EFFICIENT LINEAR FEEDBACK SHIFT REGISTERS
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BOAZ TSABAN AND UZI VISHNE

ABSTRACT. We introduce and analyze an efficient family of linear
feedback shift registers (LFSR’s) with maximal period. This family
is word-oriented and is suitable for implementation in software,
thus provides a solution to a recent challenge [8]. The classical
theory of LFSR’s is extended to provide efficient algorithms for
generation of irreducible and primitive LFSR’s of this new type.

1. LINEAR FEEDBACK SHIFT REGISTERS

Linear feedback shift registers (LFSR’s) are fundamental primitives
in the theory and practice of pseudorandom number generation and
coding theory (see, e.g., [1], [2], [3], [4], [6], [7], and references therein).

Figure 1 describes a typical LFSR over the two-element field Fy, =
{0,1}, where each step consists of adding some of the state bits (we
follow the convention that the elements of Fy are called bits), and the
result is inserted to the register in a FIFO manner.
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FIGURE 1. A typical LFSR.

Such a construction is slow in the sense that it produces only one
new bit per step. Moreover, it is difficult to implement in software,
since many bit manipulations are required. In certain cases (but not
always [10]), it is possible to use LFSR’s with only two feedback taps.
This makes a slightly faster LESR. (See also Section 7.)

In the 1994 conference on fast software encryption, a challenge was
set forth to design LFSR’s which exploit the parallelism offered by the
word oriented operations of modern processors [8, §2.2]. In this paper
we suggest a solution and study its properties.
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2. LINEAR TRANSFORMATION SHIFT REGISTERS

Fix an arbitrary finite field F. A sequence o = (s,),, of elements
from F'is linear recurring with characteristic polynomaial

fO) =ap+a )+ +ag\? € Flz]

if ag =1, and
oSy + a1Sp1 + o+ agSpyra =0

for all n = 0,1,2,.... The minimal polynomial of a linear recurring
sequence o is the characteristic polynomial of o of least degree. Let
o be a nonzero linear recurring sequence with an irreducible charac-
teristic polynomial f(A). It is well known (cf. [2]) that the period
of o is equal to the order of A in the multiplicative group of the
field K = F[A]/(f(\)). If X generates the whole group, we say that
f(A\) is primitive. (In this case o has the maximal possible period
|K| — 1 = |F|¢ — 1 where d = deg f(\).) Likewise, for any natural
number d, if T is a linear transformation of F¢ and v € F% is nonzero,
then the sequence (T"(v))>”, of vectors in F* has period |F|* — 1 if
and only if the characteristic polynomial of the linear transformation
T is primitive over F[A]. If this is the case we say that T is primitive.

We now introduce the family of linear transformation shift registers
(TSR’s). For convenience of presentation, we pack m - n-dimensional
vectors in an array (vg, ..., U,_1) of n vectors in F™ (n and m will be
fixed throughout the paper). In the intended application, F' = Fy and
m is the number of bits in the processor’s word. Typical values of m
are 8, 16, 24, 32, and 64. This way, the array (vo, ..., v,_1) is stored in
n processor words. Following this interpretation, elements of F™ will
be called words.

Definition 2.1. Let 7" be a linear transformation of F"™, and let
S = (ap,...,an—1) € F". A TSR step (T,S) of the array R =
(Voy+ -y Vn_1) € Mysn(F) is the linear transformation

<T, S> (R) = (Ul, V2y...,Up_1, T(G,UUU + a1y + -4 an,lvn,l)).

The system (T, S, R) is called a TSR.

Figure 2 illustrates a typical example of a TSR. An obvious advan-
tage over the standard LFSR is that here a whole new word (rather
than a single bit) is produced per step.

Linear transformations on processor words can be performed very
efficiently, either using lookup tables, or by using specific linear trans-
formations which are efficient when working on processor words, e.g.
Galois-type shift registers. The latter example has the advantage that
no additional memory is required (see, e.g., [9, pp. 378-379]). Note



WORD-ORIENTED LFSR’S 3

I R

(T

FIGURE 2. A typical TSR.

further that choosing each of the a;’s to be either 0 or 1 eliminates the
complexity of the multiplications a;v;. One cannot, however, eliminate
the complexity of the transformation 7' as well by using the identity
transformation 7" = I: In this case the period cannot be greater than
|F|™ — 1, whereas in principle, memory of n words can yield period
|F|™ — 1.

Simulations show that there exist choices for T" and S such that the
resulted TSR step is primitive, and thus yields a sequence of vectors
with period 2™ — 1. In the following sections we provide necessary
conditions on 7" and S in order that the resulted TSR step is primitive.
Choosing T and S to satisfy these conditions increases the probability
that the resulted TSR is primitive with respect to random choice of
these parameters. Thus, we will get an efficient algorithm for genera-
tion of primitive TSR's.

3. THE CHARACTERISTIC POLYNOMIAL OF A TSR

Identify the linear transformation 7" operating on words with the
matrix 7' € M,,(F) such that T-v =T (v), v € F™.

Let I denote the mxm unit matrix. A TSR step (T, S = (ag,...,an_1))
of the array R = (vp, ..., v,—1) € (F™)" is equivalent to multiplication
of (vg,...,v, 1)" from the left by the block matrix [(T, S)] € M, (F),
where

o I 0 - 0
(T, 9] =1 - 0
CloT CllT s an,gT an,lT

Let fs(\) = ag + ayA + -+ + a1 A" ! (so that the characteristic
polynomial of [(T,S)] in the case m = 1 and T = (1) is A" — fg(N)),
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and let fr(\) = |A — T| denote the characteristic polynomial of T'

(note that the degree of fr(\) is m.)

Proposition 3.1. Let T be a linear transformation of F™, and S =

(ag,...,an,_1) € F™. Then the characteristic polynomial of the TSR
step (T, S) is
ATL
N = fsO)™ fr (=2

Proof. We multiply each row block by A, and add the result to the next
one. Then we use the —I blocks to cancel the terms in the first column

block.
Al —I 0 0
0 ’ " 0
A= (T, 5) | 0 =
0 X 0 Al —I
—CLOT —CL1T —CLn_QT M — an_lT
Al —I 0 0
NT 0 0
: : 0 -
AT 0 0 —I
—aoT —CL1T —CLn_QT M — CLn_lT
0 -1 0 0
0 e 0 —1
AP — fs()\)T —CL1T —CLn_QT M — CLn_lT

AP — fS()\)T —CllT —an,2T AN — an,lT
0 —1I 0 : 0
— (_l)m(n—l) : 0
: 0
0 0 -1

= (=1)" T fs (T [ -1 =

ATL
fs(\)

= fs()™-

I1-T

— s (

)\TL

fs(N)

).
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A naive algorithm for generation of a TSR with maximal period
would be to choose the linear transformation 7" and the set S at ran-
dom, calculate the characteristic polynomial fir y()) using Proposition
3.1, and then check whether it is primitive, repeating this process until
a primitive polynomial is found. In most of the cases, the polynomial
will not be primitive for the reason that it is not even irreducible. The
following corollary shows that much unnecessary work can be avoided.

Corollary 3.2. If fr(X) is reducible over F, then so is fir,gy(A).

Proof. Suppose fr(A) = ¢1(A)g2(A) is a nontrivial factorization of fr(\)
over F', m; = degq;(\). Then fs(\)™ ¢ (fg—&) are polynomials, and

firsy(A) = (fs()\)m(h (f;‘—(n/\)» . (fS(A)m2q1 (JQ—&)) is a nontrivi;l

factorization.

Remark 3.3. In general, the probability that a monic polynomial of
degree m chosen at random is irreducible is close to 1/m. Thus, by
Corollary 3.2, the probability that fr ¢ ()) is irreducible provided that
fr()) isirreducible should be about m times larger than the probability
when fr(A) is arbitrary.

4. IRREDUCIBILITY THROUGH EXTENSION FIELDS

The algorithm stated in the previous section considered polynomials
of a special form as candidates to be primitive. In this section we study
polynomials of this form, with the aim of improving the algorithm.

Let F' be a fixed finite field. Let g(A\) = go+ @A+ -+ qnA™ € F[)].
We write pg) (2, y) for the homogeneous polynomial

2™ - qy/z) = ™ + @™y 4+ + gy™

We wish to find necessary conditions for polynomials of the form pgx) (g(A), f(A))
to be irreducible. Clearly, if g()), f(\) € F[)\] are not relatively prime,

then the polynomial pgx)(g(A), f(A)) is reducible. Also, by Corollary

3.2, if ¢(A) is reducible, then so is pyx)(g(A), f(A)). We are thus inter-

ested in the following type of polynomials.

Definition 4.1. We say that a polynomial

Pay (90N, (V) = g(N)* 1V g <@)

is a candidate if:
(1) g(A),q(A), f(A) € F[A
(2) f(\) and g(\) are relatively prime, and
(3) g()) is monic and irreducible.
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Theorem 4.2. Assume that Q(\) = pgn)(g(N), f(N)) is a candidate,
and let o be a root of q(\) in the splitting field L of q(\). Then the
number of distinct irreducible factors of Q(\) over F is equal to the
number of distinct irreducible factors of f(\) — ag(\) over L.

Proof. Denote by oy, -+ ,a,, € L the (distinct) roots of ¢(\) in L, so
that ¢(\) has the form [ (A — «;). We have that over L,
f)

W W= a (L) = TLU0 - agtn.

We can extend the standard norm map L — F' to a norm Npp :
L[N = FIN by Ny (h(N) = Tyequgrym o(h(Y), where o(A) = A
for all 0 € Gal(L/F). Fix any o € {1, ..., ay}. Using this notation,
Equation (1) is

Q) = Niyr(f(A) — ag(N)).

We will use the following lemma.

Lemma 4.3. Let the field L be an extension of F. Assume that r(\) €
L[] be irreducible. Then R(X) = Ny/p(r(X)) is equal to an irreducible
polynomial over F raised to the power [L : L], where Ly C L is the
subfield generated by the coefficients of r(\) over F.

Proof. Since Npjp = Ny /r 0 Npjr, and Npjr,(r(X)) = r(A)E i s
enough to prove the claim in the case Ly = L.

Let R(A) = Ri(A)--- Ry()\) be an irreducible factorization of R(\)
over F. Obviously r(A) divides R(\) in L[)], and since r()) is irre-
ducible we have that r()\) divides one of the factors, say r(\) divides
Ry (N).

Let L; be the splitting field of R;(\) over F. Note that L C Ly,
since the coefficients of 7(\) (which divides R;())) generate L. Let Lo
be the splitting field of r(\) over L, then L, C L; and deg R(\) =
[L : F]-degr(\) = [Ly : F] divides [L; : F] = degRy;(\). Thus
R(A\) = Ry(\) and is irreducible. O

Let

FQ) —ag(d) =w(A)™ - (N)™
be a factorization into irreducible polynomials over L.
Taking the norm from L[A] to F[)\], we get the factorization

Q) = Ur(N)™ -+ Uy(N)™
over F', where U;(A) = Np/p(u;())). By Lemma 4.3, The polynomials

Ui(\) are irreducible (the coefficient of A°89() in f(\)—ag()\) generates
L). Tt thus remains to show that the U;(\) are relatively prime. We



WORD-ORIENTED LFSR’S 7

will show that w; is prime to o(u;) for any o € Gal(L/F) and j # i.
Indeed, if o = 1 then wu; is prime to u; by the assumption. Otherwise,
u; divides f —ayg and o(u;) divides f —o(a)g, but f—ag and f—o(a)g
are distinct and irreducible, thus relatively prime. O

Corollary 4.4. Assume that Q(A) = pg(9(A), f(N)) is a candidate,
and let L be the splitting field of g(X). Let o be a root of ¢(A\) in L. Then
Q(A) is irreducible over F if, and only if, f(A) — ag()) is irreducible
over L.

According to [5, Chapter 4], checking irreducibility of a degree d
polynomial amounts to performing gauss elimination of a matrix of
size d x d. In a finite field F' this requires roughly d* operations of
multiplication and addition. Assume that Q(A) = pgn)(g(A), f(A)) is
a candidate, and set n = max{deg f(\),degg(\)}. Checking the re-
ducibility of Q()) directly over F' requires roughly deg Q(\)* = m?®n?
operations. Checking its reducibility via Corollary 4.4 requires roughly
n® operations, but here multiplication is more expensive: each mul-
tiplication in L requires roughly m? multiplications in F. Thus, the
algorithm implied by Corollary 4.4 is roughly m times faster, where
m = degq()). See also Remark 6.3.

5. PRIMITIVITY

Assume that Q(X) = pyny(9(A), f(A)) is a candidate, L is the split-
ting field of ¢()), and « is a root of ¢(A) in L. By Corollary 4.4, Q(\)
is irreducible over F' if, and only if, f(\) — ag()\) is irreducible over
L. The analogue result for primitivity follows: Q(\) is primitive if,
and only if, it is irreducible and its roots generate K*, where K is
the splitting field of Q(X). Now, observe that K is also the splitting
field of f(\) — ag()), and that Q(A) and f(A) — ag(A) share the same
roots in K. This result, however, does not yield an improvement of the
algorithm stated in the previous section.

In this section we show that if f(0) = 0 and the base field is F = F,
(these assumptions hold in the intended environment for the TSR),
then a candidate Q(X) = pgn)(g(A), f(A)) is primitive only if ¢ is prim-
itive. Thus, the TSR~generation algorithm should begin with primitive
transformations 7', yielding an additional speedup factor ¢(|L*|)/|L*|,
which is roughly 2 when deg ¢()) is a power of 2, cf. [5].

It will be convenient to use the following definition.

Definition 5.1. Let L be a finite field. The index of a nonzero element
« € L is the index |L*|/| («) | of the cyclic group generated by « as a
subgroup of L*.
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An irreducible polynomial is primitive if, and only if, its roots have
index 1 in its splitting field. Note further that for d dividing |L*|, « € L
has index d if, and only if, & = ¢? for some generator ¢ of the cyclic
group L*.

Lemma 5.2. Let h(\) € L[] be an irreducible monic polynomial of

degree n over L, with splitting field K and a root . Then p/® /171 =
(=1)"h(0).

Proof. Let pg, - . ., jin—1 denote the (distinct) roots of A(\). Then h()) =
(A—pto) - - - (A= p1p, 1) is the factorization over K, thus h(0) = (=1)"po -+ - fin 1.
On the other hand, the Galois group of K /L is generated by the Frobe-

nius automorphism u — u'%!, thus the roots of h()\) are y, 21, ... 2"

- 17" -1
L+|Ll4-+|L" 7t W TET 0

and po -+ pin—1 = p1

Theorem 5.3. Assume that F' = Fy and Q(X) = pyn(9(N), f(N)) is
an irreducible candidate with f(0) = 0. If q¢(\) is not primitive then
Q(N) is not primitive.

Proof. Let K be the splitting field of Q(\) over F, and L C K the
splitting field of ¢(\). Let u € K be a root of Q(A), and a € L a root
of g(A).

Let d,, denote the index of p in K, and d, the index of o in L. We
will show that d, = (|]L*|,d,). Thus, d, = 1 implies d, = 1.

By Corollary 4.4, h(\) = f(X) — ag()) is irreducible over L. Since
every polynomial is monic over Fy, we can apply Lemma 5.2 to get that
h(0) = plE VL1 But h(0) = £(0) — (=1)"ag(0) = ag(0). As f()\) and
g(X) are relatively prime, g(0) # 0, thus ¢(0) = 1, and h(0) = a.

Let g be a generator of K* such that p = g%.

Then o = p/KVIFT = glK/IL71 " and its order in K* is

||/ du KEV/IL) = (L7 /(L7 d),

as asserted. O

6. THE FINAL GENERATION ALGORITHM

In light of the results obtained in the previous sections, we end up
with the following algorithm for TSR-generation over F' = Fy:

Algorithm 6.1 (Primitive TSR generation).

(1) Choose at random a primitive transformation T on Fy™.
(2) Choose a random sequence S = {ag,...,an,_1) € Fy™ such that

agp 7é 0.
(3) Choose a root o of fr(X) in its splitting field L.
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(4) Check that \™ — aifs(X) is irreducible over L (otherwise return
to step 1).

(5) Check that Q(A) = prrn)(fs(A), A") is primitive: Choose a root
poof Q(N) in its splitting field K, and check for all prime p
dividing |K*| that p'*"1/? £ 1 (in fact, as we show below, it is
not needed to consider the cases where p divides |L*|).

(6) If Q(N) is not primitive, return to step 1.

Remark 6.2. Assuming that generally, the probability that Q(\) =
P00 (fs(A), A") is primitive is roughly the same for every primitive
transformation 7', it would be more efficient to repeat steps 2 to 5 of
the algorithm several times before starting again from step 1. Thus,
the complexity of step 1 will be negligible with respect to the total
running time. Moreover, we argue below that step 5 usually occurs
only once.

Remark 6.3. In all of the mentioned algorithms, one can get a speedup
factor of m, where m is the size of the word in the processor where
the search for the TSR is made (note that this need not be the same
processor on which the TSR will be implemented, thus m need not be
equal to m). This is done by exploiting the processors word-oriented
operations to define parallel versions of the basic operations used in
the algorithms.

For a natural number n, we denote by C), the (multiplicative) cyclic
group of order n. If g is a generator of C),, then g” is a generator as well
if, and only if, (z,n) = 1. This is why the number of generators of C,,
is exactly ¢(n), where ¢ is Euler’s function, and the probability that a
uniformly chosen element generates C,, is ¢(n)/n. An irreducible poly-
nomial Q(\) is primitive if a root i of Q(\) generates the multiplicative
group of its splitting field K. There is a natural 1 to [K : F] corre-
spondence between irreducible monic polynomials of degree [K : F]|
and elements of K which do not belong to a proper subfield of K. This
correspondence implies that the probability that an irreducible Q()) is
primitive is close to ¢(|K*|)/|K*|.

We now consider irreducible candidates. We wish to estimate the
probability that a candidate passing the test in step 4 of the algo-
rithm will also past the final test of step 5. A candidate Q(\) =
P00 (fs(A), A") is good if T is primitive and () is irreducible. We
will find, heuristically, the probability that a good candidate is primi-
tive. Let L be the splitting field of fr()\), and K be the splitting field
of Q(N\). Factor |K*| = ky, - a, where kj, is the product of all the prime
factors of |K*| which divide |L*| (allowing powers of primes). Then the
group K* is isomorphic to Cy, x C,, where a prime p divides |L*| if,
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and only if, it divides k. A root u of Q()\) generates K* if, and only
if, its projections in C}, and C, are both generators.

In the proof of Theorem 5.3 we showed that d,, the co-order of a
root & of fr(A) in L, is equal to (|L*|,d,), where d, is the co-order of
pin K. As T is primitive (i.e. d, = 1), we have that d, is prime to
|L*|. Thus, d,, is prime to kp,, that is, k;, divides the order of p in K*.
Therefore, the projection of 1 in C}, is a generator of that group. We
assume, herusitically, that the projection of u on C, is (close to being)
uniformly distributed. Thus, the probability of its being a generator of
C, is close to ¢(a)/a. In general,

EI()

and as a prime p divides a if, and only if, p divides |K*| but not |L*|,

we have that
¢la) _ o(|K*])/IK7|
a  o(IL*])/IL*]

We thus have a heuristic justification for the following claim.
Claim 6.4. Assume that Q(A) = 0 (fs(A), A") is an irreducible
candidate over Fy, where fr(X\) is primitive. Then the probability that
Q(N) is primitive is close to

SR/ ||

oI L*))/1L*]
Example 6.5. The probability at Claim 6.4 is usually close to 1. We
give here a few examples:

(1) When the word’s size is 8 bits and the number of words is 7, we
have that (275 —1)/(26—1) ~ 0.465, $(25—1)/(25—1) = 0.502,
and the division yields probability close to 0.927.

(2) When the word’s size is 16 bits and the number of words is 4,
we get probability close to 0.998.

(3) For values 24 and 3, respectively, we get 0.898.

(4) For values 32 and 2 we get 0.998.

7. CONCLUDING REMARKS

We have presented the family of linear transformation shift registers
which is efficient in software implementations. The theory we developed
enabled us to get an efficient algorithm for generation of primitive
transformations of this type (i.e., which have maximal period), thus
answering a challenge raised in [8].
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Variants of our construction can be found more appropriate for cer-
tain applications. Arguments similar to the ones we have presented here
may be found useful in the study of these variants as well. A notewor-
thy variant of the LFSR type that we have studied is the internal-zor,
or Galois, shift register (See, e.g., [9]). The number of new bits gener-
ated in one step of an internal-xor shift register is equal on average to
half of the number of taps in that LESR. Our construction suggests an
obvious analogue internal-xor TSR. We get exactly the same results for
this case, since the characteristic polynomial of an internal-xor TSR is
equal to that of the corresponding external-xor TSR, which we have
studied in this paper.
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