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Abstra
t. This paper studies the relation among simulator-based and


omparison-based de�nitions of semanti
 se
urity. The de�nitions are


onsidered in a more general framework than the ordinal one; namely, an

adversary is assumed to have a

ess to prior information of a plaintext.

If the framework is restri
ted to the ordinal one, then all the se
urity

notions 
onsidered in this paper, in
luding indistinguishability, are shown

to be equivalent. On the other hand, the equivalen
e is not ne
essarily

valid in the general framework. In fa
t, it is shown that no en
ryption

s
heme is se
ure in the sense of 
omparison-based semanti
 se
urity in the

strongest forms. Furthermore, a suÆ
ient 
ondition for the equivalen
e

between semanti
 se
urity and indistinguishability is derived.
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1 Introdu
tion

The notion of semanti
 se
urity is a dire
t formulation of the intuition of pri-

va
y[8℄. An en
ryption s
heme is 
alled semanti
ally se
ure if any adversary (a

polynomial-time algorithm atta
king an en
ryption s
heme of interest) 
annot

extra
t, from a given 
iphertext, any non-negligible information about the 
or-

responding plaintext. Hen
e this notion 
an be regarded as a 
omputational

version of the perfe
t se
re
y introdu
ed in [11℄. In 
onsidering provable se
urity

of pra
ti
al en
ryption s
hemes (e.g. [2,4, 12℄), however, it is usually 
onvenient

to employ, as the se
urity goal of the systems, another se
urity notion 
alled

indistinguishability, whi
h is rather arti�
ial but equivalent to semanti
 se
urity

(in the ordinary framework)[6,8, 13℄.
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To formalize semanti
 se
urity, two di�erent de�nitions 
an be used: namely,

the simulator-based and 
omparison-based de�nitions (see [3℄). The simulator-

based de�nition requests that, for any adversary given a 
iphertext, there exists a

polynomial-time algorithm, 
alled a simulator, whi
h su

eeds in the atta
k (i.e.


an extra
t non-negligible information) without the 
iphertext essentially as well

as the adversary. The 
omparison-based de�nition requests that any adversary

in possession of the 
iphertext obtains no advantage over one whi
h performs

only random guesses. Sin
e random guesses 
an be regarded as a spe
ial 
ase

of the simulation, the 
omparison-based notion may seem stronger than the

simulator-based one. On the other hand, in the simulator-based de�nition, there

is no restri
tion on the 
omputability of partial information whi
h an adversary

wishes to extra
t[6, 8℄, while in the 
omparison-based one, the partial information

has to be eÆ
iently generated and evaluated by a polynomial-time algorithm.

This may seem to show that the former is stronger than the latter.

Regarding the notion of non-malleability[5℄, it has been shown that the

simulator-based one is equivalent to the 
omparison-based one[3℄. This paper


on
erns the 
ase of semanti
 se
urity in a more general framework where prior

information of a plaintext is available to an adversary. The signi�
an
e of adopt-

ing this framework stems from the following fa
ts. First, from the pra
ti
al point

of view, in most appli
ations the plaintext may not be uniformly distributed and

its prior informationmay be a

essible to an adversary (see [6℄). Se
ond, from the

theoreti
al point of view, investigating se
urity notions in the general framework

may reveal more detailed and novel relation among them.

The results of this paper are as follows. If the framework is restri
ted to

the ordinal one, then all the se
urity notions 
onsidered in this paper, in
luding

indistinguishability, are shown to be equivalent. This 
an be seen as eviden
e

that our de�nitions in the general framework are 
onsistent with the ordinary

ones. On the other hand, the equivalen
e is not ne
essarily valid in the general

framework. In fa
t, it is shown that there exists no en
ryption s
heme whi
h is

se
ure in the sense of 
omparison-based semanti
 se
urity in the strongest forms.

However, that in weaker forms is shown to be equivalent to indistinguishability,

whi
h gives a suÆ
ient 
ondition for the equivalen
e between semanti
 se
urity

and indistinguishability.

2 Semanti
 se
urity

In this se
tion, we provide several de�nitions of semanti
 se
urity; some are

based on simulator, and the others are based on 
omparison.

We begin with providing some de�nitions whi
h will be used later.

De�nition 1 (Publi
 key en
ryption s
heme). A publi
 key en
ryption

s
heme is a triplet of algorithms, PE = (K; E ;D), su
h that

{ the key generation algorithm K is a probabilisti
 polynomial-time algorithm

whi
h takes a se
urity parameter k 2 N and outputs a pair (pk; sk) of mat
h-

ing publi
 and se
ret keys,



{ the en
ryption algorithm E is a probabilisti
 polynomial-time algorithm whi
h

takes a publi
 key pk and a plaintext x and outputs a 
iphertext y,

{ the de
ryption algorithm D is a deterministi
 polynomial-time algorithm

whi
h takes a se
ret key sk and a 
iphertext y and outputs either a plaintext

x or a spe
ial symbol ? to indi
ate that the 
iphertext is invalid,

where D

sk

(E

pk

(x)) = x for all x and (pk; sk).

De�nition 2 (Negligible fun
tion). A fun
tion � : N ! R, k 7! �(k), is


alled negligible if

8
 � 09k




�

k > k




) 0 � �(k) < k




�

:

Suppose here that we obtain partial information about a plaintext, and 
on-

sider the posterior distribution of the plaintext. The following de�nition is a

formalization of the sets of algorithms whi
h sample the plaintext a

ording to

the posterior distribution. As we will see in the next se
tion, the 
omputational


omplexity of su
h sampling algorithms plays an important role in 
onsidering

the equivalen
e between semanti
 se
urity and indistinguishability.

De�nition 3. Let A and M

�

be algorithms and let � be a fun
tion of N into R,

k 7! �(k) � 0. For k 2 N, 
onsider

Experiment E(k)

(M; g)  A(k); x

1

 M ; w  g(x

1

); x

0

 M

�

(M; g;w);

Then M

�

is 
alled an �-
onditional algorithm for A if

X

x

�

�

Pr[E(k) : x

0

= xjM = M

0

; g = g

0

; w = w

0

℄

� Pr[E(k) : x

1

= xjM = M

0

; g = g

0

; w = w

0

℄

�

�

� �

for any M

0

, g

0

and w

0

. For given A as above,

M

�

(A; �) = fM

�

jM

�

is an �-
onditional algorithm for Ag;

M

�

(A) = fM

�

j9�(M

�

2 M

�

(A; �) ^ � is negligible)g;

M

�

P

(A; �) = fM

�

jM

�

2 M

�

(A; �) ^M

�

is 
omputable in polynomial-timeg;

M

�

P

(A) = fM

�

j9�(M

�

2 M

�

P

(A; �) ^ � is negligible)g:

We now provide several results related to this de�nition.

Proposition 1. Let A be as in de�nition 3.

1. If g = ", then M 2M

�

(A; 0).

2. If g is a bije
tive fun
tion su
h that both g and g

�1

are 
omputable in

polynomial-time, then M

�

(M; g;w):=g

�1

(w) 2M

�

(A; 0).

3. If #fxjx Mg is �nite and g is deterministi
, then there exists an algorithm

M

�

2 M

�

P

(A; 0).



Proof. The proof is 
lear from the de�nition. ut

Lemma 1. Let A and � be as in de�nition 3, and suppose that M

�

2M

�

(A; �).

Then

X

x;x

0

�

�

Pr[E(k) : x

1

= x ^ x

0

= x

0

℄� Pr[E(k) : x

1

= x

0

^ x

0

= x℄

�

�

� 2�:

Proof. For given M

0

, g

0

and w

0

, let p

0

and p

b

denote

p

0

= Pr[E(k) :M = M

0

; g = g

0

; w = w

0

℄;

p

b

(x) = Pr[E(k) : x

b

= xjM = M

0

; g = g

0

; w = w

0

℄;

respe
tively. It is straightforward to verify that

X

x;x

0

�

�

Pr[E(k) : x

1

= x ^ x

0

= x

0

℄� Pr[E(k) : x

1

= x

0

^ x

0

= x℄

�

�

=

X

M

0

;h

0

;s

0

X

x;x

0

p

0

�

�

p

1

(x)p

0

(x

0

)� p

1

(x

0

)p

0

(x)

�

�

=

X

M

0

;h

0

;s

0

X

x;x

0

p

0

�

�

p

1

(x)p

0

(x

0

)� p

0

(x)p

0

(x

0

) + p

0

(x)p

0

(x

0

)� p

1

(x

0

)p

0

(x)

�

�

�

X

x;x

0

�

Pr[E(k) : x

0

= x

0

℄

�

�

p

1

(x)� p

0

(x)

�

�

+ Pr[E(k) : x

0

= x℄

�

�

p

1

(x

0

) � p

0

(x

0

)

�

�

�

�2�

X

x

Pr[E(k) : x

0

= x℄ = 2�;

where the last inequality follows from that in de�nition 3. This 
ompletes the

proof. ut

Proposition 2. Let A be as in de�nition 3. If there exists a one-way fun
tion,

then there exists a polynomial-time algorithm A su
h that M

�

P

(A) = ;.

Proof. Let g be a (deterministi
) one-way fun
tion, and A be an algorithmwhi
h

takes k and outputs (f0; 1g

k

U

; g), where X

U

denotes the uniform distribution over

the set X. Suppose thatM

�

P

(A) is not empty. Let M

�

be an element ofM

�

P

(A),

and � be a negligible fun
tion su
h that M

�

2M

�

P

(A; �). For k 2 N, 
onsider

Experiment E(k)

Pr[(f0; 1g

k

U

; g) A(k); x

1

 f0; 1g

k

U

; w g(x

1

); x

0

 M

�

(f0; 1g

k

U

; g; w);

Then

Pr[E(k) : x

0

2 g

�1

(w)℄ = Pr[E(k) : g(x

0

) = w℄

=

X

x;x

0

Pr[E(k) : x

1

= x ^ x

0

= x

0

℄Pr[E(k) : g(x

0

) = wjx

1

= x ^ x

0

= x

0

℄

�Pr[E(k) : g(x

1

) = w℄� 2� = 1� 2�;

where the inequality follows from lemma 1. This 
ontradi
ts the one-wayness of

g, so the proposition follows. ut



The notion of semanti
 se
urity was �rst introdu
ed in [8℄, and later re�ned

in [6℄. The de�nitions formalize the intuition of priva
y that whatever 
an be

eÆ
iently 
omputed about a plaintext from its 
iphertext 
an also be 
omputed

without the 
iphertext. The following de�nition is slightly modi�ed from the

original de�nition[6℄. Another version of the de�nition and related results 
an

be found in [6℄. See also [7℄ for a more general atta
king model.

De�nition 4 (Simulator-based semanti
 se
urity). Let PE = (K; E ;D)

be an en
ryption s
heme. Let A be a polynomial-time adversary and A

0

be a

polynomial-time algorithm whi
h simulates A (A

0

is 
alled a simulator of A). Let

F be a probabilisti
 fun
tion. For atk 2 f
pa; 

a1; 

a2g and k 2 N, 
onsider

Experiment Exp

sss�atk

PE;A;F

(k)

(pk; sk) K(k); (M;h; s

0

; s

1

) A

O

1

(�)

1

(pk); x M ;

y  E

pk

(x); z  h(x); t (s

0

; s

1

; z); v  A

O

2

(�)

2

(t; y);

if (F (v; x;M; h; s

0

) = 1 ^ v 6= ") then d 1 else d 0;

return d

Experiment Exp

sss�atk

PE;A

0

;F

(k)

(M;h; s

0

; s

1

) A

0

1

(k); x M ; z  h(x); t (s

0

; s

1

; z); v  A

0

2

(t);

if (F (v; x;M; h; s

0

) = 1 ^ v 6= ") then d 1 else d 0;

return d

Here " is the empty string, jxj = jx

0

j for any x; x

0

 M , and A is assumed to

have a

ess to the ora
les O

1

(�) and O

2

(�) as follows:

O

1

(�) = "(�) and O

2

(�) = "(�) for atk = 
pa

O

1

(�) = D

sk

(�) and O

2

(�) = "(�) for atk = 

a1

O

1

(�) = D

sk

(�) and O

2

(�) = D

sk

(�) for atk = 

a2

where "(�) is the fun
tion whi
h, on any input, returns ". In the 
ase of CCA2,

A

2

is prohibited from asking its ora
le to de
rypt y. Let

Adv

sss�atk

PE;A;A

0

;F

(k) =

�

�

Pr[Exp

sss�atk

PE;A;F

(k) = 1℄� Pr[Exp

sss�atk

PE;A

0

;F

(k) = 1℄

�

�

;

where the probability is taken over the internal 
oin tosses of all the algorithms

and fun
tion. Then PE is said to be se
ure in the sense of SSS-ATK if

8A9A

0

8F

�

Adv

sss�atk

PE;A;A

0

;F

(k) is negligible

�

: (1)

We note that the fun
tion F in the above de�nition is impli
it, and so the def-

inition gives a stronger notion than the 
onventional one. However, as long as

we 
onsider the ordinal framework, these de�nitions are shown to be equiva-

lent. The following lemma, whose proof is essentially based on the impli
itness,

plays an important role in the redu
tion from simulator-based de�nitions to


omparison-based ones.



Lemma 2. Let A and A

0

be algorithms, and F be a fun
tion. For k 2 N, 
on-

sider

Experiment E(k)

a A(k); a

0

 A

0

(k);

De�ne Adv

A;A

0

;F

and Adv

A;A

0

by

Adv

A;A

0

;F

=

�

�

Pr[E(k) : F (a) = 1℄� Pr[E(k) : F (a

0

) = 1℄

�

�

;

Adv

A;A

0

=

X

â

�

�

Pr[E(k) : a = â℄� Pr[E(k) : a

0

= â℄

�

�

;

respe
tively. Suppose that for any F , Adv

A;A

0

;F

is negligible. Then Adv

A;A

0

is

also negligible (i.e. the distribution of a is statisti
ally indistinguishable from that

of a

0

).

Proof. Let A

+

be

A

+

= fâjPr[E(k) : a = â℄ � Pr[E(k) : a

0

= â℄g:

From the assumption, it follows that for the fun
tion F de�ned by

F (a) =

�

1 a 2 A

+

;

0 otherwise;

there exists a negligible fun
tion � su
h that

Adv

A;A

0

;F

=

X

â2A

+

�

�

Pr[E(k) : a = â℄� Pr[E(k) : a

0

= â℄

�

�

� �:

Similarly, it 
an be shown that there exists a negligible fun
tion �

0

su
h that

X

â62A

+

�

�

Pr[E(k) : a = â℄� Pr[E(k) : a

0

= â℄

�

�

� �

0

:

The lemma readily follows from the above inequalities. ut

Next we give a 
omparison-based de�nition of semanti
 se
urity and that of

indistinguishability.

De�nition 5 (Comparison-based semanti
 se
urity). Let PE = (K; E ;D)

be an en
ryption s
heme and let A = (A

1

; A

2

) be a polynomial-time adversary.

Let

^

M

A

be a plaintext-sampling algorithm. For atk 2 f
pa; 

a1; 

a2g, b 2 f0; 1g

and k 2 N, 
onsider

Experiment Exp


ss�atk�b

PE;A;

^

M

A

(k)

(pk; sk) K(k); (M;h; s) A

O

1

(�)

1

(pk); x

1

 M ; z  h(x

1

);

t (s; z); y  E

pk

(x

1

); (v; f) A

O

2

(�)

2

(t; y); x

0

 

^

M

A

(M;h; t);

if v = f(x

b

) then d 1 else d 0;

return d



Here jxj = jx

0

j for any x; x

0

 M , and A is assumed to have ora
le a

ess as in

de�nition 4. Let

Adv


ss�atk

PE;A;

^

M

A

(k) =

�

�

Pr[Exp


ss�atk�1

PE;A;

^

M

A

(k) = 1℄� Pr[Exp


ss�atk�0

PE;A;

^

M

A

(k) = 1℄

�

�

;

where the probability is taken over the internal 
oin tosses of all the algorithms.

Then PE is said to be se
ure in the sense of CSS-ATK if

8A9

^

M

A

�

Adv


ss�atk

PE;A;

^

M

A

(k) is negligible

�

: (2)

De�nition 6 (Indistinguishability). Let PE = (K; E ;D) be an en
ryption

s
heme and let A = (A

1

; A

2

) be a polynomial-time adversary. Let

^

M

A

be a

plaintext-sampling algorithm. For atk 2 f
pa; 

a1; 

a2g, b 2 f0; 1g and k 2 N,


onsider

Experiment Exp

ind�atk�b

PE;A;

^

M

A

(k)

(pk; sk) K(k); (x

0

; x

1

; h; s) A

O

1

(�)

1

(pk); a f0; 1g

U

; z  h(x

a

);

t (s; z); y  E

pk

(x

a

); v

1

 A

O

2

(�)

2

(t; y); v

0

 

^

M

A

(x

0

; x

1

; h; t);

if v

b

= a then d 1 else d 0;

return d

Here jx

0

j = jx

1

j, and A is assumed to have ora
le a

ess as in de�nition 4. Let

Adv

ind�atk

PE;A;

^

M

A

(k) = Pr[Exp

ind�atk�1

PE;A;

^

M

A

(k) = 1℄� Pr[Exp

ind�atk�0

PE;A;

^

M

A

(k) = 1℄;

where the probability is taken over the internal 
oin tosses of all the algorithms.

Then PE is said to be se
ure in the sense of IND-ATK if

8A9

^

M

A

�

Adv

ind�atk

PE;A;

^

M

A

(k) is negligible

�

: (3)

We note that the above de�nitions are weaker than the 
onventional ones (see

e.g. [1℄), be
ause a plaintext-sampling algorithm is used instead of the random

guessing algorithm (i.e. the algorithmM itself). However, as long as we 
onsider

the ordinal framework, the above de�nitions turn out to be equivalent to the


onventional ones.

As we will see in the next se
tion, the above 
omparison-based de�nition

of semanti
 se
urity is too strong to be 
onsidered in the general framework,

be
ause there exists no en
ryption s
heme se
ure in that sense. Hen
e, we provide

several weaker de�nitions.

De�nition 7. Let the se
urity notion GOAL-ATK be de�ned in the same way

as de�nition 4. Then

1. PE is 
alled se
ure in the sense of GOAL

M

-ATK if M is restri
ted to

fx

0

; x

1

g

U

with jx

0

j = jx

1

j,

2. PE is 
alled se
ure in the sense of GOAL

S

-ATK if formula (1) is repla
ed

by

8A8F9A

0

�

Adv

sss�atk

PE;A;A

0

;F

(k) is negligible

�

; (4)



3. PE is 
alled se
ure in the sense of GOAL

F

-ATK if F is restri
ted to su
h

that

9

^

F8v8x8M8h

�

F (v; x;M; h; s

0

) = 1, v =

^

F (x;M; h; s

0

) ^M

�

P

(A

F

) 6= ;

�

;

where A

F

is de�ned by

Algorithm A

O

1

(�);O

2

(�)

F

(k;K; A;

^

F)

(pk; sk) K(k); (M;h; s

0

; s

1

) A

O

1

(�)

1

(pk);

^

F

�

 

^

F

�

(x):=

^

F (x;M; h; s

0

);

return (M;

^

F

�

)

De�nition 8. Let the se
urity notion GOAL-ATK be de�ned in the same way

as de�nition 5. Then

1. PE is 
alled se
ure in the sense of GOAL

M

-ATK if M is restri
ted to

fx

0

; x

1

g

U

with jx

0

j = jx

1

j,

2. PE is 
alled se
ure in the sense of GOAL

S

-ATK if Exp


ss�atk�b

PE;A;

^

M

A

is repla
ed

by

Experiment Exp


ss�atk�b

PE;A;

^

M

A

(k)

(pk; sk) K(k); (M; f; h; s) A

O

1

(�)

1

(pk); x

1

 M ; z  h(x

1

);

t (s; z); y  E

pk

(x

1

); v  A

O

2

(�)

2

(t; y); x

0

 

^

M

A

(M;h; t);

if v = f(x

b

) then d 1 else d 0;

return d

3. PE is 
alled se
ure in the sense of GOAL

F

-ATK if f is restri
ted to su
h

thatM

�

P

(A

f

) 6= ;, where A

f

is de�ned by one of the followings:

Algorithm A

O

1

(�);O

2

(�)

f

(k;K; A)

(pk; sk) K(k); (M;h; s) A

O

1

(�)

1

(pk); x M ; z  h(x);

t (s; z); y  E

pk

(x); (v; f)  A

O

2

(�)

2

(t; y);

return (M; f)

Algorithm A

O

1

(�)

f

(k;K; A)

(pk; sk) K(k); (M; f; h; s) A

O

1

(�)

1

(pk);

return (M; f)

De�nition 9. Let the se
urity notion GOAL-ATK be de�ned in the same way

as above. Then PE is 
alled se
ure in the sense of GOAL

0

-ATK if h is restri
ted

to su
h that M

�

P

(A

h

) 6= ;, where A

h

is de�ned as

Algorithm A

O

1

(�)

h

(k;K; A)

(pk; sk) K(k); (M;h; s) A

O

1

(�)

1

(pk);

return (M;h)

We note that, if h is empty (i.e. if the framework is ordinary), thenM 2M

�

P

(A

h

)

(proposition 1(i)), and soM

�

P

(A

h

) 6= ;.



3 Relation among the de�nitions

In this se
tion, we investigate the relation among the de�nitions given in the

previous se
tion. Before we turn to the general framework, we �rst 
on�rm that

these de�nitions are proper; for this purpose, we show that all the de�nitions

given in the previous se
tion are equivalent in the ordinary framework.

Theorem 1. (i) SSS

0

-ATK ) SSS

0

MSF

-ATK, (ii) SSS

0

MSF

-ATK ) CSS

0

-

ATK, (iii) CSS

0

-ATK ) CSS

0

MSF

-ATK, (iv) CSS

0

MSF

-ATK ) SSS

0

-

ATK.

Proof. (i), (iii) The proof is trivial from the de�nitions.

(ii) Suppose that an en
ryption s
heme PE = (K; E ;D) is se
ure in the

sense of SSS

0

MSF

-ATK. Let B = (B

1

; B

2

) be a CSS

0

-ATK adversary. Let

M

�

be an element ofM

�

P

(A

h

(k;K; B)), and � be a negligible fun
tion su
h that

M

�

2M

�

P

(A

h

(k;K; B); �). By using B and M

�

, let us 
onstru
t the SSS

0

MSF

-

ATK adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(M;h; s) B

O

1

(�)

1

(pk);

x

1

 M ; z  h(x

1

);

x

0

 M

�

(M;h; z);

s

1

 (s; x

1

; z);

return (fx

0

; x

1

g

U

; "(�); "; s

1

)

�

�

�

�

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

(v; f) B

O

2

(�)

2

((s; z); y);

if v = f(x

1

) then d 1 else d 0;

return d

Note that we 
an assume without loss of generality that Adv


ss�atk

PE;B

(k) � 0. In

fa
t, for the 
ase when Adv


ss�atk

PE;B

(k) < 0, we may 
hange the output d to

�

d,

the inversion of d, in the 
onstru
tion of the algorithm A

2

. Now it is 
onvenient

to denote by E(k) the experiment

Experiment E(k)

(pk; sk) K(k); (M;h; s) B

O

1

(�)

1

(pk); x

1

 M ; z  h(x

1

);

t (s; z); x

0

 M

�

(M;h; z); y

1

 E

pk

(x

1

); y

0

 E

pk

(x

0

);

(v

1

; f

1

) B

O

2

(�)

2

(t; y

1

); (v

0

; f

0

) B

O

2

(�)

2

(t; y

0

);

We will show that the advantage

Adv


ss�atk

PE;B;M

�

(k) = Pr[E(k) : v

1

= f

1

(x

1

)℄� Pr[E(k) : v

1

= f

1

(x

0

)℄

is negligible. For this purpose, we 
onsider the fun
tion

^

F given by

^

F (x;M; h; s

0

) =

8

<

:

1 for M = fx

0

; x

1

g

U

; h = "(�); s

0

= " and x = x

1

;

0 for M = fx

0

; x

1

g

U

; h = "(�); s

0

= " and x = x

0

;

" otherwise:



Then the probability that A su

eeds in the atta
k is written as

Pr[Exp

sss�atk

PE;A;

^

F

(k) = 1℄

=

1

2

�

1

2

�

Pr[E(k) : v

1

= f

1

(x

1

)℄ + (1� Pr[E(k) : v

1

= f

1

(x

0

)℄)

�

1

2

�

Pr[E(k) : v

0

= f

1

(x

0

)℄ + (1� Pr[E(k) : v

0

= f

0

(x

1

)℄)

�

�

�

1

2

�

Pr[E(k) : v

1

= f

1

(x

1

)℄ + (1� Pr[E(k) : v

1

= f

1

(x

0

)℄)� �

�

=

1

2

+

1

2

Adv


ss�atk

PE;B;M

�

(k) �

1

2

�;

where the inequality follows from lemma 1. On the other hand, for the above

^

F ,

the probability that A

0

su

eeds in the atta
k is written as

Pr[Exp

sss�atk

PE;A

0

;

^

F

(k) = 1℄

= Pr[(M;h; s

0

; s

1

) A

0

1

(k); x M ; v  A

0

2

((s

0

; s

1

; h(x))) :

v =

^

F (x;M; h; s

0

) ^ v 6= "℄

� Pr[(fx

0

; x

1

g

U

; "(�); "; s

1

) A

0

1

(k); x fx

0

; x

1

g

U

; v  A

0

2

(("; s

1

; ")) :

v =

^

F (x; fx

0

; x

1

g

U

; "(�); ")℄

= Pr[(fx

0

; x

1

g

U

; "(�); "; s

1

) A

0

1

(k); b f0; 1g

U

; v  A

0

2

(("; s

1

; ")) :

(b = 1 ^ v = 1) _ (b = 0 ^ v = 0)℄

=

1

2

Pr[(fx

0

; x

1

g

U

; "; s

0

; s

1

) A

0

1

(k); v  A

0

2

(("; s

1

; ")) : v = 1 _ v = 0℄ �

1

2

:

Hen
e, we obtain

Adv

sss�atk

PE;A;A

0

;F

(k) +

1

2

� �

1

2

Adv


ss�atk

PE;B;M

�

(k) (� 0)

for any A

0

. Sin
e PE is supposed to be se
ure in the sense of SSS

0

MSF

-ATK,

the advantage Adv

sss�atk

PE;A;A

0

;F

(k) is negligible for some A

0

, and so Adv


ss�atk

PE;B;M

�

�

(k)

is also negligible. This shows that, for any CSS

0

-ATK adversary B, there exists

^

M

B

(M;h; t) = M

�

(M;h; z) su
h that Adv


ss�atk

PE;B;

^

M

B

(k) is negligible. Thus the

assertion (ii) follows.

(iv) Suppose that an en
ryption s
heme PE = (K; E ;D) is se
ure in the

sense of CSS

0

MSF

-ATK. Let B = (B

1

; B

2

) be an SSS

0

-ATK adversary. Let

M

�

be an element ofM

�

P

(A

h

(k;K; B)), and � be a negligible fun
tion su
h that

M

�

2M

�

P

(A

h

(k;K; B); �). By using B and M

�

, let us 
onstru
t the CSS

0

MSF

-



ATK adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(M;h; s

0

; s

1

) B

O

1

(�)

1

(pk);

x

1

 M ; z  h(x

1

);

x

0

 M

�

(M;h; z);

s (s

0

; s

1

; x

0

; x

1

; z);

f  f(x):=

�

1 for x = x

1

;

0 for x = x

0

;

return (fx

0

; x

1

g

U

; f; "(�); s)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

v

0

 B

O

2

(�)

2

((s; z); y); b f0; 1g

U

;

v

b

 B

O

2

(�)

2

((s; z); E

pk

(x

b

));

if v

0

= v

b

then v  b else v  

�

b;

return v

Furthermore, let

^

M

A

be a plaintext-sampling algorithm for A, and, by using B

and M

�

, let us 
onstru
t B

0

= (B

0

1

; B

0

2

) as

Algorithm B

0

1

(k)

(pk

0

; sk

0

) K(k);

(M;h; s

0

; s

1

) B

O

1

(�)

1

(pk

0

);

s

0

1

 (s

1

; pk

0

; sk

0

;M; h);

return (M;h; s

0

; s

0

1

)

�

�

�

�

�

�

�

�

�

�

Algorithm B

0

2

(t)

x M

�

(M;h; z); y  E

pk

0

(x);

t

0

 (s; z); v  B

O

2

(�)

2

(t

0

; y);

return v

Note that B

0


an answer queries from B be
ause it has the se
ret key sk

0

. It is

now 
onvenient to denote by E(k) the experiment

Experiment E(k)

(pk; sk) K(k); (M;h; s

0

; s

1

) B

O

1

(�)

1

(pk); x

1

 M ; z  h(x

1

);

t (s

0

; s

1

; z); x

0

 M

�

(M;h; z); y

1

; y

0

1

 E

pk

(x

1

); y

0

 E

pk

(x

0

);

v

1

 B

O

2

(�)

2

(t; y

1

); v

0

1

 B

O

2

(�)

2

(t; y

0

1

); v

0

 B

O

2

(�)

2

(t; y

0

);

Here we introdu
e the random variable R to denote the triplet of the random

variablesM , h and t (i.e. R = (M;h; t)). Furthermore, let X and R be the set of

all possible assignments of x and R respe
tively, and let 
 = X �X �R. Here,

if we de�ne the mapping of 
 into R, � : 
 ! R, by

� : (m

0

;m

1

; r) 7! Pr[x

0

= m

0

; x

1

= m

1

; R = r℄;

then the triplet P = (
; 2




; �) 
onstitutes a dis
rete probability spa
e. Let V

be the set of all possible values of v, the output from B

2

. For v 2 V, we de�ne

the random variables on P, X

v

and Y

v

, by writing

X

v

= p

1

(vjm

0

;m

1

; r)� p

0

(vjm

0

;m

1

; r);

Y

v

= q

1

(vjm

0

;m

1

; r)� q

0

(vjm

0

;m

1

; r);

where

p

b

(vjm

0

;m

1

; r) = Pr[E(k) : v

b

= vjx

0

= m

0

; x

1

= m

1

; R = r℄;

q

b

(vjm

0

;m

1

; r) = Pr[E(k) : F (v; x

b

;M; h) = 1jx

0

= m

0

; x

1

= m

1

; R = r℄:



Then Pr[Exp


ss�atk�1

PE;A;

^

M

A

(k) = 1℄ and Adv

sss�atk

PE;B;B

0

;F

(k) are now expressed, in terms

of X

v

and Y

v

, as

Pr[Exp


ss�atk�1

PE;A;

^

M

A

(k) = 1℄ �

1

2

+

1

4

X

v2V

E

�

[X

2

v

℄�

1

2

�;

Adv

sss�atk

PE;B;B

0

;F

(k) �

1

2

X

v2V

E

�

[X

v

Y

v

℄ + �;

where E

�

[�℄ denotes the expe
tation with respe
t to the probability measure �,

and the inequalities follow from lemma 1 as before. The above expressions may

fa
ilitate the 
omparison between the advantages. In fa
t it is easy to see that

E

�

[X

2

v

℄E

�

[Y

2

w

℄ + E

�

[X

2

w

℄E

�

[Y

2

v

℄ � 2E

�

[X

v

Y

v

℄E

�

[X

w

Y

w

℄:

Furthermore, sin
e q

0

and q

1

are 
onditional probabilities, it 
an be shown that

X

v2V

E

�

[Y

2

v

℄ � 2:

On the other hand, sin
e the output from M

A

is independent of that from A

2

,

we obtain

Pr[Exp


ss�atk�0

PE;A;

^

M

A

(k) = 1℄ �

1

2

as in the proof of (ii). These inequalities give that

2Adv


ss�atk

PE;A;

^

M

A

(k) + 2� �

�

Adv

sss�atk

PE;B;B

0

;F

(k)

�

2

:

Sin
e PE is supposed to be se
ure in the sense of CSS

0

MSF

-ATK, the advan-

tage Adv

sss�atk

PE;A;

^

M

A

(k) is negligible for some

^

M

A

, and so Adv


ss�atk

PE;B;B

0

;F

(k) is also

negligible. Hen
e the theorem follows. ut

Corollary 1. All the se
urity notions with prime are equivalent.

Proof. The proof readily follows from the above theorem, together with theorem

2, whi
h shows the equivalen
e between 
omparison-based semanti
 se
urity (in

weaker forms) and indistinguishability. ut

Having observed the relation among the de�nitions in the ordinary frame-

work, we now examine the relation in the general framework. The results are

summarized in �gure 1. We �rst show that 
omparison-based semanti
 se
urity

in some weaker forms is equivalent to indistinguishability.

Theorem 2. (i) CSS

MF

-ATK ) CSS

MSF

-ATK. (ii) CSS

MSF

-ATK )

IND-ATK, (iii) IND-ATK ) CSS

MF

-ATK.

Proof. (i) The proof is trivial from the de�nitions.



CSS

CSS

S

CSS

M

CSS

F

CSS

MS

CSS

SF

CSS

MF

CSS

MSF

SSS

SSS

M

SSS
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SSS
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SSS
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SSS
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�

�

�+
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�
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�
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Q
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�

�
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�

�

�
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�

�

�

�

�

�
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�
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Fig. 1. Relations among se
urity notions in the general framework. The arrow from

X to Y , X ! Y , shows that the se
urity notion X-ATK implies the se
urity notion

Y -ATK. No en
ryption s
heme is se
ure in the sense of the boxed notions.

(ii) Suppose that an en
ryption s
heme PE = (K; E ;D) is se
ure in the sense

of CSS

MSF

-ATK. Let B = (B

1

; B

2

) be an IND-ATK adversary. By using B,

let us 
onstru
t the CSS

MSF

-ATK adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(x

0

; x

1

; h; s) B

O

1

(�)

1

(pk);

s

0

 (s; x

0

; x

1

);

f  f(x):=

�

1 for x = x

1

;

0 for x = x

0

;

return (fx

0

; x

1

g

U

; f; h; s

0

)

�

�

�

�

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

v  B

O

2

(�)

2

((s; z); y);

return v

Let

^

M

A

(fx

0

; x

1

g

U

; h; t) be a plaintext-sampling algorithm for A. Consider the

plaintext-sampling algorithm for B given by

^

M

B

(x

0

; x

1

; h; t):=

^

M

A

(fx

0

; x

1

g

U

; h; (s; z)):

It then follows that

Adv


ss�atk

PE;A;

^

M

A

(k) =

1

2

Adv

ind�atk

PE;B;

^

M

B

(k):

Sin
e PE is supposed to be se
ure in the sense of CSS

MSF

-ATK, the left-hand

side is negligible for some

^

M

A

, and so the right-hand side is also negligible. Thus

the assertion (ii) follows.

(iii) Suppose that an en
ryption s
heme PE = (K; E ;D) is se
ure in the

sense of IND-ATK. Let B = (B

1

; B

2

) be an SSS

M F

-ATK adversary. Let M

�

be an element of M

�

P

(A

f

(k;K; B)), and � be a negligible fun
tion su
h that

M

�

2M

�

P

(A

f

(k;K; B); �). By using B andM

�

, let us 
onstru
t the IND-ATK

adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(fx

0

; x

1

g

U

; h; s) B

O

1

(�)

1

(pk);

s

0

 (s; x

0

; x

1

);

return (fx

0

; x

1

g

U

; h; s

0

)

�

�

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

(v; f) B

O

2

(�)

2

((s; z); y);

x M

�

(fx

0

; x

1

g

U

; f; v);

if x = x

1

then d 1 else d 0;

return d



Let

^

M

A

(x

0

; x

1

; h; t) be a plaintext-samplingalgorithm forA. Consider the plaintext-

sampling algorithm for B given by

^

M

B

(fx

0

; x

1

g

U

; h; t):=

^

M

A

(x

0

; x

1

; h; (s; z)):

It then follows that

Adv

ind�atk

PE;A;

^

M

A

(k) + � �

1

2

Adv


ss�atk

PE;B;

^

M

B

(k):

Sin
e PE is supposed to be se
ure in the sense of IND-ATK, the left-hand side

is negligible for some

^

M

A

, and so the right-hand side is also negligible. Hen
e

the theorem follows. ut

The following theorem 
an be shown in the same way as above.

Theorem 3. CSS

SF

-ATK ) CSS

F

-ATK,

Proof. Suppose that an en
ryption s
heme PE = (K; E ;D) is se
ure in the sense

of CSS

SF

-ATK. Let B = (B

1

; B

2

) be a CSS

F

-ATK adversary. Let M

�

be an

element of M

�

P

(A

f

(k;K; B)), and � be a negligible fun
tion su
h that M

�

2

M

�

P

(A

f

(k;K; B); �). By using B and M

�

, let us 
onstru
t the CSS

SF

-ATK

adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(M;h; s) B

O

1

(�)

1

(pk);

f

0

 f

0

(x):=x;

return (M; f

0

; h; s)

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

(v; f)  B

O

2

(�)

2

(t; y);

x M

�

(M; f; v);

return x

Let

^

M

A

(M;h; t) be a plaintext-sampling algorithm for A. Consider the plaintext-

sampling algorithm for B given by

^

M

B

(M;h; t):=

^

M

A

(M;h; t):

It then follows that

Adv


ss�atk

PE;A;

^

M

A

(k) + � �

1

2

Adv


ss�atk

PE;B;

^

M

B

(k):

Sin
e PE is supposed to be se
ure in the sense of CSS

SF

-ATK, the left-hand

side is negligible for some

^

M

A

, and so the right-hand side is also negligible. This


ompletes the proof. ut

Next we 
onsider the relation between simulator-based and 
omparison-based

de�nitions of semanti
 se
urity.

Theorem 4. (i) SSS-ATK ) CSS

F

-ATK, (ii) SSS

M

-ATK ) CSS

MF

-

ATK.



Proof. (i) Suppose that an en
ryption s
heme PE = (K; E ;D) is se
ure in the

sense of SSS-ATK. Let B = (B

1

; B

2

) be a CSS

F

-ATK adversary. Let M

�

be an element of M

�

P

(A

f

(k;K; B)), and � be a negligible fun
tion su
h that

M

�

2M

�

P

(A

f

(k;K; B); �). By using B and M

�

, let us 
onstru
t the SSS-ATK

adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(M;h; s) B

O

1

(�)

1

(pk);

s

0

 s; s

1

 M ;

return (M;h; s

0

; s

1

)

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

(v; f)  B

O

2

(�)

2

((s; z); y);

x M

�

(M; f; v);

return x

LetA

0

= (A

0

1

; A

0

2

) be a simulator ofA. Consider the plaintext-samplingalgorithm

for B given by

Algorithm

^

M

B

(M;h; t)

x A

0

2

(t);

return x

Sin
e PE is supposed to be se
ure in the sense of SSS-ATK, it follows from

lemma 2 that the distribution of the output from A is statisti
ally indistinguish-

able from that from A

0

. Therefore there exists a negligible fun
tion �

0

su
h that

�

0

+ 2� � Adv


ss�atk

PE;B;

^

M

B

(k);

where the inequality in lemma 1 has been used. This shows that Adv


ss�atk

PE;B;

^

M

B

(k)

is negligible.

(ii) It is 
lear that the above proof is appli
able only by repla
ing M by

fx

0

; x

1

g

U

. Hen
e the theorem follows. ut

Theorem 5. CSS

MF

-ATK ) SSS

M SF

-ATK,

Proof. Suppose that an en
ryption s
heme PE = (K; E ;D) is se
ure in the

sense of CSS

MF

-ATK. Let B = (B

1

; B

2

) be an SSS

M SF

-ATK adversary,

and

^

F be a fun
tion su
h that M

�

P

(A

f

(k;K; B;

^

F)) 6= ;. Let M

�

be an ele-

ment of M

�

P

(A

f

(k;K; B;

^

F)), and � be a negligible fun
tion su
h that M

�

2

M

�

P

(A

f

(k;K; B;

^

F); �). By using B,

^

F and M

�

, let us 
onstru
t the CSS

MF

-

ATK adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(fx

0

; x

1

g

U

; h; s

0

; s

1

) B

O

1

(�)

1

(pk);

s (s

0

; s

1

);

return (fx

0

; x

1

g

U

; h; s)

�

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

v  B

O

2

(�)

2

(t; y);

f  f(x):=

^

F (x; fx

0

; x

1

g

U

; h; s

0

);

return (v; f)

Let

^

M

A

(x

0

; x

1

; h; t) be a plaintext-sampling algorithm for A. Consider the sim-

ulator of B given by

Algorithm B

0

1

(k)

(pk

0

; sk

0

) K(k);

(fx

0

; x

1

g

U

; h; s

0

; s

1

) B

O

1

(�)

1

(pk

0

);

s

0

1

 (s

1

; pk

0

; sk

0

; fx

0

; x

1

g

U

; h);

return (fx

0

; x

1

g

U

; h; s

0

; s

0

1

)

�

�

�

�

�

�

�

�

�

�

Algorithm B

0

2

(t)

x 

^

M

A

(fx

0

; x

1

g

U

; h; (s

0

; s

1

; z));

v  

^

F (x; fx

0

; x

1

g

U

; h; s

0

);

return v



It then follows that

Adv


ss�atk

PE;A;

^

M

A

(k) = Adv

sss�atk

PE;B;B

0

;

^

F

(k):

Sin
e PE is supposed to be se
ure in the sense of CSS

MF

-ATK, the left-hand

side is negligible for some

^

M

A

, and so the right-hand side is also negligible. ut

Finally,we show that no en
ryption s
heme is se
ure in the sense of 
omparison-

based semanti
 se
urity in the strongest forms. This shows that there exist (triv-

ial) separations among the se
urity notions 
onsidered in this paper.

Theorem 6. No en
ryption s
heme is se
ure in the sense of CSS

S

-ATK and

also CSS-ATK.

Proof. The existen
e of a se
ure en
ryption s
heme implies that of a trapdoor

one-way fun
tion. Thus the theorem follows from the following lemma. ut

Lemma 3. If there exists a one-way fun
tion, then no en
ryption s
heme se
ure

in the sense of CSS

S

-ATK exists.

Proof. Let g be a (deterministi
) one-way fun
tion. Consider the CSS

S

-ATK

adversary given by

Algorithm A

O

1

(�)

1

(pk)

M  M :=f0; 1g

k

;

f  g; h g; s g;

return (M; f; h; s)

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

v  z;

return v

Let

^

M

A

(M;h; t) be a plaintext-sampling algorithm for A. It follows from the

above 
onstru
tion that

Pr[Exp


ss�atk�0

PE;A;

^

M

A

(k) = 1℄ = Pr[Exp


ss�atk�1

PE;A;

^

M

A

(k) = 1℄� Adv


ss�atk

PE;A;

^

M

A

(k)

= 1� Adv


ss�atk

PE;A;

^

M

A

(k):

Thus, if Adv


ss�atk

PE;A;

^

M

A

(k) is negligible, then

^

M

A

outputs x 2 g

�1

(z) with non-

negligible probability. This 
ontradi
ts the one-wayness of g, so the lemma fol-

lows. ut
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