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Abstrat. Construting pratial and provably seure group signature shemes has been a very ative

researh topi in reent years. A group signature an be viewed as a digital signature with ertain extra

properties. Notably, anyone an verify that a signature is generated by a legitimate group member, while

the atual signer an only be identi�ed (and linked) by a designated entity alled a group manager.

Currently, the most eÆient group signature sheme available is due to Camenish and Lysyanskaya

[CL02℄. It is obtained by integrating a novel dynami aumulator with the sheme by Ateniese, et al.

[ACJT00℄.

In this paper, we onstrut a dynami aumulator that aumulates omposites, as opposed to previ-

ous aumulators that aumulated primes. We also present an eÆient method for proving knowledge

of fatorization of a ommitted value. Based on these (and other) tehniques we design a novel prov-

ably seure group signature sheme. It operates in the ommon auxiliary string model and o�ers two

important bene�ts: 1) the Join proess is very eÆient: a new member omputes only a single expo-

nentiation, and 2) the (unoptimized) ost of generating a group signature is 17 exponentiations whih

is appreiably less than the state-of-the-art.

1 Introdution

The notion of group signatures was introdued by Chaum and van Heyst in 1991 [CvH91℄. Sine then, seeking

pratial and provably seure group signature shemes { and their interative dual known as identity esrow

[KP98℄ { has been a very ative researh area in applied ryptography. A group signature an be seen as a

normal digital signature with the following extra properties: anyone an verify that a signature is generated

by a legitimate group member, while the atual signer an only be identi�ed and linked by a designated

trusted entity alled a group manager. It is important to point out that the mehanism, whih allows the

group manager to identify the atual signer of a group signature, ats as a ruial deterrent that prevents

group members from misbehaving.

The basi idea underlying most group signature shemes (as well as ours) is the following: In order for

a group member (Alie) to sign a message, she needs to onstrut an authorization-proof to show that she

has a legitimate membership erti�ate, and an ownership-proof to demonstrate knowledge of the seret

orresponding to the membership erti�ate. The issues in these two proofs are similar to those enountered

in a normal publi key infrastruture (PKI) setting, namely, a signature an be veri�ed using the alleged

signer's publi key ontained in a erti�ate whih has not been revoked. However, the group signature

senario is more ompliated, sine a signer annot show her membership erti�ate without ompromising

her anonymity. It is preisely this anonymity requirement that makes it very diÆult to have a pratial

solution that failitates revoation of membership erti�ates (a onept ompatible to erti�ate revoation

in a normal PKI), or the validity hek of non-revoked membership erti�ates.

Early group signature shemes (e.g., [CP94℄) have the harateristis that the sizes of the group publi

key and/or of group signatures linearly depend on the number of group members. The advantages of these

shemes inlude: (1) many of the shemes have been proven seure using some standard ryptographi

assumptions (suh as the hardness of omputing disrete logarithms), and (2) authorization-proof is trivial

sine revoking a member is done by the group manager by removing the orresponding membership erti�ate

from the group publi key. The disadvantage of suh shemes is that the omplexity of ownership-proof,

namely proving and verifying that one knows the seret orresponding to a (non-identi�ed yet non-revoked)

membership erti�ate, is linear in the number of urrent members and thus beomes ineÆient for large

groups.



To ombat linear omplexity inurred as part of ownership-proof, Camenish and Stadler [CS97℄ took a

di�erent approah where the sizes of the group publi key and of group signatures are onstant and indepen-

dent of the number of urrent group members. This approah has been adopted in some follow-on results,

e.g., [CM98,CM99a,ACJT00℄.
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As initially presented, these shemes only support adding new members.

Sine then, [CS97℄ and [ACJT00℄ have been extended to support membership revoation [BS01,S01,AST02℄.

However, revoation inurs ertain signi�ant osts due to some (or all) of the following:

{ Group manager re-issuing all erti�ates for eah revoation interval.

{ Group member (signer) proving, as part of signing, that her erti�ate is not revoked.

{ Veri�er heking eah group signature against the urrent list of revoked erti�ates.

As pointed out in [CL02℄, eah of the above has a linear dependeny either on the number of urrent, or the

total number of deleted, members.

State-of-the-Art. Currently, the most eÆient group signature sheme is due to Camenish and Lysyan-

skaya [CL02℄. It is onstruted by inorporating a dynami aumulator, whih allows eÆient authorization-

proofs, into the group signature sheme due to Ateniese, et al. [ACJT00℄, whih allows eÆient ownership-

proofs.
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The onept of dynami aumulators introdued in [CL02℄ is a variant of the aumulator due to

Bari and P�tzmann [BP97℄. It enables a group member to ondut a light-weight authorization-proof suh

that both the proving and verifying omplexities are independent of the number of the urrent, or total

deleted, members. We note that the use of dynami aumulators to failitate authorization-proofs, requires

the group manager to disseminate ertain information, suh as the values deleted from the aumulator

whenever a member (or a set of thereof) joins or leaves the group.

1.1 Contributions

The main ontribution of this paper is a new group signature sheme provably seure against adaptive

adversaries, i.e., adversaries allowed to adaptively join and leave the group. The sheme is obtained by inor-

porating several building bloks, some of whih are new (e.g., the dynami omposites aumulator), while

others are more eÆient than previous tehniques providing the same funtionality (e.g., the multipliation

protool that allows one to prove that she knows the fatorization of a ommitted value). More spei�ally:

{ A new dynami aumulator that aumulates omposites (see Setion 5.1), as opposed to the prior

onstrut that aumulates primes [CL02℄. This aumulator �ts well into a group signature sheme

beause it allows us to ondut simultaneous authorization-proofs and ownership-proofs based on the

fatorizations of aumulated omposites.

{ A protool (in Setion 5.2) for proving knowledge of fatorization of a ommitted value, whih, in our

ase, orresponds to an aumulated omposite. This protool is more eÆient than prior art, suh as

[DF02℄.

{ A protool (in Setion 5.3) for veri�able enryption of disrete logarithms, based on the publi key

ryptosystem due to Catalano, et al. [CGHN01℄. This protool is more eÆient than a similar protool

(e.g., the one presented in [MR01℄) based on the Pallier ryptosystem [P99℄.

As mentioned earlier, the state-of-the-art group signature sheme by Camenish and Lysyanskaya is

obtained by integrating a dynami prime aumulator [CL02℄ with the bare group signature sheme in

[ACJT00℄. This integration was needed sine a prime aumulator annot be used for ownership-proof. (See

Setion 3 for further disussion.) In omparison with the [CL02℄ sheme, our approah has three major

bene�ts:

{ Use of the new aumulator onstrut for both ownership-proof and authorization-proof. This yields a

oneptually simpler sheme.
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An interative variant, referred to as \Identity Esrow", was introdued by Kilian and Petrank [KP98℄.
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The redit for this sheme should be given to all authors of [ACJT00,CL02℄, and we refer to it as the Camenish-

Lysyanskaya sheme only for the purpose of simpliity.



{ EÆient Join: a new member only omputes a single exponentiation in order to verify that her omposite

has been orretly aumulated. In omparison, Join involves more than 30 exponentiations in [CL02℄.

We note that this omplexity does not stem from the use of the dynami aumulator; it is inherited

from Join of [ACJT00℄.

{ EÆient Sign: the omputational omplexity of signing is 17 exponentiations (without any optimizations)

whih is notably lower than 25 in the Camenish-Lysyanskaya sheme.
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Our sheme also has some potential drawbaks. They are disussed in Setion 7.

1.2 Organization

In Setion 2, we overeview the model and goals of group signatures. Then, in Setion 3, we introdue the

basi ideas underlying our group signature sheme. Setion 4 presents some ryptographi preliminaries and

Setion 5 desribes some building bloks. The new group signature sheme is found in Setion 6; its features

and potential drawbaks are disussed in Setion 7. Due to spae limitations, tehnial details of the seurity

proof are deferred to the appendix.

2 Model and Goals

Partiipants. A group signature sheme involves a group manager (responsible for admitting/deleting mem-

bers and for revoking anonymity of group signatures, e.g., in ases of dispute or fraud), a set of group mem-

bers, and a set of signature veri�ers. All partiipants are modeled as probabilisti polynomial-time interative

Turing mahines.

Communiation Channels. All ommuniation hannels are assumed asynhronous. The ommuniation

hannel between a signer and a reeiver is assumed to be anonymous.

Trust. We assume that the group manager will not admit unauthorized individuals into the group. This is

reasonable, sine, otherwise, the group manager an issue valid membership erti�ates to rogue members

and thus make the group signature sheme useless. We assume that the group members, whether honest or

not, behave rationally. More preisely, a dishonest group member may seek to undermine the system (e.g.,

by olluding with other internal or external parties) as long as the attak will not be traed bak to herself.

Nonetheless, she will not take the hane if she (or anyone else olluding with her) is bound to be aught. This

assumption is also reasonable sine, in any group signature sheme (indeed, in any ryptographi setting),

a dishonest user ould (for instane) simply give away her own serets. However, she is bound to be held

aountable for any onsequenes of suh misbehavior.

2.1 De�nitions

A group signature sheme onsists of the following proedures:

{ Setup. On input a seurity parameter, this probabilisti algorithm outputs the initial group publi key

and the seret key for the group manager.

{ Join. This is a protool exeuted between the group manager and a user who is to beome a group

member. The user's output is a membership erti�ate and a membership seret; the group manager's

output is some updated information that indiates the urrent state of the system.

{ Revoke. This is a deterministi algorithm whih, on input a membership erti�ate, outputs some updated

information that indiates the urrent state of the system after revoking the given membership erti�ate.

{ Update. This is a deterministi algorithm that may be triggered by any Join or Revoke operation. It is

run by the group members after obtaining ertain information from the group manager.

{ Sign. This is a probabilisti algorithm whih, on input of: a group publi key, a membership erti�ate,

a membership seret and a message, outputs a group signature.
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However, the [ACJT00℄ sheme an be slightly improved to redue (by 2) the number of exponentiations in Sign.

Consequently, the ost of Sign in the Camenish-Lysyanskaya sheme an be ommensurately lowered.



{ Verify. This is a deterministi algorithm for establishing the validity of an alleged group signature on a

message with respet to the group publi key.

{ Open. This is an algorithm whih, on input of: a message, a valid group signature, a group publi key

and a group manager's seret key, determines the identity of the atual signer.

2.2 The Goals

A seure group signature sheme must satisfy the following properties:

{ Corretness. Any signatures produed by a group member using Sign must be aepted by Verify.

{ Unforgeability. Only group members are able to sign messages on behalf of the group.

{ Anonymity. Given a valid group signature, identifying the atual signer is omputationally hard for

everyone but the group manager.

{ Unlinkability. Deiding whether two di�erent group signatures were generated by the same member

is omputationally hard for everyone but the group manager.

{ No-framing. No ombination of a group manager and a subset of dishonest group members an sign

on behalf of a single honest member. That is, no honest member an be made responsible for a signature

she did not produe.

{ Traeability. The group manager is always able to identify the atual signer of any valid group

signature.

{ Coalition-resistane. A olluding subset of group members (even all members) annot generate a

signature that the group manager annot trae.

3 Basi Ideas

The basi idea underlying our group signature sheme is to utilize an aumulator that aumulates om-

posites, where the fatorization of a omposite is only known to the user who generates it. More spei�ally,

suppose a group member has a witness w suh that w

e

= v mod n where v is the publi aumulator value

and n is the produt of two safe primes, The fatorization of e = e

1

e

2

(i.e., the primes e

1

and e

2

) is only

known to the member. This knowledge allows the user to ondut an ownership-proof by demonstrating that

e = e

1

e

2

. The witness w failitates an authorization-proof that w

e

= v mod n.

While the basi idea is quite simple, we must deal with potential abuses. We now present an informal

disussion of some subtleties, and suggest ountermeasures. Readers who prefer to ommene with the more

in-depth tehnial desription may wish to skip this setion.

Q: How to ensure anonymity while preserving authentiity?

A: A signer \enrypts" both w and e suh that the required properties regarding them an be shown on the

orresponding \iphertexts". In partiular, a signer needs to show w

e

= v for the authorization-proof,

and e = e

1

e

2

for the ownership-proof. As long as e is hosen suh that it is infeasible to fator, no group

of partiipants (inluding the group manager) an frame an honest group member.

Q: How to deal with multiple dishonest group members who ollude (by revealing to eah other fatorizations

of their respetive omposites) and produe new membership erti�ates? For example, if Alie hooses

e

1

= e

1;1

e

1;2

and Bob hooses e

2

= e

2;1

e

2;2

, they an ollude to obtain new membership erti�ates for

the values suh as (e

1

e

2;1

) or (e

1;1

e

2;1

).

A: Although we annot prevent suh abuses, we an ensure that, the group manager an fator at least

one of the olluding group member's e (e

1

, or e

2

, or even both) and thus identify at least one of the

misreants. One way to do this, as we shall see, is to use a publi key enryption sheme (for whih the

group manager knows the private key) so that the signer is fored to enrypt an \aumulated" value

she is laiming. Note that even a dishonest member annot a�ord to enrypt e

1;1

, sine, otherwise, the

group manager an fator her omposite and forge signatures that will be traed bak to the dishonest

member.

Q: How to deal with multiple dishonest group members who ollude (but do not reveal to eah other the

fatorizations of their omposites) and produe new membership erti�ates? For example, suppose that

Alie holds (w

1

; e

1

) and Bob holds (w

2

; e

2

), where e

1

= e

1;1

e

1;2

, e

2

= e

2;1

e

2;2

, w

e

1

1

= w

e

2

2

= v. They an

ollude and generate (w

0

; e

0

= e

1

e

2

) suh that (w

0

)

e

1

e

2

= v.



A: We prevent suh attaks by requiring all veri�ers to hek that e

0

falls within a ertain range.

Q: Does the group manager need to hek whether a omposite presented by a new user during Join is

well-formed, i.e., a produt of two large primes? If not, what if a dishonest group member hooses e to

be a single prime or a produt of multiple (more than 2) primes?

A: We do not aim to prevent suh abuses (this also justi�es our eÆieny gains). However, will be shown, no

adversary an gain any bene�t from any suh abuse sine the group manager is always able to identify

at least one of the olluding group members.

Q: What if the group manager attempts to frame an honest group member by using the group member's

membership erti�ate (w; e) where w

e

= v while providing a proof of fatorization of some value e

0

6= e.

A: The Sign proess ensures that, if the group manager proves knowledge of the fatorization of an \au-

mulated" value e

0

6= e, then the witness value that the group manager (or any impersonator) is showing

is w

0

6= w. Moreover, the group manager is required to ondut a zero-knowledge proof as part of Open

suh that the deryption orresponding to an ElGamal iphertext (of w) is orret.

Remark. The ownership-proof in our sheme is onduted by a signer to prove knowledge of the fatorization

of a unique aumulated omposite e = e

1

e

2

, where w

e

= v for a publi aumulator value v. Therefore,

we say that our ownership-proof is based on the fatoring problem. Whereas, the ownership-proof in the

Camenish-Lysyanskaya sheme [CL02℄ is done by a signer to prove knowledge of x, suh that w

e

= a

x

b,

where a and b are publi, and e is prime. Therefore, we say that the ownership-proof is based on the disrete

logarithm problem.

4 Preliminaries

In this setion we go over some basi ryptographi assumptions and de�nitions neessary for our sheme.

4.1 RSA and Related Settings

De�nition 1. (safe RSA modulus). We say n = pq is a safe RSA modulus, if p = 2p

0

+1, q = 2q

0

+1, and

p, q, p

0

, q

0

are all primes.

By onvention, let gd(0; n) = n, and QR

n

be the subgroup of quadrati residues modulo n.

The Strong RSA Assumption (SRSA). This assumption was independently introdued by Bari and P�tz-

mann [BP97℄ and by Fujisaki and Okamoto [FO97℄.

De�nition 2. (Strong RSA Problem). Let n = pq be a RSA-like modulus and G be a yli subgroup of Z

�

n

,

where jord(G )j = l

G

. Given n and z 2

R

G , the Strong RSA Problem onsists of �nding w 2 G and e > 1

suh that z = w

e

mod n.

Assumption 1 (Strong RSA Assumption). Suppose a RSA-like modulus n and z 2

R

G are obtained aord-

ing to a given seurity parameter l

G

. The assumption states that any probabilisti polynomial-time algorithm

A an solve the Strong RSA Problem with only negligible probability.

The following lemma is useful and has appeared in many plaes (e.g.,[GKR00℄).

Lemma 1. Suppose n = pq is a safe RSA modulus. Given an element w 2 Z

�

n

n f1;�1g of ord(w) < p

0

q

0

,

either gd(w � 1; n) or gd(w + 1; n) is a prime fator of n.

4.2 Disrete Logarithm Related Cryptographi Setting

The Deisional DiÆe-Hellman Assumption (DDHA). This assumption was �rst expliitly introdued by

Brands [B93℄, although it was impliitly assumed in earlier literature.

De�nition 3. (Deisional DiÆe-Hellman Problem). Let G = hgi be a yli group generated by g, where

jord(G )j = l

G

. Given g, g

x

, g

y

, and g

z

2 G , the Deisional DiÆe-Hellman Problem onsists of deiding

whether g

xy

= g

z

.



Assumption 2 (Deisional DiÆe-Hellman Assumption). Suppose a group G and an element g of order

ord(G ) are obtained aording to a given seurity parameter l

G

. The assumption states that there is no

probabilisti polynomial-time algorithm that distinguishes with non-negligible probability (g; g

x

; g

y

; g

xy

) from

(g; g

x

; g

y

; g

z

), where x; y; z 2

R

Z

ord(G)

.

We will utilize the ElGamal publi key ryptosystem [E85℄ whose semanti seurity is based on DDHA

[TY98℄. Sine we always work in the setting of modulo a safe RSA modulus, we need ertain group in whih

the DDHA holds.

Fat 1 If n is a safe RSA modulus, then QR

n

is a yli subgroup of order p

0

q

0

. Moreover, if a 2 Z

�

n

and

gd(a� 1; n) = 1, then g = a

2

mod n is of order p

0

q

0

.

4.3 The CGHN Publi Key Cryptosystem

We now briey review Paillier's ryptosystem [P99℄. Suppose n = pq where p and q are large primes. Then

we have Euler's Totient funtion �(n) = (p� 1)(q � 1) and Carmihael's funtion �(n) = lm(p� 1; q � 1).

It follows that: w

�(n)

= 1 mod n and w

n��(n)

= 1 mod n

2

for any w 2 Z

�

n

2

. Let (n; g;n; g; p; q) be a pair of

Paillier publi and private keys as spei�ed in [P99℄. To enrypt a message m 2 Z

n

, one hooses r 2

R

Z

�

n

and omputes the iphertext  = g

m

r

n

mod n

2

. Note that an interesting seletion of g is g = (1+n) beause

(1 + n)

m

= 1 +mn mod n

2

.

A performane disadvantage of the Paillier ryptosystem is that one needs to ompute r

n

mod n

2

. Cata-

lano et al. [CGHN01℄ observed that if we always set g = (1 + n) then we an use any publi exponent t

as long as gd(t; �(n

2

)) = 1, beause a iphertext  = (1 +mn)r

t

mod n

2

yields  = r

t

mod n, thereby r

an be reovered by a standard RSA deryption operation. This means that one only needs to ompute an

exponentiation operation modulo n

2

with respet to an exponent jtj << jnj. We all this variant the CGHN

ryptosystem whose semanti seurity is based on the following DSRA assumption.

De�nition 4. (Computational Small t-roots Problem). This is a variant of the RSA problem in Z

�

n

2

. The

problem is to invert y

t

mod n

2

, where y 2 Z

n

, t 2 Z

n

, and gd(t; �(n

2

)) = 1.

De�nition 5. (Deisional Small Residuosity Problem, DSRP). This is a deisional version of the above

omputational problem. Given an element x 2

R

Z

�

n

2

, one needs to deide whether x is the form y

t

with

y 2 Z

n

.

Assumption 3 (Deisional Small Residuosity Assumption, DSRA) Let n be a randomly hosen l-bit RSA

modulus, t 2 Z

n

suh that gd(t; �(n

2

)) = 1, and x 2

R

Z

�

n

2

. There exists no probabilisti polynomial-time

algorithm that is able to deide, with non-negligible advantage, whether x is the form y

t

with y 2 Z

n

.

The following lemma will be used (the proof is deferred to Appendix A).

Lemma 2. Suppose n is a safe RSA modulus. If A

a

= 1 mod n

2

where A 2 Z

�

n

2

and gd(a; n � �(n)) = 1 or

2, then A = �1 mod n

2

.

5 Building Bloks

Now we present three building bloks: a dynami aumulator aumulating omposites (Setion 5.1), a

protool allowing very eÆient ownership-proofs (Setion 5.2), and a protool ensuring veri�able enryption

of an aumulated value (Setion 5.3). Combining them appropriately, we obtain a group signature sheme.

5.1 A Composite Aumulator

We give a de�nition of dynami aumulators that aumulate omposites, whih is a variant of the prior

onstrut that aumulates primes [CL02℄.

De�nition 6. A dynami aumulator for a family of inputs fX

l

g is a family of families of funtions fF

l

g

with the following properties:



{ Generation. There is an eÆient probabilisti algorithm G that on input 1

l

produes a random element

f of F

l

, and some auxiliary information aux

f

about f .

{ Evaluation. f 2 F

l

is a polynomial-size iruit that, on input (u; x) 2 U

f

�X

l

, outputs a value v 2 U

f

,

where U

f

is an eÆiently-samplable input domain for the funtion f , X

l

is the intended input domain

whose elements (i.e., omposites) are to be aumulated.

{ Quasi-Commutative. For all l, for all f 2 F

l

, for all u 2 U

f

, for all x

1

; x

2

2 X

l

, f(f(u; x

1

); x

2

) =

f(f(u; x

2

); x

1

). If X = fx

1

; � � �; x

m

g � X

l

, then by f(u;X) we denote f(� � �f(f(u; x

1

); � � �); x

m

).

{ Witness. Let v 2 U

f

and x 2 X

l

. A value w 2 U

f

is alled a witness for x in v under f if v = f(w; x).

{ Addition. Let f 2 F

l

, and v = f(u;X) be the aumulator so far. There is an eÆient algorithm A to

aumulate a given value x

0

2 X

l

. The algorithm outputs: (1) X

0

= X[fx

0

g and v

0

= f(v; x

0

) = f(u;X

0

);

(2) w

0

whih is the witness for x 2 X in v

0

.

{ Deletion. Let f 2 F

l

, and v = f(u;X) be the aumulator so far. There exist eÆient algorithms D, W

to delete an aumulated value x

0

2 X. The funtionality of the algorithms inludes: (1) D(aux

f

; v; x

0

) =

v

0

suh that v

0

= f(u;X n fx

0

g), and (2) W(w; x; x

0

; v; v

0

) = w

0

suh that f(w

0

; x) = v

0

, where x 2 X and

f(w; x) = v.

De�nition 7. Let U

0

f

� X

0

l

denote the domains for whih the funtion f 2 F

l

is de�ned (thus U

f

� U

0

f

,

X

l

� X

0

l

). To apture seurity of a dynami aumulator aumulating omposites, we onsider the following

game: At the beginning of the game, an aumulator manager sets up the funtion f and the value u and

hides the trapdoor information aux

f

. Then, the adversary ADV is allowed to adaptively modi�es the set,

X, of aumulated values: When a value x 2 X

l

is added, the manager updates the aumulator value using

algorithm A; when a value x 2 X is deleted, the manager algorithm D publishes the result. We say ADV

wins in this game, if it, with non-negligible probability, manages to output a witness w

0

for a value x

0

2 X

0

l

suh that x

0

-

Q

8x2X

x. More formally, we require that:

Pr[(f; aux

f

) G(1

l

);u U

f

; (w; x

0

;X) ADV

O

add

;O

del

(f; u;U

f

) :

w

0

2 U

0

f

;x

0

2 X

0

l

;x

0

-

Y

8x2X

x; f(w

0

; x

0

) = f(u;X)℄

to be negligible, where O

add

(O

del

) is the orale for the Addition (resp. Deletion) operations. (Note that

only a legitimately aumulated value x must belong to X

l

, whereas a forged value x

0

an belong to a possibly

larger set X

0

l

.)

Constrution. This onstrution is a variant of the one aumulating primes [CL02℄.

{ F

l

is the family of funtions that orrespond to exponentiation modulo safe RSA modulus drawn from

the integers of length l. Choose f 2 F

l

amounts to hoosing a random safe RSA modulus n = pq of

length l, where p = 2p

0

+ 1, q = 2q

0

+ 1. We will denote by f the funtion orresponding to modulus n

and domain X

A;B

by f

n;A;B

.

{ X

A;B

= fe

1

e

2

: e

1

2 S

1

V

e

2

2 S

2

g, where S

1

= fe : e 2 primes

V

e 6= p

0

V

e 6= q

0

V

A

1

� e � B

1

g,

S

2

= fe : e 2 primes

V

e 6= p

0

V

e 6= q

0

V

A

2

� e � B

2

g, A

1

, A

2

, B

1

, and B

2

an be hosen with

arbitrary polynomial dependene on the seurity parameter l as long as 4 < A

1

, 1 < A

2

, B

1

< A

2

1

,

B

2

< A

2

1

, and B

1

B

2

< p

0

q

0

. Then, X

0

A;B

� f5; � � �; A

4

1

� 1g and X

A;B

� X

0

A;B

.

{ For f = f

n;A;B

, the auxiliary information aux

f

is the fatorization of n.

{ For f = f

n;A;B

, U

f

= fu 2 QR

n

: u 6= 1g and U

0

f

= Z

�

n

.

{ For f = f

n;A;B

, f(w; x) = w

x

mod n. Note that f(f(w; x

1

); x

2

) = f(w; fx

1

; x

2

g) = w

x

1

x

2

mod n.

{ Update of the aumulator value. Adding a value x

0

to the aumulator value v is done by setting v

0

=

f(v; x

0

) = v

x

0

mod n. Deleting a value x

0

from the aumulator is done by setting v

0

= D((p; q); v; x

0

) =

v

(x

0

)

�1

mod �(n)

mod n.

{ Update of witness. Updating the witness w after x

0

has been added an be done by w

0

= f(w; x

0

) = w

x

0

.

In the ase that x

0

6= x 2 X

AB

has been deleted from the aumulator, the witness w an be updated as

follows. By the extended GCD algorithm, one an ompute �; � 2 Z suh that �x + �x

0

= 1 and then

w

0

=W(w; x; x

0

; v; v

0

) = (v

0

)

�

w

�

. This guarantees f(w

0

; x) = (w

0

)

x

= v

0

mod n beause:



w

0

= (v

0

)

�

w

�

= (v

(x

0

)

�1

mod �(n)

)

�

w

�

= w

(�x+�x

0

)((x

0

)

�1

mod �(n))

= w

(x

0

)

�1

mod �(n)

mod n:

Note that it is ruial (x

0

; �(n)) = 1, but this is always guaranteed.

Theorem 1. Under the Strong RSA Assumption (SRSA), the above onstrution is a seure dynami a-

umulator that aumulates omposites.

Properties other than seurity are easy to see. The seurity proof is in Appendix A.

5.2 Proving That One Knows the Fatorization of a Committed Value

In order to enable ownership-proofs, we adopt the Damgard-Fujisaki ommitment sheme [DF02℄ with slight

modi�ation. Nonetheless, our protool for a signer to prove that she knows the fatorization of a ommitted

value is more eÆient than the protool presented in [DF02℄, and thus may be independently interesting.

The Commitment Sheme. Let l (for the length of the modulus) and k (for hallenge length) be seurity

parameters, where l >> k. This sheme onsists of the following three algorithms.

{ Set-up. This algorithm is run by a trusted third party (TTP). Given a seurity parameter l, TTP hooses

a safe RSA modulus N = PQ, where P = 2P

0

+ 1, Q = 2Q

0

+ 1, and jP

0

j = jQ

0

j = l=2. Denote by

G = QR

N

and l

G

= jord(G )j = l. TTP hooses two generators of G , G and H , uniformly at random;

i.e., G = hGi = hHi. Note that Fat 1 implies that this an be easily done.

{ Commit. To ommit to an integer x, the prover hooses r 2

R

Z

bN=4

and sends C = H

x

G

r

mod N to

the veri�er.

{ Open. To open a ommitment, the prover must send x, r, b suh that C = H

x

G

r

b mod N , b = �1.

Lemma 3. ([DF02℄) The above ommitment sheme is perfetly hiding and omputationally binding.

A Protool for Proving That One Knows the Fatorization of a Committed Value. Suppose X is

a given random integer suh that jX j = �

1

. Let � > 1 be a seurity parameter for statistial zero-knowledge,

�

2

denote length suh that l=2 > �

1

> �(�

2

+ k) + 2. Alie who holds e is to prove that she knows the

fatorization of e = e

1

e

2

, where e

1

2 fX � 2

�

2

; � � �; X + 2

�

2

g and e

2

6= 0;�1. The protool goes as follows.

1. The prover, Alie, hooses r

1

2

R

�f0; 1g

l+k

and generates C

1

= H

e

1

G

r

1

mod N , C

3

= (C

1

)

e

2

mod N .

In order to prove the knowledge of e = e

1

e

2

; e

1

; e

2

; r

1

; r = r

1

e

2

suh that

C

1

= H

e

1

G

r

1

mod N

V

C

3

= H

e

G

r

mod N

V

C

3

= (C

1

)

e

2

mod N ,

she exeutes as follows:

{ hoose e

0

1

2

R

�f0; 1g

�(�

2

+k)

, e

0

2

2

R

�f0; 1g

�(�

1

+k+1)

, e

0

2

R

�f0; 1g

�(2�

1

+k+1)

, r

0

1

2

R

�f0; 1g

�(l+2k)

,

r

0

2

R

�f0; 1g

�(l+�

2

+2k+1)

.

{ ompute C

0

1

= H

e

0

1

G

r

0

1

mod N , C

0

3a

= H

e

0

G

r

0

mod N , C

0

3b

= (C

1

)

e

0

2

mod N .

{ send (C

1

; C

3

; C

0

1

; C

0

3a

; C

0

3b

) to the veri�er.

2. The veri�er, Bob, hooses  2

R

f0; 1g

k

and sends  to Alie.

3. Alie sends Bob (s

e

1

; s

r

1

; s

e

2

; s

e

; s

r

), where s

e

1

= e

0

1

�(e

1

�X), s

r

1

= r

0

1

��r

1

, s

e

= e

0

��e, s

r

= r

0

�r,

s

e

2

= e

0

2

�  � e

2

(all in Z).

4. Bob aepts if: H

s

e

1

G

s

r

1

= C

0

1

C

�

1

H

2

�

1

mod N , H

s

e

G

s

r

= C

0

3a

C

�

3

mod N , C

s

e

2

1

= C

0

3b

C

�

3

mod N ,

s

e

1

2 f�2

�(�

2

+k)+1

; � � �; 2

�(�

2

+k)+1

g, s

e

2

2 f�2

�(�

1

+k+1)+1

; � � �; 2

�(�

1

+k+1)+1

g, s

e

2 f�2

�(2�

1

+k+1)+1

; � �

�; 2

�(2�

1

+k+1)+1

g, C

3

6= 1, and C

3

6= (C

1

)

b

mod N where b = �1.

The proof of the following lemma is available in Appendix A.

Lemma 4. The above protool is an honest veri�er statistial zero-knowledge proof of knowledge e; e

1

; e

2

suh

that e = e

1

e

2

, e

1

2 fX � 2

�(�

2

+k)+2

; � � �; X + 2

�(�

2

+k)+2

g, e

2

2 f�2

�(�

1

+k+1)+2

; � � �; 2

�(�

1

+k+1)+2

g n f0;�1g,

e 2 f�2

�(2�

1

+k+1)+2

; � � �; 2

�(2�

1

+k+1)+2

g.



5.3 Veri�able Enryption of a Committed Value

In order to failitate the Open proess, we need to fore the signer to present an enryption of her aumulated

value e for whih she proves that she knows its non-trivial fatorization e = e

1

e

2

. For this purpose, we need

a veri�able enryption sheme. Here we present suh a sheme based on the CGHN publi key ryptosystem.

Spei�ally, suppose publi valuesN ,G, andH are hosen aording to the ommitment sheme in Setion

5.2. Let pk = hn; ti be a CGHN publi key and sk = hn; t; p; qi be the orresponding private key, where n = pq,

jnj = jN j, and t is a prime suh that jtj > k. The prover generates a iphertext Y = (1 + n)

x

r

t

mod n

2

and a ommitment C = H

x

G

z

mod N , where r 2 Z

�

n

and z 2

R

Z

bN=4

. The prover needs to show that the

iphertext Y indeed orresponds to the ommitted seret x. The protool is as follows:

1. The prover hooses x

0

2

R

�f0; 1g

�(l

2

+k)

, r

0

2

R

Z

�

n

, z

0

2

R

f0; 1g

�(l+k)

, omputes and sends to the veri�er

Y

0

= (1 + n)

x

0

(r

0

)

t

mod n

2

and C

0

= H

x

0

G

z

0

mod N .

2. The veri�er responses with a random hallenge  2

R

f0; 1g

k

.

3. The prover responses with s

x

= x

0

� x (in Z), s

r

= r

�

r

0

mod n

2

, and s

z

= z

0

� z (in Z).

4. The veri�er aepts if s

x

2 f�2

�(l

2

+k)+1

; 2

�(l

2

+k)+1

g, (1 + n)

s

x

(s

r

)

t

= Y

0

Y

�

mod n

2

, and H

s

x

G

s

z

=

C

0

C

�

mod N .

The following lemma is proved in Appendix A.

Lemma 5. The above protool is an honest-veri�er statistial zero-knowledge proof of knowledge x; r; z.

6 A New Group Signature Sheme

As highlighted in Setion 3, the basi idea underlying our group signature sheme is to utilize an aumulator

aumulating omposites suh as e = e

1

e

2

, where e

1

and e

2

are only known to the user who generates it.

Suppose v is the aumulator value. This knowledge allows the user to ondut an ownership-proof by

demonstrating that she knows the fatorization of a ommitted e, whereas the witness w failitates an

authorization-proof that w

e

= v mod n.

6.1 Setup

Initialization of the system inludes that a group manager establishes some ryptographi parameters and

that a TTP establishes some ommon auxiliary strings. (We disuss the impliations of using a TTP in

Setion 7.4 below.) Spei�ally:

1. Let l, k, and � > 1 be seurity parameters. Let X be a random integer of length jX j = �

1

. Suppose �

2

denotes length suh that l=2 > �

1

> �(�

2

+ k) + 2. Denote by A = X � 2

�

2

and B = X + 2

�

2

. De�ne

the integral ranges that �

1

= fA; � � �; Bg, �

2

= f2

�

1

; � � �; 2

�

1

+1

� 1g, and � = f�2

2�

1

+1

; � � �; 2

2�

1

+1

g.

De�ne X

A;B

= fe

1

e

2

: e

1

2 S

1

V

e

2

2 S

2

g, where S

1

= fe : e 2 primes

V

e 2 �

1

g and S

2

= fe : e 2

primes

V

e 2 �

2

g . We assume that no probabilisti polynomial-time (in l) algorithm is able to fator

e 2

R

X

A;B

; this is where we need the stronger fatoring assumption (see Setion 7.1 for more disussion).

Note that we have (1) 4 < A, (2) B(2

�

1

+1

� 1) < A

3

. Let X

0

A;B

be (any subset of) of the set of integer

from f5; � � �; A

3

� 1g suh that X

A;B

� X

0

A;B

. The group manager exeutes as follows:

{ It hooses a safe RSA modulus n = (2p

0

+ 1)(2q

0

+ 1) suh that jp

0

j = jq

0

j = l=2. This uniquely

determines QR

n

, the quadrati residues subgroup modulo n.

{ It establishes an instane of ElGamal publi key ryptosystem. Let hy

1

= g

x

1

1

mod n;x

1

i be the pair

of publi and private keys suh that g

1

2

R

QR

n

and x

1

2

R

Z

�

p

0

q

0

.

{ It establishes an instane of CGHN publi key ryptosystem. Let hn; t;n; t; p; qi be the pair of publi

and private keys, where t is a prime suh that jtj > k.

{ It establishes an instane of the dynami aumulator by hoosing u 2

R

QR

n

, establishing (urrently

empty) publi arhives A for storing values orresponding to added group members, and D for storing

values orresponding to deleted group members.



The publi and private parameters of the group manager are (n; t; g

1

; y

1

; u;A;D;X

A;B

;X

0

A;B

) and (p

0

; q

0

),

respetively. Note that a signature reeiver an verify group signatures without knowing the dynamially

updated A or D.

2. Given a seurity parameter l, a TTP initializes a safe RSA modulus N = (2P

0

+ 1)(2Q

0

+ 1), where

jP

0

j = jQ

0

j = l=2. It also hooses and publishes two random elements G;H 2

R

QR

N

, where the logarithm

of G and H to eah other is unknown to any partiipant in the group signature sheme.

6.2 Join

This protool is exeuted between a group member, Alie, and the group manager.

1. Alie hooses two primes e

1

2

R

S

1

and e

2

2

R

S

2

. This step an be done before the exeution of the

protool.

2. Alie sends e = e

1

e

2

(in Z) to the group manager.

3. If A � 2

�

1

< e < B � (2

�

1

+1

� 1), e is odd, and e =2 A, the group manager stores Alie's membership

erti�ate (v; e) where v is the urrent aumulator value (when the �rst user joins the group, v = u). It

also updates v in the publi key �le as v

0

= f

n

(v; e), and adds e to A.

4. Alie gets her membership erti�ate (w; e) and heks if f

n

(w; e) = w

e

= v

0

mod n, where w = v.

Remark. The Join proess is very eÆient (1 exponentiation for both group manager and new user) beause

of the following: If a dishonest user, Eve, does not hoose e that is hard to fator, then any partiipant

(internal or external) who an �nd ertain non-trivial fator of e may be able to sign on her behalf.

6.3 Revoke

Suppose Eve, who has membership erti�ate (w; e), is to be expelled from the group. Then the group

manager an revoke her membership by updating the urrent aumulator value v in the publi key �le: It

simply sets v

0

= D(�(n); v; e), deletes e from A, and adds e to D.

6.4 Update

Whenever there is a Join and/or Revoke event, the group manager updates the aumulator value from v

to v

0

. Correspondingly, every group member needs to update her membership erti�ate. An entry in the

arhives is alled \new" if it was entered after the last time a legitimate group member performed an update.

Suppose Bob holds a membership erti�ate (w; e) suh that f

n

(w; e) = v. Then, he updates his membership

erti�ate to (w

0

; e) suh that f

n

(w

0

; e) = v

0

:

{ For all new e

�

2 A, w

00

= f

n

(w;

Q

e

�

) and v

00

= f

n

(v;

Q

e

�

).

{ For all new e

�

2 D, w

0

=W(w

00

; e;

Q

e

�

; v

00

; v

0

).

The ost of this proess, for a urrent member, is is very muh in line with the ost of Update in [CL02℄.

6.5 Sign

Reall that hn; ti is the group manager's CGHN publi key, and that y

1

= g

x

1

1

mod n is the group manager's

ElGamal publi key. Suppose that v is the urrent aumulator value, and that Alie holds (w; e) suh that

w

e

= v mod n, where e = e

1

e

2

. Given a message m, Alie generates a group signature as follows.

1. She exeutes as follows.

{ She hooses r

1

2

R

Z

�

n

and omputes a CGHN iphertext Æ = (1 + en)r

t

1

mod n

2

.

{ She hooses r

2

2

R

�f0; 1g

l+k

and omputes an ElGamal iphertext (�; �) where � = g

r

2

1

mod n and

� = w � y

r

2

1

mod n.

{ She hooses r

4

2

R

�f0; 1g

l+k

and generates ommitments � = H

e

1

G

r

4

mod N , � = �

e

2

= H

e

G

r

4

e

2

mod N .

2. She needs to prove the knowledge of:



{ (w; e) suh that w

e

= v mod n, where w orresponds to the ElGamal iphertext (�; �), and e

orresponds to the CGHN iphertext Æ.

{ e

1

and e

2

suh that e

1

2 �

1

, e

2

2 �

2

, and e = e

1

e

2

2 � .

For this purpose, she needs to prove the knowledge of e; e

1

; e

2

; r

1

; r

2

; r

3

= r

2

e; r

4

; r

5

= r

4

e

2

suh that:

Æ = (1 + n)

e

r

t

1

mod n

2

^

� = g

r

2

1

mod n

^

v = �

e

(

1

y

1

)

r

3

mod n

^

1 = �

e

(

1

g

1

)

r

3

mod n

^

� = H

e

G

r

5

mod N

^

� = H

e

1

G

r

4

mod N

^

� = �

e

2

mod N

^

e 2 �

^

e

1

2 �

1

^

e

2

2 �

2

:

Spei�ally, she exeutes as follows:

(a) She exeutes the following steps:

{ Choose e

0

2 �f0; 1g

�(2�

1

+k+1)

and r

0

1

2

R

Z

�

n

, and ompute Æ

0

= (1 + n)

e

0

(r

0

1

)

t

mod n

2

.

{ Choose r

0

2

2

R

�f0; 1g

�(l+2k)

, r

0

3

2

R

�f0; 1g

�(l+2�

1

+2k+1)

, and generate:

�

0

= g

r

0

2

1

mod n; v

0

= �

e

0

(

1

y

1

)

r

0

3

mod n; !

0

= �

e

0

(

1

g

1

)

r

0

3

:

{ Choose e

0

1

2

R

�f0; 1g

�(�

2

+k)

, e

0

2

2 �f0; 1g

�(�

1

+k+1)

r

0

4

2

R

�f0; 1g

�(l+2k)

, r

0

5

2

R

�f0; 1g

�(l+�

1

+2k+1)

,

and generate:

�

0

1

= H

e

0

G

r

0

5

mod N; �

0

= H

e

0

1

G

r

0

4

mod N; �

0

2

= �

e

0

2

mod N:

(b) She omputes  = H(m;n; t; g

1

; y

1

; N;G;H; Æ; �; �; �; �; Æ

0

; �

0

; v

0

; !

0

; �

0

1

; �

0

; �

0

2

), where H : f0; 1g

�

!

f0; 1g

k

behaves like a random orale.

() She omputes (all the operations, exept the omputation of s

r

1

, are in Z):

s

e

= e

0

�  � e; s

e

1

= e

0

1

�  � (e

1

�X); s

e

2

= e

0

2

�  � e

2

;

s

r

1

= r

�

1

� r

0

1

mod n

2

; s

r

2

= r

0

2

�  � r

2

; s

r

3

= r

0

3

�  � r

3

;

s

r

4

= r

0

4

�  � r

4

; s

r

5

= r

0

5

�  � r

5

:

(d) She sends Bob (m; ; n; t; g

1

; y

1

; N;G;H; Æ; �; �; �; �; s

e

; s

e

1

; s

e

2

; s

r

1

; s

r

2

; s

r

3

; s

r

4

; s

r

5

).

Cost: Sign requires 17 exponentiations. Note that 2 of the 17 exponentiations are r

t

mod n

2

but t << n

(e.g., jtj = 161).

Note that, in ounting exponentiations above, we did not onsider various implementation speedup teh-

niques, suh as savings in omputing the multipliation of double- or triple-based exponentiations (e.g., x

a

y

b

or x

a

y

b

z



). Our onservative ost assessment is not unommon in the literature, perhaps beause it better

reets the underlying tehniques rather than spei� implementation speedups. Still, when we take into

aount speedup tehniques, our Sign proess would require approximately 12.85 exponentiations, This is in

ontrast to the optimized Sign ost of roughly 16 exponentiations in [CL02℄.

6.6 Verify

Given (m; ; n; t; g

1

; y

1

; N;G;H; Æ; �; �; �; �; s

e

; s

e

1

; s

e

2

; s

r

1

; s

r

2

; s

r

3

; s

r

4

; s

r

5

), Bob heks if it is a valid signa-

ture as follows.

1. Bob omputes 

0

= H(m;n; t; g

1

; y

1

; N;G;H; Æ; �; �; �; �; Æ

0

; �

0

; v

0

; !

0

; �

0

1

; �

0

; �

0

2

), where

Æ

0

= (1 + n)

s

e

(s

r

1

)

t

Æ



mod n

2

; �

0

= g

s

r

2

1

�



mod n; v

0

= �

s

e

(

1

y

1

)

s

r

3

v



mod n;

!

0

= �

s

e

(

1

g

1

)

s

r

3

mod n; �

0

1

= H

s

e

G

s

r

5

�



mod N; �

0

= H

s

e

1

��2

�

1

G

s

r

4

�



mod N;

�

0

2

= �

s

e

2

�



mod N:



2. Bob aepts if  = 

0

, s

e

1

2 f�2

�(�

2

+k)+1

; � � �; 2

�(�

2

+k)+1

g, s

e

2

2 f�2

�(�

1

+k+1)+1

; � � �; 2

�(�

1

+k+1)+1

g,

s

e

2 f�2

�(2�

1

+k+1)+1

; � � �; 2

�(2�

1

+k+1)+1

g, � 6= 1 mod N , and � 6= �

b

mod N where b = �1.

Cost: Verify, without any optimizations, requires 16 exponentiations whih is somewhat more eÆient than

21 exponentiations in [CL02℄. Furthermore, if (as in Sign) we fator in the speedup due to double-based

exponentiations, the ost of Verify would go down to approximately 8.4 exponentiations. We note that

optimized Verify ost of [CL02℄ is roughly 9.1 exponentiations. However, we believe that the Verify proess in

the latter is inomplete; a omplete version would require a few more exponentiations in both non-optimized

and optimized ases.

6.7 Open

Given a valid group signature (m; ; n; t; g

1

; y

1

; N;G;H; Æ; �; �; �; �; �; s

e

; s

e

1

; s

e

2

; s

r

1

; s

r

2

; s

r

3

; s

r

4

; s

r

5

), the group

manager an identify the signer by derypting both w and e suh that w

e

= v mod n. It also needs to prove

that the deryption of w is orret; namely DLOG(g

1

; y

1

) = DLOG(�; �=w).

1. It derypts the CGHN iphertext Æ to obtain e, and derypts the ElGamal iphertext h�; �i to obtain w.

It must hold that A

3

> e > 1.

2. There are further two ases.

(a) If e 2 A, then it publishes: (1) the values w and e, and (2) the proof that DLOG(g

1

; y

1

) =

DLOG(�; �=w). Note that knowing w and e does not expose neither previous, nor future (even

if the system poliy allows), signatures generated by the same group member.

(b) If e =2 A, then it must hold that ej

Q

8e

0

2A

e

0

. Therefore, there must exist e

0

2 A suh that e

0

>

gd(e; e

0

) > 1. Therefore, the group member orresponding to aumulated e

0

is identi�ed (and

revoked).

We note that the �rst ase reets the more ommon situation, i.e., a well-formed signature needs

to be opened. The seond, more infrequent, ase involves a misbehaving user, or a set thereof. Here,

the omplexity of opening a signature is linear to the number of urrent group members (in terms of

omputing a GCD).

6.8 Analysis

The following theorem is proven in Appendix B.

Theorem 2. (informal) The above sheme is a seure group signature sheme.

Corollary 1. The interative version of the above group signature sheme is a seure identity esrow sheme.

Note that the interative sheme an be made onurrently seure in the standard model using the

tehnique due to [D00℄. This adds no extra omplexity beause we already work in the ommon auxiliary

string model.

7 Disussion

7.1 Fatorization Assumption

For typial group signature appliations we suggest that the group manager use 2048-bit RSA moduli. For

other parameters, we suggest (as an example): �

1

= 950, �

2

= 700, � = 1:1, k = 160. This means that we

assume the hardness of fatoring large 2-prime omposites, where (�

1

� �

2

) high-order bits of one prime

are known. This assumption is stronger than the standard fatorization assumption. However, despite the

�xed pre�x, it still seems reasonable to assume the hardness of fatoring suh a omposite. Given partial

knowledge of the fatorization, the best fatoring algorithm urrently available indiates that, if the higher

475-bits of a prime fator are known, then one an fator n [C96℄. Beyond that, no better result is available

[C03℄. Note that if the higher bits of one prime fator are known, then the higher bits of another fator are



also exposed. Nevertheless, knowing h�; � = �

e

2

mod Ni still requires an adversary to ompute e

2

in O(2

350

)

time (see [G00℄ and the referenes therein).

The main reason that we rely on the hardness of fatoring a produt of two primes (where one prime is

in the aforementioned \speial" form) is only for the purpose of making the sheme more eÆient. This is

beause we use a range proof tehnique that does not guarantee preise range. This an, of ourse, be easily

overome by adopting a more preise range proof tehnique due to [B00℄. Although this would obviate the

need for the speial fatoring assumption, approximately 15 extra exponentiations would be required. We

believe there are other ways to obviate this assumption, however, all of them inur signi�ant extra ost.

Finally, we note that a very similar assumption was used before (e.g., by Camenish and Mihels in

[CM98℄).

7.2 \Lazy" Aumulator Update?

In a group signature sheme based on a dynami aumulator, it is neessary for both signer and veri�er

to get the updated aumulator whenever there is a member leaves. In the Camenish-Lysyanskaya sheme,

they suggest a nie trik whereby a Join may not have to trigger a group member to get the updated

aumulator value. While this trik enables potential gain in ommuniations, it may inur some serious

problems in pratie. Consider the following senario: sine Alie is lazy, she does not ontat the group

manager to hek the urrent aumulator value. Instead, she waits for a broadast message from the group

manager. If this message is bloked by an adversary, there is no way for Alie to tell if there has been an

aumulator update. Consequently, Alie would generate a group signature whih is valid with respet to

the outdated aumulator value, i.e., the previous aumulator inarnation. However, the signature is invalid

with respet to the urrent aumulator value. It is unlear how a potential dispute involving this signature

an be resolved. At best, the veri�er an abuse suh a signature.

We suggest that Alie should be diligent and prevent suh anomalies by atively querying the group

manager for the urrent aumulator value. This way, if she does not eliit any reply from the group manager,

she an simple refuse to generate any group signatures.

7.3 Enhaning Anonymity

Reently, Bellare et al. [BMW03℄ proposed simpli�ed seurity requirements for group signatures. The most

relevant part of their de�nition that has an impat on our sheme is the so-alled full-anonymity, whih

is stritly stronger than the anonymity spei�ed in the present paper (as well as all previously proposed

shemes). Essentially, full-anonymity allows the adversary to ompromise all group members, whereas we

assume that there are at least two non-ompromised group members. Our sheme does not satisfy their

full-anonymity, but an be extended to do so. The idea is to utilize the protool of [DF02℄ to prove that

a signer knows the fatorization of a ommitted value. However, this will inur 6 extra exponentiations in

Sign; this omplexity justi�es why we developed the more eÆient protool in Setion 5.2.

7.4 TTP Presene

Our sheme operates in the ommon auxiliary string model whih assumes a ommon string (the spei�ation

of a ommitment sheme) generated by a trusted third party (TTP) and made available to all partiipants.

The inonveniene posed by this is not signi�ant owing to the following mitigating fators:

{ The TTP's role is only to initialize the ryptographi setting of a ommitment sheme. In fat, the TTP

an simply disappear after publishing the ommitment sheme parameters sine it is not involved in any

future transations.

{ A single TTP ould serve multiple group signature settings, thereby amortizing the omplexity. Moreover,

threshold ryptography an be used to implement a distributed TTP (see [ACS02℄).

{ Currently, the most eÆient method of obtaining identity esrow shemes (suh as [KP98℄) that are

onurrently seure is based on the existene of ommon auxiliary strings [D00℄. Therefore, the iden-

tity esrow sheme derived from our group signature sheme an be made onurrently seure without

inurring any extra omplexity.



One might question whether the ommon auxiliary string model is truly needed, given that we are proving

fatorization or multipliation in Z. Unfortunately, we annot a�ord to let the group manager at as a TTP

sine, otherwise, the ommitment in Lemma 3 is not binding in the ase the group manager attempts to

frame an honest member.

8 Conlusion

We presented a dynami aumulator onstrut that aumulates omposites, and an eÆient protool for

proving knowledge of the fatorization of a ommitted value. Based on these tehniques, we developed a

novel, eÆient and provably seure group signature sheme.
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A Proofs of Some Lemmas

Proof. (of Lemma 2) If gd(a; n � �(n)) = 1, then we an ompute �; � 2 Z suh that �a + �n � �(n) = 1.

Then we have A = (A

a

)

�

(A

�

)

n��(n)

= 1 mod n

2

.

If gd(a; n � �(n)) = 2, then we an ompute �; � 2 Z suh that �a + �n � �(n) = 2. Then we have

A

2

= (A

a

)

�

(A

�

)

n��(n)

= 1 mod n

2

. Note that we an write A = n+ Æ, where 0 �  < n and 0 < Æ < n.

Thus, 2Æn + Æ

2

= 1 mod n

2

, whih implies Æ

2

= 1 mod n. Lemma 1 implies that Æ = �1. There are two

ases:

{ Æ = 1. Then 2n = 0 mod n

2

. This, the fat that n is a safe RSA modulus, and 0 �  < n imply that

 = 0. So, A = 1.

{ Æ = n� 1. Then �2( + 1)n = 0 mod n

2

. This, the fat that n is a safe RSA modulus, and 0 �  < n

imply that  = n� 1. So, A = �1 mod n

2

.

Proof. (of Theorem 1) This proof only fouses on seurity. Suppose the adversary ADV an break the

dynami aumulator with non-negligible probability, then there is a polynomial-time algorithm B that is

able to break SRSA. Suppose B is given a SRSA instane (n; u), where n is a safe RSA modulus, u 2

R

QR

n

.

B simulates the system as follows:

{ It feeds (f;U

f

; u) to ADV . Let X = ;. It exeutes as follows:

1. When ADV asks to aumulate a value x =2 X, it simply updates X = X [ fxg and v = f(u;X).

2. When ADV asks to delete a value x 2 X, it simply updates X = X n fxg and v = f(u;X n fxg).

{ At some point, ADV omes up with a forgery (w

0

; x

0

;X = fx

1

; � � �; x

m

g) suh that (1) (w

0

)

x

0

=

u

Q

m

i=1

x

i

mod n where w

0

2 Z

�

n

and x

0

2 X

0

A;B

; (2) x

0

-

Q

m

i=1

x

i

.

Now, sine x

0

-

Q

m

i=1

x

i

, we have gd(x

0

;

Q

m

i=1

x

i

) =  for some  < x

0

. So B an simply �nd �; � 2 Z

suh that �

Q

m

i=1

x

i

+ �x

0

= . Sine u

Q

m

i=1

x

i

= (w

0

)

x

0

mod n, B simply outputs u

�

(w

0

)

�

suh that u



=

u

�

Q

m

i=1

x

i

+�x

0

= ((w

0

)

�

u

�

)

x

0

. Therefore, u = ((w

0

)

�

u

�

)

x

0

=

b, where x

0

= > 1 and b



= 1. Now we laim that

b = �1. Otherwise, B an fator n: If  < p

0

q

0

whih is unknown to B though, then Lemma 1 implies that B

an fator n; If  � p

0

q

0

, then B an also fator n using the standard tehnique.



Proof. (of Lemma 4) Completeness an be heked by observation. It is a standard proess to show that the

protool is honest veri�er statistial zero-knowledge. So we fous on the property of proof of knowledge.

Suppose a prover presents two valid answers (s

e

1

; s

r

1

; s

e

2

; s

e

; s

r

) and (s

�

e

1

; s

�

r

1

; s

�

e

2

; s

�

e

; s

�

r

) to two di�erent

hallenges  and 

�

, respetively. Without loss of generality, suppose  > 

�

. The result in [DF02℄ implies

C

1

= H

~e

1

G

~r

1

b

1

mod N and C

3

= H

~e

G

~r

b

3

mod N , where ~e

1

= X +

s

e

1

�s

e

�

1



�

�

, ~r

1

=

s

r

1

�s

�

r

1



�

�

, b

1

= �1,

~e =

s

e

�s

e

�



�

�

, ~r =

s

r

�s

�

r



�

�

, b

3

= �1.

Beause of the fat that C

s

e

2

1

= C

0

3b

C

�

3

mod N and C

s

�

e

2

1

= C

0

3b

C

�

�

3

mod N , we get C

s

e

2

�s

�

e

2

1

=

C

�(�

�

)

3

mod N . Therefore, we have

(H

~e

1

G

~r

1

b

1

)

s

e

2

�s

�

e

2

= (H

~e

G

~r

b

3

)



�

�

mod N .

Thus, we get

H

~e

1

(s

e

2

�s

�

e

2

)�~e(

�

�)

G

~r

1

(s

e

2

�s

�

e

2

)�~r(

�

�)

b

(s

e

2

�s

�

e

2

)

1

b

�

�

3

= 1 mod N .

Sine G;H 2 QR

N

, we have b

s

e

2

�s

�

e

2

1

b

�

�

3

= 1 mod N .

The disrete logarithm assumption (whih is implied by the Deisional DiÆe-Hellman Assumption) im-

plies

~e

1

(s

e

2

� s

�

e

2

)� ~e(

�

� ) = 0 mod ord(G)

and

~r

1

(s

e

2

� s

�

e

2

)� ~r(

�

� ) = 0 mod ord(G).

Reall that ord(G) = P

0

Q

0

= ord(QR

N

) where N is a safe RSA modulus. The hardness of fatoring

(whih is implied by the Strong RSA Assumption) implies

~e

1

(s

e

2

� s

�

e

2

)� ~e(

�

� ) = 0 (in Z)

and

~r

1

(s

e

2

� s

�

e

2

)� ~r(

�

� ) = 0 (in Z).

In other words, we get

~e

1

(s

e

2

� s

�

e

2

) = ~e(

�

� )

and

~r

1

(s

e

2

� s

�

e

2

) = ~r(

�

� ).

The range ondition says that ~e

1

2 fX � 2

�(�

2

+k)+2

; X + 2

�(�

2

+k)+2

g. Sine X � 2

�(�

2

+k)+2

> 2

k

,

we get ~e

1

> , whih means that ~e

1

- (

�

� ) and that e

1

=

~e

1

gd( ~e

1

;

�

�)

> 1. Similarly, we an de�ne

r

1

=

~r

1

gd( ~r

1

;

�

�)

> 1. Therefore, e

1

j~e.

Proof. (of Lemma 5) It is easy to hek ompleteness. It is also a standard proess to prove honest veri�er

statistial zero-knowledge. So we only fous on proof of knowledge. For simplifying notations, denote (1+n)

by g.

Suppose the adversary is able to present two valid answers (s

x

; s

r

; s

z

) and (s

�

x

; s

�

r

; s

�

z

) to two di�er-

ent hallenges 

�

6= , respetively. Without loss of generality, assume  > 

�

. Then we have g

s

x

(s

r

)

n

=

Y

0

Y

�

mod n

2

, H

s

x

G

s

z

= C

0

C

�

mod N , g

s

�

x

(s

�

r

)

t

= Y

0

Y

�

�

mod n

2

, and H

s

�

x

G

s

�

z

= C

0

C

�

�

mod N . The

result in [DF02℄ imply that (

�

� )j(s

x

� s

�

x

) and (

�

� )j(s

z

� s

�

z

), and C = H

s

x

�s

�

x



�

�

G

s

z

�s

�

z



�

�

b

1

mod N where

b

1

= �1. On the other hand, we have g

s

x

�s

�

x

(

s

r

s

�

r

)

t

= Y

�(�

�

)

mod n

2

. Therefore, we have



(

s

r

s

�

r

)

t

= (g

�

s

x

�s

�

x

�

�

Y

�1

)

�

�

mod n

2

: (1)

Sine gd(� 

�

; t) = 1, we an ompute �; � 2 Z suh that �(� 

�

) + �t = 1. Therefore, we have

s

r

s

�

r

= (

s

r

s

�

r

)

�(�

�

)

(g

�

s

x

�s

�

x

�

�

Y

�1

)

�(�

�

)

= ((

s

r

s

�

r

)

�

(g

�

s

x

�s

�

x

�

�

Y

�1

)

�

)

�

�

mod n

2

:

Let � = (

s

r

s

�

r

)

�

(g

�

s

x

�s

�

x

�

�

Y

�1

)

�

b

2

mod n

2

where b

�

�

2

= 1 mod n

2

. Then we have

s

r

s

r

�

= �

�

�

mod n

2

: (2)

It is straightforward to hek that gd(b; n

2

) = 1. Sine jj << l=2 and  > 

�

, we have gd(�

�

; n��(n)) =

1 or 2. So Lemma 2 implies that b

2

= �1 mod n

2

.

Note that (1) and (2) imply (g

�

s

x

�s

�

x

�

�

Y

�1

)

�

�

(�

�(�

�

)

)

t

= 1 mod n

2

, and thus (g

�

s

x

�s

�

x

�

�

Y

�1

�

�t

)

�

�

=

1 mod n

2

. It is easy to hek that gd(g

�

s

x

�s

�

x

�

�

Y

�1

�

�t

; n

2

) = 1. Sine gd(� 

�

; n � �(n)) = 1 or 2, Lemma

2 implies that g

�

s

x

�s

�

x

�

�

Y

�1

�

�t

b

3

= 1 mod n

2

with b

3

= �1 mod n

2

. So, Y = g

�

s

x

�s

�

x

�

�

(�

�1

)

t

b

3

mod n

2

.

B Seurity Analysis of the Group Signature Sheme

Lemma 6. The interative proof orresponding to Sign is an honest veri�er statistial zero-knowledge proof

of knowledge (w; e; e

1

; e

2

) suh that w

e

= v mod n, e

1

2 fX � 2

�(�

2

+k)+2

; � � �; X � 2

�(�

2

+k)+2

g, abs(e

2

) > 1,

and e = e

1

e

2

2 f�2

�(2�

1

+k+1)+2

; � � �; 2

�(2�

1

+k+1)+2

g.

Proof. It is a standard proess to show it is honest veri�er statistial zero-knowledge (see, for instane,

[C98℄). We thus only fous on proof of knowledge.

Suppose the prover, given two di�erent hallenges ; 

�

2

R

f0; 1g

k

, an present two aepting answers

(s

e

; s

e

1

; s

e

2

; s

r

1

; s

r

2

; s

r

3

; s

r

4

; s

r

5

) and (s

�

e

; s

�

e

1

; s

�

e

2

; s

�

r

1

; s

�

r

2

; s

�

r

3

; s

�

r

4

; s

�

r

5

), respetively.

Lemma 4 and Lemma 5 imply the following:

{ It holds that (

�

� )j(s

e

� s

�

e

) exept with negligible probability, and that � an be opened as � =

H

s

e

�s

�

e



�

�

G

s

r

5

�s

�

r

5



�

�

b

�

where b

�

= �1.

{ It holds that (

�

� )j(s

e

1

� s

�

e

1

) exept with negligible probability, and that � an be opened as � =

H

s

e

1

�s

�

e

1



�

�

+2

�

1

G

s

r

4

�s

�

r

4



�

�

b

�

where b

�

= �1.

{ It holds that the ommitted seret �

s

e

�s

�

e

�

�

is indeed enrypted under the CGHN publi key.

Now we prove that the ommitted e in � is indeed aumulated. Sine g

s

r

2

1

= �

0

�

�

and g

s

�

r

2

1

=

�

0

�

�

�

mod n, therefore g

s

r

2

�s

�

r

2

1

= �



�

�

. It follows that (unless SRSA is broken)

(

�

� )j(s

r

2

� s

�

r

2

): (3)

Therefore we have r

2

=

s

r

2

�s

�

r

2



�

�

and thus

w = �=y

r

2

1

mod n.

Sine we have �

s

e

(

1

g

1

)

s

r

3

= !

0

= �

s

�

e

(

1

g

1

)

s

�

r

3

, we get �

s

e

�s

�

e

= g

s

r

3

�s

�

r

3

1

. It follows that (unless SRSA is

broken)

(s

e

� s

�

e

)j(s

r

3

� s

�

r

3

): (4)



Sine �

s

e

(

1

y

1

)

s

r

3

= v

0

� v

�

and �

s

�

e

(

1

y

1

)

s

�

r

3

= v

0

� v

�

�

, we get �

s

e

�s

�

e

(

1

y

1

)

s

r

3

�s

�

r

3

= v



�

�

. This and (4)

imply (�(

1

y

1

)

s

r

3

�s

�

r

3

s

e

�s

�

e

)

s

e

�s

�

e

= v



�

�

, whih and (

�

� )j(s

e

� s

�

e

) imply ((�(

1

y

1

)

s

r

3

�s

�

r

3

s

e

�s

�

e

)

s

e

�s

�

e



�

�

)



�

�

= v



�

�

.

Therefore, v = (�(

1

y

1

)

s

r

3

�s

�

r

3

s

e

�s

�

e

)

s

e

�s

�

e



�

�

� b where b = �1. Let sign(z) = �1 if z < 0 and sign(z) = 1 otherwise.

Thus we have

v =

8

>

<

>

:

((�(

1

y

1

)

s

r

3

�s

�

r

3

s

e

�s

�

e

b)

sign(

s

e

�s

�

e



�

�

)

)

abs(

s

e

�s

�

e



�

�

)

if

s

e

�s

�

e



�

�

is odd

((�(

1

y

1

)

s

r

3

�s

�

r

3

s

e

�s

�

e

)

sign(

s

e

�s

�

e



�

�

)

)

abs(

s

e

�s

�

e



�

�

)

if

s

e

�s

�

e



�

�

is even

Sine that X�2

�(�

2

+k)+2

> 4, that abs(e

2

) > 1, and that �2

�(2�

1

+k+1)+2

<

s

e

�s

�

e



�

�

< 2

�(2�

1

+k+1)+2

< A

3

,

we have abs(

s

e

�s

�

e



�

�

) 2 X

0

A;B

.

Lemma 7. (No-Framing). Suppose the group manager, perhaps in ollusion with some dishonest group

members, is able to generate a signature traeable to an honest group member with membership erti�ate

(w; e). Then, there exists a probabilisti polynomial-time algorithm that is able to fator e = e

1

e

2

where

e

1

2

R

S

1

and e

2

2

R

S

2

.

Proof. (sketh) Suppose the group manager an frame an honest group member with non-negligible proba-

bility. We onstrut a probabilisti polynomial-time algorithm F that is able to fator a hallenge e = e

1

e

2

where e

1

2

R

S

1

and e

2

2

R

S

2

. The basi idea underlying F is to emulate an environment for the real-world

group signature setting in the random orale model. Suppose there is already a group signature setting

established by the group manager. The system parameters are exatly the same as in the real-world system.

F exeutes as follows.

1. It joins the group by exeuting the Join protool. Denote by (w; e) its membership erti�ate.

2. It exeutes exatly as in the real-world system when there is a need to Update its membership erti�ate.

3. It signs messages as in the real-world system by utilizing the fat that it ontrols the spei�ation of the

random orale.

Suppose the group manager, perhaps olluding with some dishonest group members, is able to frame F .

Then, Lemma 6 implies that there is a polynomial-time algorithm that is able to extrat (w; e; e

1

; e

2

), where

e

1

is a non-trivial fator of e.

Theorem 3. The above onstrution is a seure group signature sheme.

Proof. (sketh) We show that the above sheme satis�es all the seurity properties spei�ed in Setion 2.2.

{ Corretness. This is immediate to see.

{ Unforgeability. Only group members an sign on behalf of the group. Lemma 6 implies that if a group

non-member an sign on behalf of the group, then there is a probabilisti polynomial-time extrator to get

e

�

; e

�

1

; e

�

2

suh that e

�

= e

�

1

e

�

2

(in Z). This and Theorem 1 imply that gd(e

�

; e) > 1 for some aumulated

value e 2 A. So we an onstrut a polynomial-time simulator that is able to fator a hallenge produt

of two large primes.

{ Anonymity. Reall that the underlying interative proof protool is statistially zero-knowledge, and

that both the ElGamal and the CGHN ryptosystems are semantially seure. If there is a polynomial-

time adversary that is able to identify any signature generated by an honest group member, then we an

onstrut a polynomial-time simulator to break the assumptions underlying the semanti seurity of the

publi key ryptosystems.

{ Unlinkability. It is omputationally infeasible for a polynomial-time adversary to deide whether two

signatures, orresponding to two pairs of iphertexts (Æ

1

;�

1

; �

1

) and (Æ

2

;�

2

; �

2

), are generated by the

same group member. This is so beause, in the de�nition of semanti seurity, it does not matter whether

the adversary (i.e., distinguisher) is allowed to ask one or multiple hallenge iphertexts [BDJR97℄.

{ No-Framing. This is proved in Lemma 7.



{ Traeability. Reall that Lemma 6 ensures that w

e

= v mod n, that (�; �) is the ElGamal iphertext

of w, and that Æ is the CGHN enryption of e. Similar to the reasoning for unforgeability, we an

show that Traeability holds. We stress that the veri�able ElGmal deryption, whih is ensured by

the soundness of protool proving log

g

1

y

1

= log

�

�=w, is ruial.

{ Coalition-resistane. Suppose there is a suessful oalition that annot be traed bak to any

olluding member. Consider the worst ase where all the group members ollude. Then, we get a pair

(w

�

; e

�

) suh that (w

�

)

e

�

= v mod n, that e

�

=2 A, and that gd(e

�

; e) = 1 or e for any e 2 A. Note that

the range ondition ensures that e

�

< A

3

< A

4

< e

i

e

j

for any e

i

; e

j

2 A. On the other hand, theorem 1

shows that e

�

j

Q

8e2A

e. This is a ontradition.

C Proving Knowledge in Group(s) of Unknown Order(s)

This is a 3-move honest-veri�er zero-knowledge protool. The orresponding non-interative sheme is seure

in the random orale model [FS86,BR93℄, and an be naturally turned into a signatures of knowledge sheme

[CS97℄.

Given a yli group G = hgi suh that ord(G ) is unknown but jord(G )j = l

G

(i.e., 2

l

G

�1

< ord(G ) � 2

l

G

)

is publily known. Fujisaki and Okamoto [FO97℄ proved that under SRSA, the standard proofs of knowledge

protools that work for a group of known order also work for a group of unknown order. For y 2 G , we

denote by x = log

g

y the disrete logarithm of y to base g as an integer x 2 Z. We assume a ollision-resistant

hash funtion H : f0; 1g

�

! f0; 1g

k

whih maps a binary string of arbitrary length to a k-bit hash value.

Let � > 1 be a seurity parameter.

Proving Knowledge of a DLOG in a Group of Unknown Order. This is in parallel to [S91℄.

De�nition 8. Let g; y 2 G . A pair (; s) 2 f0; 1g

k

�f�2

�(l

G

+k)+1

; ���; 2

�(l

G

+k)+1

g suh that  = H(g; y; g

s

y



;m)

is a signature on message m 2 f0; 1g

�

with respet to the knowledge of disrete logarithm x = log

g

y 2 f0; 1g

l

G

.

The prover (or signer) knowing x an generate suh a signature by hoosing r 2

R

�f0; 1g

�(l

G

+k)

and

omputing

 = H(g; y; g

r

;m) and s = r � x (in Z).

Lemma 8. ([CM98℄). Assume SRSA holds. Then, the interative protool orresponding to De�nition 8 is

an honest-veri�er statistial zero-knowledge proof of knowledge of x = log

g

y.

Proving That a DLOG Lies in an Interval. This protool is related to the protools originally presented

in [FO97,CFT98℄.

De�nition 9. Suppose g; y 2 G . A pair (; s) 2 f0; 1g � f�2

�(l

2

+k)+1

; � � �; 2

�(l

2

+k)+1

g suh that  =

H(g; y; g

s�X

y



;m) is a signature on message m 2 f0; 1g

�

with respet to the disrete logarithm of knowledge

x = log

g

y suh that x 2 fX � 2

�(l

2

+k)+2

; X + 2

�(l

2

+k)+2

g.

The prover knowing x 2 fX � 2

l

2

; � � �; X + 2

l

2

g an generate suh a signature by hoosing r 2

R

�f0; 1g

�(l

2

+k)

and omputing

 = H(g; y; g

r

;m) and s = r � (x�X) (in Z).

Lemma 9. ([CM98℄). Assume SRSA holds. Then, the interative protool orresponding to De�nition 9 is

an honest-veri�er statistial zero-knowledge proof of knowledge x = log

g

y suh that x 2 fX � 2

�(l

2

+k)+2

; � �

�; X + 2

�(l

2

+k)+2

g.

Proving Equality of Two Disrete Logarithms in a Group of Unknown Order. This is in parallel

to [CP92℄. Suppose g

1

; g

2

; y

1

; y

2

2 G = hgi.



De�nition 10. A pair (; s) 2 f0; 1g

k

�f�2

�(l

G

+k)+1

; ���; 2

�(l

G

+k)+1

g suh that  = H(g

1

; g

2

; y

1

; y

2

; g

s

1

y



1

; g

s

2

y



2

;m)

is a signature on message m 2 f0; 1g

�

with respet to the knowledge of disrete logarithm x = log

g

1

y

1

=

log

g

2

y

2

2 f0; 1g

l

G

.

The prover knowing x an generate suh a signature by hoosing r 2

R

�f0; 1g

�(l

G

+k)

and omputing

 = H(g

1

; g

2

; y

1

; y

2

; g

r

1

; g

r

2

;m) and s = r � x (in Z).

Proving Equality of Two Disrete Logarithms in Two Groups of Unknown Orders. This protool

is a natural extension of the protool orresponding to De�nition 10. Suppose G

1

= hg

1

i and G

2

= hg

2

i.

Let l

G

= minfjord(G

1

)j; jord(G

2

)jg. Then the above protool an be used to prove that x

1

= x

2

, where

x

1

= log

g

1

y

1

and x

2

= log

g

2

y

2

.

De�nition 11. Let l

1

and l

2

denote lengths, where l

1

< l

G

and �(l

2

+ k) + 2 < l

1

. A pair (; s) 2 f0; 1g

k
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