
EFFICIENT LINEAR FEEDBACK SHIFT REGISTERS

WITH MAXIMAL PERIOD

BOAZ TSABAN AND UZI VISHNE

Abstrat. We introdue and analyze an eÆient family of linear

feedbak shift registers (LFSR's) with maximal period. This family

is word-oriented and is suitable for implementation in software,

thus provides a solution to a reent hallenge [8℄. The lassial

theory of LFSR's is extended to provide eÆient algorithms for

generation of irreduible and primitive LFSR's of this new type.

1. Linear feedbak shift registers

Linear feedbak shift registers (LFSR's) are fundamental primitives

in the theory and pratie of pseudorandom number generation and

oding theory (see, e.g., [1℄, [2℄, [3℄, [4℄, [6℄, [7℄, and referenes therein).

Figure 1 desribes a typial LFSR over the two-element �eld F

2

=

f0; 1g, where eah step onsists of adding some of the state bits (we

follow the onvention that the elements of F

2

are alled bits), and the

result is inserted to the register in a FIFO manner.

Figure 1. A typial LFSR.

Suh a onstrution is slow in the sense that it produes only one

new bit per step. Moreover, it is diÆult to implement in software,

sine many bit manipulations are required. In ertain ases (but not

always [10℄), it is possible to use LFSR's with only two feedbak taps.

This makes a slightly faster LFSR. (See also Setion 7.)

In the 1994 onferene on fast software enryption, a hallenge was

set forth to design LFSR's whih exploit the parallelism o�ered by the

word oriented operations of modern proessors [8, x2.2℄. In this paper

we suggest a solution and study its properties.

1991 Mathematis Subjet Classi�ation. 11T06, 11T71.

Key words and phrases. linear feedbak shift registers, linear transformation shift

registers, fast software enryption.

1



2 BOAZ TSABAN AND UZI VISHNE

2. Linear transformation shift registers

Fix an arbitrary �nite �eld F . A sequene � = hs

n

i

1

n=0

of elements

from F is linear reurring with harateristi polynomial

f(�) = a

0

+ a

1

�+ � � �+ a

d

�

d

2 F [x℄

if a

d

= 1, and

a

0

s

n

+ a

1

s

n+1

+ � � �+ a

d

s

n+d

= 0

for all n = 0; 1; 2; : : : . The minimal polynomial of a linear reurring

sequene � is the harateristi polynomial of � of least degree. Let

� be a nonzero linear reurring sequene with an irreduible hara-

teristi polynomial f(�). It is well known (f. [2℄) that the period

of � is equal to the order of � in the multipliative group of the

�eld K = F [�℄= hf(�)i. If � generates the whole group, we say that

f(�) is primitive. (In this ase � has the maximal possible period

jKj � 1 = jF j

d

� 1 where d = deg f(�).) Likewise, for any natural

number d, if T is a linear transformation of F

d

and v 2 F

d

is nonzero,

then the sequene hT

n

(v)i

1

n=0

of vetors in F

d

has period jF j

d

� 1 if

and only if the harateristi polynomial of the linear transformation

T is primitive over F [�℄. If this is the ase we say that T is primitive.

We now introdue the family of linear transformation shift registers

(TSR's). For onveniene of presentation, we pak m � n-dimensional

vetors in an array (v

0

; : : : ; v

n�1

) of n vetors in F

m

(n and m will be

�xed throughout the paper). In the intended appliation, F = F

2

and

m is the number of bits in the proessor's word. Typial values of m

are 8, 16, 24, 32, and 64. This way, the array (v

0

; : : : ; v

n�1

) is stored in

n proessor words. Following this interpretation, elements of F

m

will

be alled words.

De�nition 2.1. Let T be a linear transformation of F

m

, and let

S = ha

0

; : : : ; a

n�1

i 2 F

n

. A TSR step hT; Si of the array R =

(v

0

; : : : ; v

n�1

) 2M

m�n

(F ) is the linear transformation

hT; Si (R) := (v

1

; v

2

; : : : ; v

n�1

; T (a

0

v

0

+ a

1

v

1

+ � � �+ a

n�1

v

n�1

)):

The system hT; S; Ri is alled a TSR.

Figure 2 illustrates a typial example of a TSR. An obvious advan-

tage over the standard LFSR is that here a whole new word (rather

than a single bit) is produed per step.

Linear transformations on proessor words an be performed very

eÆiently, either using lookup tables, or by using spei� linear trans-

formations whih are eÆient when working on proessor words, e.g.

Galois-type shift registers. The latter example has the advantage that

no additional memory is required (see, e.g., [9, pp. 378{379℄). Note



WORD-ORIENTED LFSR'S 3

T

Figure 2. A typial TSR.

further that hoosing eah of the a

i

's to be either 0 or 1 eliminates the

omplexity of the multipliations a

i

v

i

. One annot, however, eliminate

the omplexity of the transformation T as well by using the identity

transformation T = I: In this ase the period annot be greater than

jF j

n

� 1, whereas in priniple, memory of n words an yield period

jF j

mn

� 1.

Simulations show that there exist hoies for T and S suh that the

resulted TSR step is primitive, and thus yields a sequene of vetors

with period 2

mn

� 1. In the following setions we provide neessary

onditions on T and S in order that the resulted TSR step is primitive.

Choosing T and S to satisfy these onditions inreases the probability

that the resulted TSR is primitive with respet to random hoie of

these parameters. Thus, we will get an eÆient algorithm for genera-

tion of primitive TSR's.

3. The harateristi polynomial of a TSR

Identify the linear transformation T operating on words with the

matrix T 2M

m

(F ) suh that T � v = T (v), v 2 F

m

.

Let I denote them�m unit matrix. A TSR step hT; S = ha

0

; : : : ; a

n�1

ii

of the array R = (v

0

; : : : ; v

n�1

) 2 (F

m

)

n

is equivalent to multipliation

of (v

0

; : : : ; v

n�1

)

t

from the left by the blok matrix [hT; Si℄ 2M

nm

(F ),

where

[hT; Si℄ =

0

B

B

B

B

B

�

0 I 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

0 � � � � � � 0 I

a

0

T a

1

T � � � a

n�2

T a

n�1

T

1

C

C

C

C

C

A

:

Let f

S

(�) = a

0

+ a

1

� + � � � + a

n�1

�

n�1

(so that the harateristi

polynomial of [hT; Si℄ in the ase m = 1 and T = (1) is �

n

� f

S

(�)),



4 BOAZ TSABAN AND UZI VISHNE

and let f

T

(�) = j�I � T j denote the harateristi polynomial of T

(note that the degree of f

T

(�) is m.)

Proposition 3.1. Let T be a linear transformation of F

m

, and S =

ha

0

; : : : ; a

n�1

i 2 F

n

. Then the harateristi polynomial of the TSR

step hT; Si is

f

hT;Si

(�) = f

S

(�)

m

� f

T

�

�

n

f

S

(�)

�

:

Proof. We multiply eah row blok by �, and add the result to the next

one. Then we use the �I bloks to anel the terms in the �rst olumn

blok.

j�I � hT; Si j =

�

�

�

�

�

�

�

�

�

�

�

�I �I 0 � � � 0

0

.

.

.

.

.

.

.

.

.

0

.

.

.

.

.

.

.

.

.

.

.

.

0

0 � � � 0 �I �I

�a

0

T �a

1

T � � � �a

n�2

T �I � a

n�1

T

�

�

�

�

�

�

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

�

�

�I �I 0 � � � 0

�

2

I 0

.

.

.

.

.

.

0

.

.

.

.

.

.

.

.

.

.

.

.

0

�

n�1

I 0 � � � 0 �I

�a

0

T �a

1

T � � � �a

n�2

T �I � a

n�1

T

�

�

�

�

�

�

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

�

�

0 �I 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

0 � � � � � � 0 �I

�

n

I � f

S

(�)T �a

1

T � � � �a

n�2

T �I � a

n�1

T

�

�

�

�

�

�

�

�

�

�

�

=

= (�1)

m(n�1)

�

�

�

�

�

�

�

�

�

�

�

�

n

I � f

S

(�)T �a

1

T � � � �a

n�2

T �I � a

n�1

T

0 �I 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

0

.

.

.

.

.

.

.

.

.

0

0 � � � � � � 0 �I

�

�

�

�

�

�

�

�

�

�

�

=

= (�1)

m(n�1)

� j�

n

I � f

S

(�)T j � j � Ij

n�1

=

= f

S

(�)

m

�

�

�

�

�

�

n

f

S

(�)

I � T

�

�

�

�

= f

S

(�)

m

� f

T

�

�

n

f

S

(�)

�

:

�



WORD-ORIENTED LFSR'S 5

A naive algorithm for generation of a TSR with maximal period

would be to hoose the linear transformation T and the set S at ran-

dom, alulate the harateristi polynomial f

hT;Si

(�) using Proposition

3.1, and then hek whether it is primitive, repeating this proess until

a primitive polynomial is found. In most of the ases, the polynomial

will not be primitive for the reason that it is not even irreduible. The

following orollary shows that muh unneessary work an be avoided.

Corollary 3.2. If f

T

(�) is reduible over F , then so is f

hT;Si

(�).

Proof. Suppose f

T

(�) = q

1

(�)q

2

(�) is a nontrivial fatorization of f

T

(�)

over F , m

i

= deg q

i

(�). Then f

S

(�)

m

i

q

i

�

�

n

f

S

(�)

�

are polynomials, and

f

hT;Si

(�) =

�

f

S

(�)

m

1

q

1

�

�

n

f

S

(�)

��

�

�

f

S

(�)

m

2

q

1

�

�

n

f

S

(�)

��

is a nontrivial

fatorization. �

Remark 3.3. In general, the probability that a moni polynomial of

degree m hosen at random is irreduible is lose to 1=m. Thus, by

Corollary 3.2, the probability that f

hT;Si

(�) is irreduible provided that

f

T

(�) is irreduible should be aboutm times larger than the probability

when f

T

(�) is arbitrary.

4. Irreduibility through extension fields

The algorithm stated in the previous setion onsidered polynomials

of a speial form as andidates to be primitive. In this setion we study

polynomials of this form, with the aim of improving the algorithm.

Let F be a �xed �nite �eld. Let q(�) = q

0

+q

1

�+ � � �+q

m

�

m

2 F [�℄.

We write p

q(�)

(x; y) for the homogeneous polynomial

x

m

� q(y=x) = q

0

x

m

+ q

1

x

m�1

y + � � �+ q

m

y

m

:

We wish to �nd neessary onditions for polynomials of the form p

q(�)

(g(�); f(�))

to be irreduible. Clearly, if g(�); f(�) 2 F [�℄ are not relatively prime,

then the polynomial p

q(�)

(g(�); f(�)) is reduible. Also, by Corollary

3.2, if q(�) is reduible, then so is p

q(�)

(g(�); f(�)). We are thus inter-

ested in the following type of polynomials.

De�nition 4.1. We say that a polynomial

p

q(�)

(g(�); f(�)) := g(�)

deg q(�)

� q

�

f(�)

g(�)

�

is a andidate if:

(1) g(�); q(�); f(�) 2 F [�℄,

(2) f(�) and g(�) are relatively prime, and

(3) q(�) is moni and irreduible.



6 BOAZ TSABAN AND UZI VISHNE

Theorem 4.2. Assume that Q(�) = p

q(�)

(g(�); f(�)) is a andidate,

and let � be a root of q(�) in the splitting �eld L of q(�). Then the

number of distint irreduible fators of Q(�) over F is equal to the

number of distint irreduible fators of f(�)� �g(�) over L.

Proof. Denote by �

1

; � � � ; �

m

2 L the (distint) roots of q(�) in L, so

that q(�) has the form

Q

m

i=1

(�� �

i

). We have that over L,

(1) Q(�) = g(�)

m

� q

�

f(�)

g(�)

�

=

m

Y

i=1

(f(�)� �

i

g(�)):

We an extend the standard norm map L ! F to a norm N

L=F

:

L[�℄ ! F [�℄ by N

L=F

(h(�)) =

Q

�2Gal(L=F )

�(h(�)), where �(�) = �

for all � 2 Gal(L=F ). Fix any � 2 f�

1

; : : : ; �

m

g. Using this notation,

Equation (1) is

Q(�) = N

L=F

(f(�)� �g(�)):

We will use the following lemma.

Lemma 4.3. Let the �eld L be an extension of F . Assume that r(�) 2

L[�℄ be irreduible. Then R(�) = N

L=F

(r(�)) is equal to an irreduible

polynomial over F raised to the power [L : L

0

℄, where L

0

� L is the

sub�eld generated by the oeÆients of r(�) over F .

Proof. Sine N

L=F

= N

L

0

=F

Æ N

L=L

0

and N

L=L

0

(r(�)) = r(�)

[L:L

0

℄

, it is

enough to prove the laim in the ase L

0

= L.

Let R(�) = R

1

(�) � � �R

t

(�) be an irreduible fatorization of R(�)

over F . Obviously r(�) divides R(�) in L[�℄, and sine r(�) is irre-

duible we have that r(�) divides one of the fators, say r(�) divides

R

1

(�).

Let L

1

be the splitting �eld of R

1

(�) over F . Note that L � L

1

,

sine the oeÆients of r(�) (whih divides R

1

(�)) generate L. Let L

2

be the splitting �eld of r(�) over L, then L

2

� L

1

and degR(�) =

[L : F ℄ � deg r(�) = [L

2

: F ℄ divides [L

1

: F ℄ = degR

1

(�). Thus

R(�) = R

1

(�) and is irreduible. �

Let

f(�)� �g(�) = u

1

(�)

s

1

� � �u

t

(�)

s

t

be a fatorization into irreduible polynomials over L.

Taking the norm from L[�℄ to F [�℄, we get the fatorization

Q(�) = U

1

(�)

s

1

� � �U

t

(�)

s

t

over F , where U

i

(�) = N

L=F

(u

i

(�)). By Lemma 4.3, The polynomials

U

i

(�) are irreduible (the oeÆient of �

deg g(�)

in f(�)��g(�) generates

L). It thus remains to show that the U

i

(�) are relatively prime. We



WORD-ORIENTED LFSR'S 7

will show that u

i

is prime to �(u

j

) for any � 2 Gal(L=F ) and j 6= i.

Indeed, if � = 1 then u

i

is prime to u

j

by the assumption. Otherwise,

u

i

divides f��g and �(u

j

) divides f��(�)g, but f��g and f��(�)g

are distint and irreduible, thus relatively prime. �

Corollary 4.4. Assume that Q(�) = p

q(�)

(g(�); f(�)) is a andidate,

and let L be the splitting �eld of q(�). Let � be a root of q(�) in L. Then

Q(�) is irreduible over F if, and only if, f(�) � �g(�) is irreduible

over L.

Aording to [5, Chapter 4℄, heking irreduibility of a degree d

polynomial amounts to performing gauss elimination of a matrix of

size d � d. In a �nite �eld F this requires roughly d

3

operations of

multipliation and addition. Assume that Q(�) = p

q(�)

(g(�); f(�)) is

a andidate, and set n = maxfdeg f(�); deg g(�)g. Cheking the re-

duibility of Q(�) diretly over F requires roughly degQ(�)

3

= m

3

n

3

operations. Cheking its reduibility via Corollary 4.4 requires roughly

n

3

operations, but here multipliation is more expensive: eah mul-

tipliation in L requires roughly m

2

multipliations in F . Thus, the

algorithm implied by Corollary 4.4 is roughly m times faster, where

m = deg q(�). See also Remark 6.3.

5. Primitivity

Assume that Q(�) = p

q(�)

(g(�); f(�)) is a andidate, L is the split-

ting �eld of q(�), and � is a root of q(�) in L. By Corollary 4.4, Q(�)

is irreduible over F if, and only if, f(�) � �g(�) is irreduible over

L. The analogue result for primitivity follows: Q(�) is primitive if,

and only if, it is irreduible and its roots generate K

�

, where K is

the splitting �eld of Q(�). Now, observe that K is also the splitting

�eld of f(�)� �g(�), and that Q(�) and f(�)� �g(�) share the same

roots in K. This result, however, does not yield an improvement of the

algorithm stated in the previous setion.

In this setion we show that if f(0) = 0 and the base �eld is F = F

2

(these assumptions hold in the intended environment for the TSR),

then a andidate Q(�) = p

q(�)

(g(�); f(�)) is primitive only if q is prim-

itive. Thus, the TSR-generation algorithm should begin with primitive

transformations T , yielding an additional speedup fator �(jL

�

j)=jL

�

j,

whih is roughly 2 when deg q(�) is a power of 2, f. [5℄.

It will be onvenient to use the following de�nition.

De�nition 5.1. Let L be a �nite �eld. The index of a nonzero element

� 2 L is the index jL

�

j=j h�i j of the yli group generated by � as a

subgroup of L

�

.



8 BOAZ TSABAN AND UZI VISHNE

An irreduible polynomial is primitive if, and only if, its roots have

index 1 in its splitting �eld. Note further that for d dividing jL

�

j, � 2 L

has index d if, and only if, � = g

d

for some generator g of the yli

group L

�

.

Lemma 5.2. Let h(�) 2 L[�℄ be an irreduible moni polynomial of

degree n over L, with splitting �eld K and a root �. Then �

jK

�

j=jL

�

j

=

(�1)

n

h(0).

Proof. Let �

0

; : : : ; �

n�1

denote the (distint) roots of h(�). Then h(�) =

(���

0

) � � � (���

n�1

) is the fatorization overK, thus h(0) = (�1)

n

�

0

� � ��

n�1

.

On the other hand, the Galois group of K=L is generated by the Frobe-

nius automorphism u 7! u

jLj

, thus the roots of h(�) are �; �

jLj

; : : : ; �

jLj

n�1

,

and �

0

� � ��

n�1

= �

1+jLj+���+jLj

n�1

= �

jLj

n

�1

jLj�1

. �

Theorem 5.3. Assume that F = F

2

and Q(�) = p

q(�)

(g(�); f(�)) is

an irreduible andidate with f(0) = 0. If q(�) is not primitive then

Q(�) is not primitive.

Proof. Let K be the splitting �eld of Q(�) over F , and L � K the

splitting �eld of q(�). Let � 2 K be a root of Q(�), and � 2 L a root

of q(�).

Let d

�

denote the index of � in K, and d

�

the index of � in L. We

will show that d

�

= (jL

�

j; d

�

). Thus, d

�

= 1 implies d

�

= 1.

By Corollary 4.4, h(�) = f(�) � �g(�) is irreduible over L. Sine

every polynomial is moni over F

2

, we an apply Lemma 5.2 to get that

h(0) = �

jK

�

j=jL

�

j

. But h(0) = f(0)� (�1)

n

�g(0) = �g(0). As f(�) and

g(�) are relatively prime, g(0) 6= 0, thus g(0) = 1, and h(0) = �.

Let g be a generator of K

�

suh that � = g

d

�

.

Then � = �

jK

�

j=jL

�

j

= g

d

�

jK

�

j=jL

�

j

, and its order in K

�

is

jK

�

j=(jK

�

j; d

�

jK

�

j=jL

�

j) = jL

�

j=(jL

�

j; d

�

),

as asserted. �

6. The final generation algorithm

In light of the results obtained in the previous setions, we end up

with the following algorithm for TSR-generation over F = F

2

:

Algorithm 6.1 (Primitive TSR generation).

(1) Choose at random a primitive transformation T on F

2

m

.

(2) Choose a random sequene S = ha

0

; : : : ; a

n�1

i 2 F

2

n

suh that

a

0

6= 0.

(3) Choose a root � of f

T

(�) in its splitting �eld L.



WORD-ORIENTED LFSR'S 9

(4) Chek that �

n

� �f

S

(�) is irreduible over L (otherwise return

to step 1).

(5) Chek that Q(�) = p

f

T

(�)

(f

S

(�); �

n

) is primitive: Choose a root

� of Q(�) in its splitting �eld K, and hek for all prime p

dividing jK

�

j that �

jK

�

j=p

6= 1 (in fat, as we show below, it is

not needed to onsider the ases where p divides jL

�

j).

(6) If Q(�) is not primitive, return to step 1.

Remark 6.2. Assuming that generally, the probability that Q(�) =

p

f

T

(�)

(f

S

(�); �

n

) is primitive is roughly the same for every primitive

transformation T , it would be more eÆient to repeat steps 2 to 5 of

the algorithm several times before starting again from step 1. Thus,

the omplexity of step 1 will be negligible with respet to the total

running time. Moreover, we argue below that step 5 usually ours

only one.

Remark 6.3. In all of the mentioned algorithms, one an get a speedup

fator of ~m, where ~m is the size of the word in the proessor where

the searh for the TSR is made (note that this need not be the same

proessor on whih the TSR will be implemented, thus ~m need not be

equal to m). This is done by exploiting the proessors word-oriented

operations to de�ne parallel versions of the basi operations used in

the algorithms.

For a natural number n, we denote by C

n

the (multipliative) yli

group of order n. If g is a generator of C

n

, then g

x

is a generator as well

if, and only if, (x; n) = 1. This is why the number of generators of C

n

is exatly �(n), where � is Euler's funtion, and the probability that a

uniformly hosen element generates C

n

is �(n)=n. An irreduible poly-

nomialQ(�) is primitive if a root � of Q(�) generates the multipliative

group of its splitting �eld K. There is a natural 1 to [K : F ℄ orre-

spondene between irreduible moni polynomials of degree [K : F ℄

and elements of K whih do not belong to a proper sub�eld of K. This

orrespondene implies that the probability that an irreduible Q(�) is

primitive is lose to �(jK

�

j)=jK

�

j.

We now onsider irreduible andidates. We wish to estimate the

probability that a andidate passing the test in step 4 of the algo-

rithm will also past the �nal test of step 5. A andidate Q(�) =

p

f

T

(�)

(f

S

(�); �

n

) is good if T is primitive and Q(�) is irreduible. We

will �nd, heuristially, the probability that a good andidate is primi-

tive. Let L be the splitting �eld of f

T

(�), and K be the splitting �eld

of Q(�). Fator jK

�

j = k

L

� a, where k

L

is the produt of all the prime

fators of jK

�

j whih divide jL

�

j (allowing powers of primes). Then the

group K

�

is isomorphi to C

k

L

� C

a

, where a prime p divides jL

�

j if,



10 BOAZ TSABAN AND UZI VISHNE

and only if, it divides k

L

. A root � of Q(�) generates K

�

if, and only

if, its projetions in C

k

L

and C

a

are both generators.

In the proof of Theorem 5.3 we showed that d

�

, the o-order of a

root � of f

T

(�) in L, is equal to (jL

�

j; d

�

), where d

�

is the o-order of

� in K. As T is primitive (i.e. d

�

= 1), we have that d

�

is prime to

jL

�

j. Thus, d

�

is prime to k

L

, that is, k

L

divides the order of � in K

�

.

Therefore, the projetion of � in C

k

L

is a generator of that group. We

assume, herusitially, that the projetion of � on C

a

is (lose to being)

uniformly distributed. Thus, the probability of its being a generator of

C

a

is lose to �(a)=a. In general,

�(n)

n

=

Y

pjn

�

1�

1

p

�

,

and as a prime p divides a if, and only if, p divides jK

�

j but not jL

�

j,

we have that

�(a)

a

=

�(jK

�

j)=jK

�

j

�(jL

�

j)=jL

�

j

:

We thus have a heuristi justi�ation for the following laim.

Claim 6.4. Assume that Q(�) = p

f

T

(�)

(f

S

(�); �

n

) is an irreduible

andidate over F

2

, where f

T

(�) is primitive. Then the probability that

Q(�) is primitive is lose to

�(jK

�

j)=jK

�

j

�(jL

�

j)=jL

�

j

:

Example 6.5. The probability at Claim 6.4 is usually lose to 1. We

give here a few examples:

(1) When the word's size is 8 bits and the number of words is 7, we

have that �(2

56

�1)=(2

56

�1) � 0:465, �(2

8

�1)=(2

8

�1) � 0:502,

and the division yields probability lose to 0:927.

(2) When the word's size is 16 bits and the number of words is 4,

we get probability lose to 0:998.

(3) For values 24 and 3, respetively, we get 0:898.

(4) For values 32 and 2 we get 0:998.

7. Conluding remarks

We have presented the family of linear transformation shift registers

whih is eÆient in software implementations. The theory we developed

enabled us to get an eÆient algorithm for generation of primitive

transformations of this type (i.e., whih have maximal period), thus

answering a hallenge raised in [8℄.



WORD-ORIENTED LFSR'S 11

Variants of our onstrution an be found more appropriate for er-

tain appliations. Arguments similar to the ones we have presented here

may be found useful in the study of these variants as well. A notewor-

thy variant of the LFSR type that we have studied is the internal-xor,

or Galois, shift register (See, e.g., [9℄). The number of new bits gener-

ated in one step of an internal-xor shift register is equal on average to

half of the number of taps in that LFSR. Our onstrution suggests an

obvious analogue internal-xor TSR. We get exatly the same results for

this ase, sine the harateristi polynomial of an internal-xor TSR is

equal to that of the orresponding external-xor TSR, whih we have

studied in this paper.

Referenes

[1℄ K. Cattell, J.C. Muzio, An Expliit Similarity Transform between Cellular

Automata and LFSR Matries, Finite Fields and Their Appliations 4 (1998),

239{251.

[2℄ S.W. Golomb, Shift Register Sequenes, Holden-Day, San Franiso: 1967.

[3℄ R. G�ottfert, H. Niederreiter, On the Minimal Polynomial of the Produt of

Linear Reurring Sequenes, Finite Fields and Their Appliations 1 (1995),

204{218.

[4℄ N. Kamiya, On Multisequene Shift Register Synthesis and Generalized-

Minimum-Distane Deoding of Reed-Solomon Codes, Finite Fields and Their

Appliations 1 (1995), 440{457.

[5℄ R. Lidl and H. Niederreiter, Finite Fields, in: Enylopedia of Mathematis

and its Appliations 20 (1983), Cambridge University Press.

[6℄ A. Munemasa, Orthogonal Arrays, Primitive Trinomials, and Shift-Register

Sequenes, Finite Fields and Their Appliations 4 (1998), 252{260.

[7℄ G.H. Norton, On Shortest Linear Reurrenes, Journal of Symboli Computa-

tion 27 (1999), 325{349.

[8℄ B. Preneel, Introdution to the Proeedings of the Fast Software Enryption

1994 Workshop (Ed. Bart Preneel), LNCS 1008 (1995), 1{5.

[9℄ B. Shneier, Applied Cryptography, John Wiley and Sons, 1996.

[10℄ U. Vishne, Fatorization of Trinomials over Galois Fields of Charateristi 2,

Finite Fields and Their Appliations 3 (1997), 370{377.

Department of Mathematis, Bar-Ilan University, 52900 Ramat-Gan,

Israel

E-mail address : tsaban�mas.biu.a.il

URL: http://www.s.biu.a.il/~tsaban

Landau researh enter for mathematial analysis, Hebrew Univer-

sity of Jerusalem, Israel

E-mail address : vishne�math.huji.a.il


