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Abstrat. P 2 S

N

is a fast forward permutation if for eah m

the omputational omplexity of evaluating P

m

(x) is small inde-

pendently ofm and x. Naor and Reingold onstruted fast forward

pseudorandom yluses and involutions. By studying the evolution

of permutation graphs, we prove that the number of queries needed

to distinguish a random ylus from a random permutation in S

N

is �(N) if one does not use queries of the form P

m

(x), but is only

�(1) if one is allowed to make suh queries.

We onstrut fast forward permutations whih are indistinguish-

able from random permutations even when queries of the form

P

m

(x) are allowed. This is done by introduing an eÆient method

to sample the yle struture of a random permutation, whih in

turn solves an open problem of Naor and Reingold.

0. Introdution and Motivation

Aording to Naor and Reingold [1℄, a permutation � 2 S

N

is a fast

forward permutation if for eah integer m, and eah x = 0; : : : ; N � 1,

the omputational omplexity of evaluating �

m

(x) is small and inde-

pendent of m and x. An important example for suh a permutation is

the suessor permutation s de�ned by

s(x) = x+ 1 mod N;

as for eah m and x, s

m

(x) = x+m mod N . Observe that s is a ylus,

that is, its yle struture onsists of a single yle of length N .

Throughout this paper, the term random is taken with respet to the

uniform distribution. In [1℄, Naor and Reingold onsider the following

problem

1

: Assume that we have a fast forward permutation � 2 S

N

.

Key words and phrases. permutation graphs, pseudorandom permutations, fast

forward permutations, yle struture.

1

For the sake of larity, we will onentrate in the beginning in the (purely)

random ase, and leave the pseudorandom ase for Part 3.

1
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Assume further we have an orale

2

P whih �xes a random permutation

P 2 S

N

, and for eah x an ompute P (x) and P

�1

(x) in time whih

is polynomial in logN . We wish to use this orale in order to de�ne a

random permutation Q suh that:

(1) Q is a random element of the spae of all permutations whih

have the same yle struture as �.

(2) Q is a fast forward permutation.

The solution to this problem is as follows [1℄: De�ne Q = P�P

�1

.

Then for eah integer m we have that

Q

m

(x) = P (�

m

(P

�1

(x)));

so Q is a fast forward permutation. Moreover, Q has the same yle

struture as �, and it is not diÆult to see that it distributes uniformly

among the permutations whih have the same yle struture as �.

Therefore Naor and Reingold's onstrution using � = s yields a fast

forward random ylus. The natural question whih arises is whether

this onstrution gives a pseudorandom permutation. Here by pseudo-

random permutation we mean that the resulting permutation is diÆult

to distinguish from a truly random permutation using a limited number

(under some reasonable de�nition of \limited") of alls to the orale.

In Setion 4 of [1℄ it is onjetured that distinguishing a random ylus

in S

N

from a random permutation should require roughly

p

N evalu-

ations. In the forthoming Setion 1 we prove that in the restrited

model where only queries of the form P (x) or P

�1

(x) are allowed (this

is the usual model), the task of distinguishing a random ylus from a

random permutation requires roughly N (not

p

N) evaluations.

However, if one wants to allow the usage of the fast forward prop-

erty in the mentioned onstrution then the resulting permutation is

far from being pseudorandom: In Setion 2 we show that a single eval-

uation is enough to distinguish a random ylus from a random permu-

tation in the fast forward model (where evaluations of the form P

m

(x)

are allowed). Therefore, the question of onstrution of a fast forward

pseudorandom permutation is far from having a satisfatory solution.

It turns out that a solution of this problem an be obtained by solving

another open problem.

After introduing their onstrution, Naor and Reingold ask whether

it is possible to remove the restrition on the yle struture of the fast

2

An orale is an algorithm initialized by a �xed unknown initial state, whih

works as a \blak box" by aepting queries of some spei� form, and making

responses aordingly. (The initial state of the algorithm may hange as it runs.)

The user of suh an algorithm an only know the queries and the responses to them.
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forward permutation, that is, whether one an use the orale P in order

to de�ne a random permutation Q suh that:

(1) Q is a random element in the spae S

N

of all permutations.

(2) Q is a fast forward permutation.

We give an aÆrmative solution whih is based on an eÆient method to

sample the yle struture of a random permutation, together with an

introdution of a fast forward permutation for any given yle struture.

This onstrution yields a fast forward random permutation whih is

indistinguishable from a random permutation even in the fast forward

model.

Part 1. Indistinguishability and distinguishability

This part deals with the evolution of permutation graphs and its

appliation to the indistinguishability of random yluses from random

permutations, and with the distinguishability of random yles from

random permutations when fast forward queries are allowed.

1. The indistinguishability of random yluses from

random permutations

In this setion we prove that the number of evaluations of the form

P (x) or P

�1

(x) needed in order to distinguish a random ylus in S

N

from a random permutation in S

N

is �(N).

Our proof is best stated in the language of graphs. We �rst set up

the basi notation and fats. As these are fairly natural, the reader

may wish to skip diretly to Lemma 1.1, and return to the de�nitions

only if an ambiguity ours.

Throughout this setion, V = f0; : : : ; N�1g and G (with or without

an index) will denote a �nite direted graph with V as its set of verties.

Fix a natural number N . The graph of a (partial) funtion f from

(a subset of) N to N is the direted graph with set of verties V and

with an edge from x to y if, and only if, f(x) = y (for all x; y 2 V ). For

onveniene we also require that for all x; y 2 V there exists at most

one edge from x to y, and will write x! y when there exists an edge

from x to y. The graph of a (partial) funtion will be alled a (partial)

funtion graph. Observe that there is a natural bijetive orrespon-

dene between (partial) funtions and their graph. A partiular ase

of (partial) funtion graphs is the (partial) permutation graph, where

we require that the (partial) funtion of the graph is injetive.

Let � denote the \forgetful" funtor assigning to eah direted graph

G the orresponding undireted graph �(G) (eah edge from x to y is
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replaed by an undireted edge between x and y.) A set C of verties

in G is a omponent if it is a onneted omponent in the undireted

graph �(G) (isolated verties are also omponents). A omponent C

is onneted if for eah x; y 2 C there exists a path from x to y in G.

If G is a partial funtion graph then eah onneted omponent of

G is a yle. A permutation graph G of a ylus will be alled a ylus

graph. Thus a ylus graph has a single onneted omponent, and has

the form

x

0

! x

1

! � � � ! x

N�1

! x

0

:

G is a partial ylus graph if it an be extended to a ylus graph. A

partial ylus graph is proper if it is not a ylus graph.

The following sequene of observations will play a key role in our

proof. We will give proofs only where it seems neessary.

Lemma 1.1. Let G be a direted graph. The following are equivalent:

(1) G is a proper partial ylus graph.

(2) G is a partial permutation graph with no yles.

(3) Eah omponent of G is well-ordered by !.

Thus if G is a proper partial ylus graph then eah omponent C

of G ontains a unique minimal element minC and a unique maximal

element maxC.

Lemma 1.2. Assume that G is a partial ylus graph with m ompo-

nents. Then there exist exatly (m� 1)! ylus graphs extending G.

Proof. Let C

0

; : : : ; C

m�1

be the omponents of G.

Fix any ylus � 2 S

m

. For eah i = 0; : : : ; m � 1, add an edge

from maxC

�

i

(0)

to minC

�

i+1

(0)

to obtain a ylus graph G

�

. We laim

that for distint yluses �; � 2 S

m

, the graphs G

�

and G

�

are distint.

Indeed, let i 2 f0; : : : ; m � 1g be the minimal suh that �

i+1

(0) 6=

�

i+1

(0) (observe that �

0

(0) = 0 = �

0

(0).) Then in G

�

there is an edge

from maxC

�

i

(0)

to minC

�

i+1

(0)

, whereas in G

�

there is not. Thus eah

ylus in S

m

de�nes a unique ylus graph extending G.

On the other hand, eah ylus graph extending G de�nes a unique

well-ordering on G by removing the edge pointing to minC

0

, and this

well-ordering de�nes, in turn, a unique ylus � 2 S

m

by letting �

i+1

(0)

be the unique k suh that there is an edge from maxC

�

i

(0)

to minC

k

.

It remains to reall that there exist exatly (m � 1)! yluses in

S

m

. �

Let omp(G) and y(G) denote the olletion of omponents and

yles in G, respetively. The following lemma desribes the basi steps

in the evolution of partial permutation graphs. We use ℄ to denote

disjoint union.
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Lemma 1.3. Assume that G is a partial permutation graph, and let

~

G be the new graph obtained by adding a new edge to G. Then

~

G is

a partial permutation graph if, and only if, there exist (not neessarily

distint) onneted omponents C

0

and C

1

in G suh that the new edge

is from maxC

0

to minC

1

. Moreover,

(1) If C

0

and C

1

are the same omponent then omp(

~

G) = omp(G),

and y(

~

G) = y(G) ℄ fC

0

g. (In partiular, j omp(

~

G)j =

j omp(G)j, and j y(

~

G)j = j y(G)j+ 1.)

(2) If C

0

and C

1

are distint then y(

~

G) = y(G), and omp(

~

G) =

(omp(G) n fC

0

; C

1

g) ℄ fC

0

[ C

1

g. (In partiular, j y(

~

G)j =

j y(G)j, and j omp(

~

G)j = j omp(G)j � 1.)

For the following de�nition, reall our onvention that throughout

this paper, the term random is taken with respet to the uniform dis-

tribution.

De�nition 1.4. De�ne the following orales:

C: Chooses a random ylus P 2 S

N

, aepts queries of the form

(x; i) 2 f0; : : : ; N � 1g � f1;�1g and responds with y = P

i

(x)

for eah suh query.

O

2

: Begins with the empty graph G

0

on V = f0; : : : ; N�1g, aepts

queries of the form (x; i) 2 V �f1;�1g, and onstruts a partial

ylus graph on V as follows. In the kth query (x

k

; i

k

), the

orale responds as follows:

(1) If the query was made earlier and answered with y, or a

query of the form (y;�i

k

) was made earlier and answered

with x

k

, then the orale responds with y

k

= y.

(2) Otherwise, the orale responds as follows (let C

x

k

denote

the omponent of x

k

):

(a) If i = 1 then it hooses a random C 2 omp(G

k

) n

fC

x

k

g, sets y

k

= minC, adds the edge x

k

! y

k

to

G

k

to obtain a new graph G

k+1

, and responds with

y

k

.

(b) If i = �1 (this is the dual ase) then it hooses a

random C 2 omp(G

k

) n fC

x

k

g, sets y

k

= maxC,

adds the edge y

k

! x

k

to G

k

to obtain a new graph

G

k+1

, and responds with y

k

.

A sequene ((x

0

; i

0

); y

0

; : : : (x

k

; i

k

); y

k

) is C-onsistent if the equations

P

i

j

(x

j

) = y

j

have a solution P 2 S

N

whih is a ylus. It is nonre-

peating if there exists no 0 � j < l � k suh that (x

l

; i

l

) = (x

j

; i

j

),

or (x

l

; i

l

) = (y

j

;�i

j

). Thus a nonrepeating sequene is a sequene

where Case 1 of O

2

is never ativated, that is, a sequene in whih
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eah query answer gives new information on the permutation (or its

graph). Observe that any onsistent sequene an be turned into a

shorter nonrepeating sequene whih indues the same partial ylus

graph.

Lemma 1.5. For eah nonrepeating C-onsistent sequene

s = ((x

0

; i

0

); y

0

; : : : (x

k�1

; i

k�1

); y

k�1

),

Pr[sjC℄ = (N � k � 1)!=(N � 1)! = Pr[sjO

2

℄;

where Pr[sjA℄ is the probability that the orale A responds with y

0

to

(x

0

; i

0

), then with y

1

to (x

1

; i

1

), . . . , and �nally with y

k�1

to (x

k�1

; i

k�1

).

Proof. The de�nition of C-onsisteny ensures that the sequene s de-

�nes a partial ylus graph. The requirement that s is nonrepeating

implies by Lemma 1.3 that eah answer to a query redues the number

of omponents in the indued partial ylus graph by exatly 1. Thus,

after k queries the indued graph has exatly N � k omponents. By

Lemma 1.2, there exist (N � k� 1)! ylus graphs extending the given

partial ylus graph, and therefore the probability of getting s in C is

(N � k � 1)!=(N � 1)!.

Now onsider O

2

. Again, Lemma 1.3 implies that j omp(G

j

)j =

N � j for all j. Given G

j

, the probability for a spei� onsistent

answer y

j

in the next query to O

2

is 1=(N � j � 1) (uniform hoie of

one out of the remaining N � j � 1 omponents). Thus,

Pr[sjO

2

℄ =

1

N � 1

�

1

N � 2

� : : : �

1

N � k

=

(N � k � 1)!

(N � 1)!

:

�

We say that two orales are equivalent if there is no way to distinguish

between them by making queries to the orales and analyzing their

responses.

Corollary 1.6. The orales C and O

2

are equivalent.

De�nition 1.7. De�ne the following orales.

O

3

: Initially sets a ag Bad to 0, and begins with the empty graph

G

0

on V = f0; : : : ; N � 1g. This orale aepts queries of the

form (x; i) 2 V �f1;�1g, and onstruts a partial permutation

graph on V as follows. In the kth query (x

k

; i

k

), the orale

responds as follows:

(1) If the query was made earlier and answered with y, or a

query of the form (y;�i

k

) was made earlier and answered

with x

k

, then the orale responds with y

k

= y.

(2) Otherwise, the orale responds as follows:
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(a) If i = 1 then it hooses a random C 2 omp(G

k

),

sets y

k

= minC, adds the edge x

k

! y

k

to G

k

to

obtain a new graph G

k+1

, and responds with y

k

.

(b) If i = �1 (this is the dual ase) then it hooses a

random C 2 omp(G

k

), sets y

k

= maxC, adds the

edge y

k

! x

k

to G

k

to obtain a new graph G

k+1

, and

responds with y

k

.

If C is the omponent of x

k

, this orale sets Bad = 1.

P: Chooses a random permutation P 2 S

N

, aepts queries of

the form (x; i) 2 f0; : : : ; N � 1g � f1;�1g and responds with

y = P

i

(x) for eah suh query.

A sequene ((x

0

; i

0

); y

0

; : : : (x

k

; i

k

); y

k

) is P-onsistent if the equa-

tions P

i

j

(x

j

) = y

j

have a solution P 2 S

N

. The proof of the following

is similar to the proof of Lemma 1.5 (in fat, it is simpler) and we omit

it.

Lemma 1.8. For eah nonrepeating P-onsistent sequene s whih or-

responds to k queries and replies,

Pr[sjO

3

℄ = (N � k)!=N ! = Pr[sjP℄:

Corollary 1.9. Orales O

3

and P are equivalent.

For our purposes it seems onvenient to use the following notion

of a distinguisher. An (information theoreti) distinguisher D is a

probabilisti algorithm

3

with an unlimited omputational power and

storage spae, whih aepts an orale as input (where there are two

possible orales), makes m queries (where m is some �xed number) to

that orale (the distribution of eah query depends only on the sequene

of earlier queries and orale responses), and outputs either 0 or 1 (again,

the distribution of the answer depends only on the sequene of queries

and orale responses).

The intended meaning is that the distinguisher's output is its guess

as to whih of the two possible orales made the responses. (Thus

given two orales A and B, D(A) and D(B) are random variables tak-

ing values in f0; 1g.) The natural measure for the e�etiveness of the

distinguisher in distinguishing between two orales A and B is its ad-

vantage, de�ned by

jPr[D(A) = 1℄� Pr[D(B) = 1℄j:

3

A probabilisti algorithm is an algorithm enhaned by an aess to a random

number generator, that is, at eah stage the algorithm hooses whih moves to make

next aording to some well-de�ned distribution. Mathematially, a probabilisti

algorithm is a random variable, whereas a usual algorithm is a funtion.
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The motivation for this measure is as follows. Assume without loss of

generality that Pr[D(A) = 1℄ � Pr[D(B) = 1℄. Then by the likelihood

test we should deide x = A if the output of D(x) is 1 and x = B

otherwise. The e�etiveness of this deision proedure learly inreases

as the di�erene between Pr[D(A) = 1℄ and Pr[D(B) = 1℄ inreases,

and this (or any other) proedure is useless when the probabilities are

equal. Moreover, it an be proved that the number of times needed

to sample D(x) in order to deide whether x = A or x = B with a

signi�ant level of ertainty is O(1=�

2

), where � = jPr[D(A) = 1℄ �

Pr[D(B) = 1℄j.

Theorem 1.10. Assume that D is a distinguisher whih makes m < N

queries to C or P. Then

jPr[D(C) = 1℄� Pr[D(P) = 1℄j �

m

N

:

Proof. By Corollaries 1.6 and 1.9, it suÆes to show that jPr[D(O

2

) =

1℄� Pr[D(O

3

) = 1℄j �

m

N

.

Orales O

2

and O

3

behave identially as long as Bad = 0 in O

3

, that

is, as long as the omponent of x

k

was not hosen. As long as this is

the ase, the number of omponents in the graph redues by at most

1 with eah new query answer (we do not assume that the queries are

nonrepeating), and therefore the probability that the omponent of x

k

was not hosen for all k = 0; : : : ; m� 1 is at least

N � 1

N

�

N � 2

N � 1

� : : : �

N �m

N �m + 1

=

N �m

N

= 1�

m

N

:

Let p = Pr[D(O

2

) = 1℄. Then p = Pr[D(O

3

) = 1jBad = 0℄, therefore

Pr[D(O

3

) = 1℄ =

= Pr[D(O

3

) = 1jBad = 0℄ � Pr[Bad = 0℄+

+Pr[D(O

3

) = 1jBad = 1℄ � Pr[Bad = 1℄

= p � Pr[Bad = 0℄ + Pr[D(O

3

) = 1jBad = 1℄ � Pr[Bad = 1℄:

Thus,

jPr[D(O

2

) = 1℄� Pr[D(O

3

) = 1℄j =

= jp(1� Pr[Bad = 0℄)� Pr[D(O

3

) = 1jBad = 1℄ � Pr[Bad = 1℄j

= jp � Pr[Bad = 1℄� Pr[D(O

3

) = 1jBad = 1℄ � Pr[Bad = 1℄j

= j(p� Pr[D(O

3

) = 1jBad = 1℄) � Pr[Bad = 1℄j �

= jp� Pr[D(O

3

) = 1jBad = 1℄j �

m

N

�

m

N

:

�
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Corollary 1.11. For all � > 0, the number of evaluations required to

distinguish a random ylus in S

N

from a random permutation in S

N

with advantage greater or equal to � is at least b�N.

Our bound on the distinguisher's advantage annot be improved.

The following theorem shows not only that there exists an optimal

strategy (with advantage m=N) for the distinguisher, but that in some

sense all strategies are optimal, inluding for example those whih do

not use queries of the form (x;�1). By \all" we mean those whih do

not make queries where the responses are known in advane, that is,

strategies for whih the sequene of queries is nonrepeating. (As we

remarked before, any strategy whih makes repeating queries an be

improved.)

Theorem 1.12 (Optimal strategies). Consider the following m-step

strategy (m < N) for a distinguisher D to distinguish between P and

C:

Queries: For eah k = 0; : : : ; m�1, hoose any pair (x

k

; i

k

) 2 V �f1;�1g

suh that the sequene ((x

0

; i

0

); y

0

; : : : ; (x

k

; i

k

)) is nonrepeating,

and make the query (x

k

; i

k

).

Output: If one of the orale responses introdued a yle, the distin-

guisher outputs 1. Otherwise the distinguisher outputs 0.

Then the advantage of this distinguisher is m=N . In other words, any

strategy whih generates only nonrepeating sequenes is optimal.

Proof. As the query sequene is nonrepeating, the probability that a

yle is not introdued given that the orale is O

3

is exatly

N � 1

N

�

N � 2

N � 1

� : : : �

N �m

N �m + 1

=

N �m

N

= 1�

m

N

:

Thus Pr[D(P) = 0℄ = Pr[D(O

3

) = 0℄ = 1�m=N , and

Pr[D(C) = 0℄� Pr[D(P) = 0℄ = 1�

�

1�

m

N

�

=

m

N

:

�

2. Cryptanalysis of the Naor-Reingold fast forward

ylus

In this setion we show that in the fast forward model (where the

distinguisher is allowed to make queries of the form P

m

(x)), random

yluses an be distinguished from random permutations with advan-

tage 1� o(1), using a single query to the given orale.

For eah N let d(N) denote the number of divisors of N .
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Theorem 2.1. A fast forward random ylus an be distinguished from

a fast forward random permutation with advantage 1� d(N)=N , using

a single query.

Proof. We will use the following important fat.

Lemma 2.2 (folklore). Fix an x 2 f0; : : : ; N � 1g. Then the length of

the yle of x in a random permutation in S

N

distributes uniformly in

f1; : : : ; Ng.

Proof. For eah k = 1; : : : ; N the probability that the yle's length is

k is

N � 1

N

�

N � 2

N � 1

� : : : �

N � (k � 1)

N � (k � 2)

�

1

N � (k � 1)

=

1

N

:

�

Assume that P is a random permutation in S

N

. By Lemma 2.2, the

length a

0

of the yle of 0 distributes uniformly in f1; : : : ; Ng. As there

are d(N) divisors of N , the probability that a

0

divides N is d(N)=N .

Now, P

N

(0) = 0 if, and only if, a

0

divides N . Thus, the probability

that P

N

(0) = 0 is d(N)=N if P is random, but 1 if P is a ylus.

Therefore, the single query (0; N) is enough to distinguish a random

ylus from a random permutation with advantage 1� d(N)=N . �

Example 2.3. If N = 2

n

(this is the standard ase), then d(N)=N =

(n+ 1)=2

n

, whih is negligible.

d(N)=N onverges to 0 quite rapidly as N ! 1. However, for our

purposes, the following easy observation is enough.

Proposition 2.4. d(N)=N = o(1).

Proof. Observe that for eah N , if the fatorization of N is p

e

1

1

� : : : �p

e

k

k

,

then d(N) = (e

1

+ 1) � : : : � (e

k

+ 1), thus

d(N)

N

=

e

1

+ 1

p

e

1

1

� : : : �

e

k

+ 1

p

e

k

k

:

For all N > 1, as the funtion f(x) = (x + 1)=N

x

is dereasing for

x � 0, we have that for all k � 1, (k + 1)=N

k

� 2=N � 1.

Fix any � > 0. If N has a prime fator p � 2=�, then d(N)=N �

2=p � �. Otherwise, all prime fators of N are smaller than  = 2=�.

Assume that N = p

e

1

1

� : : : � p

e

k

k

. Then k � . Let e

i

= maxfe

1

; : : : ; e

k

g.

N � 

e

1

+���+e

k

, so e

i

� e

1

+ � � �+ e

k

� log



N , therefore e

i

� h(N) =

log



N=, thus d(N)=N � (e

i

+ 1)=p

e

i

i

� (h(N) + 1)=p

h(N)

i

whih is

smaller than � for large enough N . �
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Remark 2.5. One may suggest the following ad-ho solution to the

problem raised by Theorem 2.1: Simply bound the possible value of

m in queries of the form P

m

(x) to be � N=k for some �xed k. But

then P

N

(x) an still be omputed (using k queries instead of 1), so this

solution is not good if we do not want to restrit the value of m too

muh.

Remark 2.6. Theorem 2.1 an be extended as follows: Fix a yle

struture. Let a

0

be the size of the largest ylus in this struture,

and assume that P 2 S

N

is a random permutation with the given yle

struture. The probability that an element x appears in a ylus of size

a

0

is (at least) a

0

=N . If k is 
(N=a

0

), then with large probability one of

the elements 0; : : : ; k�1 appears in the ylus and therefore P

a

0

(i) = i

for some i 2 f0; : : : ; k � 1g. But if P is random, then it is oneiv-

able that with a non-negligible probability (it is not straightforward to

quantify the term \non-negligible" here), for all i 2 f0; : : : ; k � 1g the

yle lengths do not divide a

0

and therefore P

a

0

(i) 6= i.

Of ourse, if a

0

< N=a

0

, then one may simply verify in a

0

alls that

the yle of 0 has size � a

0

. Thus our method works in omplexity

O(minfa

0

; N=a

0

g).

Remark 2.7. Uzi Vishne has pointed out to me that one an distinguish

a random permutation whih is not a ylus from a random ylus in

with advantage 1 at the prie of inreasing the number of queries to

�(N) + 1 (where �(N) is the number of prime divisors of N): One

simply veri�es that for eah prime fator p of N , P

N=p

(0) 6= 0, whereas

P

N

(0) = 0. This happens if, and only if, P is a ylus. (Similar

observations apply to Remarks 2.5 and 2.6.)

Observe that in probability 1=N , a random permutation is a ylus

and therefore one annot hope to obtain advantage greater than 1 �

1=N , so this improves the advantage from 1 � d(N)=N to 1 � 1=N at

the prie of �(N) additional queries. Clearly �(N) � log

2

N . In fat,

by the Hardy-Ramanujan Theorem, �(N) is asymptotially lose to

log logN \for almost all N" (we will not give the preise formulation

here). Observe that when N is a power of 2 we get here �(N) = 1, so

two queries are enough to distinguish with advantage 1� 1=N .

Part 2. Fast forward random permutations

This part introdues an eÆient method to sample the yle struture

of a random permutation, and its appliation to the onstrution of fast

forward random permutations.
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3. Ordered yle strutures

De�nition 3.1. Assume that 
 is a �nite, well-ordered set, and P 2

S




. Let C

0

; : : : ; C

k�1

be all (distint) yles of P , ordered by

C

i

< C

j

, minC

i

< minC

j

:

Then the ordered yle struture of P , OCS(P ), is the sequene (jC

0

j; : : : ; jC

k�1

j).

Example 3.2. If

P =

�

0 1 2 3 4 5

5 4 1 3 1 0

�

,

then the yles of P are (05); (142); (3) in this order, as the minimum el-

ements of the yles are 0; 1; 3, respetively. Thus, OCS(P ) = (2; 3; 1).

Sampling the ordered yle struture of a random permutation in

P 2 S




(by hoosing a random P , �nding the size of the yle of 0,

then the size of the yle of the �rst element not in this yle, et.)

requires O(j
j) steps, whih is infeasible when 
 is a large spae. The

following theorem allows us to sample this distribution eÆiently.

Theorem 3.3. Let 
 be a �nite set of size N . Consider the following

two random proesses:

Proess I: Choose a random permutation P 2 S




, and give OCS(P ) as

output.

Proess II: (1) Set s

�1

= 0.

(2) For i = 0; : : : do the following:

(a) Choose a random number s

i

2 f1 + s

i�1

; : : : ; Ng.

(b) If s

i

= N , then exit the loop.

(3) Output the sequene (s

0

; s

1

� s

0

; s

2

� s

1

: : : ; s

i

� s

i�1

).

Then these proesses de�ne the same distribution on the spae of all

possible ordered yle strutures of permutations P 2 S




.

Proof. We prove the theorem by indution on the size of 
. The theo-

rem is evident when j
j = 1.

For j
j > 1, assume that P is a random element of S




, and let

OCS(P ) = (a

0

; : : : ). By Lemma 2.2, a

0

distributes uniformly in f1; : : : ; Ng.

Using the notation of De�nition 3.1, let C

0

be the yle of 0. As P dis-

tributes uniformly over S




, an easy ounting argument shows that the

restrition of P to the remaining elements, P � 
 n C

0

distributes uni-

formly over S


nC

0

. By the indution hypothesis, the output (b

0

; b

1

; : : : )

of Proess II for n = j
 nC

0

j distributes exatly as the output of Pro-

ess I on P � 
 n C

0

. Thus, the sequene (a

0

; b

0

; : : : ) given by Proess

II distributes the same as the sequene given by Proess I. �
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De�nition 3.4. For ease of referene, we will all Proess II of Theo-

rem 3.3 the Choose Cyle Lengths (CCL) proess.

Observe that the running time of the CCL proess in the worse ase is

N , whih is too large (usually, a quantity whih is polynomial in logN

is onsidered small, and 
(N

�

) where � > 0 is onsidered infeasible).

We an however de�ne an algorithm whih is probabilistially lose to

the CCL proess but runs in time O(logN).

Let R

N

denote the random variable ounting the number of yles

in a permutation in S

N

. It is well known [3℄ that the expetation and

variane R

N

(and therefore the running time of the CCL proess) are

both logN +O(1). By Chebyshev's Inequality,

Pr[R

N

� (+ 1) logN ℄ = Pr[R

N

� logN �  logN ℄ =

= Pr[R

N

� logN � (

p

logN)

p

logN ℄ �

�

1

(

p

logN)

2

=

1



2

logN

for all onstant  > 0, whih is �(1= logN). We say that a funtion

f(N) is negligible if it is O(1=N

�

) for some positive �. The bound

given by Chebyshev's Inequality is not negligible. Fortunately we an

improve it signi�antly in our ase. To this end, we need to have a tight

upper bound on the distributions of the random variables s

i

de�ned by

the CCL proess.

Proposition 3.5. Fix l 2 f0; : : : ; N � 1g. Then

Pr[s

l

= k℄ <

�

�

log(1�

k

N

)

�

�

l

l!N

if k 2 fl + 1; : : : ; Ng and is 0 otherwise.

Proof. Reall that for an inreasing funtion f : [0; k℄! R,

P

k�1

i=0

f(i) <

R

k

0

f(x)dx.

We prove the proposition by indution on l. For l = 0 we have that

Pr[s

0

= k℄ = 1=N as required. Assume that our assertion is true for l,

and prove it for l + 1 as follows.

Pr[s

l+1

= k℄ =

=

k�1

X

i=l+1

Pr[s

l

= i℄ � Pr[a

l+1

= k � ijs

l

= i℄ =

k�1

X

i=l+1

Pr[s

l

= i℄ �

1

N � i

<

<

Z

k

0

�

� log(1�

x

N

)

�

l

l!N

�

1

N � x

dx
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Substituting t = � log(1�x=N), we have that the last integral is equal

to

1

l!N

Z

� log

(

1�

k

N

)

0

t

l

dt =

�

� log

�

1�

k

N

��

l+1

(l + 1)!N

:

�

Theorem 3.6. Fix l 2 f0; : : : ; N � 1g. Then for all m,

Pr[s

l

< m℄ <

m

N

�

�

�

log

�

1�

m

N

�

�

�

l

l!

:

Proof. By Proposition 3.5,

Pr[s

l

< m℄ <

<

1

l!N

Z

m

0

�

� log

�

1�

x

N

��

l

dx <

1

l!N

Z

m

0

�

� log

�

1�

m

N

��

l

dx =

= m �

�

�

log

�

1�

m

N

�

�

�

l

l!N

:

�

Corollary 3.7. Assume that  > e. The probability that the running

time of the CCL proess is larger than  logN is O

�

p

logN=N

(log �1)

�

and is therefore negligible. In partiular, if  > e

2

then this probability

is o(1=N



).

Proof. Use Theorem 3.6 with m = n � 1 and l =  logN . Then 1 �

m=N = 1=N . Using Stirling's Formula,

(1) Pr[s

l

< m℄ <

�

�

log

1

N

�

�

l

l!

�

log

l

N

q

2�

l

�

l

e

�

l

:

Now, as l =  logN ,

log

l

N

�

l

e

�

l

=

�

e logN

l

�

l

=

e

l



l

=

N



N

 log 

= N

(1�log )

;

therefore the right hand side of Equation 1 is equal to

r

 logN

2�

�

1

N

(log �1)

:

This implies the assertions in the theorem. �

We an therefore de�ne the following variant of the CCL proess:
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De�nition 3.8 (l-trunated CCL). Fix a positive integer l and run the

CCL proess l � 1 steps. If the proess terminated after k < l steps,

then output the sequene (s

0

; : : : ; s

k�1

). Otherwise set s

l�1

= N and

output (s

0

; : : : ; s

l�1

).

Corollary 3.9. Fix l � 3:6 logN . Then the output of the l-trunated

CCL annot be distinguished from the output of the CCL proess with

advantage greater than o(1=N).

Proof. This follows from Theorem 3.7, one we observe (numerially)

that the solution to the equation (log � 1) = 1 is  = 3:5911

+

. �

4. Fast forward permutations

De�nition 4.1. Assume that (a

0

; a

1

; : : : ; a

l�1

) is a sequene of pos-

itive integers suh that

P

k<l

a

k

= N , and write s

0

= a

0

and s

i

=

P

k�i

a

k

for eah i = 1; : : : ; l. The fast forward permutation oded

by (a

0

; a

1

; : : : ; a

l�1

) is the permutation � 2 S

N

suh that for eah

x 2 f0; : : : ; N � 1g,

�(x) = s

i

+ (x+ 1 mod a

i+1

) where s

i

� x < s

i+1

:

Example 4.2. The fast forward permutation � 2 S

7

oded by (1; 2; 3; 1)

is

� = (0)(12)(345)(6) = (12)(345):

Here s

0

= 1, s

1

= 3, s

2

= 6, and s

3

= 7. Thus, e.g., as s

1

� 4 < s

2

, we

have that

�

5

(4) = s

1

+ (4 + 5 mod a

2

) = 3 + (9 mod 3) = 3;

as an be veri�ed diretly.

A fast forward permutation oded by a sequene (a

0

; : : : ; a

l�1

) is

indeed fast forward, if we an either preproess the orresponding se-

quene (s

0

; : : : ; s

l�1

) (this is done in time O(l)) or have aess to an

orale whih an tell s

i

for eah i in time O(1).

Proposition 4.3. Assume that � is the fast forward permutation oded

by (a

0

; : : : ; a

l�1

). Assume further that we have an O(1) time aess

to the orresponding values s

i

, i 2 f0; : : : ; l � 1g. Then for all x 2

f0; : : : ; N � 1g and all m, the omplexity of the omputation of �

m

(x)

is O(log l) (and in partiular O(logN)).

Proof. As the values s

i

are inreasing with i, we an use binary searh

to �nd the i suh that s

i

� x < s

i+1

(this requires O(log l) aesses to

the values s

i

). Then

�

m

(x) = s

i

+ (x +m mod (s

i+1

� s

i

)):

�
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The proof of Proposition 4.3 is written suh that we an see that the

sequene (a

0

; : : : ; a

l�1

) plays no role in the evaluations of �

m

(x). This

means that all needed information is given in the sequene (s

0

; : : : ; s

l�1

).

We hose the sequene (a

0

; : : : ; a

l�1

) rather than (s

0

; : : : ; s

l�1

) as a

\ode" for the permutation only beause this way it seems more lear

how the permutation � is omputed.

Consider the following orales.

P

FF

: Chooses a random permutation P 2 S

N

, aepts queries of the

form (x;m) 2 f0; : : : ; N�1g�Z, and responds with y = P

m

(x)

for eah suh query.

F : Runs the l-trunated CCL proess with l = 4 logN to obtain

a sequene (a

0

; : : : ; a

l�1

). (Let � denote the fast forward per-

mutation oded by (a

0

; : : : ; a

l�1

).) This orale aepts queries

of the form (x;m) 2 f0; : : : ; N � 1g � Z, and uses the ora-

le P (whih �xes a random permutation P ) to respond with

y = P (�

m

(P

�1

(x))) for eah suh query.

Theorem 4.4. (1) The spae used by the orale F is O(logN)

words of size O(logN) eah.

(2) The preproess of F requires O(logN) steps.

(3) For eah query (x;m), the running time of F is O(log logN)

plus twie the running time of P.

(4) Assume that D is a distinguisher whih makes any number of

alls to the orales P

FF

or F . Then the advantage of D is

o(1=N).

Proof. (1) is evident. (2) follows from Proposition 4.3, and (3) follows

from Corollary 3.9. �

This ompletes our solution to the Naor-Reingold Problem in the

(purely) random ase.

Part 3. Pseudorandomness

Intuitively speaking, pseudorandom objets are ones whih are easy

to sample but diÆult to distinguish from (truly) random objets. The

assumption that we made on the orale P|namely, that it hooses a

random permutation in S

N

|is not realisti when N is large. A more

realisti assumption is that the orale hooses a pseudorandom element

of S

N

. More onretely, the orale P aepts a key k as input, and uses

it to de�ne a permutation P

k

in the sense that eah time the orale is

asked to ompute P

k

(x) (or P

�1

k

(x)), the orale omputes it without

the need to expliitly build the omplete permutation P

k

. (P an be

thought of as a key dependent blok ipher.) The reader is referred
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to [1℄ for the formal de�nitions. Naor and Reingold [1℄ atually stated

their problem in the pseudorandom ase. We will translate our main

results into the pseudorandom ase.

5. Translation of results from Part 1

Let C

0

be a pseudorandom ylus orale. This means that for any dis-

tinguisher D whih makes a small number m of queries, the advantage

a = jPr[D(C

0

) = 1℄� Pr[D(C) = 1℄j is small.

Theorem 5.1. For any distinguisher D whih makes m < N queries

to C

0

or P,

jPr[D(C

0

) = 1℄� Pr[D(P) = 1℄j � a +

m

N

;

where a = jPr[D(C

0

) = 1℄� Pr[D(C) = 1℄j.

Proof. By the Triangle Inequality and Theorem 1.10,

jPr[D(C

0

) = 1℄� Pr[D(P) = 1℄j �

� jPr[D(C

0

) = 1℄� Pr[D(C) = 1℄j+ jPr[D(C) = 1℄� Pr[D(P) = 1℄j �

� a+

m

n

:

�

Theorem 5.2. Consider the m-step strategy (m < N) for a distin-

guisher D whih was de�ned in Theorem 1.12 (an arbitrary strategy

whih generates nonrepeating sequenes.) Then

jPr[D(C

0

) = 1℄� Pr[D(P) = 1℄j =

m

N

:

Consequently, for all � > 0 there exists a strategy D to distinguish C

0

from P with advantage maxfa � �;m=Ng, where a is the supremum

of all possible advantages of an m-step distinguisher to distinguish C

0

from C.

Proof. The proof of Theorem 1.12 only uses the fat that P hooses a

random permutation and C hooses a ylus. The fat that the ylus

C is random is not used. This implies the �rst laim in our theorem.

To prove the seond part of the theorem, �x any � > 0. If a � � �

m=N , we hoose the strategy D and we are done. Otherwise m=N <

a� �. As a� � < a, there exists an m-step strategy D

0

to distinguish

C

0

from C with advantage at least a� �, so we an hoose the strategy

D

0

. �

We now translate the main result in the fast forward model to the

pseudorandom ase.
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Theorem 5.3. C

0

an be distinguished from P with advantage 1 �

d(N)=N , using a single query.

Proof. Again, the only property of C we used in the proof of Theorem

2.1 is its hoosing a ylus, whih is also true for C

0

. �

6. Translation of results from Part 2

In order to shift to the pseudorandom ase in our onstrution of a

fast forward permutation, we need to have some pseudorandom number

generator to generate the random hoies of the s

i

's in the CCL proess.

If we have no suh generator available, we an use the orale P itself:

In addition to the key k used to generate P

k

, we need another key

~

k.

The pseudorandom numbers s

i

in the CCL proess an then be derived

from the values P

~

k

(0), P

~

k

(1), P

~

k

(2); : : : (This is the standard ounter

mode [2℄). We now give an example how this an be done.

Consider the following orales.

RND: Aepts positive integers x; k < N and returns a sequene

(r

0

; : : : ; r

k�1

) of random numbers in the range f0; : : : ; x� 1g.

RND

1

: Aepts positive integers x; k < N , alls RND with N and 2k to

get a sequene (x

0

; : : : ; x

2k�1

), and returns (r

0

; : : : ; r

k�1

) where

r

i

= (x

2i

+N � x

2i+1

) mod x for all i = 0; : : : ; k � 1.

RND

2

: Aepts positive integers x; k; p

0

< N , alls P 2k times to obtain

the sequene (x

0

= P (p

0

); : : : ; x

2k�1

= P (p

0

+ 2k� 1 mod N)),

and returns (r

0

; : : : ; r

k�1

) where r

i

= (x

2i

+N �x

2i+1

) mod x for

all i = 0; : : : ; k � 1.

Theorem 6.1. Fix positive integers x; k < N . Then:

(1) If k =  logN , then RND and RND

1

alled with x and k annot

be distinguished with advantage greater than  logN=N .

(2) RND

1

and RND

2

alled with x and k annot be distinguished

with advantage greater than 2k

2

=N .

Proof. (1) Assume that a and b are random numbers in the range

f0; : : : ; N�1g. Then  = a+bN is random in the range f0; : : : ; N

2

�1g.

Let x 2 f0; : : : ; N � 1g. With probability at least 1=N ,  < bN

2

=x � x

and therefore  mod x is random in the range f0; : : : ; x � 1g. The

probability that this happens  logN times is therefore at least (1 �

1=N)

 logN

� e

� logN=N

> 1�  logN=N .

(2) This follows from the well known result that a random permuta-

tion is a pseudorandom funtion. Briey (see [4℄ for more details), on-

sider any sequene of 2k random numbers in the range f0; : : : ; N � 1g.

The probability that all these numbers are distint is greater than
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1 � (2k)

2

=2N = 1 � 2k

2

=N , and in this ase this sequene forms a

random partial permutation. �

Consider now the modi�ation F

0

of the orale F whih alls P with

two independent keys k and

~

k, one for the evaluations P

k

(�

m

(P

�1

k

(x)))

and the other for the values P

~

k

(0); P

~

k

(1); : : : to be used by RND

2

in

order to generate the sequene of pseudorandom numbers required by

the l-trunated CCL proess (the input argument p

0

to RND

2

is used

to avoid sampling the same entry of P

~

k

twie).

Theorem 6.2. F

0

and F annot be distinguished with advantage greater

than O(log

2

N=N).

Proof. This follows from the Triangle Inequality and the earlier results

4.4, 6.1(1), and 6.1(1) with k = 4 logN . �

Here too, using a pseudorandom permutation orale P

0

instead of a

random one in the de�nition of F

0

annot inrease the advantage by

more than a where a is the maximal advantage obtainable in distin-

guishing P from P

0

.

7. Final remarks and open problems

Another problem is mentioned in the original paper of Naor and

Reingold [1℄ and remains open, namely, whether one an onstrut a

family of fast forward pseudorandom funtions with graph struture

distribution similar to that of pseudorandom funtions.

The natural analogue of our onstrution for the ase of pseudoran-

dom permutations would not work for pseudorandom funtions, simply

beause the \graph struture" of a pseudorandom funtion arries too

muh information. For example, there are O(N) points with no preim-

age. This was not the ase with permutations, where the struture is

determined by the logarithmi number of its yles and their length.

Another approah will be needed in order to solve this problem.

Our study raises some other interesting open problems, the most

interesting of whih seems to be the following. Consider the l-trunated

CCL proess with l = logN , whih uses an orale RND

3

similar to

RND

2

as its random number generator with the di�erene that it makes

only k alls to P to generate (x

0

= P (p

0

); : : : ; x

k�1

= P (p

0

+k�1 mod

N)), and uses r

i

= x

i

mod x instead of the original de�nition. (So we

use logN values of P instead of 8 logN in the urrent onstrution.)

The problem is to prove or disprove the following.

Conjeture 1. F

0

with the parameters just desribed annot be distin-

guished from P

FF

with a non-negligible advantage.
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