
A Forward-Secure Public-Key Encryption Scheme

Ran Canetti∗ Shai Halevi∗ Jonathan Katz†

December 23, 2003

Abstract

Cryptographic computations are often carried out on insecure devices for which the threat
of key exposure represents a serious and realistic concern. In an effort to mitigate the damage
caused by exposure of secret keys stored on such devices, the paradigm of forward security
was introduced. In a forward-secure scheme, secret keys are updated at regular periods of
time; exposure of the secret key corresponding to a given time period does not enable an
adversary to “break” the scheme (in the appropriate sense) for any prior time period. A
number of constructions of forward-secure digital signature schemes, key-exchange protocols,
and symmetric-key schemes are known.

We present the first non-trivial constructions of (non-interactive) forward-secure public-key
encryption schemes. Our main construction achieves security against chosen-plaintext attacks
under the decisional bilinear Diffie-Hellman assumption in the standard model. This scheme
is practical, and all parameters grow at most logarithmically with the total number of time
periods. We also give a slightly more efficient scheme in the random oracle model. Both our
schemes can be extended to achieve security against chosen-ciphertext attacks and to support
an unbounded number of time periods.

Toward our goal, we introduce the notion of binary tree encryption and show how to con-
struct a binary tree encryption scheme in the standard model. This new primitive may be of
independent interest. In particular, we use it to construct the first known example of a (hierar-
chical) identity-based encryption scheme that is secure in the standard model. (Here, however,
the notion of security we achieve is slightly weaker than what is achieved in some previous
constructions in the random oracle model.)

Key words: Bilinear Diffie-Hellman, Encryption, Binary-tree encryption, Identity-based encryp-
tion, Forward security, Key exposure.

∗IBM T.J. Watson Research Center, NY, USA. {canetti,shaih}@watson.ibm.com.
†Dept. of Computer Science, University of Maryland, College Park, MD. Portions of this work were done while at

Columbia University. jkatz@cs.umd.edu.

1

Contents

1 Introduction 2

1.1 Our Contributions . 2
1.2 Organization . 4

2 Binary Tree Encryption 4

2.1 The Bilinear Diffie-Hellman Assumption . 6
2.2 A BTE Scheme Based on the BDH Assumption . 7

3 Forward-Secure Public-Key Encryption 12

3.1 Definitions . 12
3.2 Forward-Secure PKE Schemes with Linear Complexity 14
3.3 A Construction with Logarithmic Complexity . 14

A Basing HIBE on BTE 18

A.1 Definitions . 19
A.2 From BTE to HIBE . 20

B Basing NIZK on Publicly-Verifiable Trapdoor Predicates 21

1

1 Introduction

Exposure of secret keys can be a devastating attack on a cryptosystem since such an attack typically
implies that all security guarantees are lost. Indeed, standard notions of security offer no protection
whatsoever once the secret key of the system has been compromised. With the threat of key
exposure becoming more acute as cryptographic computations are performed more frequently on
poorly protected devices (smart-cards, mobile phones, even PCs), new techniques are needed to
deal with this concern.

A variety of methods have been introduced in an attempt to deal with this threat (including
secret sharing [36], threshold cryptography [14], and proactive cryptography [33]). One promising
approach — which we focus on here — is to construct forward secure cryptosystems. This notion
was first proposed in the context of key-exchange protocols by Günther [22] and Diffie, et al. [15]:
a forward-secure key-exchange protocol guarantees that exposure of long-term secret information
does not compromise the security of previously-generated session keys. We remark that a forward-
secure key-exchange protocol naturally gives rise to a forward-secure interactive encryption scheme
in which the sender and receiver generate a shared key which is used to encrypt a single message
and is then promptly erased.

Subsequently, Anderson [3] suggested forward security for the more challenging non-interactive
setting. The lifetime of the system is divided into N intervals (or time periods) labeled 0, . . . , N−1.
The receiver initially stores secret key SK0 and this secret key “evolves” with time. Namely, at
the beginning of time period i, the receiver applies some function to the “previous” key SKi−1 to
derive the “current” key SKi; key SKi−1 is then erased and SKi is used for all secret cryptographic
operations during period i. The public (encryption) key remains fixed throughout the lifetime of
the scheme; this is crucial for making such a scheme viable. A forward-secure encryption scheme
guarantees that even if an adversary learns SKi (for some i), messages encrypted during all time
periods prior to i remain secret (a formal definition is given in Section 3). Note that since the
adversary obtains all secrets existing at time i, the model inherently cannot protect the secrecy of
messages encrypted at time i and at all subsequent time periods.

A number of constructions of forward-secure signature/identification schemes are known [6, 29,
1, 25, 31, 28], and forward security for non-interactive, symmetric-key encryption has also been
studied [7]. The existence of non-trivial, forward-secure public-key encryption (PKE) schemes,
however, has been open since the question was first posed by Anderson [3]. Forward-secure PKE
has the obvious practical advantage that a compromise of the system does not compromise the
secrecy of previously-encrypted information; it is thus appropriate for devices operating in insecure
environments. Furthermore, using such a scheme enables some measure of security against adaptive
adversaries who may choose which parties to corrupt based on information learned in the course of
a given protocol; we comment further on this below.

1.1 Our Contributions

Forward secure encryption. We define a rigorous notion of security for forward-secure public-
key encryption and give efficient constructions of schemes satisfying this notion. We prove semantic
security of our main scheme in the standard model based on the decisional version of the bilinear
Diffie-Hellman (BDH) assumption (cf. [26, 10]). All salient parameters of this scheme are logarith-
mic in N , the total number of time periods.

We also present a variant of this scheme with better complexity; in particular, the public-key size
and the key-generation/key-update times are independent of N . Here, semantic security is proven in

2

Standard model Random oracle model

Key generation time O(log N) O(1)

Encryption/Decryption time Õ(log N) O(log N)
Key update time O(log N) O(1)
Ciphertext length O(log N) O(log N)
Public key size O(log N) O(1)
Secret key size O(log N) O(log N)

Table 1: Summary of dependencies on the total number of time periods N .

the random oracle model1 under the computational BDH assumption (which is presumably weaker
than the decisional BDH assumption). The parameters of our schemes are summarized in Table 1.
Both schemes are roughly as efficient as log2 N invocations of the Boneh-Franklin identity-based
encryption scheme [10] and may therefore be practical for reasonable values of N .

At a high level, our construction shares similarities with previous tree-based, forward-secure
signature schemes (e.g., those of [6, 1, 31]). Here, however, we associate time periods with all
the nodes of the tree (in a pre-order traversal) instead of associating time periods with the leaves
only; this improves the efficiency of our key-generation and key-update algorithms. We note that
this tree traversal technique can also be used to improve the efficiency of these algorithms in the
tree-based signature schemes mentioned above, from O(log N) to O(1).

We also note a number of extensions of our schemes. Using the techniques of Malkin, et al.
[31], our schemes can be adapted to support an unbounded number of time periods (i.e., the
number of time periods need not be known when the public key is generated and published). This
has the added advantage that the efficiency and security of these schemes depend only on the
number of time periods elapsed thus far. We also sketch two ways to extend our schemes to achieve
security against adaptive chosen-ciphertext attacks [34, 8]. In the standard model, we note that the
techniques of Sahai [35] using NIZK proofs (and based on earlier work of Naor and Yung [32]) extend
to our setting; interestingly, we show also that general NIZK proofs may be implemented based
on the BDH assumption alone (so that we do not require the additional assumption of trapdoor
permutations). In the random oracle model, we modify the Fujisaki-Okamoto transformation [18]
for our purposes and thereby obtain a secure scheme.

Binary-tree encryption and identity-based encryption. Our constructions are based on the
hierarchical identity-based encryption (HIBE) scheme of Gentry and Silverberg [19] which, in turn,
is based on the identity-based encryption scheme of Boneh and Franklin [10]. As a first step toward
our construction, we define a relaxed variant of HIBE which we call binary tree encryption (BTE).
We then show how to modify the Gentry-Silverberg construction to yield a BTE scheme which
can be proven secure in the standard model for trees of polynomial depth. (In contrast, the main
construction of Gentry and Silverberg is proven secure in the random oracle model, and only for
trees of constant depth.) Finally, we construct a forward-secure encryption scheme from any BTE
scheme.

We believe the BTE primitive is interesting in its own right. As an example, we show in
Appendix A how a full-blown HIBE scheme may be based on any BTE scheme. Combined with

1We stress that a proof in the random oracle model provides no guarantee as to the security of the protocol
once the random oracle is instantiated with an efficiently-computable “cryptographic hash function”. A proof in the
random oracle model should only be regarded as a heuristic argument indicating that the construction may be secure.

3

our construction of BTE, the resulting scheme is the first known example of an identity-based
encryption scheme with a proof of security in the standard model (albeit with respect to a slightly
weaker notion of security than that considered by Boneh-Franklin and Gentry-Silverberg).

Remark: forward security vs. adaptive security. A related notion of security for encryption
schemes is adaptive security; namely, security against adversaries that choose whom to corrupt in
an adaptive way, depending on the information gathered so far (see, e.g., [4, 11]). Although both
adaptive security and forward security are concerned with protecting against break-ins that happen
during the lifetime of the system, the two notions are incomparable. Clearly, adaptive security does
not imply forward security since it only protects the secrecy of messages as long as both the sender
and the receiver remain uncorrupted. As soon as a party becomes corrupted, all the messages
sent and received by that party may be exposed. On the other hand, one might attempt to use
a forward-secure encryption scheme to achieve adaptive security by having the receiver update its
secret key after each ciphertext it receives.2 However, this approach does not provide adaptive
security against a strong adversary who may see a ciphertext in transmission and then corrupt the
receiver before the ciphertext is delivered (and, consequently, before the receiver has a chance to
update its secret key). We remark that the last problem is avoided if one makes the non-standard
assumption of atomic message delivery so that messages are sent and received in one step and
parties cannot be corrupted while messages are in transit.

1.2 Organization

In Section 2 we define BTE and provide a construction which is provably secure under the decisional
BDH assumption (described in Section 2.1) in the standard model. In this section we also show
a more efficient construction based on the computational BDH assumption in the random oracle
model, and discuss some extensions of our schemes (as mentioned above). In Section 3, we formally
define forward-security for public-key encryption and show how a forward-secure PKE scheme can
be constructed from any BTE scheme. Combining these results, we obtain a forward-secure PKE
scheme with the advertised parameters.

2 Binary Tree Encryption

This section defines the notion of binary tree encryption (BTE), and presents a BTE scheme based
on the bilinear Diffie-Hellman assumption. As discussed in the introduction, BTE is a relaxed
version of hierarchical identity-based encryption (HIBE) [24, 19]. In addition to being an essential
step in our construction of forward-secure encryption, we believe BTE is independently interesting:
in particular, we show in Appendix A how to implement a full-blown HIBE from BTE; since we
describe a BTE whose security can be proven in the standard model, this implies a secure HIBE
in the standard model (albeit, with a weaker notion of security than that considered in [19]).

As in HIBE, in BTE we have a “master” public key PK associated with a tree; each node in
this tree has a corresponding secret key. To encrypt a message destined for some node, one uses
both PK and the name of the target node. The resulting ciphertext can then be decrypted using
the secret key of the target node. Moreover, as in HIBE the secret key of any node can be used to
derive the secret keys for the children of that node. The only difference between HIBE and BTE is
that in the latter we insist on a binary tree, where the children of a node w are labeled w0 and w1.

2Of course, this only makes sense when all potential senders know how many ciphertexts a party has received, as
is the case for any synchronous multi-party protocol.

4

(Recall that in HIBE the tree can have arbitrary degree, and a child of node v can be labeled v.s
for any arbitrary string s.) A functional definition follows.

Definition 1 A (public-key) binary tree encryption (BTE) scheme is a 4-tuple of ppt algorithms
(Gen,Der,Enc,Dec) such that:

• The key generation algorithm Gen takes as input a security parameter 1k and a value ℓ for
the depth of the tree. It returns a master public key PK and an initial (root) secret key SKε.
(We assume that the values of k and ℓ are implicit in PK and all node secret keys.)

• The key derivation algorithm Der takes as input PK, the name of a node w ∈ {0, 1}<ℓ, and
its secret key SKw. It returns secret keys SKw0, SKw1 for the two children of w.

• The encryption algorithm Enc takes as input PK, the name of a node w ∈ {0, 1}≤ℓ, and a
message M . It returns a ciphertext C.

• The decryption algorithm Dec takes as input PK, the name of a node w ∈ {0, 1}≤ℓ, its secret
key SKw, and a ciphertext C. It returns a message M .

We make the standard correctness requirement: namely, for any (PK,SKε) output by Gen(1k, ℓ),
any node w ∈ {0, 1}≤ℓ and secret key SKw correctly generated for this node, and any message M ,
we have M = Dec(PK,w, SKw ,Enc(PK,w,M)).

The security notion that we present here for BTE requires the attacker to commit to the node
to be attacked in advance (i.e., before seeing the public key); we call this attack scenario a selective-
node (SN) attack (cf. “selective forgery” of signatures [23]). While this definition is weaker than
the corresponding definition for HIBE achieved by [19], it suffices for constructing a forward-secure
PKE scheme from any BTE scheme (cf. Section 3) in the standard model.

Definition 2 A BTE scheme is secure against selective-node, chosen-plaintext attacks (SN-CPA) if
for all polynomially-bounded functions ℓ(·), the advantage of any ppt adversary A in the following
game is negligible in the security parameter:3

1. A(1k, ℓ(k)) outputs a name w∗ ∈ {0, 1}≤ℓ(k) of a node.

2. Algorithm Gen(1k, ℓ(k)) outputs (PK,SKε). In addition, algorithm Der(· · ·) is run to generate
the secret keys of all the nodes on the path from the root to w∗ (we denote this path by P),
and also the secret keys for the two children of w∗ (if |w∗| < ℓ). The adversary is given PK
and the secret keys {SKw} for all nodes w of the following form:

– w = w′b, where w′b is a prefix of w∗ and b ∈ {0, 1} (i.e., w is a sibling of some node in P);

– w = w∗0 or w = w∗1 (i.e., w is a child of w∗; this is only when |w∗| < ℓ).

(Note that this allows the adversary to compute SKw′ for any node w′ ∈ {0, 1}≤ℓ(k) that is
not a prefix of w∗.)

3. The adversary generates a request challenge(M0,M1). A random bit b is selected and the
adversary is given C∗ = Enc(PK,w∗,Mb).

3Recall that a function is negligible if it approaches zero faster than any inverse polynomial.

5

At the end of the game the adversary outputs b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s
advantage is the absolute value of the difference between its success probability and 1/2.

Security against chosen-ciphertext attacks is defined as the obvious extension of the above.

Definition 3 A BTE scheme is secure against selective-node, chosen-ciphertext attacks (SN-CCA) if
for all polynomially-bounded functions ℓ(·), the advantage of any ppt adversary A in the following
game is negligible in the security parameter:

1. A(1k, ℓ(k)) outputs a name w∗ ∈ {0, 1}≤ℓ(k) of a node.

2. Algorithm Gen(1k, ℓ(k)) outputs (PK,SKε). The adversary is given PK and node secret
keys as in Definition 2.

3. The adversary may query a decryption oracle Dec∗(·, ·). On query Dec∗(w,C) with w ∈
{0, 1}≤ℓ(k), a key SKw is derived from SKε (if one was not derived previously) and the
adversary is given M = Dec(PK,w, SKw , C).

4. The adversary generates a request challenge(M0,M1). A random bit b is selected and the
adversary is given C∗ = Enc(PK,w∗,Mb).

5. The adversary may continue to query Dec∗(·, ·), except that it may not query Dec∗(w∗, C∗)
(but it may query Dec∗(w,C∗) with w 6= w∗).

At the end of the game the adversary outputs b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s
advantage is the absolute value of the difference between its success probability and 1/2.

2.1 The Bilinear Diffie-Hellman Assumption

The security of our BTE scheme is based on the difficulty of the bilinear Diffie-Hellman (BDH)
problem as formalized by Boneh and Franklin [10] (see also [26]). The computational version of this
assumption has been used for a number of cryptographic constructions; furthermore, the decisional
version of the assumption (called the BDDH assumption in [10]) is also believed to hold. We review
the relevant definitions as they appear in [10, 19]. Let G 1 and G 2 be two cyclic groups of prime
order q, where G 1 is represented additively and G 2 is represented multiplicatively. We assume a
map ê : G 1 × G 1 → G 2 for which the following hold:

1. The map ê is bilinear : for all P0, P1 ∈ G 1 and all α, β ∈ Zq we have ê(αP0, βP1) = ê(P0, P1)
αβ .

2. There is an efficient algorithm to compute ê(P0, P1) for any P0, P1 ∈ G 1 .

A BDH parameter generator IG is a randomized, polynomial-time algorithm that takes a se-
curity parameter 1k and outputs the description of two groups G 1 , G 2 and a map ê satisfying the
above conditions. We define the computational BDH problem with respect to IG as the following:
given (G 1 , G 2 , ê) output by IG along with random P,αP, βP, γP ∈ G 1 , compute ê(P,P)αβγ . We
say that IG satisfies the computational BDH assumption if the following probability is negligible
(in k) for all ppt algorithms A:

Pr

[
(G 1 , G 2 , ê)← IG(1k);P ← G 1 ;α, β, γ ← Zq :
A(G 1 , G 2 , ê, P, αP, βP, γP) = ê(P,P)αβγ

]
.

6

The decisional BDH problem is to distinguish between tuples of the form (P,αP, βP, γP, αβγP)
and (P,αP, βP, γP, µP) for random P,α, β, γ, µ. Formally, we say IG satisfies the decisional BDH
assumption if the following probability is negligible (in k) for all ppt algorithms A:

∣∣∣∣Pr

[
(G 1 , G 2 , ê)← IG(1k);P ← G 1 ;α, β, γ,← Zq :
A(G 1 , G 2 , ê, P, αP, βP, γP, αβγP) = 1

]

− Pr

[
(G 1 , G 2 , ê)← IG(1k);P ← G 1 ;α, β, γ, µ ← Zq :
A(G 1 , G 2 , ê, P, αP, βP, γP, µP) = 1

]∣∣∣∣ .

The decisional BDH assumption immediately implies that it is computationally infeasible to dis-
tinguish between tuples of the form (P,αP, βP, γP, ê(P,P)αβγ) and (P,αP, βP, γP, r) for random
P ∈ G 1 , α, β, γ ∈ Zq, and r ∈ G 2 .

BDH parameter generators believed to satisfy the above assumptions can be constructed from
Weil and Tate pairings associated with super-singular elliptic curves or Abelian varieties. As our
results do not depend on any specific instantiation, we refer the interested reader to [10] for details.

2.2 A BTE Scheme Based on the BDH Assumption

Our main result of this section is the following:

Theorem 1 Under the decisional BDH assumption, there exists a BTE scheme that is secure in
the sense of SN-CPA.

We describe such a scheme now. The starting point for our construction is the HIBE scheme of
Gentry and Silverberg [19]. Unlike their scheme, our scheme will be proven secure in the standard
model and for trees of polynomial depth. (It is immediate that the scheme of [19] may be used to
implement a secure BTE in the random oracle model for trees of constant depth.) The HIBE of
Gentry and Silverberg (as well as the IBE scheme of Boneh and Franklin [10]) uses random oracles
in three ways: to derive random elements from identities, to efficiently achieve semantic security
based on the computational BDH assumption, and to obtain chosen-ciphertext security. The latter
two uses of the random oracle can easily be avoided if one is willing forgo chosen-ciphertext security
and to use the decisional BDH assumption. More interestingly, we show below that the random
oracle mapping identities to group elements can be replaced by an O(ℓ)-wise independent hash
function (recall from Definition 2 that ℓ is the depth of the tree). Additionally, a proof of security
may be obtained even for trees of polynomial depth.

Notation and conventions. In the description below we let ℓ denote the depth of the tree.
The i-bit prefix of a string w1w2 . . . wt is denoted by w|i. Namely, w|i = w1 . . . wi. In our scheme,
we use a (2ℓ + 1)-wise independent family H of functions H : {0, 1}≤ℓ → G 1 for which, given
elements x1, . . . , xk ∈ {0, 1}

≤ℓ and g1, . . . , gk ∈ G 1 (with k ≤ 2ℓ + 1), it is possible to efficiently
sample a random H ∈ H satisfying H(xi) = gi for i = 1, . . . , k. One possible instantiation is to

let H = {Hh0,...,h2ℓ
(x)}h0,...,h2ℓ∈G1

, where Hh0,...,h2ℓ
(x)

def
= h0 + x̃h1 + · · · + x̃2ℓh2ℓ and x̃ represents

some fixed one-to-one encoding of x ∈ {0, 1}≤ℓ as an element in Zq (this requires that 2ℓ+1 ≤ q;
alternately, we can include in the public key a universal one-way hash function mapping {0, 1}≤ℓ

to Zq). We let ε denote the empty string. Finally, IG is a BDH parameter generator believed to
satisfy the decisional BDH assumption.

Gen(1k, ℓ) does the following:

1. Run IG(1k) to generate groups G 1 , G 2 of prime order q and bilinear map ê.

7

2. Select a random generator P ∈ G 1 and a random α ∈ Zq. Set Q = αP .

3. Choose a random function H ∈ H (note: ℓ is implicit in H).

4. The public key is PK = (G 1 , G 2 , ê, P,Q, ℓ,H). The root secret key is SKε = αH(ε).

In general, for w = w1 . . . wt, the secret key of node w will consist of t+1 group elements; these
are denoted by SKw = (Rw|1, Rw|2, . . . , Rw|t−1

, Rw, Sw) (for the special case of w = ε we simply
have SKε = Sε = αH(ε)). With this in mind, we now describe the key derivation algorithm.

Der(PK,w, SKw) does the following:

1. Let w = w1 . . . wt. Parse SKw as (Rw|1, Rw|2, . . . , Rw|t−1
, Rw, Sw).

2. Choose random ρw0, ρw1 ∈ Zq. Set Rw0 = ρw0P , Rw1 = ρw1P , Sw0 = Sw + ρw0H(w0), and
Sw1 = Sw + ρw1H(w1).

3. Output SKw0 = (Rw|1, . . . , Rw, Rw0, Sw0) and SKw1 = (Rw|1, . . . , Rw, Rw1, Sw1).

Slightly better efficiency is possible — without affecting the security of the scheme — by setting
ρw0 = ρw1. Doing so will also result in a slightly shorter secret key when this scheme is used to
construct a forward-secure PKE scheme in the following section.

Enc(PK,w,M) (where M ∈ G 2) does the following:

1. Let w = w1 . . . wt. Select random γ ∈ Zq.

2. Output C = (γP, γH(w|1), γH(w|2), . . . , γH(w), M · d), where d = ê(Q,H(ε))γ .

Dec(PK,w, SKw , C) does the following:

1. Let w = w1 · · ·wt, parse SKw as (Rw|1, . . . , Rw, Sw), and parse C as (U0, U1, . . . , Ut, V).

2. Output M = V/d, where

d =
ê(U0, Sw)

∏t
i=1 ê(Rw|i , Ui)

.

We verify that decryption succeeds. When encrypting, we have d = ê(Q,H(ε))γ = ê(P,H(ε))αγ .
When decrypting, we have U0 = γP , and Ui = γH(w|i) for 1 ≤ i ≤ t (where t = |w|). Hence,

d =
ê(U0, Sw)

∏t
i=1 ê(Rw|i , Ui)

=
ê
(
γP, αH(ε) +

∑t
i=1 ρw|iH(w|i)

)
∏t

i=1 ê
(
ρw|iP, γH(w|i)

)

=
ê(P,H(ε))αγ ·

∏t
i=1 ê (P,H(w|i))

γρw|i

∏t
i=1 ê (P,H(w|i))

γρw|i
= ê(P,H(ε))γα

and thus decryption recovers M . Theorem 1 is established by the following proposition.

Proposition 1 If IG satisfies the decisional BDH assumption, the above BTE scheme is secure
against SN-CPA.

8

Proof Let ℓ(·) be some function which is polynomially-bounded; in what follows, we simply
write ℓ instead of ℓ(k). Assume a ppt adversary A attacking the above scheme in the SN-CPA
attack scenario, and denote the probability that A succeeds by PrA[Succ]. We construct a new
adversary B which attempts to solve the decisional BDH problem with respect to IG. Relating the
advantage of B to the advantage of A gives the desired result. In the description below we denote
by w|i the sibling of w|i; namely, w|i consists of the (i− 1)-bit prefix of w followed by the negation
of the ith bit of w. (Thus, w|i and w|i agree on their first i− 1 bits and differ only in their last bit.)

The new adversary B is given the output (G 1 , G 2 , ê) of IG(1k) and also (P,Q = αP, Iε =
βP,U0 = γP, V ′ = µP); the goal of B (informally) is to determine whether µ = αβγ or not. For
that purpose, B attempts to simulate an instance of the encryption scheme for A as follows: B
initiates a run of A, and A commits to the target node w∗ = w∗

1w
∗
2 . . . w∗

t (with t ≤ ℓ). Now, for
1 ≤ i ≤ t, B chooses χi, λi, and ϕi at random from Zq. If t < ℓ, then for b ∈ {0, 1} it also chooses
λb

t+1 and ϕb
t+1 at random from Zq. Then B randomly chooses a hash function H : {0, 1}≤ℓ → G 1

from the family H subject to the following constraints:

1. H(ε) = Iε.

2. H(w∗|i) = χiP for 1 ≤ i ≤ t.

3. H(w∗|i) = λiP −
1
ϕi

Iε for 1 ≤ i ≤ t.

4. If t < ℓ, then also H(w∗0) = λ0
t+1P −

1
ϕ0

t+1

Iε and H(w∗1) = λ1
t+1P −

1
ϕ1

t+1

Iε.

Note that since there are at most 2ℓ+1 constraints, B can choose such a (random) H ∈ H efficiently.
Furthermore, because H is a (2ℓ+1)-independent family of functions, this choice of H is distributed
identically to H in the real experiment. B sets PK = (G 1 , G 2 , ê, P,Q, ℓ,H) and gives PK to A.

Next, B generates secret keys for siblings of the nodes on the path from the root to w∗, as well
as for the children of w∗ (in case t < ℓ). Recall that from these secret keys A can derive appropriate
secret keys for any node w in the tree such that w is not a prefix of w∗. To generate these secret
keys, B chooses (for 1 ≤ i ≤ t) Rw∗|i ∈ G 1 at random and furthermore sets Rw∗|i

= ϕiQ. Next, for
all 1 ≤ i ≤ t, B sets

Sw∗|i
= λiϕiQ +

i−1∑

j=1

χiRw∗|j
.

(For i = 1 the upper limit of the summation is less than the lower limit; by convention, we let the
sum in this case be 0.) Additionally, if t < ℓ then B additionally sets (for b ∈ {0, 1}) Rw∗b = ϕb

t+1Q

and Sw∗b = λb
t+1ϕ

b
t+1Q +

∑t
j=1 χiRw∗|

j
. Note that, having done so, B can now provide A with all

relevant secret keys.
We now verify that these keys have the correct distribution. For 1 ≤ i ≤ t let ρw∗|i ∈ Zq be such

that Rw∗|i = ρw∗|iP with an analogous definition for ρw∗|i
; note that ρw∗|i

= ϕiα. Clearly, these
ρ-values are all independently and uniformly distributed in Zq. Furthermore, in a real execution of

the SN-CPA experiment we would have Sw = αH(ε) +
∑|w|

j=1 ρw|jH(w|j) for any w. For w = w∗|i
this means

Sw∗|i
= αIε +

i−1∑

j=1

ρw∗|jH(w∗|j)

 + ρw∗|i

H(w∗|i)

= αIε +

i−1∑

j=1

ρw∗|jχjP

 + ϕiα(λiP −

1

ϕi
Iε)

9

= λiϕiQ +

i−1∑

j=1

χjRw∗|j

The analysis for the nodes w∗0 and w∗1 (in case t < ℓ) is exactly analogous.
Continuing its execution of A (after having provided the appropriate secret keys), B responds

to the query challenge(M0,M1) by choosing a random bit b and returning

C = (U0, χ1U0, . . . , χtU0, ê(P, V ′) ·Mb) = (γP, χ1γP, . . . , χtγP, ê(P, µP) ·Mb)

= (γP, γH(w∗|1), . . . , γH(w∗), ê(P,P)µ ·Mb).

Finally, if A outputs b′ = b then B outputs “1”; otherwise, B outputs “0”.
Recalling that Q = αP and H(ε) = Iε = βP , we can re-write the last component of C as

(ê(Q,H(ε))γ)µ/αβγ ·Mb. Thus, if µ = αβγ then C is indeed a (random) valid encryption of Mb and
the probability that B outputs 1 is exactly PrA[Succ]. On the other hand, when µ is random the last
element of C is uniformly distributed in G 2 , independent of b, and therefore C is independent of b.
In this case, then, B outputs 1 with probability at most 1/2. The advantage of B is therefore at
least |PrA[Succ]−1/2|; since the advantage of B is negligible (by assumption on IG), the advantage
of A must be negligible as well. This concludes the proofs of Proposition 1 and Theorem 1.

Scheme parameters. In the construction above, a secret key of node w at level t consists of t+1
elements of G 1 . However, we may notice that all elements of the secret key except for Rw and Sw

already appear in the secret key of the parent of w. Thus, the secret keys of all the nodes on the
path from the root to w can be stored using only O(t) group elements (we make use of this fact
when constructing our forward-secure PKE in the following section).

The key-generation algorithm requires time linear in ℓ (the depth of the tree), where this
complexity is due to selection of the hash function H. The key-derivation algorithm requires a
constant number of operations in G 1 and two applications of the hash function H; a single evaluation
of H requires O(ℓ) time when H is an O(ℓ)-degree polynomial as suggested above. Encryption for
a node at level t requires t applications of H, t + 1 multiplications in G 1 , one application of ê,
and one multiplication and one exponentiation in G 2 . (Note that one can evaluate H on t distinct
points (for t ≤ ℓ) in time O(ℓ log2 ℓ) — rather than the näıve O(tℓ) — when H is a 2ℓ + 1-degree
polynomial [2, Section 8.5].) Decryption by a node at level t requires t + 1 evaluations of ê along
with t operations in G 2 .

Applications to HIBE. One can construct a full-blown HIBE scheme from any BTE scheme
simply by encoding in binary all the identities in the system using collision-resistant hashing at
every level of the hierarchy. (The security obtained, however, is weaker than that guaranteed by
[19].) See Appendix A for details.

Construction in the random oracle model. The scheme above remains secure if the hash
function H is replaced with a cryptographic hash function modeled as a random oracle. (A proof of
security is immediate since a random oracle, in particular, acts as a (2ℓ+1)-wise independent hash
function for any polynomial function ℓ.) Instantiating H in this way improves several of the scheme
parameters: the public-key size, key-generation time, and key-update time are now independent
of ℓ, and encryption now takes time O(ℓ) (as opposed to Õ(ℓ)).

Once we are working in the random oracle model, the scheme may be further modified so that
its security is based on the computational BDH assumption rather than the decisional version4:

4Of course, it is also possible to construct a scheme based on the computational BDH assumption in the standard
model (by extracting hard-core bits); however, this will result in a much less efficient scheme.

10

simply replace the component M · ê(Q,H(ε))r of the ciphertext by M ⊕ H ′(ê(Q,H(ε))r), where
H ′ : G 2 → {0, 1}

n is modeled as an independent random oracle.

Achieving chosen-ciphertext security. We sketch how our schemes may be modified so as to
achieve security in the sense of SN-CCA. In the standard model, we may extend to our setting the
techniques of Sahai [35] based on earlier work of Naor and Yung [32] (see also [30]); namely, we use
simulation-sound NIZK proofs to achieve chosen-ciphertext security. In more detail (we assume
the reader is familiar with [35, 30]), we construct a BTE scheme secure in the sense of SN-CCA as
follows: The public key consists of a randomly-generated string r for a simulation-sound NIZK proof
system, as well as two independently-generated public keys PK1, PK2 for a BTE scheme secure in
the sense of SN-CPA. The root secret key is the secret key SKε corresponding to PK1, and key
derivation is done in the obvious way. To encrypt message M for node w, the sender computes
C1 ← Enc(PK1, w,M), C2 ← Enc(PK2, w,M), and a simulation-sound NIZK proof of consistency π
using string r (explained in more detail below); the output ciphertext is C = 〈w,C1, C2, π〉. The
proof π guarantees that (w,C1, C2, PK1, PK2) is in the language L defined by:

L = {(w,C1, C2, PK1, PK2) | ∃M s.t. C1 = Enc(PK1, w,M) and C2 = Enc(PK2, w,M)};

that is, C1 and C2 are both encryptions of the same message M for the specified node w. Node w

with secret key SKw decrypts ciphertext 〈w′, C1, C2, π〉 by first checking whether w′ ?
= w and

whether π is an accepting proof (with respect to r) of the statement (w′, C1, C2, PK1, PK2) ∈ L.
If so, the output is Dec(PK1, w, SKw, C1); otherwise, the output is ⊥. We omit the tedious details
(which follow [35, 30]) that this scheme is indeed secure in the sense of SN-CCA.

It is known that simulation-sound NIZK (admitting efficient provers) may be based on the
assumption of trapdoor permutations [35, 17]. We observe, additionally, that simulation-sound
NIZK in the common reference string model5 may also be based on the (seemingly incomparable)
decisional BDH assumption. To see this, note that Sahai’s construction [35] of simulation-sound
NIZK may be based on any (standard) NIZK proof system. These, in turn, may be constructed
using the “hidden-bits paradigm” set forth in [17] (see also [20, Section 4.10.2]). Our key observation
(see Appendix B) is that this “hidden-bits paradigm” (which is usually achieved using trapdoor
permutations) may be implemented using publicly-verifiable trapdoor predicates — a generalization
of trapdoor permutations considered previously [16] and formally introduced here. We furthermore
show in Appendix B how the decisional BDH assumption naturally gives rise to a publicly-verifiable
trapdoor predicate. Combining these results yields the following theorem:

Theorem 2 Under the decisional BDH assumption, there exists a BTE scheme that is secure in
the sense of SN-CCA.

In the random oracle model, we can achieve a more efficient scheme by applying, e.g., a secure
variant of the Fujisaki-Okamoto transformation [18] (note that the Fujisaki-Okamoto transforma-
tion only applies to standard PKE and must be appropriately modified for the case of BTE). We
propose the following scheme: Let (Enc′,Dec′) represent any symmetric-key encryption scheme se-
cure in the sense of IND-P0-C2 (cf. [27]), let Enc denote (the encryption algorithm for) a BTE
scheme secure in the sense of SN-CPA which encrypts messages at least as long as the security

5In the common reference string model — to be distinguished from the common random string model — the
reference string r may be chosen from an arbitrary, poly-time computable distribution (and not necessarily a uniform
one). Since the string r included with the public key is generated by the recipient (and not by some third party),
working in the common reference string model is sufficient for our purposes.

11

parameter, and let H and G denote independent random oracles which are also independent of any
random oracles used by Enc or Enc′. Consider then the following BTE scheme Enc′′:

Enc′′(PK,w,M) = 〈Enc(PK,w, σ;H(w, σ,M)),Enc ′G(σ)(M)〉,

where σ is a randomly-chosen value and the notation Enc(·, ·, ·; r) denotes that random coins r
are used when performing the stated encryption. Key generation and key derivation are done
in the obvious way. A node w with secret key SKw decrypts ciphertext 〈C1, C2〉 by computing

σ = Dec(PK,w, SKw , C1) and M = Dec′G(σ)(C2). If C1
?
= Enc(PK,w, σ;H(w, σ,M)), the output

is M ; otherwise, the output is ⊥. Security of this modified scheme is given by the following theorem,
whose proof exactly follows that of [18]:

Theorem 3 If Enc is a BTE scheme secure in the sense of SN-CPA, and Enc′ is a symmetric-key
encryption scheme secure in the sense of IND-P0-C2, then the above construction yields a BTE
scheme secure in the sense of SN-CCA in the random oracle model.

3 Forward-Secure Public-Key Encryption

In this section, we provide a definition of security for forward-secure public-key encryption and
mention two “trivial” forward-secure schemes whose complexity is linear in the total number of
time periods. As our main result — which is an immediate application of the BTE primitive
discussed in the previous section — we then describe a construction of a forward-secure scheme all
of whose parameters grow at most logarithmically with the total number of time periods.

3.1 Definitions

We first provide a syntactic definition of key-evolving public-key encryption schemes, and then
define what it means for such a scheme to achieve forward security. The former is a straightforward
adaptation of the notion of key-evolving signature schemes [6]; the latter, however, is new and
requires some care.

Definition 4 A (public-key) key-evolving encryption (ke-PKE) scheme is a 4-tuple of ppt algo-
rithms (Gen,Upd,Enc,Dec) such that:

• The key generation algorithm Gen takes as input a security parameter 1k and the total number
of time periods N . It returns a public key PK and an initial secret key SK0.

• The key update algorithm Upd takes as input PK, an index i < N of the current time period,
and the associated secret key SKi. It returns the secret key SKi+1 for the following time
period.

• The encryption algorithm Enc takes as input PK, an index i ≤ N of a time period, and a
message M . It returns a ciphertext C.

• The decryption algorithm Dec takes as input PK, an index i ≤ N of the current time period,
the associated secret key SKi, and a ciphertext C. It returns a message M .

We make the standard correctness requirement: namely, for any (PK,SK0) output by Gen(1k, N),
any index i ∈ [0, N) and secret key SKi correctly generated for this time period, and any message M ,
we have M = Dec(PK, i, SKi,Enc(PK,w,M)).

12

Our definitions of forward-secure public-key encryption generalize the standard notions of se-
curity for PKE, similar to the way in which the definitions of [6] generalize the standard notion of
security for signature schemes.

Definition 5 A ke-PKE scheme is forward-secure against chosen plaintext attacks (fs-CPA) if for
all polynomially-bounded functions N(·), the advantage of any ppt adversary in the following game
is negligible in the security parameter:

Setup: Gen(1k, N(k)) outputs (PK,SK0). The adversary is given PK.

Attack: The adversary issues one breakin(i) query and one challenge(j,M0,M1) query, in either
order, subject to 0 ≤ j < i < N . These queries are answered as follows:

• On query breakin(i), key SKi is computed via Upd(PK, i − 1, · · ·Upd(PK, 0, SK0) · · ·). This
key is then given to the adversary.

• On query challenge(j,M0,M1), a random bit b is selected and the adversary is given C∗ =
Enc(PK, j,Mb).

Guess: The adversary outputs a guess b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s advantage
is the absolute value of the difference between its success probability and 1/2.

We give an analogous definition incorporating chosen-ciphertext attacks by the adversary.

Definition 6 A ke-PKE scheme is forward-secure against chosen-ciphertext attacks (fs-CCA) if for
all polynomially-bounded functions N(·), the advantage of any ppt adversary in the following game
is negligible in the security parameter:

Setup: Gen(1k, N) outputs (PK,SK0). The adversary is given PK.

Attack: The adversary issues one breakin(i) query, one challenge(j,M0,M1) query, and multiple
Dec(k,C) queries, in any order, subject to 0 ≤ j < i < N and 0 ≤ k < N . These queries are
answered as follows:

• The breakin and challenge queries are answered as in Definition 3.1.

• On query Dec∗(k,C), the appropriate key SKk is first derived using SK0 and PK. Then,
the adversary is given the output Dec(PK, k, SKk , C). If the adversary has already received
response C∗ from query challenge(j,M0,M1), then query Dec∗(j, C∗) is disallowed (but queries
Dec(k,C∗), with k 6= j, are allowed).

Guess: The adversary outputs a guess b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s advantage
is the absolute value of the difference between its success probability and 1/2.

Remark 1: On the order of the breakin/challenge queries. The definitions above
allow the adversary to make the breakin and the challenge queries in either order. Without loss of
generality, however, we may assume the adversary makes the breakin query first. (Specifically, given
an adversary A that queries challenge(j,M0,M1) before its breakin query, it is easy to construct an
adversary B that queries breakin(j + 1) followed by this same challenge query and can then answer
any subsequent breakin queries of A; this B will achieve the same advantage as A.)

Interestingly, requiring the adversary to make the challenge query first seems to result in slightly
weaker concrete security. Specifically, transforming an adversary that first makes the breakin query
into an adversary that first makes the challenge query results in an N -fold loss in the advantage due

13

to the need to guess the location of the eventual challenge query in advance. Since N is polynomial
in k, this reduction in security is tolerable. Still, it is better to avoid it.

Remark 2: Relaxing chosen-ciphertext security. Note that Definition 6 allows the ad-
versary to make decryption queries for various time periods in arbitrary order (not necessarily
chronological). Furthermore, the adversary is allowed to obtain the decryption of the challenge
ciphertext C∗, as long as the decryption is for a different time period than the one in which the
ciphertext was generated. This extra power given to the adversary results in a definition that is
probably stronger than what is needed in most settings, and can potentially be relaxed and still pro-
vide adequate security. Still, we present this notion since it is the strongest natural interpretation
of the CCA paradigm and the CCA-secure variants of our scheme achieve it.

3.2 Forward-Secure PKE Schemes with Linear Complexity

For completeness, we discuss some simple approaches to forward-secure PKE yielding schemes with
linear complexity in at least some parameters. One trivial solution is to generate N independent
public-/private- key pairs {(ski, pki)} and to set PK = (pk0, . . . , pkN−1). In this scheme, the key
SKi for time period i will simply consist of (ski, . . . , skN−1). Algorithms for encryption, decryption,
and key update are immediate. The drawback of this trivial solution is an N -fold increase in the
sizes of the public and secret keys, as well as in the key-generation time. Anderson [3] noted that
an improved solution can be built from an identity-based encryption scheme. Here, the public key
is the “master public key” of the identity-based scheme, and SKi is computed as the “personal
secret key” of a user with identity i (the scheme is otherwise identical to the above). This solution
achieves O(1) public key size, but still has O(N) secret-key size and key-generation time.

In fact, one can improve this last solution somewhat: instead of a large secret key, it is enough
if the user keeps a large non-secret file containing one record per period. The record for period i
contains the secret key SKi encrypted under the public key for time period i− 1. At the beginning
of period i, the user obtains record i, uses key SKi−1 to recover SKi, and then erases SKi−1.
This solution achieves essentially the same efficiency as the “simple forward-secure signatures” of
Krawczyk [29] (and in particular requires O(N) non-secret storage and key-generation time).

3.3 A Construction with Logarithmic Complexity

We now construct an encryption scheme secure in the sense of fs-CPA (resp. fs-CCA) from any
BTE scheme secure in the sense of SN-CPA (resp. SN-CCA). Our construction is straightforward
and is easily seen to be secure given the machinery we have developed for BTE schemes in the
previous section.

At a high level, the construction proceeds as follows: To obtain a forward-secure scheme with
N = 2ℓ+1 − 1 time periods (labeled 0 through N − 1), simply use a BTE of depth ℓ and associate
the time periods with all nodes of the tree according to a pre-order traversal. (Let wi denote the
node associated with period i. In a pre-order traversal, w0 = ε and if wi is an internal node then
wi+1 = wi0. If wi is a leaf node and i < N − 1 then wi+1 = w′1 where w′ is the longest string such
that w′0 is a prefix of wi.) The public key is simply the root public key for the BTE scheme; the
secret key for period i consists of the secret key for node wi as well as those for all right siblings of
the nodes on the path from the root to wi. To encrypt a message at time period i, the message is
simply encrypted for node wi using the BTE scheme; decryption is done in the obvious way using
the secret key for node wi (which is stored as part of the secret key for period i). Finally, the period
secret key is updated at the end of period i in the following manner: if wi is an internal node, then

14

the secret keys for wi+1 and its sibling (i.e., the two children of wi) are derived; otherwise, the
secret key for node wi+1 is already stored as part of the secret key. In either case, the key for
node wi is then deleted. Note that this maintains the property that SKi+1 contains the secret key
for wi+1 as well as those for all right siblings of the nodes on the path from the root to wi+1. Also,
at miost l keys are kept at any point in time.

Our method of associating time periods with nodes of a binary tree is reminiscent of previous
tree-based forward-secure signature schemes [6, 1, 31]. However, we associate time periods with all
nodes of a binary tree rather than with the leaves only (as was done in prior work); this results
in efficiency improvement from O(log N) to O(1) in the key-generation and key-update times. We
remark that our tree-traversal method can also be applied to the signature schemes of [6, 1, 31]
with similar efficiency gain.

More formally, given a BTE scheme (Gen, Der, Enc, Dec), we may construct a ke-PKE scheme
(Gen′, Upd, Enc′, Dec′) as follows.

• Algorithm Gen′(1k, N) runs Gen(1k, ℓ), where N ≤ 2ℓ+1 − 1, and obtains PK,SKε. It then
outputs PK ′ = (PK,N), and SK ′

0 = SKε.

• Algorithm Upd(PK, i, SK ′
i) has SK ′

i organized as a stack of node keys, with the secret
key SKwi on top. We first pop this key off the stack. If wi is a leaf node, the next key on top of
the stack is SKwi+1. If wi is an internal node, compute (SKwi0, SKwi1)← Der(PK,wi, SKwi)
and push SKwi1 and then SKwi0 onto the stack. The new key on top of the stack is SKwi0

(and indeed wi+1 = wi0). In either case, node key SKwi is then erased.

• Algorithm Enc′(PK ′, i,M) runs Enc(PK,wi,M). Note that wi is publicly computable given i
and N .

• Algorithm Dec′(PK ′, i, SK ′
i,M) runs Dec(PK,wi, SKwi ,M). Note that SKwi is always

stored as part of SK ′
i.

Theorem 4 If BTE scheme (Gen,Der,Enc,Dec) is secure in the sense of SN-CPA (resp. SN-CCA)
then ke-PKE scheme (Gen′,Upd,Enc′,Dec′) is secure in the sense of fs-CPA (resp. fs-CCA)

Proof The proof proceeds via straightforward reduction. Assume we have an adversary A′ with
advantage ε(k) in an fs-CPA (resp. fs-CCA) attack against (Gen′,Upd,Enc′,Dec′). We construct
an adversary A that obtains advantage ε(k)/N in the corresponding attack against the underlying
BTE scheme (Gen,Der,Enc,Dec). Since N is polynomial in the security parameter k, the theorem
follows. We now define adversary A:

1. A chooses uniformly at random a time period i∗ ∈ [0, N) and outputs wi∗ . Next, A obtains
the public key PK and the appropriate secret keys for the BTE scheme.

2. A runs A′ with public key (PK,N).

3. When A′ queries breakin(j) (recall from Remark 1 that without loss of generality A′ makes
its breakin query before its challenge query), if j ≤ i∗ then A outputs a random bit and halts.
Otherwise, A computes the appropriate secret key SK ′

j and gives this to A′. (Observe that A
can efficiently compute SK ′

j for j > i∗ from the secret keys it has been given.)

4. When A′ queries challenge(i,M0,M1), if i 6= i∗ then A outputs a random bit and halts.
Otherwise, A obtains C ← challenge(M0,M1) and gives ciphertext C to A′.

15

5. If decryption queries are allowed, note that A can respond to queries Dec′
∗
(k,C) of A′ by

simply querying Dec∗(wk, C) and returning the result to A′.

6. When A′ outputs b′, A outputs b′ and halts.

It is straightforward to see that when i∗ = i the copy of A′ running within A has exactly the same
view as in a real fs-CPA (resp. fs-CCA) interaction. Since A guesses i∗ = i with probability 1/N ,
we have that A correctly predicts the bit b with advantage ε(k)/N .

Analysis of complexity parameters. Each of the four operations (key generation, key update,
encryption, and decryption) requires at most one operation of the underlying BTE scheme. We
have also noted in the previous section how the secret keys corresponding to any time period can
be stored using only O(log N) group elements (rather than the näıve O(log2 N)). This justifies
the claims given in Table 1 (for schemes achieving security in the sense of fs-CPA), and yields the
following corollary.

Corollary 1 Under the decisional BDH assumption, there exists a ke-PKE scheme that is secure
in the sense of fs-CPA. Furthermore, all parameters of this scheme are polylogarithmic in the total
number of time periods.

Supporting an unbounded number of time periods. In our description above, we have
assumed that the number of time periods N is known at the time of key generation. However,
it is easy to modify our scheme to support an “unbounded” (i.e., arbitrary polynomial) number
of time periods by using a BTE scheme with depth ℓ = ω(log k). Following [31], we can further
improve this scheme so that its efficiency depends only logarithmically on the number of time
periods elapsed thus far (a simple pre-order traversal using a tree of depth ω(log k) results in a
scheme with superlogarithmic dependence on N for any N = poly(k)).

Acknowledgments

The third author is very grateful to Craig Gentry for helpful discussions regarding [19] and for
providing him with a preliminary version of that work.

References

[1] M. Abdalla and L. Reyzin. A new forward-secure digital signature scheme. Asiacrypt 2000,
LNCS vol. 1976, pp. 116–129, Springer-Verlag, 2000.

[2] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1975.

[3] R. Anderson. Two remarks on public key cryptology. Invited Lecture, ACM-CCS ’97.
http://www.cl.cam.ac.uk/ftp/users/rja14/forwardsecure.pdf.

[4] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic adversaries.
In Eurocrypt ’92, LNCS vol. 658, pp. 307–323, Springer-Verlag, 1992.

[5] D. Beaver. Plug-and-play encryption. Crypto ’97, LNCS vol. 1294, pp. 75–89, Springer-Verlag,
1997.

16

[6] M. Bellare and S. K. Miner. A forward-secure digital signature scheme. Crypto ’99, LNCS
vol. 1666, pp. 431–448, Springer-Verlag, 1999.

[7] M. Bellare and B. Yee. Forward security in private-key cryptography. CT-RSA 2003, LNCS
vol. 2612, pp. 1–18, Springer-Verlag, 2003.

[8] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for
public-key encryption schemes. Crypto ’98, LNCS vol. 1462, pp. 26–45, Springer-Verlag, 1998.

[9] M. Bellare and M. Yung. Certifying permutations: non-interactive zero-knowledge based on
any trapdoor permutation. J. Cryptology 9(3): 149–166 (1996).

[10] D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. Crypto 2001,
LNCS vol. 2139, pp. 213–229, Springer-Verlag, 2001. Full version to appear in SIAM J.
Computing and available at http://eprint.iacr.org/2001/090.

[11] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure computation. STOC ’96,
pp. 639–648, ACM, 1996. Also MIT-LCS-TR #682, 1996.

[12] I.B. Damg̊ard. Collision free hash functions and public-key signature schemes. Eurocrypt ’87,
LNCS vol. 304, pp. 203–216, Springer-Verlag, 1987.

[13] I.B. Damg̊ard and J.B. Nielsen. Improved non-committing encryption schemes based on a
general complexity assumption. Crypto ’00, LNCS vol. 1880, pp. 432–450, Springer-Verlag,
2000.

[14] Y. Desmedt and Y. Frankel. Threshold cryptosystems. Crypto ’89, LNCS vol. 435, pp. 307–315,
Springer-Verlag, 1989.

[15] W. Diffie, P. C. Van-Oorschot, and M. J. Weiner. Authentication and authenticated key
exchanges. Designs, Codes, and Cryptography 2:107–125, 1992.

[16] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong key-insulated signature schemes. PKC ’03,
LNCS vol. 2567, pp. 130–144, Springer-Verlag, 2003.

[17] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero-knowledge proofs under
general assumptions. SIAM J. Computing 29(1): 1–28 (1999).

[18] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. Crypto ’99, LNCS 1666, pp. 537–554, Springer-Verlag, 1999.

[19] C. Gentry and A. Silverberg. Hierarchical identity-based cryptography. Asiacrypt 2002, LNCS
vol. 2501, pp. 548–566, Springer-Verlag, 2002.

[20] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cambridge University Press,
2001.

[21] O. Goldreich. Foundation of Cryptography, vol. 2. Available on-line from
http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html.

[22] C. G. Günther. An identity-based key-exchange protocol. Eurocrypt ’89, LNCS vol. 434, pp.
29–37, Springer-Verlag, 1989.

17

[23] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM J. Computing, 17(2):281–308, April 1988.

[24] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. Eurocrypt 2002, LNCS
vol. 2332, pp. 466–481, Springer-Verlag, 2002.

[25] G. Itkis and L. Reyzin. Forward-secure signatures with optimal signing and verifying. Crypto
2001, LNCS vol. 2139, pp. 499–514, Springer-Verlag, 2001.

[26] A. Joux and K. Nguyen. Separating decision Diffie-Hellman from Diffie-
Hellman in cryptographic groups. Manuscript, January 2001. Available at
http://eprint.iacr.org/2001/003/.

[27] J. Katz and M. Yung. Complete characterization of security notions for probabilistic private-
key encryption. STOC 2000, ACM, 2000.

[28] A. Kozlov and L. Reyzin. Forward-secure signatures with fast key update. Security in Com-
munication Networks, LNCS vol. 2576, pp. 247–262, Springer-Verlag, 2002.

[29] H. Krawczyk. Simple forward-secure signatures from any signature scheme. ACM-CCS 2000,
pp. 108–115, ACM, 2000.

[30] Y. Lindell. A simpler construction of CCA2-secure public-key encryption under general as-
sumptions. Eurocrypt 2003, LNCS vol. 2656, pp. 241–254, Springer-Verlag, 2003.

[31] T. Malkin, D. Micciancio, and S. K. Miner. Efficient generic forward-secure signatures with an
unbounded number of time periods. Eurocrypt 2002, LNCS vol. 2332, pp. 400–417, Springer-
Verlag, 2002.

[32] M. Naor and M. Yung, Public key cryptosystems provably secure against chosen ciphertext
attacks, STOC ’90, pp. 427–437, ACM, 1990.

[33] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. PODC ’91, pp. 51–59,
ACM, 1991.

[34] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. Crypto ’91, LNCS vol. 576, pp. 433–444, Springer-Verlag, 1991.

[35] A. Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-ciphertext secu-
rity. FOCS ’99, pp. 543–553, IEEE, 1999.

[36] A. Shamir. How to share a secret. Comm. of the ACM 22(11):612–613, 1979.

A Basing HIBE on BTE

Here we show how one can construct a full-blown hierarchical identity-based encryption scheme
(HIBE) from any binary-tree encryption scheme (BTE). The construction is straightforward: we
encode all the identities in binary using a collision-resistant hash function; this maps “ID-vectors”
to fixed-length strings. In this way, any “ID-vector” is mapped to a node in the complete binary
tree of the underlying BTE scheme. Below, we define the HIBE functionality similarly to [24, 19],6

6We comment that our definition of HIBE differs slightly from the ones in [24, 19] in that it allows encrypting
messages to the root of the tree (i.e., to the empty ID-vector). This difference is essentially just a matter of taste.

18

introduce the notions of SN-security for HIBE, and then show that the above obvious construction
indeed transforms any SN-secure BTE to a SN-secure HIBE.

A.1 Definitions

In all the definitions below, an ID-vector v is a vector of strings; i.e., v ∈ ({0, 1}∗)∗. The empty
vector is denoted (). If v = (v1, . . . , vℓ) is an ID-vector and vℓ+1 is any string, then by v.r we mean
the ID-vector (v1, . . . , vℓ, vℓ+1). For two ID-vectors u = (u1, . . . , uℓ1) and v = (v1, . . . , vℓ2), we say
that u is a prefix of v if ℓ1 ≤ ℓ2 and ui = vi for i ≤ ℓ1.

Definition 7 A hierarchical identity-based encryption (HIBE) scheme is a 4-tuple of ppt algorithms
(Gen,Ext,Enc,Dec) such that:

• The key generation algorithm Gen takes as input a security parameter 1k and a value ℓ for the
depth of the tree. It returns a master public key PK and an initial (root) secret key SK().
(This algorithm is called Setup in [24] and Root-setup in [19].) We assume that the values
of k and ℓ are implicit in PK and all node secret keys.

• The key extraction algorithm Ext takes the public key PK, an ID-vector v ∈ ({0, 1}∗)<ℓ and
its associated secret key SKv, and a string r. It returns the secret key SKv.r, associated with
the ID-vector v.r. (This algorithm is called KeyGeni in [24] and Extraction in [19].)

• The encryption algorithm Enc takes a public key PK, an ID-vector v ∈ ({0, 1}∗)≤ℓ, and a
message M . It returns a ciphertext C.

• The decryption algorithm Dec takes as input a public key PK, an ID-vector v ∈ ({0, 1}∗)≤ℓ

and its associated secret key SKv, and a ciphertext C. It returns a message M .

We make the standard correctness requirement: namely, for any (PK,SK()) output by Gen(1k, ℓ),

any ID-vector v ∈ ({0, 1}∗)≤ℓ and secret key SKv correctly generated for this ID-vector, and any
message M , we have M = Dec(PK, v, SKv ,Enc(PK, v,M)).

The notion of SN-security is a relaxation of the usual notion of security for HIBE schemes,
requiring that the attacker commit to the ID-vector to be attacked before it sees the public key
(similar to the SN-security notion of BTE scheme). A difference here is that one cannot give the
adversary the secret keys of “all the siblings on the path to the target ID-vector” since there are
too many of those. Instead, we allow the attacker to request the secret key corresponding to any
ID-vector, except for prefixes of the target ID-vector.

Definition 8 A HIBE scheme is secure against selective-node, chosen-plaintext attacks (SN-CPA) if
for all polynomially-bounded functions ℓ(·), the advantage of any ppt adversary A in the following
game is negligible in the security parameter:

1. The adversary A(1k, ℓ(k)) outputs an ID-vector v∗ ∈ ({0, 1}∗)≤ℓ(k).

2. Algorithm Gen(1k, ℓ(k)) outputs (PK,SK()). The adversary is given PK.

3. The adversary may adaptively ask for the secret key(s) corresponding to any ID-vector(s) v,
as long as v is not a prefix of the target ID-vector v∗. The adversary is given the secret
key SKv correctly generated for v using the Ext algorithm.7

7If the Ext algorithm is randomized, then we assume that all these queries are answered consistently. For example,
if the adversary first asks for the secret key of v.s and then the secret key of v, then the randomness in generating
the secret key of v is the same as the randomness that was used during the generation of the secret key of v.s.

19

4. The adversary generates a request challenge(M0,M1). A random bit b is selected and the
adversary is given C∗ = Enc(PK, v∗,Mb).

5. The adversary can keep asking for secret keys as above, even after seeing C∗.

At the end of the game the adversary outputs b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s
advantage is the absolute value of the difference between its success probability and 1/2.

A definition of security against chosen-ciphertext attacks is an obvious extension of the above.

Definition 9 A HIBE scheme is secure against selective-node, chosen-ciphertext attacks (SN-CCA)
if for all polynomially-bounded functions ℓ(·), the advantage of any ppt adversary A in the following
game is negligible in the security parameter:

1. The adversary A(1k, ℓ(k)) outputs an ID-vector v∗ ∈ ({0, 1}∗)≤ℓ(k).

2. Algorithm Gen(1k, ℓ(k)) outputs (PK,SK()). The adversary is given PK.

3. The adversary may ask for the secret key corresponding to any ID-vector v, as long as v is
not a prefix of the target ID-vector v∗. Such query is answered with the secret key SKv,
correctly generated for v using the Ext algorithm.

The adversary may also query a decryption oracle Dec∗(·, ·). On query Dec∗(v,C) with
v ∈ ({0, 1}∗)≤ℓ(k), a key SKv is derived from SK() (if one was not derived previously) and
the adversary is given M = Dec(PK, v, SKv , C).

4. The adversary generates a request challenge(M0,M1). A random bit b is selected and the
adversary is given C∗ = Enc(PK, v∗,Mb).

5. The adversary can keep asking for secret keys as above, and may also continue to query
Dec∗(·, ·), except that it may not query Dec∗(v∗, C∗) (but it can query Dec∗(v,C∗) with
v 6= v∗).

At the end of the game the adversary outputs b′ ∈ {0, 1}; it succeeds if b′ = b. The adversary’s
advantage is the absolute value of the difference between its success probability and 1/2.

A.2 From BTE to HIBE

We now show a simple transformation which converts an SN-secure BTE scheme to an SN-secure
HIBE scheme. In this transformation we use collision-resistant hashing to map an ID-vector with
a bounded number of entries to a bounded-length string. Namely, we apply the hash function
separately to each entry in the vector, thus obtaining a string whose length depends only on the
number of entries in the input ID-vector (and not the length of these entries).

Collision-resistant hashing. Recall that a collision-resistant hash function [12] consists of two
algorithms: the seed-generation algorithm sGen that (given the security parameter) picks a seed for
the function, and a hashing algorithm Hash that given a seed and an arbitrary-length input string,
produces the fixed-length output. The function has the property that for any seed generated by
sGen(1k), the output length of the hashing algorithm is always equal to k. The collision-resistance
property asserts that any poly-time adversary that is given a random seed s (generated by sGen(1k)),
can only find strings r1 6= r2 such that Hash(s, r1) = Hash(s, r2) with probability negligible in k.

Below it will be convenient to refer to the entry-wise application of the hash function to ID-
vectors. If s is a seed generated by sGen(1k) and v = (v1, . . . , vℓ) is an ID-vector, then w = Hash(s, v)
refers to the string H(s, v1)| · · · |H(s, vℓ).Note that if v ∈ ({0, 1}∗)t then w ∈ {0, 1}kt.

20

The construction. Our construction proceeds by identifying the ID-vector v ∈ ({0, 1}∗)≤ℓ with
the node w = H(s, v) in a binary tree of depth kℓ; then, to encrypt a message destined for user v,
the message is encrypted for node w using some underlying BTE scheme. In more detail, given a
collision intractable hash function (sGen,Hash) and a BTE scheme (Gen, Der, Enc, Dec), we may
construct a HIBE scheme (Gen′, Ext, Enc′, Dec′) as follows.

• Algorithm Gen′(1k, ℓ) runs Gen(1k, kℓ) (for a binary tree of depth kℓ), and obtains (PK,SKε).
It also run sGen(1k) and gets the seed s. The public key of the HIBE is set to PK ′ = (s, PK)
and the root secret key is SK ′

() = SKε.

• Algorithm Ext(PK ′, v, SK ′
v , r) sets w = Hash(s, v) and w′ = w′

1 . . . w′
k = Hash(s, r). (Recall

that the secret key SK ′
v is nothing more than the secret key SKw for the BTE scheme.) For

i = 1..k, algorithm Ext uses the algorithm Der to derive the BTE secret key SKw w′
1
..w′

i
from

the BTE secret key SKw w′
1
..w′

i−1
. The HIBE secret key is then set to SK ′

v.r = SKww′ .

• Algorithm Enc′(PK ′, v,M) runs Enc(PK,w,M), where w = Hash(s, v).

• Algorithm Dec′(PK ′, v, SK ′
v ,M) runs Dec(PK,w, SKw ,M), where w = Hash(s, v).

Theorem 5 If (sGen,Hash) is a collision-resistant hash function and (Gen, Der, Enc, Dec) is a
BTE scheme secure in the sense of SN-CPA (resp. SN-CCA), then (Gen′, Ext, Enc′, Dec′) is a
HIBE scheme secure in the sense of SN-CPA (resp. SN-CCA).

Proof The proof is immediate. Given an adversary A that attacks the HIBE scheme (in either
the CPA or CCA scenario), we build an adversary B that attacks the underlying BTE scheme (in
the same scenario). The adversary B implements for A a HIBE scheme just as above, choosing the
seed s for the hash function according to sGen(1k).

When A commits to its target ID-vector v∗, the adversary B can commit to its target node
w∗ = Hash(s, v∗). Then B can use its own queries to the BTE scheme to answer all of the queries
that A makes to the HIBE scheme, with only two exceptions. One exception is when A asks for a
secret key SK ′

v , corresponding to ID-vector v, such that v is not a prefix of the target ID-vector v∗,
but w = Hash(s, v) is a prefix of the target node w∗ = Hash(s, v∗). The other exception (that can
only occur in the CCA scenario) is when A asks a decryption query Dec∗(v,C∗) where v 6= v∗ but
Hash(s, v) = Hash(s, v∗). It is easy to see that any of these exceptions imply finding collisions in the
hash function. Hence, the probability of either of them occurring is negligible, and therefore B’s
advantage is only negligibly smaller than the advantage of A.

It is not hard to see that the collision-resistant hash function in the above construction may
be replaced by a universal one-way hash function; this is so because the definition above requires
the adversary to commit to the “challenge” ID-vector in advance. Since a universal one-way hash
function may be constructed from any one-way function (and thus, in particular, from any BTE
scheme), we obtain the following result:

Theorem 6 Assuming the existence of a BTE scheme secure in the sense of SN-CPA (resp., SN-
CCA), there exists a HIBE scheme secure in the sense of SN-CPA (resp., SN-CCA).

B Basing NIZK on Publicly-Verifiable Trapdoor Predicates

We begin with a definition of publicly-verifiable trapdoor predicates that relaxes the notion of trap-
door permutations. Somewhat informally, we replace the requirements that the domain is efficiently

21

sampleable and that the permutation is efficiently computable by the (weaker) requirements that it
is possible to efficiently sample uniform pairs (x, π(x)) and that given a pair (x, y) it is possible to
efficiently determine whether or not y = π(x). Then, we argue that the publicly-verifiable trapdoor
predicate which arises naturally from the computational BDH assumption is sufficient for NIZK in
the context of CCA2-secure encryption (see discussion below).

The formal definition we give here is patterned after the definition of trapdoor permutations

[20, Definition 2.4.5]. Below we let Ī ⊆ {0, 1}∗ be an index set and denote Īk
def
= Ī ∩ {0, 1}k . For

each index i ∈ Ī we associate a domain Di and a predicate fi : Di ×Di → {0, 1}. (Informally, fi

tells us whether or not the pair (x, y) is of the form (x, π(x)).)

Definition 10 Let F = {fi : i ∈ Ī} be a collections of functions fi : Di ×Di → {0, 1} such that
for all i ∈ Ī and y ∈ Di, there is a unique x for which fi(x, y) = 1. Collection F is a publicly-

verifiable trapdoor predicate if there exist four ppt algorithms I,D, F, F−1 such that:

• Index and trapdoor selection: For all k we have I(1k) ∈ Īk × {0, 1}
∗.

• Uniform sampling of valid predicates: For all i ∈ Ī we have

– If (x, y)← D(i) then fi(x, y) = 1.

– For all ỹ ∈ Di, Pr[(x, y)← D(i) : y = ỹ] = 1/|Di|.

• Efficient predicate evaluation: For all i ∈ Ī and all (x, y) ∈ Di ×Di, F (i, x, y) = fi(x, y).

• Hard to find a valid “match”: For all ppt algorithms A the following probability is negligible
in k:

Pr[(i, td)← I(1k); (x, y)← D(i) : A(i, y) = x].

• Finding a valid “match” with trapdoor : For all k, any pair (i, t) output by I(1k), and any
y ∈ Di we have fi(F

−1(t, y), y) = 1.

It is not hard to see that a BDH parameter generator IG satisfying the computational BDH
assumption (cf. Section 2.1) gives rise to a publicly-verifiable trapdoor predicate. Informally, this
predicate arises because the computational Diffie-Hellman problem in G 1 is “hard” while the de-
cisional Diffie-Hellman problem in G 1 is “easy” (cf. [26]). Specifically, making the index a pair of
random elements P,Q, we can define the predicate as fP,Q(R1, R2) = 1 iff logP R2 = logQ R1. Now,
verifying the equality is just an instance of the decisional Diffie-Hellman problem, while computing
R2 from P,Q, and R1 requires solving the computational Diffie-Hellman problem. On the other
hand, knowing the trapdoor (i.e., logP Q) makes this last problem easy. In more detail:

• I(1k) runs IG(1k) to obtain (G 1 , G 2 , ê). Then, it chooses random P ∈ G 1 and random
α ∈ Zq (recall that q is the order of G 1 , G 2). It sets Q = αP and outputs the index i =
(G 1 , G 2 , ê, P,Q) and the trapdoor α.

• D(i) chooses random β ∈ Zq and outputs (βQ, βP).

• F (i, R1, R2) (with R1, R2 ∈ G 1) outputs 1 iff ê(P,R1) = ê(Q,R2).

• F−1(α,R2) outputs αR2.

22

It is not difficult to see (e.g., [20, Section 4.10.2]) that publicly-verifiable trapdoor predicates
satisfying some additional assumptions are sufficient to implement the “hidden-bits paradigm” and
hence are sufficient for general NIZK. These additional assumptions, informally, relate to:

1. The ability to efficiently recognize elements of the index set I, or to prove that a given i is
indeed in I (cf. [9]).

2. The existence of a sampling algorithm D′ which, on input i ∈ I and random coins ω, outputs
a uniformly-distributed element y ∈ Di and furthermore has the following property: for all
ppt algorithms A the following is negligible in k:

Pr[(i, td)← I(1k);ω ← {0, 1}∗; y ← D′(i;ω);x← A(i, y, ω) : fi(x, y) = 1].

(Note that A is given the random coins of D′. See [21, Appendix C.1] for discussion.)

Although these assumptions seem plausible for BDH parameter generators used in practice, we do
not require these assumptions for our desired application to CCA2 security. In particular, since
the receiver — and not a third party — establishes the “common reference string”, a number
of simplifications are possible. Namely, the receiver simply generates parameters (G 1 , G 2 , ê, P)
(note that, in our case, these parameters may simply be those used by the underlying encryption
scheme itself) and publishes a sufficiently-long sequence R1, . . . , Rℓ of randomly-generated values
in G 1 which will serve as the common reference string. When proving a statement, a sender chooses
random α ∈ Zq, computes Q = αP , and sends Q (thereby defining an index i for a publicly verifiable
trapdoor predicate). Note that since the sender has the trapdoor α, he may indeed implement the
“hidden-bits paradigm” using an appropriate hardcore bit for the trapdoor predicate thus defined.

23

