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Abstract. We study elliptic curve cryptosystems by first investigating
the schemes defined over Zp and show that the scheme is provably secure
against adaptive chosen cipher-text attack under the decisional Diffie-
Hellman assumption. Then we derive a practical elliptic curve cryptosys-
tem by making use of some nice elliptic curve where the decisional Diffie-
Hellman assumption is reserved.
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1 Introduction

Elliptic curve cryptosystems were first studied by Miller [9] and Koblitz [7]. The
most attractive feature that makes elliptic curve interesting both from the point
views of the practice and the theoretical research is the relatively short operand
length relative to RSA and systems based on the discrete logarithm in finite
fields. Cryptosystems which explore the discrete logarithm problem over elliptic
curve can be built with an operand length of 150-200 bits ([10], [8]). Thus, smaller
parameters can be used in elliptic curve cyrptosystem than with discrete loga-
rithm systems but with equivalent levels of security. IEEE and other standard
bodies such as ANSI and ISO are in the process of standardizing elliptic curve
cryptosystems. It is thus very attractive to provide efficient public key algorithms
which allow for efficient implementations of elliptic curve cryptosystems.

A public key encryption scheme is secure definitely related to the ability
of adversaries and underlying assumptions. To define the ability of adversaries,
three basic models are considered:

-Semantic secure: a public key encryption scheme is said semantic secure,
which is first mentioned by Goldwasser and Micali [6], if an adversary should
not be able to obtain any partial information about a message given its cipher-
text.

-Secure against chosen cipher-text attack: a public key encryption scheme is
said secure against chosen cipher-text attack (or lunch time attack or midnight
attack), developed by Naor and Yung [11], if an adversary, who has access to



the decryption oracle before a target cipher-text is given, is not able to extract
any information of message.

-Secure against adaptive chosen cipher-text attack: a public key encryption
scheme is called secure against adaptive chosen cipher-text, which is developed
by Rackoff and Simon [12], if an adversary, who has access the decryption oracle
even after the target cipher-text is given and the adversary can query the de-
cryption oracle any cipher-text but the target cipher-text, is unable to extract
any information about the message.

Our goal is to provide a practical public key encryption scheme that is
provably secure against adaptive chosen cipher-text attack in the standard in-
tractability paradigm. We study elliptic curve cryptosystem by first investigate
the schemes defined over Zp and showing that the scheme is provably secure
against adaptive chosen cipher-text attack under the decisional Diffie-Hellman
assumption in the above setting, then deriving a practical elliptic curve cryp-
tosystem by making use of some nice elliptic curve where the decisional Diffie-
Hellman assumption is reserved.

2 Primitives

We make use of standard reduction technique. We therefore sketch the related
notions below:

COMPUTATIONAL INDISTINGUISHABILITY: Two families of distribu-
tions δ1 and δ2 are said to be computationally indistinguishable if no probabilistic
polynomial time Turing machine distinguisher can decide which distribution it is
sampling from with a probability of success non-negligibly better than random
guessing.

According to the definition of computationally indistinguishable, it is not
hard for one to show the following facts.

-Fact 1: If δ1 and δ2 are computationally indistinguishable and δ2 and δ3 are
computationally indistinguishable, then δ1 and δ3 are computationally indistin-
guishable.

-Fact 2: If δ1 and δ2 are computationally indistinguishable, then δ1 × δ and
δ2 × δ are computationally indistinguishable for any independent distribution δ,
where δ1 × · · · × δk, the productive distribution, is defined to be a distribution
on k-tuples where the ith component is sampled according to the distribution
δi.

The underlying primitive of our scheme is the hardness assumption of the
decisional Diffie-Hellman problem as well as the existence of collision-free hash
functions. We review the famous quadruple decisional Diffie-Hellman Problem
by considering the following two distributions:

-The distribution R4 of random quadruple (g1, g2, u1, u2) ∈ G4, where g1, g2, u1

and u2 are uniformly distributed in G4, where G is a large cyclic group of prime
order q.



-The distribution D4 of quadruples (g1, g2, u1, u2) ∈ G4, where g1 and g2

are uniformly distributed in G2 whilst u1 = gr
1 and u2 = gr

2 for an r uniformly
distributed in Zq.

An algorithm that solves the quadruple Decisional Diffie-Hellman problem
is a statistical test that can efficiently distinguish these two distributions. De-
cisional Diffie-Hellman assumption means that there is no such a polynomial
statistical test. This assumption is believed to be true for many cyclic groups,
such as the prime sub-group of the multiplicative group of finite fields. To prove
the security of our scheme, we make use of the following Lemma.

Lemma: Two distributions defined below are indistinguishable under the sole
assumption of the standard quadruple Decisional Diffie-Hellman problem:

-The distribution R2k of any random tuple (g1, · · · , gk, u1, · · · , uk) ∈ G2k,
where g1, · · · , gk, and u1, · · · , uk are uniformly distributed in G2k;

-The distribution D2k of tuples (g1, · · · , gk, u1, · · · , uk) ∈ G2k, where g1, · · · , gk

are uniformly distributed in Gk while u1 = gr
1, · · · , uk = gr

k for an r uniformly
distributed in Zq.

Proof: By mathematics induction. Let G be a large cyclic group of prime
order q defined above. The Six-tuple Decisional Diffie-Hellman Problem (6-DDH
for short), is to study the intractability of the following two distributions. More
precisely:

-The distribution R6 of random six-tuple (g1, g2, g3, u1, u2, u3) ∈ G6, where
g1, g2, g3, u1, u2 and u3 are uniformly distributed in G6.

-The distribution D6 of six-tuple (g1, g2, g3, u1, u2, u3) ∈ G6, where g1, g2 and
g3 are uniformly distributed in G3 while u1 = gr

1, u2 = gr
2 and u3 = gr

3 for an r
uniformly distributed in Zq.

Let us consider a machine M that can get a non-negligible advantage ǫ be-
tween D4 and R4. We define a 6-DDH distinguisher M ′, which runs as follows:
Given any six-tuple (g1, g2, g3, u1, u2, u3), which comes from either R6 or D6, M ′

runs M on the quadruple (g1g2, g3, u1u2, u3) and simply forwards the answer.
As explained by the equations presented below, that if (g1, g2, g3, u1, u2, u3) fol-
lows the distribution D6, then (g1g2, g3, u1u2, u3) follows the distribution D4.
It is also the same between R6 and R4. As a consequence, our new machine
gets the same advantage ǫ in distinguishing D6 and R6 with the help of M in
distinguishing D4 and R4, performing just one more multiplication in G, where
G is assumed to be a cyclic group of order q, and g is assumed to be a generator
of this group. We denote the output of M(respectively M ′)as follows: If the the
input comes from D4(D6 respectively), it outputs 1 and 0 if the input tuple
comes from R4(R6 respectively).

Pr[M(g1g2, g3, u1u2, u3) = 1|(g1, g2, g3, u1, u2, u3) ∈ R6]
=Pr[M(gx1+x2 , gx3 , gx4+x5 , gx6) = 1|x1, x2, x3, x4, x5, x6 ∈ Zq]
=Pr[M(gx, gy, gz, gr) = 1|x, y, z, r ∈ Zq]
=Pr[M(g1, g2, u1, u2) = 1|(g1, g2, u1, u2) ∈ R4]

And



Pr[M(g1g2, g3, u1u2, u3) = 1|(g1, g2, g3, u1, u2, u3) ∈ D6]
=Pr[M(gx1+x2 , gx3 , gr(x1+x2), grx3) = 1|x1, x2, x3, r ∈ Zq]
=Pr[M(gx, gy, grx, gry) = 1|x, y, r ∈ Zq]
=Pr[M(g1, g2, u1, u2) = 1|(g1, g2, u1, u2) ∈ D4]

Let us consider a machine M that can get a non-negligible advantage ǫ be-
tween D6 and R6. We define a 4-DDH distinguisher M ′, which runs as follows: on
a given quadruple (g1, g2, u1, u2), M

′ runs M on the six-tuple (g1, g2, g
s
1g

t
2, u1, u2, u

s
1u

t
2),

for randomly chosen s and t in Zq, and simply forwards the answer. Once again,
the advantage of our new distinguisher M ′ is exactly the same as the advantage
of M , with very few more computations: we assume again g to be a generator
of G, and we insist on the fact that Zq is a field.

Pr[M ′(g1, g2, u1, u2) = 1|(g1, g2, u1, u2) ∈ D4]
=Pr[M(gx1 , gx2 , gsx1+tx2 , grx1 , grx2 , gsrx1+trx2) = 1|x1, x2, r, s, t ∈ Zq]
=Pr[M(gx1 , gx2 , gx3 , grx1 , grx2 , grx3) = 1|x1, x2, x3, r ∈ Zq]
=Pr[M(g1, g2, g3, u1, u2, u3) = 1|(g1, g2, g3, u1, u2, u3) ∈ D6]

And
Pr[M ′(g1, g2, u1, u2) = 1|(g1, g2, u1, u2) ∈ R4]

=Pr[M(gx1 , gx2 , gsx1+tx2 , gy1 , gy2 , gsy1+ty2) = 1|x1, x2, s, t, y1, y2 ∈ Zq]
= Pr[M(gx1 , gx2 , gx3 , gy1 , gy2 , gy3) = 1|(x1, x2, x3, y1, y2, y3) ∈ Zq

6]
=Pr[M(g1, g2, g3, u1, u2, u3) = 1|(g1, g2, g3, u1, u2, u3) ∈ R6]

Based on the above arguments, we obtain the useful result: The Decisional
Diffie-Hellman Problems, 4-DDH and 6-DDH, are equivalent. We now obtain
reductions that are optimal since an advantage against one of these problems
can be reached against the other one. Therefore, under the sole classical De-
cisional Diffie-Hellman assumption, for any k, the following distributions are
indistinguishable:

– The distribution R2k of any random tuple (g1, · · · , gk, u1, · · · , uk) ∈ G2k,
where g1, · · · , gk, and u1, · · · , uk are uniformly distributed in G2k;

– The distribution D2k of tuples (g1, · · · , gk, u1, · · · , uk) ∈ G2k, where g1, · · · , gk

are uniformly distributed in Gk while u1 = gr
1, · · · , uk = gr

k for an r uniformly
distributed in Zq.

3 A practical public key cryptosystem

Our encryption scheme is described as follows:
-Key generation: Let G be a sub-group of prime order q. Let H be a collision

free hash function; We choose g1 ∈ G\{1} and w, x, y, z ∈ Zq at random and
compute g2 = gw

1 , c = gx
1 , d = gy

1 and h = gz
1 . The private keys are (w, x, y, z).

The public keys are (g1, g2, c, d, h,H).
-Encryption: To encrypt a message m ∈ G, it computes u1 = gr

1, u2 = gr
2,

e = mhr, α = H(u1, u2, e) and v = crdrα. The cipher-text is (u1, u2, e, v).



-Decryption: Given a putative cipher (u1, u2, e, v), it computes α = H(u1, u2, e),
and tests whether u2 = uw

1 and ux+yα
1 = v hold. If the both conditions hold,

then the decryption algorithm outputs m = e/uz
1, Otherwise it outputs reject.

COMPARISONS: The scheme can be viewed as a variation of Cramer-Shoup’s
encryption scheme with reduced key sizes. More details:

-The key generation algorithm in our scheme is more efficient than that in the
basic Cramer and Shoup’s encryption scheme. The public keys are g1, g2 = gw

1 ,
c = gx

1 , d = gy
1 and h = gz

1 and the secret keys are (w, x, y, z) in our scheme. The
public keys are g1, g2, c = gx1

1 gx2

2 , d = gy1

1 gy2

2 and h = gz
1 and the secret keys

are (x1, x2, y1, y2, z) in Cramer-Shoup’s encryption scheme.
-The computational costs of the decryption algorithm of our scheme is equiv-

alent to that in the basic Cramer-Shoup’s encryption however our decryption
algorithm is more efficient to reject any invalid cipher-text. This property may
be useful in practice.

PROOF OF SECURITY: The above scheme is denoted G0 and the trans-
formed games are denoted Gi, for i = 1, 2.

Defining game G1 as follows:
-Key generation: Let G be a sub-group of prime order q. We choose x1,

x2, y1, y2, z1, z2 ∈ Zq at random and computes c = gx1

1 gx2

2 , d = gy1

1 gy2

2 and
h = gz1

1 gz2

2 . The private keys are (x1, x2, y1, y2, z1, z2) and the public keys are
(g1, g2, c, d, h,H), where H is a collision free hash function.

-Encryption oracle: Suppose (g1, g2, u1, u2) is a random Diffie-Hellman quadru-
ple, we then compute e = muz1

1 uz2

2 , α = H(u1, u2, e) and v =ux1+y1α
1 ux2+y2α

2 .
The cipher-text is (u1, u2, e, v).

-Decryption: Given a putative cipher-text (u1, u2, e, v), it computes α =
H(u1, u2, e), and tests whether ux1+y1α

1 ux2+y2α
2 = v, if this condition does not

hold, the decryption algorithm outputs reject; otherwise, it outputs m =e/uz1

1 uz2

2 .

Claim 1: The two games G0 and G1 are equivalent up to the point where any
invalid cipher-text can be rejected except for a negligible amount.

Proof: We say a cipher-text (u1, u2, e, v) valid if logg1
u1 = logg2

u2. Since the
decryption algorithm in game G0 knows the trapdoor information w = logg h,
we can assume that (g1, g2, u1, u2) is always from the Diffie-Hellman quadruple.
As the decryption algorithm in the game G1 is able to reject any invalid cipher-
text except for negligible amount (the same argument as Lemma 1 presented
in [CS]), it follows that the two games are equivalent up to the point where an
invalid cipher-text is not rejected (however, the probability that this happens is
negligible).

Claim 2: The adversary’s advantage in game G0 and in game G1 are same.
Proof: By Claim 1, the adversary’s mount is restricted to adaptive choose

valid cipher-text attack in game G1 and in game G2. The distribution of valid
cipher-texts in game G1 is denoted by δ1 and the distribution of valid cipher-
texts in game G2 is denoted by δ2. Therefore the distribution δ1 is statistical



indistinguishable to the distribution δ2. It follows the adversary’s advantage in
game G0 differs from game G1 by a negligible amount.

Defining game G2 as follows:
Now, we replace (g1, g2, u1, u2) in game G1 by arbitrary (g1, g2, u

′

1, u
′

2),
which is either a Diffie-Hellman quadruple or a random quadruple.

-Key generation: Let G be a sub-group of prime order q. We chosen x1,
x2, y1, y2, z1, z2 ∈ Zq at random and computes c = gx1

1 gx2

2 , d = gy1

1 gy2

2 and
h = gz1

1 gz2

2 . The private keys are (x1, x2, y1, y2, z1, z2) and the public keys are
(g1, g2, c, d, h,H), where H is a collision free hash function.

-Encryption oracle: Given (g1, g2, u
′

1, u
′

2), it computes e′ = mu′z1

1 u′z2

2 , α′ =

H(u′

1, u
′

2, e
′) and v′ = u′x1+y1α′

1 u′x2+y2α′

2 . The cipher-text is (u′

1, u
′

2, e
′, v′).

-Decryption: Given a putative cipher-text (u′

1, u
′

2, e
′, v′), it computes α′ =

H(u′

1, u
′

2, e
′), and tests whether u′x1+y1α′

1 u′x2+y2α′

2 = v′, if this condition does
not hold, the decryption algorithm outputs reject; otherwise, it outputs m =e′/u′z1

1 u′z2

2 .

Claim 3: Under the decisional Diffie-Hellman assumption, as well as the col-
lision free assumption of hash function The adversary’s advantage in game G1

differs form its advantage in game G2 by a negligible amount.
Proof: G1 is Cramer-Shoup’s encryption scheme while G2 is the simulator

of Cramer-Shoup’s encryption scheme. Therefore under the decisional Diffie-
Hellman assumption, as well as the collision free assumption of hash functions,
the adversary’s advantage in game G1 differs form its advantage in game G2 by
a negligible amount.

Claim 4: The scheme G0, is secure against adaptive chosen cipher-text attack
under the Decisional Diffie-Hellman assumption, as well as the collision free
assumption of hash functions.

Proof: Suppose there is an adversary which is able to break the scheme G0

with non-negligible probability. By Claim 1 and Claim 2, one knows that the
adversary’s advantage in game G1 differs form its advantage in game G0 by
negligible amount. Therefore the adversary is able to break game G1 with non-
negligible probability. By Claim 3, the adversary’s advantage in game G2 differs
form its advantage in game G1 by negligible amount, therefore, the adversary
is able to break game G2 with non-negligible probability. Equivalently, two dis-
tributions (g1, g2, h, g1

r, g2
r, hr) and (g1, g2, h, u1

′, u2
′, u1

z1u2
z2) are distinguish-

able. By lemma, this contradicts the decisional Diffie-Hellman assumption.

4 Practical elliptic curve public key cryptosystem

CHOICE OF ELLIPTIC CURVES: To transform a public key cryptosystem de-
fined over Zp to elliptic curve setting, one should be caution enough to choose
the good elliptic curves so that the decisional Diffie-Hellman assumption is be-
lieved true. A set of elliptic curve are those recommended but not mandated by
NIST in June 1999 for U.S. Federal Government use (these curves are also rec-
ommended in the FIPS 186-2 standard [5]). These recommended elliptic curves



are defined over the prime field or binary field. These elliptic curves have been
carefully studied so that they meet fast implementations as well as integrability
with other cryptographic primitives.

– The prime fields Fp for p=2192 − 264 − 1, p=2224 − 296 + 1, p=2256 − 2224 +
2192 + 296 − 1, p =2384 − 2128 − 296 + 232 − 1 and p= 2521 − 1;

– The binary fields F2163 , F2233 , F2283 , F2409 and F2571 .

We restrict our attention to the prime field Fp, specially for p=2192 − 264 − 1
since it is easy for one to consider the rest cases. In the setting we choose a, b the
coefficients of the elliptic curve y2 = x3 + ax + b satisfying rb2 = ja3 mod p at
random. Notice that IEEE P1363 recommend the selection a =−3 for efficiency
considering. Let (xG, yG) be the x and y coordinates of the base point G and
n denote the (prime) order of G and h denote the cofactor. We make use of the
elliptic curve defined over Fp where p = 2192 − 264 − 1). The system parameters
listed below.

– p=62771017||35386680||76383578||94232076||66416083||90870039||03249612||79;
– seedE=0x||3045ae6f ||c8422f64||ed579528||d38120ea||e12196d5;
– r=0x||3099d2bb||bfcb2538||542dcd5f ||b078b6ef ||5f3d6fe2||c745de65;
– a=−3;
– b=0x||64210519||e59c80e7||0fa7e9ab||72243049||feb8deec||c146b9b1;
– xG=0x||188da80e||b03090f6||7cbf20eb||43a18800||f4ff0afd||82ff1012;
– yG=0x||07192b95||ffc8da78||631011ed||6b24cdd5||73f977a1||1e794811;
– n=6277101735386680763835789423176059013767194773182842284081;
– h=1.

Since the elliptic curve we chosen with large prime order, the decisional Diffie-
Hellman assumption is held in this setting. We describe the corresponding EC
system parameters below:

– Key generation algorithm: Let g1 be a rational point of the EC described
above. We choose w,α, β, γ at random and compute g2 =wg1, c= αg1, d=
βg1 and h=γg1. H is a collision free hash function. The public key are those
(g1, g2, h, c, d,H) together with the description of EC.

– To encrypt a message m, one computes u1 = rg1, u2 =, rg2, e = m ⊕ rh,
λ = H(u1, u2, e) and v = rc + λrd. The cipher-text is (u1, u2, e, v).

– Given a putative cipher (u1, u2, e, v), it computes λ = H(u1, u2, e), and tests
whether the conditions u2= wu1 and (x + λy)u1 = v hold. If the both con-
ditions hold, then the decryption algorithm outputs m=e ⊕ γu1, Otherwise
it outputs reject.

Again, since the elliptic curve we choose with large prime order, the deci-
sional Diffie-Hellman assumption is held in this setting. Consequently, we have
the statement: the EC cryptosystem described above is provably secure against
adaptive chosen cipher-text attack under the Decisional Diffie-Hellman assump-
tion, as well as the collision free assumption of hash function.
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