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Abstra
t. Constru
ting pra
ti
al and provably se
ure group signature s
hemes has been a very a
tive

resear
h topi
 in re
ent years. A group signature 
an be viewed as a digital signature with 
ertain extra

properties. Notably, anyone 
an verify that a signature is generated by a legitimate group member, while

the a
tual signer 
an only be identi�ed (and linked) by a designated entity 
alled a group manager.

Currently, the most eÆ
ient group signature s
heme available is due to Camenis
h and Lysyanskaya

[CL02℄. It is obtained by integrating a novel dynami
 a

umulator with the s
heme by Ateniese, et al.

[ACJT00℄.

In this paper, we 
onstru
t a dynami
 a

umulator that a

umulates 
omposites, as opposed to previ-

ous a

umulators that a

umulated primes. We also present an eÆ
ient method for proving knowledge

of fa
torization of a 
ommitted value. Based on these (and other) te
hniques we design a novel prov-

ably se
ure group signature s
heme. It operates in the 
ommon auxiliary string model and o�ers two

important bene�ts: 1) the Join pro
ess is very eÆ
ient: a new member 
omputes only a single expo-

nentiation, and 2) the (unoptimized) 
ost of generating a group signature is 17 exponentiations whi
h

is appre
iably less than the state-of-the-art.

1 Introdu
tion

The notion of group signatures was introdu
ed by Chaum and van Heyst in 1991 [CvH91℄. Sin
e then, seeking

pra
ti
al and provably se
ure group signature s
hemes { and their intera
tive dual known as identity es
row

[KP98℄ { has been a very a
tive resear
h area in applied 
ryptography. A group signature 
an be seen as a

normal digital signature with the following extra properties: anyone 
an verify that a signature is generated

by a legitimate group member, while the a
tual signer 
an only be identi�ed and linked by a designated

trusted entity 
alled a group manager. It is important to point out that the me
hanism, whi
h allows the

group manager to identify the a
tual signer of a group signature, a
ts as a 
ru
ial deterrent that prevents

group members from misbehaving.

The basi
 idea underlying most group signature s
hemes (as well as ours) is the following: In order for

a group member (Ali
e) to sign a message, she needs to 
onstru
t an authorization-proof to show that she

has a legitimate membership 
erti�
ate, and an ownership-proof to demonstrate knowledge of the se
ret


orresponding to the membership 
erti�
ate. The issues in these two proofs are similar to those en
ountered

in a normal publi
 key infrastru
ture (PKI) setting, namely, a signature 
an be veri�ed using the alleged

signer's publi
 key 
ontained in a 
erti�
ate whi
h has not been revoked. However, the group signature

s
enario is more 
ompli
ated, sin
e a signer 
annot show her membership 
erti�
ate without 
ompromising

her anonymity. It is pre
isely this anonymity requirement that makes it very diÆ
ult to have a pra
ti
al

solution that fa
ilitates revo
ation of membership 
erti�
ates (a 
on
ept 
ompatible to 
erti�
ate revo
ation

in a normal PKI), or the validity 
he
k of non-revoked membership 
erti�
ates.

Early group signature s
hemes (e.g., [CP94℄) have the 
hara
teristi
s that the sizes of the group publi


key and/or of group signatures linearly depend on the number of group members. The advantages of these

s
hemes in
lude: (1) many of the s
hemes have been proven se
ure using some standard 
ryptographi


assumptions (su
h as the hardness of 
omputing dis
rete logarithms), and (2) authorization-proof is trivial

sin
e revoking a member is done by the group manager by removing the 
orresponding membership 
erti�
ate

from the group publi
 key. The disadvantage of su
h s
hemes is that the 
omplexity of ownership-proof,

namely proving and verifying that one knows the se
ret 
orresponding to a (non-identi�ed yet non-revoked)

membership 
erti�
ate, is linear in the number of 
urrent members and thus be
omes ineÆ
ient for large

groups.



To 
ombat linear 
omplexity in
urred as part of ownership-proof, Camenis
h and Stadler [CS97℄ took a

di�erent approa
h where the sizes of the group publi
 key and of group signatures are 
onstant and indepen-

dent of the number of 
urrent group members. This approa
h has been adopted in some follow-on results,

e.g., [CM98,CM99a,ACJT00℄.
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As initially presented, these s
hemes only support adding new members.

Sin
e then, [CS97℄ and [ACJT00℄ have been extended to support membership revo
ation [BS01,S01,AST02℄.

However, revo
ation in
urs 
ertain signi�
ant 
osts due to some (or all) of the following:

{ Group manager re-issuing all 
erti�
ates for ea
h revo
ation interval.

{ Group member (signer) proving, as part of signing, that her 
erti�
ate is not revoked.

{ Veri�er 
he
king ea
h group signature against the 
urrent list of revoked 
erti�
ates.

As pointed out in [CL02℄, ea
h of the above has a linear dependen
y either on the number of 
urrent, or the

total number of deleted, members.

State-of-the-Art. Currently, the most eÆ
ient group signature s
heme is due to Camenis
h and Lysyan-

skaya [CL02℄. It is 
onstru
ted by in
orporating a dynami
 a

umulator, whi
h allows eÆ
ient authorization-

proofs, into the group signature s
heme due to Ateniese, et al. [ACJT00℄, whi
h allows eÆ
ient ownership-

proofs.
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The 
on
ept of dynami
 a

umulators introdu
ed in [CL02℄ is a variant of the a

umulator due to

Bari
 and P�tzmann [BP97℄. It enables a group member to 
ondu
t a light-weight authorization-proof su
h

that both the proving and verifying 
omplexities are independent of the number of the 
urrent, or total

deleted, members. We note that the use of dynami
 a

umulators to fa
ilitate authorization-proofs, requires

the group manager to disseminate 
ertain information, su
h as the values deleted from the a

umulator

whenever a member (or a set of thereof) joins or leaves the group.

1.1 Contributions

The main 
ontribution of this paper is a new group signature s
heme provably se
ure against adaptive

adversaries, i.e., adversaries allowed to adaptively join and leave the group. The s
heme is obtained by in
or-

porating several building blo
ks, some of whi
h are new (e.g., the dynami
 
omposites a

umulator), while

others are more eÆ
ient than previous te
hniques providing the same fun
tionality (e.g., the multipli
ation

proto
ol that allows one to prove that she knows the fa
torization of a 
ommitted value). More spe
i�
ally:

{ A new dynami
 a

umulator that a

umulates 
omposites (see Se
tion 5.1), as opposed to the prior


onstru
t that a

umulates primes [CL02℄. This a

umulator �ts well into a group signature s
heme

be
ause it allows us to 
ondu
t simultaneous authorization-proofs and ownership-proofs based on the

fa
torizations of a

umulated 
omposites.

{ A proto
ol (in Se
tion 5.2) for proving knowledge of fa
torization of a 
ommitted value, whi
h, in our


ase, 
orresponds to an a

umulated 
omposite. This proto
ol is more eÆ
ient than prior art, su
h as

[DF02℄.

{ A proto
ol (in Se
tion 5.3) for veri�able en
ryption of dis
rete logarithms, based on the publi
 key


ryptosystem due to Catalano, et al. [CGHN01℄. This proto
ol is more eÆ
ient than a similar proto
ol

(e.g., the one presented in [MR01℄) based on the Pallier 
ryptosystem [P99℄.

As mentioned earlier, the state-of-the-art group signature s
heme by Camenis
h and Lysyanskaya is

obtained by integrating a dynami
 prime a

umulator [CL02℄ with the bare group signature s
heme in

[ACJT00℄. This integration was needed sin
e a prime a

umulator 
annot be used for ownership-proof. (See

Se
tion 3 for further dis
ussion.) In 
omparison with the [CL02℄ s
heme, our approa
h has three major

bene�ts:

{ Use of the new a

umulator 
onstru
t for both ownership-proof and authorization-proof. This yields a


on
eptually simpler s
heme.

1

An intera
tive variant, referred to as \Identity Es
row", was introdu
ed by Kilian and Petrank [KP98℄.

2

The 
redit for this s
heme should be given to all authors of [ACJT00,CL02℄, and we refer to it as the Camenis
h-

Lysyanskaya s
heme only for the purpose of simpli
ity.



{ EÆ
ient Join: a new member only 
omputes a single exponentiation in order to verify that her 
omposite

has been 
orre
tly a

umulated. In 
omparison, Join involves more than 30 exponentiations in [CL02℄.

We note that this 
omplexity does not stem from the use of the dynami
 a

umulator; it is inherited

from Join of [ACJT00℄.

{ EÆ
ient Sign: the 
omputational 
omplexity of signing is 17 exponentiations (without any optimizations)

whi
h is notably lower than 25 in the Camenis
h-Lysyanskaya s
heme.
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Our s
heme also has some potential drawba
ks. They are dis
ussed in Se
tion 7.

1.2 Organization

In Se
tion 2, we overeview the model and goals of group signatures. Then, in Se
tion 3, we introdu
e the

basi
 ideas underlying our group signature s
heme. Se
tion 4 presents some 
ryptographi
 preliminaries and

Se
tion 5 des
ribes some building blo
ks. The new group signature s
heme is found in Se
tion 6; its features

and potential drawba
ks are dis
ussed in Se
tion 7. Due to spa
e limitations, te
hni
al details of the se
urity

proof are deferred to the appendix.

2 Model and Goals

Parti
ipants. A group signature s
heme involves a group manager (responsible for admitting/deleting mem-

bers and for revoking anonymity of group signatures, e.g., in 
ases of dispute or fraud), a set of group mem-

bers, and a set of signature veri�ers. All parti
ipants are modeled as probabilisti
 polynomial-time intera
tive

Turing ma
hines.

Communi
ation Channels. All 
ommuni
ation 
hannels are assumed asyn
hronous. The 
ommuni
ation


hannel between a signer and a re
eiver is assumed to be anonymous.

Trust. We assume that the group manager will not admit unauthorized individuals into the group. This is

reasonable, sin
e, otherwise, the group manager 
an issue valid membership 
erti�
ates to rogue members

and thus make the group signature s
heme useless. We assume that the group members, whether honest or

not, behave rationally. More pre
isely, a dishonest group member may seek to undermine the system (e.g.,

by 
olluding with other internal or external parties) as long as the atta
k will not be tra
ed ba
k to herself.

Nonetheless, she will not take the 
han
e if she (or anyone else 
olluding with her) is bound to be 
aught. This

assumption is also reasonable sin
e, in any group signature s
heme (indeed, in any 
ryptographi
 setting),

a dishonest user 
ould (for instan
e) simply give away her own se
rets. However, she is bound to be held

a

ountable for any 
onsequen
es of su
h misbehavior.

2.1 De�nitions

A group signature s
heme 
onsists of the following pro
edures:

{ Setup. On input a se
urity parameter, this probabilisti
 algorithm outputs the initial group publi
 key

and the se
ret key for the group manager.

{ Join. This is a proto
ol exe
uted between the group manager and a user who is to be
ome a group

member. The user's output is a membership 
erti�
ate and a membership se
ret; the group manager's

output is some updated information that indi
ates the 
urrent state of the system.

{ Revoke. This is a deterministi
 algorithm whi
h, on input a membership 
erti�
ate, outputs some updated

information that indi
ates the 
urrent state of the system after revoking the given membership 
erti�
ate.

{ Update. This is a deterministi
 algorithm that may be triggered by any Join or Revoke operation. It is

run by the group members after obtaining 
ertain information from the group manager.

{ Sign. This is a probabilisti
 algorithm whi
h, on input of: a group publi
 key, a membership 
erti�
ate,

a membership se
ret and a message, outputs a group signature.
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However, the [ACJT00℄ s
heme 
an be slightly improved to redu
e (by 2) the number of exponentiations in Sign.

Consequently, the 
ost of Sign in the Camenis
h-Lysyanskaya s
heme 
an be 
ommensurately lowered.



{ Verify. This is a deterministi
 algorithm for establishing the validity of an alleged group signature on a

message with respe
t to the group publi
 key.

{ Open. This is an algorithm whi
h, on input of: a message, a valid group signature, a group publi
 key

and a group manager's se
ret key, determines the identity of the a
tual signer.

2.2 The Goals

A se
ure group signature s
heme must satisfy the following properties:

{ Corre
tness. Any signatures produ
ed by a group member using Sign must be a

epted by Verify.

{ Unforgeability. Only group members are able to sign messages on behalf of the group.

{ Anonymity. Given a valid group signature, identifying the a
tual signer is 
omputationally hard for

everyone but the group manager.

{ Unlinkability. De
iding whether two di�erent group signatures were generated by the same member

is 
omputationally hard for everyone but the group manager.

{ No-framing. No 
ombination of a group manager and a subset of dishonest group members 
an sign

on behalf of a single honest member. That is, no honest member 
an be made responsible for a signature

she did not produ
e.

{ Tra
eability. The group manager is always able to identify the a
tual signer of any valid group

signature.

{ Coalition-resistan
e. A 
olluding subset of group members (even all members) 
annot generate a

signature that the group manager 
annot tra
e.

3 Basi
 Ideas

The basi
 idea underlying our group signature s
heme is to utilize an a

umulator that a

umulates 
om-

posites, where the fa
torization of a 
omposite is only known to the user who generates it. More spe
i�
ally,

suppose a group member has a witness w su
h that w

e

= v mod n where v is the publi
 a

umulator value

and n is the produ
t of two safe primes, The fa
torization of e = e

1

e

2

(i.e., the primes e

1

and e

2

) is only

known to the member. This knowledge allows the user to 
ondu
t an ownership-proof by demonstrating that

e = e

1

e

2

. The witness w fa
ilitates an authorization-proof that w

e

= v mod n.

While the basi
 idea is quite simple, we must deal with potential abuses. We now present an informal

dis
ussion of some subtleties, and suggest 
ountermeasures. Readers who prefer to 
ommen
e with the more

in-depth te
hni
al des
ription may wish to skip this se
tion.

Q: How to ensure anonymity while preserving authenti
ity?

A: A signer \en
rypts" both w and e su
h that the required properties regarding them 
an be shown on the


orresponding \
iphertexts". In parti
ular, a signer needs to show w

e

= v for the authorization-proof,

and e = e

1

e

2

for the ownership-proof. As long as e is 
hosen su
h that it is infeasible to fa
tor, no group

of parti
ipants (in
luding the group manager) 
an frame an honest group member.

Q: How to deal with multiple dishonest group members who 
ollude (by revealing to ea
h other fa
torizations

of their respe
tive 
omposites) and produ
e new membership 
erti�
ates? For example, if Ali
e 
hooses

e

1

= e

1;1

e

1;2

and Bob 
hooses e

2

= e

2;1

e

2;2

, they 
an 
ollude to obtain new membership 
erti�
ates for

the values su
h as (e

1

e

2;1

) or (e

1;1

e

2;1

).

A: Although we 
annot prevent su
h abuses, we 
an ensure that, the group manager 
an fa
tor at least

one of the 
olluding group member's e (e

1

, or e

2

, or even both) and thus identify at least one of the

mis
reants. One way to do this, as we shall see, is to use a publi
 key en
ryption s
heme (for whi
h the

group manager knows the private key) so that the signer is for
ed to en
rypt an \a

umulated" value

she is 
laiming. Note that even a dishonest member 
annot a�ord to en
rypt e

1;1

, sin
e, otherwise, the

group manager 
an fa
tor her 
omposite and forge signatures that will be tra
ed ba
k to the dishonest

member.

Q: How to deal with multiple dishonest group members who 
ollude (but do not reveal to ea
h other the

fa
torizations of their 
omposites) and produ
e new membership 
erti�
ates? For example, suppose that

Ali
e holds (w

1

; e

1

) and Bob holds (w

2

; e

2

), where e

1

= e

1;1

e

1;2

, e

2

= e

2;1

e

2;2

, w

e

1

1

= w

e

2

2

= v. They 
an


ollude and generate (w

0

; e

0

= e

1

e

2

) su
h that (w

0

)

e

1

e

2

= v.



A: We prevent su
h atta
ks by requiring all veri�ers to 
he
k that e

0

falls within a 
ertain range.

Q: Does the group manager need to 
he
k whether a 
omposite presented by a new user during Join is

well-formed, i.e., a produ
t of two large primes? If not, what if a dishonest group member 
hooses e to

be a single prime or a produ
t of multiple (more than 2) primes?

A: We do not aim to prevent su
h abuses (this also justi�es our eÆ
ien
y gains). However, will be shown, no

adversary 
an gain any bene�t from any su
h abuse sin
e the group manager is always able to identify

at least one of the 
olluding group members.

Q: What if the group manager attempts to frame an honest group member by using the group member's

membership 
erti�
ate (w; e) where w

e

= v while providing a proof of fa
torization of some value e

0

6= e.

A: The Sign pro
ess ensures that, if the group manager proves knowledge of the fa
torization of an \a

u-

mulated" value e

0

6= e, then the witness value that the group manager (or any impersonator) is showing

is w

0

6= w. Moreover, the group manager is required to 
ondu
t a zero-knowledge proof as part of Open

su
h that the de
ryption 
orresponding to an ElGamal 
iphertext (of w) is 
orre
t.

Remark. The ownership-proof in our s
heme is 
ondu
ted by a signer to prove knowledge of the fa
torization

of a unique a

umulated 
omposite e = e

1

e

2

, where w

e

= v for a publi
 a

umulator value v. Therefore,

we say that our ownership-proof is based on the fa
toring problem. Whereas, the ownership-proof in the

Camenis
h-Lysyanskaya s
heme [CL02℄ is done by a signer to prove knowledge of x, su
h that w

e

= a

x

b,

where a and b are publi
, and e is prime. Therefore, we say that the ownership-proof is based on the dis
rete

logarithm problem.

4 Preliminaries

In this se
tion we go over some basi
 
ryptographi
 assumptions and de�nitions ne
essary for our s
heme.

4.1 RSA and Related Settings

De�nition 1. (safe RSA modulus). We say n = pq is a safe RSA modulus, if p = 2p

0

+1, q = 2q

0

+1, and

p, q, p

0

, q

0

are all primes.

By 
onvention, let g
d(0; n) = n, and QR

n

be the subgroup of quadrati
 residues modulo n.

The Strong RSA Assumption (SRSA). This assumption was independently introdu
ed by Bari
 and P�tz-

mann [BP97℄ and by Fujisaki and Okamoto [FO97℄.

De�nition 2. (Strong RSA Problem). Let n = pq be a RSA-like modulus and G be a 
y
li
 subgroup of Z

�

n

,

where jord(G )j = l

G

. Given n and z 2

R

G , the Strong RSA Problem 
onsists of �nding w 2 G and e > 1

su
h that z = w

e

mod n.

Assumption 1 (Strong RSA Assumption). Suppose a RSA-like modulus n and z 2

R

G are obtained a

ord-

ing to a given se
urity parameter l

G

. The assumption states that any probabilisti
 polynomial-time algorithm

A 
an solve the Strong RSA Problem with only negligible probability.

The following lemma is useful and has appeared in many pla
es (e.g.,[GKR00℄).

Lemma 1. Suppose n = pq is a safe RSA modulus. Given an element w 2 Z

�

n

n f1;�1g of ord(w) < p

0

q

0

,

either g
d(w � 1; n) or g
d(w + 1; n) is a prime fa
tor of n.

4.2 Dis
rete Logarithm Related Cryptographi
 Setting

The De
isional DiÆe-Hellman Assumption (DDHA). This assumption was �rst expli
itly introdu
ed by

Brands [B93℄, although it was impli
itly assumed in earlier literature.

De�nition 3. (De
isional DiÆe-Hellman Problem). Let G = hgi be a 
y
li
 group generated by g, where

jord(G )j = l

G

. Given g, g

x

, g

y

, and g

z

2 G , the De
isional DiÆe-Hellman Problem 
onsists of de
iding

whether g

xy

= g

z

.



Assumption 2 (De
isional DiÆe-Hellman Assumption). Suppose a group G and an element g of order

ord(G ) are obtained a

ording to a given se
urity parameter l

G

. The assumption states that there is no

probabilisti
 polynomial-time algorithm that distinguishes with non-negligible probability (g; g

x

; g

y

; g

xy

) from

(g; g

x

; g

y

; g

z

), where x; y; z 2

R

Z

ord(G)

.

We will utilize the ElGamal publi
 key 
ryptosystem [E85℄ whose semanti
 se
urity is based on DDHA

[TY98℄. Sin
e we always work in the setting of modulo a safe RSA modulus, we need 
ertain group in whi
h

the DDHA holds.

Fa
t 1 If n is a safe RSA modulus, then QR

n

is a 
y
li
 subgroup of order p

0

q

0

. Moreover, if a 2 Z

�

n

and

g
d(a� 1; n) = 1, then g = a

2

mod n is of order p

0

q

0

.

4.3 The CGHN Publi
 Key Cryptosystem

We now brie
y review Paillier's 
ryptosystem [P99℄. Suppose n = pq where p and q are large primes. Then

we have Euler's Totient fun
tion �(n) = (p� 1)(q � 1) and Carmi
hael's fun
tion �(n) = l
m(p� 1; q � 1).

It follows that: w

�(n)

= 1 mod n and w

n��(n)

= 1 mod n

2

for any w 2 Z

�

n

2

. Let (n; g;n; g; p; q) be a pair of

Paillier publi
 and private keys as spe
i�ed in [P99℄. To en
rypt a message m 2 Z

n

, one 
hooses r 2

R

Z

�

n

and 
omputes the 
iphertext 
 = g

m

r

n

mod n

2

. Note that an interesting sele
tion of g is g = (1+n) be
ause

(1 + n)

m

= 1 +mn mod n

2

.

A performan
e disadvantage of the Paillier 
ryptosystem is that one needs to 
ompute r

n

mod n

2

. Cata-

lano et al. [CGHN01℄ observed that if we always set g = (1 + n) then we 
an use any publi
 exponent t

as long as g
d(t; �(n

2

)) = 1, be
ause a 
iphertext 
 = (1 +mn)r

t

mod n

2

yields 
 = r

t

mod n, thereby r


an be re
overed by a standard RSA de
ryption operation. This means that one only needs to 
ompute an

exponentiation operation modulo n

2

with respe
t to an exponent jtj << jnj. We 
all this variant the CGHN


ryptosystem whose semanti
 se
urity is based on the following DSRA assumption.

De�nition 4. (Computational Small t-roots Problem). This is a variant of the RSA problem in Z

�

n

2

. The

problem is to invert y

t

mod n

2

, where y 2 Z

n

, t 2 Z

n

, and g
d(t; �(n

2

)) = 1.

De�nition 5. (De
isional Small Residuosity Problem, DSRP). This is a de
isional version of the above


omputational problem. Given an element x 2

R

Z

�

n

2

, one needs to de
ide whether x is the form y

t

with

y 2 Z

n

.

Assumption 3 (De
isional Small Residuosity Assumption, DSRA) Let n be a randomly 
hosen l-bit RSA

modulus, t 2 Z

n

su
h that g
d(t; �(n

2

)) = 1, and x 2

R

Z

�

n

2

. There exists no probabilisti
 polynomial-time

algorithm that is able to de
ide, with non-negligible advantage, whether x is the form y

t

with y 2 Z

n

.

The following lemma will be used (the proof is deferred to Appendix A).

Lemma 2. Suppose n is a safe RSA modulus. If A

a

= 1 mod n

2

where A 2 Z

�

n

2

and g
d(a; n � �(n)) = 1 or

2, then A = �1 mod n

2

.

5 Building Blo
ks

Now we present three building blo
ks: a dynami
 a

umulator a

umulating 
omposites (Se
tion 5.1), a

proto
ol allowing very eÆ
ient ownership-proofs (Se
tion 5.2), and a proto
ol ensuring veri�able en
ryption

of an a

umulated value (Se
tion 5.3). Combining them appropriately, we obtain a group signature s
heme.

5.1 A Composite A

umulator

We give a de�nition of dynami
 a

umulators that a

umulate 
omposites, whi
h is a variant of the prior


onstru
t that a

umulates primes [CL02℄.

De�nition 6. A dynami
 a

umulator for a family of inputs fX

l

g is a family of families of fun
tions fF

l

g

with the following properties:



{ Generation. There is an eÆ
ient probabilisti
 algorithm G that on input 1

l

produ
es a random element

f of F

l

, and some auxiliary information aux

f

about f .

{ Evaluation. f 2 F

l

is a polynomial-size 
ir
uit that, on input (u; x) 2 U

f

�X

l

, outputs a value v 2 U

f

,

where U

f

is an eÆ
iently-samplable input domain for the fun
tion f , X

l

is the intended input domain

whose elements (i.e., 
omposites) are to be a

umulated.

{ Quasi-Commutative. For all l, for all f 2 F

l

, for all u 2 U

f

, for all x

1

; x

2

2 X

l

, f(f(u; x

1

); x

2

) =

f(f(u; x

2

); x

1

). If X = fx

1

; � � �; x

m

g � X

l

, then by f(u;X) we denote f(� � �f(f(u; x

1

); � � �); x

m

).

{ Witness. Let v 2 U

f

and x 2 X

l

. A value w 2 U

f

is 
alled a witness for x in v under f if v = f(w; x).

{ Addition. Let f 2 F

l

, and v = f(u;X) be the a

umulator so far. There is an eÆ
ient algorithm A to

a

umulate a given value x

0

2 X

l

. The algorithm outputs: (1) X

0

= X[fx

0

g and v

0

= f(v; x

0

) = f(u;X

0

);

(2) w

0

whi
h is the witness for x 2 X in v

0

.

{ Deletion. Let f 2 F

l

, and v = f(u;X) be the a

umulator so far. There exist eÆ
ient algorithms D, W

to delete an a

umulated value x

0

2 X. The fun
tionality of the algorithms in
ludes: (1) D(aux

f

; v; x

0

) =

v

0

su
h that v

0

= f(u;X n fx

0

g), and (2) W(w; x; x

0

; v; v

0

) = w

0

su
h that f(w

0

; x) = v

0

, where x 2 X and

f(w; x) = v.

De�nition 7. Let U

0

f

� X

0

l

denote the domains for whi
h the fun
tion f 2 F

l

is de�ned (thus U

f

� U

0

f

,

X

l

� X

0

l

). To 
apture se
urity of a dynami
 a

umulator a

umulating 
omposites, we 
onsider the following

game: At the beginning of the game, an a

umulator manager sets up the fun
tion f and the value u and

hides the trapdoor information aux

f

. Then, the adversary ADV is allowed to adaptively modi�es the set,

X, of a

umulated values: When a value x 2 X

l

is added, the manager updates the a

umulator value using

algorithm A; when a value x 2 X is deleted, the manager algorithm D publishes the result. We say ADV

wins in this game, if it, with non-negligible probability, manages to output a witness w

0

for a value x

0

2 X

0

l

su
h that x

0

-

Q

8x2X

x. More formally, we require that:

Pr[(f; aux

f

) G(1

l

);u U

f

; (w; x

0

;X) ADV

O

add

;O

del

(f; u;U

f

) :

w

0

2 U

0

f

;x

0

2 X

0

l

;x

0

-

Y

8x2X

x; f(w

0

; x

0

) = f(u;X)℄

to be negligible, where O

add

(O

del

) is the ora
le for the Addition (resp. Deletion) operations. (Note that

only a legitimately a

umulated value x must belong to X

l

, whereas a forged value x

0


an belong to a possibly

larger set X

0

l

.)

Constru
tion. This 
onstru
tion is a variant of the one a

umulating primes [CL02℄.

{ F

l

is the family of fun
tions that 
orrespond to exponentiation modulo safe RSA modulus drawn from

the integers of length l. Choose f 2 F

l

amounts to 
hoosing a random safe RSA modulus n = pq of

length l, where p = 2p

0

+ 1, q = 2q

0

+ 1. We will denote by f the fun
tion 
orresponding to modulus n

and domain X

A;B

by f

n;A;B

.

{ X

A;B

= fe

1

e

2

: e

1

2 S

1

V

e

2

2 S

2

g, where S

1

= fe : e 2 primes

V

e 6= p

0

V

e 6= q

0

V

A

1

� e � B

1

g,

S

2

= fe : e 2 primes

V

e 6= p

0

V

e 6= q

0

V

A

2

� e � B

2

g, A

1

, A

2

, B

1

, and B

2


an be 
hosen with

arbitrary polynomial dependen
e on the se
urity parameter l as long as 4 < A

1

, 1 < A

2

, B

1

< A

2

1

,

B

2

< A

2

1

, and B

1

B

2

< p

0

q

0

. Then, X

0

A;B

� f5; � � �; A

4

1

� 1g and X

A;B

� X

0

A;B

.

{ For f = f

n;A;B

, the auxiliary information aux

f

is the fa
torization of n.

{ For f = f

n;A;B

, U

f

= fu 2 QR

n

: u 6= 1g and U

0

f

= Z

�

n

.

{ For f = f

n;A;B

, f(w; x) = w

x

mod n. Note that f(f(w; x

1

); x

2

) = f(w; fx

1

; x

2

g) = w

x

1

x

2

mod n.

{ Update of the a

umulator value. Adding a value x

0

to the a

umulator value v is done by setting v

0

=

f(v; x

0

) = v

x

0

mod n. Deleting a value x

0

from the a

umulator is done by setting v

0

= D((p; q); v; x

0

) =

v

(x

0

)

�1

mod �(n)

mod n.

{ Update of witness. Updating the witness w after x

0

has been added 
an be done by w

0

= f(w; x

0

) = w

x

0

.

In the 
ase that x

0

6= x 2 X

AB

has been deleted from the a

umulator, the witness w 
an be updated as

follows. By the extended GCD algorithm, one 
an 
ompute �; � 2 Z su
h that �x + �x

0

= 1 and then

w

0

=W(w; x; x

0

; v; v

0

) = (v

0

)

�

w

�

. This guarantees f(w

0

; x) = (w

0

)

x

= v

0

mod n be
ause:



w

0

= (v

0

)

�

w

�

= (v

(x

0

)

�1

mod �(n)

)

�

w

�

= w

(�x+�x

0

)((x

0

)

�1

mod �(n))

= w

(x

0

)

�1

mod �(n)

mod n:

Note that it is 
ru
ial (x

0

; �(n)) = 1, but this is always guaranteed.

Theorem 1. Under the Strong RSA Assumption (SRSA), the above 
onstru
tion is a se
ure dynami
 a
-


umulator that a

umulates 
omposites.

Properties other than se
urity are easy to see. The se
urity proof is in Appendix A.

5.2 Proving That One Knows the Fa
torization of a Committed Value

In order to enable ownership-proofs, we adopt the Damgard-Fujisaki 
ommitment s
heme [DF02℄ with slight

modi�
ation. Nonetheless, our proto
ol for a signer to prove that she knows the fa
torization of a 
ommitted

value is more eÆ
ient than the proto
ol presented in [DF02℄, and thus may be independently interesting.

The Commitment S
heme. Let l (for the length of the modulus) and k (for 
hallenge length) be se
urity

parameters, where l >> k. This s
heme 
onsists of the following three algorithms.

{ Set-up. This algorithm is run by a trusted third party (TTP). Given a se
urity parameter l, TTP 
hooses

a safe RSA modulus N = PQ, where P = 2P

0

+ 1, Q = 2Q

0

+ 1, and jP

0

j = jQ

0

j = l=2. Denote by

G = QR

N

and l

G

= jord(G )j = l. TTP 
hooses two generators of G , G and H , uniformly at random;

i.e., G = hGi = hHi. Note that Fa
t 1 implies that this 
an be easily done.

{ Commit. To 
ommit to an integer x, the prover 
hooses r 2

R

Z

bN=4


and sends C = H

x

G

r

mod N to

the veri�er.

{ Open. To open a 
ommitment, the prover must send x, r, b su
h that C = H

x

G

r

b mod N , b = �1.

Lemma 3. ([DF02℄) The above 
ommitment s
heme is perfe
tly hiding and 
omputationally binding.

A Proto
ol for Proving That One Knows the Fa
torization of a Committed Value. Suppose X is

a given random integer su
h that jX j = �

1

. Let � > 1 be a se
urity parameter for statisti
al zero-knowledge,

�

2

denote length su
h that l=2 > �

1

> �(�

2

+ k) + 2. Ali
e who holds e is to prove that she knows the

fa
torization of e = e

1

e

2

, where e

1

2 fX � 2

�

2

; � � �; X + 2

�

2

g and e

2

6= 0;�1. The proto
ol goes as follows.

1. The prover, Ali
e, 
hooses r

1

2

R

�f0; 1g

l+k

and generates C

1

= H

e

1

G

r

1

mod N , C

3

= (C

1

)

e

2

mod N .

In order to prove the knowledge of e = e

1

e

2

; e

1

; e

2

; r

1

; r = r

1

e

2

su
h that

C

1

= H

e

1

G

r

1

mod N

V

C

3

= H

e

G

r

mod N

V

C

3

= (C

1

)

e

2

mod N ,

she exe
utes as follows:

{ 
hoose e

0

1

2

R

�f0; 1g

�(�

2

+k)

, e

0

2

2

R

�f0; 1g

�(�

1

+k+1)

, e

0

2

R

�f0; 1g

�(2�

1

+k+1)

, r

0

1

2

R

�f0; 1g

�(l+2k)

,

r

0

2

R

�f0; 1g

�(l+�

2

+2k+1)

.

{ 
ompute C

0

1

= H

e

0

1

G

r

0

1

mod N , C

0

3a

= H

e

0

G

r

0

mod N , C

0

3b

= (C

1

)

e

0

2

mod N .

{ send (C

1

; C

3

; C

0

1

; C

0

3a

; C

0

3b

) to the veri�er.

2. The veri�er, Bob, 
hooses 
 2

R

f0; 1g

k

and sends 
 to Ali
e.

3. Ali
e sends Bob (s

e

1

; s

r

1

; s

e

2

; s

e

; s

r

), where s

e

1

= e

0

1

�
(e

1

�X), s

r

1

= r

0

1

�
�r

1

, s

e

= e

0

�
�e, s

r

= r

0

�
r,

s

e

2

= e

0

2

� 
 � e

2

(all in Z).

4. Bob a

epts if: H

s

e

1

G

s

r

1

= C

0

1

C

�


1

H


2

�

1

mod N , H

s

e

G

s

r

= C

0

3a

C

�


3

mod N , C

s

e

2

1

= C

0

3b

C

�


3

mod N ,

s

e

1

2 f�2

�(�

2

+k)+1

; � � �; 2

�(�

2

+k)+1

g, s

e

2

2 f�2

�(�

1

+k+1)+1

; � � �; 2

�(�

1

+k+1)+1

g, s

e

2 f�2

�(2�

1

+k+1)+1

; � �

�; 2

�(2�

1

+k+1)+1

g, C

3

6= 1, and C

3

6= (C

1

)

b

mod N where b = �1.

The proof of the following lemma is available in Appendix A.

Lemma 4. The above proto
ol is an honest veri�er statisti
al zero-knowledge proof of knowledge e; e

1

; e

2

su
h

that e = e

1

e

2

, e

1

2 fX � 2

�(�

2

+k)+2

; � � �; X + 2

�(�

2

+k)+2

g, e

2

2 f�2

�(�

1

+k+1)+2

; � � �; 2

�(�

1

+k+1)+2

g n f0;�1g,

e 2 f�2

�(2�

1

+k+1)+2

; � � �; 2

�(2�

1

+k+1)+2

g.



5.3 Veri�able En
ryption of a Committed Value

In order to fa
ilitate the Open pro
ess, we need to for
e the signer to present an en
ryption of her a

umulated

value e for whi
h she proves that she knows its non-trivial fa
torization e = e

1

e

2

. For this purpose, we need

a veri�able en
ryption s
heme. Here we present su
h a s
heme based on the CGHN publi
 key 
ryptosystem.

Spe
i�
ally, suppose publi
 valuesN ,G, andH are 
hosen a

ording to the 
ommitment s
heme in Se
tion

5.2. Let pk = hn; ti be a CGHN publi
 key and sk = hn; t; p; qi be the 
orresponding private key, where n = pq,

jnj = jN j, and t is a prime su
h that jtj > k. The prover generates a 
iphertext Y = (1 + n)

x

r

t

mod n

2

and a 
ommitment C = H

x

G

z

mod N , where r 2 Z

�

n

and z 2

R

Z

bN=4


. The prover needs to show that the


iphertext Y indeed 
orresponds to the 
ommitted se
ret x. The proto
ol is as follows:

1. The prover 
hooses x

0

2

R

�f0; 1g

�(l

2

+k)

, r

0

2

R

Z

�

n

, z

0

2

R

f0; 1g

�(l+k)

, 
omputes and sends to the veri�er

Y

0

= (1 + n)

x

0

(r

0

)

t

mod n

2

and C

0

= H

x

0

G

z

0

mod N .

2. The veri�er responses with a random 
hallenge 
 2

R

f0; 1g

k

.

3. The prover responses with s

x

= x

0

� 
x (in Z), s

r

= r

�


r

0

mod n

2

, and s

z

= z

0

� 
z (in Z).

4. The veri�er a

epts if s

x

2 f�2

�(l

2

+k)+1

; 2

�(l

2

+k)+1

g, (1 + n)

s

x

(s

r

)

t

= Y

0

Y

�


mod n

2

, and H

s

x

G

s

z

=

C

0

C

�


mod N .

The following lemma is proved in Appendix A.

Lemma 5. The above proto
ol is an honest-veri�er statisti
al zero-knowledge proof of knowledge x; r; z.

6 A New Group Signature S
heme

As highlighted in Se
tion 3, the basi
 idea underlying our group signature s
heme is to utilize an a

umulator

a

umulating 
omposites su
h as e = e

1

e

2

, where e

1

and e

2

are only known to the user who generates it.

Suppose v is the a

umulator value. This knowledge allows the user to 
ondu
t an ownership-proof by

demonstrating that she knows the fa
torization of a 
ommitted e, whereas the witness w fa
ilitates an

authorization-proof that w

e

= v mod n.

6.1 Setup

Initialization of the system in
ludes that a group manager establishes some 
ryptographi
 parameters and

that a TTP establishes some 
ommon auxiliary strings. (We dis
uss the impli
ations of using a TTP in

Se
tion 7.4 below.) Spe
i�
ally:

1. Let l, k, and � > 1 be se
urity parameters. Let X be a random integer of length jX j = �

1

. Suppose �

2

denotes length su
h that l=2 > �

1

> �(�

2

+ k) + 2. Denote by A = X � 2

�

2

and B = X + 2

�

2

. De�ne

the integral ranges that �

1

= fA; � � �; Bg, �

2

= f2

�

1

; � � �; 2

�

1

+1

� 1g, and � = f�2

2�

1

+1

; � � �; 2

2�

1

+1

g.

De�ne X

A;B

= fe

1

e

2

: e

1

2 S

1

V

e

2

2 S

2

g, where S

1

= fe : e 2 primes

V

e 2 �

1

g and S

2

= fe : e 2

primes

V

e 2 �

2

g . We assume that no probabilisti
 polynomial-time (in l) algorithm is able to fa
tor

e 2

R

X

A;B

; this is where we need the stronger fa
toring assumption (see Se
tion 7.1 for more dis
ussion).

Note that we have (1) 4 < A, (2) B(2

�

1

+1

� 1) < A

3

. Let X

0

A;B

be (any subset of) of the set of integer

from f5; � � �; A

3

� 1g su
h that X

A;B

� X

0

A;B

. The group manager exe
utes as follows:

{ It 
hooses a safe RSA modulus n = (2p

0

+ 1)(2q

0

+ 1) su
h that jp

0

j = jq

0

j = l=2. This uniquely

determines QR

n

, the quadrati
 residues subgroup modulo n.

{ It establishes an instan
e of ElGamal publi
 key 
ryptosystem. Let hy

1

= g

x

1

1

mod n;x

1

i be the pair

of publi
 and private keys su
h that g

1

2

R

QR

n

and x

1

2

R

Z

�

p

0

q

0

.

{ It establishes an instan
e of CGHN publi
 key 
ryptosystem. Let hn; t;n; t; p; qi be the pair of publi


and private keys, where t is a prime su
h that jtj > k.

{ It establishes an instan
e of the dynami
 a

umulator by 
hoosing u 2

R

QR

n

, establishing (
urrently

empty) publi
 ar
hives A for storing values 
orresponding to added group members, and D for storing

values 
orresponding to deleted group members.



The publi
 and private parameters of the group manager are (n; t; g

1

; y

1

; u;A;D;X

A;B

;X

0

A;B

) and (p

0

; q

0

),

respe
tively. Note that a signature re
eiver 
an verify group signatures without knowing the dynami
ally

updated A or D.

2. Given a se
urity parameter l, a TTP initializes a safe RSA modulus N = (2P

0

+ 1)(2Q

0

+ 1), where

jP

0

j = jQ

0

j = l=2. It also 
hooses and publishes two random elements G;H 2

R

QR

N

, where the logarithm

of G and H to ea
h other is unknown to any parti
ipant in the group signature s
heme.

6.2 Join

This proto
ol is exe
uted between a group member, Ali
e, and the group manager.

1. Ali
e 
hooses two primes e

1

2

R

S

1

and e

2

2

R

S

2

. This step 
an be done before the exe
ution of the

proto
ol.

2. Ali
e sends e = e

1

e

2

(in Z) to the group manager.

3. If A � 2

�

1

< e < B � (2

�

1

+1

� 1), e is odd, and e =2 A, the group manager stores Ali
e's membership


erti�
ate (v; e) where v is the 
urrent a

umulator value (when the �rst user joins the group, v = u). It

also updates v in the publi
 key �le as v

0

= f

n

(v; e), and adds e to A.

4. Ali
e gets her membership 
erti�
ate (w; e) and 
he
ks if f

n

(w; e) = w

e

= v

0

mod n, where w = v.

Remark. The Join pro
ess is very eÆ
ient (1 exponentiation for both group manager and new user) be
ause

of the following: If a dishonest user, Eve, does not 
hoose e that is hard to fa
tor, then any parti
ipant

(internal or external) who 
an �nd 
ertain non-trivial fa
tor of e may be able to sign on her behalf.

6.3 Revoke

Suppose Eve, who has membership 
erti�
ate (w; e), is to be expelled from the group. Then the group

manager 
an revoke her membership by updating the 
urrent a

umulator value v in the publi
 key �le: It

simply sets v

0

= D(�(n); v; e), deletes e from A, and adds e to D.

6.4 Update

Whenever there is a Join and/or Revoke event, the group manager updates the a

umulator value from v

to v

0

. Correspondingly, every group member needs to update her membership 
erti�
ate. An entry in the

ar
hives is 
alled \new" if it was entered after the last time a legitimate group member performed an update.

Suppose Bob holds a membership 
erti�
ate (w; e) su
h that f

n

(w; e) = v. Then, he updates his membership


erti�
ate to (w

0

; e) su
h that f

n

(w

0

; e) = v

0

:

{ For all new e

�

2 A, w

00

= f

n

(w;

Q

e

�

) and v

00

= f

n

(v;

Q

e

�

).

{ For all new e

�

2 D, w

0

=W(w

00

; e;

Q

e

�

; v

00

; v

0

).

The 
ost of this pro
ess, for a 
urrent member, is is very mu
h in line with the 
ost of Update in [CL02℄.

6.5 Sign

Re
all that hn; ti is the group manager's CGHN publi
 key, and that y

1

= g

x

1

1

mod n is the group manager's

ElGamal publi
 key. Suppose that v is the 
urrent a

umulator value, and that Ali
e holds (w; e) su
h that

w

e

= v mod n, where e = e

1

e

2

. Given a message m, Ali
e generates a group signature as follows.

1. She exe
utes as follows.

{ She 
hooses r

1

2

R

Z

�

n

and 
omputes a CGHN 
iphertext Æ = (1 + en)r

t

1

mod n

2

.

{ She 
hooses r

2

2

R

�f0; 1g

l+k

and 
omputes an ElGamal 
iphertext (�; �) where � = g

r

2

1

mod n and

� = w � y

r

2

1

mod n.

{ She 
hooses r

4

2

R

�f0; 1g

l+k

and generates 
ommitments � = H

e

1

G

r

4

mod N , � = �

e

2

= H

e

G

r

4

e

2

mod N .

2. She needs to prove the knowledge of:



{ (w; e) su
h that w

e

= v mod n, where w 
orresponds to the ElGamal 
iphertext (�; �), and e


orresponds to the CGHN 
iphertext Æ.

{ e

1

and e

2

su
h that e

1

2 �

1

, e

2

2 �

2

, and e = e

1

e

2

2 � .

For this purpose, she needs to prove the knowledge of e; e

1

; e

2

; r

1

; r

2

; r

3

= r

2

e; r

4

; r

5

= r

4

e

2

su
h that:

Æ = (1 + n)

e

r

t

1

mod n

2

^

� = g

r

2

1

mod n

^

v = �

e

(

1

y

1

)

r

3

mod n

^

1 = �

e

(

1

g

1

)

r

3

mod n

^

� = H

e

G

r

5

mod N

^

� = H

e

1

G

r

4

mod N

^

� = �

e

2

mod N

^

e 2 �

^

e

1

2 �

1

^

e

2

2 �

2

:

Spe
i�
ally, she exe
utes as follows:

(a) She exe
utes the following steps:

{ Choose e

0

2 �f0; 1g

�(2�

1

+k+1)

and r

0

1

2

R

Z

�

n

, and 
ompute Æ

0

= (1 + n)

e

0

(r

0

1

)

t

mod n

2

.

{ Choose r

0

2

2

R

�f0; 1g

�(l+2k)

, r

0

3

2

R

�f0; 1g

�(l+2�

1

+2k+1)

, and generate:

�

0

= g

r

0

2

1

mod n; v

0

= �

e

0

(

1

y

1

)

r

0

3

mod n; !

0

= �

e

0

(

1

g

1

)

r

0

3

:

{ Choose e

0

1

2

R

�f0; 1g

�(�

2

+k)

, e

0

2

2 �f0; 1g

�(�

1

+k+1)

r

0

4

2

R

�f0; 1g

�(l+2k)

, r

0

5

2

R

�f0; 1g

�(l+�

1

+2k+1)

,

and generate:

�

0

1

= H

e

0

G

r

0

5

mod N; �

0

= H

e

0

1

G

r

0

4

mod N; �

0

2

= �

e

0

2

mod N:

(b) She 
omputes 
 = H(m;n; t; g

1

; y

1

; N;G;H; Æ; �; �; �; �; Æ

0

; �

0

; v

0

; !

0

; �

0

1

; �

0

; �

0

2

), where H : f0; 1g

�

!

f0; 1g

k

behaves like a random ora
le.

(
) She 
omputes (all the operations, ex
ept the 
omputation of s

r

1

, are in Z):

s

e

= e

0

� 
 � e; s

e

1

= e

0

1

� 
 � (e

1

�X); s

e

2

= e

0

2

� 
 � e

2

;

s

r

1

= r

�


1

� r

0

1

mod n

2

; s

r

2

= r

0

2

� 
 � r

2

; s

r

3

= r

0

3

� 
 � r

3

;

s

r

4

= r

0

4

� 
 � r

4

; s

r

5

= r

0

5

� 
 � r

5

:

(d) She sends Bob (m; 
; n; t; g

1

; y

1

; N;G;H; Æ; �; �; �; �; s

e

; s

e

1

; s

e

2

; s

r

1

; s

r

2

; s

r

3

; s

r

4

; s

r

5

).

Cost: Sign requires 17 exponentiations. Note that 2 of the 17 exponentiations are r

t

mod n

2

but t << n

(e.g., jtj = 161).

Note that, in 
ounting exponentiations above, we did not 
onsider various implementation speedup te
h-

niques, su
h as savings in 
omputing the multipli
ation of double- or triple-based exponentiations (e.g., x

a

y

b

or x

a

y

b

z




). Our 
onservative 
ost assessment is not un
ommon in the literature, perhaps be
ause it better

re
e
ts the underlying te
hniques rather than spe
i�
 implementation speedups. Still, when we take into

a

ount speedup te
hniques, our Sign pro
ess would require approximately 12.85 exponentiations, This is in


ontrast to the optimized Sign 
ost of roughly 16 exponentiations in [CL02℄.

6.6 Verify

Given (m; 
; n; t; g

1

; y

1

; N;G;H; Æ; �; �; �; �; s

e

; s

e

1

; s

e

2

; s

r

1

; s

r

2

; s

r

3

; s

r

4

; s

r

5

), Bob 
he
ks if it is a valid signa-

ture as follows.

1. Bob 
omputes 


0

= H(m;n; t; g

1

; y

1

; N;G;H; Æ; �; �; �; �; Æ

0

; �

0

; v

0

; !

0

; �

0

1

; �

0

; �

0

2

), where

Æ

0

= (1 + n)

s

e

(s

r

1

)

t

Æ




mod n

2

; �

0

= g

s

r

2

1

�




mod n; v

0

= �

s

e

(

1

y

1

)

s

r

3

v




mod n;

!

0

= �

s

e

(

1

g

1

)

s

r

3

mod n; �

0

1

= H

s

e

G

s

r

5

�




mod N; �

0

= H

s

e

1

�
�2

�

1

G

s

r

4

�




mod N;

�

0

2

= �

s

e

2

�




mod N:



2. Bob a

epts if 
 = 


0

, s

e

1

2 f�2

�(�

2

+k)+1

; � � �; 2

�(�

2

+k)+1

g, s

e

2

2 f�2

�(�

1

+k+1)+1

; � � �; 2

�(�

1

+k+1)+1

g,

s

e

2 f�2

�(2�

1

+k+1)+1

; � � �; 2

�(2�

1

+k+1)+1

g, � 6= 1 mod N , and � 6= �

b

mod N where b = �1.

Cost: Verify, without any optimizations, requires 16 exponentiations whi
h is somewhat more eÆ
ient than

21 exponentiations in [CL02℄. Furthermore, if (as in Sign) we fa
tor in the speedup due to double-based

exponentiations, the 
ost of Verify would go down to approximately 8.4 exponentiations. We note that

optimized Verify 
ost of [CL02℄ is roughly 9.1 exponentiations. However, we believe that the Verify pro
ess in

the latter is in
omplete; a 
omplete version would require a few more exponentiations in both non-optimized

and optimized 
ases.

6.7 Open

Given a valid group signature (m; 
; n; t; g

1

; y

1

; N;G;H; Æ; �; �; �; �; �; s

e

; s

e

1

; s

e

2

; s

r

1

; s

r

2

; s

r

3

; s

r

4

; s

r

5

), the group

manager 
an identify the signer by de
rypting both w and e su
h that w

e

= v mod n. It also needs to prove

that the de
ryption of w is 
orre
t; namely DLOG(g

1

; y

1

) = DLOG(�; �=w).

1. It de
rypts the CGHN 
iphertext Æ to obtain e, and de
rypts the ElGamal 
iphertext h�; �i to obtain w.

It must hold that A

3

> e > 1.

2. There are further two 
ases.

(a) If e 2 A, then it publishes: (1) the values w and e, and (2) the proof that DLOG(g

1

; y

1

) =

DLOG(�; �=w). Note that knowing w and e does not expose neither previous, nor future (even

if the system poli
y allows), signatures generated by the same group member.

(b) If e =2 A, then it must hold that ej

Q

8e

0

2A

e

0

. Therefore, there must exist e

0

2 A su
h that e

0

>

g
d(e; e

0

) > 1. Therefore, the group member 
orresponding to a

umulated e

0

is identi�ed (and

revoked).

We note that the �rst 
ase re
e
ts the more 
ommon situation, i.e., a well-formed signature needs

to be opened. The se
ond, more infrequent, 
ase involves a misbehaving user, or a set thereof. Here,

the 
omplexity of opening a signature is linear to the number of 
urrent group members (in terms of


omputing a GCD).

6.8 Analysis

The following theorem is proven in Appendix B.

Theorem 2. (informal) The above s
heme is a se
ure group signature s
heme.

Corollary 1. The intera
tive version of the above group signature s
heme is a se
ure identity es
row s
heme.

Note that the intera
tive s
heme 
an be made 
on
urrently se
ure in the standard model using the

te
hnique due to [D00℄. This adds no extra 
omplexity be
ause we already work in the 
ommon auxiliary

string model.

7 Dis
ussion

7.1 Fa
torization Assumption

For typi
al group signature appli
ations we suggest that the group manager use 2048-bit RSA moduli. For

other parameters, we suggest (as an example): �

1

= 950, �

2

= 700, � = 1:1, k = 160. This means that we

assume the hardness of fa
toring large 2-prime 
omposites, where (�

1

� �

2

) high-order bits of one prime

are known. This assumption is stronger than the standard fa
torization assumption. However, despite the

�xed pre�x, it still seems reasonable to assume the hardness of fa
toring su
h a 
omposite. Given partial

knowledge of the fa
torization, the best fa
toring algorithm 
urrently available indi
ates that, if the higher

475-bits of a prime fa
tor are known, then one 
an fa
tor n [C96℄. Beyond that, no better result is available

[C03℄. Note that if the higher bits of one prime fa
tor are known, then the higher bits of another fa
tor are



also exposed. Nevertheless, knowing h�; � = �

e

2

mod Ni still requires an adversary to 
ompute e

2

in O(2

350

)

time (see [G00℄ and the referen
es therein).

The main reason that we rely on the hardness of fa
toring a produ
t of two primes (where one prime is

in the aforementioned \spe
ial" form) is only for the purpose of making the s
heme more eÆ
ient. This is

be
ause we use a range proof te
hnique that does not guarantee pre
ise range. This 
an, of 
ourse, be easily

over
ome by adopting a more pre
ise range proof te
hnique due to [B00℄. Although this would obviate the

need for the spe
ial fa
toring assumption, approximately 15 extra exponentiations would be required. We

believe there are other ways to obviate this assumption, however, all of them in
ur signi�
ant extra 
ost.

Finally, we note that a very similar assumption was used before (e.g., by Camenis
h and Mi
hels in

[CM98℄).

7.2 \Lazy" A

umulator Update?

In a group signature s
heme based on a dynami
 a

umulator, it is ne
essary for both signer and veri�er

to get the updated a

umulator whenever there is a member leaves. In the Camenis
h-Lysyanskaya s
heme,

they suggest a ni
e tri
k whereby a Join may not have to trigger a group member to get the updated

a

umulator value. While this tri
k enables potential gain in 
ommuni
ations, it may in
ur some serious

problems in pra
ti
e. Consider the following s
enario: sin
e Ali
e is lazy, she does not 
onta
t the group

manager to 
he
k the 
urrent a

umulator value. Instead, she waits for a broad
ast message from the group

manager. If this message is blo
ked by an adversary, there is no way for Ali
e to tell if there has been an

a

umulator update. Consequently, Ali
e would generate a group signature whi
h is valid with respe
t to

the outdated a

umulator value, i.e., the previous a

umulator in
arnation. However, the signature is invalid

with respe
t to the 
urrent a

umulator value. It is un
lear how a potential dispute involving this signature


an be resolved. At best, the veri�er 
an abuse su
h a signature.

We suggest that Ali
e should be diligent and prevent su
h anomalies by a
tively querying the group

manager for the 
urrent a

umulator value. This way, if she does not eli
it any reply from the group manager,

she 
an simple refuse to generate any group signatures.

7.3 Enhan
ing Anonymity

Re
ently, Bellare et al. [BMW03℄ proposed simpli�ed se
urity requirements for group signatures. The most

relevant part of their de�nition that has an impa
t on our s
heme is the so-
alled full-anonymity, whi
h

is stri
tly stronger than the anonymity spe
i�ed in the present paper (as well as all previously proposed

s
hemes). Essentially, full-anonymity allows the adversary to 
ompromise all group members, whereas we

assume that there are at least two non-
ompromised group members. Our s
heme does not satisfy their

full-anonymity, but 
an be extended to do so. The idea is to utilize the proto
ol of [DF02℄ to prove that

a signer knows the fa
torization of a 
ommitted value. However, this will in
ur 6 extra exponentiations in

Sign; this 
omplexity justi�es why we developed the more eÆ
ient proto
ol in Se
tion 5.2.

7.4 TTP Presen
e

Our s
heme operates in the 
ommon auxiliary string model whi
h assumes a 
ommon string (the spe
i�
ation

of a 
ommitment s
heme) generated by a trusted third party (TTP) and made available to all parti
ipants.

The in
onvenien
e posed by this is not signi�
ant owing to the following mitigating fa
tors:

{ The TTP's role is only to initialize the 
ryptographi
 setting of a 
ommitment s
heme. In fa
t, the TTP


an simply disappear after publishing the 
ommitment s
heme parameters sin
e it is not involved in any

future transa
tions.

{ A single TTP 
ould serve multiple group signature settings, thereby amortizing the 
omplexity. Moreover,

threshold 
ryptography 
an be used to implement a distributed TTP (see [ACS02℄).

{ Currently, the most eÆ
ient method of obtaining identity es
row s
hemes (su
h as [KP98℄) that are


on
urrently se
ure is based on the existen
e of 
ommon auxiliary strings [D00℄. Therefore, the iden-

tity es
row s
heme derived from our group signature s
heme 
an be made 
on
urrently se
ure without

in
urring any extra 
omplexity.



One might question whether the 
ommon auxiliary string model is truly needed, given that we are proving

fa
torization or multipli
ation in Z. Unfortunately, we 
annot a�ord to let the group manager a
t as a TTP

sin
e, otherwise, the 
ommitment in Lemma 3 is not binding in the 
ase the group manager attempts to

frame an honest member.

8 Con
lusion

We presented a dynami
 a

umulator 
onstru
t that a

umulates 
omposites, and an eÆ
ient proto
ol for

proving knowledge of the fa
torization of a 
ommitted value. Based on these te
hniques, we developed a

novel, eÆ
ient and provably se
ure group signature s
heme.
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A Proofs of Some Lemmas

Proof. (of Lemma 2) If g
d(a; n � �(n)) = 1, then we 
an 
ompute �; � 2 Z su
h that �a + �n � �(n) = 1.

Then we have A = (A

a

)

�

(A

�

)

n��(n)

= 1 mod n

2

.

If g
d(a; n � �(n)) = 2, then we 
an 
ompute �; � 2 Z su
h that �a + �n � �(n) = 2. Then we have

A

2

= (A

a

)

�

(A

�

)

n��(n)

= 1 mod n

2

. Note that we 
an write A = 
n+ Æ, where 0 � 
 < n and 0 < Æ < n.

Thus, 2
Æn + Æ

2

= 1 mod n

2

, whi
h implies Æ

2

= 1 mod n. Lemma 1 implies that Æ = �1. There are two


ases:

{ Æ = 1. Then 2
n = 0 mod n

2

. This, the fa
t that n is a safe RSA modulus, and 0 � 
 < n imply that


 = 0. So, A = 1.

{ Æ = n� 1. Then �2(
 + 1)n = 0 mod n

2

. This, the fa
t that n is a safe RSA modulus, and 0 � 
 < n

imply that 
 = n� 1. So, A = �1 mod n

2

.

Proof. (of Theorem 1) This proof only fo
uses on se
urity. Suppose the adversary ADV 
an break the

dynami
 a

umulator with non-negligible probability, then there is a polynomial-time algorithm B that is

able to break SRSA. Suppose B is given a SRSA instan
e (n; u), where n is a safe RSA modulus, u 2

R

QR

n

.

B simulates the system as follows:

{ It feeds (f;U

f

; u) to ADV . Let X = ;. It exe
utes as follows:

1. When ADV asks to a

umulate a value x =2 X, it simply updates X = X [ fxg and v = f(u;X).

2. When ADV asks to delete a value x 2 X, it simply updates X = X n fxg and v = f(u;X n fxg).

{ At some point, ADV 
omes up with a forgery (w

0

; x

0

;X = fx

1

; � � �; x

m

g) su
h that (1) (w

0

)

x

0

=

u

Q

m

i=1

x

i

mod n where w

0

2 Z

�

n

and x

0

2 X

0

A;B

; (2) x

0

-

Q

m

i=1

x

i

.

Now, sin
e x

0

-

Q

m

i=1

x

i

, we have g
d(x

0

;

Q

m

i=1

x

i

) = 
 for some 
 < x

0

. So B 
an simply �nd �; � 2 Z

su
h that �

Q

m

i=1

x

i

+ �x

0

= 
. Sin
e u

Q

m

i=1

x

i

= (w

0

)

x

0

mod n, B simply outputs u

�

(w

0

)

�

su
h that u




=

u

�

Q

m

i=1

x

i

+�x

0

= ((w

0

)

�

u

�

)

x

0

. Therefore, u = ((w

0

)

�

u

�

)

x

0

=


b, where x

0

=
 > 1 and b




= 1. Now we 
laim that

b = �1. Otherwise, B 
an fa
tor n: If 
 < p

0

q

0

whi
h is unknown to B though, then Lemma 1 implies that B


an fa
tor n; If 
 � p

0

q

0

, then B 
an also fa
tor n using the standard te
hnique.



Proof. (of Lemma 4) Completeness 
an be 
he
ked by observation. It is a standard pro
ess to show that the

proto
ol is honest veri�er statisti
al zero-knowledge. So we fo
us on the property of proof of knowledge.

Suppose a prover presents two valid answers (s

e

1

; s

r

1

; s

e

2

; s

e

; s

r

) and (s

�

e

1

; s

�

r

1

; s

�

e

2

; s

�

e

; s

�

r

) to two di�erent


hallenges 
 and 


�

, respe
tively. Without loss of generality, suppose 
 > 


�

. The result in [DF02℄ implies

C

1

= H

~e

1

G

~r

1

b

1

mod N and C

3

= H

~e

G

~r

b

3

mod N , where ~e

1

= X +

s

e

1

�s

e

�

1




�

�


, ~r

1

=

s

r

1

�s

�

r

1




�

�


, b

1

= �1,

~e =

s

e

�s

e

�




�

�


, ~r =

s

r

�s

�

r




�

�


, b

3

= �1.

Be
ause of the fa
t that C

s

e

2

1

= C

0

3b

C

�


3

mod N and C

s

�

e

2

1

= C

0

3b

C

�


�

3

mod N , we get C

s

e

2

�s

�

e

2

1

=

C

�(
�


�

)

3

mod N . Therefore, we have

(H

~e

1

G

~r

1

b

1

)

s

e

2

�s

�

e

2

= (H

~e

G

~r

b

3

)




�

�


mod N .

Thus, we get

H

~e

1

(s

e

2

�s

�

e

2

)�~e(


�

�
)

G

~r

1

(s

e

2

�s

�

e

2

)�~r(


�

�
)

b

(s

e

2

�s

�

e

2

)

1

b


�


�

3

= 1 mod N .

Sin
e G;H 2 QR

N

, we have b

s

e

2

�s

�

e

2

1

b


�


�

3

= 1 mod N .

The dis
rete logarithm assumption (whi
h is implied by the De
isional DiÆe-Hellman Assumption) im-

plies

~e

1

(s

e

2

� s

�

e

2

)� ~e(


�

� 
) = 0 mod ord(G)

and

~r

1

(s

e

2

� s

�

e

2

)� ~r(


�

� 
) = 0 mod ord(G).

Re
all that ord(G) = P

0

Q

0

= ord(QR

N

) where N is a safe RSA modulus. The hardness of fa
toring

(whi
h is implied by the Strong RSA Assumption) implies

~e

1

(s

e

2

� s

�

e

2

)� ~e(


�

� 
) = 0 (in Z)

and

~r

1

(s

e

2

� s

�

e

2

)� ~r(


�

� 
) = 0 (in Z).

In other words, we get

~e

1

(s

e

2

� s

�

e

2

) = ~e(


�

� 
)

and

~r

1

(s

e

2

� s

�

e

2

) = ~r(


�

� 
).

The range 
ondition says that ~e

1

2 fX � 2

�(�

2

+k)+2

; X + 2

�(�

2

+k)+2

g. Sin
e X � 2

�(�

2

+k)+2

> 2

k

,

we get ~e

1

> 
, whi
h means that ~e

1

- (


�

� 
) and that e

1

=

~e

1

g
d( ~e

1

;


�

�
)

> 1. Similarly, we 
an de�ne

r

1

=

~r

1

g
d( ~r

1

;


�

�
)

> 1. Therefore, e

1

j~e.

Proof. (of Lemma 5) It is easy to 
he
k 
ompleteness. It is also a standard pro
ess to prove honest veri�er

statisti
al zero-knowledge. So we only fo
us on proof of knowledge. For simplifying notations, denote (1+n)

by g.

Suppose the adversary is able to present two valid answers (s

x

; s

r

; s

z

) and (s

�

x

; s

�

r

; s

�

z

) to two di�er-

ent 
hallenges 


�

6= 
, respe
tively. Without loss of generality, assume 
 > 


�

. Then we have g

s

x

(s

r

)

n

=

Y

0

Y

�


mod n

2

, H

s

x

G

s

z

= C

0

C

�


mod N , g

s

�

x

(s

�

r

)

t

= Y

0

Y

�


�

mod n

2

, and H

s

�

x

G

s

�

z

= C

0

C

�


�

mod N . The

result in [DF02℄ imply that (


�

� 
)j(s

x

� s

�

x

) and (


�

� 
)j(s

z

� s

�

z

), and C = H

s

x

�s

�

x




�

�


G

s

z

�s

�

z




�

�


b

1

mod N where

b

1

= �1. On the other hand, we have g

s

x

�s

�

x

(

s

r

s

�

r

)

t

= Y

�(
�


�

)

mod n

2

. Therefore, we have



(

s

r

s

�

r

)

t

= (g

�

s

x

�s

�

x


�


�

Y

�1

)


�


�

mod n

2

: (1)

Sin
e g
d(
� 


�

; t) = 1, we 
an 
ompute �; � 2 Z su
h that �(
� 


�

) + �t = 1. Therefore, we have

s

r

s

�

r

= (

s

r

s

�

r

)

�(
�


�

)

(g

�

s

x

�s

�

x


�


�

Y

�1

)

�(
�


�

)

= ((

s

r

s

�

r

)

�

(g

�

s

x

�s

�

x


�


�

Y

�1

)

�

)


�


�

mod n

2

:

Let � = (

s

r

s

�

r

)

�

(g

�

s

x

�s

�

x


�


�

Y

�1

)

�

b

2

mod n

2

where b


�


�

2

= 1 mod n

2

. Then we have

s

r

s

r

�

= �


�


�

mod n

2

: (2)

It is straightforward to 
he
k that g
d(b; n

2

) = 1. Sin
e j
j << l=2 and 
 > 


�

, we have g
d(
�


�

; n��(n)) =

1 or 2. So Lemma 2 implies that b

2

= �1 mod n

2

.

Note that (1) and (2) imply (g

�

s

x

�s

�

x


�


�

Y

�1

)


�


�

(�

�(
�


�

)

)

t

= 1 mod n

2

, and thus (g

�

s

x

�s

�

x


�


�

Y

�1

�

�t

)


�


�

=

1 mod n

2

. It is easy to 
he
k that g
d(g

�

s

x

�s

�

x


�


�

Y

�1

�

�t

; n

2

) = 1. Sin
e g
d(
� 


�

; n � �(n)) = 1 or 2, Lemma

2 implies that g

�

s

x

�s

�

x


�


�

Y

�1

�

�t

b

3

= 1 mod n

2

with b

3

= �1 mod n

2

. So, Y = g

�

s

x

�s

�

x


�


�

(�

�1

)

t

b

3

mod n

2

.

B Se
urity Analysis of the Group Signature S
heme

Lemma 6. The intera
tive proof 
orresponding to Sign is an honest veri�er statisti
al zero-knowledge proof

of knowledge (w; e; e

1

; e

2

) su
h that w

e

= v mod n, e

1

2 fX � 2

�(�

2

+k)+2

; � � �; X � 2

�(�

2

+k)+2

g, abs(e

2

) > 1,

and e = e

1

e

2

2 f�2

�(2�

1

+k+1)+2

; � � �; 2

�(2�

1

+k+1)+2

g.

Proof. It is a standard pro
ess to show it is honest veri�er statisti
al zero-knowledge (see, for instan
e,

[C98℄). We thus only fo
us on proof of knowledge.

Suppose the prover, given two di�erent 
hallenges 
; 


�

2

R

f0; 1g

k

, 
an present two a

epting answers

(s

e

; s

e

1

; s

e

2

; s

r

1

; s

r

2

; s

r

3

; s

r

4

; s

r

5

) and (s

�

e

; s

�

e

1

; s

�

e

2

; s

�

r

1

; s

�

r

2

; s

�

r

3

; s

�

r

4

; s

�

r

5

), respe
tively.

Lemma 4 and Lemma 5 imply the following:

{ It holds that (


�

� 
)j(s

e

� s

�

e

) ex
ept with negligible probability, and that � 
an be opened as � =

H

s

e

�s

�

e




�

�


G

s

r

5

�s

�

r

5




�

�


b

�

where b

�

= �1.

{ It holds that (


�

� 
)j(s

e

1

� s

�

e

1

) ex
ept with negligible probability, and that � 
an be opened as � =

H

s

e

1

�s

�

e

1




�

�


+2

�

1

G

s

r

4

�s

�

r

4




�

�


b

�

where b

�

= �1.

{ It holds that the 
ommitted se
ret �

s

e

�s

�

e


�


�

is indeed en
rypted under the CGHN publi
 key.

Now we prove that the 
ommitted e in � is indeed a

umulated. Sin
e g

s

r

2

1

= �

0

�

�


and g

s

�

r

2

1

=

�

0

�

�


�

mod n, therefore g

s

r

2

�s

�

r

2

1

= �




�

�


. It follows that (unless SRSA is broken)

(


�

� 
)j(s

r

2

� s

�

r

2

): (3)

Therefore we have r

2

=

s

r

2

�s

�

r

2




�

�


and thus

w = �=y

r

2

1

mod n.

Sin
e we have �

s

e

(

1

g

1

)

s

r

3

= !

0

= �

s

�

e

(

1

g

1

)

s

�

r

3

, we get �

s

e

�s

�

e

= g

s

r

3

�s

�

r

3

1

. It follows that (unless SRSA is

broken)

(s

e

� s

�

e

)j(s

r

3

� s

�

r

3

): (4)



Sin
e �

s

e

(

1

y

1

)

s

r

3

= v

0

� v

�


and �

s

�

e

(

1

y

1

)

s

�

r

3

= v

0

� v

�


�

, we get �

s

e

�s

�

e

(

1

y

1

)

s

r

3

�s

�

r

3

= v




�

�


. This and (4)

imply (�(

1

y

1

)

s

r

3

�s

�

r

3

s

e

�s

�

e

)

s

e

�s

�

e

= v




�

�


, whi
h and (


�

� 
)j(s

e

� s

�

e

) imply ((�(

1

y

1

)

s

r

3

�s

�

r

3

s

e

�s

�

e

)

s

e

�s

�

e




�

�


)




�

�


= v




�

�


.

Therefore, v = (�(

1

y

1

)

s

r

3

�s

�

r

3

s

e

�s

�

e

)

s

e

�s

�

e




�

�


� b where b = �1. Let sign(z) = �1 if z < 0 and sign(z) = 1 otherwise.

Thus we have

v =

8

>

<

>

:

((�(

1

y

1

)

s

r

3

�s

�

r

3

s

e

�s

�

e

b)

sign(

s

e

�s

�

e




�

�


)

)

abs(

s

e

�s

�

e




�

�


)

if

s

e

�s

�

e




�

�


is odd

((�(

1

y

1

)

s

r

3

�s

�

r

3

s

e

�s

�

e

)

sign(

s

e

�s

�

e




�

�


)

)

abs(

s

e

�s

�

e




�

�


)

if

s

e

�s

�

e




�

�


is even

Sin
e that X�2

�(�

2

+k)+2

> 4, that abs(e

2

) > 1, and that �2

�(2�

1

+k+1)+2

<

s

e

�s

�

e




�

�


< 2

�(2�

1

+k+1)+2

< A

3

,

we have abs(

s

e

�s

�

e




�

�


) 2 X

0

A;B

.

Lemma 7. (No-Framing). Suppose the group manager, perhaps in 
ollusion with some dishonest group

members, is able to generate a signature tra
eable to an honest group member with membership 
erti�
ate

(w; e). Then, there exists a probabilisti
 polynomial-time algorithm that is able to fa
tor e = e

1

e

2

where

e

1

2

R

S

1

and e

2

2

R

S

2

.

Proof. (sket
h) Suppose the group manager 
an frame an honest group member with non-negligible proba-

bility. We 
onstru
t a probabilisti
 polynomial-time algorithm F that is able to fa
tor a 
hallenge e = e

1

e

2

where e

1

2

R

S

1

and e

2

2

R

S

2

. The basi
 idea underlying F is to emulate an environment for the real-world

group signature setting in the random ora
le model. Suppose there is already a group signature setting

established by the group manager. The system parameters are exa
tly the same as in the real-world system.

F exe
utes as follows.

1. It joins the group by exe
uting the Join proto
ol. Denote by (w; e) its membership 
erti�
ate.

2. It exe
utes exa
tly as in the real-world system when there is a need to Update its membership 
erti�
ate.

3. It signs messages as in the real-world system by utilizing the fa
t that it 
ontrols the spe
i�
ation of the

random ora
le.

Suppose the group manager, perhaps 
olluding with some dishonest group members, is able to frame F .

Then, Lemma 6 implies that there is a polynomial-time algorithm that is able to extra
t (w; e; e

1

; e

2

), where

e

1

is a non-trivial fa
tor of e.

Theorem 3. The above 
onstru
tion is a se
ure group signature s
heme.

Proof. (sket
h) We show that the above s
heme satis�es all the se
urity properties spe
i�ed in Se
tion 2.2.

{ Corre
tness. This is immediate to see.

{ Unforgeability. Only group members 
an sign on behalf of the group. Lemma 6 implies that if a group

non-member 
an sign on behalf of the group, then there is a probabilisti
 polynomial-time extra
tor to get

e

�

; e

�

1

; e

�

2

su
h that e

�

= e

�

1

e

�

2

(in Z). This and Theorem 1 imply that g
d(e

�

; e) > 1 for some a

umulated

value e 2 A. So we 
an 
onstru
t a polynomial-time simulator that is able to fa
tor a 
hallenge produ
t

of two large primes.

{ Anonymity. Re
all that the underlying intera
tive proof proto
ol is statisti
ally zero-knowledge, and

that both the ElGamal and the CGHN 
ryptosystems are semanti
ally se
ure. If there is a polynomial-

time adversary that is able to identify any signature generated by an honest group member, then we 
an


onstru
t a polynomial-time simulator to break the assumptions underlying the semanti
 se
urity of the

publi
 key 
ryptosystems.

{ Unlinkability. It is 
omputationally infeasible for a polynomial-time adversary to de
ide whether two

signatures, 
orresponding to two pairs of 
iphertexts (Æ

1

;�

1

; �

1

) and (Æ

2

;�

2

; �

2

), are generated by the

same group member. This is so be
ause, in the de�nition of semanti
 se
urity, it does not matter whether

the adversary (i.e., distinguisher) is allowed to ask one or multiple 
hallenge 
iphertexts [BDJR97℄.

{ No-Framing. This is proved in Lemma 7.



{ Tra
eability. Re
all that Lemma 6 ensures that w

e

= v mod n, that (�; �) is the ElGamal 
iphertext

of w, and that Æ is the CGHN en
ryption of e. Similar to the reasoning for unforgeability, we 
an

show that Tra
eability holds. We stress that the veri�able ElGmal de
ryption, whi
h is ensured by

the soundness of proto
ol proving log

g

1

y

1

= log

�

�=w, is 
ru
ial.

{ Coalition-resistan
e. Suppose there is a su

essful 
oalition that 
annot be tra
ed ba
k to any


olluding member. Consider the worst 
ase where all the group members 
ollude. Then, we get a pair

(w

�

; e

�

) su
h that (w

�

)

e

�

= v mod n, that e

�

=2 A, and that g
d(e

�

; e) = 1 or e for any e 2 A. Note that

the range 
ondition ensures that e

�

< A

3

< A

4

< e

i

e

j

for any e

i

; e

j

2 A. On the other hand, theorem 1

shows that e

�

j

Q

8e2A

e. This is a 
ontradi
tion.

C Proving Knowledge in Group(s) of Unknown Order(s)

This is a 3-move honest-veri�er zero-knowledge proto
ol. The 
orresponding non-intera
tive s
heme is se
ure

in the random ora
le model [FS86,BR93℄, and 
an be naturally turned into a signatures of knowledge s
heme

[CS97℄.

Given a 
y
li
 group G = hgi su
h that ord(G ) is unknown but jord(G )j = l

G

(i.e., 2

l

G

�1

< ord(G ) � 2

l

G

)

is publi
ly known. Fujisaki and Okamoto [FO97℄ proved that under SRSA, the standard proofs of knowledge

proto
ols that work for a group of known order also work for a group of unknown order. For y 2 G , we

denote by x = log

g

y the dis
rete logarithm of y to base g as an integer x 2 Z. We assume a 
ollision-resistant

hash fun
tion H : f0; 1g

�

! f0; 1g

k

whi
h maps a binary string of arbitrary length to a k-bit hash value.

Let � > 1 be a se
urity parameter.

Proving Knowledge of a DLOG in a Group of Unknown Order. This is in parallel to [S91℄.

De�nition 8. Let g; y 2 G . A pair (
; s) 2 f0; 1g

k

�f�2

�(l

G

+k)+1

; ���; 2

�(l

G

+k)+1

g su
h that 
 = H(g; y; g

s

y




;m)

is a signature on message m 2 f0; 1g

�

with respe
t to the knowledge of dis
rete logarithm x = log

g

y 2 f0; 1g

l

G

.

The prover (or signer) knowing x 
an generate su
h a signature by 
hoosing r 2

R

�f0; 1g

�(l

G

+k)

and


omputing


 = H(g; y; g

r

;m) and s = r � 
x (in Z).

Lemma 8. ([CM98℄). Assume SRSA holds. Then, the intera
tive proto
ol 
orresponding to De�nition 8 is

an honest-veri�er statisti
al zero-knowledge proof of knowledge of x = log

g

y.

Proving That a DLOG Lies in an Interval. This proto
ol is related to the proto
ols originally presented

in [FO97,CFT98℄.

De�nition 9. Suppose g; y 2 G . A pair (
; s) 2 f0; 1g � f�2

�(l

2

+k)+1

; � � �; 2

�(l

2

+k)+1

g su
h that 
 =

H(g; y; g

s�
X

y




;m) is a signature on message m 2 f0; 1g

�

with respe
t to the dis
rete logarithm of knowledge

x = log

g

y su
h that x 2 fX � 2

�(l

2

+k)+2

; X + 2

�(l

2

+k)+2

g.

The prover knowing x 2 fX � 2

l

2

; � � �; X + 2

l

2

g 
an generate su
h a signature by 
hoosing r 2

R

�f0; 1g

�(l

2

+k)

and 
omputing


 = H(g; y; g

r

;m) and s = r � 
(x�X) (in Z).

Lemma 9. ([CM98℄). Assume SRSA holds. Then, the intera
tive proto
ol 
orresponding to De�nition 9 is

an honest-veri�er statisti
al zero-knowledge proof of knowledge x = log

g

y su
h that x 2 fX � 2

�(l

2

+k)+2

; � �

�; X + 2

�(l

2

+k)+2

g.

Proving Equality of Two Dis
rete Logarithms in a Group of Unknown Order. This is in parallel

to [CP92℄. Suppose g

1

; g

2

; y

1

; y

2

2 G = hgi.



De�nition 10. A pair (
; s) 2 f0; 1g

k

�f�2

�(l

G

+k)+1

; ���; 2

�(l

G

+k)+1

g su
h that 
 = H(g

1

; g

2

; y

1

; y

2

; g

s

1

y




1

; g

s

2

y




2

;m)

is a signature on message m 2 f0; 1g

�

with respe
t to the knowledge of dis
rete logarithm x = log

g

1

y

1

=

log

g

2

y

2

2 f0; 1g

l

G

.

The prover knowing x 
an generate su
h a signature by 
hoosing r 2

R

�f0; 1g

�(l

G

+k)

and 
omputing


 = H(g

1

; g

2

; y

1

; y

2

; g

r

1

; g

r

2

;m) and s = r � 
x (in Z).

Proving Equality of Two Dis
rete Logarithms in Two Groups of Unknown Orders. This proto
ol

is a natural extension of the proto
ol 
orresponding to De�nition 10. Suppose G

1

= hg

1

i and G

2

= hg

2

i.

Let l

G

= minfjord(G

1

)j; jord(G

2

)jg. Then the above proto
ol 
an be used to prove that x

1

= x

2

, where

x

1

= log

g

1

y

1

and x

2

= log

g

2

y

2

.

De�nition 11. Let l

1

and l

2

denote lengths, where l

1

< l

G

and �(l

2

+ k) + 2 < l

1

. A pair (
; s) 2 f0; 1g

k

�

f�2

�(l

2

+k)+1

; � � �; 2

�(l

2

+k)+1

g su
h that 
 = H(g

1

; g

2

; y

1

; y

2

; g

s

1

y




1

; g

s

2

y




2

;m) is a signature on message m 2

f0; 1g

�

with respe
t to the knowledge of dis
rete logarithm x = log

g

1

y

1

= log

g

2

y

2

2 f0; 1g

l

G

.


