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Abstract. The cryptographic concept of simulatability has becomdiargaechnique for faithfully analyzing and
proving security properties of arbitrary cryptographiotpcols. We investigate the relationship between simulata
bility in synchronous and asynchronous frameworks by medirtke formal models of Pfitzmann et. al., which
are seminal in using this concept in order to bridge the gawden the formal-methods and the cryptographic
community. We show that the synchronous model can be seesecal case of the asynchronous one with re-
spect to simulatability, i.e., we present an embedding betwboth models that we show to preserve simulatability.
We show that this result allows for carrying over lemmas dabtems that rely on simulatability from the asyn-
chronous model to its synchronous counterpart without aaytianal work. Hence future work can concentrate on
the more general asynchronous case, without having to ctagke analysis of synchronous protocols.

1 Introduction

In recent times, the analysis of cryptographic protocok leen getting more and more attention, and the
demand for general frameworks for representing cryptdgcaprotocols and the security requirements of
cryptographic tasks has been rising. Existing framewoekeaither motivated by the complexity-theoretic
view on cryptography, which aims at proving cryptographiotpcols with respect to the cryptographic
semantics, or they are motivated by the view of the formathods community, which aims at capturing
abstractions of cryptography in order to make such protoaotessible for formal verification. Frameworks
built on abstractions will be further dealt with in the reldtliterature along with a discussion on the crypto-
graphic justification of these abstractions.

For living up to the probabilistic nature of cryptographyframework for dealing with actual cryp-
tography necessarily has to be able to deal with probabilisthaviors. The standard understanding in
well-known, non security-specific probabilistic framew®iike [38, 41] is that the order of events is fixed
by means of a probabilistic scheduler that has full infoforatabout the system. In contrast to that, the
standard understanding in cryptology (closest to a rigpdrfinition in [10]) is that the adversary schedules
everything, but only with realistic information. This cesponds to making a certain subclass of sched-
ulers explicit for the model from [38]. However, if one spli& machine into local submachines, or defines
intermediate systems for the purposes of proof only, thig m@oduce many schedules that do not corre-
spond to a schedule of the original system and thereforecgmaplicate the proofs. The typical solution is
a distributed definition of scheduling which allows mackinieat have been scheduled to schedule certain
(statically fixed) other machines themselves.

Based on these requirements, several general definitiosecofe protocols were developed over the
years, e.g. [15, 28,7, 23, 35, 18, 11, 37, 12], which are aktmtéal candidates for such a framework. To al-
low for a faithful analysis of cryptographic protocols, stwell-known that such models not only have to
capture probabilistic behaviors, but also complexityetiedically bounded adversaries as well as a reactive
environment of the protocol, i.e., continuous interactwith the users and the adversary. Unfortunately,
most of the above work does not live up to these requiremenspite of its generality, mainly since it
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concentrates on the task of secure function evaluatiorghwdhbes not capture a reactive environment. Cur-
rently, the models of Pfitzmann et. al. [35, 37] and Canef],[tvhich have been developed concurrently
but independently, stand out as the standard models fodgmatocol analysis and design.

Regarding the underlying definition of time, such models bansplit into synchronous and asyn-
chronous ones. In synchronous models [35], time is assumée expressible in rounds, whereas asyn-
chronous scenarios [37,12] do not impose any assumptiotman This makes asynchronous scenarios
attractive since no assumption is made about network delagshe relative execution speed of the parties.
Moreover, the notion of rounds is difficult to justify in ptae as it seems to be very difficult to estab-
lish them for the Internet for example. This attractivenisssubstantiated by a large body of literature on
asynchronous cryptographic protocols, e.g., [8, 14]. Herdime guarantees are sometimes explicitly de-
sired, e.g., on when a process can abort. Hence assumptwaddibe made in this case, which induce a
certain amount of synchrony again. This sometimes makeachsynous assumption of time nevertheless
necessary in practice, e.g., in Kerberos [30].

Hence researchers usually restrict their attention to @fimiton of time, or they are driving double-
tracked by maintaining two separate models. However, ttésypposes proving every theorem for both
models. This is not nice. An alternative approach, takehimwork, is to show that the synchronous model
can be regarded as a special case of an asynchronous onesrexeddoes not have to be considered sepa-
rately, but still can be used to conveniently express syoraus protocols.

Although this idea might not be surprising, it is very difficto achieve since it turns out that carrying
over results from the asynchronous to the embedded syrmiisamodel presupposes the possibility of (at
least partially) reversing the considered embedding. Rétw suitable frameworks, especially the frame-
works of Canetti and Pfitzmann et. al., have a distribute@daling which significantly complicates this
reversion.

Formally, a special case means that there is an embeddmthmasynchronous model that preserves a
desired property. Which property has to be preserved depemdhe goals to strive for. For cryptographic
protocols, the property aimulatabilitystands out. Simulatability captures the notion of a crygphically
secure implementation and serves as a link to the formatadstcommunity, which typically only hold a
top-level view of cryptography, where cryptographic ptikgs are replaced by deterministic abstractions.
A more comprehensive discussion of simulatability andetationship to protocol verification work done
by the formal-methods community is given in the paragraphetated literature below.

In the following, we investigate the synchronous and asgarabus models of Pfitzmann et. al. [35, 37],
which are seminal in using the concept of simulatability tidgpe the gap between the formal-methods and
the cryptographic community. We show that the synchronoadaihcan be embedded in the asynchronous
model such that simulatability is preserved by this embagldie., if two systems fulfill the simulatability
relation in the synchronous model, their respective iméglé8 the relation in the asynchronous model and
vice versa. We show that this result allows for carrying deemmas and theorems from the asynchronous
case to the synchronous case without proving them twicecél&riure work can concentrate on the more
general asynchronous case without neglecting the analf/sisnchronous protocols. We are confident that
this result helps to make future protocol analysis in theedats more convenient and more efficient.

Moreover, we believe that our approach for establishingetindedding and its properties can be suc-
cessfully used for other models with only minor changes.eEsly the asynchronous model of Canetti
is surely worth to be investigated. However, his correspandynchronous model [11] is still specific for
secure function evaluation; hence adopting it to a reaetiwgronment is a necessary prerequisite for this
future work. The lack of such a reactive synchronous modsl-+hesides the fact that the models of Pfitz-
mann et. al. are more rigorously defined than the one of danetir main reason why we decided to base
our work on the model of Pfitzmann et. al.



Related Literature.If cryptographic protocols should be verified using formadthods, some kind of ab-
straction is needed as the underlying reduction proofs yitography are still out of scope of current
verification techniques. This abstraction is usually basethe so-called Dolev-Yao abstraction [13], which
considers cryptographic primitives, e.g:,for encryption andD for decryption, as operators in a free al-
gebra where only predefined cancellation rules hold. Faaivtg, twofold encryption of a messagedoes
not yield another message from the basic message spacesttatrnz( £ (m)). A typical cancellation rule
is D(E(m)) = m. This abstraction simplifies proofs of larger protocols sidarably, and it gave rise to
a large body of literature on analyzing the security of prote using techniques for formal verification of
computer programs (a very partial list of work includes 28,20, 9, 27, 21, 24, 33, 39, 1]).

Since this line of work turned out to be very successful, titeresting question arose whether these
abstractions are indeed justified from the view of cryptpbsai.e., whether properties proved for the ab-
stractions are still valid for the cryptographic implenagitn. Abadi et. al. showed in [3, 2] that the Dolev-
Yao model is cryptographically faithful at least for symm@encryption and synchronous protocols. There,
however, the adversary is restricted to passive eavesdignpponsequently, it was not necessary to choose
a reactive model of a system and its honest users, and trennaftisimulatability could be replaced by
the weaker notion of indistinguishability [43]. Anotheténesting approach has been presented by Guttman
et. al. [17] which show that the probability of two execusoof the same protocol — either executed in a
Dolev-Yao-like framework or using real cryptographic pities — may deviate from each other at most for
a certain bound. However, their results are specific for tegMan-Carter system so far. Moreover, as this
system is information-theoretically secure, its secypityof is much easier to handle than primitives with
security guarantees only against computationally bourdedrsaries since no reduction proofs against un-
derlying number-theoretic assumptions have to be madee®uantier approaches for special security goals
or primitives are [40, 22]. However, there is evidence that driginal Dolev-Yao model is not justified in
the presence of active attacks, even if provably securetagyaphic primitives are used, cf. [34] for an
(admittedly constructed) counterexample. This exemplifiee demand for “better” abstractions which the
models of Canetti and of Pfitzmann et. al. want to establigigusie concept of simulatability.

Simulatability bridges this gap by serving as a cryptogiegdly sufficient relationship between ab-
stract specifications and cryptographic implementatioas, abstractions which can be shown to simulate
a given implementation in a particular sense are known tmbadwith respect to the security definitions
of cryptography. Simulatability was first invented for ningarty function evaluation [42, 15, 7, 28, 11], i.e.,
systems with only one initial input set and only one outptit Aa extension to a reactive scenario, where
participants can make new inputs many times, e.g., startsessions like key exchanges, was first fully de-
fined in [34], with extensions to asynchronous systems in13J. Each of the three considered models was
already successfully used to built up sound abstractionsradus cryptographic primitives and all of them
enjoy a composition theorem, i.e., large protocols can bee® step-wise without destroying the already
proven properties.

Comparing the models of Canetti and Pfitzmann et. al., we tzda that Canetti’s work enjoys a more
general composition theorem and has moreover addresseccngptographic primitives so far. On the other
hand, the models of Pfitzmann et. al. are more rigorously eéfand early examples of tool-supported
proofs in their models exist [5, 4], using PVS [32]. Morequle recently published universally composable
cryptographic library [6] may pave the way to formal verifioa of large security protocols within their
models.

Outline. In Section 2 we review the reactive models for synchronowusasynchronous time. In Section 3,
we explain how the embedding works and give a rigorous digfiniStarting with a proof sketch of the first
embedding theorem in Section 4 (there will be two of them) smde lemmas capturing essential steps in
the theorem’s proof, we fade to the embedding theorems itiddes. In conjunction, both theorems allow



for carrying over theorems from the asynchronous to thelsgmous case, which is shown in Section 6 by
means of an example. For the sake of readability, most doguproofs are postponed to the Appendix.

2 Review of the Reactive Models in Synchronous and Asynchrams Networks

In this section we briefly review the synchronous and the @symous model for probabilistic reactive
systems as introduced in [35] and [37], respectively. Sdwefinitions are only sketched, whereas those
that are essential for understanding our upcoming resrdtgigen in full detail.

2.1 General System Model

In the following we consider a finite alphabhEtand some special symbdlg, < ,< ¢ 3 that will be used to
express different ports of machines. o X* andil € Ny, we defines[; to be thel-letter prefix ofs.

Our machine model iprobabilistic state-transition machingsimilar to probabilistic 1/0 automata as
sketched by Lynch [25]. Communication between differenthi@es is done vigorts which are divided
into input andoutputports. Inspired by the CSP-Notation [19] we write input antpot ports ag? andq!.

Ports will later be connected by naming convention, i.egi ¢ always sends messagesqtb In the
asynchronous model, a special machine calledfter will further be inserted in each connection to ensure
asynchronous behavior. A buffer stores all of its inputsririrdernal list. If a machine wants to schedule the
i-th message of buffef (this machine must have the unigue clock-out jpdtj, it simply sends atq®!, cf.
Figure 1. The buffer then schedules thh message and removes it from its internal list. Neithdfelpsi
nor clock ports occur in synchronous machines; they arejosided to establish a distributed scheduling
in the asynchronous case.

As thelow-level complemeni¢ of a portq (either in- or output port) we denote the port with which it
connects according to Figure 1, i.%°¢ := q97, q!° := g~ 7, q°°!° := q7, and vice versa. Thiigh-level
complemeny© of a portq denotes the connecting port without the buffer, g&., = q? and vice versa. For
a set or a sequende of ports, letin(P) andout(P) denote the subset or subsequenc® abnsisting of the
input ports or the output ports @, respectively.

After introducing ports, we now focus on the definitionnschinesA machine has aequence of ports
containing both input ports and output ports, and a satatkes comprising sets ohitial andfinal states
If a machine is switched, it receives an input tuple at itsutnports and performs itgansition function
yielding a new state and an output tuple in the determingstse, or a finite distribution over the set of states
and possible outputs in the probabilistic case. Furthestresch machine has a bound on the length of the
considered inputs which allows time bounds on the compmitatme independent of the environment. The
parts of an input that are beyond the length bound are ignaeedincoming strings are only processed up
to a predefined length. In particular, this is used to ensalgnpmial runtime of individual machines.

Definition 1. (Machines) Amachineis a tuple
M = (namewm, Portsw, Statesm, om, Im, Inim, Finyn)

of anamenamey € X7, afinite sequence’ortsy of ports a setStatesyy C X* of statesa probabilistic
state-transition functiofiy;, alength functiory : Statesy — (NU{oo})lin(Pertsm)l and setdniy, Finy C
Statesy of initial and final states Its input setis Zy := (X*)in(Portswll: the j-th element of an input
tuple denotes the input at thieth input port. Itsoutput setis Oy := (£*)leut(Pertsm)l The empty wordk,
denotes no in- or output at a pordy; maps each paifs, I) € Statesy x Iy to a finite distribution over

Statesm x Om. If s € Finy or I = (e, ..., ¢€), thendu(s,I) = (s, (e, ..., €)) deterministically. Inputs
are ignored beyond the length bounds, i&4{s, I) = om(s, I[y,(s)) for all I € Iy, where(I];, s))i =
I; [lM(S)i for all 7. O



In the text, we often writeM” also for nameyp,. For a setV of machines, Ieports(M) denote the set of ports
of all machinesM € M. Machines usually start with one initial input, i.e., tharing state is parameterized.
Complexity is measured in terms of the length of this initigdut, usually a security parametergiven in
unary representation; in particular, polynomial-time isant in this sense. We only briefly state here, that
these machines have a natural realization as a probabihistiractive Turing machine as introduced in [16].
We call a machineM a black-box submachinef a machineM’ if the machineM’ has access to the state-
transition functiondy; of M, i.e., it can executé,, for the current state of the machine and arbitrary inputs.
In order to cope with specific inputs and outputs of a macMn&e introduce some additional notation
which is not contained in the original model. LBt:= (p17?,...,p,?) C in(Portsy) be a subsequence of
the input ports oM and(vi)ie{l,m?n} € (X*)". ThenZpy 72—y, ... p,7=v, denotes the input witp;? = v;
for all i andp’? = € for all p’? € in(Portsy) \ P. In the special casg;? = ¢ for all , i.e., in case of an
all-empty input, we writeZ.. Outputs are defined similarly.
A collectionC of machines is a finite set of machines

Scheduler for
with pairwise different machine names and disjoint sets of q!| buffer g
ports. In the asynchronous model, tt@mpletion|C] of a
collectionC is the union of all machines @¢fand the buffers g, 4ing q-2_ ¥I7? ~
needed for every channel. A port of a collection is callednachine q!_—)mylmm% Buffera
freeif its connecting port is not in the collection. These port ' N ﬁiccﬁlﬂgg

will be connected to the users and the adversary. The free
ports of a collectiorC are denoted aee(C). In the asyn-
chronous model, a collectiaf is calledclosedif its com-
pletion [C] has no free ports except a special master clock-in @ktt, i.e.,free([C]) = {clk??}. When we
define the interaction of several machines, this port wilubed to resolve situations where the interaction
cannot proceed. In the synchronous case, we deifrteed) = 0.

For security purposes, special collections are neede@ukecan adversary may have taken over parts
of the initially intended system, e.g., different situaschave to be captured depending on which and how
many users are considered as being malicious. Therefogestens consists of several possible remaining
structures.

Fig. 1. Ports and buffers.

Definition 2. (Structures and Systems)sfructureis a pair struc = (M, S) where M is a collection of
non-buffer machines callecbrrect machinesand S C free(M) is calledspecified portsif M is clear from
the context, leS := free(M) \ S. We callforb(M, S) := ports(M) U S¢ theforbidden portsi.e., those
ports that the honest user is forbidden to havesy&temSys is a set of structures. It is polynomial-time iff
all machines in all its collectiond/ are polynomial-time. &

The separation of the free ports into specified ports andretisean important feature of the upcoming
security definitions. The specified ports are those wheretaineservice is guaranteed.

Note that this definition is valid for both the synchronousl dhe asynchronous case. In particular,
buffers do not have to be explicitly included in the spectfaraof a system, e.g., in the specification of a
cryptographic protocol that one wants to analyze. The whffetiming assumption stem from the different
definitions of runs which we will introduce in the following.

A structure can be completed t@anfigurationby adding machineld andA, modeling the joint honest
users and the adversary, respectively. The madhiiserestricted to the specified poifs A connects to the
remaining free ports of the structure and both machinesmaraict, e.g., in order to model active attacks.
In the asynchronous case, buffers are additionally addekbse the collection.

Definition 3. (Configurations) Aconfigurationof a systemSys is a tuple conf = (M,S, H,A) where
(M,S) € Sys is a structure,M U {H,A} is a closed collection, angdorts(H) N forb(}M,S) = 0. The



set of configurations is writtefonf(Sys). The set of configurations ¢fys with polynomial-time useH
and adversanA is called Conf,q, (Sys). The index,, is omitted if it is clear from the context. The initial
states of all machines in a configuration are a common secpedtameterk in unary representation. <

2.2 Capturing Asynchronous Runs

For a configuration, both models define a probability spacers (sometimes callggacesor executionk

In the asynchronous model, scheduling of machines is domeeséally, so we have exactly one active

machineM at any time. If this machine has clock-out ports, it is alldwe select the next message to be
scheduled as explained at the beginning of Section 2.1lislftlessage exists, it is delivered by the buffer and
the unique receiving machine is the next active machinigl tfies to schedule multiple messages, only one
is taken, and if it schedules none or the message does ngtteeispecial master scheduler is scheduled.
This is formally captured as follows.

Definition 4. (Asynchronous Runs and Views) For a given configuratiorf = (M, S, H, A) with master
schedulerX € M U {A}, setC := [M U {H, A}]. The probability space ofunsis defined inductively by
the following algorithm. It has a variable for the resultingrun, an initially empty list, a variabléVics
(“current scheduler”) over machine names, initialMcs := X, and treats each port as a variable over,
initialized with e except forclk®? := 1. Probabilistic choices only occur in Phase (1).

1. Switch current scheduleBwitch machin@cs, i.e., set(s’, O) « du. (s, ) for its current states and
input port valued. Then assigr to all input ports ofMcs.

2. Termination:If X is in a final state, the run stops.

3. Buffer messaged:or each simple output pott! of Mcs, in their given order, switch buffef with input
q<? := ¢!, cf. Figure 1. Then assignto all these portsy! andq<?.

4. Clean up schedulingf at least one clock-out port dflcs has a value# ¢, let g°! denote the first such
port and assigr to the others. Otherwise letk®? := 1 andM¢s := X and go back to Phase (1).

5. Scheduled messagBwitchg with inputq®? := q! (cf. Figure 1), sefy? := q*! and then assiga to all
ports ofq and toq“!. LetMcs := M’ for the unique machin®!” with q? € ports(M’). Go back to Phase
Q).

Whenever a machine (this may be a buffer) with namec), is switched fron(s, ) to (s’,0), we add a
step(namewm, s, I, s', O) with I' := IT; () to the runr, except ifs is final or I’ = (¢, ..., ¢). This gives a
random variable for each value of the security parameterotigt asrun ..,.r 1, hence we obtain a family of
random variables

TUN conf = (run conf,k)keN .

Theview of a subsetM < C in a runr is the restriction ofr to M, i.e., the subsequence of all steps
(namew, s, I, s',0), wherenamey, is the name of a machingl € M. This gives a family of random
variables

View cong (M) = (view conf k(M ))ken-
For a singletonM = {H} we write view cons (H) instead ofview qons ({H}). &

This rather informal definition of runs can naturally be falired using transition probabilities, which
induce probability spaces over the finite sequences of stigpigar to Markov Chains. The extension to
infinite sequences can then be achieved using well-edtellisesults of measure theory and probability
theory, cf. Sectiorb of [31]. It is further easy to show that views of polynomiaie machines are of
polynomial size.



2.3 Capturing Synchronous Runs

In the synchronous model, ports, machines, collectiomsctstres, and systems are defined similar to the
asynchronous model. The only exception is that there ardauk ports and no buffers, which have only
been included to model asynchronous timing, i.e., cormeging portsp? and p! are directly connected.
The main difference is the definition of runs. Instead of aymahronous run algorithm (cf. Definition 4),
runs are defined usingundswhich is the usual concept in synchronous scenarios. EMebabround is
again divided inton so-called subrounds, and there is a mappingalledclocking schemefrom the set
{1,...,n} into the powerset of considered machines, i.e., the mastohéhe structure, the user, and the
adversaryx(i) denotes which machines switch in subround\fter finishing then-th subround, the run
starts the first subround of the next global round. At the ti@gg of each subround, all messages from
the previous subround are transported from the output portise connected input ports. After that, each
machine ofx (i) switches with its current inputs yielding a finite distrilaut over the set of states and the
set of possible outputs.

Definition 5. (Clocking Scheme) A clocking scheméor a configuration(M, S,H,A) andn € Nis a
mapping from the sdfl, ..., n} to the powerset ol U {H, A}, i.e., it assigns each number a subset of the
machines. O

Definition 6. (Synchronous Runs and Views) Given a configurationf = (M,S, H,A) along with a
clocking scheme for n € N, runs are defined as follows: Each global rouniagasrn subrounds. In subround
[i.j] all machinesM € k(j) switch simultaneously, i.e., each state-transition fiomcty, is applied toM’s
current input yielding a new state and output (probabitiatly). The output at a porp! is available as
input at p? until the machine with porp? is switched. If several inputs arrive until that time, thag a
concatenated. This gives a family of random variables

TUN conf = (run conf,k)keN .

More precisely, eachunis a function mapping each tripleM, 7, j) € MU {H,A} xNx{l,...,n}toa
quadruple(s, I', s', O) of the old state, inputs (witl := IT,, ;) again), new state, and outputs of machine
M in subround(i.j], with I’ = ¢, O = ¢, ands = &' if M is not switched in this subround. Theew of a
subsetM C M U {H,A} in a runr is the restriction ofr to M x N x {1,...,n}. This gives a family of
random variables

viewconf(M) = (’Uiewconf,k(M))keN~

Again, the view of a polynomial-time machine can easily bevainto be of polynomial size.

Remark 1.Alternatively, we can consider runs as a sequence of seygest(M, 1, j, s, I',s’, O) for as-
cending values of andj. More formally, we first have all tuplegV, 1,1,s,I’,s’,0) for M € x(1). The
order of these tuples can be chosen arbitrary since theglswimultaneously and do not influence each
other. After that, we have the stefd,1,2,s,I’,s',0) for all M € (2) and so on, until we finally have
steps of the form(M, 1,n,s,I’,s’,0) for all M € x(n). We then continue wittiM, 2,1, s, I’ s, O) etc.
Obviously, this characterization of runs is equivalenti® ériginal one (we just expanded the function), but
it is better suited for our upcoming proofs.

Instead of arbitrary clocking schemes as in the above defindf runs, the authors of [35] focus on only
one special clocking scheme given by (M U {H}, {A}, {H}, {A}). Clocking the adversary between the
correct machines is the well-known model of “rushing adages”. In [35], it has been shown that this
clocking scheme does not restrict the possibilities of ttheeesary, hence we can use it without loss of
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generality. Moreover, we restrict ourselves to those corndiions where the honest user and the adversary
are only connected via one duplex channel. This is indeecesiiction to generality in the synchronous
model, because outputs at several ports to the same macirirggnaply be concatenated using a separation
symbol and decomposed again, respectively. In the follgwive give these two channels fixed namgsy
andpy_a, i.€.,pa_n! sends messages frolito H and vice versa.

2.4 Simulatability

The definition of one system securely implementing anotimerise based on the common concepsiofi-
ulatability. Simulatability essentially means that whatever mightpeapto an honest user in a real system
SYs.ea CaN also happen in an ideal (abstract) systemy,: For every structuretruc, € Sys,.,;, €Very user
H, and every adversar,, there exists an adversafy on a corresponding ideal structuguco such that
the view ofH is indistinguishable in the two configurations. Indistifghability (“~") is a well-defined
cryptographic notion from [43]. We only give the definitioh @mputational indistinguishability; a more
comprehensive definition is given in the Appendix.

Definition 7. (Computational Indistinguishability) Two familigsary,) ey and (var}),en of random vari-
ables (or probability distributions) on common domaibig are computationally indistinguishabl§¢ ~") if
for every algorithmDis (the distinguisher) that is probabilistic polynomial-tnin its first input,

|P(Dis(1¥,vary) = 1) — P(Dis(1,var}) = 1)| € NEGL.

Intuitively, given the security parameter and an elementehn according to eitherar;, or var}, Dis tries to
guess which distribution the element came from. &

Corresponding structures in the simulatability definiteoe designated by a functighfrom Sys,., to the
powerset ofSys;4. The functionf is calledvalid if it maps structures with the same set of specified ports.
We only give the definition of simulatability based on congtignal indistinguishability, which captures
the most common case when applying simulatability to cryraphic protocols. A more comprehensive
definition based on the remaining notions of indistinguislitst is again postponed to the Appendix; our
results hold as well for this more general definition.

Definition 8. (Simulatability) Let systems$ys, and Sys, with a valid mappingf be given. We say

Sys; >1 Sys, (at least as secure )a# for every polynomial-time configuratiomonf, = (M, S,
H, A1) € Conf(Sys;), there exists a polynomial-time configuratiosnf, = (M2, S, H, As) € Conf(Sys,)
with (M, S) € f(M;, S) (and the sameél) such thatview conf, (H) =~ view cons, (H). &
This is shown in Figure 2. In the following, we
v s .H.j 3 augment> with a subscriptync Or ssync to distin-
E— ™ guish the definition of the synchronous and asyn-
A2 . .
A, chronous case. In a typical ideal system, each
%/—/ . .
struc, € fistruc,) structure contains only one machifieéd called

trusted host, which serves as an ideal functional-

Fig. 2. Overview of the simulatability definition. 1ty Of the real system. The machified is usually
deterministic and maintains a very simple transi-

tion function, hence validation based on this ideal funwidy is in scope of current verification techniques.

3 Idea and Definition of the Embedding

The informal idea of the embedding,, is to add an explicit master scheduler that should simul&eyn-
chronous run induced by the given clocking scheme. Howelerto the general distributed scheduling (cf.

! The classNEGL denotes the set of all negligible functions, ig:,N — R>o € NEGL if for all positive polynomialsQ,
JkoVk > ko: g(k) < 1/Q(k).



Definition 4), leaving the actual machines unmodified leadsin-simulatable situations, as these machines
can clock themselves without ever giving control to thislexdpmaster scheduler.

Hence, we first define a mapping, that surrounds single synchronous machines (i.e., maglvee
are designed for a synchronous environment) with an “asgmclus coat”. More precisely, if a synchronous
machine makes a transition, it obtains all inputs at oncedh@sed since its last scheduling, whereas in
asynchronous scenarios, these inputs come one by one amtbHa processed in several transitions. Thus,
the surrounding asynchronous machine stores all inpwsnally, until it is asked to perform the transition
of its synchronous submachine. It then schedules this scitimawith the collected inputs and forwards its
outputs. As these asynchronous machines do not producdamkyouitputs, the master scheduler can try to
simulate the synchronous time by a suitable schedulinteglya

Definition 9 (Mapping ¢m). @m is @ mapping on single synchronous machines that assignsreaehine
Mgync an asynchronous machitd,sync := ¢m(Msync) by the following rules:

The ports ofM,gync are given byPortsw,,,. = Portsm,,. © (Pm,,.7), Whereo denotes concatenation

of sequences.

— Internally, M,sync maintains array$input_st07’eMsync’pr;)p?ein( Portsugnc) over X* initialized with € ev-
erywhere, which are used for storing incoming messageschtg@at ofMgync.

— Magync has the machindls, . as a blackbox submachine, i.e., it has its transition fondfjy, .

— Internally, M,s,nc maintains exactly the states bf, ... Moreover, the initial and final states of both
machines are equal.

— Oninputi atp? # pw,, ’: It concatenatesto the element Ofnput_storeMSyn
until the machineéMsy,,c is eventually switched.

— On input: at pw,,.7: It applies the state transition functiofy,,. on the contents of the arrays

input_storey,, o2 yielding a tuple(s’, O). M,gync NOW assigns: to input_storey o2 for all p? €

in(Ports,,. ), Switches to the stat€ and outputs the tupl®. This case corresponds to the scheduling

of the synchronous machine; the ppgi_,. 7 will be connected to the explicit master scheduler.

i.e., it stores all inputs

c,P??

sync

Obviously, M,sync is polynomial-time by construction iffls . is polynomial-time, since both machines
always stay in the same state after a transition and their dtates are equal. Moreover, we define the
function oy on a setM of synchronous machines Ipg (M) := UMWEM oM (Msync). &

Based on this definition, we now formalize the desired mappif,; on synchronous systems.

Definition 10 (Mapping ¢s,s). Letan arbitrary synchronous systefys,, .. = {(Msync, Ssync) | sync € I}
for a finite index sef and a clocking schemebe given. We then define

A

‘PSyS(Syssync) = {(@M(MsynC) U {Xsync,n}> SsynC) | sync € I}.

The machinesync .. is an explicit master scheduler that has to be added to thsdmed structure to model
the synchronous clocking schemén the asynchronous system. Its ports are given by

— {clk“?}: The master clock-in port.
—{p|p! e PortsMsync}: Ports for clocking all output ports of the given structure.

A

— {p!| p? € free(Msync)}: Ports for clocking inputs of the systems (either madéiyr A).
— {pan!, pH.a"}: Ports for clocking the connection betwe&randH.?

A

— {pm!,pm! | M € (Mgync U {H, A})}: Ports for clocking, i.e., giving control to, each machine.

2 Note, thatXsync, . is defined independent from the honest usend the adversark, so it cannot know their ports. We therefore
restricted the configuration to a fixed number and fixed narhperts betweerH andA (cf. Section 2.3).



Internally, it maintains a variablecal_rnd over{1,...,n} and a variablglobal_rnd overN both initialized
with 1. For the sake of readability, we describe the behavioKgf. .. using “for’-loops. This is just a
notational convention that should be understood as follewsry timeX, . .. is scheduled, it performs the
next step of the loop.

1. Schedule Current Machines:For all machinesvl € «(local_rnd) output(global_rnd, local_rnd) at
pm!, 1 atpm“!. The order of the switched machines can be chosen arbitrary.

2. Schedule Outgoing Buffers:For all M € x(local_rnd) outputl at every portp<! with p! € Portsy.
Here, the order of the switched machines can only be chosstnaay with the restriction that output
ports of the adversary are scheduled firgt i€ «(local_rnd).2

3. Switch to next Round: Set local_rnd := local_rnd + 1. If local_rnd > n, setglobal_rnd :=
global_rnd + 1 andlocal-rnd := 1. Go to Phase (1).

<&

To put it all into a nutshell, the specific master scheduleusates the clocking schemgoy first scheduling
the machines that ought to switch in the particular subrq@tdp1) and afterwards scheduling all buffers
that could be influenced by outputs of these machines (Stebinally, it switches to the next subround
(Step3) and continues with the first step again.

Moreover, we define a mapping.,,; on synchronous configurations of a syst€is, i.e., configura-
tions which consist of synchronous machines only, by

A A

Qpconf(Msync, Ssynca H, A) = (SDM (Msync) U {Xsync,li}, Ssync> ¥M (H)> ¥M (A)),
with X ne . given as inpg,, for the particular structure. We will in the following sinyplvrite ¢ instead of

©Psyss M, andy ., if its meaning is clear from the context.

4 Preliminary Work for the Embedding Theorems
We now have to prove that the functignhas the desired properties with respect to simulatabiléy,

@Sys(‘gyssync,l) Zasync @Sys(‘gyssync,Z) = Syssync,l Zsync Syssync,Z'

This captures the content of our first embedding theoremottniately, the converse direction does not
hold, but our second embedding theorem will state a weaksiorethat is still sufficient for our purpose.

4.1 Proof Overview

Before we turn our attention to the auxiliary lemmas for thebedding theorems we exemplarily present
an informal description of the proof of the first embeddingdtem. The proof consists of four steps. A
graphical illustration is given in Figure 3.

1. Starting with a synchronous configuratiemfync,1 € Conf(Sysg,c 1), We apply our embedding func-
tion w..ns Which yields an asynchronous configuratiomfasync1 € Conf(wsys(Syssync,1))- We now
define a mapping on the runs of the asynchronous system yielding runs of thetsgnous system.
Intuitively, ¢ “compresses” an asynchronous run to its synchronous amamtewhich consists of much
less steps. We then show in Theorem 1 tiatv cony,,. ; (Hsync) = @(view confyyne 1 (p(Hsync)))-

3 Without this restriction, the behavior of the adversarytsisivitching time could depend on outputs of machines sdaddn
the same subround, which would lead to non-simulatablatsitos.
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co"fsync,1 confasyncﬂ
_________ 1
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0(Fgne)
Agync.t s OAsync,1)
'sync, Apply ¢conf | | sync,1
A A
Msync,1 Masync,1

lq)Sys(SyssyncA ) Ef ¢Sys(syssync,2)

confgync,2 confygync 2
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1
sync Reverse ¢Sys A
A E ¢(Hsync) A
sync,2 | Reverse ¢\ | async,2
A Define A N
sync,2
Msync,z Masync,z

Fig. 3. Synchronous Simulatability derived by Asynchronous Satability.

2. We can now apply our preconditiofgys (Syssync1) zfsync ©5ys (SYSsync,2) Yielding an indistin-
guishable configuration:onfusyncs € Conf(9sys(SYssync2))s WILEN view o, (#(Hsyne)) ~
VIEW confyene » (P(Hsync))- We then show thab(view conf,, . ; (9(Hsync))) & @(View confyyyne.r (P(Hsync)))-

3. We finally reverse the functiop by removing the coating of the user and the machines of thetste.
Since we do not know anything about the newly derived adweisg, .. 2, i.€., it is not forced to fit the
structure imposed by the mappigg we define a new adversah,c » UsingA,sync,2 as a black-box
submachine, and we will show in Theorem 2 th@tiew cong,, . , (¢ (Hsync))) = view confy e » (Hsync)-

4. Altogether, transitivity of the relatiosr implies @iewconfsym,l(Hsync)) ~ Wewcomgync,z(Hsync)-

We first take a look at the runs in a synchronous system, .. and in its asynchronous counterpart
SYSasync = P(SYSeync)- In the following, we will simply writeS instead ofSsync, because the set of speci-
fied ports is not influenced by the mappipg

4.2 Compressing asynchronous runs to synchronous countespts

In the following, let an arbitrary synchronous systéiys,, .. with a clocking scheme: and an arbitrary
configurationconfeync = (Msync, S, Hsyne, Async) € Conf(Sysg,n.) be given. Moreover, let an asynchronous

configurationconf,sync be given which fits the formronfasyne = (P(Msync) U {Xsyne,x }> S, ©(Hsync ), A')
(i.e., o(confync) but with an arbitrary adversarg).

First of all, note that runs ofonf,s,nc always have a prescribed structure induced by the behafior o
the master schedulét,yn. .: they are built by “blocks”. The stepMgync, 1, j, 5,7, s', O) of the machines
Msync € Z\?[synC U {Hsync } switched in rounds.j] in the synchronous run are represented by the following
two blocks in the asynchronous run.

4 Note that we investigate the more general case hereAthedin be chosen arbitrarily instead of being the embeddedsatye
»m(A). This generality will be helpful during the upcoming praofs
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1. The first block consists of the steps induced by clockimgntiachinesp(Msync) with Mgy, € s(j) and
A" if Agyne € K(j), i.e., Step (1) in the definition 0fsync .. More precisely, the block is built bly:(j)|
sub-blocks, one for every switched machine. Every subkalebuilt by the following steps.

— The first step of the sub-block is always given @ync «, 51, Zeker=1, OPMW,:(i7j)7pMsynC<,:1)
for two arbitrary states, s} of Xeync,«, i.€., the master scheduler schedules the machiiv )
respectivelyA’.

— After that, we have the transition of the scheduled buffer.

— We now have to distinguish the following two cases:

o If Mgyne # Agync, there is a StepéSD(Msync),S;IpMsync?:(i7j)a3,76Msync(inp/Mt—StOTeMsync)) and
steps for the receiving buffers.

o If Mgync = Agync, We have a stepA’,s,IpASynci):(i,j),s’,O). If O # O, we have steps for the
receiving buffers. If there are nonempty outputs at pptandp?! (which has to be a self-loop
because there are no free clock-in ports in the systemk tedurthermore a clocking step for
this particular buffer. In this case, the adversary is salesagain, so this sub-point of the block
is repeated until the self-loop of the adversary either ewds is repeated forever in case of
divergence, i.e., we obtain a stely, s’, 7', s, O) whereZ’ is now given byZ’ := Z,»—o, and
so on.

2. The second block consists of the steps induced by clodkiagoutgoing messages of the switched
machines, i.e., Step (2) in the definitionXd,. .. Now the buffers of the output ports are switched by
the master scheduler. This is done similar as in the firstyeiintthe restriction that output ports &f
are clocked first ifAqync € £(j). The block again hag:(j)| sub-blocks built by the following steps.

— The first step of the sub-block is given Bsync x; 51, Zcker=1, 81, Op1=1) for the first output port
p! € ports(Mgync) and two arbitrary states;, s} of Xeync -

— The step of the clocked buffer.

— In case of a nonempty output Ikt’ denote the unique machine wiphi € ports(M’). We now have
to distinguish two cases:

o If M' #£ A/, thereis astepM’, s, 7', s', O, ), whereZ’ consists of the output @f(Msync) atp!.

o If M = A/, we obtain a stegA’,s,7’,s’, O), whereZ’ consists of the output ap(Mgync)
respectivelyA’ atp!. If O # O, we have steps for the receiving buffers.(f has a clocked
self-loop, we proceed identical to the first block.

— The three previous steps are repeated for every output peveoy machindy,. € x(j).

After this detailed description of the run, (i.e., its bletkhe mappingp can be defined. Informally, it
combines the blocks of all machinés,.. € x(j) yielding the synchronous steps of every machihg,.
that switches in thg-th subround of the particular global round.

Definition 11. (Mapping¢) Let an arbitrary synchronous systefs., . with a clocking scheme and an
arbitrary configuration confayne = (Msync, S, Hsync, Async) € Conf(Syssync) b€ given. For a given asyn-

chronous configuratiortonf,sync Which fits the formconfisync = (gp(]l?[sync) U {Xeync,i }+ S5 @(Hsync ), A'),
we define the mapping on theAruns ofconfasync by the following algorithm. The algorithm has internal

arrays (inputsy ,7) for M € o(Msync) U {@(Hsync), A’} @andp? € in(Portsy). It goes from block to block
modifying them as follows.

1. Every step of a buffer is deleted from the run.

2. The two remaining steps of the first block are modified aewvisl If the scheduled machine is
¢(Msync) # A, then the block is replaced tWMsync, 7, j, s, inputsy,,., 8's My (InpUtsy, ). If A’
is scheduled, the block is replaced bY, i, j, s, inputsAsync,s’,(’)A/). Here, s denotes the state @’
when it is switched b¥sync ., ands” and O are the state and the output of the last step of the block,
respectively (In case of divergence, the algorithm for degithe mappingp diverges, too.).

12



3. The algorithm starts searching through the second blaskglithe following. If a machin®!’ receives
amessage at p? in the second block, is concatenated to the arraipputsyy .
4. Finally, every step of the second block is deleted fromuhe

<&

Note that all necessary information (e.Wlsync, 7, j, s, s’ etc.) is already given by the block except for the
inputs of each machine in the synchronous case. At this pibialso becomes clear why we defined the
master scheduler to schedule each machine specificallyanitple(i, 7) indicating the current global and
local round, since this information would otherwise not batained in the asynchronous run.

To overcome the absence of the gathered inputs in the ruralglogithms has to collect all “partial”
inputs itself in its third step, and it can use this inforroatto calculate the outputs of each machine (although
for this, it could as well use the information contained ie tiun). Moreover, the new blocks built by the
mappinge in one particular subround do not depend on the second blatisosubround. The mapping
is obviously also defined on the view of arbitrary subsets a€hines, because the step in the first block,
carrying the information of the step, and the messageviecesteps in the second block will also be part of
the view of the considered machine. Furthermore, note ltteatrtappingp is explicitly defined for arbitrary
adversaried\" (not only forg(Async)) which we will need in Theorem 2. Furthermore, the followlegima
establishes a computational bound on the mappiimgpolynomial-time configurations:

Lemma 1. If confisync iS @ polynomial-time configuration that fits the form reqditgy Definition 11, then
¢ applied to the view of the honest user and the adversary ipatable in polynomial-time. O

4.3 Auxiliary Theorems
The following theorem captures the first step of our prodfskef Section 4.1.

Theorem 1. Let a synchronous systefys, ., a clocking scheme:, and a configurationconfyn. =
(Msync, S Hsync, Async) € Conf(Sysg nc) be given, and setonfosync := ¢(confsync). Then

viewCOnfsync (Msync) = QS(U'I;@’LU Confasync (@(Msync)))

for everyMgy,c € (Msync U {Hsync, Async }). confasync is polynomial-time ificonfsync is polynomial-time.O
After performing this first step of the proof, asynchronoimuatability can now be applied. In order to
convert the derived asynchronous configuration into a sgmdus configuration again (cf. Step 3 of our
proofsketch), we present the following theorem (againgmsng its proof to the Appendix).

Theorem 2. Let an arbitrary synchronous systefiys,, .. and a clocking scheme be given such that
every machine and the honest user are clocked at most onaedretwo successive clockings of the ad-
versary. Furthermore, let an arbitrary configuratiamnfasync € Conf(¢(Syssync)) Of the formeonfasyne =

(P(Msync) U {Xsync,x }» S, (Hsyne ), Aa§ync) be given. Then there exists an adversAty,. usingA,sync as
a blackbox such that fofonfsync := (Msync, S, Hsync, Async), it holds

viewCOnfsync (Msync) = QS(U'I;@’LU Confasync (@(Msync)))

for everyMgync € (Msync U {Hsync}). confasync is polynomial-time ifficonfsync is polynomial-time. O

Note, that the standard clocking sche(dé U {H}, {A}, {H}, {A}) fulfills the postulated requirement.
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5 The Embedding Theorems

This section contains our two main theorems. We start wittnanha capturing some simple properties of
indistinguishable random variables. The lemma is wellvkmand easily proved.

Lemma 2 (Indistinguishability). Indistinguishability of two families of random variablaaplies indistin-
guishability of any functiorb of them. For the polynomial case, the functiorhas to be polynomial-time
computable. Moreover, identically distributed variablee indistinguishable and indistinguishability is an
equivalence relation. O

Theorem 3. (First Embedding Theorem) Let two arbitrary synchronousteysSysg . 1 and Sysqnc -
with clocking schemes; and o be given such thats fulfills the property that every machine of the sys-
tem and the user is clocked at most once between two sueeeksikings of the adversary. Furthermore,
©(SYSsync.1) Zfsync ©(SYssync.2) Should hold for a valid mapping. Then

Sys >/ Sys

sync,1 Zsync sync,2»

where f’ is derived fromf by (Ms, S5) € f/(My, S1) < (M, S3) € f(o(Mi,S1)). O

Using the result of the previous theorems, the proof willdtber simple, cf. the illustration in Figure 3.

A

Proof. Let an arbitrary configurationonfync,1 = (Msync,1, S5 Hsync, Async,1) € Conf(Syssyngl) be given.

A

1. We applypcons ON confsync,1 Yielding a configurationconfasync,i = (@(Msync,1) U {Xsyne, 1,51 15 5
©(Hsync), ©(Async,1)) € Conf(SySasync,l)- According to Theorem 1, applying the mappingto the
runs of confasync,1 yields

mewconfsynm (Hsync) = ¢('Uie'w confasync,1 (@(Hsync)))-

Moreover, if confsync 1 iS polynomial-time therconf,sync,1 is also polynomial-time, and the mappirng
is polynomial-time computable.
2. Thus, the precondition(Syseync 1) z{sync ©(Syssync2) €an be applied yielding a configuration

~

confasync,2 = (P(Msync,2) U {Xsync 2,55 1+ S5 ©(Hsync ) Aasync,2) € Conf(Sysasyngz) with

viewconfasync,l (@(Hsync)) ~ viewconfasyncﬁ (SD(HSynC))

andg(Msync2, S) € f(¢(Msync,1,5)). Moreover, in the computational caseyifasync 2 iS polynomial-
time, so the mapping is polynomial-time computable. Using Lemma 2, this yields

¢(mewconfasync,1(‘P(Hsym:))) ~ ¢(viewconfasync,2 (SD(HsyHC)))-

3. We now apply Theorem 2 to the configuratiomf,sync 2, Which yields a configuratiomonfoync > =
(MsynCa Sa HsynCa Async,Z) € Conf(syssync,2) with

qb(viewconfasync’g (@(Hsync))) = viewconfsyngg (Hsync)-

According to Theorem Zonfsnc 2 is a polynomial-time configuration iffonfasync 2 is polynomial.
4. Putting it all together, we have
= V€W confuyne (Hsync) = (b(mewconfasyncg(@(HsynC)))
- ¢(’Uiewco’ﬂfasync,l (@(Hsync))) ~ (b(viewconfasync,z (SO(HSY”C))) and
- ¢(mewconfasync,z(@(HsynC))) = mewconﬁync,z(HSynC)-
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Using Lemma 2, we obtaimewconﬁyncl(Hsync) ~ m’ewmfsym(Hsync). Hence,confync2 is an indis-

tinguishable configuration fotonfync 1. Moreover, we havep(Msync 2, S) € f(p(Msync,1,5)), i.€.,

(Msync,2,S) € f'(Msync,1, S) which yields the desired resuys,, 1 z_fy/nc Sys

sync,2*

Note that the theorem is applicable to the standard clockoigeme. So far, we have shown that asyn-
chronous simulatability among these asynchronous repiegsans implies synchronous simulatability, i.e.,

SOSys(Syssyngl) Zasync SOSys(SySsync,Z) = Syssync,l Zsync Syssync,Z'

We already briefly stated in the previous section that theeme implication does not hold in general. We
had to show that for each configuratiemfasync,1 € Conf(psys (Syssync 1)) there exists an indistinguishable
Configurationconfasyncg € Conf(gpsys(‘gyssyncl)) prOVided thats’yssync,l Zsync Syssync,2'

However, both the honest user and the adversary may have-@lbgorts and they can alternately
schedule each other (and also the system erratically),hmivie cannot capture by a fixed synchronous
clocking scheme, so we cannot exploit our assump$ign, . 1 >sync SYSsync 2

Anyhow, it is sufficient for our purpose to show that the cldiolds for at least those configurations
where the honest usét,sn. fits the formpm (Hsync) for a synchronous machings,,.. We denote this
version of simulatability for the restricted class of useys>,. n H in the sequel. Looking at the proof of
the first embedding theorem, it is immediately clear thathie®rem also holds for the weaker precondition
©5ys (SYSsync,1) ZasyncH gosys(Syssync,Q), since we only need to derive an indistinguishable confiipma
for users of the special forp(Hsync ), and the user remains unchanged at simulatability. We carcapture
the content of the second embedding theorem as

S?/Ssync,l Zsync Syssync,Q = SOSys(Syssync,l) 2 async,H SOSyS(SySsyan)-

Theorem 4. (Second Embedding Theorem) Let two arbitrary synchrongstemsSys, . 1 and Sysqnc »
with clocking schemes; and o be given such that; fulfills the property that every machine of the sys-
tem and the user is clocked at most once between two suceelsikings of the adversary. Furthermore,
SYSsync1 zfync SYseync,2 Should hold for a valid mapping. Then

@(Syssync,l) zfsync,H @(Syssync,Z)

where f’ is derived fromf by p(Ma, So) € f'(@(My,S))) = (My, S3) € f(Mi,Sy). m

6 Deriving Synchronous Theorems from Asynchronous Ones

Recall that our long-term goal is to avoid proving each arehgtheorem and lemma for both models. We
now briefly show how our two embedding theorems can be usedrfarmventing this problem. One of the
most important theorems of both models is transitivity @f tblation>.

Lemma 3 (Transitivity). If Sys; >/ Sys, and Sys, >/ Sys;, thenSys; >% Sys;, wherefs := foo fi
is defined ag3( M, S) being the union of the sefs(Ms, S) with (Ms, S) € f1(Mi, S). O

This has been proven in [35] for the synchronous and in [37iHfe asynchronous model. We now exem-
plarily show how to derive the synchronous version from tsynahronous one using our previous results.

Lemma 4. (Asynchronous Version of Transitivity implies Synchrandersion) Assume that the asyn-
chronous version of the transitivity lemma (Lemma 3) hasaaly been proven, then the synchronous version
holds as well. O
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Proof. We omit the superscriptg for the sake of readability. Let arbitrary synchronous eystSys,, Sys,,
andSys; be given such thatys; >snc Sys, andSys, >sync Sys3. We have to show thafys; >gnc Syss
holds, provided that asynchronous transitivity has alydsmbn proven. According to our second embedding
theorem, we know that

(Sysl) ~async,H SO(SySQ) and “P(S?/SQ) ~async,H SO(SyS?:)

Obviously, the asynchronous version of transitivity islaggble to the relation> ,sync 1 instead of> ¢ nc as
well, since it is a special case only, and the honest userinsnuachanged at simulatability. Thus, we can
apply our (already proven) asynchronous version of thesiigity lemma, which yields

(Sysl) —async,H @(Sys?:)

Now, we use our first embedding theorem in conjunction wilsitbsequent remarks (stating that the theo-
rem holds as well for the restricted versiensn. 1 Of simulatability) yieldingSys; >sync Syss. m

This proof technique is applicable to almost all theorenas thly on simulatability. As the most important
example, we name the preservation theorem [36, 4], whitbssthat integrity properties expressed in linear-
time logic are preserved under simulatability. The proothi$ theorem is difficult and comprises several
pages for both models. Using our work, the synchronous proofd as well be omitted.

However, this proof techniques is unfortunately not imragliy applicable to carry over lemmas dealing
with composition of systems, since it is not immediatelyacleshat the result of composing two systems
with different master schedulers is. This problem can pobblae circumvented as follows. First, both master
schedulers are combined to an overall schedXltar the whole system. Secondly, an intermediate system
can be defined, where this combined master scheduler isrdplitwo separate machineg§ and X, such
thatX; stays the true master scheduler with the unique master-ahopfart clk“?, andX, is considered as a
“slave” master scheduler, i.e., a usual machine that ig@splgiven control byXs to handle the scheduling
demands of “its” system. Finally, our embedding theorerasapgplicable in this intermediate system, and the
resulting schedulers can be composed again to an overaénszheduler. However, formally establishing
this result requires additional research.
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A Postponed Definitions

The following definition for indistinguishability of rando variables is essentially from [43].

Definition 12. (Indistinguishability) Two familie$vary,),cn and (var), ) e of random variables (or proba-
bility distributions) on common domait3;, are

a) perfectly indistinguishabl¢'=") if for each k, the two distributionsar;, andvar’;, are identical.
b) statistically indistinguishabl€' ~s)41,1,”) for a suitable classSMALL of functions fromN to R if
the distributions are discrete and their statistical distes

A(vary, vary,) := % Z |P(varg = d) — P(var, = d)| € SMALL
de Dy,
(as a function ofk). SMALL should be closed under affine addition, and with a functi@iso contain
every functiorny’ < g.
c) computationally indistinguishablg ~,,,") if for every algorithm DDis (the distinguisher) that is proba-
bilistic polynomial-time in its first input,

|P(Dis(1%, vary,) = 1) — P(Dis(1%,var}) = 1)| € NEGL.

Intuitively, given the security parameter and an elememtsen according to eithevar, or varj, Dis
tries to guess which distribution the element came from cldss NEG L denotes the set of all negligible
functions, i.e.g: N — R>( € NEGL if for all positive polynomials), 3koVk > ko: g(k) < 1/Q(k).

We write= if we want to treat all three cases simultaneously. &

For reasons of completeness, we now present the extendadidefof simulatability, based on the three
different kinds of indistinguishability. Definition 8 wasmplified in the sense that only computational indis-
tinguishability of views was covered, which representsrtizst common case when applying simulatability
to cryptographic protocols.

Definition 13. (Simulatability) Let systemSys, and Sys, with a valid mappingf be given.

a) We saySys; >/ perf Sys, (perfectly at least as secure) dfsfor every configuratiorconf, = (Z\?[l, S,
H,A1) € Conf(Sys,), there exists a configuratiomonf, = (M, S,H,As) € Conf(Sys,) with
(Ms, S) € f(M,S) (and the samél) such that

view conf, (H) = view cons, (H).
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b) We saySys, >LMALL gys, (statistically at least as secure &or a classSMALL if the same as in a)
holds withview conf, 1(H) ~smarL view ons, (H) for all polynomialsl, i.e., statistical indistinguisha-
bility of all families ofi-step prefixes of the views.

c) We saySys; >Jypoly Sys, (computationally at least as securg idshe same as in a) holds with configu-
rations fromConfp, (Sys;) and Conf,qy (Sys,) and computational indistinguishability of the families
of views.

In all cases, we caltonf, anindistinguishable configuratiofor conf ;. Where the difference between the
types of security is irrelevant, we simply writd.c, and we omit the indiceg andsec if they are clear from
the context. &

B Postponed Proofs

Proof. (Lemma 1) In case of a polynomial configuration, especidily adversary has to be polynomial-
time. This implies that there cannot be any infinite suceesslocked self-loops, so the steps of every
sub-block are bounded by a polynomial in the security patante Moreover, both the adversary and the
honest user will reach final state after a polynomial numibétacks, so the algorithm fop applied to the
view either of the honest user or the adversary only makesya@mial number of transition, each one with
a polynomial number of stefsThis implies thatp is computable in polynomial-time when applied to the
view of the honest user and the adversary if it is used in anpohjal-time configuration. [

Proof. (Theorem 1) Note that the view @f(Msy,c) does only contain the steps of its internal blackbox
function-call after being modified by the mappigg Thus, it is sufficient to show that the inputs of the
blackbox call inconf,sync @and the original inputs dflsync in confsync are equal. It is quite easy to see that
the arraysinput_storey, . andinputsy, are always equal if the machinédsyn. is switched. This can
easily be proven by induction over the number of (sub-)reurd the first round, both arrays are empty
yielding a correct start of the induction. Starting with tbecond round, the contents of these arrays are
totally determined by the inputs at the portshdf,.. However, these inputs only depend fanior outputs
of other machined/. Moreover, these outputs have to be equal because thesenemaked the same input
tuple in both configurations, since we have@ut_store,; = inputs,; by induction hypothesis. Therefore,
the arraysinputs,, and input_storey,, . must be equal at replacing the block by construction of the
algorithm, sadw, (s, inputsy,,.) = oMy, (8, input_storey ) also holds. We do not have to worry about
the arrangement of the blocks because of the following readeéirst of all, note that we first switch all
machines in a subround and schedule the outgoing messdgesaafls. Moreover, messages sent by the
adversary are always scheduled first if the adversary isisbbe in the considered subround. This prevents
that machines which should switch simultaneously in theeBganous system may influence each other in
the asynchronous system in the same subround. If we did mstd®r this restriction, the adversary would
be able to create a message that is scheduled in this part&ubround, but nevertheless depends on inputs
arriving in this subround.

Putting it all together, the runs induced by the mappirig conf.s,nc and the original runs are equal by
definition of ¢, so we finally obtain

VIEW confoyne (MSynC) = ¢(view CONfasync (SO(MSynC)))
® Deleting the steps of the buffers of one block needs a constanber of steps, because it is always bounded by the number

of output ports of the considered machine, replacing thekbtmn surely be done using a constant number of steps. ¥inall
searching and deleting the second block needs a polynonmatber of steps.
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for an arbitrary configuratioronfyn. € Conf(SysSync), cONfasync 1= P(confsync), and an arbitrarflsyne €

A

(Msyne U {Hsync, Async }). As a special case, this implies

VIEW confyne (HSynC) = ¢(view CONfasync (SO(HSynC)))
which finishes our proof. [
Proof. (Theorem 2) We first reverse our functignon the structure{gp(]\?[sync) U {Xsyne,x }55) and on the
userp(Hsync) yielding the structuréMsync, S) of Sysgnc 2 and the original honest uskk, .. Note, that we
cannot reverse the functigmon the new adversar,s . in the same way, because we did not demand it to
have a similar internal structure, so we construct a newradveA, . for the synchronous configuration
as follows. The ports oAy, are given by

{p| pC € (ports(Msync) U ports(Hsync)) A p & (ports(Msync) U ports(Hsync))},

i.e., it connects to all remaining free ports Msync and Hgync. Internally, Agync maintains an array
(output_store ) picout(ports(Assyne)) OF liSts overX™ all initially empty.

Async has the adversary,,, . as a blackbox submachine and its behavior is defined as ®lloW;, . is
clocked in the synchronous system, it gets an input thpte (Zy7) y2cin(ports(Agme)) - It NOW tries to restore the
order in which these messages would have arrived in the beymous system. More precisely, it knows the
clocking scheme;, so it know which machines have been clocking after the lasking of Aync. Moreover,
it knows the order in which machines are switchedly, .. in one particular subround. Using the order on
the ports of the asynchronous machines, it can finally denigéhich order messages sent by one machine
on different ports would have arrived in the asynchronowssesy. The only problem which might arise is that
a machine has been clocked more then once since the lasingaifithe adversary. This might result in two
inputs at the same port &, which would be concatenated without any separation syn$aih an input
would not be restorable into its original form, so we had tdude the restriction to the considered clocking
scheme that every machine and the user are at most clockedbetheeen two successive clockings of the
adversary. Note, that our usually used clocking schéifie) {H}, {A}, {H}, {A}) fulfills this requirement.

After restoring both the usual messages and their odigr. uses the blackbox functiody,,,. on
the first input yielding an output tupl®. This tuple© is appended to the arrayutput_store, i.e. each
componentO,, is appended teutput_store,. If there is a nonempty outputat a clock-out porp®!, we
would have a clocked self-loop iwnfasync if output_store,[c] # e. In this case, this component is removed
from the array and,,, . is called again with the new state ahd= Zp?zoutput_swmp![c} and so on.

The above steps are repeated with the second input and thetaewfA ., and so on until all inputs
have been considered. Finally, the blackbox function islwséh 7, . ;) wherei denotes the global

round and;j denotes the subround the adversary is clockeédThis correspond to the clocking signal of
Xeyne,r iN the asynchronous system. The output tuple is again cemasgd to the same array and possible
clocked self loops are considered again. Findlly,. outputs the first elements of each listaftput_store,,,

with p!© € ports(Mgynec U {Hsync }) @s its output tuple? and removes these elements from the lists.

Note, that this newly defined adversahy, . is polynomial iff A,s,nc is polynomial by construction.
Thus, if the original configurationonf,s,nc has been polynomial-time (i.e., the ugéHsyn.) and the adver-
saryA,sync must be polynomial-time) then the configuratiamfyyn. = (Msync, S, Hsync, Async) Will also be
polynomial-time, since the runtime &f,. is always bounded by(Hsync).

Async “reverse” the functionp by construction. The asynchronous adversary would recaasgy single
inputs, and it would produce outputs every time which wouddstored in the outgoing buffers. Possible

® The adversary obviously knows batland;j because he knows the clocking schesneo he may simply maintain two counters
that he adapts every time he is clocked.
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clocked self-loops are handled by repeated calls of thesitian function with correct inputs. IA,snc iS
scheduled by, . it again performs an arbitrary transition and the first eletva# its outgoing buffer
would be clocked. The synchronous adversary first splitsfisit messages into their original order and
uses the blackbox function one by one storing the outputsiiput_store. The split inputs correspond to
the original inputs of the asynchronous system, so the otupies are also equal after every step. Therefore,
the contents obutput_store always correspond to the outgoing buffers in the asynchiemsystem after a
clocking step ofA,qnc. If the synchronous adversary is clocked it again callslaskbox function with the
correct input and stores the output in the array. After thatjtputs the first element of each list of the array
and removes these elements from the lists. In the asyndsosystem messages stored in the outgoing
buffers are treated in the same way. More formally we can sheviollowing lemma.

Lemma 5. We denote this “reversion” opy by o and the reversion of the whole configurationdy,,

for the moment. Then for an arbitrary configuratiotnfasync = (¢(Msync) U{Xsync,x }+ S5 ©(Hsync ), Aasync)
we have

VICW s 1 (B cong (confisyne)) (P(M)) = V€W confgyne (P(M))

for everyM € (Mgync U {Hsync }) and

’Uie,wﬁoconf (@conf (Confasync)) (AaSYnC) = viewconfasync (Aasync)
where the view of\,sn in the first configuration is given as a submachine@f{ om (Aasync))- O

Proof. The proof is illustrated in Figure 4. We first show tAdg . := om(Pm(Aasync)) behaves exactly as
Aasync, 1-€., both machines are perfectly indistinguishable ieirtenvironment. This is already sufficient to
show that the views ap(M) for everyM € (Msync U{Hsync }) are equal in both configurations because they
remain unchanged. We will also show that the viewAg{, . is equal in both configurations which finishes

our proof.

9 (Azsynd)
— i¢(Aasync) \ F—>lp —
1
| r———=1 1
| | 11
L — -
° : | [ ° —_~ ° °
: 1 : Aasync I : : -~ . Aasync .
| | 11
AR — e
| | P | :
| |
| 1

Fig. 4. Overview of the proof of Lemma 5.

We show that both adversariei,\gSync andA,sync behave identically between two successive clockings.
Moreover, we show that the content of ar@ytput_store,, of Al . always equal the outgoing buffgpsn

async

the corresponding asynchronous configuration at everkiclgof A, n. as a submachine @, if we

async
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identify clockings ofA,snc in both configurations in the natural wayrurthermore, we show that outputs
made by the adversary are always equal in both configurations

At the start of the run both buffers and arrays are empty whidfills our claim. Now assume that
Aleync TECEIVES an arbitrary input at # pa,, ’. It stores the message in its arrayput_store,; and gives
the control to the master schedulerAg‘Sync receives a hon-empty input gt ? it applies the state transition
function 6, (A.,.c) ON the arraysinput_store. Now, the arraysinput_store are decomposed into single
inputs again preserving their original order, and the fiamcéa . is applied to every such input. Since the
inputs are obviously equal in both configuration, we obtdemtical outputs, and moreover identical views
for A,sync. By precondition, the arraysutput_store are mapped to the outgoing buffers. After one call of
OAasme» EVETY OUtpUL ap! is stored either imutput_store,, orin p atthe same position, so they remain validly
mapped. Now, either the first componentoafput_store, or the first entry op for p!¢ € (ports(MSync) U
{Hsync}) are output yielding identical outputs and therefore idmitiviews for the environment in both
configurations, i.e.,

VICW s 1 (B cong (confisyne)) (P(M)) = V€W confgyne (P(M))

for M € (Msync U {Hsync}). We already showed that the views Afyn. are equal in both configurations
which finishes our proof. [

According to Lemma 5, the functiop.o,s © ¢.ons Yields identical views forp(M) for everyM e (Mgyne U
{Hsync}) and the asynchronous adversary, i.e.,

- ’Uie’wgownf(@mnf(COnfasync)) (SO(M)) = viewconfasync (SO(M)) and
- m’ew%onf(@mnf(wnfasync))(Aasync) = VIEW confyeyne (Aasync)-
We already showed in Theorem 1 thaiew ong, (M) = @(view (cons,.)(#(M))) holds for every

synchronous configurationonfsync = (Msync,S, Hsync, Async) and for every machiné < (Msync U
{Hsync; Async}). If we now setconfsync := @cong (CONfasync), We Obtain

- vie’wco”fSync(M) = (b(m'ew%(mf (@conf (confasync)) ((’O(M)))
Moreover, this implies
— view CONfsync (ASynC) = (b(luz.e’w‘ﬁamf (@canf (Confasync)) (AaSync)))

since the views oA ,snc andy(@(Assync)) are identical. We apply the mappigon the first two equations
and, using Lemma 2, we obtain

- ¢(vz:ewipconf(@conf(COnfasynC)) (SD(M))) = ¢(vi.ewcgnfasync ((’O(M))) and
- (b(vzewapamf(aﬁmnf(confasync)) (Aasync)) = ¢(vzewconfasync (Aasync))

Note, thate is in fact defined on runs of these configuration because betimiachines of the structure and
the honest user have the prescribed form. Using trangitivié immediately obtain the desired result

VIEW confoyne (M) = ¢(view CONfasync (e(M)))

and
'Uie'wconfsync (Async) = ¢(view60nfasync (Aasync))

As a special case we skt := Hgync Which yields

’U’l;ew Confsync (HSynC) = qb(’l}’l;ew Confasync (@(Hsync)))

" More precisely, this means that we identify théh clocking of Ausyne IN confas,ne With the i-th call of Onasyne BY Adgync in
Peonf (Peon (CONfasync))-
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Proof. (Theorem 4) Before we turn our attention to the actual praef,state the following lemma which
captures that we can “locally reverse” the functipfor the honest user:

Lemma 6. Let a synchronous systeiys, ., a clocking scheme: and a configurationconfyn. =

(Msyno Sv Hsyn<:7 Async) € Conf(Syssync) be given' I—etonfasync = (SO(Msync) U {Xsync,m}7 S7 SO(Hsync)v A/)
be an arbitrary asynchronous configuration. If we now hawegip(view confq, (¢(Hsync))) then we can
“locally reverse” the functiong for the view of the user, i.e., we can define a func&gﬁ on the runs of the
synchronous configuration, such that

viewconfasync (@(HsynC)) = Qbﬁl (qb(v/l;ewconfasync (@(HsynC))))
holds. If confasync is polynomial-time, the@ﬁl is polynomial-time computable. O

Proof. (Lemma 6) In order to prove the claim, we present an algoririmich undoes the changes of the
algorithm for deriving the mapping: It has an internal list oveE'™ initially empty, which will be used
to construct the desired view. For every subroyndt goes through all tuple$Msync, 7, 7,s,Z,s",O")

modifying them as follows: IfMsync = Hgnc for one machine of this subround, it appends
(@(Hsync),S,IpHsync7:(i7j),S/,(9') to its internal list. Note that this tuple precisely matchbe original

asynchronous tuple for switching the honest ugéHs,..) by the master scheduler. After that, it pro-
ceed through all tuples of this subround in precisely theesamiler they have been scheduled by the
master scheduler (the algorithm is surely allowed to knoe ¢tocking scheme). For a given tuple of
the form (Mgync, 7, 7,5, Z, 8", O'), it checks, whether there is a non-empty output at a pbim O’ with

p? € ports(p(Hsync)). In this case, the honest user would be clocked in the secgymtlronous block,
so we use the state transition functidny, .y on the current state of ¢(Hsync) and inputh?:O;! which
yields a new state’ and an (all-empty) outpu®.. We then add a stef(Hsync ), s,Ip?:% ,8',0,). Thisis
done for all ports oM, according to their order and for all machines that switcthandonsider subround.
Obviously, this algorithm reverses the mappithfpr the honest user by construction. In case of a polyno-
mial configuration, especially the adversary has to be mohial-time. This implies that there cannot be any
infinite successive clocked self-loops. Moreover, bothaitheersary and the honest user will reach final state
after a polynomial number of blocks, so the algorithm dg,rl applied to the view of the honest user will
only makes a polynomial number of transition, each one wiglolgnomial number of steps. This implies
that¢ is computable polynomial-time applied to the view of theéstruser if it is used in a polynomial-time
configuration. [

For readability, we again seftys,qnc1 = ©(SYssync,1) ANA SYs,ync2 = P(SYSsync2)- LEL NOW an
arbitrary configuratiorconfasync,1 = (©(Msync,1) U {Xsyne,1,61 1> S5 P(Hsync); Aasync,1) € Conf(SYsasync.1)
be given.

A

1. We apply Theorem 2 otonf,sync,1 Which yields a synchronous configuratioonfyync1 = (Msync,1, S,
Hsync, Async,1) € Conf(Sysgync 1) With
qb(viewconfasync,l (‘P(HSyHC))) = ’UZ’ewconfsyncJ (Hsync)-

Moreovert, if confasync,1 is polynomial-time therconfync 1 is also polynomial-time, and the mappitg
is polynomial-time computable.
2. Now the preconditiorbyssn.1 >sync S¥Ssync,2 €aN be applied yielding a configuratiannfsync2 =

(Msync,27 Sv Hsyn<:7 AsynC,Q) € Conf(Syssyan) with
m’ewwnfsync,l (Hsync) ~ mewconfsync,Q (HS}’”C)

and(]\?[syncg, S) e f(Z\?[sync,l, S). Moreover, in the computational cas@snfsync > is polynomial-time.
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3. We now apply Theorem 1 to the configuratiesnfs,n.> Which yields a configuratioronfasync2 =

((P(Msync,2) U {Xsync,2,ng}7 S, (P(Hsync)y SO(Asyan)) Wlth
mewconfsyncg (Hsync) = ¢(m'ew confasync,2 (@(Hsync)))-

Moreover,confasync,2 is @ polynomial configuration iffonfs,n > is polynomial, according to Theorem 1.
4. Putting it all together, we have
- ¢(vz’ewconfasync71 (@(Hsync))) = v/éewconfsync,l(Hsync)
= VW confiyne 1 (Hsyne) & VieW confyync » (Hsyne)

- mewconfsync,g(Hsync)) = ¢(U2‘ewconfasync,2 (‘P(Hsync)))
Using Lemma 2, we obtain

¢(mewconfasync,1(‘P(HsynC))) ~ ¢(view€0nfasync,2 (¢(Hsync)))-

We now finally apply our “reversing” functiom;1 (cf. Lemma 6) on the above equation. Together with
Lemma 2

’Uz.e’wconfasync,l (@(Hsync)) ~ Uz‘e’wconfasyncﬂ (@(Hsync))-

Hence, confasync2 is an indistinguishable configuration foronfisync1. Moreover, we have

(Msync2,5) € f(Msync,1,5), i-€.,0(Msync2,S) € f'(0(Msync,1,5)), which yields the desired result
@(Syssync,l) ngync,H “P(Sysasyncﬁ)'
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