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Abstra
t. In this paper we study the minimumdistan
e between the set

of bent fun
tions and the set of 1-resilient Boolean fun
tions and present

a lower bound on that. The bound is proved to be tight for fun
tions up

to 10 input variables. As a 
onsequen
e, we present a strategy to modify

the bent fun
tions, by toggling some of its outputs, in getting a large


lass of 1-resilient fun
tions with very good nonlinearity and auto
orre-

lation. In parti
ular, the te
hnique is applied upto 12-variable fun
tions

and we show that the 
onstru
tion provides a large 
lass of 1-resilient

fun
tions rea
hing 
urrently best known nonlinearity and a
hieving very

low auto
orrelation values whi
h were not known earlier. The te
hnique

is sound enough to theoreti
ally solve some of the mysteries of 8-variable,

1-resilient fun
tions with maximum possible nonlinearity. However, the

situation be
omes 
ompli
ated from 10 variables and above, where we

need to go for 
ompli
ated 
ombinatorial analysis with trial and error

using 
omputational fa
ility.
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1 Introdu
tion

Constru
tion of resilient Boolean fun
tions with very good parameters in terms

of nonlinearity, algebrai
 degree and other 
ryptographi
 parameters has re-


eived lot of attention in literature [15, 16, 18, 19, 8, 21, 2, 3℄. In [17, 7℄, it had

been shown how bent fun
tions 
an be modi�ed to 
onstru
t highly nonlinear

balan
ed Boolean fun
tions. A re
ent 
onstru
tion method [12℄ presents modi-

�
ation of some output points of a bent fun
tion to 
onstru
t highly nonlinear

1-resilient fun
tion. A natural question that arises in this 
ontext is \at least

how many bits in the output of a bent fun
tion need to be 
hanged to 
onstru
t

an 1-resilient Boolean fun
tion". The answer of this question gives the minimum

distan
e between the set of bent fun
tions and the set of 1-resilient fun
tions.



We here try to answer this question and show that the minimum distan
e for

n-variable fun
tions is
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�ed. We also show that this result is tight for n � 10. The immediate 
orol-

lary is the 
onstru
tion of 1-resilient Boolean fun
tions with nonlinearity �
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(1) and maximum absolute value of auto
orrelation spe
tra

� 4 dBR

n

(1). Interestingly, it is possible to get 1-resilient fun
tions with better

nonlinearity and auto
orrelation than these bounds. In parti
ular, we 
on
en-

trate on 
onstru
tion of 1-resilient Boolean fun
tions up to 12-variables with

best known nonlinearity and auto
orrelation. Throughout the paper we 
onsider

the number of input variables (n) is even.

The bent fun
tions 
hosen in [12, Se
tion 3℄ use the 
on
ept of perfe
t non-

linear fun
tions and one example fun
tion ea
h for 8; 10 and 12 variables were

presented. However, it is not 
lear how a generalized 
onstru
tion of su
h bent

fun
tions 
an be a
hieved in that manner. We here identify a large sub
lass of

Maiorana-M
Farland type bent fun
tions whi
h 
an be modi�ed to get 1-resilient

fun
tions with 
urrently best known parameters. Further our 
onstru
tion is su-

perior to [12℄ in terms of number of points that need to be toggled (we need less

in 
ase of 10, 12 variables), the nonlinearity (we get better nonlinearity for 12

variables) and auto
orrelation (we get 1-resilient fun
tions with auto
orrelation

values that were not known earlier for 10, 12 variables).

1.1 Preliminaries

A Boolean fun
tion on n variables may be viewed as a mapping from f0; 1g

n

into f0; 1g. A Boolean fun
tion f(x

1

; : : : ; x

n

) is also interpreted as the output


olumn of its truth table f , i.e., a binary string of length 2

n

,

f = [f(0; 0; � � � ; 0); f(1; 0; � � � ; 0); f(0; 1; � � � ; 0); : : : ; f(1; 1; � � � ; 1)℄:

The Hamming distan
e between two binary strings S

1

; S

2

is denoted by

d(S

1

; S
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), i.e., d(S
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; S
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) = #(S

1

6= S
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): Also the Hamming weight or simply

the weight of a binary string S is the number of ones in S. This is denoted by

wt(S). An n-variable fun
tion f is said to be balan
ed if its output 
olumn in

the truth table 
ontains equal number of 0's and 1's (i.e., wt(f) = 2

n�1

).

Denote addition operator over GF (2) by �. An n-variable Boolean fun
tion

f(x

1

; : : : ; x

n

) 
an be 
onsidered to be a multivariate polynomial overGF (2). This

polynomial 
an be expressed as a sum of produ
ts representation of all distin
t

k-th order produ
ts (0 � k � n) of the variables. More pre
isely, f(x

1

; : : : ; x

n

)


an be written as
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oeÆ
ients a
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; a

ij

; : : : ; a

12:::n

2 f0; 1g. This representation of f is


alled the algebrai
 normal form (ANF) of f . The number of variables in the



highest order produ
t term with nonzero 
oeÆ
ient is 
alled the algebrai
 degree,

or simply the degree of f and denoted by deg(f).

Fun
tions of degree at most one are 
alled aÆne fun
tions. An aÆne fun
tion

with 
onstant term equal to zero is 
alled a linear fun
tion. The set of all n-

variable aÆne (respe
tively linear) fun
tions is denoted by A(n) (respe
tively

L(n)). The nonlinearity of an n-variable fun
tion f is

nl(f) = min

g2A(n)

d(f; g);

i.e., the distan
e from the set of all n-variable aÆne fun
tions.

Let x = (x
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n

) and ! = (!
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n

) both belong to f0; 1g

n
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1
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n

!

n

:

Let f(x) be a Boolean fun
tion on n variables. Then the Walsh transform of

f(x) is a real valued fun
tion over f0; 1g

n

whi
h is de�ned as

W

f
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n
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:

In terms of Walsh spe
tra, the nonlinearity of f is given by

nl(f) = 2
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(!)j:

For n-even, the maximum nonlinearity of a Boolean fun
tion 
an be 2

n�1

�2

n

2

�1

and the fun
tions possessing this nonlinearity are 
alled bent fun
tions [14℄.

Further, for a bent fun
tion f on n variables, W

f

(!) = �2

n

2

for all !.

In [9℄, an important 
hara
terization of 
orrelation immune and resilient

fun
tions has been presented, whi
h we use as the de�nition here. A fun
tion

f(x

1

; : : : ; x

n

) is m-resilient (respe
tively m-th order 
orrelation immune) i� its

Walsh transform satis�es

W

f

(!) = 0; for 0 � wt(!) � m (respe
tively W

f

(!) = 0; for 1 � wt(!) � m):

As the notation used in [15, 16℄, by an (n;m; d; �) fun
tion we denote an

n-variable, m-resilient fun
tion with degree d and nonlinearity �.

We will now de�ne restri
ted Walsh transform whi
h will be frequently used

in this text. The restri
ted Walsh transform of f(x) on a subset S of f0; 1g

n

is

a real valued fun
tion over f0; 1g

n

whi
h is de�ned as

W

f

(!)j

S

=

X

x2S

(�1)

f(x)�x�!

:

Now we present the following te
hni
al result.

Proposition 1. Let S � f0; 1g

n

and b(x); f(x) be two n-variable Boolean fun
-

tions su
h that f(x) = 1 � b(x) when x 2 S and f(x) = b(x) otherwise. Then

W

f

(!) =W

b

(!)� 2W

b

(!)j

S
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Propagation Chara
teristi
s (PC) and Stri
t Avalan
he Criteria (SAC) [13℄

are important properties of Boolean fun
tions to be used in S-boxes. Further,

Zhang and Zheng [22℄ identi�ed related 
ryptographi
 measures 
alled Global

Avalan
he Chara
teristi
s (GAC).

Let � 2 f0; 1g

n

and f be an n-variable Boolean fun
tion. De�ne the auto-


orrelation value of f with respe
t to the ve
tor � as

�

f
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A fun
tion is said to satisfy PC(k), if �

f

(�) = 0 for 1 � wt(�) � k. Note that,

for a bent fun
tion f on n variables, �

f

(�) = 0 for all nonzero �, i.e., �

f

= 0.

Analysis of auto
orrelation properties of 
orrelation immune and resilient

Boolean fun
tions has gained substantial interest re
ently as evident from [20,

23, 11, 4℄. In [11, 4℄, it has been identi�ed that some well known 
onstru
tion of

resilient Boolean fun
tions are not good in terms of auto
orrelation properties.

Sin
e the present 
onstru
tion is modi�
ation of bent fun
tions whi
h possess

the best possible auto
orrelation properties, we get very good auto
orrelation

properties of the 1-resilient fun
tions. We present a bound on the �

f

value of

the 1-resilient fun
tions and further a
hieve best known auto
orrelation values

for the 
ases n = 8; 10; 12.

2 The Distan
e

Initially we start with a simple te
hni
al result.

Proposition 2. dBR

n
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n

2
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.

Proof. For a bent fun
tion b on n variables, W

b

(!) = �2

n

2

. Hen
e the minimum

distan
e from a bent fun
tion to balan
ed fun
tions equals 2

n

2

�1

. The 1-resilient

fun
tions are balan
ed by de�nition and hen
e the result. ut



Now we present a restri
ted result. Let b(x) be an n-variable bent fun
tion

with W

b

(!) = +2

n

2

for wt(!) � 1. We denote byM

b

(n; 1) the minimum number

of bits to be modi�ed in the output 
olumn of b(x) to 
onstru
t an n variable

1-resilient fun
tion from b(x).

Theorem 1. Let b(x) be an n-variable bent fun
tion with W
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Proof. Let S � f0; 1g

n

and f(x) be an n-variable Boolean fun
tion obtained by

modifying the b(x) values for x 2 S and keeping the other bits un
hanged. Then

from Proposition 1,W

f

(!) =W

b

(!)�2W

b
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8!; and in parti
ular, W
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for 0 � wt(!) � 1:

It is known that, f is 1-resilient i� W

f

(!) = 0 for 0 � wt(!) � 1, i.e., i�

W

b
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for 0 � wt(!) � 1. Thus, our problem is to �nd a lower bound

on jSj = k with the 
onstraint W
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By A

T

we mean transpose of a matrix A. Also by abuse of notation, x

i

j

� b(x

i

j

)

means the GF(2) addition (XOR) of the bit b(x

i

j

) with ea
h of the bits of x

i

j
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Now W
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for 0 � wt(!) � 1 implies that there are exa
tly

k
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� 2
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2
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many 1's in b(S) and in ea
h 
olumn of S � b(S). Sin
e all the rows

of S are distin
t and further b(S) 
ontains

k

2

+ 2

n

2

�2

many 0's, S� b(S) should


ontain at least

k
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distin
t rows.

Consider that one su
h matrix S � b(S) is formed. The number of 1's in

the matrix is exa
tly n� (

k

2

� 2

n

2

�2

) as ea
h 
olumn 
ontains exa
tly

k

2

� 2

n

2
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many 1's and there are n 
olumns. We know that there must be at least

k

2
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t rows. Thus the total number of 1's in these distin
t rows must be

� n � (

k
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This gives,
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Now we dis
uss how to 
hoose this r. For this we need a easier lower bound

on k whi
h does not depend on r itself.

From Proposition 2, k � 2

n
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. We now show that k � 2
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+ 2. This is

be
ause, to 
onstru
t an 1-resilient fun
tion form bent fun
tion, the number of

1's in ea
h 
olumn must be � 1 (it 
annot be 0 sin
e then we will not be able

to get distin
t rows). As number of 1's in ea
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olumn is
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As example, for n = 8, take r = 1 and 9 =
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is satis�ed. For n = 10, take r = 1 and

11 =

P

r

i=0

�

n

i

�

� (the < of � is satis�ed here) 2
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Theorem 2. Let b(x) be any n-variable bent fun
tion. Then

dBR

n

(1) � 2

n

2

�1

+ 2

�

(r + 1)(2

n

2

�1

�

P

r

i=0

�

n

i

�

) +

P

r

i=1

i

�

n

i

�

n� r � 1

�

;

where r is the integer su
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Proof. Without loss of generality, assume that W

b

(!) = +2

n

2

for wt(!) = 0.

Let G

1

= f!jwt(!) = 1;W

b

(!) = +2

n

2

g and G

2

= f!jwt(!) = 1;W

b

(!) =

�2

n

2

g. Let S � f0; 1g

n

and f(x) be an n-variable Boolean fun
tion obtained by

modifying the b(x) values for x 2 S and keeping the other bits un
hanged. Then

from Proposition 1,W

f

(!) =W

b

(!)�2W

b

(!)j

S

8!; and in parti
ular, W

f

(!) =

2

n

2

�2W

b

(!)j

S

for wt(!) = 0; ! 2 G

1

andW

f

(!) = �2

n

2

�2W

b

(!)j

S

for ! 2 G

2

.

Given f is 1-resilient, we need to �nd a lower bound on jSj = k with the


onstraints W

b

(!)j

S

= 2

n

2

�1

for wt(!) = 0 and ! 2 G

1

and W

b

(!)j

S

= �2

n

2

�1

for ! 2 G

2

.

Let jG

1

j = �. Using the same argument as in the proof of Theorem 1, our

problem is to �nd a k�n binary matrix S� b(S) with minimum number of rows

k su
h that there are � 
olumns with exa
tly

k

2

�2

n

2

�2

many 1's in ea
h 
olumn

and exa
tly

k

2

+2

n

2

�2

many 1's in ea
h of the remaining n�� 
olumns. Further,

there are at least

k

2

+ 2

n

2

�2

distin
t rows.

LetM

k��

1

(respe
tivelyM

k�(n��)

2

) be a binary matrix with exa
tly

k

2

�2

n

2

�2

(respe
tively

k

2

+2

n

2

�2

) many 1's in ea
h 
olumn. Let J be the k�(n��) matrix

with all elements 1. Then the problem of \�nding a binary matrix (M

1

: M

2

)

with minimum number of rows k su
h that there are at least

k

2

+ 2

n

2

�2

distin
t



rows" is equivalent to \�nding a binary matrix (M

1

: J �M

2

) with minimum

number of rows k su
h that there are at least

k

2

+2

n

2

�2

distin
t rows". Note that

ea
h 
olumn of (M

1

: J �M

2

) 
ontains exa
tly

k

2

� 2

n

2

�2

many 1's. Thus, the

proof follows with the similar argument presented in Theorem 1. ut

For 8 � n � 16, it 
an be 
he
ked that

P

1

i=0

�

n

i

�

� 2

n

2

�1

+ 1 <

P

1+1

i=0

�

n

i

�

is

satis�ed. In these 
ases, the lower bound on k is attained for r = 1 itself. Thus

we have the following result.

Corollary 1. For even n, 8 � n � 16, dBR

n

(1) � 2

n

2

�1

+ 2

�

2

n

2

�n�2

n�2

�

.

Assume that one 
an 
onstru
t a bent fun
tion b on n variables su
h that

dBR

n

(1) bits at the output 
olumn of b are 
hanged to get an n-variable 1-

resilient fun
tion f . It is 
lear that toggling of a single bit 
an redu
e the non-

linearity at most by 1 and in
rease the maximum absolute value of the auto
or-

relation spe
tra (absolute indi
ator) by at most 4. Thus we have the following

result.

Theorem 3. nl(f) � 2

n�1

� 2

n

2

�1

� dBR

n

(1) and �

f

� 4 dBR

n

(1).

Proof. This follows from nl(f) � nl(b)� dBR

n

(1) and �

f

� �

b

+ 4 dBR

n

(1),

where b is a bent fun
tion. ut

However, for the a
tual 
onstru
tions of fun
tions on 8, 10 and 12 variables,

we will show that we get better nonlinearity and auto
orrelation values than

these bounds. For n = 4; 6, we refer the readers to Appendix A.

3 The 8-variable 1-resilient Fun
tions

In the previous se
tion we have presented a lower bound of the minimum distan
e

between the bent and 1-resilient fun
tions. However, it has not been dis
ussed

in Se
tion 2 how exa
tly a 
onstru
tion is possible. Further to a
hieve the 
ur-

rently best known parameters (or even better than that, if possible) we may need

to 
onsider some other issues. In this se
tion we 
onsider the 
onstru
tion of an

(8; 1; 6; 116) fun
tion. Constru
tion of this fun
tion was an important open ques-

tion and the fun
tion has been �rst reported in [10℄ by interlinking 
ombinatorial

te
hnique and 
omputer sear
h. Later this fun
tion has also been found by meta

heuristi
 sear
h (simulated annealing) in [5℄. Further the fun
tion found in [5℄

has �

f

= 24, whi
h is 
urrently the best known value. We here follow the similar

kind of te
hnique used in [12℄. In the 
ourse of dis
ussion it will be 
lear that

how our te
hnique is an improvement over [12℄. We present a generalized 
on-

stru
tion method of (8; 1; 6; 116) fun
tions by modifying Maiorana-M
Farland

type bent fun
tions and in spe
i�
 
ases, these fun
tions have the �

f

value as

low as 24, the best known one [5℄.

Constru
tion 1 Take a bent fun
tion b(x) on 8 variables with the following

properties : (1) b(x) = 0 for wt(x) � 1 and b(x) = 1 for wt(x) = 8, (2)

W

b

(!) = 16 for wt(!) � 1 and W

b

(!) = �16 for wt(!) = 8. De�ne a set

S = fx 2 f0; 1g

8

jwt(x) = 0; 1; 8g. Constru
t a fun
tion f(x) as :



f(x) = 1� b(x), if x 2 S

= b(x), otherwise.

From Corollary 1, we get that dBR

8

(1) � 10 and we here 
hoose exa
tly 10

positions and modify them. It is important to point out that we here start with

bent fun
tions with some spe
i�
 properties. The reason for 
hoosing su
h bent

fun
tions is to get an a
tual 
onstru
tion of 1-resilient fun
tion with very high

nonlinearity.

Before presenting the theorem regarding the properties of f , let us enumerate

the issues we improve here over the work presented in [12℄.

1. There is a gap in the proof of [12, Theorem 3℄. Note the 
onditions imposed

on the bent fun
tion b above. In the statement of [12, Theorem 3℄, only the


onditions of item 1 has been 
onsidered and the 
onditions of the item 2

has not been 
onsidered as given in Constru
tion 1. The 
onditions of item

2 has been impli
itly assumed in the proof of [12, Theorem 3℄. Fortunately,

the bent fun
tion 
onsidered in [12, Se
tion 3℄ satis�es the 
onditions of item

2. However, it should be noted that there exist bent fun
tions whi
h satisfy

the 
onditions of item 1 and not all the 
onditions of item 2 and in that 
ase

the proof of [12, Theorem 3℄ does not go through.

2. The bent fun
tion 
hosen in [12, Se
tion 3℄ uses the 
on
ept of perfe
t non-

linear fun
tions and they presented one example fun
tion whi
h satis�es the


onditions of item 1 (and also 
onditions of item 2). However, it is not 
lear

how a generalized 
onstru
tion of su
h bent fun
tions 
an be a
hieved in that

manner. It should also be noted that the example fun
tions presented in [12℄

are basi
ally Maiorana-M
Farland type, even though they are designed in a

di�erent manner by using the 
on
ept of perfe
t nonlinear fun
tions. We here

identify a sub
lass of Maiorana-M
Farland type bent fun
tions whi
h satisfy

the 
onditions of both item 1 and 2. This gives a large 
lass of (8; 1; 6; 116)

fun
tions. In fa
t we show that there are more than 2
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many distin
t

(upto 
omplementation) (8; 1; 6; 116) fun
tions f with �

f

� 40.

3. The proof of Theorem 4 below is mu
h simpler than the proof of [12, Theorem

3℄ and it presents a 
lear pi
ture of the Walsh spe
tra of the fun
tion f with

respe
t to the spe
tra of the fun
tion b.

Theorem 4. The fun
tion f(x) as des
ribed in Constru
tion 1 is an

(8; 1; 6; 116) fun
tion.

Proof. Take ! 2 f0; 1g

8

with wt(!) = i. Now

W

f

(!) =

P

x2f0;1g

8

(�1)

b(x)�!�x

� 2

P

x2S

(�1)

b(x)�!�x

(from Proposition 1)

=W

b

(!)� 2 ( 8� 2wt(!) + 2(wt(!) mod 2) ).

Now we explain how the last step is dedu
ed. Note that b(x) = 0 when wt(x) = 0

and b(x) = 1, when wt(x) = 8. Thus,

P

x2f0;1g

8

jwt(x)=0;8

(�1)

b(x)�!�x

= 0, when wt(!) is even,

= 2, when wt(!) is odd.



Moreover,

P

x2f0;1g

8

jwt(x)=1

(�1)

b(x)�!�x

= 8� 2wt(!), as

(i) b(x) = 0 when wt(x) = 1 and

(ii) ! � x = 1 at wt(w) input points when wt(x) = 1.

Sin
e

P

x2S

(�1)

b(x)�!�x

=

P

x2f0;1g

8

jwt(x)=0;8

(�1)

b(x)�!�x

+

P

x2f0;1g

8

jwt(x)=1

(�1)

b(x)�!�x

; we get,

W

f

(!) =W

b

(!)� 2 ( 8� 2wt(!) + 2(wt(!) mod 2) ):

When wt(!) � 1, W

f

(!) = W

b

(!) � 16 = 16 � 16 = 0. Thus the fun
tion is

1-resilient.

Further, if wt(!) = 8, W

f

(!) = W

b

(!) + 16 = �16 + 16 = 0. For any other


hoi
e, i.e., for 2 � wt(!) � 7, we have j8� 2wt(!) + 2(wt(!) mod 2)j � 4 and

hen
e, jW

f

(!)j � jW

b

(!)j+ 8 = 16 + 8 = 24. Hen
e, nl(f) = 2

8�1

�

24

2

= 116.

Sin
e the fun
tion attains the maximum possible nonlinearity, the algebrai


degree [1, 3℄ of the fun
tion must be 8� 2 = 6. ut

wt(!) 0 1 2 3 4 5 6 7 8

W

f

(!) =W

b

(!)+ -16 -16 -8 -8 0 0 8 8 16

Table 1. Relationship between Walsh spe
tra of f; g as des
ribed in Constru
tion 1.

Based on Table 1 and the previous dis
ussion, we get related results with

respe
t to (i) nonexisten
e of some 8-variable bent fun
tions and (ii) some re-

lationship between 8-variable bent fun
tions and balan
ed Boolean fun
tions

with nonlinearity 118 (whose existen
e is not known till date). These results are

pla
ed in Appendix B.

3.1 A Sub
lass of Maiorana-M
Farland Bent Fun
tions

The original Maiorana-M
Farland 
lass of bent fun
tion is as follows [6℄. Con-

sider n-variable Boolean fun
tions on (X;Y ), where X;Y 2 f0; 1g

n

2

of the form

f(X;Y ) = X � �(Y ) + g(Y ) where � is a permutation on f0; 1g

n

2

and g is any

Boolean fun
tion on

n

2

variables. The fun
tion f 
an be seen as 
on
atenation

of 2

n

2

distin
t (upto 
omplementation) aÆne fun
tion on

n

2

variables.

On
e again we write what kind of bent fun
tion b(x) on 8 variables we require.

1. b(x) = 0 for wt(x) � 1 and b(x) = 1 for wt(x) = 8,

2. W

b

(!) = 16 for wt(!) � 1 and W

b

(!) = �16 for wt(!) = 8.

In this 
ase, n = 8, i.e.,

n

2

= 4. We have to de
ide what permutations � on f0; 1g

4

and what kind of fun
tions g on f0; 1g

4

we 
an take su
h that the 
onditions on

b are satis�ed. We present a set of 
onditions below, whi
h taken all together,



provides suÆ
ient 
ondition for 
onstru
tion of su
h fun
tions. Before going

into the 
onditions, let us �x the notation and ordering of input variables as x =

(x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

; x

8

), X = (X

1

; X

2

; X

3

; X

4

), and Y = (Y

1

; Y

2

; Y

3

; Y

4

).

Further we identify X

1

= x

1

; X

2

= x

2

; X

3

= x

3

; X

4

= x

4

; Y

1

= x

5

; Y

2

= x

6

; Y

3

=

x

7

; Y

4

= x

8

.

1. First of all, the fun
tion b has the value 0 at the points (0; 0; 0; 0; 0; 0; 0; 0),

(1; 0; 0; 0; 0; 0; 0; 0), (0; 1; 0; 0; 0; 0; 0; 0), (0; 0; 1; 0; 0; 0; 0; 0),

(0; 0; 0; 1; 0; 0; 0; 0) and this 
ondition is satis�ed if we 
hoose �(0; 0; 0; 0) =

(0; 0; 0; 0) and g(0; 0; 0; 0) = 0.

2. Next we need fun
tion b should have value 0 at points (0; 0; 0; 0; 1; 0; 0; 0),

(0; 0; 0; 0; 0; 1; 0; 0), (0; 0; 0; 0; 0; 0; 1; 0), (0; 0; 0; 0; 0; 0; 0; 1), and this 
ondition

is satis�ed if we 
hoose g(Y ) = 0 for wt(Y ) = 1.

3. We need b to be 1 when the input is (1; 1; 1; 1; 1; 1; 1; 1). Thus if �(1; 1; 1; 1) is

a ve
tor of odd weight then g(1; 1; 1; 1) need to be 0. otherwise if �(1; 1; 1; 1)

is a ve
tor of even weight then g(1; 1; 1; 1) has to be 1.

4. Sin
e we have already de
ided that �(0; 0; 0; 0) = (0; 0; 0; 0) and g(0; 0; 0; 0) =

0, the W

f

(!) values for ! 2 f(0; 0; 0; 0; 1; 0; 0; 0), (0; 0; 0; 0; 0; 1; 0; 0),

(0; 0; 0; 0; 0; 0; 1; 0), (0; 0; 0; 0; 0; 0; 0; 1)g be
omes +2

n

2

= 16.

5. Further if �(Y ) 2 f(1; 0; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0); (0; 0; 0; 1)g, then we take

g(Y ) = 0. This guarantees that W

f

(!) values for ! 2 f(1; 0; 0; 0; 0; 0; 0; 0),

(0; 1; 0; 0; 0; 0; 0; 0), (0; 0; 1; 0; 0; 0; 0; 0), (0; 0; 0; 1; 0; 0; 0; 0)g be
omes +2

n

2

=

16.

6. Lastly, if �(Y ) = (1; 1; 1; 1), we have to �x g(Y ) = (wt(Y ) + 1) mod 2. This

guarantees that W

f

(1; 1; 1; 1; 1; 1; 1; 1) = �2

n

2

= �16.

Given a bent fun
tion from the Maiorana-M
Farland 
lass f(X;Y ) = X �

�(Y ) + g(Y ), the dual of su
h fun
tion f is Y � �

�1

(X) + g(�

�1

(X)). It is

interesting to 
he
k whether the above points 
an be repla
ed by more pre
ise

arguments using this idea.

Theorem 5. Let n = 8, x 2 f0; 1g

n

and X;Y 2 f0; 1g

n

2

. Let b(x) be a

Maiorana-M
Farland type bent fun
tion b(x) = b(X;Y ) = X ��(Y )+g(Y ) where

� is a permutation on f0; 1g

n

2

and g is a Boolean fun
tion on

n

2

variables with

the following 
onditions.

(1) if Y = (0; 0; 0; 0), �(Y ) = Y ;

(2) if wt(�(Y )) � 1, or wt(Y ) � 1, then g(Y ) = 0;

(3) if Y = (1; 1; 1; 1), g(Y ) = (wt(�(Y )) + 1) mod 2;

(4) if wt(�(Y )) = 4, g(Y ) = (wt(Y ) + 1) mod 2.

Then (1) b(x) = 0 for wt(x) � 1 and b(x) = 1 for wt(x) = 8, (2) W

b

(!) = 16

for wt(!) � 1 and W

b

(!) = �16 for wt(!) = 8.

Further there are � 2
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many distin
t b's (upto 
omplementation) sat-

isfying these 
onditions and in turn there are � 2
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many distin
t (upto


omplementation) (8; 1; 6; 116) fun
tions.



Proof. The proof of the properties of b is dis
ussed above in detail. The 
ount of

su
h fun
tions is arrived as follows. Note that there are 2

n

2

= 16 pla
es for the

permutation �.

Let there are i many Y 's, 0 � i � 4 su
h that wt(�(Y )) = 1 for wt(Y ) = 1.

There are 4 elements of weight 1 and 10 elements of weight 2 or 3. Thus the

�(Y )'s for wt(Y ) = 1 may be 
hosen in

�

4

i

�

�

10

4�i

�

ways. Note that �(Y ) 
an not

be (1; 1; 1; 1) for wt(Y ) = 1. Now there are two 
ases.

1. Consider that �(1; 1; 1; 1) = (1; 1; 1; 1). Then the number of options is

�

4

i

�

�

�

10

4�i

�

� 4! � 10! � 2

6+i

. This is be
ause the 4 elements where wt(Y ) = 1 
an be

permuted in 4! ways. The 4 elements where wt(Y ) = 2; 3 
an be permuted in

10! ways. The fun
tion g(Y ) is �xed when Y is (0; 0; 0; 0) (1 pla
e, g(Y ) = 0)

or wt(Y ) = 1 (4 pla
es, g(Y ) = 0) or wt(�(Y )) = 1 (4� i pla
es, g(Y ) = 0)

or wt(Y ) = wt(�(Y )) = 4 (1 pla
e, g(Y ) = 1). Thus g(Y ) is �xed in 10� i

pla
es and we 
an put any 
hoi
e from f0; 1g for 16� (10� i) = 6+ i pla
es.

2. Consider that �(1; 1; 1; 1) 6= (1; 1; 1; 1). Then the number of options is

�

4

i

�

�

�

10

4�i

�

�10 �4! �10! �2

5+i

. Choose one element of wt(Y ) 6= 4 as �(1; 1; 1; 1). This


an be done in 10 ways. The 4 elements where wt(Y ) = 1 
an be permuted in

4! ways. The 4 elements where wt(Y ) = 2; 3 
an be permuted in 10! ways. The

fun
tion g(Y ) is �xed when Y is (0; 0; 0; 0) (1 pla
e, g(Y ) = 0) or wt(Y ) = 1

(4 pla
es, g(Y ) = 0) or wt(�(Y )) = 1 (4� i pla
es, g(Y ) = 0) or wt(Y ) = 4

(1 pla
e, g(Y ) = 1 if wt(�(Y )) = 0, else g(Y ) = 1) or wt(�(Y )) = 4 (1 pla
e,

g(Y ) = (wt(Y ) + 1) mod 2). Thus g(Y ) is �xed in 11� i pla
es and we 
an

put any 
hoi
e from f0; 1g for 16� (11� i) = 5 + i pla
es.

So the total number of options is 6

P

4

i=0

�

4

i

�

�

�

10

4�i

�

� 4! � 10! � 2

6+i

= 6 � 4! � 10! �

2

6

P

4

i=0

�

4

i

�

�

�

10

4�i

�

� 2

i

� 2
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Remark 1. Following Theorem 3, it is 
lear that for the fun
tion f as dis
ussed

in Theorem 4, �

f

� 40. Now we present the following spe
i�
 
ase.

Consider �(Y ) = Y for all Y 2 f0; 1g

4

, g(Y ) = 0 for all Y 2 f0; 1g

4

n

f(1; 1; 1; 1)g and g(Y ) = 1 for Y = (1; 1; 1; 1). Let b(x) = b(X;Y ) = X � �(Y ) +

g(Y ) and f(x) is as given in Constru
tion 1. Then f is an (8; 1; 6; 116) fun
tion

with �

f

= 24.

Note that we get an (8; 1; 6; 116) fun
tion f with �

f

= 24 in this method

whi
h has earlier been found by simulated annealing and linear transformation

in [5℄.

4 The 10-variable 1-resilient Fun
tions

We here start with 10-variable bent fun
tions. Theorem 1 and Theorem 2 do

not dire
tly provide the idea how the exa
t 
onstru
tion of an 1-resilient fun
-

tion from a bent fun
tion is possible. Let us now des
ribe a method where we



will be able to identify a sub
lass of 10-variable Maiorana-M
Farland type bent

fun
tions for this purpose.

As des
ribed in Se
tion 2, we need to modify at least k = 22 points (see

Corollary 1). Now following Theorem 1 and Theorem 2, it is 
lear that we �rst

need to sele
t

k

2

+ 2

n

2

�2

= 19 distin
t points. Note that we 
an have 1 point of

weight 0 and 10 points of weight 1. Thus we need to �nd out 8 more points from

weight 2. On
e these 19 points are sele
ted, further there are 3 more points to

be 
hosen.

S� b(S) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

x

10

x

9

x

8

x

7

x

6

x

5

x

4

x

3

x

2

x

1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0 1

0 0 0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Now we refer to the S� b(S) matrix given here. We present the �rst 19 points

and after the horizontal line we show the next 3 points. Note that the 
hoi
e

of the all zero point and the points of weight 1 are 
lear from the dis
ussion

in Theorem 1. However, it is still to be sorted out how exa
tly the 8 points of

weight 2 are 
hosen. We here do that by observation and 
hoose the 8 points

of weight 2 out of total

�

10

2

�

= 45 weight 2 points. The rest 3 points (one of

weight 0 and other two of weight 2) are 
hosen properly to satisfy that weight

of ea
h 
olumn should be

k

2

� 2

n

2

�2

= 3. Now we need a bent fun
tion b on 10

variables with the property that b(x) = 0 when x is any of the �rst 19 points

and b(x) = 1 when x is 
omplement of any of the last 3 points. This means that

the last three rows need to be 
omplemented when they will be 
onsidered as



input points in the fun
tion. Thus, we 
onstru
t two sets S

1

; S

2

as follows and

then denote S = S

1

[ S

2

.

S

1

= f(0; 0; 0; 0; 0; 0; 0; 0; 0; 0); (0; 0; 0; 0; 0; 0; 0; 0; 0; 1); (0; 0; 0; 0; 0; 0; 0; 0; 1; 0);

(0; 0; 0; 0; 0; 0; 0; 1; 0; 0); (0; 0; 0; 0; 0; 0; 1; 0; 0; 0); (0; 0; 0; 0; 0; 1; 0; 0; 0; 0);

(0; 0; 0; 0; 1; 0; 0; 0; 0; 0); (0; 0; 0; 1; 0; 0; 0; 0; 0; 0); (0; 0; 1; 0; 0; 0; 0; 0; 0; 0);

(0; 1; 0; 0; 0; 0; 0; 0; 0; 0); (1; 0; 0; 0; 0; 0; 0; 0; 0; 0); (0; 0; 0; 0; 0; 0; 0; 1; 1; 0);

(0; 0; 0; 0; 0; 1; 1; 0; 0; 0); (0; 0; 0; 0; 0; 1; 0; 0; 0; 1); (0; 0; 0; 1; 1; 0; 0; 0; 0; 0);

(0; 0; 1; 1; 0; 0; 0; 0; 0; 0); (0; 1; 1; 0; 0; 0; 0; 0; 0; 0); (1; 1; 0; 0; 0; 0; 0; 0; 0; 0);

(1; 0; 0; 0; 1; 0; 0; 0; 0; 0)g and

S

2

= f(1; 1; 1; 1; 1; 1; 1; 1; 1; 1); (1; 1; 1; 1; 1; 1; 1; 1; 0; 0); (1; 1; 1; 1; 1; 1; 0; 0; 1; 1)g.

Also 
onsider

S

0

1

= f(0; 0; 0; 0; 0; 0; 0; 0; 0; 0); (0; 0; 0; 0; 0; 0; 0; 0; 0; 1); (0; 0; 0; 0; 0; 0; 0; 0; 1; 0);

(0; 0; 0; 0; 0; 0; 0; 1; 0; 0); (0; 0; 0; 0; 0; 0; 1; 0; 0; 0); (0; 0; 0; 0; 0; 1; 0; 0; 0; 0);

(0; 0; 0; 0; 1; 0; 0; 0; 0; 0); (0; 0; 0; 1; 0; 0; 0; 0; 0; 0); (0; 0; 1; 0; 0; 0; 0; 0; 0; 0);

(0; 1; 0; 0; 0; 0; 0; 0; 0; 0); (1; 0; 0; 0; 0; 0; 0; 0; 0; 0); (0; 0; 0; 0; 0; 0; 0; 1; 1; 0);

(0; 0; 0; 0; 0; 1; 1; 0; 0; 0); (0; 0; 0; 0; 0; 1; 0; 0; 0; 1)g,

S

3

= f(0; 0; 0; 0; 0; 0; 0; 1; 0; 1); (0; 0; 0; 0; 0; 0; 0; 1; 1; 1); (0; 0; 0; 0; 0; 0; 1; 0; 0; 1);

(0; 0; 0; 0; 0; 0; 1; 0; 1; 0); (0; 0; 0; 0; 0; 0; 1; 1; 1; 0); (0; 0; 0; 0; 0; 1; 0; 0; 1; 1);

(0; 0; 0; 0; 1; 1; 1; 0; 0; 1); (0; 0; 0; 0; 0; 1; 1; 1; 0; 0); (0; 0; 0; 0; 0; 1; 1; 1; 1; 1)g and

S

4

= f(0; 0; 1; 1; 1; 0; 0; 0; 0; 0); (0; 1; 1; 1; 0; 0; 0; 0; 0; 0); (1; 0; 0; 1; 1; 0; 0; 0; 0; 0);

(0; 0; 0; 0; 0; 1; 1; 0; 0; 0); (1; 1; 0; 0; 1; 0; 0; 0; 0; 0); (1; 1; 1; 0; 0; 0; 0; 0; 0; 0);

(1; 1; 1; 1; 1; 0; 0; 0; 0; 0)g. We will talk about these sets S

0

1

; S

3

and S

4

little later.

We now write the exa
t 
onstru
tion.

Constru
tion 2 We need a 10-variable bent fun
tion b(x) with the following

properties:

1. b(x) = 0 when x 2 S

1

and b(x) = 1 when x 2 S

2

,

2. W

b

(!) = +32 when ! 2 S

0

1

[ S

3

[ S

4

.

The fun
tion f(x) is as follows.

f(x) = 1� b(x), if x 2 S

= b(x), otherwise.

From Theorem 1, it is 
lear that the fun
tion f(x) is 1-resilient. Now we need

to 
al
ulate the nonlinearity of f . In fa
t, we will prove that nl(f) = 488, the


urrently best known nonlinearity for 10-variable 1-resilient fun
tions. By Propo-

sition 1,W

f

(!) =W

b

(!)�2W

b

(!)j

S

. Thus, it is important to analyse the values

of W

b

(!)j

S

for all ! 2 f0; 1g

10

. However, this 
an not be done in a ni
e way as

it has been done in the 8-variable 
ase in Theorem 4. So we use a 
omputer pro-

gram to 
al
ulate W

b

(!)j

S

for all ! 2 f0; 1g

10

. Note that when jW

b

(!)j

S

j � 8,

then at those points jW

f

(!)j � 48. Thus, we have no restri
tion on the Walsh

spe
tra of the bent fun
tion b at these points to get the nonlinearity 488 for f .

However, we need to 
on
entrate on the 
ases when jW

b

(!)j

S

j � 12. We have


he
ked that this happens when ! 2 S

0

1

[ S

3

[ S

4

and all these values are either

+12 or +16. Thus as given in Constru
tion 2, the Walsh spe
tra of the fun
-

tion b should be +32 at these points. Hen
e Constru
tion 2 provides 10-variable



1-resilient fun
tions having nonlinearity 488. Using similar te
hnique as in The-

orem 5, it is possible to get the 
ount of su
h fun
tions. Due to spa
e 
onstraint

we do not in
lude that in this version.

Note that we have not yet dis
ussed the algebrai
 degree and auto
orrela-

tion properties of the fun
tions. We now 
onsider a spe
i�
 
ase and 
he
k the

algebrai
 degree and auto
orrelation property.

Take x = (x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

; x

8

; x

9

; x

10

), X = (X

1

; X

2

; X

3

; X

4

; X

5

),

and

Y = (Y

1

; Y

2

; Y

3

; Y

4

; Y

5

). Further we identify X

1

= x

1

; X

2

= x

2

; X

3

= x

3

; X

4

=

x

4

; X

5

= x

5

; Y

1

= x

6

; Y

2

= x

7

; Y

3

= x

8

; Y

4

= x

9

; Y

5

= x

10

.

Consider a 10-variable Maiorana-M
Farland type bent fun
tion

b(x) = b(X;Y ) = X � �(Y ) + g(Y );

where � is a permutation on f0; 1g

5

with �(Y ) = Y and g is a Boolean fun
tion

on 5 variables whi
h is a 
onstant 0 fun
tion. It 
an be 
he
ked that this bent

fun
tion satis�es the 
onditions required in Constru
tion 2. Then we prepare f

as given in Constru
tion 2. We 
he
ked that nonlinearity of f is 488, algebrai


degree is 8 and �

f

= 48. Now it is important to note the following two points.

1. The 
onstru
tion in [12, Theorem 4℄ required 26 points to be modi�ed to

get 1-resilient fun
tion from a bent fun
tion. We here need only 22 points

to modify. Further, we have 
he
ked that the �

f

value of the fun
tion 
on-

stru
ted in [12℄ is 64. The fun
tion we 
onstru
t here has �

f

= 48 and this

is the best known value whi
h is a
hieved for the �rst time here.

2. The (10; 1; 8; 488) fun
tion was �rst 
onstru
ted in [10℄ and we have 
he
ked

that �

f

value is 320 for that fun
tion. Thus our 
onstru
tion provides better

parameter.

5 The 12-variable 
ase

From Corollary 1, we �nd that dBR

12

(1) � 42. However, it seems that it is not

possible to 
onstru
t an 1-resilient fun
tion by toggling 42 bits of a bent fun
tion.

Instead we su

eeded to 
onstru
t a (12; 1; 10; 2000) fun
tion f , with �

f

= 120

by toggling 44 points of a bent fun
tion. Thus taking k = 44, we have to �rst

�nd

k

2

+ 2

n

2

�2

= 38 distin
t points. We sele
t the all zero input point and the

twelve input points ea
h of weight one. Now there are

�

12

2

�

= 66 input points of

weight two. Out of them we 
hoose 38�13 = 25 points by trial and error. These

points are 2560, 2304, 2176, 2112, 1280, 1152, 1088, 640, 576, 320, 1536, 384,

40, 36, 34, 33, 20, 18, 17, 10, 9, 5, 24, 6, 2080 when written as de
imal integers


orresponding to 12-bit binary numbers. We need a bent fun
tion su
h that it

will have out zero at these 38 input points. Next we take the six input points

4095, 3055, 3575, 3835, 3965, 4030. We need a bent fun
tion whi
h provides

output one at these six points. Now we present the bent fun
tion.

Take x = (x

1

; x

2

; x

3

; x

4

; x

5

; x

6

; x

7

; x

8

; x

9

; x

10

; x

11

; x

12

),

X = (X

1

; X

2

; X

3

; X

4

; X

5

; X

6

), and Y = (Y

1

; Y

2

, Y

3

; Y

4

; Y

5

; Y

6

). Further we iden-

tify X

1

= x

1

; X

2

= x

2

; X

3

= x

3

; X

4

= x

4

; X

5

= x

5

; X

6

= x

6

; Y

1

= x

7

; Y

2

=



x

8

; Y

3

= x

9

; Y

4

= x

10

; Y

5

= x

11

; Y

6

= x

12

. Consider a 12-variable Maiorana-

M
Farland type bent fun
tion b(x) = b(X;Y ) = X � �(Y ) + g(Y ) where � is

a permutation on f0; 1g

6

with �(Y ) = Y , ex
ept the 
ases �(1; 1; 1; 1; 1; 0) =

(1; 1; 1; 1; 1; 1) and �(1; 1; 1; 1; 1; 1) = (1; 1; 1; 1; 1; 0). Here g is a Boolean fun
-

tion on 6 variables whi
h is a 
onstant 0 fun
tion.

The 
onstru
tion presented in [12℄ requires 54 points to be toggled and they


ould a
hieve a nonlinearity 1996. Thus our 
onstru
tion is 
learly better. Fur-

ther we get �

f

= 120 for the (12; 1; 10; 2000) fun
tion that we 
onstru
t here.

This is the best known auto
orrelation parameter whi
h was not known earlier.

6 Con
lusion

In this paper we present a lower bound on the minimum distan
e dBR

n

(1)

between bent and 1-resilient fun
tions on n variables, where n is even. We have

also shown that it is possible to get 1-resilient fun
tions by modifying exa
tly

dBR

n

(1) many bits for n = 4; 6; 8; 10 whi
h shows that the minimum distan
e is

tight in these 
ases. For the 
ase n = 12, we 
ould not prove the bound is tight

as we need to toggle at least 44 points of a bent fun
tion to get an 1-resilient

fun
tion. The tightness of the bound for n � 12 remains an open question and to

the best of our understanding, the bound is really not tight. The 
ase for n = 8


ould be ni
ely handled, but it starts to be
ome 
ompli
ated from n = 10 and

requires some 
omputer simulation.

A lot of open questions are still to be solved. First of all, a relatively hard

question is to �nd out the minimum distan
e between bent and m-resilient fun
-

tions on n variables, whi
h we may denote as dBR

n

(m). It seems natural that

dBR

n

(n � 2) > dBR

n

(n � 3) > : : : > dBR

n

(1), though it needs a proof. Note

that (n � 2)-resilient fun
tions on n variables are basi
ally the aÆne fun
tions,

whi
h are known to be at maximum distan
e from the bent fun
tion [14℄.

The fun
tions we provide here possess 
urrently best known parameters. The

upper bound on nonlinearity of 1-resilient fun
tions is 2

n�1

� 2

n

2

�1

� 4 for n

even as des
ribed in [16℄. The tightness of this bound [16℄ has been shown upto

n = 8. For n � 10, there is no eviden
e of an 1-resilient fun
tion attaining that

bound [16℄. Our 
onstru
tion modi�es dBR

n

(1) > 2

n

2

�1

many bits and it seems

unlikely that modifying these many bits will result in a fall of nonlinearity only

4 for n � 10.
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Appendix A

We are not interested in the 
ase n = 2, sin
e there is no nonlinear 2-variable

1-resilient fun
tions.

We now 
onsider the 
ases for n = 4; 6. Note that r = 0 for these two 
ases

and then we arrive at dBR

4

(1) � 4 and dBR

6

(1) � 6. We have also 
he
ked that

this bound is tight sin
e we 
an 
onstru
t 4-variable (respe
tively 6-variable)

1-resilient fun
tion by 
hanging 4 (respe
tively 6) output points of 4-variable

(respe
tively 6-variable) bent fun
tion.

For the 4-variable 
ase, we have to take the rows of S� b(S) as

f0001; 0010; 0100; 1000g due to the 
onstraint that the number of 1's in ea
h


olumn has to be 1 and there are at least 3 distin
t rows. Thus, take a bent

fun
tion with truth table 0000011001010011 and toggle the fun
tion at the inputs

f(0; 0; 0; 1); (0; 0; 1; 0); (1; 0; 0; 0); (1; 0; 1; 1)g:

Then we get a (4; 1; 2; 4) fun
tion with the truth table 0110011011000011.

For the 6-variable 
ase, take a bent fun
tion with truth table

0000000001011010001111000110011001101001001100110101010100001111 and

toggle the outputs at the input points f(0; 0; 0; 0; 0; 1); (0; 0; 0; 0; 1; 0);

(0; 0; 0; 1; 0; 0); (0; 0; 1; 0; 0; 0); (1; 0; 0; 0; 0; 0); (1; 0; 1; 1; 1; 1)g:

Then we get a (6; 1; 4; 24) fun
tion with the truth table

0110100011011010001111000110011011101001001100100101010100001111.



Appendix B

Note that, in the Walsh spe
tra of a bent fun
tion on 8 variables, there are 120

values of +16 and 136 values of -16 or vi
e versa. It is known that even if that


ondition is satis�ed for some Walsh spe
tra, the inverse Walsh transform may

not produ
e a Boolean fun
tion. We here dis
uss that issue.

Lemma 1. Consider a fun
tion b(x) on 8 variables with the properties :

1. b(x) = 0 for wt(x) � 1 and b(x) = 1 for wt(x) = 8,

2. W

b

(!) = 16 for wt(!) � 3 and W

b

(!) = �16 for wt(!) � 6.

This fun
tion 
an not be bent.

Proof. If su
h a fun
tion b is bent, then Table 1, we will get an 1-resilient fun
tion

with nonlinearity 120. This is a 
ontradi
tion. ut

Corollary 2. Consider a fun
tion b(x) on 8 variables with the properties :

1. b(x) = 0 for wt(x) � 3 and b(x) = 1 for wt(x) � 6,

2. W

b

(!) = 16 for wt(!) � 1 and W

b

(!) = �16 for wt(!) = 8.

Proof. The result follows from Lemma 1 and the duality property of bent fun
-

tions. ut

Next we present an important result related to the existen
e of balan
ed

8-variable fun
tion with nonlinearity 118.

Theorem 6. Take a bent fun
tion h(x) on 8 variables with the following prop-

erties :

1. h(x) = 0 for wt(x) � 1 and h(x) = 1 for wt(x) = 8,

2. W

h

(!) = 16 for wt(!) � 2 and W

h

(!) = �16 for wt(!) � 6.

De�ne a set T = fx 2 f0; 1g

8

jwt(x) = 1g. Constru
t a fun
tion g(x) as :

f(x) = 1� h(x), if x 2 T

= h(x), otherwise.

Then g is a balan
ed 8-variable fun
tion with nonlinearity 118.

Proof. The proof is similar to the proof of Theorem 4. ut

We have tried some heuristi
 sear
h to �nd a bent fun
tion as mentioned in

Theorem 6, but 
ould not get any. Getting su
h a bent fun
tion or proving its

nonexisten
e is an interesting open question.


