
Using Information Theory Approach to
Randomness Testing ∗

B. Ya. Ryabko and V.A. Monarev

Abstract

We address the problem of detecting deviations of binary sequence
from randomness,which is very important for random number (RNG)
and pseudorandom number generators (PRNG). Namely, we consider
a null hypothesis H0 that a given bit sequence is generated by Bernoulli
source with equal probabilities of 0 and 1 and the alternative hypoth-
esis H1 that the sequence is generated by a stationary and ergodic
source which differs from the source under H0. We show that data
compression methods can be used as a basis for such testing and de-
scribe two new tests for randomness, which are based on ideas of uni-
versal coding. Known statistical tests and suggested ones are applied
for testing PRNGs, which are practically used. Those experiments
show that the power of the new tests is greater than of many known
algorithms.

Keywords: Hypothesis testing, Randomness testing, Random num-
ber testing, Universal code, Information Theory, Random number generator,
Shannon entropy.

∗The authors were supported by INTAS grant no. 00-738 and Russian Foundation for
Basic Research under Grant no. 03-01-00495.

1

1 Introduction

The randomness testing of random number and pseudorandom number gen-
erators is used for many purposes including cryptographic, modeling and
simulation applications; see, for example, Knuth, 1981; Maurer,1992; Rukhin
and others, 2001. For such applications a required bit sequence should be
true random, i.e., by definition, such a sequence could be interpreted as the
result of the flips of a ”fair” coin with sides that are labeled ”0” and ”1” (for
short, it is called a random sequence; see Rukhin and others, 2001). More
formally, we will consider the main hypothesis H0 that a bit sequence is
generated by the Bernoulli source with equal probabilities of 0’s and 1’s. As-
sociated with this null hypothesis is the alternative hypothesis H1 that the
sequence is generated by a stationary and ergodic source which generates
letters from {0, 1} and differs from the source under H0.

In this paper we will consider some tests which are based on results and
ideas of Information Theory and, in particular, the source coding theory.
First, we show that a universal code can be used for randomness testing.
(Let us recall that, by definition, the universal code can compress a sequence
asymptotically till the Shannon entropy per letter when the sequence is gen-
erated by a stationary and ergodic source). If we take into account that the
Shannon per-bit entropy is maximal (1 bit) if H0 is true and is less than
1 if H1 is true (Billingsley, 1965; Gallager, 1968), we see that it is natural
to use this property and universal codes for randomness testing because, in
principle, such a test can distinguish each deviation from randomness, which
can be described in a framework of the stationary and ergodic source model.
Loosely speaking, the test rejects H0 if a binary sequence can be compressed
by a considered universal code (or a data compression method.)

It should be noted that the idea to use the compressibility as a measure
of randomness has a long history in mathematics. The point is that, on the
one hand, the problem of randomness testing is quite important for practice,
but, on the other hand, this problem is closely connected with such deep
theoretical issues as the definition of randomness, the logical basis of proba-
bility theory, randomness and complexity, etc; see Kolmogorov, 1965; Li and
Vitanyi, 1997; Knuth, 1981; Maurer,1992. Thus, Kolmogorov suggested to
define the randomness of a sequence, informally, as the length of the short-
est program, which can create the sequence (if one of the universal Turing
machines is used as a computer). So, loosely speaking, the randomness (or
Kolmogorov complexity) of the finite sequence is equal to its shortest de-

2

scription. It is known that the Kolmogorov complexity is not computable
and, therefore, cannot be used for randomness testing. On the other hand,
each lossless data compression code can be considered as a method for upper
bounding the Kolmogorov complexity. Indeed, if x is a binary word, φ is
a data compression code and φ(x) is the codeword of x, then the length of
the codeword |φ(x)| is the upper bound for the Kolmogorov complexity of
the word x. So, again we see that the codeword length of the lossless data
compression method can be used for randomness testing.

In this paper we suggest tests for randomness, which are based on results
and ideas of the source coding theory.

Firstly, we show how to build a test basing on any data compression
method and give some examples of application of such test to PRNG’s testing.
It should be noted that data compression methods were considered as a
basis for randomness testing in literature. For example, Maurer’s Universal
Statistical Test, Lempel-Ziv Compression Test and Approximate Entropy
Test are connected with universal codes and are quite popular in practice,
see, for example, Rukhin and others, 2001. In contrast to known methods,
the suggested approach gives a possibility to make a test for randomness,
basing on any lossless data compression method even if a distribution law of
the codeword lengths is not known.

Secondly, we describe two new tests, conceptually connected with univer-
sal codes. When both tests are applied, a tested sequence x1x2...xn is divided
into subwords x1x2...xs, xs+1xs+2...x2s, . . . , s ≥ 1, and the hypothesisH∗

0 that
the subwords obey the uniform distribution (i.e. each subword is generated
with the probability 2−s) is tested against H∗

1 = ¬H∗
0 . The key idea of the

new tests is as follows. All subwords from the set {0, 1}s are ordered and this
order changes after processing each subword xjs+1xjs+2...x(j+1)s, j = 0, 1, . . .
in such a way that, loosely speaking, the more frequent subwords have small
ordinals. When the new tests are applied, the frequency of different ordinals
are estimated (instead of frequencies of the subwords as for, say, chi- square
test).

The natural question is how to choose the block length s in such schemes.
We show that, informally speaking, the block length s should be taken quite
large due to the existence of so called two-faced processes. More precisely,
it is shown that for each integer s∗ there exists such a process ξ that for
each binary word u the process ξ creates u with the probability 2−|u| if the
length of the u (|u|) is less than or equal to s∗, but, on the other hand, the
probability distribution ξ(v) is very far from uniform if the length of the

3

words v is greater than s∗. (So, if we use a test with the block length s ≤ s∗,
the sequences generated by ξ will look like random, in spite of ξ is far from
being random.)

The outline of the paper is as follows. In Section 2 the general method
for construction randomness testing algorithms basing on lossless data com-
pressors is described. Two new tests for randomness, which are based on
constructions of universal coding, as well as the two-faced processes, are
described in the Section 3. In Section 4 the new tests are experimentally
compared with methods from the ” A statistical test suite for random and
pseudorandom number generators for cryptographic applications”, which was
recently suggested by Rukhin and others, 2001. It turns out that the new
tests are more powerful than known ones.

2 Data compression methods as a basis for

randomness testing

2.1. Randomness testing based on data compression
Let A be a finite alphabet and An be the set of all words of the length n

over A, where n is an integer. By definition, A∗ =
⋃∞

n=1A
n and A∞ is the

set of all infinite words x1x2 . . . over the alphabet A. A data compression
method (or code) ϕ is defined as a set of mappings ϕn such that ϕn : An →
{0, 1}∗, n = 1, 2, . . . and for each pair of different words x, y ∈ An ϕn(x) 6=
ϕn(y). Informally, it means that the code ϕ can be applied for compression
of each message of any length n, n > 0 over alphabet A and the message can
be decoded if its code is known.

Now we can describe a statistical test which can be constructed basing
on any code ϕ. Let n be an integer and Ĥ0 be a hypothesis that the words
from the set An obey the uniform distribution, i.e., p(u) = |A|−n for each
u ∈ {0, 1}n. (Here and below |x| is the length if x is a word, and the number
of elements if x is a set.) Let a required level of significance (or a Type I
error) be α, α ∈ (0, 1). The following main idea of a suggested test is quite
natural: The well compressed words should be considered as non- random
and Ĥ0 should be rejected. More exactly, we define a critical value of the
suggested test by

tα = n log |A| − log(1/α)− 1 . (1)

(Here and below log x = log2 x.)

4

Let u be a word from An. By definition, the hypothesis Ĥ0 is accepted if
|ϕn(u)| > tα and rejected, if |ϕn(u)| ≤ tα. We denote this test by Γ(n)

α,ϕ.
Theorem 1. For each integer n and a code ϕ, the Type I error of the

described test Γ(n)
α,ϕ is not larger than α.

Proof is given in Appendix.
Comment 1. The described test can be modified in such a way that

the Type I error will be equal to α. For this purpose we define the set Aγ by

Aγ = {x : x ∈ An & |ϕn(x)| = γ}

and an integer s for which the two following inequalities are valid:

s∑
j=0

|Aj| ≤ α|A|n <
s+1∑
j=0

|Aj| . (2)

Now the modified test can be described as follows:
If for x ∈ An |ϕn(x)| ≤ s then Ĥ0 is rejected, if |ϕn(x)| > (s+ 1) then

Ĥ0 is accepted and if |ϕn(x)| = (s + 1) the hypothesis Ĥ0 is accepted with
the probability

(
s+1∑
j=1

|Aj| − α|A|n)/|As+1|

and rejected with the probability

1 − (
s+1∑
j=1

|Aj| − α|A|n)/|As+1| .

(Here we used a randomized criterion, see for definition, for example, Kendall
and Stuart, 1961, part 22.11.) We denote this test by Υ(n)

α,ϕ.
Claim 1. For each integer n and a code ϕ, the Type I error of the

described test Υ(n)
α,ϕ is equal to α.

Proof is given in Appendix.
We can see that this criterion has the level of significance (or Type I error)

exactly α, whereas the first criterion, which is based on critical value (1), has
the level of significance that could be less than α. In spite of this drawback,
the first criterion may be more useful due to its simplicity. Moreover, such an
approach gives a possibility to use a data compression method ψ for testing
even in case where the distribution of the length |ψn(x)|, x ∈ An is not known.

Comment 2. We have considered codes, for which different words of
the same length have different codewords (In Information Theory sometimes

5

such codes are called non- singular.) Quite often a stronger restriction is
required in Information Theory. Namely, it is required that each sequence
ϕn(x1)ϕn(x2)...ϕ(xr), r ≥ 1, of encoded words from the set An, n ≥ 1, can be
uniquely decoded into x1x2...xr. Such codes are called uniquely decodable.
For example, let A = {a, b}, the code ψ1(a) = 0, ψ1(b) = 00, obviously, is
non- singular, but is not uniquely decodable. (Indeed, the word 000 can be
decoded in both ab and ba.) It is well known in Information Theory that a
code ϕ can be uniquely decoded if the following Kraft inequality is valid:

Σu∈An 2−|ϕn(u)| ≤ 1 , (3)

see, for ex., Gallager, 1968.
If it is known that the code is uniquely decodable, the suggested critical

value (1) can be changed. Let us define

t̂α = n log |A| − log(1/α) . (4)

Let, as before, u be a word from An. By definition, the hypothesis Ĥ0 is
accepted if |ϕn(u)| > t̂α and rejected, if |ϕ(u)| ≤ t̂α. We denote this test by
Γ̂(n)

α,ϕ.
Claim 2. For each integer n and a uniquely decodable code ϕ, the Type

I error of the described test Γ̂(n)
α,ϕ is not larger than α.

Proof is given in Appendix.
So, we can see from (1) and (4) that the critical value is larger, if the

code is uniquely decodable. On the other hand, the difference is quite small
and (1) can be used without a large loose of the test power even in a case of
the uniquely decodable codes.

It should not be a surprise that the level of significance (or a Type I error)
does not depend on the alternative hypothesis H1, but, of course, the power
of a test (and the Type II error) will be determined by H1.

The examples of testing by real data compression methods will be given
in Section 4.

2.2. Randomness testing based on universal codes.
We will consider the main hypothesis H0 that the letters of a given se-

quence x1x2...xt, xi ∈ A, are independent and identically distributed (i.i.d.)
with equal probabilities of all a ∈ A and the alternative hypothesis H1 that
the sequence is generated by a stationary and ergodic source, which gener-
ates letters from A and differs from the source under H0. (If A = {0, 1},

6

i.i.d. coincides with Bernoulli source.) The definition of the stationary and
ergodic source can be found in Billingsley, 1965, and Gallager, 1968.

We will consider statistical tests, which are based on universal coding and
universal prediction. First we define a universal code.

By definition, ϕ is an universal code if for each stationary and ergodic
source (or a process) π the following equality is valid with probability 1
(according to the measure π)

lim
n→∞

(|ϕn(x1...xn)|)/n = h(π) , (5)

where h(π) is the Shannon entropy. (Its definition can be found, for example,
in Billingsley, 1965; Gallager, 1968.) It is well known in Information Theory
that h(π) = log |A| if H0 is true, and h(π) < log |A| if H1 is true, see, for ex.,
Billingsley, 1965; Gallager, 1968. From this property and (5) we can easily
yield the following theorem.

Theorem 2. Let ϕ be a universal code, α ∈ (0, 1) be a level of signifi-
cance and a sequence x1x2...xn be generated by a stationary ergodic source π.
If the described above test Γ(n)

α,ϕ is applied for testing H0 (against H1), then
the Type I error is not larger than α, and the Type II error goes to 0, when
n→∞.

So, we can see that each good universal code can be used as a basis for
randomness testing. But converse proposition is not true. Let, for example,
there be a code, whose codeword length is asymptotically equal to (0.5 +
h(π)/2) for each source π (with probability 1, where, as before, h(π) is the
Shannon entropy). This code is not good, because its codeword length does
not trend to the entropy, but, obviously, such code could be used as a basis
for a test of randomness. So, informally speaking, the set of tests is larger
than the set of universal codes.

3 Two new tests for randomness and two-

faced processes

Firstly, we suggest two tests which are based on ideas of universal coding,
but they are described in such a way that can be understood without any
knowledge of Information Theory.

3.1. The ”book stack” test

7

Let, as before, there be given an alphabet A = {a1, ..., aS}, a source,
which generates letters from A, and two following hypotheses: the source is
i.i.d. and p(a1) = = p(aS) = 1/S (H0) and H1 = ¬H0. We should test the
hypotheses basing on a sample x1x2 ... xn, n ≥ 1 , generated by the source.
When the ”book stack” test is applied, all letters from A are ordered from
1 to S and this order is changed after observing each letter xt according to
the formula

νt+1(a) =

1, if xt = a ;
νt(a) + 1, if νt(a) < νt(xt);
νt(a), if νt(a) > νt(xt) ,

(6)

where νt is the order after observing x1x2 ... xt, t = 1 , , ... , n , ν1 is defined
arbitrarily. (For ex., we can define ν1 = {a1, ..., aS}.) Let us explain infor-
mally (6). Suppose that the letters of A make a stack, like a stack of books
and ν1(a) is a position of a in the stack. Let the first letter x1 of the word
x1x2 ... xn be a. If it takes i1−th position in the stack (ν1(a) = i1), then take
a out of the stack and put it on the top. (It means that the order is changed
according to (6).) Repeat the procedure with the second letter x2 and the
stack obtained, etc.

It can help to understand the main idea of the suggested method if we take
into account that, if H1 is true, then frequent letters from A (as frequently
used books) will have relatively small numbers (will spend more time next
to the top of the stack). On the other hand, if H0 is true, the probability to
find each letter xi at each position j is equal to 1/S.

Let us proceed with the description of the test. The set of all indexes
{1, . . . , S} is divided into r, r ≥ 2, subsets A1 = {1, 2, . . . , k1}, A2 = {k1 +
1, . . . , k2}, . . . , Ar = {kr−1 + 1, . . . , kr}. Then, using x1x2 ... xn, we calcu-
late how many νt(xt), t = 1, ..., n, belong to a subset Ak, k = 1, ..., r. We
define this number as nk (or, more formally, nk = |{t : νt(xt) ∈ Ak, t =
1, . . . , n}|, k = 1, ..., r.) Obviously, if H0 is true, the probability of the event
νt(xt) ∈ Ak is equal to |Aj|/S. Then, using a ”common” chi- square test we

test the hypothesis Ĥ0 = P{νt(xt) ∈ Ak} = |Aj|/S basing on the empirical

frequencies n1, . . . , nr, against Ĥ1 = ¬Ĥ0. Let us recall that the value

x2 =
r∑

i=1

(ni − n(|Ai|/S))2

n(|Ai|/S)
, (7)

is calculated, when chi- square test is applied, see, for ex., Kendall and Stuart,
1961. It is known that x2 asymptotically follows the χ-square distribution

8

with (k−1) degrees of freedom (χ2
k−1) if Ĥ0 is true. If the level of significance

(or a Type I error) of the χ2 test is α, α ∈ (0, 1), the hypothesis Ĥ0 is accepted
when x2 from (7) is less than the (1 − α) -value of the χ2

k−1 distribution.;
see, for ex., Kendall, Stuart, 1961.

We do not describe the exact rule how to construct the subsets {A1, A2,
. . . , Ar}, but we recommend to implement some experiments for finding the
parameters, which make the sample size minimal (or, at least, acceptable).
The point is that there are many cryptographic and other applications where
it is possible to implement some experiments for optimizing the parameter
values and, then, to test hypothesis basing on independent data. For exam-
ple, in case of testing a PRNG it is possible to seek suitable parameters using
a part of generated sequence and then to test the PRNG using a new part
of the sequence.

Let us consider a small example. Let A = {a1, . . . , a6}, r = 2, A1 =
{a1, a2, a3}, A2 = {a4, a5, a6}, x1 . . . x8 = a3a6a3a3a6a1a6a1. If ν1 = 1, 2, 3, 4,
5, 6, then ν2 = 3, 1, 2, 4, 5, 6, ν3 = 6, 3, 1, 2, 4, 5, etc., and n1 = 7, n2 = 1. We
can see that the letters a3 and a6 are quite frequent and the ”book stack”
indicates this nonuniformity quite well. (Indeed, the average values of n1 and
n2 equal 4, whereas the real values are 7 and 1, correspondingly.)

Examples of practical applications of this test will be given in Section 4,
but here we make two notes. Firstly, we pay attention to the complexity of
this algorithm. The ”naive” method of transformation according to (6) could
take the number of operations proportional to S, but there exist algorithms,
which can perform all operations in (6) using O(logS) operations. Such
algorithms can be based on AVL- trees, see, for ex., Aho,Hopcroft and Ulman,
1976.

The last comment concerns with the name of the method. The ”book
stack” structure is quite popular in Information Theory and Computer Sci-
ence. In Information Theory this structure was firstly suggested as a basis of
an universal code by Ryabko, 1980, and was rediscovered by Bently, Sleator,
Tarjan, Wei in 1986, and Elias in 1987 (see also a comment of Ryabko (1987)
about a history of this code). In English language literature this code is
frequently called as ”Move-to-Front” (MTF) scheme as it was suggested by
Bently, Sleator, Tarjan and Wei. Now this data structure is used in a so
called caching and many other algorithms in Computer Science under the
name ”Move-to-Front”. It is also worth noting that the book stack was
firstly considered by a soviet mathematician M.L. Cetlin as an example of a

9

self- adaptive system in 1960’s, see Rozanov, 1971.
3.2. The order test

This test is also based on changing the order νt(a) of alphabet letters but
the rule of the order change differs from (6). To describe the rule we first
define λt+1(a) as a count of occurrences of a in the word x1 . . . xt−1xt. At each
moment t the alphabet letters are ordered according to νt in such a way that,
by definition, for each pair of letters a and b νt(a) ≺ νt(b) if λt(a) ≤ λt(b).
For example, if A = {a1, a2, a3} and x1x2x3 = a3a2a3, the possible orders can
be as follows: ν1 = (1, 2, 3), ν2 = (3, 1, 2), ν3 = (3, 2, 1), ν4 = (3, 2, 1). In
all other respects this method coincides with the book stack. (The set of all
indexes {1, . . . , S} is divided into r subsets, etc.)

Obviously, after observing each letter xt the value λt(xt) should be in-
creased and the order νt should be changed. It is worth noting that there
exist a data structure and algorithm, which allow maintaining the alphabet
letters ordered in such a way that the number of operations spent is constant,
independently of the size of the alphabet. This data structure was described
by Moffat, 1999 and Ryabko, Rissanen, 2003.

3.3. Two- faced processes and the choice of the block length
for a process testing

There are quite many methods for testing H0 and H1, where the bit
stream is divided into words (blocks) of the length s, s ≥ 1, and the sequence
of the blocks x1x2 . . . xs, xs+1 . . . x2s, . . . is considered as letters, where each
letter belongs to the alphabet Bs = {0, 1}s and has the probability 2−s, if
H0 is true. For instance, both above described tests, methods from Ryabko,
Stognienko and Shokin (2003) and quite many other algorithms belong to
this kind. That is why the questions of choosing the block length s will be
considered here.

As it was mentioned in the introduction there exist two-faced processes,
which, on the one hand, are far from being truly random, but, on the other
hand, they can be distinguished from truly random only in the case when
the block length s is large. From the information theoretical point of view
the two- faced processes can be simply described as follows. For a two- faced
process, which generates letters from {0, 1}, the limit Shannon entropy is
(much) less than 1 and, on the other hand, the s− order entropy (hs) is
maximal (hs = 1 bit per letter) for relatively large s.

We describe two families of two- faced processes T (k, π) and T̄ (k, π),
where k = 1, 2, . . . , and π ∈ (0, 1) are parameters. The processes T (k, π) and
T̄ (k, π) are Markov chains of the connectivity (memory) k, which generate

10

letters from {0, 1}. It is convenient to define them inductively. The process
T (1, π) is defined by conditional probabilities PT (1,π)(0/0) = π, PT (1,π)(0/1) =
1−π (obviously, PT (1,π)(1/0) = 1−π, PT (1,π)(1/1) = π). The process T̄ (1, π)
is defined by PT̄ (1,π)(0/0) = 1−π, PT̄ (1,π)(0/1) = π. Assume that T (k, π) and
T̄ (k, π) are defined and describe T (k + 1, π) and T̄ (k + 1, π) as follows

PT (k+1,π)(0/0u) = PT (k,π)(0/u), PT (k+1,π)(1/0u) = PT (k,π)(1/u),

PT (k+1,π)(0/1u) = PT̄ (k,π)(0/u), PT (k+1,π)(1/1u) = PT̄ (k,π)(1/u),

and, vice versa,

PT̄ (k+1,π)(0/0u) = PT̄ (k,π)(0/u), PT̄ (k+1,π)(1/0u) = PT̄ (k,π)(1/u),

PT̄ (k+1,π)(0/1u) = PT (k,π)(0/u), PT̄ (k+1,π)(1/1u) = PT (k,π)(1/u)

for each u ∈ Bk (here vu is a concatenation of the words v and u). For
example,

PT (2,π)(0/00) = π, PT (2,π)(0/01) = 1−π, PT (2,π)(0/10) = 1−π, PT (2,π)(0/11) = π.

The following Claim shows that the two-faced processes exist.
Theorem 3. For each π ∈ (0, 1) the s-order Shannon entropy (hs) of the

processes T (k, π) and T̄ (k, π) equals 1 bit per letter for s = 0, 1, . . . , k whereas
the limit Shannon entropy (h∞) equals −(π log2 π + (1− π) log2(1− π)).

The proofs of the theorem is given in Appendix, but here we consider
examples of ”typical” sequences of the processes T (1, π) and T̄ (1, π) for π,
say, 1/5. Such sequences could be as follows: 010101101010100101... and
000011111000111111000..... We can see that each sequence contains approx-
imately one half of 1’s and one half of 0’s. (That is why the first order
Shannon entropy is 1 per a letter.) On the other hand, both sequences do
not look like truly random, because they, obviously, have too long subwords
like either 101010.. or 000..11111... (In other words, the second order Shan-
non entropy is much less than 1 per letter.) Hence, if a randomness test is
based on estimation of frequencies of 0’s and 1’s only, then such a test will
not be able to find deviations from randomness.

So, if we revert to the question about the block length of tests and take
into account the existence of two- faced processes, it seems that the block
length could be taken as large as possible. But it is not so. The following
informal consideration could be useful for choosing the block length. The
point is that statistical tests can be applied if words from the sequence

11

x1x2 . . . xs, xs+1 . . . x2s, . . . , x(m−1)s+1x(m−1)s+2 . . . xms (8)

are repeated (at least a few times) with high probability (here ms is the sam-
ple length). Otherwise, if all words in (8) are unique (with high probability)
when H0 is true, it should be so for close hypotheses H1. That is why a sensi-
ble test cannot be constructed basing on a division into s−letter words. So,
the word length s should be chosen in such a way that some words from the
sequence (8) are repeated with high probability, when H0 is true. So, now our
problem can be formulated as follows. There is a binary sequence x1x2 . . . xn

generated by the Bernoulli source with P (xi = 0) = P (xi = 1) = 1/2 and
we want to find such a block length s that the sequence (8) with m = bn/sc,
contains some repetitions (with high probability). This problem is well
known in the probability theory and sometimes called as the birthday prob-
lem. Namely, the standard statement of the problem is as follows. There
are S = 2s cells and m (= n/s) pellets. Each pellet is put in one of the
cells with the probability 1/S. It is known in Probability Theory that, if
m = c

√
S, c > 0 then the average number of cells with at least two pellets

equals c2 (1/2 + ◦(1)), where S goes to ∞ ; see Kolchin, Sevast’yanov and
Chistyakov, 1976. In our case the number of cells with at least two pellets is
equal to the number of the words from the sequence (8) which are met two
(or more) times. Having into account that S = 2s,m = n/s, we obtain from
m = c

√
S, c > 0 an informal rule for choosing the length of words in (8):

n � s2s/2 (9)

where n is the length of a sample x1x2...xn, s is the block length. If s is much
larger, the sequence (8) does not have repeated words (in case H0) and it is
difficult to build a a sensible test. On the other hand, if s is much smaller,
large classes of the alternative hypotheses cannot be tested (due to existence
of the two-faced processes).

4 The experiments

In this part we describe some experiments carried out to compare new tests
with known ones. We will compare order test, book stack test, tests which
are based on standard data compression methods, and tests from Rukhin
and others, 2001. The point is that the tests from Rukhin and others are

12

selected basing on comprehensive theoretical and experimental analysis and
can be considered as the state-of-the-art in randomness testing. Besides, we
will also test the method recently published by Ryabko, Stognienko, Shokin,
(2003), because it was published later than the book of Rukhin and others.

We used data generated by the PRNG ”RANDU” (described in Dudewicz
and Ralley, 1981) and random bits from ”The Marsaglia Random Number
CDROM”, see: http://stat.fsu.edu/diehard/cdrom/). RANDU is a linear
congruent generators (LCG), which is defined by the following equality

Xn+1 = (AXn + C)modM ,

where Xn is n-th generated number. RANDU is defined by parameters A =
216 + 3, C = 0,M = 231, X0 = 1. Those kinds of sources of random data
were chosen because random bits from ”The Marsaglia Random Number
CDROM” are considered as good random numbers, whereas it is known that
RANDU is not a good PRNG. It is known that the lowest digits of Xn are
”less random” than the leading digits (Knuth, 1981), that is why in our
experiments with RANDU we extract an eight-bit word from each generated
Xi by formula X̂i = bXi/2

23c.
The behavior of the tests was investigated for files of different lengths

(see the tables below). We generated 100 different files of each length and
applied each mentioned above test to each file with level of significance 0.01
(or less, see below). So, if a test is applied to a truly random bit sequence,
on average 1 file from 100 should be rejected. All results are given in the
tables, where integers in boxes are the number of rejected files (from 100).
If a number of the rejections is not given for a certain length and test, it
means that the test cannot be applied for files of such a length. The table 1
contains information about testing of sequences of different lengths generated
by RANDU, whereas the table 2 contains results of application of all tests
to 5 000 000- bit sequences either generated by RANDU or taken from ”The
Marsaglia Random Number CDROM”.

Let us first give some comments about the tests, which are based on
popular data compression methods RAR and ARJ. In those cases we applied
each of both methods to each file and estimated the length of compressed
data. Then we use the test Γ(n)

α,ϕ with the critical value (1) as follows. The
alphabet size |A| = 28 = 256, n log |A| is simply the length of file (in bits)
before compression, (whereas n is the length in bytes). So, taking α =
0.01, from (1), we see that the hypothesis about randomness (H0) should be

13

rejected, if the length of compressed file is less than or equal to n log |A| − 8
bits. (Strictly speaking, in this case α ≤ 2−7 = 1/128.) So, taking into
account that the length of computer files is measured in bytes, this rule is
very simple: if the n−byte file is really compressed (i.e. the length of the
encoded file is n− 1 bytes or less), this file is not random. So, the following
tables contain numbers of cases, where files were really compressed.

Let us now give some comments about parameters of the considered meth-
ods. As it was mentioned, we investigated all methods from the book of
Rukhin and others (2001), the test of Ryabko, Stognienko and Shokin, 2003
(RSS test for short), the described above two tests based on data compression
algorithms, the order tests and the book stack test. For some tests there are
parameters, which should be specified. In such cases the values of parame-
ters are given in the table in the row, which follows the test results. There
are some tests from the book of Rukhin and others, where parameters can
be chosen from a certain interval. In such cases we repeated all calculations
three times, taking the minimal possible value of the parameter, the maximal
one and the average one. Then the data for the case when the number of
rejections of the hypothesis H0 was maximal, is given in the table.

The choice of parameters for RSS, the book stack test and the order test
was made on the basis of special experiments, which were carried out for
independent data. (Those algorithms are implemented as a Java program
and can be found on the internet, see http : //web.ict.nsc.ru/˜rng/.) In all
cases such experiments have shown that for all three algorithms the optimal
blocklength is close to the one defined by informal equality (9).

We can see from the tables that the new tests can detect non-randomness
more efficiently than the known ones. Seemingly, the main reason is that
RSS, book stack tests and order test deal with such large blocklength as it
is possible, whereas many other tests are focused on other goals. The second
reason could be an ability for adaptation. The point is that the new tests
can find subwords, which are more frequent than others, and use them for
testing, whereas many other tests are looking for particular deviations from
randomness.

In conclusion, we can say that the obtained results show that the new
tests, as well as the ideas of Information Theory in general, can be useful
tools for randomness testing.

14

5 Appendix.

Proof of Theorem 1. First we estimate the number of words ϕ(u) whose
length is less than or equal to an integer τ . Obviously, at most one word can
be encoded by the empty codeword, at most two words by the words of the
length 1, ..., at most 2i can be encoded by the words of length i, etc. Having
taken into account that the codewords ϕn(u) 6= ϕn(v) for different u and v,
we obtain the inequality

|{u : |ϕn(u)| ≤ τ}| ≤
τ∑

i=0

2i = 2τ+1 − 1.

From this inequality and (1) we can see that the number of words from the set
{An}, whose codelength is less than or equal to tα = n log |A|− log(1/α)−1,
is not greater than 2n log |A|−log(1/α). So, we obtained that

|{u : |ϕn(u)| ≤ tα}| ≤ α|A|n.

Taking into account that all words from An have equal probabilities if H0 is
true, we obtain from the last inequality, (1) and the description of the test
Γ(n)

α,ϕ that
Pr{|ϕn(u)| ≤ tα|} ≤ (α|A|n/|A|n) = α

if H0 is true. The theorem is proved.
Proof of Claim 1. The proof is based on a direct calculation of the

probability of rejection for a case where H0 is true. From the description of
the test Υ(n)

α,ϕ and definition of s (see (1)) we obtain the following chain of
equalities.

Pr{H0 is rejected } = Pr{ |ϕn(u)| = s}

+Pr{|ϕn(u)| = s+ 1} (1 − (
s+1∑
j=1

|Aj| − α|A|n)/|As+1|))

=
1

An
(

s∑
j=0

|Aj| + |As+1| (1 − (
s+1∑
j=1

|Aj| − α|A|n)/|As+1|)) = α.

The claim is proved.
Proof of Claim 2. We can think that t̂α in (4) is an integer. (Otherwise,

we obtain the same test taking bt̂αc as a new critical value of the test.) From

15

the Kraft inequality (3) we obtain that

1 ≥
∑

u∈An

2−|ϕn(u)| ≥ |{u : |ϕn(u)| ≤ t̂α}| 2−t̂α .

This inequality and (4) yield:

|{u : |ϕn(u)| ≤ t̂α}| ≤ α|A|n.

If H0 is true then the probability of each u ∈ An equals |A|−n and from the
last inequality we obtain that

Pr{|ϕ(u)| ≤ t̂α} = |A|−n |{u : |ϕn(u)| ≤ t̂α}| ≤ α,

if H0 is true. The claim is proved.
Proof of Theorem 3. First we show that

p∗(x1...xk) = 2−k, (10)

(x1...xk) ∈ {0, 1}k, is a stationary distribution for the processes T (k, π) and
T̄ (k, π) for all k = 1, 2, . . . and π ∈ (0, 1). We will use an induction on k.
For the case k = 1 the equality (10) can be obtained by the direct calcula-
tions. For other values of k, (4) will be proved if we show that the system of
equations

p(x1...xk) = p(0x1...xk−1) p(xk/0x1...xk−1) + p(1x1...xk−1) p(xk/1x1...xk−1)

has the solution p(x1...xk) = 2−k, (x1...xk) ∈ {0, 1}k, k = 1, 2, It can
be easily seen if we take into account that, by definition of T (k, π) and
T̄ (k, π), the equality p(xk/0x1...xk−1) + p(xk/1x1...xk−1) = 1 is valid for all
(x1...xk) ∈ {0, 1}k.

From the definition T (k, π) and T̄ (k, π) we can see that either p(0/x1...xk) =
π, p(1/x1...xk) = 1 − π or p(0/x1...xk) = 1 − π, p(1/x1...xk) = π. That is
why h(xk+1/x1...xk) = −(π log2 π + (1 − π) log2(1 − π)) and, hence, h∞ =
−(π log2 π + (1− π) log2(1− π)). The claim is proved.

16

References

[1] A.V.Aho,J.E. Hopcroft, J.D.Ulman. The desighn and analysis of com-
puter algorithms , Reading, MA: Addison- Wesley, 1976.

[2] Bently J.L., Sleator D.D., Tarjan R.E., Wei V.K. A Locally Adaptive Data
Compression Scheme. Comm. ACM, v.29, 1986, pp.320-330.

[3] P. Billingsley, Ergodic theory and information, John Wiley & Sons (1965).

[4] E.J. Dudewicz and T.G. Ralley. The Handbook of Random Number Gen-
eration and Testing With TESTRAND Computer Code, v. 4 of American
Series in Mathematical and Management Sciences. American Sciences
Press, Inc., Columbus, Ohio, 1981.

[5] Elias P. Interval and Recency Rank Source Coding: Two On-Line Adap-
tive Variable-Length Schemes, IEEE Trans. Inform. Theory, v.33, N
1,1987, pp.3-10.

[6] Gallager R.G. Information Theory and Reliable Communication. Wiley,
New York,1968.

[7] Kendall M.G., Stuart A. The advanced theory of statistics; Vol.2: Infer-
ence and relationship . London, 1961.

[8] Knuth D.E. The art of computer programming. Vol.2. Addison Wesley,
1981.

[9] Kolmogorov A.N. Three approaches to the quantitative definition of in-
formation. Problems of Inform. Transmission, v.1, 1965, pp.3-11.

[10] Krichevsky R. Universal Compression and Retrival. Kluver Academic
Publishers, 1993.

[11] Li M., Vitanyi P. An Introduction to Kolmogorov Complexity and Its
Applications , Springer-Verlag, New York, 2nd Edition, 1997.

[12] G. Marsaglia. The structure of linear congruential sequences. In: S. K.
Zaremba, editor, Applications of Number Theory to Numerical Analysis,
pages 248-285. Academic Press, New York, 1972.

17

[13] G. Marsaglia and A. Zaman. Monkey tests for random number genera-
tors. Computers Math. Applic., 26:1-10, 1993.

[14] Maurer U. A universal statistical test for random bit generators., Jour-
nal of Cryptology, v.5, n.2, 1992, pp.89-105.

[15] O. Moeschlin, E. Grycko, C. Pohl, and F. Steinert. Experimental
Stochastics. Springer-Verlag, Berlin Heidelberg, 1998.

[16] A. Moffat, An improved data structure for cumulative probability tables,
1999, Software – Practice and Experience, v.29, no. 7, pp.647-659.

[17] Rozanov Yu.A. The Random Processes , Moscow, ”Nauka” (”Science”),
1971.

[18] Rukhin A. and others. A statistical test suite for random
and pseudorandom number generators for cryptographic applications.
NIST Special Publication 800-22 (with revision dated May,15,2001).
http://csrc.nist.gov/rng/SP800-22b.pdf

[19] Ryabko B.Ya. Information Compression by a Book Stack, Problems of
Information Transmission, v.16, N 4, 1980, pp.16-21.

[20] Ryabko B.Ya. A locally adaptive data compression scheme (Letter),
Comm. ACM, v.30, N 9, 1987, p.792.

[21] B. Ryabko, J. Rissanen. Fast Adaptive Arithmetic Code for Large Al-
phabet Sources with Asymmetrical Distributions. IEEE Communications
Letters,v. 7, no. 1, 2003,pp.33- 35.

[22] B. Ya. Ryabko, V. S. Stognienko, Yu. I. Shokin. A new test for ran-
domness and its application to some cryptographic problems. Journal of
Statistical Planning and Inference, 2003, (accepted; available online, see:
JSPI, doi:10.1016/S0378-3758(03)00149-6)

18

Table 1

Name/Length (in bits) 5 104 105 5 105 106

Order test 56 100 100 100

Book stack 42 100 100 100

parameters for both tests s=20, |A1| = 5
√

2s

RRS 4 75 100 100

parameters s=16 s=17 s=20

RAR 0 0 100 100

ARJ 0 0 99 100

Frequency 2 1 1 2

Block Frequency 1 2 1 1

parameters M=1000 M=2000 M = 105 M=20000

Cumulative Sums 2 1 2 1

Runs 0 2 1 1

Longest Run of Ones 0 1 0 0

Rank 0 1 1 0

Discrete Fourier Transform 0 0 0 1

NonOverlapping Templates – – – 2

parameters m=10

Overlapping Templates – – – 2

parameters m=10

Universal Statistical – – 1 1

parameters L=6 L=7

Q=640 Q=1280

Approximate Entropy 1 2 2 7

parameters m=5 m=11 m=13 m=14

Random Excursions – – – 2

Random Excursions Variant – – – 2

Serial 0 1 2 2

parameters m=6 m=14 m=16 m=8

Lempel-Ziv Complexity – – – 1

Linear Complexity – – – 3

parameters M=2500

19

Table 2

Name/Length (in bits) 5 106(RANDU) 5 106(random bits)

Order test 100 3

Book stack 100 0

parameters for both tests s=24, |A1| = 5
√

2s

RRS 100 1

parameters s=24 s=24

RAR 100 0

ARJ 100 0

Frequency 2 1

Block Frequency 2 1

parameters M = 106 M = 105

Cumulative Sums 3 2

Runs 2 2

Longest Run of Ones 2 0

Rank 1 1

Discrete Fourier Transform 89 9

NonOverlapping Templates 5 5

parameters m=10 m=10

Overlapping Templates 4 1

parameters m=10 m=10

Universal Statistical 1 2

parameters L=9 L=9

Q=5120 Q=5120

Approximate Entropy 100 89

parameters m=17 m=17

Random Excursions 4 3

Random Excursions Variant 3 3

Serial 100 2

parameters m=19 m=19

Lempel-Ziv Complexity 0 0

Linear Complexity 4 3

parameters M=5000 M=2500

20

