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Abstrat. In this paper we study the minimumdistane between the set

of bent funtions and the set of 1-resilient Boolean funtions and present

a lower bound on that. The bound is proved to be tight for funtions up

to 10 input variables. As a onsequene, we present a strategy to modify

the bent funtions, by toggling some of its outputs, in getting a large

lass of 1-resilient funtions with very good nonlinearity and autoorre-

lation. In partiular, the tehnique is applied upto 12-variable funtions

and we show that the onstrution provides a large lass of 1-resilient

funtions reahing urrently best known nonlinearity and ahieving very

low autoorrelation values whih were not known earlier. The tehnique

is sound enough to theoretially solve some of the mysteries of 8-variable,

1-resilient funtions with maximum possible nonlinearity. However, the

situation beomes ompliated from 10 variables and above, where we

need to go for ompliated ombinatorial analysis with trial and error

using omputational faility.

Keywords: Autoorrelation, Bent Funtion, Boolean Funtion, Nonlinear-

ity, Resilieny.

1 Introdution

Constrution of resilient Boolean funtions with very good parameters in terms

of nonlinearity, algebrai degree and other ryptographi parameters has re-

eived lot of attention in literature [15, 16, 18, 19, 8, 21, 2, 3℄. In [17, 7℄, it had

been shown how bent funtions an be modi�ed to onstrut highly nonlinear

balaned Boolean funtions. A reent onstrution method [12℄ presents modi-

�ation of some output points of a bent funtion to onstrut highly nonlinear

1-resilient funtion. A natural question that arises in this ontext is \at least

how many bits in the output of a bent funtion need to be hanged to onstrut

an 1-resilient Boolean funtion". The answer of this question gives the minimum

distane between the set of bent funtions and the set of 1-resilient funtions.



We here try to answer this question and show that the minimum distane for

n-variable funtions is
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(1). Interestingly, it is possible to get 1-resilient funtions with better

nonlinearity and autoorrelation than these bounds. In partiular, we onen-

trate on onstrution of 1-resilient Boolean funtions up to 12-variables with

best known nonlinearity and autoorrelation. Throughout the paper we onsider

the number of input variables (n) is even.

The bent funtions hosen in [12, Setion 3℄ use the onept of perfet non-

linear funtions and one example funtion eah for 8; 10 and 12 variables were

presented. However, it is not lear how a generalized onstrution of suh bent

funtions an be ahieved in that manner. We here identify a large sublass of

Maiorana-MFarland type bent funtions whih an be modi�ed to get 1-resilient

funtions with urrently best known parameters. Further our onstrution is su-

perior to [12℄ in terms of number of points that need to be toggled (we need less

in ase of 10, 12 variables), the nonlinearity (we get better nonlinearity for 12

variables) and autoorrelation (we get 1-resilient funtions with autoorrelation

values that were not known earlier for 10, 12 variables).

1.1 Preliminaries

A Boolean funtion on n variables may be viewed as a mapping from f0; 1g

n

into f0; 1g. A Boolean funtion f(x

1

; : : : ; x

n

) is also interpreted as the output

olumn of its truth table f , i.e., a binary string of length 2

n

,

f = [f(0; 0; � � � ; 0); f(1; 0; � � � ; 0); f(0; 1; � � � ; 0); : : : ; f(1; 1; � � � ; 1)℄:

The Hamming distane between two binary strings S
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): Also the Hamming weight or simply

the weight of a binary string S is the number of ones in S. This is denoted by

wt(S). An n-variable funtion f is said to be balaned if its output olumn in

the truth table ontains equal number of 0's and 1's (i.e., wt(f) = 2

n�1

).

Denote addition operator over GF (2) by �. An n-variable Boolean funtion

f(x

1

; : : : ; x

n

) an be onsidered to be a multivariate polynomial overGF (2). This

polynomial an be expressed as a sum of produts representation of all distint

k-th order produts (0 � k � n) of the variables. More preisely, f(x

1

; : : : ; x

n

)

an be written as
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2 f0; 1g. This representation of f is

alled the algebrai normal form (ANF) of f . The number of variables in the



highest order produt term with nonzero oeÆient is alled the algebrai degree,

or simply the degree of f and denoted by deg(f).

Funtions of degree at most one are alled aÆne funtions. An aÆne funtion

with onstant term equal to zero is alled a linear funtion. The set of all n-

variable aÆne (respetively linear) funtions is denoted by A(n) (respetively

L(n)). The nonlinearity of an n-variable funtion f is

nl(f) = min

g2A(n)

d(f; g);

i.e., the distane from the set of all n-variable aÆne funtions.
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Let f(x) be a Boolean funtion on n variables. Then the Walsh transform of

f(x) is a real valued funtion over f0; 1g

n

whih is de�ned as

W
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For n-even, the maximum nonlinearity of a Boolean funtion an be 2
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and the funtions possessing this nonlinearity are alled bent funtions [14℄.

Further, for a bent funtion f on n variables, W

f

(!) = �2

n

2

for all !.

In [9℄, an important haraterization of orrelation immune and resilient

funtions has been presented, whih we use as the de�nition here. A funtion

f(x

1

; : : : ; x

n

) is m-resilient (respetively m-th order orrelation immune) i� its

Walsh transform satis�es

W

f

(!) = 0; for 0 � wt(!) � m (respetively W

f

(!) = 0; for 1 � wt(!) � m):

As the notation used in [15, 16℄, by an (n;m; d; �) funtion we denote an

n-variable, m-resilient funtion with degree d and nonlinearity �.

We will now de�ne restrited Walsh transform whih will be frequently used

in this text. The restrited Walsh transform of f(x) on a subset S of f0; 1g

n
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a real valued funtion over f0; 1g

n

whih is de�ned as
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Now we present the following tehnial result.

Proposition 1. Let S � f0; 1g

n

and b(x); f(x) be two n-variable Boolean fun-

tions suh that f(x) = 1 � b(x) when x 2 S and f(x) = b(x) otherwise. Then
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Propagation Charateristis (PC) and Strit Avalanhe Criteria (SAC) [13℄

are important properties of Boolean funtions to be used in S-boxes. Further,

Zhang and Zheng [22℄ identi�ed related ryptographi measures alled Global

Avalanhe Charateristis (GAC).

Let � 2 f0; 1g

n

and f be an n-variable Boolean funtion. De�ne the auto-

orrelation value of f with respet to the vetor � as
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A funtion is said to satisfy PC(k), if �

f

(�) = 0 for 1 � wt(�) � k. Note that,

for a bent funtion f on n variables, �

f

(�) = 0 for all nonzero �, i.e., �

f

= 0.

Analysis of autoorrelation properties of orrelation immune and resilient

Boolean funtions has gained substantial interest reently as evident from [20,

23, 11, 4℄. In [11, 4℄, it has been identi�ed that some well known onstrution of

resilient Boolean funtions are not good in terms of autoorrelation properties.

Sine the present onstrution is modi�ation of bent funtions whih possess

the best possible autoorrelation properties, we get very good autoorrelation

properties of the 1-resilient funtions. We present a bound on the �

f

value of

the 1-resilient funtions and further ahieve best known autoorrelation values

for the ases n = 8; 10; 12.

2 The Distane

Initially we start with a simple tehnial result.
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Proof. For a bent funtion b on n variables, W
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. Hene the minimum

distane from a bent funtion to balaned funtions equals 2
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. The 1-resilient

funtions are balaned by de�nition and hene the result. ut



Now we present a restrited result. Let b(x) be an n-variable bent funtion

with W
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(!) = +2
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for wt(!) � 1. We denote byM

b

(n; 1) the minimum number

of bits to be modi�ed in the output olumn of b(x) to onstrut an n variable

1-resilient funtion from b(x).

Theorem 1. Let b(x) be an n-variable bent funtion with W

b

(!) = 2

n

2

for 0 �

wt(!) � 1. Then

M

b

(n; 1) � 2

n

2

�1

+ 2

�

(r + 1)(2

n

2

�1

�

P

r

i=0

�

n

i

�

) +

P

r

i=1

i

�

n

i

�

n� r � 1

�

;

where r is the integer suh that

P

r

i=0

�

n

i

�

� 2

n

2

�1

+ 1 <

P

r+1

i=0

�

n

i

�

is satis�ed.

Proof. Let S � f0; 1g

n

and f(x) be an n-variable Boolean funtion obtained by

modifying the b(x) values for x 2 S and keeping the other bits unhanged. Then

from Proposition 1,W
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This gives,
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Now we disuss how to hoose this r. For this we need a easier lower bound

on k whih does not depend on r itself.
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Theorem 2. Let b(x) be any n-variable bent funtion. Then
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Proof. Without loss of generality, assume that W

b

(!) = +2

n

2

for wt(!) = 0.

Let G

1

= f!jwt(!) = 1;W

b
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g and G
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g. Let S � f0; 1g

n

and f(x) be an n-variable Boolean funtion obtained by

modifying the b(x) values for x 2 S and keeping the other bits unhanged. Then

from Proposition 1,W
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8!; and in partiular, W
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Given f is 1-resilient, we need to �nd a lower bound on jSj = k with the
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Let jG

1

j = �. Using the same argument as in the proof of Theorem 1, our

problem is to �nd a k�n binary matrix S� b(S) with minimum number of rows
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with minimum number of rows k suh that there are at least
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rows" is equivalent to \�nding a binary matrix (M
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) with minimum

number of rows k suh that there are at least
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distint rows". Note that

eah olumn of (M
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many 1's. Thus, the

proof follows with the similar argument presented in Theorem 1. ut

For 8 � n � 16, it an be heked that
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satis�ed. In these ases, the lower bound on k is attained for r = 1 itself. Thus

we have the following result.

Corollary 1. For even n, 8 � n � 16, dBR
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Assume that one an onstrut a bent funtion b on n variables suh that
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n

(1) bits at the output olumn of b are hanged to get an n-variable 1-

resilient funtion f . It is lear that toggling of a single bit an redue the non-

linearity at most by 1 and inrease the maximum absolute value of the autoor-

relation spetra (absolute indiator) by at most 4. Thus we have the following

result.

Theorem 3. nl(f) � 2

n�1
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n

2

�1

� dBR
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(1) and �

f

� 4 dBR

n

(1).

Proof. This follows from nl(f) � nl(b)� dBR

n

(1) and �

f

� �

b

+ 4 dBR

n

(1),

where b is a bent funtion. ut

However, for the atual onstrutions of funtions on 8, 10 and 12 variables,

we will show that we get better nonlinearity and autoorrelation values than

these bounds. For n = 4; 6, we refer the readers to Appendix A.

3 The 8-variable 1-resilient Funtions

In the previous setion we have presented a lower bound of the minimum distane

between the bent and 1-resilient funtions. However, it has not been disussed

in Setion 2 how exatly a onstrution is possible. Further to ahieve the ur-

rently best known parameters (or even better than that, if possible) we may need

to onsider some other issues. In this setion we onsider the onstrution of an

(8; 1; 6; 116) funtion. Constrution of this funtion was an important open ques-

tion and the funtion has been �rst reported in [10℄ by interlinking ombinatorial

tehnique and omputer searh. Later this funtion has also been found by meta

heuristi searh (simulated annealing) in [5℄. Further the funtion found in [5℄

has �

f

= 24, whih is urrently the best known value. We here follow the similar

kind of tehnique used in [12℄. In the ourse of disussion it will be lear that

how our tehnique is an improvement over [12℄. We present a generalized on-

strution method of (8; 1; 6; 116) funtions by modifying Maiorana-MFarland

type bent funtions and in spei� ases, these funtions have the �

f

value as

low as 24, the best known one [5℄.

Constrution 1 Take a bent funtion b(x) on 8 variables with the following

properties : (1) b(x) = 0 for wt(x) � 1 and b(x) = 1 for wt(x) = 8, (2)

W

b

(!) = 16 for wt(!) � 1 and W

b

(!) = �16 for wt(!) = 8. De�ne a set

S = fx 2 f0; 1g

8

jwt(x) = 0; 1; 8g. Construt a funtion f(x) as :



f(x) = 1� b(x), if x 2 S

= b(x), otherwise.

From Corollary 1, we get that dBR

8

(1) � 10 and we here hoose exatly 10

positions and modify them. It is important to point out that we here start with

bent funtions with some spei� properties. The reason for hoosing suh bent

funtions is to get an atual onstrution of 1-resilient funtion with very high

nonlinearity.

Before presenting the theorem regarding the properties of f , let us enumerate

the issues we improve here over the work presented in [12℄.

1. There is a gap in the proof of [12, Theorem 3℄. Note the onditions imposed

on the bent funtion b above. In the statement of [12, Theorem 3℄, only the

onditions of item 1 has been onsidered and the onditions of the item 2

has not been onsidered as given in Constrution 1. The onditions of item

2 has been impliitly assumed in the proof of [12, Theorem 3℄. Fortunately,

the bent funtion onsidered in [12, Setion 3℄ satis�es the onditions of item

2. However, it should be noted that there exist bent funtions whih satisfy

the onditions of item 1 and not all the onditions of item 2 and in that ase

the proof of [12, Theorem 3℄ does not go through.

2. The bent funtion hosen in [12, Setion 3℄ uses the onept of perfet non-

linear funtions and they presented one example funtion whih satis�es the

onditions of item 1 (and also onditions of item 2). However, it is not lear

how a generalized onstrution of suh bent funtions an be ahieved in that

manner. It should also be noted that the example funtions presented in [12℄

are basially Maiorana-MFarland type, even though they are designed in a

di�erent manner by using the onept of perfet nonlinear funtions. We here

identify a sublass of Maiorana-MFarland type bent funtions whih satisfy

the onditions of both item 1 and 2. This gives a large lass of (8; 1; 6; 116)

funtions. In fat we show that there are more than 2
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many distint

(upto omplementation) (8; 1; 6; 116) funtions f with �

f

� 40.

3. The proof of Theorem 4 below is muh simpler than the proof of [12, Theorem

3℄ and it presents a lear piture of the Walsh spetra of the funtion f with

respet to the spetra of the funtion b.

Theorem 4. The funtion f(x) as desribed in Constrution 1 is an

(8; 1; 6; 116) funtion.

Proof. Take ! 2 f0; 1g

8

with wt(!) = i. Now

W

f

(!) =

P

x2f0;1g

8

(�1)

b(x)�!�x

� 2

P

x2S

(�1)

b(x)�!�x

(from Proposition 1)

=W

b

(!)� 2 ( 8� 2wt(!) + 2(wt(!) mod 2) ).

Now we explain how the last step is dedued. Note that b(x) = 0 when wt(x) = 0

and b(x) = 1, when wt(x) = 8. Thus,

P

x2f0;1g

8

jwt(x)=0;8

(�1)

b(x)�!�x

= 0, when wt(!) is even,

= 2, when wt(!) is odd.



Moreover,

P

x2f0;1g

8

jwt(x)=1

(�1)

b(x)�!�x

= 8� 2wt(!), as

(i) b(x) = 0 when wt(x) = 1 and

(ii) ! � x = 1 at wt(w) input points when wt(x) = 1.

Sine

P

x2S

(�1)

b(x)�!�x

=

P

x2f0;1g

8

jwt(x)=0;8

(�1)

b(x)�!�x

+

P

x2f0;1g

8

jwt(x)=1

(�1)

b(x)�!�x

; we get,

W

f

(!) =W

b

(!)� 2 ( 8� 2wt(!) + 2(wt(!) mod 2) ):

When wt(!) � 1, W

f

(!) = W

b

(!) � 16 = 16 � 16 = 0. Thus the funtion is

1-resilient.

Further, if wt(!) = 8, W

f

(!) = W

b

(!) + 16 = �16 + 16 = 0. For any other

hoie, i.e., for 2 � wt(!) � 7, we have j8� 2wt(!) + 2(wt(!) mod 2)j � 4 and

hene, jW

f

(!)j � jW

b

(!)j+ 8 = 16 + 8 = 24. Hene, nl(f) = 2

8�1

�

24

2

= 116.

Sine the funtion attains the maximum possible nonlinearity, the algebrai

degree [1, 3℄ of the funtion must be 8� 2 = 6. ut

wt(!) 0 1 2 3 4 5 6 7 8

W

f

(!) =W

b

(!)+ -16 -16 -8 -8 0 0 8 8 16

Table 1. Relationship between Walsh spetra of f; g as desribed in Constrution 1.

Based on Table 1 and the previous disussion, we get related results with

respet to (i) nonexistene of some 8-variable bent funtions and (ii) some re-

lationship between 8-variable bent funtions and balaned Boolean funtions

with nonlinearity 118 (whose existene is not known till date). These results are

plaed in Appendix B.

3.1 A Sublass of Maiorana-MFarland Bent Funtions

The original Maiorana-MFarland lass of bent funtion is as follows [6℄. Con-

sider n-variable Boolean funtions on (X;Y ), where X;Y 2 f0; 1g

n

2

of the form

f(X;Y ) = X � �(Y ) + g(Y ) where � is a permutation on f0; 1g

n

2

and g is any

Boolean funtion on

n

2

variables. The funtion f an be seen as onatenation

of 2

n

2

distint (upto omplementation) aÆne funtion on

n

2

variables.

One again we write what kind of bent funtion b(x) on 8 variables we require.

1. b(x) = 0 for wt(x) � 1 and b(x) = 1 for wt(x) = 8,

2. W

b

(!) = 16 for wt(!) � 1 and W

b

(!) = �16 for wt(!) = 8.

In this ase, n = 8, i.e.,

n

2

= 4. We have to deide what permutations � on f0; 1g

4

and what kind of funtions g on f0; 1g

4

we an take suh that the onditions on

b are satis�ed. We present a set of onditions below, whih taken all together,



provides suÆient ondition for onstrution of suh funtions. Before going

into the onditions, let us �x the notation and ordering of input variables as x =

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

; x

8

), X = (X

1

; X

2

; X

3

; X

4

), and Y = (Y

1

; Y

2

; Y

3

; Y

4

).

Further we identify X

1

= x

1

; X

2

= x

2

; X

3

= x

3

; X

4

= x

4

; Y

1

= x

5

; Y

2

= x

6

; Y

3

=

x

7

; Y

4

= x

8

.

1. First of all, the funtion b has the value 0 at the points (0; 0; 0; 0; 0; 0; 0; 0),

(1; 0; 0; 0; 0; 0; 0; 0), (0; 1; 0; 0; 0; 0; 0; 0), (0; 0; 1; 0; 0; 0; 0; 0),

(0; 0; 0; 1; 0; 0; 0; 0) and this ondition is satis�ed if we hoose �(0; 0; 0; 0) =

(0; 0; 0; 0) and g(0; 0; 0; 0) = 0.

2. Next we need funtion b should have value 0 at points (0; 0; 0; 0; 1; 0; 0; 0),

(0; 0; 0; 0; 0; 1; 0; 0), (0; 0; 0; 0; 0; 0; 1; 0), (0; 0; 0; 0; 0; 0; 0; 1), and this ondition

is satis�ed if we hoose g(Y ) = 0 for wt(Y ) = 1.

3. We need b to be 1 when the input is (1; 1; 1; 1; 1; 1; 1; 1). Thus if �(1; 1; 1; 1) is

a vetor of odd weight then g(1; 1; 1; 1) need to be 0. otherwise if �(1; 1; 1; 1)

is a vetor of even weight then g(1; 1; 1; 1) has to be 1.

4. Sine we have already deided that �(0; 0; 0; 0) = (0; 0; 0; 0) and g(0; 0; 0; 0) =

0, the W

f

(!) values for ! 2 f(0; 0; 0; 0; 1; 0; 0; 0), (0; 0; 0; 0; 0; 1; 0; 0),

(0; 0; 0; 0; 0; 0; 1; 0), (0; 0; 0; 0; 0; 0; 0; 1)g beomes +2

n

2

= 16.

5. Further if �(Y ) 2 f(1; 0; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0); (0; 0; 0; 1)g, then we take

g(Y ) = 0. This guarantees that W

f

(!) values for ! 2 f(1; 0; 0; 0; 0; 0; 0; 0),

(0; 1; 0; 0; 0; 0; 0; 0), (0; 0; 1; 0; 0; 0; 0; 0), (0; 0; 0; 1; 0; 0; 0; 0)g beomes +2

n

2

=

16.

6. Lastly, if �(Y ) = (1; 1; 1; 1), we have to �x g(Y ) = (wt(Y ) + 1) mod 2. This

guarantees that W

f

(1; 1; 1; 1; 1; 1; 1; 1) = �2

n

2

= �16.

Given a bent funtion from the Maiorana-MFarland lass f(X;Y ) = X �

�(Y ) + g(Y ), the dual of suh funtion f is Y � �

�1

(X) + g(�

�1

(X)). It is

interesting to hek whether the above points an be replaed by more preise

arguments using this idea.

Theorem 5. Let n = 8, x 2 f0; 1g

n

and X;Y 2 f0; 1g

n

2

. Let b(x) be a

Maiorana-MFarland type bent funtion b(x) = b(X;Y ) = X ��(Y )+g(Y ) where

� is a permutation on f0; 1g

n

2

and g is a Boolean funtion on

n

2

variables with

the following onditions.

(1) if Y = (0; 0; 0; 0), �(Y ) = Y ;

(2) if wt(�(Y )) � 1, or wt(Y ) � 1, then g(Y ) = 0;

(3) if Y = (1; 1; 1; 1), g(Y ) = (wt(�(Y )) + 1) mod 2;

(4) if wt(�(Y )) = 4, g(Y ) = (wt(Y ) + 1) mod 2.

Then (1) b(x) = 0 for wt(x) � 1 and b(x) = 1 for wt(x) = 8, (2) W

b

(!) = 16

for wt(!) � 1 and W

b

(!) = �16 for wt(!) = 8.

Further there are � 2
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many distint b's (upto omplementation) sat-

isfying these onditions and in turn there are � 2
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many distint (upto

omplementation) (8; 1; 6; 116) funtions.



Proof. The proof of the properties of b is disussed above in detail. The ount of

suh funtions is arrived as follows. Note that there are 2

n

2

= 16 plaes for the

permutation �.

Let there are i many Y 's, 0 � i � 4 suh that wt(�(Y )) = 1 for wt(Y ) = 1.

There are 4 elements of weight 1 and 10 elements of weight 2 or 3. Thus the

�(Y )'s for wt(Y ) = 1 may be hosen in

�

4

i

�

�

10

4�i

�

ways. Note that �(Y ) an not

be (1; 1; 1; 1) for wt(Y ) = 1. Now there are two ases.

1. Consider that �(1; 1; 1; 1) = (1; 1; 1; 1). Then the number of options is

�

4

i

�

�

�

10

4�i

�

� 4! � 10! � 2

6+i

. This is beause the 4 elements where wt(Y ) = 1 an be

permuted in 4! ways. The 4 elements where wt(Y ) = 2; 3 an be permuted in

10! ways. The funtion g(Y ) is �xed when Y is (0; 0; 0; 0) (1 plae, g(Y ) = 0)

or wt(Y ) = 1 (4 plaes, g(Y ) = 0) or wt(�(Y )) = 1 (4� i plaes, g(Y ) = 0)

or wt(Y ) = wt(�(Y )) = 4 (1 plae, g(Y ) = 1). Thus g(Y ) is �xed in 10� i

plaes and we an put any hoie from f0; 1g for 16� (10� i) = 6+ i plaes.

2. Consider that �(1; 1; 1; 1) 6= (1; 1; 1; 1). Then the number of options is

�

4

i

�

�

�

10

4�i

�

�10 �4! �10! �2

5+i

. Choose one element of wt(Y ) 6= 4 as �(1; 1; 1; 1). This

an be done in 10 ways. The 4 elements where wt(Y ) = 1 an be permuted in

4! ways. The 4 elements where wt(Y ) = 2; 3 an be permuted in 10! ways. The

funtion g(Y ) is �xed when Y is (0; 0; 0; 0) (1 plae, g(Y ) = 0) or wt(Y ) = 1

(4 plaes, g(Y ) = 0) or wt(�(Y )) = 1 (4� i plaes, g(Y ) = 0) or wt(Y ) = 4

(1 plae, g(Y ) = 1 if wt(�(Y )) = 0, else g(Y ) = 1) or wt(�(Y )) = 4 (1 plae,

g(Y ) = (wt(Y ) + 1) mod 2). Thus g(Y ) is �xed in 11� i plaes and we an

put any hoie from f0; 1g for 16� (11� i) = 5 + i plaes.

So the total number of options is 6

P

4

i=0

�

4

i

�

�

�

10

4�i

�

� 4! � 10! � 2

6+i

= 6 � 4! � 10! �

2

6

P

4

i=0

�

4

i

�

�

�

10

4�i

�

� 2

i

� 2
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Remark 1. Following Theorem 3, it is lear that for the funtion f as disussed

in Theorem 4, �

f

� 40. Now we present the following spei� ase.

Consider �(Y ) = Y for all Y 2 f0; 1g

4

, g(Y ) = 0 for all Y 2 f0; 1g

4

n

f(1; 1; 1; 1)g and g(Y ) = 1 for Y = (1; 1; 1; 1). Let b(x) = b(X;Y ) = X � �(Y ) +

g(Y ) and f(x) is as given in Constrution 1. Then f is an (8; 1; 6; 116) funtion

with �

f

= 24.

Note that we get an (8; 1; 6; 116) funtion f with �

f

= 24 in this method

whih has earlier been found by simulated annealing and linear transformation

in [5℄.

4 The 10-variable 1-resilient Funtions

We here start with 10-variable bent funtions. Theorem 1 and Theorem 2 do

not diretly provide the idea how the exat onstrution of an 1-resilient fun-

tion from a bent funtion is possible. Let us now desribe a method where we



will be able to identify a sublass of 10-variable Maiorana-MFarland type bent

funtions for this purpose.

As desribed in Setion 2, we need to modify at least k = 22 points (see

Corollary 1). Now following Theorem 1 and Theorem 2, it is lear that we �rst

need to selet

k

2

+ 2

n

2

�2

= 19 distint points. Note that we an have 1 point of

weight 0 and 10 points of weight 1. Thus we need to �nd out 8 more points from

weight 2. One these 19 points are seleted, further there are 3 more points to

be hosen.

S� b(S) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

x

10

x

9

x

8

x

7

x

6

x

5

x

4

x

3

x

2

x

1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0 1

0 0 0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Now we refer to the S� b(S) matrix given here. We present the �rst 19 points

and after the horizontal line we show the next 3 points. Note that the hoie

of the all zero point and the points of weight 1 are lear from the disussion

in Theorem 1. However, it is still to be sorted out how exatly the 8 points of

weight 2 are hosen. We here do that by observation and hoose the 8 points

of weight 2 out of total

�

10

2

�

= 45 weight 2 points. The rest 3 points (one of

weight 0 and other two of weight 2) are hosen properly to satisfy that weight

of eah olumn should be

k

2

� 2

n

2

�2

= 3. Now we need a bent funtion b on 10

variables with the property that b(x) = 0 when x is any of the �rst 19 points

and b(x) = 1 when x is omplement of any of the last 3 points. This means that

the last three rows need to be omplemented when they will be onsidered as



input points in the funtion. Thus, we onstrut two sets S

1

; S

2

as follows and

then denote S = S

1

[ S

2

.

S

1

= f(0; 0; 0; 0; 0; 0; 0; 0; 0; 0); (0; 0; 0; 0; 0; 0; 0; 0; 0; 1); (0; 0; 0; 0; 0; 0; 0; 0; 1; 0);

(0; 0; 0; 0; 0; 0; 0; 1; 0; 0); (0; 0; 0; 0; 0; 0; 1; 0; 0; 0); (0; 0; 0; 0; 0; 1; 0; 0; 0; 0);

(0; 0; 0; 0; 1; 0; 0; 0; 0; 0); (0; 0; 0; 1; 0; 0; 0; 0; 0; 0); (0; 0; 1; 0; 0; 0; 0; 0; 0; 0);

(0; 1; 0; 0; 0; 0; 0; 0; 0; 0); (1; 0; 0; 0; 0; 0; 0; 0; 0; 0); (0; 0; 0; 0; 0; 0; 0; 1; 1; 0);

(0; 0; 0; 0; 0; 1; 1; 0; 0; 0); (0; 0; 0; 0; 0; 1; 0; 0; 0; 1); (0; 0; 0; 1; 1; 0; 0; 0; 0; 0);

(0; 0; 1; 1; 0; 0; 0; 0; 0; 0); (0; 1; 1; 0; 0; 0; 0; 0; 0; 0); (1; 1; 0; 0; 0; 0; 0; 0; 0; 0);

(1; 0; 0; 0; 1; 0; 0; 0; 0; 0)g and

S

2

= f(1; 1; 1; 1; 1; 1; 1; 1; 1; 1); (1; 1; 1; 1; 1; 1; 1; 1; 0; 0); (1; 1; 1; 1; 1; 1; 0; 0; 1; 1)g.

Also onsider

S

0

1

= f(0; 0; 0; 0; 0; 0; 0; 0; 0; 0); (0; 0; 0; 0; 0; 0; 0; 0; 0; 1); (0; 0; 0; 0; 0; 0; 0; 0; 1; 0);

(0; 0; 0; 0; 0; 0; 0; 1; 0; 0); (0; 0; 0; 0; 0; 0; 1; 0; 0; 0); (0; 0; 0; 0; 0; 1; 0; 0; 0; 0);

(0; 0; 0; 0; 1; 0; 0; 0; 0; 0); (0; 0; 0; 1; 0; 0; 0; 0; 0; 0); (0; 0; 1; 0; 0; 0; 0; 0; 0; 0);

(0; 1; 0; 0; 0; 0; 0; 0; 0; 0); (1; 0; 0; 0; 0; 0; 0; 0; 0; 0); (0; 0; 0; 0; 0; 0; 0; 1; 1; 0);

(0; 0; 0; 0; 0; 1; 1; 0; 0; 0); (0; 0; 0; 0; 0; 1; 0; 0; 0; 1)g,

S

3

= f(0; 0; 0; 0; 0; 0; 0; 1; 0; 1); (0; 0; 0; 0; 0; 0; 0; 1; 1; 1); (0; 0; 0; 0; 0; 0; 1; 0; 0; 1);

(0; 0; 0; 0; 0; 0; 1; 0; 1; 0); (0; 0; 0; 0; 0; 0; 1; 1; 1; 0); (0; 0; 0; 0; 0; 1; 0; 0; 1; 1);

(0; 0; 0; 0; 1; 1; 1; 0; 0; 1); (0; 0; 0; 0; 0; 1; 1; 1; 0; 0); (0; 0; 0; 0; 0; 1; 1; 1; 1; 1)g and

S

4

= f(0; 0; 1; 1; 1; 0; 0; 0; 0; 0); (0; 1; 1; 1; 0; 0; 0; 0; 0; 0); (1; 0; 0; 1; 1; 0; 0; 0; 0; 0);

(0; 0; 0; 0; 0; 1; 1; 0; 0; 0); (1; 1; 0; 0; 1; 0; 0; 0; 0; 0); (1; 1; 1; 0; 0; 0; 0; 0; 0; 0);

(1; 1; 1; 1; 1; 0; 0; 0; 0; 0)g. We will talk about these sets S

0

1

; S

3

and S

4

little later.

We now write the exat onstrution.

Constrution 2 We need a 10-variable bent funtion b(x) with the following

properties:

1. b(x) = 0 when x 2 S

1

and b(x) = 1 when x 2 S

2

,

2. W

b

(!) = +32 when ! 2 S

0

1

[ S

3

[ S

4

.

The funtion f(x) is as follows.

f(x) = 1� b(x), if x 2 S

= b(x), otherwise.

From Theorem 1, it is lear that the funtion f(x) is 1-resilient. Now we need

to alulate the nonlinearity of f . In fat, we will prove that nl(f) = 488, the

urrently best known nonlinearity for 10-variable 1-resilient funtions. By Propo-

sition 1,W

f

(!) =W

b

(!)�2W

b

(!)j

S

. Thus, it is important to analyse the values

of W

b

(!)j

S

for all ! 2 f0; 1g

10

. However, this an not be done in a nie way as

it has been done in the 8-variable ase in Theorem 4. So we use a omputer pro-

gram to alulate W

b

(!)j

S

for all ! 2 f0; 1g

10

. Note that when jW

b

(!)j

S

j � 8,

then at those points jW

f

(!)j � 48. Thus, we have no restrition on the Walsh

spetra of the bent funtion b at these points to get the nonlinearity 488 for f .

However, we need to onentrate on the ases when jW

b

(!)j

S

j � 12. We have

heked that this happens when ! 2 S

0

1

[ S

3

[ S

4

and all these values are either

+12 or +16. Thus as given in Constrution 2, the Walsh spetra of the fun-

tion b should be +32 at these points. Hene Constrution 2 provides 10-variable



1-resilient funtions having nonlinearity 488. Using similar tehnique as in The-

orem 5, it is possible to get the ount of suh funtions. Due to spae onstraint

we do not inlude that in this version.

Note that we have not yet disussed the algebrai degree and autoorrela-

tion properties of the funtions. We now onsider a spei� ase and hek the

algebrai degree and autoorrelation property.

Take x = (x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

; x

8

; x

9

; x

10

), X = (X

1

; X

2

; X

3

; X

4

; X

5

),

and

Y = (Y

1

; Y

2

; Y

3

; Y

4

; Y

5

). Further we identify X

1

= x

1

; X

2

= x

2

; X

3

= x

3

; X

4

=

x

4

; X

5

= x

5

; Y

1

= x

6

; Y

2

= x

7

; Y

3

= x

8

; Y

4

= x

9

; Y

5

= x

10

.

Consider a 10-variable Maiorana-MFarland type bent funtion

b(x) = b(X;Y ) = X � �(Y ) + g(Y );

where � is a permutation on f0; 1g

5

with �(Y ) = Y and g is a Boolean funtion

on 5 variables whih is a onstant 0 funtion. It an be heked that this bent

funtion satis�es the onditions required in Constrution 2. Then we prepare f

as given in Constrution 2. We heked that nonlinearity of f is 488, algebrai

degree is 8 and �

f

= 48. Now it is important to note the following two points.

1. The onstrution in [12, Theorem 4℄ required 26 points to be modi�ed to

get 1-resilient funtion from a bent funtion. We here need only 22 points

to modify. Further, we have heked that the �

f

value of the funtion on-

struted in [12℄ is 64. The funtion we onstrut here has �

f

= 48 and this

is the best known value whih is ahieved for the �rst time here.

2. The (10; 1; 8; 488) funtion was �rst onstruted in [10℄ and we have heked

that �

f

value is 320 for that funtion. Thus our onstrution provides better

parameter.

5 The 12-variable ase

From Corollary 1, we �nd that dBR

12

(1) � 42. However, it seems that it is not

possible to onstrut an 1-resilient funtion by toggling 42 bits of a bent funtion.

Instead we sueeded to onstrut a (12; 1; 10; 2000) funtion f , with �

f

= 120

by toggling 44 points of a bent funtion. Thus taking k = 44, we have to �rst

�nd

k

2

+ 2

n

2

�2

= 38 distint points. We selet the all zero input point and the

twelve input points eah of weight one. Now there are

�

12

2

�

= 66 input points of

weight two. Out of them we hoose 38�13 = 25 points by trial and error. These

points are 2560, 2304, 2176, 2112, 1280, 1152, 1088, 640, 576, 320, 1536, 384,

40, 36, 34, 33, 20, 18, 17, 10, 9, 5, 24, 6, 2080 when written as deimal integers

orresponding to 12-bit binary numbers. We need a bent funtion suh that it

will have out zero at these 38 input points. Next we take the six input points

4095, 3055, 3575, 3835, 3965, 4030. We need a bent funtion whih provides

output one at these six points. Now we present the bent funtion.

Take x = (x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

; x

8

; x

9

; x

10

; x

11

; x

12

),

X = (X

1

; X

2

; X

3

; X

4

; X

5

; X

6

), and Y = (Y

1

; Y

2

, Y

3

; Y

4

; Y

5

; Y

6

). Further we iden-

tify X

1

= x

1

; X

2

= x

2

; X

3

= x

3

; X

4

= x

4

; X

5

= x

5

; X

6

= x

6

; Y

1

= x

7

; Y

2

=



x

8

; Y

3

= x

9

; Y

4

= x

10

; Y

5

= x

11

; Y

6

= x

12

. Consider a 12-variable Maiorana-

MFarland type bent funtion b(x) = b(X;Y ) = X � �(Y ) + g(Y ) where � is

a permutation on f0; 1g

6

with �(Y ) = Y , exept the ases �(1; 1; 1; 1; 1; 0) =

(1; 1; 1; 1; 1; 1) and �(1; 1; 1; 1; 1; 1) = (1; 1; 1; 1; 1; 0). Here g is a Boolean fun-

tion on 6 variables whih is a onstant 0 funtion.

The onstrution presented in [12℄ requires 54 points to be toggled and they

ould ahieve a nonlinearity 1996. Thus our onstrution is learly better. Fur-

ther we get �

f

= 120 for the (12; 1; 10; 2000) funtion that we onstrut here.

This is the best known autoorrelation parameter whih was not known earlier.

6 Conlusion

In this paper we present a lower bound on the minimum distane dBR

n

(1)

between bent and 1-resilient funtions on n variables, where n is even. We have

also shown that it is possible to get 1-resilient funtions by modifying exatly

dBR

n

(1) many bits for n = 4; 6; 8; 10 whih shows that the minimum distane is

tight in these ases. For the ase n = 12, we ould not prove the bound is tight

as we need to toggle at least 44 points of a bent funtion to get an 1-resilient

funtion. The tightness of the bound for n � 12 remains an open question and to

the best of our understanding, the bound is really not tight. The ase for n = 8

ould be niely handled, but it starts to beome ompliated from n = 10 and

requires some omputer simulation.

A lot of open questions are still to be solved. First of all, a relatively hard

question is to �nd out the minimum distane between bent and m-resilient fun-

tions on n variables, whih we may denote as dBR

n

(m). It seems natural that

dBR

n

(n � 2) > dBR

n

(n � 3) > : : : > dBR

n

(1), though it needs a proof. Note

that (n � 2)-resilient funtions on n variables are basially the aÆne funtions,

whih are known to be at maximum distane from the bent funtion [14℄.

The funtions we provide here possess urrently best known parameters. The

upper bound on nonlinearity of 1-resilient funtions is 2

n�1

� 2

n

2

�1

� 4 for n

even as desribed in [16℄. The tightness of this bound [16℄ has been shown upto

n = 8. For n � 10, there is no evidene of an 1-resilient funtion attaining that

bound [16℄. Our onstrution modi�es dBR

n

(1) > 2

n

2

�1

many bits and it seems

unlikely that modifying these many bits will result in a fall of nonlinearity only

4 for n � 10.
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Appendix A

We are not interested in the ase n = 2, sine there is no nonlinear 2-variable

1-resilient funtions.

We now onsider the ases for n = 4; 6. Note that r = 0 for these two ases

and then we arrive at dBR

4

(1) � 4 and dBR

6

(1) � 6. We have also heked that

this bound is tight sine we an onstrut 4-variable (respetively 6-variable)

1-resilient funtion by hanging 4 (respetively 6) output points of 4-variable

(respetively 6-variable) bent funtion.

For the 4-variable ase, we have to take the rows of S� b(S) as

f0001; 0010; 0100; 1000g due to the onstraint that the number of 1's in eah

olumn has to be 1 and there are at least 3 distint rows. Thus, take a bent

funtion with truth table 0000011001010011 and toggle the funtion at the inputs

f(0; 0; 0; 1); (0; 0; 1; 0); (1; 0; 0; 0); (1; 0; 1; 1)g:

Then we get a (4; 1; 2; 4) funtion with the truth table 0110011011000011.

For the 6-variable ase, take a bent funtion with truth table

0000000001011010001111000110011001101001001100110101010100001111 and

toggle the outputs at the input points f(0; 0; 0; 0; 0; 1); (0; 0; 0; 0; 1; 0);

(0; 0; 0; 1; 0; 0); (0; 0; 1; 0; 0; 0); (1; 0; 0; 0; 0; 0); (1; 0; 1; 1; 1; 1)g:

Then we get a (6; 1; 4; 24) funtion with the truth table

0110100011011010001111000110011011101001001100100101010100001111.



Appendix B

Note that, in the Walsh spetra of a bent funtion on 8 variables, there are 120

values of +16 and 136 values of -16 or vie versa. It is known that even if that

ondition is satis�ed for some Walsh spetra, the inverse Walsh transform may

not produe a Boolean funtion. We here disuss that issue.

Lemma 1. Consider a funtion b(x) on 8 variables with the properties :

1. b(x) = 0 for wt(x) � 1 and b(x) = 1 for wt(x) = 8,

2. W

b

(!) = 16 for wt(!) � 3 and W

b

(!) = �16 for wt(!) � 6.

This funtion an not be bent.

Proof. If suh a funtion b is bent, then Table 1, we will get an 1-resilient funtion

with nonlinearity 120. This is a ontradition. ut

Corollary 2. Consider a funtion b(x) on 8 variables with the properties :

1. b(x) = 0 for wt(x) � 3 and b(x) = 1 for wt(x) � 6,

2. W

b

(!) = 16 for wt(!) � 1 and W

b

(!) = �16 for wt(!) = 8.

Proof. The result follows from Lemma 1 and the duality property of bent fun-

tions. ut

Next we present an important result related to the existene of balaned

8-variable funtion with nonlinearity 118.

Theorem 6. Take a bent funtion h(x) on 8 variables with the following prop-

erties :

1. h(x) = 0 for wt(x) � 1 and h(x) = 1 for wt(x) = 8,

2. W

h

(!) = 16 for wt(!) � 2 and W

h

(!) = �16 for wt(!) � 6.

De�ne a set T = fx 2 f0; 1g

8

jwt(x) = 1g. Construt a funtion g(x) as :

f(x) = 1� h(x), if x 2 T

= h(x), otherwise.

Then g is a balaned 8-variable funtion with nonlinearity 118.

Proof. The proof is similar to the proof of Theorem 4. ut

We have tried some heuristi searh to �nd a bent funtion as mentioned in

Theorem 6, but ould not get any. Getting suh a bent funtion or proving its

nonexistene is an interesting open question.


