
EFFICIENT LINEAR FEEDBACK SHIFT REGISTERS

WITH MAXIMAL PERIOD

BOAZ TSABAN AND UZI VISHNE

Abstra
t. We introdu
e and analyze an eÆ
ient family of linear

feedba
k shift registers (LFSR's) with maximal period. This family

is word-oriented and is suitable for implementation in software,

thus provides a solution to a re
ent 
hallenge [8℄. The 
lassi
al

theory of LFSR's is extended to provide eÆ
ient algorithms for

generation of irredu
ible and primitive LFSR's of this new type.

1. Linear feedba
k shift registers

Linear feedba
k shift registers (LFSR's) are fundamental primitives

in the theory and pra
ti
e of pseudorandom number generation and


oding theory (see, e.g., [1℄, [2℄, [3℄, [4℄, [6℄, [7℄, and referen
es therein).

Figure 1 des
ribes a typi
al LFSR over the two-element �eld F

2

=

f0; 1g, where ea
h step 
onsists of adding some of the state bits (we

follow the 
onvention that the elements of F

2

are 
alled bits), and the

result is inserted to the register in a FIFO manner.

Figure 1. A typi
al LFSR.

Su
h a 
onstru
tion is slow in the sense that it produ
es only one

new bit per step. Moreover, it is diÆ
ult to implement in software,

sin
e many bit manipulations are required. In 
ertain 
ases (but not

always [10℄), it is possible to use LFSR's with only two feedba
k taps.

This makes a slightly faster LFSR. (See also Se
tion 7.)

In the 1994 
onferen
e on fast software en
ryption, a 
hallenge was

set forth to design LFSR's whi
h exploit the parallelism o�ered by the

word oriented operations of modern pro
essors [8, x2.2℄. In this paper

we suggest a solution and study its properties.

1991 Mathemati
s Subje
t Classi�
ation. 11T06, 11T71.

Key words and phrases. linear feedba
k shift registers, linear transformation shift

registers, fast software en
ryption.

1



2 BOAZ TSABAN AND UZI VISHNE

2. Linear transformation shift registers

Fix an arbitrary �nite �eld F . A sequen
e � = hs

n

i

1

n=0

of elements

from F is linear re
urring with 
hara
teristi
 polynomial

f(�) = a

0

+ a

1

�+ � � �+ a

d

�

d

2 F [x℄

if a

d

= 1, and

a

0

s

n

+ a

1

s

n+1

+ � � �+ a

d

s

n+d

= 0

for all n = 0; 1; 2; : : : . The minimal polynomial of a linear re
urring

sequen
e � is the 
hara
teristi
 polynomial of � of least degree. Let

� be a nonzero linear re
urring sequen
e with an irredu
ible 
hara
-

teristi
 polynomial f(�). It is well known (
f. [2℄) that the period

of � is equal to the order of � in the multipli
ative group of the

�eld K = F [�℄= hf(�)i. If � generates the whole group, we say that

f(�) is primitive. (In this 
ase � has the maximal possible period

jKj � 1 = jF j

d

� 1 where d = deg f(�).) Likewise, for any natural

number d, if T is a linear transformation of F

d

and v 2 F

d

is nonzero,

then the sequen
e hT

n

(v)i

1

n=0

of ve
tors in F

d

has period jF j

d

� 1 if

and only if the 
hara
teristi
 polynomial of the linear transformation

T is primitive over F [�℄. If this is the 
ase we say that T is primitive.

We now introdu
e the family of linear transformation shift registers

(TSR's). For 
onvenien
e of presentation, we pa
k m � n-dimensional

ve
tors in an array (v

0

; : : : ; v

n�1

) of n ve
tors in F

m

(n and m will be

�xed throughout the paper). In the intended appli
ation, F = F

2

and

m is the number of bits in the pro
essor's word. Typi
al values of m

are 8, 16, 24, 32, and 64. This way, the array (v

0

; : : : ; v

n�1

) is stored in

n pro
essor words. Following this interpretation, elements of F

m

will

be 
alled words.

De�nition 2.1. Let T be a linear transformation of F

m

, and let

S = ha

0

; : : : ; a

n�1

i 2 F

n

. A TSR step hT; Si of the array R =

(v

0

; : : : ; v

n�1

) 2M

m�n

(F ) is the linear transformation

hT; Si (R) := (v

1

; v

2

; : : : ; v

n�1

; T (a

0

v

0

+ a

1

v

1

+ � � �+ a

n�1

v

n�1

)):

The system hT; S; Ri is 
alled a TSR.

Figure 2 illustrates a typi
al example of a TSR. An obvious advan-

tage over the standard LFSR is that here a whole new word (rather

than a single bit) is produ
ed per step.

Linear transformations on pro
essor words 
an be performed very

eÆ
iently, either using lookup tables, or by using spe
i�
 linear trans-

formations whi
h are eÆ
ient when working on pro
essor words, e.g.

Galois-type shift registers. The latter example has the advantage that

no additional memory is required (see, e.g., [9, pp. 378{379℄). Note



WORD-ORIENTED LFSR'S 3

T

Figure 2. A typi
al TSR.

further that 
hoosing ea
h of the a

i

's to be either 0 or 1 eliminates the


omplexity of the multipli
ations a

i

v

i

. One 
annot, however, eliminate

the 
omplexity of the transformation T as well by using the identity

transformation T = I: In this 
ase the period 
annot be greater than

jF j

n

� 1, whereas in prin
iple, memory of n words 
an yield period

jF j

mn

� 1.

Simulations show that there exist 
hoi
es for T and S su
h that the

resulted TSR step is primitive, and thus yields a sequen
e of ve
tors

with period 2

mn

� 1. In the following se
tions we provide ne
essary


onditions on T and S in order that the resulted TSR step is primitive.

Choosing T and S to satisfy these 
onditions in
reases the probability

that the resulted TSR is primitive with respe
t to random 
hoi
e of

these parameters. Thus, we will get an eÆ
ient algorithm for genera-

tion of primitive TSR's.

3. The 
hara
teristi
 polynomial of a TSR

Identify the linear transformation T operating on words with the

matrix T 2M

m

(F ) su
h that T � v = T (v), v 2 F

m

.

Let I denote them�m unit matrix. A TSR step hT; S = ha

0

; : : : ; a

n�1

ii

of the array R = (v

0

; : : : ; v

n�1

) 2 (F

m

)

n

is equivalent to multipli
ation

of (v

0

; : : : ; v

n�1

)

t

from the left by the blo
k matrix [hT; Si℄ 2M

nm

(F ),

where

[hT; Si℄ =

0

B

B

B

B

B

�

0 I 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

0 � � � � � � 0 I

a

0

T a

1

T � � � a

n�2

T a

n�1

T

1

C

C

C

C

C

A

:

Let f

S

(�) = a

0

+ a

1

� + � � � + a

n�1

�

n�1

(so that the 
hara
teristi


polynomial of [hT; Si℄ in the 
ase m = 1 and T = (1) is �

n

� f

S

(�)),



4 BOAZ TSABAN AND UZI VISHNE

and let f

T

(�) = j�I � T j denote the 
hara
teristi
 polynomial of T

(note that the degree of f

T

(�) is m.)

Proposition 3.1. Let T be a linear transformation of F

m

, and S =

ha

0

; : : : ; a

n�1

i 2 F

n

. Then the 
hara
teristi
 polynomial of the TSR

step hT; Si is

f

hT;Si

(�) = f

S

(�)

m

� f

T

�

�

n

f

S

(�)

�

:

Proof. We multiply ea
h row blo
k by �, and add the result to the next

one. Then we use the �I blo
ks to 
an
el the terms in the �rst 
olumn

blo
k.

j�I � hT; Si j =

�

�

�

�

�

�

�

�

�

�

�

�I �I 0 � � � 0

0

.

.

.

.

.

.

.

.

.

0

.

.

.

.

.

.

.

.

.

.

.

.

0

0 � � � 0 �I �I

�a

0

T �a

1

T � � � �a

n�2

T �I � a

n�1

T

�

�

�

�

�

�

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

�

�

�I �I 0 � � � 0

�

2

I 0

.

.

.

.

.

.

0

.

.

.

.

.

.

.

.

.

.

.

.

0

�

n�1

I 0 � � � 0 �I

�a

0

T �a

1

T � � � �a

n�2

T �I � a

n�1

T

�

�

�

�

�

�

�

�

�

�

�

=

=

�

�

�

�

�

�

�

�

�

�

�

0 �I 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

0 � � � � � � 0 �I

�

n

I � f

S

(�)T �a

1

T � � � �a

n�2

T �I � a

n�1

T

�

�

�

�

�

�

�

�

�

�

�

=

= (�1)

m(n�1)

�

�

�

�

�

�

�

�

�

�

�

�

n

I � f

S

(�)T �a

1

T � � � �a

n�2

T �I � a

n�1

T

0 �I 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

0

.

.

.

.

.

.

.

.

.

0

0 � � � � � � 0 �I

�

�

�

�

�

�

�

�

�

�

�

=

= (�1)

m(n�1)

� j�

n

I � f

S

(�)T j � j � Ij

n�1

=

= f

S

(�)

m

�

�

�

�

�

�

n

f

S

(�)

I � T

�

�

�

�

= f

S

(�)

m

� f

T

�

�

n

f

S

(�)

�

:

�



WORD-ORIENTED LFSR'S 5

A naive algorithm for generation of a TSR with maximal period

would be to 
hoose the linear transformation T and the set S at ran-

dom, 
al
ulate the 
hara
teristi
 polynomial f

hT;Si

(�) using Proposition

3.1, and then 
he
k whether it is primitive, repeating this pro
ess until

a primitive polynomial is found. In most of the 
ases, the polynomial

will not be primitive for the reason that it is not even irredu
ible. The

following 
orollary shows that mu
h unne
essary work 
an be avoided.

Corollary 3.2. If f

T

(�) is redu
ible over F , then so is f

hT;Si

(�).

Proof. Suppose f

T

(�) = q

1

(�)q

2

(�) is a nontrivial fa
torization of f

T

(�)

over F , m

i

= deg q

i

(�). Then f

S

(�)

m

i

q

i

�

�

n

f

S

(�)

�

are polynomials, and

f

hT;Si

(�) =

�

f

S

(�)

m

1

q

1

�

�

n

f

S

(�)

��

�

�

f

S

(�)

m

2

q

1

�

�

n

f

S

(�)

��

is a nontrivial

fa
torization. �

Remark 3.3. In general, the probability that a moni
 polynomial of

degree m 
hosen at random is irredu
ible is 
lose to 1=m. Thus, by

Corollary 3.2, the probability that f

hT;Si

(�) is irredu
ible provided that

f

T

(�) is irredu
ible should be aboutm times larger than the probability

when f

T

(�) is arbitrary.

4. Irredu
ibility through extension fields

The algorithm stated in the previous se
tion 
onsidered polynomials

of a spe
ial form as 
andidates to be primitive. In this se
tion we study

polynomials of this form, with the aim of improving the algorithm.

Let F be a �xed �nite �eld. Let q(�) = q

0

+q

1

�+ � � �+q

m

�

m

2 F [�℄.

We write p

q(�)

(x; y) for the homogeneous polynomial

x

m

� q(y=x) = q

0

x

m

+ q

1

x

m�1

y + � � �+ q

m

y

m

:

We wish to �nd ne
essary 
onditions for polynomials of the form p

q(�)

(g(�); f(�))

to be irredu
ible. Clearly, if g(�); f(�) 2 F [�℄ are not relatively prime,

then the polynomial p

q(�)

(g(�); f(�)) is redu
ible. Also, by Corollary

3.2, if q(�) is redu
ible, then so is p

q(�)

(g(�); f(�)). We are thus inter-

ested in the following type of polynomials.

De�nition 4.1. We say that a polynomial

p

q(�)

(g(�); f(�)) := g(�)

deg q(�)

� q

�

f(�)

g(�)

�

is a 
andidate if:

(1) g(�); q(�); f(�) 2 F [�℄,

(2) f(�) and g(�) are relatively prime, and

(3) q(�) is moni
 and irredu
ible.



6 BOAZ TSABAN AND UZI VISHNE

Theorem 4.2. Assume that Q(�) = p

q(�)

(g(�); f(�)) is a 
andidate,

and let � be a root of q(�) in the splitting �eld L of q(�). Then the

number of distin
t irredu
ible fa
tors of Q(�) over F is equal to the

number of distin
t irredu
ible fa
tors of f(�)� �g(�) over L.

Proof. Denote by �

1

; � � � ; �

m

2 L the (distin
t) roots of q(�) in L, so

that q(�) has the form

Q

m

i=1

(�� �

i

). We have that over L,

(1) Q(�) = g(�)

m

� q

�

f(�)

g(�)

�

=

m

Y

i=1

(f(�)� �

i

g(�)):

We 
an extend the standard norm map L ! F to a norm N

L=F

:

L[�℄ ! F [�℄ by N

L=F

(h(�)) =

Q

�2Gal(L=F )

�(h(�)), where �(�) = �

for all � 2 Gal(L=F ). Fix any � 2 f�

1

; : : : ; �

m

g. Using this notation,

Equation (1) is

Q(�) = N

L=F

(f(�)� �g(�)):

We will use the following lemma.

Lemma 4.3. Let the �eld L be an extension of F . Assume that r(�) 2

L[�℄ be irredu
ible. Then R(�) = N

L=F

(r(�)) is equal to an irredu
ible

polynomial over F raised to the power [L : L

0

℄, where L

0

� L is the

sub�eld generated by the 
oeÆ
ients of r(�) over F .

Proof. Sin
e N

L=F

= N

L

0

=F

Æ N

L=L

0

and N

L=L

0

(r(�)) = r(�)

[L:L

0

℄

, it is

enough to prove the 
laim in the 
ase L

0

= L.

Let R(�) = R

1

(�) � � �R

t

(�) be an irredu
ible fa
torization of R(�)

over F . Obviously r(�) divides R(�) in L[�℄, and sin
e r(�) is irre-

du
ible we have that r(�) divides one of the fa
tors, say r(�) divides

R

1

(�).

Let L

1

be the splitting �eld of R

1

(�) over F . Note that L � L

1

,

sin
e the 
oeÆ
ients of r(�) (whi
h divides R

1

(�)) generate L. Let L

2

be the splitting �eld of r(�) over L, then L

2

� L

1

and degR(�) =

[L : F ℄ � deg r(�) = [L

2

: F ℄ divides [L

1

: F ℄ = degR

1

(�). Thus

R(�) = R

1

(�) and is irredu
ible. �

Let

f(�)� �g(�) = u

1

(�)

s

1

� � �u

t

(�)

s

t

be a fa
torization into irredu
ible polynomials over L.

Taking the norm from L[�℄ to F [�℄, we get the fa
torization

Q(�) = U

1

(�)

s

1

� � �U

t

(�)

s

t

over F , where U

i

(�) = N

L=F

(u

i

(�)). By Lemma 4.3, The polynomials

U

i

(�) are irredu
ible (the 
oeÆ
ient of �

deg g(�)

in f(�)��g(�) generates

L). It thus remains to show that the U

i

(�) are relatively prime. We



WORD-ORIENTED LFSR'S 7

will show that u

i

is prime to �(u

j

) for any � 2 Gal(L=F ) and j 6= i.

Indeed, if � = 1 then u

i

is prime to u

j

by the assumption. Otherwise,

u

i

divides f��g and �(u

j

) divides f��(�)g, but f��g and f��(�)g

are distin
t and irredu
ible, thus relatively prime. �

Corollary 4.4. Assume that Q(�) = p

q(�)

(g(�); f(�)) is a 
andidate,

and let L be the splitting �eld of q(�). Let � be a root of q(�) in L. Then

Q(�) is irredu
ible over F if, and only if, f(�) � �g(�) is irredu
ible

over L.

A

ording to [5, Chapter 4℄, 
he
king irredu
ibility of a degree d

polynomial amounts to performing gauss elimination of a matrix of

size d � d. In a �nite �eld F this requires roughly d

3

operations of

multipli
ation and addition. Assume that Q(�) = p

q(�)

(g(�); f(�)) is

a 
andidate, and set n = maxfdeg f(�); deg g(�)g. Che
king the re-

du
ibility of Q(�) dire
tly over F requires roughly degQ(�)

3

= m

3

n

3

operations. Che
king its redu
ibility via Corollary 4.4 requires roughly

n

3

operations, but here multipli
ation is more expensive: ea
h mul-

tipli
ation in L requires roughly m

2

multipli
ations in F . Thus, the

algorithm implied by Corollary 4.4 is roughly m times faster, where

m = deg q(�). See also Remark 6.3.

5. Primitivity

Assume that Q(�) = p

q(�)

(g(�); f(�)) is a 
andidate, L is the split-

ting �eld of q(�), and � is a root of q(�) in L. By Corollary 4.4, Q(�)

is irredu
ible over F if, and only if, f(�) � �g(�) is irredu
ible over

L. The analogue result for primitivity follows: Q(�) is primitive if,

and only if, it is irredu
ible and its roots generate K

�

, where K is

the splitting �eld of Q(�). Now, observe that K is also the splitting

�eld of f(�)� �g(�), and that Q(�) and f(�)� �g(�) share the same

roots in K. This result, however, does not yield an improvement of the

algorithm stated in the previous se
tion.

In this se
tion we show that if f(0) = 0 and the base �eld is F = F

2

(these assumptions hold in the intended environment for the TSR),

then a 
andidate Q(�) = p

q(�)

(g(�); f(�)) is primitive only if q is prim-

itive. Thus, the TSR-generation algorithm should begin with primitive

transformations T , yielding an additional speedup fa
tor �(jL

�

j)=jL

�

j,

whi
h is roughly 2 when deg q(�) is a power of 2, 
f. [5℄.

It will be 
onvenient to use the following de�nition.

De�nition 5.1. Let L be a �nite �eld. The index of a nonzero element

� 2 L is the index jL

�

j=j h�i j of the 
y
li
 group generated by � as a

subgroup of L

�

.



8 BOAZ TSABAN AND UZI VISHNE

An irredu
ible polynomial is primitive if, and only if, its roots have

index 1 in its splitting �eld. Note further that for d dividing jL

�

j, � 2 L

has index d if, and only if, � = g

d

for some generator g of the 
y
li


group L

�

.

Lemma 5.2. Let h(�) 2 L[�℄ be an irredu
ible moni
 polynomial of

degree n over L, with splitting �eld K and a root �. Then �

jK

�

j=jL

�

j

=

(�1)

n

h(0).

Proof. Let �

0

; : : : ; �

n�1

denote the (distin
t) roots of h(�). Then h(�) =

(���

0

) � � � (���

n�1

) is the fa
torization overK, thus h(0) = (�1)

n

�

0

� � ��

n�1

.

On the other hand, the Galois group of K=L is generated by the Frobe-

nius automorphism u 7! u

jLj

, thus the roots of h(�) are �; �

jLj

; : : : ; �

jLj

n�1

,

and �

0

� � ��

n�1

= �

1+jLj+���+jLj

n�1

= �

jLj

n

�1

jLj�1

. �

Theorem 5.3. Assume that F = F

2

and Q(�) = p

q(�)

(g(�); f(�)) is

an irredu
ible 
andidate with f(0) = 0. If q(�) is not primitive then

Q(�) is not primitive.

Proof. Let K be the splitting �eld of Q(�) over F , and L � K the

splitting �eld of q(�). Let � 2 K be a root of Q(�), and � 2 L a root

of q(�).

Let d

�

denote the index of � in K, and d

�

the index of � in L. We

will show that d

�

= (jL

�

j; d

�

). Thus, d

�

= 1 implies d

�

= 1.

By Corollary 4.4, h(�) = f(�) � �g(�) is irredu
ible over L. Sin
e

every polynomial is moni
 over F

2

, we 
an apply Lemma 5.2 to get that

h(0) = �

jK

�

j=jL

�

j

. But h(0) = f(0)� (�1)

n

�g(0) = �g(0). As f(�) and

g(�) are relatively prime, g(0) 6= 0, thus g(0) = 1, and h(0) = �.

Let g be a generator of K

�

su
h that � = g

d

�

.

Then � = �

jK

�

j=jL

�

j

= g

d

�

jK

�

j=jL

�

j

, and its order in K

�

is

jK

�

j=(jK

�

j; d

�

jK

�

j=jL

�

j) = jL

�

j=(jL

�

j; d

�

),

as asserted. �

6. The final generation algorithm

In light of the results obtained in the previous se
tions, we end up

with the following algorithm for TSR-generation over F = F

2

:

Algorithm 6.1 (Primitive TSR generation).

(1) Choose at random a primitive transformation T on F

2

m

.

(2) Choose a random sequen
e S = ha

0

; : : : ; a

n�1

i 2 F

2

n

su
h that

a

0

6= 0.

(3) Choose a root � of f

T

(�) in its splitting �eld L.



WORD-ORIENTED LFSR'S 9

(4) Che
k that �

n

� �f

S

(�) is irredu
ible over L (otherwise return

to step 1).

(5) Che
k that Q(�) = p

f

T

(�)

(f

S

(�); �

n

) is primitive: Choose a root

� of Q(�) in its splitting �eld K, and 
he
k for all prime p

dividing jK

�

j that �

jK

�

j=p

6= 1 (in fa
t, as we show below, it is

not needed to 
onsider the 
ases where p divides jL

�

j).

(6) If Q(�) is not primitive, return to step 1.

Remark 6.2. Assuming that generally, the probability that Q(�) =

p

f

T

(�)

(f

S

(�); �

n

) is primitive is roughly the same for every primitive

transformation T , it would be more eÆ
ient to repeat steps 2 to 5 of

the algorithm several times before starting again from step 1. Thus,

the 
omplexity of step 1 will be negligible with respe
t to the total

running time. Moreover, we argue below that step 5 usually o

urs

only on
e.

Remark 6.3. In all of the mentioned algorithms, one 
an get a speedup

fa
tor of ~m, where ~m is the size of the word in the pro
essor where

the sear
h for the TSR is made (note that this need not be the same

pro
essor on whi
h the TSR will be implemented, thus ~m need not be

equal to m). This is done by exploiting the pro
essors word-oriented

operations to de�ne parallel versions of the basi
 operations used in

the algorithms.

For a natural number n, we denote by C

n

the (multipli
ative) 
y
li


group of order n. If g is a generator of C

n

, then g

x

is a generator as well

if, and only if, (x; n) = 1. This is why the number of generators of C

n

is exa
tly �(n), where � is Euler's fun
tion, and the probability that a

uniformly 
hosen element generates C

n

is �(n)=n. An irredu
ible poly-

nomialQ(�) is primitive if a root � of Q(�) generates the multipli
ative

group of its splitting �eld K. There is a natural 1 to [K : F ℄ 
orre-

sponden
e between irredu
ible moni
 polynomials of degree [K : F ℄

and elements of K whi
h do not belong to a proper sub�eld of K. This


orresponden
e implies that the probability that an irredu
ible Q(�) is

primitive is 
lose to �(jK

�

j)=jK

�

j.

We now 
onsider irredu
ible 
andidates. We wish to estimate the

probability that a 
andidate passing the test in step 4 of the algo-

rithm will also past the �nal test of step 5. A 
andidate Q(�) =

p

f

T

(�)

(f

S

(�); �

n

) is good if T is primitive and Q(�) is irredu
ible. We

will �nd, heuristi
ally, the probability that a good 
andidate is primi-

tive. Let L be the splitting �eld of f

T

(�), and K be the splitting �eld

of Q(�). Fa
tor jK

�

j = k

L

� a, where k

L

is the produ
t of all the prime

fa
tors of jK

�

j whi
h divide jL

�

j (allowing powers of primes). Then the

group K

�

is isomorphi
 to C

k

L

� C

a

, where a prime p divides jL

�

j if,



10 BOAZ TSABAN AND UZI VISHNE

and only if, it divides k

L

. A root � of Q(�) generates K

�

if, and only

if, its proje
tions in C

k

L

and C

a

are both generators.

In the proof of Theorem 5.3 we showed that d

�

, the 
o-order of a

root � of f

T

(�) in L, is equal to (jL

�

j; d

�

), where d

�

is the 
o-order of

� in K. As T is primitive (i.e. d

�

= 1), we have that d

�

is prime to

jL

�

j. Thus, d

�

is prime to k

L

, that is, k

L

divides the order of � in K

�

.

Therefore, the proje
tion of � in C

k

L

is a generator of that group. We

assume, herusiti
ally, that the proje
tion of � on C

a

is (
lose to being)

uniformly distributed. Thus, the probability of its being a generator of

C

a

is 
lose to �(a)=a. In general,

�(n)

n

=

Y

pjn

�

1�

1

p

�

,

and as a prime p divides a if, and only if, p divides jK

�

j but not jL

�

j,

we have that

�(a)

a

=

�(jK

�

j)=jK

�

j

�(jL

�

j)=jL

�

j

:

We thus have a heuristi
 justi�
ation for the following 
laim.

Claim 6.4. Assume that Q(�) = p

f

T

(�)

(f

S

(�); �

n

) is an irredu
ible


andidate over F

2

, where f

T

(�) is primitive. Then the probability that

Q(�) is primitive is 
lose to

�(jK

�

j)=jK

�

j

�(jL

�

j)=jL

�

j

:

Example 6.5. The probability at Claim 6.4 is usually 
lose to 1. We

give here a few examples:

(1) When the word's size is 8 bits and the number of words is 7, we

have that �(2

56

�1)=(2

56

�1) � 0:465, �(2

8

�1)=(2

8

�1) � 0:502,

and the division yields probability 
lose to 0:927.

(2) When the word's size is 16 bits and the number of words is 4,

we get probability 
lose to 0:998.

(3) For values 24 and 3, respe
tively, we get 0:898.

(4) For values 32 and 2 we get 0:998.

7. Con
luding remarks

We have presented the family of linear transformation shift registers

whi
h is eÆ
ient in software implementations. The theory we developed

enabled us to get an eÆ
ient algorithm for generation of primitive

transformations of this type (i.e., whi
h have maximal period), thus

answering a 
hallenge raised in [8℄.



WORD-ORIENTED LFSR'S 11

Variants of our 
onstru
tion 
an be found more appropriate for 
er-

tain appli
ations. Arguments similar to the ones we have presented here

may be found useful in the study of these variants as well. A notewor-

thy variant of the LFSR type that we have studied is the internal-xor,

or Galois, shift register (See, e.g., [9℄). The number of new bits gener-

ated in one step of an internal-xor shift register is equal on average to

half of the number of taps in that LFSR. Our 
onstru
tion suggests an

obvious analogue internal-xor TSR. We get exa
tly the same results for

this 
ase, sin
e the 
hara
teristi
 polynomial of an internal-xor TSR is

equal to that of the 
orresponding external-xor TSR, whi
h we have

studied in this paper.

Referen
es

[1℄ K. Cattell, J.C. Muzio, An Expli
it Similarity Transform between Cellular

Automata and LFSR Matri
es, Finite Fields and Their Appli
ations 4 (1998),

239{251.

[2℄ S.W. Golomb, Shift Register Sequen
es, Holden-Day, San Fran
is
o: 1967.

[3℄ R. G�ottfert, H. Niederreiter, On the Minimal Polynomial of the Produ
t of

Linear Re
urring Sequen
es, Finite Fields and Their Appli
ations 1 (1995),

204{218.

[4℄ N. Kamiya, On Multisequen
e Shift Register Synthesis and Generalized-

Minimum-Distan
e De
oding of Reed-Solomon Codes, Finite Fields and Their

Appli
ations 1 (1995), 440{457.

[5℄ R. Lidl and H. Niederreiter, Finite Fields, in: En
y
lopedia of Mathemati
s

and its Appli
ations 20 (1983), Cambridge University Press.

[6℄ A. Munemasa, Orthogonal Arrays, Primitive Trinomials, and Shift-Register

Sequen
es, Finite Fields and Their Appli
ations 4 (1998), 252{260.

[7℄ G.H. Norton, On Shortest Linear Re
urren
es, Journal of Symboli
 Computa-

tion 27 (1999), 325{349.

[8℄ B. Preneel, Introdu
tion to the Pro
eedings of the Fast Software En
ryption

1994 Workshop (Ed. Bart Preneel), LNCS 1008 (1995), 1{5.

[9℄ B. S
hneier, Applied Cryptography, John Wiley and Sons, 1996.

[10℄ U. Vishne, Fa
torization of Trinomials over Galois Fields of Chara
teristi
 2,

Finite Fields and Their Appli
ations 3 (1997), 370{377.

Department of Mathemati
s, Bar-Ilan University, 52900 Ramat-Gan,

Israel

E-mail address : tsaban�ma
s.biu.a
.il

URL: http://www.
s.biu.a
.il/~tsaban

Landau resear
h 
enter for mathemati
al analysis, Hebrew Univer-

sity of Jerusalem, Israel

E-mail address : vishne�math.huji.a
.il


