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Abstra
t. P 2 S

N

is a fast forward permutation if for ea
h m

the 
omputational 
omplexity of evaluating P

m

(x) is small inde-

pendently ofm and x. Naor and Reingold 
onstru
ted fast forward

pseudorandom 
y
luses and involutions. By studying the evolution

of permutation graphs, we prove that the number of queries needed

to distinguish a random 
y
lus from a random permutation in S

N

is �(N) if one does not use queries of the form P

m

(x), but is only

�(1) if one is allowed to make su
h queries.

We 
onstru
t fast forward permutations whi
h are indistinguish-

able from random permutations even when queries of the form

P

m

(x) are allowed. This is done by introdu
ing an eÆ
ient method

to sample the 
y
le stru
ture of a random permutation, whi
h in

turn solves an open problem of Naor and Reingold.

0. Introdu
tion and Motivation

A

ording to Naor and Reingold [1℄, a permutation � 2 S

N

is a fast

forward permutation if for ea
h integer m, and ea
h x = 0; : : : ; N � 1,

the 
omputational 
omplexity of evaluating �

m

(x) is small and inde-

pendent of m and x. An important example for su
h a permutation is

the su

essor permutation s de�ned by

s(x) = x+ 1 mod N;

as for ea
h m and x, s

m

(x) = x+m mod N . Observe that s is a 
y
lus,

that is, its 
y
le stru
ture 
onsists of a single 
y
le of length N .

Throughout this paper, the term random is taken with respe
t to the

uniform distribution. In [1℄, Naor and Reingold 
onsider the following

problem

1

: Assume that we have a fast forward permutation � 2 S

N

.

Key words and phrases. permutation graphs, pseudorandom permutations, fast

forward permutations, 
y
le stru
ture.

1

For the sake of 
larity, we will 
on
entrate in the beginning in the (purely)

random 
ase, and leave the pseudorandom 
ase for Part 3.

1
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Assume further we have an ora
le

2

P whi
h �xes a random permutation

P 2 S

N

, and for ea
h x 
an 
ompute P (x) and P

�1

(x) in time whi
h

is polynomial in logN . We wish to use this ora
le in order to de�ne a

random permutation Q su
h that:

(1) Q is a random element of the spa
e of all permutations whi
h

have the same 
y
le stru
ture as �.

(2) Q is a fast forward permutation.

The solution to this problem is as follows [1℄: De�ne Q = P�P

�1

.

Then for ea
h integer m we have that

Q

m

(x) = P (�

m

(P

�1

(x)));

so Q is a fast forward permutation. Moreover, Q has the same 
y
le

stru
ture as �, and it is not diÆ
ult to see that it distributes uniformly

among the permutations whi
h have the same 
y
le stru
ture as �.

Therefore Naor and Reingold's 
onstru
tion using � = s yields a fast

forward random 
y
lus. The natural question whi
h arises is whether

this 
onstru
tion gives a pseudorandom permutation. Here by pseudo-

random permutation we mean that the resulting permutation is diÆ
ult

to distinguish from a truly random permutation using a limited number

(under some reasonable de�nition of \limited") of 
alls to the ora
le.

In Se
tion 4 of [1℄ it is 
onje
tured that distinguishing a random 
y
lus

in S

N

from a random permutation should require roughly

p

N evalu-

ations. In the forth
oming Se
tion 1 we prove that in the restri
ted

model where only queries of the form P (x) or P

�1

(x) are allowed (this

is the usual model), the task of distinguishing a random 
y
lus from a

random permutation requires roughly N (not

p

N) evaluations.

However, if one wants to allow the usage of the fast forward prop-

erty in the mentioned 
onstru
tion then the resulting permutation is

far from being pseudorandom: In Se
tion 2 we show that a single eval-

uation is enough to distinguish a random 
y
lus from a random permu-

tation in the fast forward model (where evaluations of the form P

m

(x)

are allowed). Therefore, the question of 
onstru
tion of a fast forward

pseudorandom permutation is far from having a satisfa
tory solution.

It turns out that a solution of this problem 
an be obtained by solving

another open problem.

After introdu
ing their 
onstru
tion, Naor and Reingold ask whether

it is possible to remove the restri
tion on the 
y
le stru
ture of the fast

2

An ora
le is an algorithm initialized by a �xed unknown initial state, whi
h

works as a \bla
k box" by a

epting queries of some spe
i�
 form, and making

responses a

ordingly. (The initial state of the algorithm may 
hange as it runs.)

The user of su
h an algorithm 
an only know the queries and the responses to them.



FAST FORWARD PERMUTATIONS 3

forward permutation, that is, whether one 
an use the ora
le P in order

to de�ne a random permutation Q su
h that:

(1) Q is a random element in the spa
e S

N

of all permutations.

(2) Q is a fast forward permutation.

We give an aÆrmative solution whi
h is based on an eÆ
ient method to

sample the 
y
le stru
ture of a random permutation, together with an

introdu
tion of a fast forward permutation for any given 
y
le stru
ture.

This 
onstru
tion yields a fast forward random permutation whi
h is

indistinguishable from a random permutation even in the fast forward

model.

Part 1. Indistinguishability and distinguishability

This part deals with the evolution of permutation graphs and its

appli
ation to the indistinguishability of random 
y
luses from random

permutations, and with the distinguishability of random 
y
les from

random permutations when fast forward queries are allowed.

1. The indistinguishability of random 
y
luses from

random permutations

In this se
tion we prove that the number of evaluations of the form

P (x) or P

�1

(x) needed in order to distinguish a random 
y
lus in S

N

from a random permutation in S

N

is �(N).

Our proof is best stated in the language of graphs. We �rst set up

the basi
 notation and fa
ts. As these are fairly natural, the reader

may wish to skip dire
tly to Lemma 1.1, and return to the de�nitions

only if an ambiguity o

urs.

Throughout this se
tion, V = f0; : : : ; N�1g and G (with or without

an index) will denote a �nite dire
ted graph with V as its set of verti
es.

Fix a natural number N . The graph of a (partial) fun
tion f from

(a subset of) N to N is the dire
ted graph with set of verti
es V and

with an edge from x to y if, and only if, f(x) = y (for all x; y 2 V ). For


onvenien
e we also require that for all x; y 2 V there exists at most

one edge from x to y, and will write x! y when there exists an edge

from x to y. The graph of a (partial) fun
tion will be 
alled a (partial)

fun
tion graph. Observe that there is a natural bije
tive 
orrespon-

den
e between (partial) fun
tions and their graph. A parti
ular 
ase

of (partial) fun
tion graphs is the (partial) permutation graph, where

we require that the (partial) fun
tion of the graph is inje
tive.

Let � denote the \forgetful" fun
tor assigning to ea
h dire
ted graph

G the 
orresponding undire
ted graph �(G) (ea
h edge from x to y is
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repla
ed by an undire
ted edge between x and y.) A set C of verti
es

in G is a 
omponent if it is a 
onne
ted 
omponent in the undire
ted

graph �(G) (isolated verti
es are also 
omponents). A 
omponent C

is 
onne
ted if for ea
h x; y 2 C there exists a path from x to y in G.

If G is a partial fun
tion graph then ea
h 
onne
ted 
omponent of

G is a 
y
le. A permutation graph G of a 
y
lus will be 
alled a 
y
lus

graph. Thus a 
y
lus graph has a single 
onne
ted 
omponent, and has

the form

x

0

! x

1

! � � � ! x

N�1

! x

0

:

G is a partial 
y
lus graph if it 
an be extended to a 
y
lus graph. A

partial 
y
lus graph is proper if it is not a 
y
lus graph.

The following sequen
e of observations will play a key role in our

proof. We will give proofs only where it seems ne
essary.

Lemma 1.1. Let G be a dire
ted graph. The following are equivalent:

(1) G is a proper partial 
y
lus graph.

(2) G is a partial permutation graph with no 
y
les.

(3) Ea
h 
omponent of G is well-ordered by !.

Thus if G is a proper partial 
y
lus graph then ea
h 
omponent C

of G 
ontains a unique minimal element minC and a unique maximal

element maxC.

Lemma 1.2. Assume that G is a partial 
y
lus graph with m 
ompo-

nents. Then there exist exa
tly (m� 1)! 
y
lus graphs extending G.

Proof. Let C

0

; : : : ; C

m�1

be the 
omponents of G.

Fix any 
y
lus � 2 S

m

. For ea
h i = 0; : : : ; m � 1, add an edge

from maxC

�

i

(0)

to minC

�

i+1

(0)

to obtain a 
y
lus graph G

�

. We 
laim

that for distin
t 
y
luses �; � 2 S

m

, the graphs G

�

and G

�

are distin
t.

Indeed, let i 2 f0; : : : ; m � 1g be the minimal su
h that �

i+1

(0) 6=

�

i+1

(0) (observe that �

0

(0) = 0 = �

0

(0).) Then in G

�

there is an edge

from maxC

�

i

(0)

to minC

�

i+1

(0)

, whereas in G

�

there is not. Thus ea
h


y
lus in S

m

de�nes a unique 
y
lus graph extending G.

On the other hand, ea
h 
y
lus graph extending G de�nes a unique

well-ordering on G by removing the edge pointing to minC

0

, and this

well-ordering de�nes, in turn, a unique 
y
lus � 2 S

m

by letting �

i+1

(0)

be the unique k su
h that there is an edge from maxC

�

i

(0)

to minC

k

.

It remains to re
all that there exist exa
tly (m � 1)! 
y
luses in

S

m

. �

Let 
omp(G) and 
y
(G) denote the 
olle
tion of 
omponents and


y
les in G, respe
tively. The following lemma des
ribes the basi
 steps

in the evolution of partial permutation graphs. We use ℄ to denote

disjoint union.
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Lemma 1.3. Assume that G is a partial permutation graph, and let

~

G be the new graph obtained by adding a new edge to G. Then

~

G is

a partial permutation graph if, and only if, there exist (not ne
essarily

distin
t) 
onne
ted 
omponents C

0

and C

1

in G su
h that the new edge

is from maxC

0

to minC

1

. Moreover,

(1) If C

0

and C

1

are the same 
omponent then 
omp(

~

G) = 
omp(G),

and 
y
(

~

G) = 
y
(G) ℄ fC

0

g. (In parti
ular, j 
omp(

~

G)j =

j 
omp(G)j, and j 
y
(

~

G)j = j 
y
(G)j+ 1.)

(2) If C

0

and C

1

are distin
t then 
y
(

~

G) = 
y
(G), and 
omp(

~

G) =

(
omp(G) n fC

0

; C

1

g) ℄ fC

0

[ C

1

g. (In parti
ular, j 
y
(

~

G)j =

j 
y
(G)j, and j 
omp(

~

G)j = j 
omp(G)j � 1.)

For the following de�nition, re
all our 
onvention that throughout

this paper, the term random is taken with respe
t to the uniform dis-

tribution.

De�nition 1.4. De�ne the following ora
les:

C: Chooses a random 
y
lus P 2 S

N

, a

epts queries of the form

(x; i) 2 f0; : : : ; N � 1g � f1;�1g and responds with y = P

i

(x)

for ea
h su
h query.

O

2

: Begins with the empty graph G

0

on V = f0; : : : ; N�1g, a

epts

queries of the form (x; i) 2 V �f1;�1g, and 
onstru
ts a partial


y
lus graph on V as follows. In the kth query (x

k

; i

k

), the

ora
le responds as follows:

(1) If the query was made earlier and answered with y, or a

query of the form (y;�i

k

) was made earlier and answered

with x

k

, then the ora
le responds with y

k

= y.

(2) Otherwise, the ora
le responds as follows (let C

x

k

denote

the 
omponent of x

k

):

(a) If i = 1 then it 
hooses a random C 2 
omp(G

k

) n

fC

x

k

g, sets y

k

= minC, adds the edge x

k

! y

k

to

G

k

to obtain a new graph G

k+1

, and responds with

y

k

.

(b) If i = �1 (this is the dual 
ase) then it 
hooses a

random C 2 
omp(G

k

) n fC

x

k

g, sets y

k

= maxC,

adds the edge y

k

! x

k

to G

k

to obtain a new graph

G

k+1

, and responds with y

k

.

A sequen
e ((x

0

; i

0

); y

0

; : : : (x

k

; i

k

); y

k

) is C-
onsistent if the equations

P

i

j

(x

j

) = y

j

have a solution P 2 S

N

whi
h is a 
y
lus. It is nonre-

peating if there exists no 0 � j < l � k su
h that (x

l

; i

l

) = (x

j

; i

j

),

or (x

l

; i

l

) = (y

j

;�i

j

). Thus a nonrepeating sequen
e is a sequen
e

where Case 1 of O

2

is never a
tivated, that is, a sequen
e in whi
h
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ea
h query answer gives new information on the permutation (or its

graph). Observe that any 
onsistent sequen
e 
an be turned into a

shorter nonrepeating sequen
e whi
h indu
es the same partial 
y
lus

graph.

Lemma 1.5. For ea
h nonrepeating C-
onsistent sequen
e

s = ((x

0

; i

0

); y

0

; : : : (x

k�1

; i

k�1

); y

k�1

),

Pr[sjC℄ = (N � k � 1)!=(N � 1)! = Pr[sjO

2

℄;

where Pr[sjA℄ is the probability that the ora
le A responds with y

0

to

(x

0

; i

0

), then with y

1

to (x

1

; i

1

), . . . , and �nally with y

k�1

to (x

k�1

; i

k�1

).

Proof. The de�nition of C-
onsisten
y ensures that the sequen
e s de-

�nes a partial 
y
lus graph. The requirement that s is nonrepeating

implies by Lemma 1.3 that ea
h answer to a query redu
es the number

of 
omponents in the indu
ed partial 
y
lus graph by exa
tly 1. Thus,

after k queries the indu
ed graph has exa
tly N � k 
omponents. By

Lemma 1.2, there exist (N � k� 1)! 
y
lus graphs extending the given

partial 
y
lus graph, and therefore the probability of getting s in C is

(N � k � 1)!=(N � 1)!.

Now 
onsider O

2

. Again, Lemma 1.3 implies that j 
omp(G

j

)j =

N � j for all j. Given G

j

, the probability for a spe
i�
 
onsistent

answer y

j

in the next query to O

2

is 1=(N � j � 1) (uniform 
hoi
e of

one out of the remaining N � j � 1 
omponents). Thus,

Pr[sjO

2

℄ =

1

N � 1

�

1

N � 2

� : : : �

1

N � k

=

(N � k � 1)!

(N � 1)!

:

�

We say that two ora
les are equivalent if there is no way to distinguish

between them by making queries to the ora
les and analyzing their

responses.

Corollary 1.6. The ora
les C and O

2

are equivalent.

De�nition 1.7. De�ne the following ora
les.

O

3

: Initially sets a 
ag Bad to 0, and begins with the empty graph

G

0

on V = f0; : : : ; N � 1g. This ora
le a

epts queries of the

form (x; i) 2 V �f1;�1g, and 
onstru
ts a partial permutation

graph on V as follows. In the kth query (x

k

; i

k

), the ora
le

responds as follows:

(1) If the query was made earlier and answered with y, or a

query of the form (y;�i

k

) was made earlier and answered

with x

k

, then the ora
le responds with y

k

= y.

(2) Otherwise, the ora
le responds as follows:
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(a) If i = 1 then it 
hooses a random C 2 
omp(G

k

),

sets y

k

= minC, adds the edge x

k

! y

k

to G

k

to

obtain a new graph G

k+1

, and responds with y

k

.

(b) If i = �1 (this is the dual 
ase) then it 
hooses a

random C 2 
omp(G

k

), sets y

k

= maxC, adds the

edge y

k

! x

k

to G

k

to obtain a new graph G

k+1

, and

responds with y

k

.

If C is the 
omponent of x

k

, this ora
le sets Bad = 1.

P: Chooses a random permutation P 2 S

N

, a

epts queries of

the form (x; i) 2 f0; : : : ; N � 1g � f1;�1g and responds with

y = P

i

(x) for ea
h su
h query.

A sequen
e ((x

0

; i

0

); y

0

; : : : (x

k

; i

k

); y

k

) is P-
onsistent if the equa-

tions P

i

j

(x

j

) = y

j

have a solution P 2 S

N

. The proof of the following

is similar to the proof of Lemma 1.5 (in fa
t, it is simpler) and we omit

it.

Lemma 1.8. For ea
h nonrepeating P-
onsistent sequen
e s whi
h 
or-

responds to k queries and replies,

Pr[sjO

3

℄ = (N � k)!=N ! = Pr[sjP℄:

Corollary 1.9. Ora
les O

3

and P are equivalent.

For our purposes it seems 
onvenient to use the following notion

of a distinguisher. An (information theoreti
) distinguisher D is a

probabilisti
 algorithm

3

with an unlimited 
omputational power and

storage spa
e, whi
h a

epts an ora
le as input (where there are two

possible ora
les), makes m queries (where m is some �xed number) to

that ora
le (the distribution of ea
h query depends only on the sequen
e

of earlier queries and ora
le responses), and outputs either 0 or 1 (again,

the distribution of the answer depends only on the sequen
e of queries

and ora
le responses).

The intended meaning is that the distinguisher's output is its guess

as to whi
h of the two possible ora
les made the responses. (Thus

given two ora
les A and B, D(A) and D(B) are random variables tak-

ing values in f0; 1g.) The natural measure for the e�e
tiveness of the

distinguisher in distinguishing between two ora
les A and B is its ad-

vantage, de�ned by

jPr[D(A) = 1℄� Pr[D(B) = 1℄j:

3

A probabilisti
 algorithm is an algorithm enhan
ed by an a

ess to a random

number generator, that is, at ea
h stage the algorithm 
hooses whi
h moves to make

next a

ording to some well-de�ned distribution. Mathemati
ally, a probabilisti


algorithm is a random variable, whereas a usual algorithm is a fun
tion.
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The motivation for this measure is as follows. Assume without loss of

generality that Pr[D(A) = 1℄ � Pr[D(B) = 1℄. Then by the likelihood

test we should de
ide x = A if the output of D(x) is 1 and x = B

otherwise. The e�e
tiveness of this de
ision pro
edure 
learly in
reases

as the di�eren
e between Pr[D(A) = 1℄ and Pr[D(B) = 1℄ in
reases,

and this (or any other) pro
edure is useless when the probabilities are

equal. Moreover, it 
an be proved that the number of times needed

to sample D(x) in order to de
ide whether x = A or x = B with a

signi�
ant level of 
ertainty is O(1=�

2

), where � = jPr[D(A) = 1℄ �

Pr[D(B) = 1℄j.

Theorem 1.10. Assume that D is a distinguisher whi
h makes m < N

queries to C or P. Then

jPr[D(C) = 1℄� Pr[D(P) = 1℄j �

m

N

:

Proof. By Corollaries 1.6 and 1.9, it suÆ
es to show that jPr[D(O

2

) =

1℄� Pr[D(O

3

) = 1℄j �

m

N

.

Ora
les O

2

and O

3

behave identi
ally as long as Bad = 0 in O

3

, that

is, as long as the 
omponent of x

k

was not 
hosen. As long as this is

the 
ase, the number of 
omponents in the graph redu
es by at most

1 with ea
h new query answer (we do not assume that the queries are

nonrepeating), and therefore the probability that the 
omponent of x

k

was not 
hosen for all k = 0; : : : ; m� 1 is at least

N � 1

N

�

N � 2

N � 1

� : : : �

N �m

N �m + 1

=

N �m

N

= 1�

m

N

:

Let p = Pr[D(O

2

) = 1℄. Then p = Pr[D(O

3

) = 1jBad = 0℄, therefore

Pr[D(O

3

) = 1℄ =

= Pr[D(O

3

) = 1jBad = 0℄ � Pr[Bad = 0℄+

+Pr[D(O

3

) = 1jBad = 1℄ � Pr[Bad = 1℄

= p � Pr[Bad = 0℄ + Pr[D(O

3

) = 1jBad = 1℄ � Pr[Bad = 1℄:

Thus,

jPr[D(O

2

) = 1℄� Pr[D(O

3

) = 1℄j =

= jp(1� Pr[Bad = 0℄)� Pr[D(O

3

) = 1jBad = 1℄ � Pr[Bad = 1℄j

= jp � Pr[Bad = 1℄� Pr[D(O

3

) = 1jBad = 1℄ � Pr[Bad = 1℄j

= j(p� Pr[D(O

3

) = 1jBad = 1℄) � Pr[Bad = 1℄j �

= jp� Pr[D(O

3

) = 1jBad = 1℄j �

m

N

�

m

N

:

�
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Corollary 1.11. For all � > 0, the number of evaluations required to

distinguish a random 
y
lus in S

N

from a random permutation in S

N

with advantage greater or equal to � is at least b�N
.

Our bound on the distinguisher's advantage 
annot be improved.

The following theorem shows not only that there exists an optimal

strategy (with advantage m=N) for the distinguisher, but that in some

sense all strategies are optimal, in
luding for example those whi
h do

not use queries of the form (x;�1). By \all" we mean those whi
h do

not make queries where the responses are known in advan
e, that is,

strategies for whi
h the sequen
e of queries is nonrepeating. (As we

remarked before, any strategy whi
h makes repeating queries 
an be

improved.)

Theorem 1.12 (Optimal strategies). Consider the following m-step

strategy (m < N) for a distinguisher D to distinguish between P and

C:

Queries: For ea
h k = 0; : : : ; m�1, 
hoose any pair (x

k

; i

k

) 2 V �f1;�1g

su
h that the sequen
e ((x

0

; i

0

); y

0

; : : : ; (x

k

; i

k

)) is nonrepeating,

and make the query (x

k

; i

k

).

Output: If one of the ora
le responses introdu
ed a 
y
le, the distin-

guisher outputs 1. Otherwise the distinguisher outputs 0.

Then the advantage of this distinguisher is m=N . In other words, any

strategy whi
h generates only nonrepeating sequen
es is optimal.

Proof. As the query sequen
e is nonrepeating, the probability that a


y
le is not introdu
ed given that the ora
le is O

3

is exa
tly

N � 1

N

�

N � 2

N � 1

� : : : �

N �m

N �m + 1

=

N �m

N

= 1�

m

N

:

Thus Pr[D(P) = 0℄ = Pr[D(O

3

) = 0℄ = 1�m=N , and

Pr[D(C) = 0℄� Pr[D(P) = 0℄ = 1�

�

1�

m

N

�

=

m

N

:

�

2. Cryptanalysis of the Naor-Reingold fast forward


y
lus

In this se
tion we show that in the fast forward model (where the

distinguisher is allowed to make queries of the form P

m

(x)), random


y
luses 
an be distinguished from random permutations with advan-

tage 1� o(1), using a single query to the given ora
le.

For ea
h N let d(N) denote the number of divisors of N .
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Theorem 2.1. A fast forward random 
y
lus 
an be distinguished from

a fast forward random permutation with advantage 1� d(N)=N , using

a single query.

Proof. We will use the following important fa
t.

Lemma 2.2 (folklore). Fix an x 2 f0; : : : ; N � 1g. Then the length of

the 
y
le of x in a random permutation in S

N

distributes uniformly in

f1; : : : ; Ng.

Proof. For ea
h k = 1; : : : ; N the probability that the 
y
le's length is

k is

N � 1

N

�

N � 2

N � 1

� : : : �

N � (k � 1)

N � (k � 2)

�

1

N � (k � 1)

=

1

N

:

�

Assume that P is a random permutation in S

N

. By Lemma 2.2, the

length a

0

of the 
y
le of 0 distributes uniformly in f1; : : : ; Ng. As there

are d(N) divisors of N , the probability that a

0

divides N is d(N)=N .

Now, P

N

(0) = 0 if, and only if, a

0

divides N . Thus, the probability

that P

N

(0) = 0 is d(N)=N if P is random, but 1 if P is a 
y
lus.

Therefore, the single query (0; N) is enough to distinguish a random


y
lus from a random permutation with advantage 1� d(N)=N . �

Example 2.3. If N = 2

n

(this is the standard 
ase), then d(N)=N =

(n+ 1)=2

n

, whi
h is negligible.

d(N)=N 
onverges to 0 quite rapidly as N ! 1. However, for our

purposes, the following easy observation is enough.

Proposition 2.4. d(N)=N = o(1).

Proof. Observe that for ea
h N , if the fa
torization of N is p

e

1

1

� : : : �p

e

k

k

,

then d(N) = (e

1

+ 1) � : : : � (e

k

+ 1), thus

d(N)

N

=

e

1

+ 1

p

e

1

1

� : : : �

e

k

+ 1

p

e

k

k

:

For all N > 1, as the fun
tion f(x) = (x + 1)=N

x

is de
reasing for

x � 0, we have that for all k � 1, (k + 1)=N

k

� 2=N � 1.

Fix any � > 0. If N has a prime fa
tor p � 2=�, then d(N)=N �

2=p � �. Otherwise, all prime fa
tors of N are smaller than 
 = 2=�.

Assume that N = p

e

1

1

� : : : � p

e

k

k

. Then k � 
. Let e

i

= maxfe

1

; : : : ; e

k

g.

N � 


e

1

+���+e

k

, so 
e

i

� e

1

+ � � �+ e

k

� log




N , therefore e

i

� h(N) =

log




N=
, thus d(N)=N � (e

i

+ 1)=p

e

i

i

� (h(N) + 1)=p

h(N)

i

whi
h is

smaller than � for large enough N . �
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Remark 2.5. One may suggest the following ad-ho
 solution to the

problem raised by Theorem 2.1: Simply bound the possible value of

m in queries of the form P

m

(x) to be � N=k for some �xed k. But

then P

N

(x) 
an still be 
omputed (using k queries instead of 1), so this

solution is not good if we do not want to restri
t the value of m too

mu
h.

Remark 2.6. Theorem 2.1 
an be extended as follows: Fix a 
y
le

stru
ture. Let a

0

be the size of the largest 
y
lus in this stru
ture,

and assume that P 2 S

N

is a random permutation with the given 
y
le

stru
ture. The probability that an element x appears in a 
y
lus of size

a

0

is (at least) a

0

=N . If k is 
(N=a

0

), then with large probability one of

the elements 0; : : : ; k�1 appears in the 
y
lus and therefore P

a

0

(i) = i

for some i 2 f0; : : : ; k � 1g. But if P is random, then it is 
on
eiv-

able that with a non-negligible probability (it is not straightforward to

quantify the term \non-negligible" here), for all i 2 f0; : : : ; k � 1g the


y
le lengths do not divide a

0

and therefore P

a

0

(i) 6= i.

Of 
ourse, if a

0

< N=a

0

, then one may simply verify in a

0


alls that

the 
y
le of 0 has size � a

0

. Thus our method works in 
omplexity

O(minfa

0

; N=a

0

g).

Remark 2.7. Uzi Vishne has pointed out to me that one 
an distinguish

a random permutation whi
h is not a 
y
lus from a random 
y
lus in

with advantage 1 at the pri
e of in
reasing the number of queries to

�(N) + 1 (where �(N) is the number of prime divisors of N): One

simply veri�es that for ea
h prime fa
tor p of N , P

N=p

(0) 6= 0, whereas

P

N

(0) = 0. This happens if, and only if, P is a 
y
lus. (Similar

observations apply to Remarks 2.5 and 2.6.)

Observe that in probability 1=N , a random permutation is a 
y
lus

and therefore one 
annot hope to obtain advantage greater than 1 �

1=N , so this improves the advantage from 1 � d(N)=N to 1 � 1=N at

the pri
e of �(N) additional queries. Clearly �(N) � log

2

N . In fa
t,

by the Hardy-Ramanujan Theorem, �(N) is asymptoti
ally 
lose to

log logN \for almost all N" (we will not give the pre
ise formulation

here). Observe that when N is a power of 2 we get here �(N) = 1, so

two queries are enough to distinguish with advantage 1� 1=N .

Part 2. Fast forward random permutations

This part introdu
es an eÆ
ient method to sample the 
y
le stru
ture

of a random permutation, and its appli
ation to the 
onstru
tion of fast

forward random permutations.
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3. Ordered 
y
le stru
tures

De�nition 3.1. Assume that 
 is a �nite, well-ordered set, and P 2

S




. Let C

0

; : : : ; C

k�1

be all (distin
t) 
y
les of P , ordered by

C

i

< C

j

, minC

i

< minC

j

:

Then the ordered 
y
le stru
ture of P , OCS(P ), is the sequen
e (jC

0

j; : : : ; jC

k�1

j).

Example 3.2. If

P =

�

0 1 2 3 4 5

5 4 1 3 1 0

�

,

then the 
y
les of P are (05); (142); (3) in this order, as the minimum el-

ements of the 
y
les are 0; 1; 3, respe
tively. Thus, OCS(P ) = (2; 3; 1).

Sampling the ordered 
y
le stru
ture of a random permutation in

P 2 S




(by 
hoosing a random P , �nding the size of the 
y
le of 0,

then the size of the 
y
le of the �rst element not in this 
y
le, et
.)

requires O(j
j) steps, whi
h is infeasible when 
 is a large spa
e. The

following theorem allows us to sample this distribution eÆ
iently.

Theorem 3.3. Let 
 be a �nite set of size N . Consider the following

two random pro
esses:

Pro
ess I: Choose a random permutation P 2 S




, and give OCS(P ) as

output.

Pro
ess II: (1) Set s

�1

= 0.

(2) For i = 0; : : : do the following:

(a) Choose a random number s

i

2 f1 + s

i�1

; : : : ; Ng.

(b) If s

i

= N , then exit the loop.

(3) Output the sequen
e (s

0

; s

1

� s

0

; s

2

� s

1

: : : ; s

i

� s

i�1

).

Then these pro
esses de�ne the same distribution on the spa
e of all

possible ordered 
y
le stru
tures of permutations P 2 S




.

Proof. We prove the theorem by indu
tion on the size of 
. The theo-

rem is evident when j
j = 1.

For j
j > 1, assume that P is a random element of S




, and let

OCS(P ) = (a

0

; : : : ). By Lemma 2.2, a

0

distributes uniformly in f1; : : : ; Ng.

Using the notation of De�nition 3.1, let C

0

be the 
y
le of 0. As P dis-

tributes uniformly over S




, an easy 
ounting argument shows that the

restri
tion of P to the remaining elements, P � 
 n C

0

distributes uni-

formly over S


nC

0

. By the indu
tion hypothesis, the output (b

0

; b

1

; : : : )

of Pro
ess II for n = j
 nC

0

j distributes exa
tly as the output of Pro-


ess I on P � 
 n C

0

. Thus, the sequen
e (a

0

; b

0

; : : : ) given by Pro
ess

II distributes the same as the sequen
e given by Pro
ess I. �
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De�nition 3.4. For ease of referen
e, we will 
all Pro
ess II of Theo-

rem 3.3 the Choose Cy
le Lengths (CCL) pro
ess.

Observe that the running time of the CCL pro
ess in the worse 
ase is

N , whi
h is too large (usually, a quantity whi
h is polynomial in logN

is 
onsidered small, and 
(N

�

) where � > 0 is 
onsidered infeasible).

We 
an however de�ne an algorithm whi
h is probabilisti
ally 
lose to

the CCL pro
ess but runs in time O(logN).

Let R

N

denote the random variable 
ounting the number of 
y
les

in a permutation in S

N

. It is well known [3℄ that the expe
tation and

varian
e R

N

(and therefore the running time of the CCL pro
ess) are

both logN +O(1). By Chebyshev's Inequality,

Pr[R

N

� (
+ 1) logN ℄ = Pr[R

N

� logN � 
 logN ℄ =

= Pr[R

N

� logN � (


p

logN)

p

logN ℄ �

�

1

(


p

logN)

2

=

1




2

logN

for all 
onstant 
 > 0, whi
h is �(1= logN). We say that a fun
tion

f(N) is negligible if it is O(1=N

�

) for some positive �. The bound

given by Chebyshev's Inequality is not negligible. Fortunately we 
an

improve it signi�
antly in our 
ase. To this end, we need to have a tight

upper bound on the distributions of the random variables s

i

de�ned by

the CCL pro
ess.

Proposition 3.5. Fix l 2 f0; : : : ; N � 1g. Then

Pr[s

l

= k℄ <

�

�

log(1�

k

N

)

�

�

l

l!N

if k 2 fl + 1; : : : ; Ng and is 0 otherwise.

Proof. Re
all that for an in
reasing fun
tion f : [0; k℄! R,

P

k�1

i=0

f(i) <

R

k

0

f(x)dx.

We prove the proposition by indu
tion on l. For l = 0 we have that

Pr[s

0

= k℄ = 1=N as required. Assume that our assertion is true for l,

and prove it for l + 1 as follows.

Pr[s

l+1

= k℄ =

=

k�1

X

i=l+1

Pr[s

l

= i℄ � Pr[a

l+1

= k � ijs

l

= i℄ =

k�1

X

i=l+1

Pr[s

l

= i℄ �

1

N � i

<

<

Z

k

0

�

� log(1�

x

N

)

�

l

l!N

�

1

N � x

dx
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Substituting t = � log(1�x=N), we have that the last integral is equal

to

1

l!N

Z

� log

(

1�

k

N

)

0

t

l

dt =

�

� log

�

1�

k

N

��

l+1

(l + 1)!N

:

�

Theorem 3.6. Fix l 2 f0; : : : ; N � 1g. Then for all m,

Pr[s

l

< m℄ <

m

N

�

�

�

log

�

1�

m

N

�

�

�

l

l!

:

Proof. By Proposition 3.5,

Pr[s

l

< m℄ <

<

1

l!N

Z

m

0

�

� log

�

1�

x

N

��

l

dx <

1

l!N

Z

m

0

�

� log

�

1�

m

N

��

l

dx =

= m �

�

�

log

�

1�

m

N

�

�

�

l

l!N

:

�

Corollary 3.7. Assume that 
 > e. The probability that the running

time of the CCL pro
ess is larger than 
 logN is O

�

p

logN=N


(log 
�1)

�

and is therefore negligible. In parti
ular, if 
 > e

2

then this probability

is o(1=N




).

Proof. Use Theorem 3.6 with m = n � 1 and l = 
 logN . Then 1 �

m=N = 1=N . Using Stirling's Formula,

(1) Pr[s

l

< m℄ <

�

�

log

1

N

�

�

l

l!

�

log

l

N

q

2�

l

�

l

e

�

l

:

Now, as l = 
 logN ,

log

l

N

�

l

e

�

l

=

�

e logN

l

�

l

=

e

l




l

=

N




N


 log 


= N


(1�log 
)

;

therefore the right hand side of Equation 1 is equal to

r


 logN

2�

�

1

N


(log 
�1)

:

This implies the assertions in the theorem. �

We 
an therefore de�ne the following variant of the CCL pro
ess:
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De�nition 3.8 (l-trun
ated CCL). Fix a positive integer l and run the

CCL pro
ess l � 1 steps. If the pro
ess terminated after k < l steps,

then output the sequen
e (s

0

; : : : ; s

k�1

). Otherwise set s

l�1

= N and

output (s

0

; : : : ; s

l�1

).

Corollary 3.9. Fix l � 3:6 logN . Then the output of the l-trun
ated

CCL 
annot be distinguished from the output of the CCL pro
ess with

advantage greater than o(1=N).

Proof. This follows from Theorem 3.7, on
e we observe (numeri
ally)

that the solution to the equation 
(log 
� 1) = 1 is 
 = 3:5911

+

. �

4. Fast forward permutations

De�nition 4.1. Assume that (a

0

; a

1

; : : : ; a

l�1

) is a sequen
e of pos-

itive integers su
h that

P

k<l

a

k

= N , and write s

0

= a

0

and s

i

=

P

k�i

a

k

for ea
h i = 1; : : : ; l. The fast forward permutation 
oded

by (a

0

; a

1

; : : : ; a

l�1

) is the permutation � 2 S

N

su
h that for ea
h

x 2 f0; : : : ; N � 1g,

�(x) = s

i

+ (x+ 1 mod a

i+1

) where s

i

� x < s

i+1

:

Example 4.2. The fast forward permutation � 2 S

7


oded by (1; 2; 3; 1)

is

� = (0)(12)(345)(6) = (12)(345):

Here s

0

= 1, s

1

= 3, s

2

= 6, and s

3

= 7. Thus, e.g., as s

1

� 4 < s

2

, we

have that

�

5

(4) = s

1

+ (4 + 5 mod a

2

) = 3 + (9 mod 3) = 3;

as 
an be veri�ed dire
tly.

A fast forward permutation 
oded by a sequen
e (a

0

; : : : ; a

l�1

) is

indeed fast forward, if we 
an either prepro
ess the 
orresponding se-

quen
e (s

0

; : : : ; s

l�1

) (this is done in time O(l)) or have a

ess to an

ora
le whi
h 
an tell s

i

for ea
h i in time O(1).

Proposition 4.3. Assume that � is the fast forward permutation 
oded

by (a

0

; : : : ; a

l�1

). Assume further that we have an O(1) time a

ess

to the 
orresponding values s

i

, i 2 f0; : : : ; l � 1g. Then for all x 2

f0; : : : ; N � 1g and all m, the 
omplexity of the 
omputation of �

m

(x)

is O(log l) (and in parti
ular O(logN)).

Proof. As the values s

i

are in
reasing with i, we 
an use binary sear
h

to �nd the i su
h that s

i

� x < s

i+1

(this requires O(log l) a

esses to

the values s

i

). Then

�

m

(x) = s

i

+ (x +m mod (s

i+1

� s

i

)):

�
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The proof of Proposition 4.3 is written su
h that we 
an see that the

sequen
e (a

0

; : : : ; a

l�1

) plays no role in the evaluations of �

m

(x). This

means that all needed information is given in the sequen
e (s

0

; : : : ; s

l�1

).

We 
hose the sequen
e (a

0

; : : : ; a

l�1

) rather than (s

0

; : : : ; s

l�1

) as a

\
ode" for the permutation only be
ause this way it seems more 
lear

how the permutation � is 
omputed.

Consider the following ora
les.

P

FF

: Chooses a random permutation P 2 S

N

, a

epts queries of the

form (x;m) 2 f0; : : : ; N�1g�Z, and responds with y = P

m

(x)

for ea
h su
h query.

F : Runs the l-trun
ated CCL pro
ess with l = 4 logN to obtain

a sequen
e (a

0

; : : : ; a

l�1

). (Let � denote the fast forward per-

mutation 
oded by (a

0

; : : : ; a

l�1

).) This ora
le a

epts queries

of the form (x;m) 2 f0; : : : ; N � 1g � Z, and uses the ora-


le P (whi
h �xes a random permutation P ) to respond with

y = P (�

m

(P

�1

(x))) for ea
h su
h query.

Theorem 4.4. (1) The spa
e used by the ora
le F is O(logN)

words of size O(logN) ea
h.

(2) The prepro
ess of F requires O(logN) steps.

(3) For ea
h query (x;m), the running time of F is O(log logN)

plus twi
e the running time of P.

(4) Assume that D is a distinguisher whi
h makes any number of


alls to the ora
les P

FF

or F . Then the advantage of D is

o(1=N).

Proof. (1) is evident. (2) follows from Proposition 4.3, and (3) follows

from Corollary 3.9. �

This 
ompletes our solution to the Naor-Reingold Problem in the

(purely) random 
ase.

Part 3. Pseudorandomness

Intuitively speaking, pseudorandom obje
ts are ones whi
h are easy

to sample but diÆ
ult to distinguish from (truly) random obje
ts. The

assumption that we made on the ora
le P|namely, that it 
hooses a

random permutation in S

N

|is not realisti
 when N is large. A more

realisti
 assumption is that the ora
le 
hooses a pseudorandom element

of S

N

. More 
on
retely, the ora
le P a

epts a key k as input, and uses

it to de�ne a permutation P

k

in the sense that ea
h time the ora
le is

asked to 
ompute P

k

(x) (or P

�1

k

(x)), the ora
le 
omputes it without

the need to expli
itly build the 
omplete permutation P

k

. (P 
an be

thought of as a key dependent blo
k 
ipher.) The reader is referred
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to [1℄ for the formal de�nitions. Naor and Reingold [1℄ a
tually stated

their problem in the pseudorandom 
ase. We will translate our main

results into the pseudorandom 
ase.

5. Translation of results from Part 1

Let C

0

be a pseudorandom 
y
lus ora
le. This means that for any dis-

tinguisher D whi
h makes a small number m of queries, the advantage

a = jPr[D(C

0

) = 1℄� Pr[D(C) = 1℄j is small.

Theorem 5.1. For any distinguisher D whi
h makes m < N queries

to C

0

or P,

jPr[D(C

0

) = 1℄� Pr[D(P) = 1℄j � a +

m

N

;

where a = jPr[D(C

0

) = 1℄� Pr[D(C) = 1℄j.

Proof. By the Triangle Inequality and Theorem 1.10,

jPr[D(C

0

) = 1℄� Pr[D(P) = 1℄j �

� jPr[D(C

0

) = 1℄� Pr[D(C) = 1℄j+ jPr[D(C) = 1℄� Pr[D(P) = 1℄j �

� a+

m

n

:

�

Theorem 5.2. Consider the m-step strategy (m < N) for a distin-

guisher D whi
h was de�ned in Theorem 1.12 (an arbitrary strategy

whi
h generates nonrepeating sequen
es.) Then

jPr[D(C

0

) = 1℄� Pr[D(P) = 1℄j =

m

N

:

Consequently, for all � > 0 there exists a strategy D to distinguish C

0

from P with advantage maxfa � �;m=Ng, where a is the supremum

of all possible advantages of an m-step distinguisher to distinguish C

0

from C.

Proof. The proof of Theorem 1.12 only uses the fa
t that P 
hooses a

random permutation and C 
hooses a 
y
lus. The fa
t that the 
y
lus

C is random is not used. This implies the �rst 
laim in our theorem.

To prove the se
ond part of the theorem, �x any � > 0. If a � � �

m=N , we 
hoose the strategy D and we are done. Otherwise m=N <

a� �. As a� � < a, there exists an m-step strategy D

0

to distinguish

C

0

from C with advantage at least a� �, so we 
an 
hoose the strategy

D

0

. �

We now translate the main result in the fast forward model to the

pseudorandom 
ase.
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Theorem 5.3. C

0


an be distinguished from P with advantage 1 �

d(N)=N , using a single query.

Proof. Again, the only property of C we used in the proof of Theorem

2.1 is its 
hoosing a 
y
lus, whi
h is also true for C

0

. �

6. Translation of results from Part 2

In order to shift to the pseudorandom 
ase in our 
onstru
tion of a

fast forward permutation, we need to have some pseudorandom number

generator to generate the random 
hoi
es of the s

i

's in the CCL pro
ess.

If we have no su
h generator available, we 
an use the ora
le P itself:

In addition to the key k used to generate P

k

, we need another key

~

k.

The pseudorandom numbers s

i

in the CCL pro
ess 
an then be derived

from the values P

~

k

(0), P

~

k

(1), P

~

k

(2); : : : (This is the standard 
ounter

mode [2℄). We now give an example how this 
an be done.

Consider the following ora
les.

RND: A

epts positive integers x; k < N and returns a sequen
e

(r

0

; : : : ; r

k�1

) of random numbers in the range f0; : : : ; x� 1g.

RND

1

: A

epts positive integers x; k < N , 
alls RND with N and 2k to

get a sequen
e (x

0

; : : : ; x

2k�1

), and returns (r

0

; : : : ; r

k�1

) where

r

i

= (x

2i

+N � x

2i+1

) mod x for all i = 0; : : : ; k � 1.

RND

2

: A

epts positive integers x; k; p

0

< N , 
alls P 2k times to obtain

the sequen
e (x

0

= P (p

0

); : : : ; x

2k�1

= P (p

0

+ 2k� 1 mod N)),

and returns (r

0

; : : : ; r

k�1

) where r

i

= (x

2i

+N �x

2i+1

) mod x for

all i = 0; : : : ; k � 1.

Theorem 6.1. Fix positive integers x; k < N . Then:

(1) If k = 
 logN , then RND and RND

1


alled with x and k 
annot

be distinguished with advantage greater than 
 logN=N .

(2) RND

1

and RND

2


alled with x and k 
annot be distinguished

with advantage greater than 2k

2

=N .

Proof. (1) Assume that a and b are random numbers in the range

f0; : : : ; N�1g. Then 
 = a+bN is random in the range f0; : : : ; N

2

�1g.

Let x 2 f0; : : : ; N � 1g. With probability at least 1=N , 
 < bN

2

=x
 � x

and therefore 
 mod x is random in the range f0; : : : ; x � 1g. The

probability that this happens 
 logN times is therefore at least (1 �

1=N)


 logN

� e

�
 logN=N

> 1� 
 logN=N .

(2) This follows from the well known result that a random permuta-

tion is a pseudorandom fun
tion. Brie
y (see [4℄ for more details), 
on-

sider any sequen
e of 2k random numbers in the range f0; : : : ; N � 1g.

The probability that all these numbers are distin
t is greater than
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1 � (2k)

2

=2N = 1 � 2k

2

=N , and in this 
ase this sequen
e forms a

random partial permutation. �

Consider now the modi�
ation F

0

of the ora
le F whi
h 
alls P with

two independent keys k and

~

k, one for the evaluations P

k

(�

m

(P

�1

k

(x)))

and the other for the values P

~

k

(0); P

~

k

(1); : : : to be used by RND

2

in

order to generate the sequen
e of pseudorandom numbers required by

the l-trun
ated CCL pro
ess (the input argument p

0

to RND

2

is used

to avoid sampling the same entry of P

~

k

twi
e).

Theorem 6.2. F

0

and F 
annot be distinguished with advantage greater

than O(log

2

N=N).

Proof. This follows from the Triangle Inequality and the earlier results

4.4, 6.1(1), and 6.1(1) with k = 4 logN . �

Here too, using a pseudorandom permutation ora
le P

0

instead of a

random one in the de�nition of F

0


annot in
rease the advantage by

more than a where a is the maximal advantage obtainable in distin-

guishing P from P

0

.

7. Final remarks and open problems

Another problem is mentioned in the original paper of Naor and

Reingold [1℄ and remains open, namely, whether one 
an 
onstru
t a

family of fast forward pseudorandom fun
tions with graph stru
ture

distribution similar to that of pseudorandom fun
tions.

The natural analogue of our 
onstru
tion for the 
ase of pseudoran-

dom permutations would not work for pseudorandom fun
tions, simply

be
ause the \graph stru
ture" of a pseudorandom fun
tion 
arries too

mu
h information. For example, there are O(N) points with no preim-

age. This was not the 
ase with permutations, where the stru
ture is

determined by the logarithmi
 number of its 
y
les and their length.

Another approa
h will be needed in order to solve this problem.

Our study raises some other interesting open problems, the most

interesting of whi
h seems to be the following. Consider the l-trun
ated

CCL pro
ess with l = logN , whi
h uses an ora
le RND

3

similar to

RND

2

as its random number generator with the di�eren
e that it makes

only k 
alls to P to generate (x

0

= P (p

0

); : : : ; x

k�1

= P (p

0

+k�1 mod

N)), and uses r

i

= x

i

mod x instead of the original de�nition. (So we

use logN values of P instead of 8 logN in the 
urrent 
onstru
tion.)

The problem is to prove or disprove the following.

Conje
ture 1. F

0

with the parameters just des
ribed 
annot be distin-

guished from P

FF

with a non-negligible advantage.
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