b

0

.

We now analyze S

0

. Consider the experiment in whi
h S

0

atta
ks SS

0

. We de�ne the following

events.

Su

(S

0

) : S

0

is su

essful, meaning its output equals the 
hallenge bit b

BadE : S makes a query to ora
le SE(K;LR(�; �; b)) in whi
h one of the messages 
an be

parsed as h(M

1

;M

2

)i su
h that M

1

is a (HEG[CG℄; k)-valid publi
 key and

M

2

2 [AE(M

1

;K)℄

BadD : S makes a query to ora
le SD(K; �) that 
an be parsed as C

0

jjd, where d is a bit,

su
h that SD

0

(K

0

1

; C

0

) = h(M

1

;M

2

)i, where M

1

is a (HEG[CG℄; k)-valid publi
 key

and M

2

2 [AE(M

1

;K)℄

For the experiment in whi
h S atta
ks SS, we de�ne the following event.

Su

(S) : S is su

essful, meaning its output equals the 
hallenge bit b

We 
laim that if events BadE and BadD do not o

ur, then S

0

simulates perfe
tly the environment

provided to S in its atta
k against SS. First, note that answers to queries to ora
le SE(K;LR(�; �; b))


an only be o� by the last bit. In the absen
e of the \bad" events, ea
h 
iphertext returned to S

as a reply to a query to ora
le SE(K;LR(�; �; b)) has 1 as the last bit. This is also the 
ase in S's

real atta
k. If S queries SD(K; �) with a 
iphertext C

0

jj0, assuming events BadE and BadD do not

o

ur, S

0

gives S the response it would get in the real atta
k, namely ?. Sin
e S is legitimate, if

it queries ora
le SD(K; �) with a 
iphertext C

0

jj1, then C

0

must not have previously been returned

by ora
le SE

0

(K

0

1

;LR(�; �; b)). Thus S

0


an legitimately make query C

0

to its ora
le SD

0

(K

0

1

; �). If

M is the response, then, assuming that events BadE and BadD do not o

ur, the answer S expe
ts

is exa
tly M . Therefore,

Pr

�

Su

(S

0

)

�

� Pr

�

Su

(S

0

) j :BadE ^ :BadD

�

� Pr [ BadE _ BadD ℄

� Pr [ Su

(S) ℄� Pr [ BadE _ BadD ℄ :

We now provide an upper bound for the probability of event BadE_BadD. Let q

e

(k) and q

d

(k) be the

number of queries S makes to ora
les SE(K;LR(�; �; b)) and SD(K; �), respe
tively, on input 1

k

. We

observe that ifM

1

is a (HEG[CG℄; k)-valid publi
 key, then for anyM

2

2 f0; 1g

�

, there exists a unique

K

0

2 [SK(1

k

)℄ su
h that M

2

2 [AE(M

1

;K

0

)℄. Re
all that the key for ora
les SE(K;LR(�; �; b)) and

SD(K; �) is K = K

0

1

jjK

2

, where K

2

is 
hosen uniformly at random from f0; 1g

bk=2


and is indepen-

dent from S's view. Therefore, for any query made by S to ora
le SE(K;LR(�; �; b)), the probability

that one of the messages in the query parses as h(M

1

;M

2

)i su
h that M

1

is a (HEG[CG℄; k)-valid

publi
 key and M

2

2 [AE(M

1

;K)℄ is at most 2=2

bk=2


. Similarly, for any query C

0

jjd, where d

is a bit, made by S to ora
le SD(K; �), the probability that SD

0

(K

0

1

; C

0

) = M

0

, where M

0

parses

as h(M

1

;M

2

)i, M

1

is a (HEG[CG℄; k)-valid publi
 key and M

2

2 [AE(M

1

;K)℄ is at most 1=2

bk=2


.

Therefore,

Pr [ BadE _ BadD ℄ �

2q

e

(k) + q

d

(k)

2

bk=2


�

2 �Q(k)

2

bk=2


;

where Q(k) = q

e

(k) + q

d

(k). Hen
e

Adv

ind-

a

SS

0

;S

0

(dk=2e) = 2 � Pr

�

Su

(S

0

)

�

� 1 � 2 �

�

Pr [ Su

(S) ℄�

O(Q(k))

2

bk=2


�

� 1
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= Adv

ind-

a

SS;S

(k) �

O(Q(k))

2

bk=2


:

Rearranging terms gives Equation (5).

Proof of Proposition 4.3: We de�ne a hybrid adversary H atta
king (HEG[CG℄;SS). H is

given inputs pk = ((q; g;X); fk) and C

a

and has a

ess to ora
les SE(K;LR(�; �; b)), SD(K; �), and

AD(sk; �), where sk = ((q; g; x); fk). Its goal is to guess the 
hallenge bit b. By the de�nition

of experiment Exp

ind-

a

HEG[CG℄;SS;H

(k), pk is a (HEG[CG℄; k)-valid publi
 key and C

a

2 [AE(pk;K)℄.

Therefore, h(pk; C

a

)i is a message whi
h, when en
rypted with SE(K; �), yields a 
iphertext that

has last bit 0. We observe that for any string C 
hosen at random from f0; 1g

jC

a

j

n fC

a

g, the

probability that K = AD(sk; C) is 0 (sin
e AE(pk;K) = C

a

and AE is deterministi
), i.e., the

probability that C 2 [AE(pk;K)℄ is 0. Hen
e h(pk; C)i is a message whi
h, when en
rypted with

SE(K; �), yields a 
iphertext that has last bit 1. (If C =2 [AE(pk;K)℄, then the last bit will be 1.)

Thus, adversary H 
an 
onstru
t two messages for whi
h it 
an guess with probability 1 the last

bit of the 
orresponding 
iphertext. Using this information it 
an then guess the 
hallenge bit.

Details follow.

Adversary H 
hooses C at random from f0; 1g

jC

a

j

n fC

a

g, makes a query h(pk; C

a

)i; h(pk; C)i to

ora
le SE(K;LR(�; �; b)), parses the response as C

0

jjd, where d is a bit, and returns d. The running

time of H is 
learly polynomial in k. We 
laim that Adv

ind-

a

HEG[CG℄;SS;H

(k) = 1. To prove this, we


onsider the event

Su

(H) : H is su

essful, meaning its output equals the 
hallenge bit b

If 
hallenge bit b is 0, then the response to H 's query is a 
iphertext that has last bit 0. If bit b is

1, then the response is a 
iphertext that has last bit 1. Thus

Pr [ Su

(H) ℄ =

1

2

+

1

2

= 1 :

Hen
e

Adv

ind-

a

HEG[CG℄;SS;H

(k) = 2 � Pr [ Su

(H) ℄� 1 = 1 ;

as desired.

Noti
e that the adversary 
onstru
ted in the proof of Proposition 4.3 does not make any queries

to its ora
les SD(K; �) and AD(sk; �).

Remark 4.4 An interesting question at this point may be why the proof of Theorem 4.1 fails

for the RO-model Hash ElGamal s
heme HEG[CG℄ asso
iated to a 
y
li
-group generator CG |it

must, sin
e otherwise Theorem 3.1 would be 
ontradi
ted| but su

eeds for any instantiation of

this s
heme. The answer is that symmetri
 en
ryption s
heme SS, depi
ted in Figure 3 runs a


iphertext veri�er VfCtxt

F

for the asymmetri
 en
ryption s
heme in question. In the 
ase of the

RO-model s
heme HEG[CG℄, any 
iphertext veri�er must query random ora
les G and H. But as we


lari�ed in Se
tion 2, SS does not have a

ess to these ora
les (although it might have a

ess to its

own, independently 
hosen ora
le R

s

), and so 
annot run su
h a 
iphertext veri�er. The adversary

of 
ourse does have a

ess to G;H, but has no way to \pass" these obje
ts to the en
ryption

algorithm of the symmetri
 en
ryption s
heme. On the other hand, in the instantiated s
heme, the

keys des
ribing the fun
tions instantiating the random ora
les may be passed by the adversary to

the en
ryption algorithm of SS in the form of a message 
ontaining the publi
 key, giving SS the
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ability to run the 
iphertext veri�er. This might lead one to ask why SS does not have ora
le a

ess

to G;H. This is explained in Remark 2.1.

5 A generalization

In this se
tion, we identify a sub
lass of IND-CCA-preserving asymmetri
 en
ryption s
hemes that

we 
all key-veri�able, 
iphertext-veri�able IND-CCA-preserving asymmetri
 en
ryption s
hemes.

We show that su
h s
hemes exist in the RO model, but do not exist in the standard model. We then

dis
uss how this generalizes our results about the Hash El Gamal s
heme. We begin by de�ning

the two properties mentioned above, namely, key veri�ability and 
iphertext veri�ability.

Let AS = (AK;AE;AD) be an asymmetri
 en
ryption s
heme. Let us say that a value pk is an

(AS; k)-valid publi
 key if there exists a value sk su
h that (pk; sk) 2 [AK(1

k

)℄. We say that AS is

key veri�able if there exists a polynomial-time, possibly randomized algorithm VfPK (
alled the key

veri�er) and a negligible fun
tion � (
alled the error probability of VfPK) su
h that VfPK(1

k

;pk)

returns 1 with probability at least 1� �(k) if pk is an (AS; k)-valid publi
 key, and returns 1 with

probability at most �(k) otherwise. If AK has a

ess to a random ora
le, then VfPK is given a

ess

to the same random ora
le.

We say that asymmetri
 en
ryption s
heme AS = (AK;AE;AD) is 
iphertext veri�able if there

exists a polynomial-time, possibly randomized algorithm VfCtxt (
alled the 
iphertext veri�er) and

a negligible fun
tion � (
alled the error probability of VfCtxt) su
h that, if VfCtxt is run on inputs

1

k

;pk;K;C, where pk is an (AS; k)-valid publi
 key and K 2 f0; 1g

k

, then VfCtxt returns 1 with

probability at least 1 � �(k) if C 2 [AE(pk;K)℄, and returns 1 with probability at most �(k)

otherwise. If AE or AD a

ess a random ora
le, then VfCtxt is given a

ess to the same random

ora
le.

The following result will be used later.

Proposition 5.1 Suppose AS is a RO-model asymmetri
 en
ryption s
heme that is both key

veri�able and 
iphertext veri�able. Let AS be any instantiation of AS via a poly-time family of

fun
tions. Then AS is also both key veri�able and 
iphertext veri�able.

Proof of Proposition 5.1: Let VfPK and VfCtxt be a key veri�er and a 
iphertext veri�er for

AS, respe
tively. Let F be the poly-time family of fun
tions used in AS to repla
e the random

ora
le. Re
all that a publi
 key of AS 
ontains a publi
 key pk of AS and also a key fk spe
ifying

an instan
e of F . We de�ne algorithms VfPK

F

and VfCtxt

F

.

On inputs 1

k

; s, VfPK

F

attempts to parse s as a pair (pk; fk). If it fails, it returns 0. Otherwise, it

runs VfPK(1

k

;pk). If the result is 0, it returns 0. Otherwise, it veri�es that fk 2 f0; 1g

fkl(k)

. If so,

it returns 1, if not it returns 0. Clearly, VfPK

F

is a key veri�er for AS.

VfCtxt

F

is identi
al to VfCtxt ex
ept that the random ora
le is repla
ed with the same instan
e of

F used in AS to repla
e the ora
le.

We now observe that, in the RO model, there exist key-veri�able, 
iphertext-veri�able IND-CCA-

preserving asymmetri
 en
ryption s
hemes, meaning the goal of key-veri�able, 
iphertext-veri�able

asymmetri
 en
ryption is a
hievable in this model.

Theorem 5.2 Suppose there exists a 
y
li
-group generator for whi
h the CDH problem is hard.

Then there exists a key-veri�able, 
iphertext-veri�able RO-model asymmetri
 en
ryption s
heme

that is IND-CCA-preserving in the RO model.
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Proof of Theorem 5.2: If the CDH problem is hard for 
y
li
-group generator CG,

then Theorem 3.1 guarantees that the asso
iated Hash ElGamal asymmetri
 en
ryption s
heme

HEG[CG℄, de�ned in Se
tion 3, is IND-CCA preserving in the RO model. The proof of Theorem 3.1

de�nes a key veri�er VfPK and a 
iphertext veri�er VfCtxt for HEG[CG℄, ea
h having error proba-

bility 0.

Next, we show that in the standard model, there do not exist key-veri�able, 
iphertext-

veri�able IND-CCA-preserving asymmetri
 en
ryption s
hemes, meaning the goal of key-veri�able,


iphertext-veri�able asymmetri
 en
ryption is not a
hievable in this model.

Theorem 5.3 Let AS be a standard-model asymmetri
 en
ryption s
heme that is both key veri-

�able and 
iphertext veri�able. Then AS is not IND-CCA preserving.

Theorem 5.3 is proved below. We �rst state and prove our �nal result.

Theorem 5.4 Let AS be a RO-model asymmetri
 en
ryption s
heme that is both key veri�able

and 
iphertext veri�able. Let AS be any instantiation of AS via a poly-time family of fun
tions.

Then AS is not IND-CCA preserving.

Proof of Theorem 5.4: AS is a standard-model asymmetri
 en
ryption s
heme. Proposition 5.1

implies that it inherits the key veri�ability and 
iphertext veri�ability of AS. Theorem 5.3 then

implies that it is not IND-CCA preserving.

Note that Theorem 5.4 implies Theorem 4.1 be
ause the Hash El Gamal s
heme is a RO-model

s
heme that is key veri�able and 
iphertext veri�able. Theorem 5.4 is, however, more general, and

shows that the uninstantiability of the Hash El Gamal s
heme arises not due to some \pe
uliar" use

of random ora
les, but due to the fa
t that the s
heme possesses the properties of key veri�ability

and 
iphertext veri�ability.

Proof of Theorem 5.3. The proof is almost identi
al to the proof of Theorem 4.1. A

ordingly,

we use the same notation and the previous results, and only indi
ate the di�eren
es. Let VfPK and

VfCtxt be a key veri�er and a 
iphertext veri�er for AS, respe
tively. The main di�eren
e is that

now VfPK and VfCtxt 
an be randomized algorithms with non-zero error probabilities.

We present an IND-CCA-se
ure symmetri
 en
ryption s
heme SS su
h that the mm-hybrid

en
ryption s
heme (AS;SS) is not IND-CCA se
ure. This proves the theorem.

Let SS

0

= (SK

0

;SE

0

;SD

0

) be any standard-model IND-CCA-se
ure symmetri
 en
ryption

s
heme. The 
onstru
tion of SS is in terms of SS

0

and algorithms VfPK and VfCtxt, and is ex-

a
tly as in the proof of Theorem 4.1. See Figure 3. To 
on
lude the proof, we need only establish

the following propositions.

Proposition 5.5 Symmetri
 en
ryption s
heme SS is IND-CCA se
ure.

Proposition 5.6 Multi-message hybrid en
ryption s
heme (AS;SS) is not IND-CCA se
ure.

Proof of Proposition 5.5: Let S be a legitimate polynomial-time adversary atta
king SS. We

will 
onstru
t a legitimate polynomial-time adversary S

0

su
h that

Adv

ind-

a

SS;S

(k) � Adv

ind-

a

SS

0

;S

0

(dk=2e) +

O(Q(k))

2

bk=2


+O(Q(k)) � �(k) ; (6)

where Q is a polynomial upper bounding the total number of queries made by S to its di�erent

ora
les, and � is a negligible fun
tion related to the error probabilities of algorithms VfPK and
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VfCtxt. Note that the last term is the only di�eren
e with Equation (5). Sin
e SS

0

is assumed

IND-CCA se
ure, the advantage fun
tion asso
iated to S

0

above is negligible, and thus so is the

advantage fun
tion asso
iated to S. To 
omplete the proof, we need to spe
ify adversary S

0

and

prove Equation (6).

Adversary S

0

is identi
al to the adversary in the proof of Proposition 4.2. The analysis of S

0

is

similar, but we need to take into a

ount the possibility that algorithms VfPK and VfCtxt err. For

this reason, for the experiment in whi
h S atta
ks SS, we de�ne the following additional event.

Cr
t : Every time algorithms VfPK and VfCtxt are invoked, they return the 
orre
t value

We 
laim that if events BadE and BadD do not o

ur, then S

0

simulates perfe
tly the environment

provided to S in its atta
k against SS when algorithms VfPK and VfCtxt never err. First, note that

answers to queries to ora
le SE

R

s

(K;LR(�; �; b)) 
an only be o� by the last bit. In the absen
e of

the \bad" events, ea
h 
iphertext returned to S as a reply to a query to ora
le SE

R

s

(K;LR(�; �; b))

has 1 as the last bit. This is also the 
ase in S's real atta
k when algorithms VfPK and VfCtxt are

always 
orre
t. If S queries SD(K; �) with a 
iphertext C

0

jj0, assuming events BadE and BadD do

not o

ur, S

0

gives S the response it would get in the real atta
k when algorithms VfPK and VfCtxt

are always 
orre
t, namely ?. Sin
e S is legitimate, if it queries ora
le SD(K; �) with a 
iphertext

C

0

jj1, then C

0

must not have previously been returned by ora
le SE

0

(K

0

1

;LR(�; �; b)). Thus S

0


an

legitimately make query C

0

to its ora
le SD

0

(K

0

1

; �). If M is the response, then, assuming that

events BadE and BadD do not o

ur, the answer S expe
ts when algorithms VfPK and VfCtxt are

always 
orre
t is exa
tly M . Therefore,

Pr

�

Su

(S

0

)

�

� Pr

�

Su

(S

0

) j :BadE ^ :BadD

�

� Pr [ BadE _ BadD ℄

� Pr [ Su

(S) j Cr
t ℄� Pr [ BadE _ BadD ℄

� Pr [ Su

(S) ℄� Pr [ :Cr
t ℄� Pr [ BadE _ BadD ℄ :

We now provide an upper bound for the probability of event :Cr
t. (The bound for BadE_BadD is

identi
al to the one in the proof of Proposition 4.2.) Let q

e

(k) and q

d

(k) be the number of queries

S makes to ora
les SE

R

s

(K;LR(�; �; b)) and SD(K; �), respe
tively, on input 1

k

. Let �

1

be the error

probability of key veri�er VfPK, and �

2

the error probability of 
iphertext veri�er VfCtxt. Then

Pr [ :Cr
t ℄ � q

e

(k) � (�

1

(k) + �

2

(k)) + q

d

(k) � (�

1

(k) + �

2

(k)) = Q(k) � �(k) ;

where Q(k) = q

e

(k) + q

d

(k) and �(k) = �

1

(k) + �

2

(k).

Hen
e

Adv

ind-

a

SS

0

;S

0

(dk=2e) = 2 � Pr

�

Su

(S

0

)

�

� 1 � 2 �

�

Pr [ Su

(S) ℄�Q(k) � �(k)�

O(Q(k))

2

bk=2


�

� 1

= Adv

ind-

a

SS;S

(k)�O(Q(k)) � �(k)�

O(Q(k))

2

bk=2


:

Rearranging terms gives Equation (6).

Proof of Proposition 5.6: We de�ne a hybrid adversary H atta
king (AS;SS) exa
tly as in the

proof of Proposition 4.3. We 
laim that Adv

ind-

a

AS;SS;H

(k) � 1 � 2

�k

� �(k), where � is a negligible

fun
tion related to the error probabilities of algorithms VfPK and VfCtxt. The analysis is similar

to the one in the proof of Proposition 4.3, but we need to take into a

ount the additional event

Cr
t : Every time algorithms VfPK and VfCtxt are invoked, they return the 
orre
t value,
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and the possibility that K = AD(sk; C), where C is 
hosen at random from f0; 1g

jC

a

j

n fC

a

g. The

latter 
an happen with probability at most 2

�k

. I.e., the probability that C 2 [AE(pk;K)℄ is at

most 2

�k

. Hen
e h(pk; C)i is a message whi
h, when en
rypted with SE(K; �), yields a 
iphertext

that with overwhelming probability has last bit 1. (If C =2 [AE(pk;K)℄, then the last bit will be

1.) Assume that event Cr
t o

urs. If 
hallenge bit b is 0, then the response to H 's query is a


iphertext that has last bit 0. If bit b is 1, then with probability at least 1� 2

�k

, the response is a


iphertext that has last bit 1. Thus

Pr [ Su

(H) ℄ � Pr [ Su

(H) j Cr
t ℄� Pr [ :Cr
t ℄ �

1

2

�

�

1�

1

2

k

�

+

1

2

� Pr [ :Cr
t ℄

If �

1

is the error probability of key veri�er VfPK, and �

2

is the error probability of 
iphertext veri�er

VfCtxt, then Pr [ :Cr
t ℄ � �

1

(k) + �

2

(k): Hen
e

Adv

ind-

a

AS;SS;H

(k) = 2 � Pr [ Su

(H) ℄� 1 � 1� 2

�k

� 2 � (�

1

(k) + �

2

(k)) = 1� 2

�k

� �(k) ;

where �(k) = 2 � (�

1

(k) + �

2

(k)).
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A Proof of Theorem 3.1

We explained the ideas behind this proof in Se
tion 3. Here we provide the full adversary 
onstru
-

tions and analyses.

Proof setup. LetH be a polynomial-time hybrid adversary atta
king (AS;SS). We will 
onstru
t

polynomial-time adversaries S and C su
h that

Adv

ind-

a

AS;SS;H

(k) � Adv

ind-

a

SS;S

(k) +O(Q(k)) � Adv


dh

CG;C

(k) +

O(Q(k)

2

)

2

k

; (7)

where Q(k) is a polynomial upper bounding the number of queries made by H to the G and H

ora
les. (This in
ludes queries made dire
tly by H and those made indire
tly as a 
onsequen
e of

H 's queries to its AD

G;H

((q; g; x); �) ora
le.) Sin
e SS is assumed IND-CCA se
ure and the CDH

problem is hard for CG, the advantage fun
tions related to S and C above are negligible, and thus

so is the advantage fun
tion related to H . To 
omplete the proof, we need to spe
ify the adversaries

S;C and prove Equation (7).

Des
ription of S. Adversary S is given input 1

k

and has a

ess to ora
les SE

R

s

(K;LR(�; �; b)),

SD

R

s

(K; �), and R

s

. Its goal is to guess the bit b. It begins with the following initializations.

((q; g;X); (q; g; x))

$

 AK(1

k

) ; y

$

 Z

q

; Y  g

y

; W

$

 f0; 1g

k

; C

a

 (Y;W ) ;

T

0

$

 f0; 1g

k

; T

1

$

 f0; 1g

k

� fT

0

g.
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Subroutine GSim(Z)

If GT[Z℄ is not de�ned then GT[Z℄

$

 f0; 1g

k

EndIf

Return GT[Z℄

Subroutine HSim(L)

If HT[L℄ is de�ned then return it as the answer EndIf

(de
; gs)

$

 KeyTest(L) ; HT[L℄

$

 Z

q

If de
 = 0 then return HT[L℄ as the answer EndIf

If de
 = 1 then output gs (as a guess to the value of 
hallenge bit b) and halt EndIf

Subroutine KeyTest(L)

de
 1

For i = 1; : : : ; k do

C

i

0

[L℄

$

 SE

R

s

(K;LR(T

0

; T

0

; b)) ; If SD

R

s

(L;C

i

0

[L℄) 6= T

0

then de
 0 EndIf

C

i

1

[L℄

$

 SE

R

s

(K;LR(T

1

; T

1

; b)) ; If SD

R

s

(L;C

i

1

[L℄) 6= T

1

then de
 0 EndIf

EndFor

If de
 = 0 return (0; 0) EndIf

For i = 1; : : : ; k do C

i

[L℄

$

 SE

R

s

(K;LR(T

0

; T

1

; b)) ; T

i

 SD

R

s

(L;C

i

[L℄) EndFor

If T

1

= T

2

= � � � = T

k

= T

0

then return (1; 0) EndIf

If T

1

= T

2

= � � � = T

k

= T

1

then return (1; 1) EndIf

Return (0; 0)

Figure 4: Subroutines de�ned by S and used to simulate H 's ora
les.

Then it runs H on inputs publi
 key (q; g;X) and 
iphertext C

a

. In the pro
ess H will query its

ora
les

G; H; R

s

; SE

R

s

(K;LR(�; �; b)); SD

R

s

(K; �); AD

G;H

((q; g; x); �) : (8)

S will answer these queries. To that end, it de�nes the subroutines shown in Figure 4. It answers

a query Z to G by running GSim(Z) and returning the answer to H . It answers a query L to H by

running HSim(L) and returning the answer to H . It answers queries to the SE

R

s

(K;LR(�; �; b)) and

R

s

ora
les via its own ora
les of the same name. It answers ea
h query C to the SD

R

s

(K; �) ora
le

using its own de
ryption ora
le, unless there exist i; j and L su
h that L was queried to H and either

C = C

i

j

[L℄ or C = C

i

[L℄. In that 
ase, S aborts. Sin
e S possesses the se
ret key (q; g; x), it 
an

answer queries to AD

G;H

((q; g; x); �) by performing the 
omputation of the de
ryption algorithm,

repla
ing 
alls that the latter makes to G or H by 
alls to the relevant subroutines just mentioned.

If H runs to 
ompletion (S 
an output its guess as to the value of b, and halt, before this), then S

outputs whatever H outputs.

Des
ription of C. Adversary C is given inputs q; g;X; Y , where X;Y 2 hgi have been 
hosen

uniformly at random. Its goal is to 
ompute g

xy

where g

x

= X and g

y

= Y . Let k  jh2q+1ij. C

begins with the following initializations.

K

$

 SK(1

k

) ; b

$

 f0; 1g ; W

$

 f0; 1g

k

; C

a

 (Y;W ) :

Then it runs H on inputs publi
 key (q; g;X) and 
iphertext C

a

. In the pro
ess H will query

the ora
les listed in Equation (8). C will answer these queries. Queries to R

s

are simulated the

standard way, by returning a random value for ea
h new query and the previously returned value

for ea
h repeated query. To simulate the rest of the ora
les it de�nes the subroutines shown in
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Subroutine GSim(Z)

If GT[Z℄ is not de�ned then GT[Z℄

$

 f0; 1g

k

EndIf

Return GT[Z℄

Subroutine HSim(L)

If HT[L℄ is not de�ned then HT[L℄

$

 Z

q

EndIf

Return HT[L℄

Subroutine ADSim(Y

0

;W

0

)

If there is no L su
h that g

HT[L℄

= Y

0

then return ? EndIf

Let L be su
h that g

HT[L℄

= Y

0

Z

0

 X

HT[L℄

; T

0

 GSim(Z

0

) ; K

0

 T

0

�W

0

; Return K

0

Figure 5: Subroutines de�ned by C and used to simulate H 's ora
les.

Figure 5. It answers a query Z to G by running GSim(Z) and returning the answer toH . It answers

a query L to H by running HSim(L) and returning the answer to H . Sin
e it possesses K and

b, it 
an answer queries to the SE

R

s

(K;LR(�; �; b)) or SD

R

s

(K; �) ora
les by simply performing the

relevant 
omputation and returning the answer. It answers a query (Y

0

;W

0

) to AD

G;H

((q; g; x); �)

by running ADSim(Y

0

;W

0

) and returning the answer. When H has terminated, C pi
ks Z at

random from the set fZ : GT[Z℄ is de�ned g and outputs Z.

Analysis. For the analysis, de�ne the following experiment.

Exp


dh

CG;C

(k) : (q; g)

$

 CG(1

k

) ; x; y

$

 Z

q

; Z  C(q; g; g

x

; g

y

)

If Z = g

xy

then return 1 else return 0

We let Pr

C

[ � ℄, Pr

S

[ � ℄, and Pr

H

[ � ℄ denote the probabilities in experiments Exp


dh

CG;C

(k),

Exp

ind-

a

SS;S

(k), and Exp

ind-

a

AS;SS;H

(k), respe
tively.

Let ((q; g;X); (q; g; x)) 2 [AK(1

k

)℄ and K 2 [SK(1

k

)℄. We de�ne the following events relating

to H 's exe
ution on inputs publi
 key (q; g;X) and 
iphertext C

a

= (Y;W ) where g

y

= Y . These

events are de�ned in any of the three experiments we are 
onsidering.

GH : There exists a time at whi
h g

xy

is queried to G but K has not been queried to H

HG : There exists a time at whi
h K has been queried to H but g

xy

has not been queried

to G

Su

(H) : H is su

essful, meaning its output equals the 
hallenge bit b.

We 
larify that the queries referred to above in
lude both dire
t and indire
t queries of H , but, in

the 
ase of Exp

ind-

a

AS;SS;H

(k), they do not in
lude the queries to G and H made by the 
omputation

C

a

 AE

G;H

((q; g;X); �) that initializes the experiment. (We are only 
onsidering queries to G;H

resulting from the exe
ution of H .) The main 
laims related to the analysis are:

Pr

H

[ HG _ (Su

(H) ^ :HG ^ :GH) ℄ � Pr

S

h

Exp

ind-

a

SS;S

(k) = 1

i

+

O(Q(k))

2

k

(9)

Pr

H

[ GH ℄ � Q(k) � Pr

C

h

Exp


dh

CG;C

(k) = 1

i

+

O(Q(k)

2

)

2

k

: (10)

Let us see how these enable us to 
on
lude the proof, and then return to prove them. We have:

1

2

� Adv

ind-

a

AS;SS;H

(k) +

1

2
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= Pr

H

h

Exp

ind-

a

AS;SS;H

(k) = 1

i

= Pr

H

[ Su

(H) ℄

= Pr

H

[ (Su

(H) ^HG) _ (Su

(H) ^ :HG ^ :GH) ℄ + Pr

H

[ Su

(H) ^ GH ℄

� Pr

H

[ HG _ (Su

(H) ^ :HG ^ :GH) ℄ + Pr

H

[ GH ℄

� Pr

S

h

Exp

ind-

a

SS;S

(k) = 1

i

+

O(Q(k))

2

k

+Q(k) � Pr

C

h

Exp


dh

CG;C

(k) = 1

i

+

O(Q(k)

2

)

2

k

=

1

2

� Adv

ind-

a

SS;S

(k) +

1

2

+Q(k) � Adv


dh

CG;C

(k) +

O(Q(k)

2

)

2

k

:

Re-arranging terms and simplifying, we get Equation (7). To 
omplete the proof, we must establish

Equations (9) and (10).

Proof of Equation (9). An important ingredient in this proof is the following lemma that


hara
terizes what Subroutine KeyTest a

omplishes.

Lemma A.1 If L = K then KeyTest(L) returns (1; b), while if L 6= K then

Pr

h

(de
; gs)

$

 KeyTest(L) : (de
; gs) = (1; 1� b)

i

� 4

�k

:

In other words, if L 6= K, then with high probability either the test indi
ates this by returning

de
 = 0 or it su

essfully 
omputes the value of the 
hallenge bit b. Above, the probability is over

the 
oin tosses made by the SE

R

s

(K;LR(�; �; b)) ora
le 
alled in KeyTest, with K and b �xed.

Proof of Lemma A.1: The fa
t that KeyTest(L) returns (1; b) when L = K is a 
onsequen
e

merely of the unique de
rytability of SS, namely the fa
t that for all K 2 [SK(1

k

)℄ and all M 2

f0; 1g

�

we have SD

R

s

(K;SE

R

s

(K;M)) = M with probability one, the probability being over the


oin tosses of SE.

Now assume L 6= K. Let Pr [ � ℄ denote the probability taken over the 
oin tosses of SE

R

s

(K; �),

with K �xed. Let

P

0

= Pr

�

SD

R

s

(L;SE

R

s

(K;T

0

)) = T

0

�

and

P

1

= Pr

�

SD

R

s

(L;SE

R

s

(K;T

1

)) = T

1

�

:

The probability that de
 = 1 at the end of the �rst For loop in subroutine KeyTest is P

k

0

P

k

1

and

the probability that T1 = � � � = T

k

= T

1�b

is at most (1� P

b

)

k

. So we have

Pr

h

(de
; gs)

$

 KeyTest(L) : (de
; gs) = (1; 1 � b)

i

= P

k

0

P

k

1

� (1� P

b

)

k

� P

k

b

� (1� P

b

)

k

= [P

b

(1� P

b

)℄

k

� 4

�k

:

The last line is true be
ause the fun
tion f : [0; 1℄ ! R de�ned by f(x) = x(1 � x) attains its

maximum at x = 1=2 and the value of this maximum is 1=4. This 
on
ludes the proof.

Returning to the proof of Equation (9), we de�ne the following events in Exp

ind-

a

SS;S

(k).

FailTest : There exists L 6= K su
h that L was queried to H

and KeyTest(L) returned (1; 1 � b) in subroutine HSim(L)

Illegit : There exist i; j and L su
h that L was queried to H

and either C

i

j

[L℄ or C

i

[L℄ was queried by H to SD

R

s

(K; �).
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We obtain Equation (9) as shown below. Justi�
ations follow the formulas.

Pr

H

[ HG _ (Su

(H) ^ :HG ^ :GH) ℄

� Pr

S

[ HG _ (Su

(H) ^ :HG ^ :GH) j :FailTest ℄ + Pr

S

[ FailTest ℄ (11)

� Pr

S

h

Exp

ind-

a

SS;S

(k) = 1

i

+ Pr

S

[ Illegit ℄ + Pr

S

[ FailTest ℄ (12)

� Pr

S

h

Exp

ind-

a

SS;S

(k) = 1

i

+ Pr

S

[ Illegit j :FailTest ℄ + 2 � Pr

S

[ FailTest ℄

� Pr

S

h

Exp

ind-

a

SS;S

(k) = 1

i

+

O(Q(k))

2

k

: (13)

To justify Equation (11), observe that if event FailTest does not happen, then the simulation of H

done by S is 
orre
t. (If HG o

urs, then prior to this g

xy

was not a query to G, so the simulation of

the G ora
le is 
orre
t. If :HG^:GH o

urs, then also g

xy

was not a query to G, so the simulation

of the G ora
le is 
orre
t. If FailTest does not o

ur, then the replies to queries to H are 
orre
t.)

To justify Equation (12), �rst note that if event HG o

urs, then the L = K 
ase of Lemma A.1

tells us that S halts with 
orre
t output. On the other hand, if neither HG nor GH o

ur, then S

halts with 
orre
t output as long as H does. But Exp

ind-

a

SS;S

(k) 
an still fail to return 1 be
ause

S aborted due to the o

urren
e of Illegit. (When the latter o

urs, S aborts to avoid 
alling its

ora
le SD

R

s

(K; �) on a 
iphertext returned by its SE

R

s

(K;LR(�; �; b)) ora
le.)

To justify Equation (13), �rst note that Lemma A.1 together with the fa
t that the total number

of queries is at most Q(k) implies that Pr

S

[ FailTest ℄ � Q(k)=4

k

. Next, we observe that if FailTest

does not o

ur, then H gets no information about T

0

; T

1

other than that they are random distin
t

k-bit strings. The unique de
ryptability of SS then tells us that Pr

S

[ Illegit j :FailTest ℄ is bounded

above by the probability of guessing either T

0

or T

1

in Q(k) tries, and this is O(Q(k)=2

k

).

Proof of Equation (10). We de�ne the following event in Exp


dh

CG;C

(k).

FailDe
 : There exist times t

0

< t and Y

0

;W

0

; L su
h that all the following hold:

{ query (Y

0

;W

0

) was made to AD

G;H

((q; g; x); �) at time t

0

and ADSim(Y

0

;W

0

)

returned ?

{ query L was made to H at time t

{ g

HT[L℄

= Y

0

.

The answers provided by ADSim(�; �) are 
orre
t exa
tly when this event does not o

ur. Further-

more, if there is a time at whi
h query g

xy

to G o

urs and GH is true, then query K to H has not

o

urred at this time, and thus the answers to queries to H have been 
orre
t. Hen
e

Pr

C

h

Exp


dh

CG;C

(k) = 1

i

�

Pr

H

[ GH ℄� Pr

C

[ FailDe
 ℄

Q(k)

:

Re-arranging, we get

Pr

H

[ GH ℄ � Q(k) � Pr

C

h

Exp


dh

CG;C

(k) = 1

i

+ Pr

C

[ FailDe
 ℄ : (14)

At any point in time, a query L to H has probability at most `=q of making FailDe
 happen, where

` is the number of queries that have been made to AD

G;H

((q; g; x); �) at this time. Re
all that

k = jh2q + 1ij and thus q � 2

k�2

. Putting these observations together we get

Pr

C

[ FailDe
 ℄ �

Q(k)

2

q

�

Q(k)2

2

k�2

=

O(Q(k)

2

)

2

k

:

Putting this together with Equation (14) 
ompletes the proof of Equation (10).
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B Any IND-CCA-se
ure s
heme is IND-CCA preserving

We remarked in Se
tion 1.2 that any asymmetri
 en
ryption s
heme that is IND-CCA se
ure is

also IND-CCA preserving. (The interesting thing about the Hash ElGamal s
heme is that it is

not IND-CCA se
ure but is still IND-CCA preserving.) For 
ompleteness, we state and and prove

this formally here. We begin by re
alling the de�nition of IND-CCA se
urity of an asymmetri


en
ryption s
heme.

Definition. This follows [4℄. Asso
iate to AS, an adversary A, and k 2 N, the following experi-

ment.

Experiment Exp

ind-

a

AS;A

(k)

Randomly 
hoose RO R

a

: f0; 1g

�

! f0; 1g

(pk; sk)

$

 AK

R

a

(1

k

) ; b

$

 f0; 1g

Run A with input 1

k

;pk and ora
les AE

R

a

(pk;LR(�; �; b)), AD

R

a

(sk; �), R

a

Let d denote the output of A

If d = b then return 1 else return 0.

We say that adversary A is legitimate if it never queries AD

R

a

(sk; �) with a 
iphertext previously

returned by AE

R

s

(pk;LR(�; �; b)). Asymmetri
 en
ryption s
heme AS is said to be IND-CCA se
ure

if the fun
tion

Adv

ind-

a

AS;A

(k) = 2 � Pr

h

Exp

ind-

a

AS;A

(k) = 1

i

� 1

is negligible for all legitimate polynomial-time adversariesA. IND-CPA se
urity is de�ned similarly,

ex
ept the adversary is not given a

ess to ora
le AD

R

a

(sk; �).

Result. The following holds in both the standard and the RO models.

Theorem B.1 Let AS be an IND-CCA-se
ure asymmetri
 en
ryption s
heme. Then AS is IND-

CCA preserving.

Proof of Theorem B.1: Let AS = (AK;AE;AD) be an IND-CCA-se
ure asymmetri
 en
ryption

s
heme and let SS = (SK;SE;SD) be an IND-CCA-se
ure symmetri
 en
ryption s
heme. We will

show that for any polynomial-time legitimate hybrid adversary H atta
king mm-hybrid en
ryption

s
heme (AS;SS) there exist polynomial-time legitimate adversariesA and S su
h that for any k 2 N

Adv

ind-

a

AS;SS;H

(k) � 2Adv

ind-

a

AS;A

(k) + Adv

ind-

a

SS;S

(k) : (15)

Sin
e AS and SS are assumed IND-CCA se
ure, the advantage fun
tions related to A and S above

are negligible, and thus so is the advantage fun
tion related to H . To 
omplete the proof, we need

to spe
ify the adversaries A;S and prove Equation (15).

We �rst asso
iate to (AS;SS), H , and k 2 N, the following experiments, for i 2 f1; 2; 3; 4g.

Experiment Exp

i

AS;SS;H

(k)

Randomly 
hoose RO R: f0; 1g

�

! f0; 1g

De�ne ROs R

s

(�) = R(0k�) and R

a

(�) = R(1k�)

(pk; sk)

$

 AK

R

a

(1

k

) ; K

$

 SK

R

s

(1

k

) ; K

0

$

 SK

R

s

(1

k

)

If i = 1 or i = 4 then C

a

$

 AE

R

a

(pk;K) else C

a

$

 AE

R

a

(pk;K

0

) EndIf

If i = 1 or i = 2 then run H with inputs pk; C

a

and ora
les
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SE

R

s

(K;LR(�; �; 0)), SD

R

s

(K; �), AD

R

a

(sk; �), R

Else run H with inputs pk; C

a

and ora
les

SE

R

s

(K;LR(�; �; 1)), SD

R

s

(K; �), AD

R

a

(sk; �), R

EndIf

Let d denote the output of H

Return d.

For i 2 f1; 2; 3; 4g, let P

i

denote the probability that Exp

i

AS;SS;H

(k) returns 1. It is easy to see that

Adv

ind-

a

AS;SS;H

(k) = P

4

� P

1

= (P

4

� P

3

) + (P

3

� P

2

) + (P

2

� P

1

) :

We will show that there exist legitimate polynomial-time adversaries A

0

, S, and A

00

su
h that

P

4

� P

3

= Adv

ind-

a

AS;A

0

(k) ; P

3

� P

2

= Adv

ind-

a

SS;S

(k) ; and P

2

� P

1

= Adv

ind-

a

AS;A

00

(k) : (16)

We obtain Equation (15) from the above by setting A = A

0

if Adv

ind-

a

AS;A

0

(k) � Adv

ind-

a

AS;A

00

(k), and

A = A

00

otherwise. We now de�ne adversaries A

0

, A

00

, S and prove Equation (16).

Des
ription of A

0

. Adversary A

0

is given inputs 1

k

;pk and has a

ess to ora
les

AE

R

a

(pk;LR(�; �; b)), AD

R

a

(sk; �), and R

a

. Its goal is to guess the bit b. It begins with the fol-

lowing initializations.

K

$

 f0; 1g

k

; K

0

$

 f0; 1g

k

Make query (K

0

;K) to AE

R

a

(pk;LR(�; �; b)), and let C

a

be the response

Then it runs H on inputs publi
 key pk and 
iphertext C

a

. In the pro
ess H will query its ora
les

R

a

; R

s

; SE

R

s

(K;LR(�; �; b)); SD

R

s

(K; �); AD

R

a

(sk; �) : (17)

A

0

will answer these queries. Queries to R

s

are simulated the standard way, by returning a random

value for ea
h new query and the previously returned value for ea
h repeated query. A

0

answers

queries to the AD

R

a

(sk; �) and R

a

ora
les via its own ora
les of the same name. Sin
e it possesses

K, it 
an answer queries to SD

R

s

(K; �) by simply performing the 
omputation of the de
ryption

algorithm, repla
ing 
alls that the latter makes to R

s

by the above-mentioned simulation, and

returning the answer. A

0

answers queries to SE

R

s

(K;LR(�; �; b)) by using K to simulate ora
le

SE

R

s

(K;LR(�; �; 1)). When H halts and outputs d, A

0

outputs d.

Des
ription of A

00

. Adversary A

00

is identi
al to adversary A

0

, ex
ept that it makes query

(K;K

0

) to ora
le AE

R

a

(pk;LR(�; �; b)) and it answers queries to SE

R

s

(K;LR(�; �; b)) by using K to

simulate ora
le SE

R

s

(K;LR(�; �; 0)).

Des
ription of S. Adversary S is given input 1

k

and has a

ess to ora
les SE

R

s

(K;LR(�; �; b)),

SD

R

s

(K; �), and R

s

. Its goal is to guess the bit b. It begins with the following initializations.

K

0

$

 f0; 1g

k

; (pk; sk)

$

 AK

R

a

(1

k

) ; C

a

$

 AE

pk

(K

0

)

Then it runs H on inputs publi
 key pk and 
iphertext C

a

. In the pro
ess H will query the ora
les

listed in Equation (17). S will answer these queries. Queries to R

a

are simulated the standard

way, by returning a random value for ea
h new query and the previously returned value for ea
h

repeated query. S answers queries to the SE

R

s

(K;LR(�; �; b)), SD

R

s

(K; �), and R

s

ora
les via its own

ora
les of the same name. Sin
e it possesses the se
ret key sk, it 
an answer queries to AD

R

a

(sk; �)
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by simply performing the 
omputation of the de
ryption algorithm, repla
ing 
alls that the latter

makes to R

a

by the above-mentioned simulation, and returning the answer. When H halts and

outputs d, S outputs d.

Analysis. Clearly, if H is polynomial-time and legitimate, so are A

0

, A

00

, and S. It is easy to see

that Equation (16) holds.

27


