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Abstrat. This paper studies the relation among simulator-based and

omparison-based de�nitions of semanti seurity. The de�nitions are

onsidered in a more general framework than the ordinal one; namely, an

adversary is assumed to have aess to prior information of a plaintext.

If the framework is restrited to the ordinal one, then all the seurity

notions onsidered in this paper, inluding indistinguishability, are shown

to be equivalent. On the other hand, the equivalene is not neessarily

valid in the general framework. In fat, it is shown that no enryption

sheme is seure in the sense of omparison-based semanti seurity in the

strongest forms. Furthermore, a suÆient ondition for the equivalene

between semanti seurity and indistinguishability is derived.
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1 Introdution

The notion of semanti seurity is a diret formulation of the intuition of pri-

vay[8℄. An enryption sheme is alled semantially seure if any adversary (a

polynomial-time algorithm attaking an enryption sheme of interest) annot

extrat, from a given iphertext, any non-negligible information about the or-

responding plaintext. Hene this notion an be regarded as a omputational

version of the perfet serey introdued in [11℄. In onsidering provable seurity

of pratial enryption shemes (e.g. [2,4, 12℄), however, it is usually onvenient

to employ, as the seurity goal of the systems, another seurity notion alled

indistinguishability, whih is rather arti�ial but equivalent to semanti seurity

(in the ordinary framework)[6,8, 13℄.
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To formalize semanti seurity, two di�erent de�nitions an be used: namely,

the simulator-based and omparison-based de�nitions (see [3℄). The simulator-

based de�nition requests that, for any adversary given a iphertext, there exists a

polynomial-time algorithm, alled a simulator, whih sueeds in the attak (i.e.

an extrat non-negligible information) without the iphertext essentially as well

as the adversary. The omparison-based de�nition requests that any adversary

in possession of the iphertext obtains no advantage over one whih performs

only random guesses. Sine random guesses an be regarded as a speial ase

of the simulation, the omparison-based notion may seem stronger than the

simulator-based one. On the other hand, in the simulator-based de�nition, there

is no restrition on the omputability of partial information whih an adversary

wishes to extrat[6, 8℄, while in the omparison-based one, the partial information

has to be eÆiently generated and evaluated by a polynomial-time algorithm.

This may seem to show that the former is stronger than the latter.

Regarding the notion of non-malleability[5℄, it has been shown that the

simulator-based one is equivalent to the omparison-based one[3℄. This paper

onerns the ase of semanti seurity in a more general framework where prior

information of a plaintext is available to an adversary. The signi�ane of adopt-

ing this framework stems from the following fats. First, from the pratial point

of view, in most appliations the plaintext may not be uniformly distributed and

its prior informationmay be aessible to an adversary (see [6℄). Seond, from the

theoretial point of view, investigating seurity notions in the general framework

may reveal more detailed and novel relation among them.

The results of this paper are as follows. If the framework is restrited to

the ordinal one, then all the seurity notions onsidered in this paper, inluding

indistinguishability, are shown to be equivalent. This an be seen as evidene

that our de�nitions in the general framework are onsistent with the ordinary

ones. On the other hand, the equivalene is not neessarily valid in the general

framework. In fat, it is shown that there exists no enryption sheme whih is

seure in the sense of omparison-based semanti seurity in the strongest forms.

However, that in weaker forms is shown to be equivalent to indistinguishability,

whih gives a suÆient ondition for the equivalene between semanti seurity

and indistinguishability.

2 Semanti seurity

In this setion, we provide several de�nitions of semanti seurity; some are

based on simulator, and the others are based on omparison.

We begin with providing some de�nitions whih will be used later.

De�nition 1 (Publi key enryption sheme). A publi key enryption

sheme is a triplet of algorithms, PE = (K; E ;D), suh that

{ the key generation algorithm K is a probabilisti polynomial-time algorithm

whih takes a seurity parameter k 2 N and outputs a pair (pk; sk) of math-

ing publi and seret keys,



{ the enryption algorithm E is a probabilisti polynomial-time algorithm whih

takes a publi key pk and a plaintext x and outputs a iphertext y,

{ the deryption algorithm D is a deterministi polynomial-time algorithm

whih takes a seret key sk and a iphertext y and outputs either a plaintext

x or a speial symbol ? to indiate that the iphertext is invalid,

where D

sk

(E

pk

(x)) = x for all x and (pk; sk).

De�nition 2 (Negligible funtion). A funtion � : N ! R, k 7! �(k), is

alled negligible if

8 � 09k



�

k > k



) 0 � �(k) < k



�

:

Suppose here that we obtain partial information about a plaintext, and on-

sider the posterior distribution of the plaintext. The following de�nition is a

formalization of the sets of algorithms whih sample the plaintext aording to

the posterior distribution. As we will see in the next setion, the omputational

omplexity of suh sampling algorithms plays an important role in onsidering

the equivalene between semanti seurity and indistinguishability.

De�nition 3. Let A and M

�

be algorithms and let � be a funtion of N into R,

k 7! �(k) � 0. For k 2 N, onsider

Experiment E(k)

(M; g)  A(k); x

1

 M ; w  g(x

1

); x

0

 M

�

(M; g;w);

Then M

�

is alled an �-onditional algorithm for A if

X

x

�

�

Pr[E(k) : x

0

= xjM = M

0

; g = g

0

; w = w

0

℄

� Pr[E(k) : x

1

= xjM = M

0

; g = g

0

; w = w

0

℄

�

�

� �

for any M

0

, g

0

and w

0

. For given A as above,

M

�

(A; �) = fM

�

jM

�

is an �-onditional algorithm for Ag;

M

�

(A) = fM

�

j9�(M

�

2 M

�

(A; �) ^ � is negligible)g;

M

�

P

(A; �) = fM

�

jM

�

2 M

�

(A; �) ^M

�

is omputable in polynomial-timeg;

M

�

P

(A) = fM

�

j9�(M

�

2 M

�

P

(A; �) ^ � is negligible)g:

We now provide several results related to this de�nition.

Proposition 1. Let A be as in de�nition 3.

1. If g = ", then M 2M

�

(A; 0).

2. If g is a bijetive funtion suh that both g and g

�1

are omputable in

polynomial-time, then M

�

(M; g;w):=g

�1

(w) 2M

�

(A; 0).

3. If #fxjx Mg is �nite and g is deterministi, then there exists an algorithm

M

�

2 M

�

P

(A; 0).



Proof. The proof is lear from the de�nition. ut

Lemma 1. Let A and � be as in de�nition 3, and suppose that M

�

2M

�

(A; �).

Then

X

x;x

0

�

�

Pr[E(k) : x

1

= x ^ x

0

= x

0

℄� Pr[E(k) : x

1

= x

0

^ x

0

= x℄

�

�

� 2�:

Proof. For given M

0

, g

0

and w

0

, let p

0

and p

b

denote

p

0

= Pr[E(k) :M = M

0

; g = g

0

; w = w

0

℄;

p

b

(x) = Pr[E(k) : x

b

= xjM = M

0

; g = g

0

; w = w

0

℄;

respetively. It is straightforward to verify that

X

x;x

0

�

�

Pr[E(k) : x

1

= x ^ x

0

= x

0

℄� Pr[E(k) : x

1

= x

0

^ x

0

= x℄

�

�

=

X

M

0

;h

0

;s

0

X

x;x

0

p

0

�

�

p

1

(x)p

0

(x

0

)� p

1

(x

0

)p

0

(x)

�

�

=

X

M

0

;h

0

;s

0

X

x;x

0

p

0

�

�

p

1

(x)p

0

(x

0

)� p

0

(x)p

0

(x

0

) + p

0

(x)p

0

(x

0

)� p

1

(x

0

)p

0

(x)

�

�

�

X

x;x

0

�

Pr[E(k) : x

0

= x

0

℄

�

�

p

1

(x)� p

0

(x)

�

�

+ Pr[E(k) : x

0

= x℄

�

�

p

1

(x

0

) � p

0

(x

0

)

�

�

�

�2�

X

x

Pr[E(k) : x

0

= x℄ = 2�;

where the last inequality follows from that in de�nition 3. This ompletes the

proof. ut

Proposition 2. Let A be as in de�nition 3. If there exists a one-way funtion,

then there exists a polynomial-time algorithm A suh that M

�

P

(A) = ;.

Proof. Let g be a (deterministi) one-way funtion, and A be an algorithmwhih

takes k and outputs (f0; 1g

k

U

; g), where X

U

denotes the uniform distribution over

the set X. Suppose thatM

�

P

(A) is not empty. Let M

�

be an element ofM

�

P

(A),

and � be a negligible funtion suh that M

�

2M

�

P

(A; �). For k 2 N, onsider

Experiment E(k)

Pr[(f0; 1g

k

U

; g) A(k); x

1

 f0; 1g

k

U

; w g(x

1

); x

0

 M

�

(f0; 1g

k

U

; g; w);

Then

Pr[E(k) : x

0

2 g

�1

(w)℄ = Pr[E(k) : g(x

0

) = w℄

=

X

x;x

0

Pr[E(k) : x

1

= x ^ x

0

= x

0

℄Pr[E(k) : g(x

0

) = wjx

1

= x ^ x

0

= x

0

℄

�Pr[E(k) : g(x

1

) = w℄� 2� = 1� 2�;

where the inequality follows from lemma 1. This ontradits the one-wayness of

g, so the proposition follows. ut



The notion of semanti seurity was �rst introdued in [8℄, and later re�ned

in [6℄. The de�nitions formalize the intuition of privay that whatever an be

eÆiently omputed about a plaintext from its iphertext an also be omputed

without the iphertext. The following de�nition is slightly modi�ed from the

original de�nition[6℄. Another version of the de�nition and related results an

be found in [6℄. See also [7℄ for a more general attaking model.

De�nition 4 (Simulator-based semanti seurity). Let PE = (K; E ;D)

be an enryption sheme. Let A be a polynomial-time adversary and A

0

be a

polynomial-time algorithm whih simulates A (A

0

is alled a simulator of A). Let

F be a probabilisti funtion. For atk 2 fpa; a1; a2g and k 2 N, onsider

Experiment Exp

sss�atk

PE;A;F

(k)

(pk; sk) K(k); (M;h; s

0

; s

1

) A

O

1

(�)

1

(pk); x M ;

y  E

pk

(x); z  h(x); t (s

0

; s

1

; z); v  A

O

2

(�)

2

(t; y);

if (F (v; x;M; h; s

0

) = 1 ^ v 6= ") then d 1 else d 0;

return d

Experiment Exp

sss�atk

PE;A

0

;F

(k)

(M;h; s

0

; s

1

) A

0

1

(k); x M ; z  h(x); t (s

0

; s

1

; z); v  A

0

2

(t);

if (F (v; x;M; h; s

0

) = 1 ^ v 6= ") then d 1 else d 0;

return d

Here " is the empty string, jxj = jx

0

j for any x; x

0

 M , and A is assumed to

have aess to the orales O

1

(�) and O

2

(�) as follows:

O

1

(�) = "(�) and O

2

(�) = "(�) for atk = pa

O

1

(�) = D

sk

(�) and O

2

(�) = "(�) for atk = a1

O

1

(�) = D

sk

(�) and O

2

(�) = D

sk

(�) for atk = a2

where "(�) is the funtion whih, on any input, returns ". In the ase of CCA2,

A

2

is prohibited from asking its orale to derypt y. Let

Adv

sss�atk

PE;A;A

0

;F

(k) =

�

�

Pr[Exp

sss�atk

PE;A;F

(k) = 1℄� Pr[Exp

sss�atk

PE;A

0

;F

(k) = 1℄

�

�

;

where the probability is taken over the internal oin tosses of all the algorithms

and funtion. Then PE is said to be seure in the sense of SSS-ATK if

8A9A

0

8F

�

Adv

sss�atk

PE;A;A

0

;F

(k) is negligible

�

: (1)

We note that the funtion F in the above de�nition is impliit, and so the def-

inition gives a stronger notion than the onventional one. However, as long as

we onsider the ordinal framework, these de�nitions are shown to be equiva-

lent. The following lemma, whose proof is essentially based on the impliitness,

plays an important role in the redution from simulator-based de�nitions to

omparison-based ones.



Lemma 2. Let A and A

0

be algorithms, and F be a funtion. For k 2 N, on-

sider

Experiment E(k)

a A(k); a

0

 A

0

(k);

De�ne Adv

A;A

0

;F

and Adv

A;A

0

by

Adv

A;A

0

;F

=

�

�

Pr[E(k) : F (a) = 1℄� Pr[E(k) : F (a

0

) = 1℄

�

�

;

Adv

A;A

0

=

X

â

�

�

Pr[E(k) : a = â℄� Pr[E(k) : a

0

= â℄

�

�

;

respetively. Suppose that for any F , Adv

A;A

0

;F

is negligible. Then Adv

A;A

0

is

also negligible (i.e. the distribution of a is statistially indistinguishable from that

of a

0

).

Proof. Let A

+

be

A

+

= fâjPr[E(k) : a = â℄ � Pr[E(k) : a

0

= â℄g:

From the assumption, it follows that for the funtion F de�ned by

F (a) =

�

1 a 2 A

+

;

0 otherwise;

there exists a negligible funtion � suh that

Adv

A;A

0

;F

=

X

â2A

+

�

�

Pr[E(k) : a = â℄� Pr[E(k) : a

0

= â℄

�

�

� �:

Similarly, it an be shown that there exists a negligible funtion �

0

suh that

X

â62A

+

�

�

Pr[E(k) : a = â℄� Pr[E(k) : a

0

= â℄

�

�

� �

0

:

The lemma readily follows from the above inequalities. ut

Next we give a omparison-based de�nition of semanti seurity and that of

indistinguishability.

De�nition 5 (Comparison-based semanti seurity). Let PE = (K; E ;D)

be an enryption sheme and let A = (A

1

; A

2

) be a polynomial-time adversary.

Let

^

M

A

be a plaintext-sampling algorithm. For atk 2 fpa; a1; a2g, b 2 f0; 1g

and k 2 N, onsider

Experiment Exp

ss�atk�b

PE;A;

^

M

A

(k)

(pk; sk) K(k); (M;h; s) A

O

1

(�)

1

(pk); x

1

 M ; z  h(x

1

);

t (s; z); y  E

pk

(x

1

); (v; f) A

O

2

(�)

2

(t; y); x

0

 

^

M

A

(M;h; t);

if v = f(x

b

) then d 1 else d 0;

return d



Here jxj = jx

0

j for any x; x

0

 M , and A is assumed to have orale aess as in

de�nition 4. Let

Adv

ss�atk

PE;A;

^

M

A

(k) =

�

�

Pr[Exp

ss�atk�1

PE;A;

^

M

A

(k) = 1℄� Pr[Exp

ss�atk�0

PE;A;

^

M

A

(k) = 1℄

�

�

;

where the probability is taken over the internal oin tosses of all the algorithms.

Then PE is said to be seure in the sense of CSS-ATK if

8A9

^

M

A

�

Adv

ss�atk

PE;A;

^

M

A

(k) is negligible

�

: (2)

De�nition 6 (Indistinguishability). Let PE = (K; E ;D) be an enryption

sheme and let A = (A

1

; A

2

) be a polynomial-time adversary. Let

^

M

A

be a

plaintext-sampling algorithm. For atk 2 fpa; a1; a2g, b 2 f0; 1g and k 2 N,

onsider

Experiment Exp

ind�atk�b

PE;A;

^

M

A

(k)

(pk; sk) K(k); (x

0

; x

1

; h; s) A

O

1

(�)

1

(pk); a f0; 1g

U

; z  h(x

a

);

t (s; z); y  E

pk

(x

a

); v

1

 A

O

2

(�)

2

(t; y); v

0

 

^

M

A

(x

0

; x

1

; h; t);

if v

b

= a then d 1 else d 0;

return d

Here jx

0

j = jx

1

j, and A is assumed to have orale aess as in de�nition 4. Let

Adv

ind�atk

PE;A;

^

M

A

(k) = Pr[Exp

ind�atk�1

PE;A;

^

M

A

(k) = 1℄� Pr[Exp

ind�atk�0

PE;A;

^

M

A

(k) = 1℄;

where the probability is taken over the internal oin tosses of all the algorithms.

Then PE is said to be seure in the sense of IND-ATK if

8A9

^

M

A

�

Adv

ind�atk

PE;A;

^

M

A

(k) is negligible

�

: (3)

We note that the above de�nitions are weaker than the onventional ones (see

e.g. [1℄), beause a plaintext-sampling algorithm is used instead of the random

guessing algorithm (i.e. the algorithmM itself). However, as long as we onsider

the ordinal framework, the above de�nitions turn out to be equivalent to the

onventional ones.

As we will see in the next setion, the above omparison-based de�nition

of semanti seurity is too strong to be onsidered in the general framework,

beause there exists no enryption sheme seure in that sense. Hene, we provide

several weaker de�nitions.

De�nition 7. Let the seurity notion GOAL-ATK be de�ned in the same way

as de�nition 4. Then

1. PE is alled seure in the sense of GOAL

M

-ATK if M is restrited to

fx

0

; x

1

g

U

with jx

0

j = jx

1

j,

2. PE is alled seure in the sense of GOAL

S

-ATK if formula (1) is replaed

by

8A8F9A

0

�

Adv

sss�atk

PE;A;A

0

;F

(k) is negligible

�

; (4)



3. PE is alled seure in the sense of GOAL

F

-ATK if F is restrited to suh

that

9

^

F8v8x8M8h

�

F (v; x;M; h; s

0

) = 1, v =

^

F (x;M; h; s

0

) ^M

�

P

(A

F

) 6= ;

�

;

where A

F

is de�ned by

Algorithm A

O

1

(�);O

2

(�)

F

(k;K; A;

^

F)

(pk; sk) K(k); (M;h; s

0

; s

1

) A

O

1

(�)

1

(pk);

^

F

�

 

^

F

�

(x):=

^

F (x;M; h; s

0

);

return (M;

^

F

�

)

De�nition 8. Let the seurity notion GOAL-ATK be de�ned in the same way

as de�nition 5. Then

1. PE is alled seure in the sense of GOAL

M

-ATK if M is restrited to

fx

0

; x

1

g

U

with jx

0

j = jx

1

j,

2. PE is alled seure in the sense of GOAL

S

-ATK if Exp

ss�atk�b

PE;A;

^

M

A

is replaed

by

Experiment Exp

ss�atk�b

PE;A;

^

M

A

(k)

(pk; sk) K(k); (M; f; h; s) A

O

1

(�)

1

(pk); x

1

 M ; z  h(x

1

);

t (s; z); y  E

pk

(x

1

); v  A

O

2

(�)

2

(t; y); x

0

 

^

M

A

(M;h; t);

if v = f(x

b

) then d 1 else d 0;

return d

3. PE is alled seure in the sense of GOAL

F

-ATK if f is restrited to suh

thatM

�

P

(A

f

) 6= ;, where A

f

is de�ned by one of the followings:

Algorithm A

O

1

(�);O

2

(�)

f

(k;K; A)

(pk; sk) K(k); (M;h; s) A

O

1

(�)

1

(pk); x M ; z  h(x);

t (s; z); y  E

pk

(x); (v; f)  A

O

2

(�)

2

(t; y);

return (M; f)

Algorithm A

O

1

(�)

f

(k;K; A)

(pk; sk) K(k); (M; f; h; s) A

O

1

(�)

1

(pk);

return (M; f)

De�nition 9. Let the seurity notion GOAL-ATK be de�ned in the same way

as above. Then PE is alled seure in the sense of GOAL

0

-ATK if h is restrited

to suh that M

�

P

(A

h

) 6= ;, where A

h

is de�ned as

Algorithm A

O

1

(�)

h

(k;K; A)

(pk; sk) K(k); (M;h; s) A

O

1

(�)

1

(pk);

return (M;h)

We note that, if h is empty (i.e. if the framework is ordinary), thenM 2M

�

P

(A

h

)

(proposition 1(i)), and soM

�

P

(A

h

) 6= ;.



3 Relation among the de�nitions

In this setion, we investigate the relation among the de�nitions given in the

previous setion. Before we turn to the general framework, we �rst on�rm that

these de�nitions are proper; for this purpose, we show that all the de�nitions

given in the previous setion are equivalent in the ordinary framework.

Theorem 1. (i) SSS

0

-ATK ) SSS

0

MSF

-ATK, (ii) SSS

0

MSF

-ATK ) CSS

0

-

ATK, (iii) CSS

0

-ATK ) CSS

0

MSF

-ATK, (iv) CSS

0

MSF

-ATK ) SSS

0

-

ATK.

Proof. (i), (iii) The proof is trivial from the de�nitions.

(ii) Suppose that an enryption sheme PE = (K; E ;D) is seure in the

sense of SSS

0

MSF

-ATK. Let B = (B

1

; B

2

) be a CSS

0

-ATK adversary. Let

M

�

be an element ofM

�

P

(A

h

(k;K; B)), and � be a negligible funtion suh that

M

�

2M

�

P

(A

h

(k;K; B); �). By using B and M

�

, let us onstrut the SSS

0

MSF

-

ATK adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(M;h; s) B

O

1

(�)

1

(pk);

x

1

 M ; z  h(x

1

);

x

0

 M

�

(M;h; z);

s

1

 (s; x

1

; z);

return (fx

0

; x

1

g

U

; "(�); "; s

1

)

�

�

�

�

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

(v; f) B

O

2

(�)

2

((s; z); y);

if v = f(x

1

) then d 1 else d 0;

return d

Note that we an assume without loss of generality that Adv

ss�atk

PE;B

(k) � 0. In

fat, for the ase when Adv

ss�atk

PE;B

(k) < 0, we may hange the output d to

�

d,

the inversion of d, in the onstrution of the algorithm A

2

. Now it is onvenient

to denote by E(k) the experiment

Experiment E(k)

(pk; sk) K(k); (M;h; s) B

O

1

(�)

1

(pk); x

1

 M ; z  h(x

1

);

t (s; z); x

0

 M

�

(M;h; z); y

1

 E

pk

(x

1

); y

0

 E

pk

(x

0

);

(v

1

; f

1

) B

O

2

(�)

2

(t; y

1

); (v

0

; f

0

) B

O

2

(�)

2

(t; y

0

);

We will show that the advantage

Adv

ss�atk

PE;B;M

�

(k) = Pr[E(k) : v

1

= f

1

(x

1

)℄� Pr[E(k) : v

1

= f

1

(x

0

)℄

is negligible. For this purpose, we onsider the funtion

^

F given by

^

F (x;M; h; s

0

) =

8

<

:

1 for M = fx

0

; x

1

g

U

; h = "(�); s

0

= " and x = x

1

;

0 for M = fx

0

; x

1

g

U

; h = "(�); s

0

= " and x = x

0

;

" otherwise:



Then the probability that A sueeds in the attak is written as

Pr[Exp

sss�atk

PE;A;

^

F

(k) = 1℄

=

1

2

�

1

2

�

Pr[E(k) : v

1

= f

1

(x

1

)℄ + (1� Pr[E(k) : v

1

= f

1

(x

0

)℄)

�

1

2

�

Pr[E(k) : v

0

= f

1

(x

0

)℄ + (1� Pr[E(k) : v

0

= f

0

(x

1

)℄)

�

�

�

1

2

�

Pr[E(k) : v

1

= f

1

(x

1

)℄ + (1� Pr[E(k) : v

1

= f

1

(x

0

)℄)� �

�

=

1

2

+

1

2

Adv

ss�atk

PE;B;M

�

(k) �

1

2

�;

where the inequality follows from lemma 1. On the other hand, for the above

^

F ,

the probability that A

0

sueeds in the attak is written as

Pr[Exp

sss�atk

PE;A

0

;

^

F

(k) = 1℄

= Pr[(M;h; s

0

; s

1

) A

0

1

(k); x M ; v  A

0

2

((s

0

; s

1

; h(x))) :

v =

^

F (x;M; h; s

0

) ^ v 6= "℄

� Pr[(fx

0

; x

1

g

U

; "(�); "; s

1

) A

0

1

(k); x fx

0

; x

1

g

U

; v  A

0

2

(("; s

1

; ")) :

v =

^

F (x; fx

0

; x

1

g

U

; "(�); ")℄

= Pr[(fx

0

; x

1

g

U

; "(�); "; s

1

) A

0

1

(k); b f0; 1g

U

; v  A

0

2

(("; s

1

; ")) :

(b = 1 ^ v = 1) _ (b = 0 ^ v = 0)℄

=

1

2

Pr[(fx

0

; x

1

g

U

; "; s

0

; s

1

) A

0

1

(k); v  A

0

2

(("; s

1

; ")) : v = 1 _ v = 0℄ �

1

2

:

Hene, we obtain

Adv

sss�atk

PE;A;A

0

;F

(k) +

1

2

� �

1

2

Adv

ss�atk

PE;B;M

�

(k) (� 0)

for any A

0

. Sine PE is supposed to be seure in the sense of SSS

0

MSF

-ATK,

the advantage Adv

sss�atk

PE;A;A

0

;F

(k) is negligible for some A

0

, and so Adv

ss�atk

PE;B;M

�

�

(k)

is also negligible. This shows that, for any CSS

0

-ATK adversary B, there exists

^

M

B

(M;h; t) = M

�

(M;h; z) suh that Adv

ss�atk

PE;B;

^

M

B

(k) is negligible. Thus the

assertion (ii) follows.

(iv) Suppose that an enryption sheme PE = (K; E ;D) is seure in the

sense of CSS

0

MSF

-ATK. Let B = (B

1

; B

2

) be an SSS

0

-ATK adversary. Let

M

�

be an element ofM

�

P

(A

h

(k;K; B)), and � be a negligible funtion suh that

M

�

2M

�

P

(A

h

(k;K; B); �). By using B and M

�

, let us onstrut the CSS

0

MSF

-



ATK adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(M;h; s

0

; s

1

) B

O

1

(�)

1

(pk);

x

1

 M ; z  h(x

1

);

x

0

 M

�

(M;h; z);

s (s

0

; s

1

; x

0

; x

1

; z);

f  f(x):=

�

1 for x = x

1

;

0 for x = x

0

;

return (fx

0

; x

1

g

U

; f; "(�); s)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

v

0

 B

O

2

(�)

2

((s; z); y); b f0; 1g

U

;

v

b

 B

O

2

(�)

2

((s; z); E

pk

(x

b

));

if v

0

= v

b

then v  b else v  

�

b;

return v

Furthermore, let

^

M

A

be a plaintext-sampling algorithm for A, and, by using B

and M

�

, let us onstrut B

0

= (B

0

1

; B

0

2

) as

Algorithm B

0

1

(k)

(pk

0

; sk

0

) K(k);

(M;h; s

0

; s

1

) B

O

1

(�)

1

(pk

0

);

s

0

1

 (s

1

; pk

0

; sk

0

;M; h);

return (M;h; s

0

; s

0

1

)

�

�

�

�

�

�

�

�

�

�

Algorithm B

0

2

(t)

x M

�

(M;h; z); y  E

pk

0

(x);

t

0

 (s; z); v  B

O

2

(�)

2

(t

0

; y);

return v

Note that B

0

an answer queries from B beause it has the seret key sk

0

. It is

now onvenient to denote by E(k) the experiment

Experiment E(k)

(pk; sk) K(k); (M;h; s

0

; s

1

) B

O

1

(�)

1

(pk); x

1

 M ; z  h(x

1

);

t (s

0

; s

1

; z); x

0

 M

�

(M;h; z); y

1

; y

0

1

 E

pk

(x

1

); y

0

 E

pk

(x

0

);

v

1

 B

O

2

(�)

2

(t; y

1

); v

0

1

 B

O

2

(�)

2

(t; y

0

1

); v

0

 B

O

2

(�)

2

(t; y

0

);

Here we introdue the random variable R to denote the triplet of the random

variablesM , h and t (i.e. R = (M;h; t)). Furthermore, let X and R be the set of

all possible assignments of x and R respetively, and let 
 = X �X �R. Here,

if we de�ne the mapping of 
 into R, � : 
 ! R, by

� : (m

0

;m

1

; r) 7! Pr[x

0

= m

0

; x

1

= m

1

; R = r℄;

then the triplet P = (
; 2




; �) onstitutes a disrete probability spae. Let V

be the set of all possible values of v, the output from B

2

. For v 2 V, we de�ne

the random variables on P, X

v

and Y

v

, by writing

X

v

= p

1

(vjm

0

;m

1

; r)� p

0

(vjm

0

;m

1

; r);

Y

v

= q

1

(vjm

0

;m

1

; r)� q

0

(vjm

0

;m

1

; r);

where

p

b

(vjm

0

;m

1

; r) = Pr[E(k) : v

b

= vjx

0

= m

0

; x

1

= m

1

; R = r℄;

q

b

(vjm

0

;m

1

; r) = Pr[E(k) : F (v; x

b

;M; h) = 1jx

0

= m

0

; x

1

= m

1

; R = r℄:



Then Pr[Exp

ss�atk�1

PE;A;

^

M

A

(k) = 1℄ and Adv

sss�atk

PE;B;B

0

;F

(k) are now expressed, in terms

of X

v

and Y

v

, as

Pr[Exp

ss�atk�1

PE;A;

^

M

A

(k) = 1℄ �

1

2

+

1

4

X

v2V

E

�

[X

2

v

℄�

1

2

�;

Adv

sss�atk

PE;B;B

0

;F

(k) �

1

2

X

v2V

E

�

[X

v

Y

v

℄ + �;

where E

�

[�℄ denotes the expetation with respet to the probability measure �,

and the inequalities follow from lemma 1 as before. The above expressions may

failitate the omparison between the advantages. In fat it is easy to see that

E

�

[X

2

v

℄E

�

[Y

2

w

℄ + E

�

[X

2

w

℄E

�

[Y

2

v

℄ � 2E

�

[X

v

Y

v

℄E

�

[X

w

Y

w

℄:

Furthermore, sine q

0

and q

1

are onditional probabilities, it an be shown that

X

v2V

E

�

[Y

2

v

℄ � 2:

On the other hand, sine the output from M

A

is independent of that from A

2

,

we obtain

Pr[Exp

ss�atk�0

PE;A;

^

M

A

(k) = 1℄ �

1

2

as in the proof of (ii). These inequalities give that

2Adv

ss�atk

PE;A;

^

M

A

(k) + 2� �

�

Adv

sss�atk

PE;B;B

0

;F

(k)

�

2

:

Sine PE is supposed to be seure in the sense of CSS

0

MSF

-ATK, the advan-

tage Adv

sss�atk

PE;A;

^

M

A

(k) is negligible for some

^

M

A

, and so Adv

ss�atk

PE;B;B

0

;F

(k) is also

negligible. Hene the theorem follows. ut

Corollary 1. All the seurity notions with prime are equivalent.

Proof. The proof readily follows from the above theorem, together with theorem

2, whih shows the equivalene between omparison-based semanti seurity (in

weaker forms) and indistinguishability. ut

Having observed the relation among the de�nitions in the ordinary frame-

work, we now examine the relation in the general framework. The results are

summarized in �gure 1. We �rst show that omparison-based semanti seurity

in some weaker forms is equivalent to indistinguishability.

Theorem 2. (i) CSS

MF

-ATK ) CSS

MSF

-ATK. (ii) CSS

MSF

-ATK )

IND-ATK, (iii) IND-ATK ) CSS

MF

-ATK.

Proof. (i) The proof is trivial from the de�nitions.
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CSS

M

CSS
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Fig. 1. Relations among seurity notions in the general framework. The arrow from

X to Y , X ! Y , shows that the seurity notion X-ATK implies the seurity notion

Y -ATK. No enryption sheme is seure in the sense of the boxed notions.

(ii) Suppose that an enryption sheme PE = (K; E ;D) is seure in the sense

of CSS

MSF

-ATK. Let B = (B

1

; B

2

) be an IND-ATK adversary. By using B,

let us onstrut the CSS

MSF

-ATK adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(x

0

; x

1

; h; s) B

O

1

(�)

1

(pk);

s

0

 (s; x

0

; x

1

);

f  f(x):=

�

1 for x = x

1

;

0 for x = x

0

;

return (fx

0

; x

1

g

U

; f; h; s

0

)

�

�

�

�

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

v  B

O

2

(�)

2

((s; z); y);

return v

Let

^

M

A

(fx

0

; x

1

g

U

; h; t) be a plaintext-sampling algorithm for A. Consider the

plaintext-sampling algorithm for B given by

^

M

B

(x

0

; x

1

; h; t):=

^

M

A

(fx

0

; x

1

g

U

; h; (s; z)):

It then follows that

Adv

ss�atk

PE;A;

^

M

A

(k) =

1

2

Adv

ind�atk

PE;B;

^

M

B

(k):

Sine PE is supposed to be seure in the sense of CSS

MSF

-ATK, the left-hand

side is negligible for some

^

M

A

, and so the right-hand side is also negligible. Thus

the assertion (ii) follows.

(iii) Suppose that an enryption sheme PE = (K; E ;D) is seure in the

sense of IND-ATK. Let B = (B

1

; B

2

) be an SSS

M F

-ATK adversary. Let M

�

be an element of M

�

P

(A

f

(k;K; B)), and � be a negligible funtion suh that

M

�

2M

�

P

(A

f

(k;K; B); �). By using B andM

�

, let us onstrut the IND-ATK

adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(fx

0

; x

1

g

U

; h; s) B

O

1

(�)

1

(pk);

s

0

 (s; x

0

; x

1

);

return (fx

0

; x

1

g

U

; h; s

0

)

�

�

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

(v; f) B

O

2

(�)

2

((s; z); y);

x M

�

(fx

0

; x

1

g

U

; f; v);

if x = x

1

then d 1 else d 0;

return d



Let

^

M

A

(x

0

; x

1

; h; t) be a plaintext-samplingalgorithm forA. Consider the plaintext-

sampling algorithm for B given by

^

M

B

(fx

0

; x

1

g

U

; h; t):=

^

M

A

(x

0

; x

1

; h; (s; z)):

It then follows that

Adv

ind�atk

PE;A;

^

M

A

(k) + � �

1

2

Adv

ss�atk

PE;B;

^

M

B

(k):

Sine PE is supposed to be seure in the sense of IND-ATK, the left-hand side

is negligible for some

^

M

A

, and so the right-hand side is also negligible. Hene

the theorem follows. ut

The following theorem an be shown in the same way as above.

Theorem 3. CSS

SF

-ATK ) CSS

F

-ATK,

Proof. Suppose that an enryption sheme PE = (K; E ;D) is seure in the sense

of CSS

SF

-ATK. Let B = (B

1

; B

2

) be a CSS

F

-ATK adversary. Let M

�

be an

element of M

�

P

(A

f

(k;K; B)), and � be a negligible funtion suh that M

�

2

M

�

P

(A

f

(k;K; B); �). By using B and M

�

, let us onstrut the CSS

SF

-ATK

adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(M;h; s) B

O

1

(�)

1

(pk);

f

0

 f

0

(x):=x;

return (M; f

0

; h; s)

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

(v; f)  B

O

2

(�)

2

(t; y);

x M

�

(M; f; v);

return x

Let

^

M

A

(M;h; t) be a plaintext-sampling algorithm for A. Consider the plaintext-

sampling algorithm for B given by

^

M

B

(M;h; t):=

^

M

A

(M;h; t):

It then follows that

Adv

ss�atk

PE;A;

^

M

A

(k) + � �

1

2

Adv

ss�atk

PE;B;

^

M

B

(k):

Sine PE is supposed to be seure in the sense of CSS

SF

-ATK, the left-hand

side is negligible for some

^

M

A

, and so the right-hand side is also negligible. This

ompletes the proof. ut

Next we onsider the relation between simulator-based and omparison-based

de�nitions of semanti seurity.

Theorem 4. (i) SSS-ATK ) CSS

F

-ATK, (ii) SSS

M

-ATK ) CSS

MF

-

ATK.



Proof. (i) Suppose that an enryption sheme PE = (K; E ;D) is seure in the

sense of SSS-ATK. Let B = (B

1

; B

2

) be a CSS

F

-ATK adversary. Let M

�

be an element of M

�

P

(A

f

(k;K; B)), and � be a negligible funtion suh that

M

�

2M

�

P

(A

f

(k;K; B); �). By using B and M

�

, let us onstrut the SSS-ATK

adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(M;h; s) B

O

1

(�)

1

(pk);

s

0

 s; s

1

 M ;

return (M;h; s

0

; s

1

)

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

(v; f)  B

O

2

(�)

2

((s; z); y);

x M

�

(M; f; v);

return x

LetA

0

= (A

0

1

; A

0

2

) be a simulator ofA. Consider the plaintext-samplingalgorithm

for B given by

Algorithm

^

M

B

(M;h; t)

x A

0

2

(t);

return x

Sine PE is supposed to be seure in the sense of SSS-ATK, it follows from

lemma 2 that the distribution of the output from A is statistially indistinguish-

able from that from A

0

. Therefore there exists a negligible funtion �

0

suh that

�

0

+ 2� � Adv

ss�atk

PE;B;

^

M

B

(k);

where the inequality in lemma 1 has been used. This shows that Adv

ss�atk

PE;B;

^

M

B

(k)

is negligible.

(ii) It is lear that the above proof is appliable only by replaing M by

fx

0

; x

1

g

U

. Hene the theorem follows. ut

Theorem 5. CSS

MF

-ATK ) SSS

M SF

-ATK,

Proof. Suppose that an enryption sheme PE = (K; E ;D) is seure in the

sense of CSS

MF

-ATK. Let B = (B

1

; B

2

) be an SSS

M SF

-ATK adversary,

and

^

F be a funtion suh that M

�

P

(A

f

(k;K; B;

^

F)) 6= ;. Let M

�

be an ele-

ment of M

�

P

(A

f

(k;K; B;

^

F)), and � be a negligible funtion suh that M

�

2

M

�

P

(A

f

(k;K; B;

^

F); �). By using B,

^

F and M

�

, let us onstrut the CSS

MF

-

ATK adversary A = (A

1

; A

2

) as

Algorithm A

O

1

(�)

1

(pk)

(fx

0

; x

1

g

U

; h; s

0

; s

1

) B

O

1

(�)

1

(pk);

s (s

0

; s

1

);

return (fx

0

; x

1

g

U

; h; s)

�

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

v  B

O

2

(�)

2

(t; y);

f  f(x):=

^

F (x; fx

0

; x

1

g

U

; h; s

0

);

return (v; f)

Let

^

M

A

(x

0

; x

1

; h; t) be a plaintext-sampling algorithm for A. Consider the sim-

ulator of B given by

Algorithm B

0

1

(k)

(pk

0

; sk

0

) K(k);

(fx

0

; x

1

g

U

; h; s

0

; s

1

) B

O

1

(�)

1

(pk

0

);

s

0

1

 (s

1

; pk

0

; sk

0

; fx

0

; x

1

g

U

; h);

return (fx

0

; x

1

g

U

; h; s

0

; s

0

1

)

�

�

�

�

�

�

�

�

�

�

Algorithm B

0

2

(t)

x 

^

M

A

(fx

0

; x

1

g

U

; h; (s

0

; s

1

; z));

v  

^

F (x; fx

0

; x

1

g

U

; h; s

0

);

return v



It then follows that

Adv

ss�atk

PE;A;

^

M

A

(k) = Adv

sss�atk

PE;B;B

0

;

^

F

(k):

Sine PE is supposed to be seure in the sense of CSS

MF

-ATK, the left-hand

side is negligible for some

^

M

A

, and so the right-hand side is also negligible. ut

Finally,we show that no enryption sheme is seure in the sense of omparison-

based semanti seurity in the strongest forms. This shows that there exist (triv-

ial) separations among the seurity notions onsidered in this paper.

Theorem 6. No enryption sheme is seure in the sense of CSS

S

-ATK and

also CSS-ATK.

Proof. The existene of a seure enryption sheme implies that of a trapdoor

one-way funtion. Thus the theorem follows from the following lemma. ut

Lemma 3. If there exists a one-way funtion, then no enryption sheme seure

in the sense of CSS

S

-ATK exists.

Proof. Let g be a (deterministi) one-way funtion. Consider the CSS

S

-ATK

adversary given by

Algorithm A

O

1

(�)

1

(pk)

M  M :=f0; 1g

k

;

f  g; h g; s g;

return (M; f; h; s)

�

�

�

�

�

�

�

�

Algorithm A

O

2

(�)

2

(t; y)

v  z;

return v

Let

^

M

A

(M;h; t) be a plaintext-sampling algorithm for A. It follows from the

above onstrution that

Pr[Exp

ss�atk�0

PE;A;

^

M

A

(k) = 1℄ = Pr[Exp

ss�atk�1

PE;A;

^

M

A

(k) = 1℄� Adv

ss�atk

PE;A;

^

M

A

(k)

= 1� Adv

ss�atk

PE;A;

^

M

A

(k):

Thus, if Adv

ss�atk

PE;A;

^

M

A

(k) is negligible, then

^

M

A

outputs x 2 g

�1

(z) with non-

negligible probability. This ontradits the one-wayness of g, so the lemma fol-

lows. ut
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