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Abstract. One of the possible generalizations of the discrete logarithm problem to
arbitrary groups is the so-called conjugacy search problem (sometimes erroneously
called just the conjugacy problem) : given two elements a, b of a group G and the
information that ax = b for some x ∈ G, find at least one particular element x

like that. Here ax stands for xax−1. The computational difficulty of this problem
in some particular groups has been used in several group based cryptosystems.
Recently, a few preprints have been in circulation that suggested various “gradient
search” type heuristic attacks on the conjugacy search problem. The goal of the
present survey is to stress a (probably well known) fact that these heuristic attacks
alone are not a threat to the security of a cryptosystem, and, more importantly, to
suggest a more credible approach to assessing security of group based cryptosys-
tems. Such an approach should be necessarily based on the concept of the average
case complexity (or expected running time) of an algorithm.

These arguments support the following conclusion: although it is generally
feasible to base the security of a cryptosystem on the difficulty of the conjugacy
search problem, the group G itself (the “platform”) has to be chosen very carefully.
In particular, experimental as well as theoretical evidence collected so far makes
it appear likely that braid groups are not a good choice for the platform. We also
reflect on possible replacements.

1 Introduction

Let G be a group. The conjugacy problem (or conjugacy decision problem) for G is:
given two elements a, b ∈ G, find out whether there is x ∈ G such that ax = b, where
ax stands for xax−1.

On the other hand, the conjugacy search problem (or witness conjugacy problem) is:
given two elements a, b ∈ G and the information that ax = b for some x ∈ G, find at
least one particular element x like that.

The conjugacy problem is of interest in group theory, but of no interest in complexity
theory. In contrast, the conjugacy search problem is of interest in complexity theory,
but of no interest in group theory. Indeed, if you know that a is conjugate to b, you
can just go over elements of the form ax and compare them to b one at a time, until
you get a match. (We implicitly use here an obvious fact that a group with solvable
conjugacy problem also has solvable word problem.) This straightforward algorithm is
at least exponential-time in the length of b, and therefore is considered infeasible for
any practical purposes.
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Thus, if no other algorithm is known for the conjugacy search problem in a group
G, it is not unreasonable to claim that x → ax is a one-way function and build a
(public-key) cryptosystem on that. A simple way of doing it was suggested in [19], and
a more sophisticated and more general one in the seminal paper [2] (see also [1]). Just
to make our exposition self-contained, we give a brief exposition of both protocols in
Section 2. In both cryptosystems a braid group Bn is used as the “platform”. We are
not going into any technical details about braid groups here since they are irrelevant
to the subject of the present survey. It is sufficient to say that the choice of a braid
group as the platform is highly questionable from the security point of view, although
quite understandable from the marketing point of view. We discuss this in more detail
in Section 5.

There are numerous deterministic algorithms for solving the conjugacy search prob-
lem in braid groups (see e.g. [4], [5], [8], [13]) that are believed to be polynomial-time.
As soon as one of them is proved to be polynomial-time, braid groups are out of the
game. We are going to explain in Section 4 why the existence of a polynomial-time de-
terministic algorithm “usually” implies the existence of a deterministic algorithm that
has linear-time complexity on average.

Several “gradient search” type (sometimes also called “length based”) and other
heuristic algorithms proposed recently [10], [12], [14], [16], [22] [24] show very fast
performance on “most” inputs which has driven some of the authors to a somewhat
premature conclusion that cryptosystems [2] and [19] are insecure if a braid group is
chosen as the platform. Whereas we agree with the conclusion itself, we have to be fair
and admit that at the time of this writing, there is not enough evidence to rigorously
prove it.

The reason is as follows: fast performance of heuristic algorithms on “most” inputs
means that generic-case time-complexity of those algorithms is low (probably linear-
time). However there is a “small” set of “noncooperative” inputs on which a given
heuristic algorithm may work very slowly or not terminate at all. Therefore, a coun-
termeasure against an heuristic attack like that would be just using several rounds of
the same protocol with different random choices of elements. If, for example, the prob-
ability of success of a particular heuristic algorithm in a single round is 0.9, then the
probability of success in, say, 50 rounds is 0.950, which is as good as 0. Using several
runs of the same “gradient search” type heuristic algorithm on the same input will not
help, in general, to improve the probability of success since being “noncooperative”
(with respect to a given algorithm) is usually an intrinsic property of an input.

Remark. It might be tempting to say that narrowing down the set of inputs to a subset
of “noncooperative” inputs for a given heuristic algorithm will render this particular
algorithm ineffective (or, at least, less effective). Although this countermeasure is
theoretically feasible, it will not work in real life because in real life, once a cryptosystem
has entered service, its parameters cannot be significantly changed. In particular, the
pool from which inputs are (randomly) selected cannot be adjusted in response to
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one attack or another. This means a potential attacker has what looks like an unfair
advantage, but these are rules of the game.

To properly take into account the set of “noncooperative” inputs, one has to use the
notion of the average-case time-complexity (or expected running time) of an algorithm
rather than generic-case. Differences between these properties for various algorithms
in group theory have been studied in-depth in [17] and [18]. We give more details in
Section 2; here we just mention that for the average-case complexity of an algorithm
to be defined, this algorithm should terminate for any input.

If one wants to enhance the average-case performance of a deterministic algorithm
D, one can run a (relatively fast) heuristic algorithm H in parallel with D. This compos-
ite algorithm H || D is still deterministic, and its average-case complexity is therefore
defined. If the average-case complexity of H || D can be computed (or estimated) and
turns out to be low (say, linear- or quadratic-time), thenn1 the relevant cryptosystem
can be considered in serious danger.

All this is probably well-known (at least, on the intuitive level). However, there
is a spectacular result in [18] that may come as a surprise. Adopted in our situation,
it says that, if the algorithm H has linear-time strong generic-case complexity, and D
has a subexponential complexity, then the composite algorithm H || D has linear-time
average-case complexity. Therefore, a cryptosystem whose security is based on the
conjugacy search problem, can be considered reasonably secure only if there is no de-
terministic algorithm that solves this problem in the platform group in subexponential
time. We discuss this in more detail in Sections 3 and 4.

Finally, in the concluding Section 6, we discuss possible replacements for braid
groups in the otherwise promising cryptosystem [2].

2 Cryptographic protocols involving the conjugacy search

problem

Let G be a group with a solvable word problem. Recall that for a, x ∈ G, the notation
ax stands for xax−1.

We start with a simpler protocol, due to Ko et. al. [19].

(0) An element a ∈ G is published.
(1) Alice picks a private x ∈ G and sends ax to Bob.
(2) Bob picks a private y ∈ G and sends ay to Alice.
(3) Alice computes (ay)x = ayx, and Bob computes (ax)y = axy.

If x and y are chosen from a pool of commuting elements of the group G, then
xy = yx, and therefore, Alice and Bob get a common private key axy = ayx. In case
G = Bn, a braid group, the pool of commuting elements is quite large, so there is no

1This is the recommended notation for “then and only then”.
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problem with setting up a protocol like that if a braid group is selected as the platform.

Another protocol, due to Anshel et. al. [2], is more complex, but it is more general
in the sense that there are no requirements on the group G other than to have solvable
word problem. This really makes a difference and gives a great advantage to the
protocol of [2] over that of [19]. When the braid group platform is rigorously shown to
be insecure (conceivably, this will happen very soon), it will be much easier to repair the
protocol of [2] (by choosing a different platform) than that of [19]. In fact, an attempt
at such repairing has already been made in [1], but it definitely should be taken further
(away from braid groups).

(0) Elements a1, ..., ak, b1, ..., bm ∈ G are published.
(1) Alice picks a private x ∈ G as a word in b1, ..., bm (i.e., x = x(b1, ..., bm)) and sends
ax

1
, ..., ax

k to Bob.
(2) Bob picks a private y ∈ G as a word in a1, ..., ak and sends b

y
1
, ..., b

y
m to Alice.

(3) Alice computes x(by
1
, ..., b

y
m) = xy = yxy−1, and Bob computes y(ax

1
, ..., ax

k) = yx =
xyx−1.
(4) Alice and Bob come up with a common private key xyx−1y−1 (called the commu-
tator of x and y) as follows: Bob just multiplies xyx−1 by y−1 on the right, while Alice
multiplies yxy−1 by x−1 on the right, and then takes the inverse of the whole thing:
(yxy−1x−1)−1 = xyx−1y−1.

Finally, we re-iterate the point that security of both protocols described in this
section apparently rests on the computational difficulty of the conjugacy search problem
in the platform group G.

3 Generic-case vs. average-case complexity

In this section, we offer an informal discussion of generic- and average-case complexity
of algorithms, referring to [17] and [18] for formal definitions and results.

To discuss generic-case complexity, which deals with the performance of an algo-
rithm Ω on “most” inputs, we first need a notion of which sets of inputs are generic.
Let ν be an arbitrary additive function with values in [0, 1] defined on some subsets of
the set X of possible inputs. A subset T ⊂ X is called generic with respect to ν (or just
ν-generic) if ν(X − T ) = 0. Then, for example, we would say that Ω has polynomial-
time generic-case complexity with respect to ν if Ω runs in polynomial time on all inputs
from some subset T of X which is generic with respect to ν. Of course, one can define
generic-case complexity being in any complexity class C, not just polynomial-time.

Generic-case complexity therefore does not take into account behaviour of an algo-
rithm on the set X − T of “noncooperative” inputs. In fact, on some of those inputs,
the algorithm in question may not terminate at all. In contrast, the average-case com-
plexity of an algorithm takes into account all possible inputs; in particular, for the
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average-case complexity of an algorithm to be defined, this algorithm should terminate
for any input.

Here we have to assume that there is some kind of complexity |w| defined for all
elements w of the set X of possible inputs. We will call it the “length” of w to simplify
the language.

We will say that a (discrete) probability measure µ is length-invariant if for any
elements w, w′ ∈ X with |w| = |w′| one has µ(w) = µ(w′). Requiring that a measure be
length-invariant is a very natural assumption since most algorithm complexity classes
are defined in terms of the length of an input.

Now let P be a property that elements of X may or may not have, and let A be
an algorithm which for every w ∈ X decides, in time T (w) < ∞, whether or not w has
the property P.

Let f(n) be a non-decreasing positive function. We say that A has average case
time-complexity bounded by f(n) relative to µ if

∫
X

T (w)

f(|w|)
µ(w) =

∑
w∈X

T (w)

f(|w|)
µ(w) < ∞.

Note that if this is the case, then the “µ-expected running time”
∑

|w|=n T (w)µ(w)
for inputs of length n is o(f(n)).

This definition may look somewhat scary, but this is just because of the probability
measure µ. We note that to define a meaningful probability measure on an infinite group
is a very non-trivial theoretical problem (see [6]). However, for practical purposes, e.g.
for applications in cryptography, the theoretical mumbo-jumbo can be avoided because
an infinite group in this context can be considered as just a big finite group, and the
following kind of practical experiment can be conducted.

Experiment. Usually, “gradient search” type (sometimes also called “length based”)
heuristic algorithms show very fast performance on “most” inputs, i.e., they tend to
have very low generic-case complexity. In particular, this is usually the case with
genetic algorithms (see e.g. [24]); these are subtle combinations of “gradient search”
and Monte Carlo type algorithms.

Experiments conducted in [10, 14] show a high rate of success (80% and up) of
some particular heuristic algorithms. However, as we have explained, this alone is not
enough to make any conclusions about the security of a relevant cryptosystem. The
“right” experiment should be arranged as follows.

Run your heuristic algorithm H in parallel with a deterministic algorithm D of your
choice. Call this combined algorithm A. Now suppose the algorithm H terminates in
at most h(n) seconds on b% of randomly selected inputs of length n. On the remaining
(100-b)% of those inputs, the deterministic algorithm D kicks in and terminates in at
most d(n) seconds. Then the expected running time of the algorithm A on inputs of

5



length n is at most e(n) = 1

100
· [h(n) · b + d(n) · (100 − b)] seconds. Then you try

to extrapolate the function e(n) by a polynomial of a small degree with “reasonably
small” coefficients. If you succeed, then you can claim that the relevant cryptosystem
is likely to be insecure. ✷

Remark. Once again, we emphasize the point that generating only those inputs that
would be non-cooperative for H is possible in theory but not in real life because in real
life, once a cryptosystem has entered service, its parameters cannot be significantly
changed. Therefore, an attacker clearly has an edge here because he can choose H
based on the parameters of a cryptosystem, and not the other way around.

For the next section, we need the notion of strong generic-case complexity. For a
subset S ⊆ X, let Sn = {w ∈ S, |w| = n}. Let ν be an additive function with values in
[0, 1] defined on some subsets of the set X of possible inputs. We assume that if ν(S) is
defined, then ν(Sn) is defined for any n. We call S strongly ν-generic (or exponentially
ν-generic) if ν(Xn − Sn) → 0 exponentially fast as n → ∞. Accordingly, an algorithm
Ω has, say, polynomial-time strong generic-case complexity with respect to ν if Ω runs
in polynomial time on all inputs from some subset S of X which is strongly ν-generic.

4 “If the strike is not settled quickly, it may last a while”

This was one of the top 10 “Funniest headlines of the year” in 1995. However, it
appears that this particular headline may not be that funny after all, but rather can
be an instance of a universal rule, something similar (in magnitude) to the “coupling
principle” in quantum physics in its effect on our lives. Probably everyone has been in
a situation where he/she receives a message or a letter that requires a responce; then, if
you do not respond immediately, you forget about the whole thing and respond much
later, usually after a reminder. Or, you start a project (say, a paper), and you either
complete it in a few weeks or it gets stretched to several months (or years). There are
numerous other real-life manifestations of the same philosophical principle, including
the one alluded to in the aforementioned newspaper headline. The following result from
[18] (Proposition 3.2) might give a theoretical support to this intuitive principle. We
give a simplified version here that better fits in with our subject.

Theorem. Let µ be an arbitrary length-invariant discrete probability measure. Sup-
pose there is an algorithm H, deterministic or not, that solves a given problem P
strongly µ-generically in linear (or quadratic) time with respect to the complexity of
an input. Suppose also that there is a subexponential-time deterministic algorithm
D for solving P. Then the (deterministic) algorithm H || D solves P in linear (resp.
quadratic) time on average relative to µ.

Informally speaking, this result says that, for a reasonably natural problem, either
there is a very fast (on average) algorithm for solving it, or there is no fast (on average)
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algorithm at all. Or, yet in other words, there is a gap between “very fast” and “slow”.
We note in passing (although it is not directly related to the subject of this survey)

that the conjugacy problem for braid groups is solvable generically in linear time by
[17, Theorem C]. We do not know however whether it is solvable strongly generically
in linear time. Neither do we have any useful results on the generic-case complexity of
the conjugacy search problem for braid groups.

5 Marketability vs. security

It is a fact that abstract groups, unlike numbers, are not something that most people
learn at school. There is therefore an obvious communication problem involved in
marketing a cryptographic product that uses abstract groups one way or another. Braid
groups clearly have an edge here because to explain what they are, one can draw simple
pictures, thus alleviating the fear of the unknown. The fact that braid groups cut
across many different areas of mathematics (and physics) helps, too, since this gives
more credibility to the hardness of the relevant problem (the conjugacy search problem
in our case).

We can recall that, for example, confidence in the security of the RSA cryptosystem
is based on literally centuries-long history of attempts by thousands of people, including
such authorities as Euler and Gauss, at factoring integers fast. The history of braid
groups goes back to 1927, and again, thousands (well, maybe hundreds) of people,
including prominent mathematicians like Artin, Thurston, V. F. R. Jones, and others
have been working on various aspects of these groups, including algorithmic ones.

On the other hand, from the security point of view, the fact that braid groups cut
across so many different areas can be a disadvantage, because different areas provide
different tools for solving a problem at hand (in our situation, the conjugacy search
problem). Indeed, people from several different areas (group theory, topology, combi-
natorics) have already contributed to the solution of this problem. This increases the
odds of finding a subexponential-time deterministic algorithm, and therefore breaking
the relevant cryptosystem (see Section 4). Furthermore, braid groups turned out to be
linear [3], [20], which makes them potentially vulnerable to linear algebraic attacks (see
e.g. [15], [21]), and this alone is a serious security hazard.

The pioneering paper [2] has brought combinatorial group theory into cryptography
in a very serious and promising way. The choice of braid groups as the platform was
probably inevitable at that time, for the reasons outlined above. At the same time, this
has paved the way for engaging other groups more easily in the future. It is probably
time now to take advantage of this opportunity and start a serious search for a secure
platform rather than keep chewing on braid groups. This search is not going to be easy,
as we try to explain in the next section.
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6 Search for a platform

Before we can start a search, we have to put down the properties that we want from a
group G in this context.

It seems reasonable to start with a property which, although not mathematical,
appears to be mandatory if we want our cryptographic product to be used in real life
(see the previous section):

(P0) The group has to be well known. More precisely, the conjugacy search problem
in the group either has to be well studied or can be reduced to a well known problem
(perhaps, in some other area of mathematics).

We note in passing that this property already narrows down the list of candidates
quite a bit.

The following two are mathematical properties.

(P1) The word problem in G should have a fast (linear- or quadratic-time) solution by
a deterministic algorithm.

This is required for an efficient common key extraction by legitimate parties.

(P2) The conjugacy search problem should not have a subexponential-time solution
by a deterministic algorithm.

We point out here that proving a group to have (P2) should be extremely difficult, if
not impossible. This is, literally, a million-dollar problem (see [7]). The property (P2)
should be therefore considered in conjunction with (P0), i.e., the only realistic evidence
of a group G having the property (P2) can be the fact that sufficiently many people
have been studying the conjugacy search problem in G over sufficiently long time.

The last property is somewhat informal, but it is rather important for practical
implementations:

(P3) There should be a way to disguise elements of G so that it would be impossible
to recover x from xax−1 just by inspection. In particular, if G is given by means of
generators and relations, then at least some of these relations should be rather short.

We see now that braid groups have (P0), (P1), (P3), but (most likely) not (P2).
Not having (P2) is, of course, a grave security hazard, so as soon as it is proved that
braid groups do not have (P2), they are out of the game.

There are groups that have (P1), most likely have (P2), and to a reasonable extent
have (P3). These are groups with solvable word problem, but unsolvable conjugacy
problem (see e.g. [23]). However, groups like that tend not to have the property (P0)
because, as we have mentioned in the Introduction, the conjugacy search problem is of
no independent interest in group theory. Group theorists therefore did not bother to
study the conjugacy search problem in these groups once it had been proved that the
conjugacy problem is algorithmically unsolvable. It would probably make sense now to
reconsider these groups.
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Another possible strategy would be to base the search on braid groups, i.e., to
“distort” braid groups one way or another (e.g. to discard a couple of defining relations)
to get groups with the property (P2), while keeping (P1) intact. The property (P0)
will be lost, of course, but the new groups might have marketing potential nonetheless:
“Look, these are like braid groups, only better”.

We do not have any more specific suggestions at this time.
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