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Abstrat

We present a simple, natural random-orale (RO) model sheme, for a pratial goal, that

is uninstantiable, meaning is proven in the RO model to meet its goal yet admits no standard-

model instantiation that meets this goal. The goal in question is IND-CCA-preserving asym-

metri enryption whih formally aptures seurity of the most ommon pratial usage of

asymmetri enryption, namely to transport a symmetri key in suh a way that symmetri

enryption under the latter remains seure. The sheme is an ElGamal variant, alled Hash

ElGamal, that resembles numerous existing RO-model shemes, and on the surfae shows no

evidene of its anomalous properties.

More generally, we show that a ertain goal, that we all key-veri�able, iphertext-veri�able

IND-CCA-preserving asymmetri enryption, is ahievable in the RO model (by Hash ElGamal

in partiular) but unahievable in the standard model. This helps us better understand the

soure of the anomalies in Hash ElGamal and also lifts our uninstantiability result from being

about a spei� sheme to being about a primitive or goal.

These results extend our understanding of the gap between the standard and RO models,

and bring onerns raised by previous work loser to pratie by indiating that the problem of

RO-model shemes admitting no seure instantiation an arise in domains where RO shemes

are ommonly designed.
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1 Introdution

A random-orale (RO) model sheme is one whose algorithms have orale aess to a random

funtion. Its seurity is evaluated with respet to an adversary with orale aess to the same

funtion. An \instantiation" of suh a sheme is the standard-model sheme obtained by replaing

this funtion with a member of a polynomial-time omputable family of funtions, desribed by a

short key. The seurity of the sheme is evaluated with respet to an adversary given the same key.

In the random-orale paradigm, as enuniated by Bellare and Rogaway [5℄, one �rst designs and

proves seure a sheme in the RO model, and then instantiates it to get a (hopefully still seure)

standard-model sheme.

The RO model has proven quite popular and there are now numerous pratial shemes designed

and proven seure in this model. But the important issue of whether suh shemes an be seurely

instantiated, and, if so, how, remains less lear. This paper adds to existing onerns in this regard.

Let us begin by reviewing previous work and then explain our results.

1.1 Previous work

Let us all a RO-model sheme uninstantiable, with respet to some underlying ryptographi goal,

if the sheme an be proven to meet this goal in the random-orale model, but no instantiation of

the sheme meets the goal in question.

Canetti, Goldreih and Halevi [7℄ provided the �rst examples of uninstantiable shemes, the goals

in question being IND-CPA-seure asymmetri enryption and digital signatures seure against

hosen-message attaks. Further examples followed: Nielsen [18℄ presented an uninstantiable RO-

model sheme for the goal of non-interative, non-ommitting enryption [6℄, and Goldwasser and

Taumann [16℄ showed the existene of a 3-move protool whih, when ollapsed via a RO as per

the Fiat-Shamir heuristi [13℄, yields an uninstantiable RO-model signature sheme.

The results of [7℄ indiate that it is possible for the RO paradigm to fail to yield seure \real-

world" shemes. The example shemes provided by [7℄, however, are omplex and ontrived ones

that do not resemble the kinds of RO shemes typially being designed. (Their shemes are designed

to return the seret key depending on the result of some test applied to an output of the orale, and

they use diagonalization and CS proofs [17℄.) The same is true of the sheme of [16℄. In ontrast,

the sheme of [18℄ is simple, but the goal, namely non-interative, non-ommitting enryption, is

somewhat distant from ones that are ommon pratial targets of RO-model designs. Aordingly,

based on existing work, one might be tempted to think that \in pratie," or when on�ned to

\natural" shemes for pratial problems ommonly being targeted by RO-sheme designers, the

RO paradigm is sound.

This paper suggests that even this might not always be true. For a pratial ryptographi

goal, we present an uninstantiable RO-model sheme that is simple and natural, losely resembling

the types of shemes being designed in this domain. We begin below by disussing the goal, whih

we all IND-CCA-preserving asymmetri enryption and whih arises in the domain of hybrid

enryption.

1.2 IND-CCA-preserving asymmetri enryption

In pratie, the most ommon usage of asymmetri enryption is to transport a symmetri key that

is later used for symmetri enryption of the atual data. The notion of an asymmetri enryption

sheme AS being IND-CCA-preserving, that we introdue, aptures the seurity attribute that AS

must possess in order to render this usage of AS seure. We now elaborate.
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Enryption, in pratie, largely employs the \hybrid" paradigm. The version of this paradigm

that we onsider here is quite general. In a �rst phase, the sender piks at random a \session" key

K for a symmetri enryption sheme, enrypts K asymmetrially under the reeiver's publi key

to get a iphertext C

a

, and transfers C

a

to the reeiver. In a seond phase, it an enrypt messages

of its hoie symmetrially under K and transfer the orresponding iphertexts to the reeiver. We

all this multi-message (mm) hybrid enryption.

1

A hoie of an asymmetri enryption sheme AS and a symmetri enryption sheme SS gives

rise to a partiular mm-hybrid sheme. We introdue in Setion 2 a de�nition of the IND-CCA

seurity of this mm-hybrid sheme whih aptures the privay of the enrypted messages even in

the presene of an adversary allowed hosen-iphertext attaks on both omponent shemes and

allowed to hoose the messages to be enrypted adaptively and as a funtion of the asymmetri

iphertext, denoted C

a

above, that transports the symmetri key.

Now let us say that an asymmetri enryption sheme AS is IND-CCA preserving if the mm-

hybrid assoiated to AS and symmetri enryption sheme SS is IND-CCA seure for every IND-

CCA seure SS. This notion of seurity for an asymmetri enryption sheme aptures the seurity

attribute of its being able to seurely transport a session key for the purpose of mm-hybrid enryp-

tion. The goal we onsider is IND-CCA-preserving asymmetri enryption.

It is easy to see that any IND-CCA-seure asymmetri enryption sheme is IND-CCA pre-

serving. (For ompleteness, this is proved in Appendix B.1.) IND-CCA preservation, however,

is atually a weaker requirement on an asymmetri enryption sheme than IND-CCA seurity

itself. In fat, sine the messages to be enrypted using the asymmetri sheme are randomly-

hosen symmetri keys, the enryption itself need not even be randomized. Hene there might

be IND-CCA-preserving asymmetri enryption shemes that are simpler and more eÆient than

IND-CCA-seure ones. In partiular, it is natural to seek an eÆient IND-CCA-preserving sheme

in the RO model along the lines of existing hybrid enryption shemes suh as those of [8, 9, 14, 19℄.

1.3 The Hash ElGamal sheme and its seurity

It is easy to see that the ElGamal enryption sheme [12℄ is not IND-CCA preserving. An e�ort

to strengthen it to be IND-CCA preserving lead us to a variant that we all the Hash ElGamal

sheme. It uses the idea underlying the Fujisaki-Okamoto [14℄ transformation, namely to enrypt

under the original (ElGamal) sheme using oins obtained by applying a random orale H to the

message. Spei�ally, enryption of a message K under publi key (q; g;X) in the Hash ElGamal

sheme is given by

AE

G;H

((q; g;X);K) = (g

H(K)

; G(X

H(K)

)�K) ; (1)

where G;H are random orales, q; 2q+1 are primes, g is a generator of the order q yli subgroup

of Z

�

2q+1

, and the seret key is (q; g; x) where g

x

= X. Deryption is performed in the natural way

as detailed in Figure 1.

The Hash ElGamal sheme is very muh like pratial RO-model shemes presented in the

literature. In fat, it is a partiular ase of an asymmetri enryption sheme proposed by Baek,

Lee and Kim [2, 3℄.

We note that the Hash ElGamal asymmetri enryption sheme is not IND-CCA seure, or even

1

The term multi-message refers to the fat that multiple messages may be enrypted, in the seond phase, under

the same session key. The main reason for using suh a hybrid paradigm, as opposed to diretly enrypting the

data asymmetrially under the reeiver's publi key, is that the number-theoreti operations underlying popular

asymmetri enryption shemes are omputationally more expensive than the blok-ipher operations underlying

symmetri enryption shemes, so hybrid enryption brings signi�ant performane gains.
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IND-CPA seure, in partiular beause the enryption algorithm is deterministi. But Theorem 3.1

guarantees that the Hash ElGamal asymmetri enryption sheme is IND-CCA-preserving in the

RO model, if the Computational DiÆe-Hellman (CDH) problem is hard in the underlying group.

We follow this with Theorem 4.1, however, whih says that the Hash ElGamal sheme is unin-

stantiable. In other words, the standard-model asymmetri enryption sheme obtained by in-

stantiating the RO-model Hash ElGamal sheme is not IND-CCA preserving, regardless of the

hoie of instantiating funtions.

2

(We allow these to be drawn from any family of polynomial-time

omputable funtions.)

1.4 A loser look

As noted above, we show that no instantiation of the Hash ElGamal sheme is IND-CCA-preserving.

The way we establish this is the following. We let AS be some (any) instantiation of the Hash

ElGamal sheme. Then, we onstrut a partiular IND-CCA-seure symmetri enryption sheme

SS suh that the mm-hybrid assoiated to AS and SS is not IND-CCA seure. The latter is proven

by presenting an expliit attak on the mm-hybrid. We larify that the symmetri sheme SS

onstruted in this proof is not a natural one. It is ontrived, but not partiularly omplex. We do

not view this as subtrating muh from the value of our result, whih lies rather in the nature of

the Hash ElGamal sheme itself and the pratiality of the underlying goal.

What we suggest is interesting about the result is that the Hash ElGamal sheme, on the

surfae, seems innouous enough. It does not seem to be making any \peuliar" use of its random

orale that would lead us to think it is \wrong." (Indeed, it uses random orales in ways they

have been used previously, in partiular by [14, 2, 3℄.) The sheme is simple, eÆient, and similar

to other RO-model shemes out there. In addition, we ontend that the de�nition of IND-CCA-

preserving asymmetri enryption is natural and aptures a pratial requirement. The fat that

the Hash ElGamal sheme is uninstantiable thus points to the diÆulty of being able to distinguish

uninstantiable RO-model shemes from ones that at least may be seurely instantiable, even in the

ontext of natural and pratial goals.

1.5 Generalizations

Next we provide some results that generalize the above. We onsider the lass of IND-CCA-

preserving asymmetri enryption shemes that possess a pair of properties that we all key veri�-

ability and iphertext veri�ability. Key veri�ability means there is a way to reognize valid publi

keys in polynomial time. Ciphertext veri�ability means there is a polynomial-time proedure to

determine whether a given iphertext is an enryption of a given message under a given valid pub-

li key. Note that iphertext veri�ability ontradits IND-CPA seurity, but it need not prevent a

sheme from being IND-CCA preserving, sine the latter notion onsiders the use of the asymmetri

sheme only for the enryption of messages that are hosen at random.

Theorem 5.2 points out that the goal of key-veri�able, iphertext-veri�able IND-CCA-preserving

asymmetri enryption is ahievable in the RO model, by the Hash El Gamal sheme in parti-

ular, assuming the CDH problem is hard in the underlying group. Theorem 5.3, however, says

that this goal is not ahievable in the standard model. In other words, there exist RO-model

shemes meeting this goal, but there exist no standard-model shemes meeting it. Theorem 5.3

2

This result is based on the assumption that one-way funtions exist (equivalently, IND-CCA-seure symmetri

enryption shemes exist), sine, otherwise, by default, any asymmetri enryption sheme is IND-CCA preserving,

and, indeed, the entire mm-hybrid enryption problem we are onsidering is vauous. This assumption is made

impliitly in all results in this paper.
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generalizes Theorem 4.1 beause any instantiation of the Hash ElGamal sheme is key-veri�able

and iphertext-veri�able, and hene annot be IND-CCA-preserving.

Theorem 5.3 lifts our results from being about a partiular sheme to being about a primitive,

or lass of shemes. The generalization also helps better understand what aspets of the Hash

ElGamal sheme lead to its admitting no IND-CCA-preserving instantiation. In partiular, we see

that this is not due to some \peuliar" use of random orales but rather due to some simply stated

properties of the resulting asymmetri enryption sheme itself.

1.6 Related work

In the ryptographi ommunity, the term \hybrid enryption" seems to be used quite broadly, to

refer to a variety of goals or methods in whih symmetri and asymmetri primitives are ombined

to ahieve privay. We have onsidered one goal in this domain, namely mm-hybrid enryption.

We now disuss related work that has onsidered other goals or problems in this domain.

Works suh as [8, 9, 14, 19, 11, 20℄ provide designs of IND-CCA-seure asymmetri enryption

shemes that are referred to as \hybrid enryption shemes" beause they ombine the use of

asymmetri and symmetri primitives. (Possible goals of suh designs inlude gaining eÆieny,

inreasing the size of the message spae, or reduing the assumptions that must be made on the

asymmetri omponent in order to guarantee the IND-CCA seurity of the onstrution.) The

shemes of [8, 9, 14, 19℄ are in the RO model and, although addressing a di�erent goal, form an

important bakdrop for our work beause the Hash ElGamal sheme is based on similar tehniques

and usage of random orales. We stress, however, that we have no reason to believe that any of

these shemes, or that of [2, 3℄ of whih Hash ElGamal is a speial ase, are uninstantiable.

2 De�nitions

Notation and onventions. If S is a randomized algorithm, then [S(x; y; : : :)℄ denotes the set

of all points having positive probability of being output by S on inputs x; y; : : :. If x is a binary

string, then jxj denotes its length, and if n � 1 is an integer, then jnj denotes the length of its

binary enoding, meaning the unique integer ` suh that 2

`�1

� n < 2

`

. The string-onatenation

operator is denoted \k".

Formal de�nitions in the RO model provide as an orale, to the algorithms and the adversary,

a single random funtion R mapping f0; 1g

�

to f0; 1g. Shemes might, however, use and refer

to multiple random funtions of di�erent domains and ranges. These an be derived from R via

standard means [5℄.

Symmetri enryption. A symmetri enryption sheme SS = (SK;SE;SD) is spei�ed by three

polynomial-time algorithms: via K

$

 SK(1

k

) one an generate a key; via C

$

 SE(K;M) one an

enrypt a message M 2 f0; 1g

�

; and via M  SD(K;C) one an derypt a iphertext C. It is

required that SD(K;SE(K;M)) =M for allK 2 [SK(1

k

)℄ and allM 2 f0; 1g

�

. We assume (without

loss of generality) that [SK(1

k

)℄ � f0; 1g

k

. In the RO model, all algorithms have aess to the RO.

We de�ne seurity following [4℄ and addressing the possibility of the symmetri sheme being

in the RO model. Let LR(M

0

;M

1

; b) =M

b

if M

0

;M

1

are strings of equal length, and ? otherwise.

Assoiate to SS, an adversary S, and k 2 N, the following experiment.

Experiment Exp

ind-a

SS;S

(k)

Randomly hoose RO R

s

: f0; 1g

�

! f0; 1g

K

$

 SK

R

s

(1

k

) ; b

$

 f0; 1g
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Run S with input 1

k

and orales SE

R

s

(K;LR(�; �; b)), SD

R

s

(K; �), R

s

Let d denote the output of S

If d = b then return 1 else return 0.

We say that adversary S is legitimate if it never queries SD

R

s

(K; �) with a iphertext previously

returned by SE

R

s

(K;LR(�; �; b)). Symmetri enryption sheme SS is said to be IND-CCA seure

if the funtion

Adv

ind-a

SS;S

(k) = 2 � Pr

h

Exp

ind-a

SS;S

(k) = 1

i

� 1

is negligible for all legitimate polynomial-time adversaries S.

Asymmetri enryption. An asymmetri enryption sheme AS = (AK;AE;AD) is spei�ed

by three polynomial-time algorithms: via (pk; sk)

$

 AK(1

k

) one an generate keys; via C

$

 

AE(pk;K) one an enrypt a message K 2 f0; 1g

k

; and via K  AD(sk; C) one an derypt a

iphertext C. (We denote the message by K beause we will set it to a key for a symmetri

enryption sheme.) It is required that AD(sk;AE(pk;K)) = K for all (pk; sk) 2 [AK(1

k

)℄ and all

K 2 f0; 1g

k

. In the RO model, all algorithms have aess to the RO.

Disussions and peripheral results in this paper sometimes refer to standard notions of seurity

for suh shemes like IND-CPA and IND-CCA, but these are not required for the main results and,

aordingly, are not de�ned here but realled in Appendix B.1.

IND-CCA-preserving asymmetri enryption. We provide the formal de�nitions �rst and ex-

planations later. A multi-message hybrid (mm-hybrid) enryption sheme is simply a pair (AS;SS)

onsisting of an asymmetri enryption sheme AS = (AK;AE;AD) and a symmetri enryption

sheme SS = (SK;SE;SD). We assoiate to (AS;SS), a hybrid adversary H , and k 2 N, the

following experiment.

Experiment Exp

ind-a

AS;SS;H

(k)

Randomly hoose RO R: f0; 1g

�

! f0; 1g

De�ne ROs R

s

(�) = R(0k�) and R

a

(�) = R(1k�)

(pk; sk)

$

 AK

R

a

(1

k

) ; K

$

 SK

R

s

(1

k

) ; b

$

 f0; 1g

C

a

$

 AE

R

a

(pk;K)

Run H with inputs pk; C

a

and orales SE

R

s

(K;LR(�; �; b)), SD

R

s

(K; �), AD

R

a

(sk; �), R

Let d denote the output of H

If d = b then return 1 else return 0.

We say that adversary H is legitimate if it does not query SD

R

s

(K; �) on a iphertext previously

returned by SE

R

s

(K;LR(�; �; b)), and it does not query AD

R

a

(sk; �) on C

a

. Mm-hybrid enryption

sheme (AS;SS) is said to be IND-CCA seure if the funtion

Adv

ind-a

AS;SS;H

(k) = 2 � Pr

h

Exp

ind-a

AS;SS;H

(k) = 1

i

� 1

is negligible for all legitimate polynomial-time adversaries H .

Finally, we say that an asymmetri enryption sheme AS is IND-CCA preserving if the mm-

hybrid enryption sheme (AS;SS) is IND-CCA seure for all IND-CCA-seure symmetri enryp-

tion shemes SS. Here, the set of symmetri enryption shemes over whih we quantify inludes

RO-model ones if AS is a RO-model sheme, and inludes only standard-model ones if AS is a

standard-model sheme.

Let us now explain the ideas behind these formalisms. Reall that we are modelling the seurity

of the following two-phase senario: in phase one, the sender piks a key K for symmetri enryp-
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tion, asymmetrially enrypts it under the reeiver's publi key to get a iphertext C

a

, and sends C

a

to the reeiver; in phase two, the sender symmetrially enrypts messages of its hoie under K and

transmits the resulting iphertexts to the reeiver. The de�nition above aptures the requirement

of privay of the symmetrially enrypted data under a hosen-iphertext attak. Privay is for-

malized in terms of indistinguishability via left-or-right orales, and the hosen-iphertext attak is

formalized via the adversary's aess to deryption orales for both the symmetri and asymmetri

shemes. The legitimay requirement, as usual, disallows deryption queries on hallenge ipher-

texts sine they would lead to trivial adversary vitory. The experiment reets the possibility that

SS and AS are RO-model shemes by piking random orales for their enryption and deryption

algorithms. The standard model is the speial ase where the algorithms of the shemes do not

refer to any orales, and thus the de�nition above overs seurity in both models. The notion of

AS being IND-CCA preserving reets a valuable pragmati requirement, namely that one may

use, in onjuntion with AS, any symmetri enryption sheme and be guaranteed seurity of the

mm-hybrid under the minimal assumption that the symmetri sheme itself is seure.

Remark 2.1 Suppose we have two RO-model shemes, and are omposing them, or exeuting

them in a ommon ontext. (Above, this is happening with the asymmetri enryption sheme and

the symmetri enryption sheme.) We laim that, in this ase, the ROs of the two shemes should

be hosen independently. (This does not mean that we need to assume two RO orales are given.

The formal model always provides just one RO. But one an easily derive several independent ROs

from a single one, as we did above.) The orretness of this priniple of independent instantiation

of ROs in a ommon ontext an be seen in many ways. First, it is easy to ome up with an

example of a pair of seure RO-model shemes that, when omposed, yield an inseure one if

the ROs in the two shemes are de�ned to be the same. Seond, one an reason by analogy

with the way we need to hoose keys in omposing primitives. For example, suppose we have a

MAC and symmetri enryption sheme, eah individually seure. If we use them to onstrut

an authentiated-enryption sheme, we should use di�erent keys for the MAC and the symmetri

enryption sheme. (There is no reason to think otherwise that the omposition will be seure.)

The priniple, for ROs, is exatly the same. They are just like keys provided to primitives.

The existene of IND-CCA-preserving asymmetri enryption shemes is easy to establish sine, as

Theorem B.1 indiates, any IND-CCA-seure asymmetri enryption sheme is IND-CCA preserv-

ing. The interesting question is to �nd IND-CCA-preserving asymmetri enryption shemes that

are more eÆient than existing IND-CCA-seure asymmetri enryption shemes. Hash El Gamal

is one suh sheme.

3 The HEG sheme and its seurity in the RO model

In this setion we introdue a variant of the ElGamal enryption sheme [12℄ that, although not

IND-CCA seure, is IND-CCA preserving in the RO model under a standard assumption. In

Setion 4, we will show that this sheme admits no IND-CCA-preserving instantiation.

Preliminaries. A yli-group generator is a randomized, polynomial-time algorithm CG whih

on input 1

k

outputs a pair (q; g), where q is a prime suh that p = 2q + 1 is also a prime, g is a

generator of the yli, order q subgroup hgi of Z

�

p

, and jpj = k. Reall that the Computational

DiÆe-Hellman (CDH) problem is said to be hard for CG if the funtion

Adv

dh

CG;C

(k) = Pr

h

(q; g)

$

 CG(1

k

) ; x; y

$

 Z

q

: C(q; g; g

x

; g

y

) = g

xy

i

is negligible for all polynomial-time dh adversaries C.
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AK(1

k

)

(q; g)

$

 CG(1

k

)

x

$

 Z

q

X  g

x

Return ((q; g;X); (q; g; x))

AE

G;H

((q; g;X);K)

y  H(K)

Y  g

y

T  G(X

y

)

W  T �K

Return (Y;W )

AD

G;H

((q; g; x); (Y;W ))

T  G(Y

x

)

K  T �W

If g

H(K)

= Y then

Return K

else Return ? EndIf

Figure 1: Algorithms of the RO-model asymmetri enryption sheme HEG[CG℄ = (AK;AE;AD)

assoiated to yli-group generator CG. Here G: hgi ! f0; 1g

k

and H : f0; 1g

k

! Z

q

are random

orales.

3.1 Sheme and result statement

To any yli-group generator CG we assoiate the RO-model asymmetri enryption sheme

HEG[CG℄ = (AK;AE;AD) whose onstituent algorithms are depited in Figure 1. (The sheme

makes referene to two ROs, namely G: hgi ! f0; 1g

k

and H : f0; 1g

k

! Z

q

, while the formal

de�nition of an asymmetri enryption sheme provides a single RO R: f0; 1g

�

! f0; 1g, but G;H

may be implemented via R in standard ways [5℄.) We all this variant of the ElGamal enryption

sheme the Hash ElGamal enryption sheme assoiated to CG. Our result about its seurity in

the RO model is the following.

Theorem 3.1 If the CDH problem is hard for yli-group generator CG, then the assoiated Hash

ElGamal asymmetri enryption sheme HEG[CG℄ is IND-CCA preserving in the RO model.

For the de�nition of what it means to be IND-CCA preserving, we refer the reader to Setion 2.

Remarks. We note that the enryption algorithm AE of HEG[CG℄ is deterministi. For this

reason alone, HEG[CG℄ is not an IND-CCA seure, or even IND-CPA seure, asymmetri enryption

sheme. Nonetheless, Theorem 3.1 says that it is IND-CCA preserving as long as the CDH problem

is hard for CG. This is not a ontradition. Very roughly, the reason HEG[CG℄ an preserve IND-

CCA while not itself being even IND-CPA is that the former notion onsiders the use of the sheme

only for the enryption of messages that are symmetri keys, whih (as long as the assoiated

symmetri enryption sheme is seure) have relatively high entropy, and the entropy in these

messages ompensates for the lak of any introdued by AE. We add that previous work [8, 9, 14, 19℄

has shown that in the RO model, relatively weak asymmetri omponents suÆe to ensure strong

seurity properties of the hybrid based on them. Thus, it is not surprising that, although HEG[CG℄

is not seure with respet to standard measures like IND-CPA and IND-CCA, it is seure enough

to permit its use for transport of a symmetri enryption key as indiated by Theorem 3.1.

3.2 Proof overview

The full proof of Theorem 3.1 is in Appendix A. Here we provide an overview that highlights the

main areas of novelty.

Proof setup. Let AS = HEG[CG℄ and let AK;AE;AD denote its onstituent algorithms. Let

SS = (SK;SE;SD) be any IND-CCA-seure symmetri enryption sheme. We need to show that

(AS;SS) is an IND-CCA-seure mm-hybrid enryption sheme.

9



LetH be a polynomial-time hybrid adversary attaking (AS;SS). We will onstrut polynomial-

time adversaries S and C suh that

Adv

ind-a

AS;SS;H

(k) � poly(k) � poly

�

Adv

ind-a

SS;S

(k) ; Adv

dh

CG;C

(k)

�

+

poly(k)

2

k

: (2)

Sine SS is assumed IND-CCA seure and the CDH problem is hard for CG, the advantage funtions

related to S and C above are negligible, and thus so is the advantage funtion related to H . To

omplete the proof, we need to speify adversaries S;C for whih Equation (2) is true.

Consider Exp

ind-a

AS;SS;H

(k). Let (q; g;X) be the publi key and (q; g; x) the seret key hosen,

where X = g

x

. Let C

a

= (Y;W ) where Y = g

y

. Let K denote the symmetri enryption key

hosen. Let GH be the event that there is a time at whih g

xy

is queried to G but K has not been

queried to H; HG the event that there is a time at whih K is queried to H but g

xy

has not been

queried to G; and Su(H) the event that H is suessful at guessing the value of its hallenge bit

b. We will onstrut C so that

Pr [ GH ℄ � poly(k) � Adv

dh

CG;C

(k) +

poly(k)

2

k

;

and we will onstrut S so that

Pr [ HG _ (Su(H) ^ :GH ^ :HG) ℄ � Adv

ind-a

SS;S

(k) +

poly(k)

2

k

: (3)

Equation (2) follows.

The adversaries. The design of C relies mostly on standard tehniques, and so we leave it to

Appendix A. We turn to S. The latter gets input 1

k

and orales SE

R

s

(K;LR(�; �; b)), SD

R

s

(K; �),

R

s

, and begins with the initializations

((q; g;X); (q; g; x))

$

 AK(1

k

) ; y

$

 Z

q

; Y  g

y

; W

$

 f0; 1g

k

; C

a

 (Y;W ) : (4)

It then runs H on inputs (q; g;X); C

a

, itself responding to the orale queries of the latter. Its aim

is to do this in suh a way that the key K underlying S's orales plays the role of the quantity

of the same name for H . Eventually, it will output what H outputs. The diÆulty faed by this

adversary is that H might query K to H. (Other orale queries are dealt with in standard ways.)

In that ase, H expets to be returned y. (And it annot be fooled sine, knowing Y = g

y

, it an

verify whether or not the value returned is y.) The diÆulty for S is not that it does not know the

right answer |via Equation (4), it atually knows y| but rather that it is not lear how it would

know that a query being made to H equals the key K underlying its orales, so that it would know

when to return y as the answer to a query to H.

In order to \detet" when query K is made, we would, ideally, like a test that an be performed

on a value L, aepting if L = K and rejeting otherwise. However, it is not hard to see that, in

general, suh a test does not exist.

3

Instead, we introdue a test that has a weaker property and

show that it suÆes for us.

Our test KeyTest takes input L and has aess to S's SE

R

s

(K;LR(�; �; b)) orale. It returns a pair

(de; gs) suh that: (1) If L = K then (de; gs) = (1; b), meaning in this ase it orretly omputes

the hallenge bit b, and (2) If L 6= K then, with overwhelming probability, either de = 0 (the test

is saying L 6= K) or (de; gs) = (1; b) (the test is saying it does not know whether or not L = K,

but it has suessfully alulated the hallenge bit anyway). With KeyTest in hand, S an answer

a query L made to H as follows. It runs (de; gs)

$

 KeyTest(L). If de = 0, it an safely assume

3

Suppose, for example, that algorithms SE; SD only depend on the �rst half of the bits of their k-bit key. This

is onsistent with their being IND-CCA seure (in the sense that, if there exists an IND-CCA-seure symmetri

enryption sheme, there also exists one with this property), but now, any test has probability at most 2

�k=2

of being

able to di�erentiate between K and a key L 6= K that agrees with K in its �rst half.
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L 6= K and return a random answer, while if de = 1, it an output gs as its guess to hallenge bit

b and halt.

A preise desription and analysis of KeyTest are in Appendix A, but we briey sketh the ideas

here. The algorithm has two phases. In the �rst phase, it repeatedly tests whether or not

SD

R

s

(L;SE

R

s

(K;LR(T

0

; T

0

; b))) = T

0

and SD

R

s

(L;SE

R

s

(K;LR(T

1

; T

1

; b))) = T

1

;

where T

0

; T

1

are some distint \test" messages. If any of these heks fails, it knows that L 6= K

and returns (0; 0). (However, the heks an sueed with high probability even if L 6= K.) In the

next phase, it repeatedly omputes SD

R

s

(L;SE

R

s

(K;LR(T

0

; T

1

; b))) and, if all these omputations

yield T

gs

for some bit gs, it returns (1; gs). The analysis shows that, onditional on the �rst phase

not returning (0; 0), the bit gs from the seond stage equals b with overwhelming probability.

A subtle point arises with relation to the test. Reall that H is making queries to SD

R

s

(K; �).

S will answer these via its own orale of the same name. Now, onsider the event that H queries to

SD

R

s

(K; �) a iphertext C generated in some exeution of KeyTest. If S alls SD

R

s

(K;C) to obtain

the answer, it would immediately beome an illegitimate adversary and thus forgo its advantage,

sine C is a result of a all to SE

R

s

(K;LR(�; �; b)) made by S via subroutine KeyTest. There are

a few ways around this, and the one we use is to hoose the initial \test" messages randomly so

that H has low probability of being able to query a iphertext C generated in some exeution of

KeyTest.

We note that one might onsider an alternative solution to S's problem of wanting to \detet"

query K to H. Namely, reply to queries to H at random, then, after H terminates, pik one suh

query L at random, derypt a hallenge iphertext via L, and use that to predit the hallenge

bit. Unfortunately, even though L = K with probability 1=poly(k), the advantage over one-half

obtained by S via the strategy just outlined ould be negligible beause the wrong answers from

the wrong random hoies ould overwhelm the right answer that arises when K is hosen.

We provide all the details and justify Equation (2) in Appendix A.

4 Uninstantiability of the Hash ElGamal sheme

In this setion we show (f. Theorem 4.1) that the RO-model Hash ElGamal sheme admits no

IND-CCA-preserving instantiation. Below we begin by detailing what we mean by instantiation of

a RO-model asymmetri enryption sheme. This will refer to a RO-model sheme whih, as per

the formal de�nitions in Setion 2, uses a single random orale mapping f0; 1g

�

to f0; 1g.

Instantiating RO-model asymmetri enryption shemes. A poly-time family of funtions

F assoiates to seurity parameter k 2 N and key fk 2 f0; 1g

fkl(k)

a map F

k

(fk; �): f0; 1g

�

! f0; 1g.

The key length fkl of the family of funtions is a polynomial in k. We require that there exist a

polynomial t suh that F

k

(fk; x) is omputable in t(k+ jxj) time for all k 2 N, fk 2 f0; 1g

fkl(k)

and

x 2 f0; 1g

�

.

An instantiation of a RO-model asymmetri enryption sheme AS = (AK;AE;AD) via family

F is the standard-model asymmetri enryption sheme AS = (AK;AE;AD) whose onstituent

algorithms are illustrated in Figure 2. As these indiate, the publi and seret keys of the original

sheme are enhaned to also inlude a key fk speifying the funtion F

k

(fk; �), and alls to the

random orale are then replaed by evaluations of this funtion in all algorithms.

The uninstantiability result. The formal statement of the result is the following.
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AK(1

k

)

fk

$

 f0; 1g

fkl(k)

(pk; sk)

$

 AK

F

k

(fk;�)

(1

k

)

Return ((pk; fk); (sk; fk))

AE(pk;K)

Parse pk as (pk; fk)

C

$

 AE

F

k

(fk;�)

(pk;K)

Return C

AD(sk; C)

Parse sk as (sk; fk)

K  AD

F

k

(fk;�)

(sk; C)

Return K

Figure 2: Algorithms of the standard-model asymmetri enryption sheme AS = (AK;AE;AD)

obtained by instantiating RO-model asymmetri enryption sheme AS = (AK;AE;AD) via poly-

time family of funtions F .

Theorem 4.1 Let HEG[CG℄ = (AK;AE;AD) be the RO-model Hash ElGamal sheme assoiated

to a yli-group generator CG. Let HEG[CG℄ = (AK;AE;AD) be any instantiation of HEG[CG℄ via

a poly-time family of funtions. Then HEG[CG℄ is not IND-CCA preserving.

Proof of Theorem 4.1. Let F be the poly-time family of funtions used in HEG[CG℄ to replae

the random orale. We will onstrut an IND-CCA-seure symmetri enryption sheme SS suh

that the mm-hybrid enryption sheme (HEG[CG℄;SS) is not IND-CCA seure. This proves the

theorem.

Let us say that a value pk is a (HEG[CG℄; k)-valid publi key if there exists a value sk suh that

(pk; sk) 2 [AK(1

k

)℄. We �rst de�ne two polynomial-time algorithms VfPK and VfCtxt

F

whih are

used by SS.

Algorithm VfPK, whih we all a key veri�er, takes inputs 1

k

and pk, and outputs 1 if and

only if pk is a (HEG[CG℄; k)-valid publi key. The algorithm works by parsing pk as ((q; g;X); fk),

where fk 2 f0; 1g

fkl

, and then returning 1 if and only if q and 2q + 1 are primes, g is a generator

of the order q yli subgroup hgi of Z

�

2q+1

, j2q + 1j = k, and X 2 hgi. This algorithm an be

implemented in polynomial-time based on standard fats from omputational number theory, and

even deterministially, given the existene of polynomial-time primality tests [1℄. We omit the

details.

Algorithm VfCtxt

F

, whih we all a iphertext veri�er, takes inputs 1

k

;pk;K;C, where pk is a

(HEG[CG℄; k)-valid publi key and K 2 f0; 1g

k

. It runs AE(pk;K) and outputs 1 if the result is C,

and 0 otherwise. In other words, VfCtxt

F

veri�es whether C is indeed an enryption of message K

under the given publi key pk. This is possible beause the enryption algorithm AE of HEG[CG℄

(f. Figure 1), and hene the enryption algorithm AE of HEG[CG℄, is deterministi.

Let SS

0

= (SK

0

;SE

0

;SD

0

) be any standard-model IND-CCA-seure symmetri enryption

sheme. (Reall an impliit assumption is that some suh sheme exists, sine otherwise all asym-

metri enryptions shemes are by default IND-CCA preserving and the entire problem we are

onsidering is moot.) The onstrution of SS is in terms of SS

0

and algorithms VfPK and VfCtxt

F

.

We use the notation h(�; �)i to denote an injetive, polynomial-time omputable enoding of pairs

of strings as strings suh that given h(M

1

;M

2

)i, M

1

and M

2

an be reovered in polynomial time.

If s is a string and a � b are integers then s[a : : : b℄ denotes the string onsisting of bit positions

a through b of s. The algorithms onstituting SS = (SK;SE;SD) are depited in Figure 3. To

onlude the proof, we need only establish the following propositions.

Proposition 4.2 Symmetri enryption sheme SS is IND-CCA seure.

Proposition 4.3 Multi-message hybrid enryption sheme (HEG[CG℄;SS) is not IND-CCA seure.
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SK(1

k

)

K

0

$

 SK

0

(1

dk=2e

)

K

2

$

 f0; 1g

bk=2

Return K

0

jjK

2

SE(K;M)

k  jKj

K

0

 K[1 : : : dk=2e℄

K

2

 K[1 + dk=2e : : : k℄

C

0

 SE

0

(K

0

;M)

Parse M as h(M

1

;M

2

)i

If the parsing fails then

Return C

0

jj1 EndIf

p VfPK(1

k

;M

1

)

 VfCtxt

F

(1

k

;M

1

;K;M

2

)

If (p = 1 and  = 1) then

Return C

0

jj0

else Return C

0

jj1 EndIf

SD(K;C)

k  jKj

K

0

 K[1 : : : dk=2e℄

K

2

 K[1 + dk=2e : : : k℄

Parse C as C

0

jjd, where d 2 f0; 1g

M

0

 SD

0

(K

0

; C

0

)

Parse M

0

as h(M

1

;M

2

)i

If the parsing fails then

If d = 1 then Return M

0

else Return ? EndIf

p VfPK(1

k

;M

1

)

 VfCtxt

F

(1

k

;M

1

;K;M

2

)

If (d = 0 and p = 1 and  = 1) then

Return M

0

EndIf

If (d = 1 and (p 6= 1 or  6= 1)) then

Return M

0

EndIf

Return ?

Figure 3: Algorithms of the symmetri enryption sheme SS = (SK;SE;SD) for the proof of

Theorem 4.1. Above, h(M

1

;M

2

)i denotes an enoding of the pair of strings (M

1

;M

2

) as a string.

Proof of Proposition 4.2: Let us �rst provide some intuition. Note that on input M , enryp-

tion algorithm SE(K

0

1

jjK

2

; �) uses the enryption algorithm SE

0

of an IND-CCA-seure sheme to

ompute C

0

$

 SE

0

(K

0

1

;M) and outputs C

0

jj0 or C

0

jj1, depending on whether M has some \spe-

ial" form or not. The iphertext ends with 0 if M parses as a pair (M

1

;M

2

) suh that algorithms

VfPK;VfCtxt

F

indiate thatM

1

is a (HEG[CG℄; k)-valid publi key andM

2

2 [AE(M

1

;K

0

1

jjK

2

)℄. The

deryption algorithm SD(K

0

1

jjK

2

; �) on input C

0

jjd, where d is a bit, omputes M

0

 SD

0

(K

0

1

; C

0

)

and returnsM

0

only if eitherM

0

is of the speial form and d = 0, orM

0

is not of this form and d = 1.

Therefore, an obvious strategy for an adversary against SS is to query its orale SE(K;LR(�; �; b))

on a pair of messages suh that one of them is of this speial form and the other is not. Using

the unique deryptability of AE and the fat that K

2

is hosen at random, independently from

the adversary's view, we show that it annot �nd suh queries exept with negligible probability.

Moreover, we show that any strategy for the adversary an be employed by an attaker against

sheme SS

0

to win its game. Details follow.

Let S be a legitimate polynomial-time adversary attaking SS. We will onstrut a legitimate

polynomial-time adversary S

0

suh that

Adv

ind-a

SS;S

(k) � Adv

ind-a

SS

0

;S

0

(dk=2e) +

O(Q(k))

2

bk=2

; (5)

where Q is a polynomial upper bounding the total number of queries made by S to its di�erent

orales. Sine SS

0

is assumed IND-CCA seure, the advantage funtion assoiated to S

0

above is

negligible, and thus so is the advantage funtion assoiated to S. To omplete the proof, we need

to speify adversary S

0

and prove Equation (5).

Adversary S

0

is given input 1

dk=2e

and has aess to orales SE

0

(K

0

1

;LR(�; �; b)) and SD

0

(K

0

1

; �). Its

goal is to guess the bit b. It runs S on input 1

k

. In this proess, S will query its two orales

SE(K;LR(�; �; b)) and SD(K; �). To answer a query to the �rst of these orales, S

0

forwards the

query to its orale SE

0

(K

0

1

;LR(�; �; b)), appends 1 to the orale's reply and returns the result to S.
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To answer a query to the seond orale, S

0

heks the last bit of the query. If it is 0, S

0

returns ?

to S. Otherwise, it removes the last bit, forwards the result to its orale SD

0

(K

0

1

; �), and returns

the answer to S. When S outputs its guess b

0

, S

0

returns b

0

.

We now analyze S

0

. Consider the experiment in whih S

0

attaks SS

0

. We de�ne the following

events.

Su(S

0

) : S

0

is suessful, meaning its output equals the hallenge bit b

BadE : S makes a query to orale SE(K;LR(�; �; b)) in whih one of the messages an be

parsed as h(M

1

;M

2

)i suh that M

1

is a (HEG[CG℄; k)-valid publi key and

M

2

2 [AE(M

1

;K)℄

BadD : S makes a query to orale SD(K; �) that an be parsed as C

0

jjd, where d is a bit,

suh that SD

0

(K

0

1

; C

0

) = h(M

1

;M

2

)i, where M

1

is a (HEG[CG℄; k)-valid publi key

and M

2

2 [AE(M

1

;K)℄

For the experiment in whih S attaks SS, we de�ne the following event.

Su(S) : S is suessful, meaning its output equals the hallenge bit b

We laim that if events BadE and BadD do not our, then S

0

simulates perfetly the environment

provided to S in its attak against SS. First, note that answers to queries to orale SE(K;LR(�; �; b))

an only be o� by the last bit. In the absene of the \bad" events, eah iphertext returned to S

as a reply to a query to orale SE(K;LR(�; �; b)) has 1 as the last bit. This is also the ase in S's

real attak. If S queries SD(K; �) with a iphertext C

0

jj0, assuming events BadE and BadD do not

our, S

0

gives S the response it would get in the real attak, namely ?. Sine S is legitimate, if

it queries orale SD(K; �) with a iphertext C

0

jj1, then C

0

must not have previously been returned

by orale SE

0

(K

0

1

;LR(�; �; b)). Thus S

0

an legitimately make query C

0

to its orale SD

0

(K

0

1

; �). If

M is the response, then, assuming that events BadE and BadD do not our, the answer S expets

is exatly M . Therefore,

Pr

�

Su(S

0

)

�

� Pr

�

Su(S

0

) j :BadE ^ :BadD

�

� Pr [ BadE _ BadD ℄

� Pr [ Su(S) ℄� Pr [ BadE _ BadD ℄ :

We now provide an upper bound for the probability of event BadE_BadD. Let q

e

(k) and q

d

(k) be the

number of queries S makes to orales SE(K;LR(�; �; b)) and SD(K; �), respetively, on input 1

k

. We

observe that ifM

1

is a (HEG[CG℄; k)-valid publi key, then for anyM

2

2 f0; 1g

�

, there exists a unique

K

0

2 [SK(1

k

)℄ suh that M

2

2 [AE(M

1

;K

0

)℄. Reall that the key for orales SE(K;LR(�; �; b)) and

SD(K; �) is K = K

0

1

jjK

2

, where K

2

is hosen uniformly at random from f0; 1g

bk=2

and is indepen-

dent from S's view. Therefore, for any query made by S to orale SE(K;LR(�; �; b)), the probability

that one of the messages in the query parses as h(M

1

;M

2

)i suh that M

1

is a (HEG[CG℄; k)-valid

publi key and M

2

2 [AE(M

1

;K)℄ is at most 2=2

bk=2

. Similarly, for any query C

0

jjd, where d

is a bit, made by S to orale SD(K; �), the probability that SD

0

(K

0

1

; C

0

) = M

0

, where M

0

parses

as h(M

1

;M

2

)i, M

1

is a (HEG[CG℄; k)-valid publi key and M

2

2 [AE(M

1

;K)℄ is at most 1=2

bk=2

.

Therefore,

Pr [ BadE _ BadD ℄ �

2q

e

(k) + q

d

(k)

2

bk=2

�

2 �Q(k)

2

bk=2

;

where Q(k) = q

e

(k) + q

d

(k). Hene

Adv

ind-a

SS

0

;S

0

(dk=2e) = 2 � Pr

�

Su(S

0

)

�

� 1 � 2 �

�

Pr [ Su(S) ℄�

O(Q(k))

2

bk=2

�

� 1
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= Adv

ind-a

SS;S

(k) �

O(Q(k))

2

bk=2

:

Rearranging terms gives Equation (5).

Proof of Proposition 4.3: We de�ne a hybrid adversary H attaking (HEG[CG℄;SS). H is

given inputs pk = ((q; g;X); fk) and C

a

and has aess to orales SE(K;LR(�; �; b)), SD(K; �), and

AD(sk; �), where sk = ((q; g; x); fk). Its goal is to guess the hallenge bit b. By the de�nition

of experiment Exp

ind-a

HEG[CG℄;SS;H

(k), pk is a (HEG[CG℄; k)-valid publi key and C

a

2 [AE(pk;K)℄.

Therefore, h(pk; C

a

)i is a message whih, when enrypted with SE(K; �), yields a iphertext that

has last bit 0. We observe that for any string C hosen at random from f0; 1g

jC

a

j

n fC

a

g, the

probability that K = AD(sk; C) is 0 (sine AE(pk;K) = C

a

and AE is deterministi), i.e., the

probability that C 2 [AE(pk;K)℄ is 0. Hene h(pk; C)i is a message whih, when enrypted with

SE(K; �), yields a iphertext that has last bit 1. (If C =2 [AE(pk;K)℄, then the last bit will be 1.)

Thus, adversary H an onstrut two messages for whih it an guess with probability 1 the last

bit of the orresponding iphertext. Using this information it an then guess the hallenge bit.

Details follow.

Adversary H hooses C at random from f0; 1g

jC

a

j

n fC

a

g, makes a query h(pk; C

a

)i; h(pk; C)i to

orale SE(K;LR(�; �; b)), parses the response as C

0

jjd, where d is a bit, and returns d. The running

time of H is learly polynomial in k. We laim that Adv

ind-a

HEG[CG℄;SS;H

(k) = 1. To prove this, we

onsider the event

Su(H) : H is suessful, meaning its output equals the hallenge bit b

If hallenge bit b is 0, then the response to H 's query is a iphertext that has last bit 0. If bit b is

1, then the response is a iphertext that has last bit 1. Thus

Pr [ Su(H) ℄ =

1

2

+

1

2

= 1 :

Hene

Adv

ind-a

HEG[CG℄;SS;H

(k) = 2 � Pr [ Su(H) ℄� 1 = 1 ;

as desired.

Notie that the adversary onstruted in the proof of Proposition 4.3 does not make any queries

to its orales SD(K; �) and AD(sk; �).

Remark 4.4 An interesting question at this point may be why the proof of Theorem 4.1 fails

for the RO-model Hash ElGamal sheme HEG[CG℄ assoiated to a yli-group generator CG |it

must, sine otherwise Theorem 3.1 would be ontradited| but sueeds for any instantiation of

this sheme. The answer is that symmetri enryption sheme SS, depited in Figure 3 runs a

iphertext veri�er VfCtxt

F

for the asymmetri enryption sheme in question. In the ase of the

RO-model sheme HEG[CG℄, any iphertext veri�er must query random orales G and H. But as we

lari�ed in Setion 2, SS does not have aess to these orales (although it might have aess to its

own, independently hosen orale R

s

), and so annot run suh a iphertext veri�er. The adversary

of ourse does have aess to G;H, but has no way to \pass" these objets to the enryption

algorithm of the symmetri enryption sheme. On the other hand, in the instantiated sheme, the

keys desribing the funtions instantiating the random orales may be passed by the adversary to

the enryption algorithm of SS in the form of a message ontaining the publi key, giving SS the
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ability to run the iphertext veri�er. This might lead one to ask why SS does not have orale aess

to G;H. This is explained in Remark 2.1.

5 A generalization

In this setion, we identify a sublass of IND-CCA-preserving asymmetri enryption shemes that

we all key-veri�able, iphertext-veri�able IND-CCA-preserving asymmetri enryption shemes.

We show that suh shemes exist in the RO model, but do not exist in the standard model. We then

disuss how this generalizes our results about the Hash El Gamal sheme. We begin by de�ning

the two properties mentioned above, namely, key veri�ability and iphertext veri�ability.

Let AS = (AK;AE;AD) be an asymmetri enryption sheme. Let us say that a value pk is an

(AS; k)-valid publi key if there exists a value sk suh that (pk; sk) 2 [AK(1

k

)℄. We say that AS is

key veri�able if there exists a polynomial-time, possibly randomized algorithm VfPK (alled the key

veri�er) and a negligible funtion � (alled the error probability of VfPK) suh that VfPK(1

k

;pk)

returns 1 with probability at least 1� �(k) if pk is an (AS; k)-valid publi key, and returns 1 with

probability at most �(k) otherwise. If AK has aess to a random orale, then VfPK is given aess

to the same random orale.

We say that asymmetri enryption sheme AS = (AK;AE;AD) is iphertext veri�able if there

exists a polynomial-time, possibly randomized algorithm VfCtxt (alled the iphertext veri�er) and

a negligible funtion � (alled the error probability of VfCtxt) suh that, if VfCtxt is run on inputs

1

k

;pk;K;C, where pk is an (AS; k)-valid publi key and K 2 f0; 1g

k

, then VfCtxt returns 1 with

probability at least 1 � �(k) if C 2 [AE(pk;K)℄, and returns 1 with probability at most �(k)

otherwise. If AE or AD aess a random orale, then VfCtxt is given aess to the same random

orale.

The following result will be used later.

Proposition 5.1 Suppose AS is a RO-model asymmetri enryption sheme that is both key

veri�able and iphertext veri�able. Let AS be any instantiation of AS via a poly-time family of

funtions. Then AS is also both key veri�able and iphertext veri�able.

Proof of Proposition 5.1: Let VfPK and VfCtxt be a key veri�er and a iphertext veri�er for

AS, respetively. Let F be the poly-time family of funtions used in AS to replae the random

orale. Reall that a publi key of AS ontains a publi key pk of AS and also a key fk speifying

an instane of F . We de�ne algorithms VfPK

F

and VfCtxt

F

.

On inputs 1

k

; s, VfPK

F

attempts to parse s as a pair (pk; fk). If it fails, it returns 0. Otherwise, it

runs VfPK(1

k

;pk). If the result is 0, it returns 0. Otherwise, it veri�es that fk 2 f0; 1g

fkl(k)

. If so,

it returns 1, if not it returns 0. Clearly, VfPK

F

is a key veri�er for AS.

VfCtxt

F

is idential to VfCtxt exept that the random orale is replaed with the same instane of

F used in AS to replae the orale.

We now observe that, in the RO model, there exist key-veri�able, iphertext-veri�able IND-CCA-

preserving asymmetri enryption shemes, meaning the goal of key-veri�able, iphertext-veri�able

asymmetri enryption is ahievable in this model.

Theorem 5.2 Suppose there exists a yli-group generator for whih the CDH problem is hard.

Then there exists a key-veri�able, iphertext-veri�able RO-model asymmetri enryption sheme

that is IND-CCA-preserving in the RO model.
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Proof of Theorem 5.2: If the CDH problem is hard for yli-group generator CG,

then Theorem 3.1 guarantees that the assoiated Hash ElGamal asymmetri enryption sheme

HEG[CG℄, de�ned in Setion 3, is IND-CCA preserving in the RO model. The proof of Theorem 3.1

de�nes a key veri�er VfPK and a iphertext veri�er VfCtxt for HEG[CG℄, eah having error proba-

bility 0.

Next, we show that in the standard model, there do not exist key-veri�able, iphertext-

veri�able IND-CCA-preserving asymmetri enryption shemes, meaning the goal of key-veri�able,

iphertext-veri�able asymmetri enryption is not ahievable in this model.

Theorem 5.3 Let AS be a standard-model asymmetri enryption sheme that is both key veri-

�able and iphertext veri�able. Then AS is not IND-CCA preserving.

Theorem 5.3 is proved below. We �rst state and prove our �nal result.

Theorem 5.4 Let AS be a RO-model asymmetri enryption sheme that is both key veri�able

and iphertext veri�able. Let AS be any instantiation of AS via a poly-time family of funtions.

Then AS is not IND-CCA preserving.

Proof of Theorem 5.4: AS is a standard-model asymmetri enryption sheme. Proposition 5.1

implies that it inherits the key veri�ability and iphertext veri�ability of AS. Theorem 5.3 then

implies that it is not IND-CCA preserving.

Note that Theorem 5.4 implies Theorem 4.1 beause the Hash El Gamal sheme is a RO-model

sheme that is key veri�able and iphertext veri�able. Theorem 5.4 is, however, more general, and

shows that the uninstantiability of the Hash El Gamal sheme arises not due to some \peuliar" use

of random orales, but due to the fat that the sheme possesses the properties of key veri�ability

and iphertext veri�ability.

Proof of Theorem 5.3. The proof is almost idential to the proof of Theorem 4.1. Aordingly,

we use the same notation and the previous results, and only indiate the di�erenes. Let VfPK and

VfCtxt be a key veri�er and a iphertext veri�er for AS, respetively. The main di�erene is that

now VfPK and VfCtxt an be randomized algorithms with non-zero error probabilities.

We present an IND-CCA-seure symmetri enryption sheme SS suh that the mm-hybrid

enryption sheme (AS;SS) is not IND-CCA seure. This proves the theorem.

Let SS

0

= (SK

0

;SE

0

;SD

0

) be any standard-model IND-CCA-seure symmetri enryption

sheme. The onstrution of SS is in terms of SS

0

and algorithms VfPK and VfCtxt, and is ex-

atly as in the proof of Theorem 4.1. See Figure 3. To onlude the proof, we need only establish

the following propositions.

Proposition 5.5 Symmetri enryption sheme SS is IND-CCA seure.

Proposition 5.6 Multi-message hybrid enryption sheme (AS;SS) is not IND-CCA seure.

Proof of Proposition 5.5: Let S be a legitimate polynomial-time adversary attaking SS. We

will onstrut a legitimate polynomial-time adversary S

0

suh that

Adv

ind-a

SS;S

(k) � Adv

ind-a

SS

0

;S

0

(dk=2e) +

O(Q(k))

2

bk=2

+O(Q(k)) � �(k) ; (6)

where Q is a polynomial upper bounding the total number of queries made by S to its di�erent

orales, and � is a negligible funtion related to the error probabilities of algorithms VfPK and
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VfCtxt. Note that the last term is the only di�erene with Equation (5). Sine SS

0

is assumed

IND-CCA seure, the advantage funtion assoiated to S

0

above is negligible, and thus so is the

advantage funtion assoiated to S. To omplete the proof, we need to speify adversary S

0

and

prove Equation (6).

Adversary S

0

is idential to the adversary in the proof of Proposition 4.2. The analysis of S

0

is

similar, but we need to take into aount the possibility that algorithms VfPK and VfCtxt err. For

this reason, for the experiment in whih S attaks SS, we de�ne the following additional event.

Crt : Every time algorithms VfPK and VfCtxt are invoked, they return the orret value

We laim that if events BadE and BadD do not our, then S

0

simulates perfetly the environment

provided to S in its attak against SS when algorithms VfPK and VfCtxt never err. First, note that

answers to queries to orale SE

R

s

(K;LR(�; �; b)) an only be o� by the last bit. In the absene of

the \bad" events, eah iphertext returned to S as a reply to a query to orale SE

R

s

(K;LR(�; �; b))

has 1 as the last bit. This is also the ase in S's real attak when algorithms VfPK and VfCtxt are

always orret. If S queries SD(K; �) with a iphertext C

0

jj0, assuming events BadE and BadD do

not our, S

0

gives S the response it would get in the real attak when algorithms VfPK and VfCtxt

are always orret, namely ?. Sine S is legitimate, if it queries orale SD(K; �) with a iphertext

C

0

jj1, then C

0

must not have previously been returned by orale SE

0

(K

0

1

;LR(�; �; b)). Thus S

0

an

legitimately make query C

0

to its orale SD

0

(K

0

1

; �). If M is the response, then, assuming that

events BadE and BadD do not our, the answer S expets when algorithms VfPK and VfCtxt are

always orret is exatly M . Therefore,

Pr

�

Su(S

0

)

�

� Pr

�

Su(S

0

) j :BadE ^ :BadD

�

� Pr [ BadE _ BadD ℄

� Pr [ Su(S) j Crt ℄� Pr [ BadE _ BadD ℄

� Pr [ Su(S) ℄� Pr [ :Crt ℄� Pr [ BadE _ BadD ℄ :

We now provide an upper bound for the probability of event :Crt. (The bound for BadE_BadD is

idential to the one in the proof of Proposition 4.2.) Let q

e

(k) and q

d

(k) be the number of queries

S makes to orales SE

R

s

(K;LR(�; �; b)) and SD(K; �), respetively, on input 1

k

. Let �

1

be the error

probability of key veri�er VfPK, and �

2

the error probability of iphertext veri�er VfCtxt. Then

Pr [ :Crt ℄ � q

e

(k) � (�

1

(k) + �

2

(k)) + q

d

(k) � (�

1

(k) + �

2

(k)) = Q(k) � �(k) ;

where Q(k) = q

e

(k) + q

d

(k) and �(k) = �

1

(k) + �

2

(k).

Hene

Adv

ind-a

SS

0

;S

0

(dk=2e) = 2 � Pr

�

Su(S

0

)

�

� 1 � 2 �

�

Pr [ Su(S) ℄�Q(k) � �(k)�

O(Q(k))

2

bk=2

�

� 1

= Adv

ind-a

SS;S

(k)�O(Q(k)) � �(k)�

O(Q(k))

2

bk=2

:

Rearranging terms gives Equation (6).

Proof of Proposition 5.6: We de�ne a hybrid adversary H attaking (AS;SS) exatly as in the

proof of Proposition 4.3. We laim that Adv

ind-a

AS;SS;H

(k) � 1 � 2

�k

� �(k), where � is a negligible

funtion related to the error probabilities of algorithms VfPK and VfCtxt. The analysis is similar

to the one in the proof of Proposition 4.3, but we need to take into aount the additional event

Crt : Every time algorithms VfPK and VfCtxt are invoked, they return the orret value,
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and the possibility that K = AD(sk; C), where C is hosen at random from f0; 1g

jC

a

j

n fC

a

g. The

latter an happen with probability at most 2

�k

. I.e., the probability that C 2 [AE(pk;K)℄ is at

most 2

�k

. Hene h(pk; C)i is a message whih, when enrypted with SE(K; �), yields a iphertext

that with overwhelming probability has last bit 1. (If C =2 [AE(pk;K)℄, then the last bit will be

1.) Assume that event Crt ours. If hallenge bit b is 0, then the response to H 's query is a

iphertext that has last bit 0. If bit b is 1, then with probability at least 1� 2

�k

, the response is a

iphertext that has last bit 1. Thus

Pr [ Su(H) ℄ � Pr [ Su(H) j Crt ℄� Pr [ :Crt ℄ �

1

2

�

�

1�

1

2

k

�

+

1

2

� Pr [ :Crt ℄

If �

1

is the error probability of key veri�er VfPK, and �

2

is the error probability of iphertext veri�er

VfCtxt, then Pr [ :Crt ℄ � �

1

(k) + �

2

(k): Hene

Adv

ind-a

AS;SS;H

(k) = 2 � Pr [ Su(H) ℄� 1 � 1� 2

�k

� 2 � (�

1

(k) + �

2

(k)) = 1� 2

�k

� �(k) ;

where �(k) = 2 � (�

1

(k) + �

2

(k)).
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A Proof of Theorem 3.1

We explained the ideas behind this proof in Setion 3. Here we provide the full adversary onstru-

tions and analyses.

Proof setup. LetH be a polynomial-time hybrid adversary attaking (AS;SS). We will onstrut

polynomial-time adversaries S and C suh that

Adv

ind-a

AS;SS;H

(k) � Adv

ind-a

SS;S

(k) +O(Q(k)) � Adv

dh

CG;C

(k) +

O(Q(k)

2

)

2

k

; (7)

where Q(k) is a polynomial upper bounding the number of queries made by H to the G and H

orales. (This inludes queries made diretly by H and those made indiretly as a onsequene of

H 's queries to its AD

G;H

((q; g; x); �) orale.) Sine SS is assumed IND-CCA seure and the CDH

problem is hard for CG, the advantage funtions related to S and C above are negligible, and thus

so is the advantage funtion related to H . To omplete the proof, we need to speify the adversaries

S;C and prove Equation (7).

Desription of S. Adversary S is given input 1

k

and has aess to orales SE

R

s

(K;LR(�; �; b)),

SD

R

s

(K; �), and R

s

. Its goal is to guess the bit b. It begins with the following initializations.

((q; g;X); (q; g; x))

$

 AK(1

k

) ; y

$

 Z

q

; Y  g

y

; W

$

 f0; 1g

k

; C

a

 (Y;W ) ;

T

0

$

 f0; 1g

k

; T

1

$

 f0; 1g

k

� fT

0

g.
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Subroutine GSim(Z)

If GT[Z℄ is not de�ned then GT[Z℄

$

 f0; 1g

k

EndIf

Return GT[Z℄

Subroutine HSim(L)

If HT[L℄ is de�ned then return it as the answer EndIf

(de; gs)

$

 KeyTest(L) ; HT[L℄

$

 Z

q

If de = 0 then return HT[L℄ as the answer EndIf

If de = 1 then output gs (as a guess to the value of hallenge bit b) and halt EndIf

Subroutine KeyTest(L)

de 1

For i = 1; : : : ; k do

C

i

0

[L℄

$

 SE

R

s

(K;LR(T

0

; T

0

; b)) ; If SD

R

s

(L;C

i

0

[L℄) 6= T

0

then de 0 EndIf

C

i

1

[L℄

$

 SE

R

s

(K;LR(T

1

; T

1

; b)) ; If SD

R

s

(L;C

i

1

[L℄) 6= T

1

then de 0 EndIf

EndFor

If de = 0 return (0; 0) EndIf

For i = 1; : : : ; k do C

i

[L℄

$

 SE

R

s

(K;LR(T

0

; T

1

; b)) ; T

i

 SD

R

s

(L;C

i

[L℄) EndFor

If T

1

= T

2

= � � � = T

k

= T

0

then return (1; 0) EndIf

If T

1

= T

2

= � � � = T

k

= T

1

then return (1; 1) EndIf

Return (0; 0)

Figure 4: Subroutines de�ned by S and used to simulate H 's orales.

Then it runs H on inputs publi key (q; g;X) and iphertext C

a

. In the proess H will query its

orales

G; H; R

s

; SE

R

s

(K;LR(�; �; b)); SD

R

s

(K; �); AD

G;H

((q; g; x); �) : (8)

S will answer these queries. To that end, it de�nes the subroutines shown in Figure 4. It answers

a query Z to G by running GSim(Z) and returning the answer to H . It answers a query L to H by

running HSim(L) and returning the answer to H . It answers queries to the SE

R

s

(K;LR(�; �; b)) and

R

s

orales via its own orales of the same name. It answers eah query C to the SD

R

s

(K; �) orale

using its own deryption orale, unless there exist i; j and L suh that L was queried to H and either

C = C

i

j

[L℄ or C = C

i

[L℄. In that ase, S aborts. Sine S possesses the seret key (q; g; x), it an

answer queries to AD

G;H

((q; g; x); �) by performing the omputation of the deryption algorithm,

replaing alls that the latter makes to G or H by alls to the relevant subroutines just mentioned.

If H runs to ompletion (S an output its guess as to the value of b, and halt, before this), then S

outputs whatever H outputs.

Desription of C. Adversary C is given inputs q; g;X; Y , where X;Y 2 hgi have been hosen

uniformly at random. Its goal is to ompute g

xy

where g

x

= X and g

y

= Y . Let k  jh2q+1ij. C

begins with the following initializations.

K

$

 SK(1

k

) ; b

$

 f0; 1g ; W

$

 f0; 1g

k

; C

a

 (Y;W ) :

Then it runs H on inputs publi key (q; g;X) and iphertext C

a

. In the proess H will query

the orales listed in Equation (8). C will answer these queries. Queries to R

s

are simulated the

standard way, by returning a random value for eah new query and the previously returned value

for eah repeated query. To simulate the rest of the orales it de�nes the subroutines shown in
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Subroutine GSim(Z)

If GT[Z℄ is not de�ned then GT[Z℄

$

 f0; 1g

k

EndIf

Return GT[Z℄

Subroutine HSim(L)

If HT[L℄ is not de�ned then HT[L℄

$

 Z

q

EndIf

Return HT[L℄

Subroutine ADSim(Y

0

;W

0

)

If there is no L suh that g

HT[L℄

= Y

0

then return ? EndIf

Let L be suh that g

HT[L℄

= Y

0

Z

0

 X

HT[L℄

; T

0

 GSim(Z

0

) ; K

0

 T

0

�W

0

; Return K

0

Figure 5: Subroutines de�ned by C and used to simulate H 's orales.

Figure 5. It answers a query Z to G by running GSim(Z) and returning the answer toH . It answers

a query L to H by running HSim(L) and returning the answer to H . Sine it possesses K and

b, it an answer queries to the SE

R

s

(K;LR(�; �; b)) or SD

R

s

(K; �) orales by simply performing the

relevant omputation and returning the answer. It answers a query (Y

0

;W

0

) to AD

G;H

((q; g; x); �)

by running ADSim(Y

0

;W

0

) and returning the answer. When H has terminated, C piks Z at

random from the set fZ : GT[Z℄ is de�ned g and outputs Z.

Analysis. For the analysis, de�ne the following experiment.

Exp

dh

CG;C

(k) : (q; g)

$

 CG(1

k

) ; x; y

$

 Z

q

; Z  C(q; g; g

x

; g

y

)

If Z = g

xy

then return 1 else return 0

We let Pr

C

[ � ℄, Pr

S

[ � ℄, and Pr

H

[ � ℄ denote the probabilities in experiments Exp

dh

CG;C

(k),

Exp

ind-a

SS;S

(k), and Exp

ind-a

AS;SS;H

(k), respetively.

Let ((q; g;X); (q; g; x)) 2 [AK(1

k

)℄ and K 2 [SK(1

k

)℄. We de�ne the following events relating

to H 's exeution on inputs publi key (q; g;X) and iphertext C

a

= (Y;W ) where g

y

= Y . These

events are de�ned in any of the three experiments we are onsidering.

GH : There exists a time at whih g

xy

is queried to G but K has not been queried to H

HG : There exists a time at whih K has been queried to H but g

xy

has not been queried

to G

Su(H) : H is suessful, meaning its output equals the hallenge bit b.

We larify that the queries referred to above inlude both diret and indiret queries of H , but, in

the ase of Exp

ind-a

AS;SS;H

(k), they do not inlude the queries to G and H made by the omputation

C

a

 AE

G;H

((q; g;X); �) that initializes the experiment. (We are only onsidering queries to G;H

resulting from the exeution of H .) The main laims related to the analysis are:

Pr

H

[ HG _ (Su(H) ^ :HG ^ :GH) ℄ � Pr

S

h

Exp

ind-a

SS;S

(k) = 1

i

+

O(Q(k))

2

k

(9)

Pr

H

[ GH ℄ � Q(k) � Pr

C

h

Exp

dh

CG;C

(k) = 1

i

+

O(Q(k)

2

)

2

k

: (10)

Let us see how these enable us to onlude the proof, and then return to prove them. We have:

1

2

� Adv

ind-a

AS;SS;H

(k) +

1

2
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= Pr

H

h

Exp

ind-a

AS;SS;H

(k) = 1

i

= Pr

H

[ Su(H) ℄

= Pr

H

[ (Su(H) ^HG) _ (Su(H) ^ :HG ^ :GH) ℄ + Pr

H

[ Su(H) ^ GH ℄

� Pr

H

[ HG _ (Su(H) ^ :HG ^ :GH) ℄ + Pr

H

[ GH ℄

� Pr

S

h

Exp

ind-a

SS;S

(k) = 1

i

+

O(Q(k))

2

k

+Q(k) � Pr

C

h

Exp

dh

CG;C

(k) = 1

i

+

O(Q(k)

2

)

2

k

=

1

2

� Adv

ind-a

SS;S

(k) +

1

2

+Q(k) � Adv

dh

CG;C

(k) +

O(Q(k)

2

)

2

k

:

Re-arranging terms and simplifying, we get Equation (7). To omplete the proof, we must establish

Equations (9) and (10).

Proof of Equation (9). An important ingredient in this proof is the following lemma that

haraterizes what Subroutine KeyTest aomplishes.

Lemma A.1 If L = K then KeyTest(L) returns (1; b), while if L 6= K then

Pr

h

(de; gs)

$

 KeyTest(L) : (de; gs) = (1; 1� b)

i

� 4

�k

:

In other words, if L 6= K, then with high probability either the test indiates this by returning

de = 0 or it suessfully omputes the value of the hallenge bit b. Above, the probability is over

the oin tosses made by the SE

R

s

(K;LR(�; �; b)) orale alled in KeyTest, with K and b �xed.

Proof of Lemma A.1: The fat that KeyTest(L) returns (1; b) when L = K is a onsequene

merely of the unique derytability of SS, namely the fat that for all K 2 [SK(1

k

)℄ and all M 2

f0; 1g

�

we have SD

R

s

(K;SE

R

s

(K;M)) = M with probability one, the probability being over the

oin tosses of SE.

Now assume L 6= K. Let Pr [ � ℄ denote the probability taken over the oin tosses of SE

R

s

(K; �),

with K �xed. Let

P

0

= Pr

�

SD

R

s

(L;SE

R

s

(K;T

0

)) = T

0

�

and

P

1

= Pr

�

SD

R

s

(L;SE

R

s

(K;T

1

)) = T

1

�

:

The probability that de = 1 at the end of the �rst For loop in subroutine KeyTest is P

k

0

P

k

1

and

the probability that T1 = � � � = T

k

= T

1�b

is at most (1� P

b

)

k

. So we have

Pr

h

(de; gs)

$

 KeyTest(L) : (de; gs) = (1; 1 � b)

i

= P

k

0

P

k

1

� (1� P

b

)

k

� P

k

b

� (1� P

b

)

k

= [P

b

(1� P

b

)℄

k

� 4

�k

:

The last line is true beause the funtion f : [0; 1℄ ! R de�ned by f(x) = x(1 � x) attains its

maximum at x = 1=2 and the value of this maximum is 1=4. This onludes the proof.

Returning to the proof of Equation (9), we de�ne the following events in Exp

ind-a

SS;S

(k).

FailTest : There exists L 6= K suh that L was queried to H

and KeyTest(L) returned (1; 1 � b) in subroutine HSim(L)

Illegit : There exist i; j and L suh that L was queried to H

and either C

i

j

[L℄ or C

i

[L℄ was queried by H to SD

R

s

(K; �).
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We obtain Equation (9) as shown below. Justi�ations follow the formulas.

Pr

H

[ HG _ (Su(H) ^ :HG ^ :GH) ℄

� Pr

S

[ HG _ (Su(H) ^ :HG ^ :GH) j :FailTest ℄ + Pr

S

[ FailTest ℄ (11)

� Pr

S

h

Exp

ind-a

SS;S

(k) = 1

i

+ Pr

S

[ Illegit ℄ + Pr

S

[ FailTest ℄ (12)

� Pr

S

h

Exp

ind-a

SS;S

(k) = 1

i

+ Pr

S

[ Illegit j :FailTest ℄ + 2 � Pr

S

[ FailTest ℄

� Pr

S

h

Exp

ind-a

SS;S

(k) = 1

i

+

O(Q(k))

2

k

: (13)

To justify Equation (11), observe that if event FailTest does not happen, then the simulation of H

done by S is orret. (If HG ours, then prior to this g

xy

was not a query to G, so the simulation of

the G orale is orret. If :HG^:GH ours, then also g

xy

was not a query to G, so the simulation

of the G orale is orret. If FailTest does not our, then the replies to queries to H are orret.)

To justify Equation (12), �rst note that if event HG ours, then the L = K ase of Lemma A.1

tells us that S halts with orret output. On the other hand, if neither HG nor GH our, then S

halts with orret output as long as H does. But Exp

ind-a

SS;S

(k) an still fail to return 1 beause

S aborted due to the ourrene of Illegit. (When the latter ours, S aborts to avoid alling its

orale SD

R

s

(K; �) on a iphertext returned by its SE

R

s

(K;LR(�; �; b)) orale.)

To justify Equation (13), �rst note that Lemma A.1 together with the fat that the total number

of queries is at most Q(k) implies that Pr

S

[ FailTest ℄ � Q(k)=4

k

. Next, we observe that if FailTest

does not our, then H gets no information about T

0

; T

1

other than that they are random distint

k-bit strings. The unique deryptability of SS then tells us that Pr

S

[ Illegit j :FailTest ℄ is bounded

above by the probability of guessing either T

0

or T

1

in Q(k) tries, and this is O(Q(k)=2

k

).

Proof of Equation (10). We de�ne the following event in Exp

dh

CG;C

(k).

FailDe : There exist times t

0

< t and Y

0

;W

0

; L suh that all the following hold:

{ query (Y

0

;W

0

) was made to AD

G;H

((q; g; x); �) at time t

0

and ADSim(Y

0

;W

0

)

returned ?

{ query L was made to H at time t

{ g

HT[L℄

= Y

0

.

The answers provided by ADSim(�; �) are orret exatly when this event does not our. Further-

more, if there is a time at whih query g

xy

to G ours and GH is true, then query K to H has not

ourred at this time, and thus the answers to queries to H have been orret. Hene

Pr

C

h

Exp

dh

CG;C

(k) = 1

i

�

Pr

H

[ GH ℄� Pr

C

[ FailDe ℄

Q(k)

:

Re-arranging, we get

Pr

H

[ GH ℄ � Q(k) � Pr

C

h

Exp

dh

CG;C

(k) = 1

i

+ Pr

C

[ FailDe ℄ : (14)

At any point in time, a query L to H has probability at most `=q of making FailDe happen, where

` is the number of queries that have been made to AD

G;H

((q; g; x); �) at this time. Reall that

k = jh2q + 1ij and thus q � 2

k�2

. Putting these observations together we get

Pr

C

[ FailDe ℄ �

Q(k)

2

q

�

Q(k)2

2

k�2

=

O(Q(k)

2

)

2

k

:

Putting this together with Equation (14) ompletes the proof of Equation (10).
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B Any IND-CCA-seure sheme is IND-CCA preserving

We remarked in Setion 1.2 that any asymmetri enryption sheme that is IND-CCA seure is

also IND-CCA preserving. (The interesting thing about the Hash ElGamal sheme is that it is

not IND-CCA seure but is still IND-CCA preserving.) For ompleteness, we state and and prove

this formally here. We begin by realling the de�nition of IND-CCA seurity of an asymmetri

enryption sheme.

Definition. This follows [4℄. Assoiate to AS, an adversary A, and k 2 N, the following experi-

ment.

Experiment Exp

ind-a

AS;A

(k)

Randomly hoose RO R

a

: f0; 1g

�

! f0; 1g

(pk; sk)

$

 AK

R

a

(1

k

) ; b

$

 f0; 1g

Run A with input 1

k

;pk and orales AE

R

a

(pk;LR(�; �; b)), AD

R

a

(sk; �), R

a

Let d denote the output of A

If d = b then return 1 else return 0.

We say that adversary A is legitimate if it never queries AD

R

a

(sk; �) with a iphertext previously

returned by AE

R

s

(pk;LR(�; �; b)). Asymmetri enryption sheme AS is said to be IND-CCA seure

if the funtion

Adv

ind-a

AS;A

(k) = 2 � Pr

h

Exp

ind-a

AS;A

(k) = 1

i

� 1

is negligible for all legitimate polynomial-time adversariesA. IND-CPA seurity is de�ned similarly,

exept the adversary is not given aess to orale AD

R

a

(sk; �).

Result. The following holds in both the standard and the RO models.

Theorem B.1 Let AS be an IND-CCA-seure asymmetri enryption sheme. Then AS is IND-

CCA preserving.

Proof of Theorem B.1: Let AS = (AK;AE;AD) be an IND-CCA-seure asymmetri enryption

sheme and let SS = (SK;SE;SD) be an IND-CCA-seure symmetri enryption sheme. We will

show that for any polynomial-time legitimate hybrid adversary H attaking mm-hybrid enryption

sheme (AS;SS) there exist polynomial-time legitimate adversariesA and S suh that for any k 2 N

Adv

ind-a

AS;SS;H

(k) � 2Adv

ind-a

AS;A

(k) + Adv

ind-a

SS;S

(k) : (15)

Sine AS and SS are assumed IND-CCA seure, the advantage funtions related to A and S above

are negligible, and thus so is the advantage funtion related to H . To omplete the proof, we need

to speify the adversaries A;S and prove Equation (15).

We �rst assoiate to (AS;SS), H , and k 2 N, the following experiments, for i 2 f1; 2; 3; 4g.

Experiment Exp

i

AS;SS;H

(k)

Randomly hoose RO R: f0; 1g

�

! f0; 1g

De�ne ROs R

s

(�) = R(0k�) and R

a

(�) = R(1k�)

(pk; sk)

$

 AK

R

a

(1

k

) ; K

$

 SK

R

s

(1

k

) ; K

0

$

 SK

R

s

(1

k

)

If i = 1 or i = 4 then C

a

$

 AE

R

a

(pk;K) else C

a

$

 AE

R

a

(pk;K

0

) EndIf

If i = 1 or i = 2 then run H with inputs pk; C

a

and orales
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SE

R

s

(K;LR(�; �; 0)), SD

R

s

(K; �), AD

R

a

(sk; �), R

Else run H with inputs pk; C

a

and orales

SE

R

s

(K;LR(�; �; 1)), SD

R

s

(K; �), AD

R

a

(sk; �), R

EndIf

Let d denote the output of H

Return d.

For i 2 f1; 2; 3; 4g, let P

i

denote the probability that Exp

i

AS;SS;H

(k) returns 1. It is easy to see that

Adv

ind-a

AS;SS;H

(k) = P

4

� P

1

= (P

4

� P

3

) + (P

3

� P

2

) + (P

2

� P

1

) :

We will show that there exist legitimate polynomial-time adversaries A

0

, S, and A

00

suh that

P

4

� P

3

= Adv

ind-a

AS;A

0

(k) ; P

3

� P

2

= Adv

ind-a

SS;S

(k) ; and P

2

� P

1

= Adv

ind-a

AS;A

00

(k) : (16)

We obtain Equation (15) from the above by setting A = A

0

if Adv

ind-a

AS;A

0

(k) � Adv

ind-a

AS;A

00

(k), and

A = A

00

otherwise. We now de�ne adversaries A

0

, A

00

, S and prove Equation (16).

Desription of A

0

. Adversary A

0

is given inputs 1

k

;pk and has aess to orales

AE

R

a

(pk;LR(�; �; b)), AD

R

a

(sk; �), and R

a

. Its goal is to guess the bit b. It begins with the fol-

lowing initializations.

K

$

 f0; 1g

k

; K

0

$

 f0; 1g

k

Make query (K

0

;K) to AE

R

a

(pk;LR(�; �; b)), and let C

a

be the response

Then it runs H on inputs publi key pk and iphertext C

a

. In the proess H will query its orales

R

a

; R

s

; SE

R

s

(K;LR(�; �; b)); SD

R

s

(K; �); AD

R

a

(sk; �) : (17)

A

0

will answer these queries. Queries to R

s

are simulated the standard way, by returning a random

value for eah new query and the previously returned value for eah repeated query. A

0

answers

queries to the AD

R

a

(sk; �) and R

a

orales via its own orales of the same name. Sine it possesses

K, it an answer queries to SD

R

s

(K; �) by simply performing the omputation of the deryption

algorithm, replaing alls that the latter makes to R

s

by the above-mentioned simulation, and

returning the answer. A

0

answers queries to SE

R

s

(K;LR(�; �; b)) by using K to simulate orale

SE

R

s

(K;LR(�; �; 1)). When H halts and outputs d, A

0

outputs d.

Desription of A

00

. Adversary A

00

is idential to adversary A

0

, exept that it makes query

(K;K

0

) to orale AE

R

a

(pk;LR(�; �; b)) and it answers queries to SE

R

s

(K;LR(�; �; b)) by using K to

simulate orale SE

R

s

(K;LR(�; �; 0)).

Desription of S. Adversary S is given input 1

k

and has aess to orales SE

R

s

(K;LR(�; �; b)),

SD

R

s

(K; �), and R

s

. Its goal is to guess the bit b. It begins with the following initializations.

K

0

$

 f0; 1g

k

; (pk; sk)

$

 AK

R

a

(1

k

) ; C

a

$

 AE

pk

(K

0

)

Then it runs H on inputs publi key pk and iphertext C

a

. In the proess H will query the orales

listed in Equation (17). S will answer these queries. Queries to R

a

are simulated the standard

way, by returning a random value for eah new query and the previously returned value for eah

repeated query. S answers queries to the SE

R

s

(K;LR(�; �; b)), SD

R

s

(K; �), and R

s

orales via its own

orales of the same name. Sine it possesses the seret key sk, it an answer queries to AD

R

a

(sk; �)
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by simply performing the omputation of the deryption algorithm, replaing alls that the latter

makes to R

a

by the above-mentioned simulation, and returning the answer. When H halts and

outputs d, S outputs d.

Analysis. Clearly, if H is polynomial-time and legitimate, so are A

0

, A

00

, and S. It is easy to see

that Equation (16) holds.
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