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Abstrat. We give a method for onstruting ordinary ellipti urves over

�nite prime �eld F

p

with small seurity parameter k with respet to a prime

` dividing the group order #E(F

p

) suh that p << `

2

.

1. Introdution

Over the last few years there has been an inreasing interest in pairing based

ryptography. The primitives of pairing based rypto systems are two groups (G; �)

and (H; Æ) in whih the disrete logarithm problem is believed to be hard. Moreover,

we require the existene of an eÆiently omputable, non-degenerate pairing G �

G! H . This additional struture allows many interesting protools for all kind of

di�erent appliations [5, 7, 11, 14℄.

Well known examples of suh a pairing are the Weil and the Tate pairing on an

ellipti urve. Here, G is the group of points on an ellipti urve de�ned over a

�nite �eld F

q

and H is equal to the multipliative group of a �eld extension F

�

q

k

.

De�nition 1.1. Let E be an ellipti urve de�ned over F

q

whose group order

#E(F

q

) is divisible by a prime `. Then E has seurity parameter k if k is

the smallest integer suh that ` divides q

k

� 1.

If E has seurity parameter k > 1 with respet to `, the Weil pairing e

`

de�nes

a non-degenerate pairing from the group of `- torsion points in E(F

�

q

k

) into F

�

q

k

. It

an be evaluated in O(k

2

log

3

q) bit operations. Supersingular ellipti urves have

seurity parameter less than or equal to 6 [9, 13℄.

It is an interesting question whether there exist suitable ellipti urves with k � 7.

Obviously, they an not be supersingular. But ordinary ellipti urves with suh a

small seurity parameter are very rare [2℄. We are left with the problem to onstrut

ordinary urves with relatively small seurity parameter (see e.g. [5, 8℄).

Let E be an ordinary ellipti urve de�ned over a �nite �eld F

q

and let ` be a

prime dividing the group order #E(F

q

) suh that E has seurity parameter k with

respet to `. We have

#E(F

q

) = q + 1� t � 0 mod ` and(1)

q

k

� 1 � 0 mod `:(2)

Inserting equation (2) in (1) shows that (t� 1) must be a kth root of unity modulo

`. On the other hand, if E is an ellipti urve over F

q

satisfying equation (1) and

t = �

k

+ 1 mod ` for some primitive kth roots of unity modulo `, E has seurity

parameter k with respet to `. This fat has �rst been disovered by Coks and

Pinh [6℄.

Sine E is ordinary, it has omplex multipliation by some order O of disriminant
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dividing t

2

� 4q in an imaginary quadrati �eld K = Q(

p

D). Set

d =

�

D

4

if D � 0 mod 4

D else.

The Frobenius element �

q

: (x; y) ! (x

q

; y

q

) orresponds to an element w =

a+b

p

D

2

2 O suh that Norm

K=Q

(w) = ww = q. We have t = a.

This observation leads to a simple algorithm. Given an imaginary quadrati �eld

K = Q(

p

D): Take a prime ` with the properties that ` splits in O

K

and ` � 1

mod k and determine a kth root of unity �

k

modulo `. Set a = �

k

+ 1 mod ` and

b = �

a�2

Æ

mod ` where Æ is a square root of d modulo `. Finally test whether

Norm

K=Q

(w) is a prime p (or a prime power q). We �nd the orresponding ellipti

urve de�ned over F

p

(or F

q

) using the omplex multipliation method (for the CM

method see e.g. [1℄).

The orretness of this method an easily be seen by the following lemma whih

summarizes the disussion above.

Lemma 1.2. Let E=F

q

be an ellipti urve with omplex multipliation by an order

O in Q(

p

D) suh that the Frobenius endomorphism orresponds to the imaginary

quadrati integer w =

a+b

p

D

2

with a; b onstruted as above. Then #E(F

q

) is

divisibly by ` and has seurity parameter k with respet to `:

Proof. By the hoie of b, we �nd

#E(F

q

) = Norm

Q(

p

D)=Q

(w � 1) =

1

4

((a� 2)

2

�Db

2

) � 0 mod `:

Sine the trae t of �

q

is equal to a = �

k

+ 1 mod `, the seurity parameter of E

with respet to ` is equal to k.

Note that the ase that Norm

K=Q

(w) is not a prime but a prime power is very un-

likely. Hene in the following we only onsider the ase where Norm

K=Q

(w) is prime.

The values a and b are solutions of equations modulo `. Hene, they will in general

be of size O(`) leading to a prime of size O(`

2

). Desirable would be to have p of

size O(`):

It is still an open question to �nd an algorithm for the onstrution of ordinary

ellipti urves with arbitrary seurity parameter k where p is signi�antly smaller

than `. Barreto, Lynn and Sott desribe a method to derive a better relation be-

tween p and ` for the ase where k is divisible by 3 [5℄. In this paper we extend their

idea using the fat desribed above to get more examples of urves with p << `

2

.

Moreover we �nd examples where ` is a prime of low Hamming weight with respet

to the basis 2. For suh primes, the Weil resp. Tate pairing an eÆiently be

evaluated [4, 10℄.

Aknowledgements. The authors thank S. Galbraith and M. Sott for helpful

omments on the paper. Espeially, S. Galbraith suggested to look for examples

where ` has small Hamming weight.

The neessary omputations were done using Magma

(http://magma.maths.usyd.edu.au/magma/).

2. The main idea

We explain the main idea in the ase where D is odd. Note that it an easily be

modi�ed for D � 0 mod 4.

Given k and a disriminant D < 0 whih is not too large. We an onsider the

number �eld M(�

n

; D). Suppose M ' Q[x℄=(f(x)) where f is a irreduible poly-

nomial of degree d where d = 2n or n depending on whether

p

D � Q(�

n

) or not.
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Moreover we require that f represents primes.

Every element in M an be represented by a polynomial of degree � d� 1. We an

ompute the polynomials g

1

; : : : ; g

'(k)

whih represent the primitive kth roots of

unity. Let h

1

;�h

1

be the polynomials whih represent

p

D. Suppose that g

i

and

h

i

lie in Z[x℄.

We now set

a(x) = (g

i

(x) + 1)

and

b

0

(x) = (a(x) � 2)h

j

(x)in Q[x℄=(f(x)):

for some i, j.

We test if there exists some ongruene lass x

0

mod (�D) suh that b

0

(x

0

) � 0

mod (�D). For all x

1

, x

0

� x

1

mod (�D), b

0

(x

1

)=D will be in Z. We an now

de�ne

p(x) =

1

4

(a(x)

2

�

b

0

(x)

2

D

):

Now suppose the following onditions are satis�ed:

� p(x) is irreduible,

� p(x) has integer values for x

0

mod (�D) and

� f(Dy + x

0

) 2 Z[y℄ is irreduible.

We an then try to �nd primes ` = f(x

1

) for some x

1

� x

0

mod D and test

whether p(x

1

) is prime as well.

We easily hek that if a(x

1

), b

0

(x

1

) are onstruted as above, there exists an ellipti

urve over the prime �eld F

p(x

1

)

with omplex multipliation by the maximal order

O

K

in Q(

p

D) suh that the Frobenius endomorphism of E orresponds to the

element

a(x

1

)�

b

0

(x

1

)

D

p

D

2

2 O

K

:

The order #E(F

p(x

1

)

) is equal to

(a(x

1

)� 2)

2

�

b

0

(x

1

)

2

D

2

and will by onstrution be divisible by `.

The degrees of a(x) and b

0

(x) are less than equal to deg(f) � 1 = d � 1. Hene,

` will be of size O(x

d

1

) and p of size O(x

2d�2

1

) whih is signi�antly smaller than

O(`

2

). In speial ases, the relation between ` and p will be even better.

Note that the assumption that a(x) and b

0

(x) 2 Z[x℄ is very strong sine only few

number �elds M have a power integer basis.

3. A better relation between ` and p

We demonstrate our idea presenting several examples. The �rst example has

already been onsidered in [3℄. It an easily be dedued from our general approah.

In all our examples, the number �eld M = Q(

p

D; �

n

) is a ylotomi �eld and

therefore has a power integer basis.

1. LetM = Q(�

9

) andK = Q(

p

�3). The 9th ylotomi polynomial is given by

x

6

+x

3

+1. Suppose ` = x

6

0

+x

3

0

+1 for some integer x

0

and let D = �3. We

would like to onstrut a suitable Frobenius element

a+b

p

�3

2

. The element a

has to be equal to �

9

+1 where �

9

is a ninth root of unity. We set a = x

0

+1.

Moreover b should be equal to

�(a� 2)

p

�3

=

�

p

�3(a� 2)

3

=

(x

0

� 1)(2x

3

0

+ 1)

3

:
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We now hoose x

0

� 1 mod 3. Then a � b mod 2 and p = Norm

K=Q

(

a+b

p

�3

2

)

is of size O(`

4

3

).

2. Let M = Q(�

10

;

p

�1) and K = Q(i). The number �eld M is generated by

the polynomial x

8

� x

6

+ x

4

� x

2

+ 1. The primitive 10th roots of unity are

represented by the polynomials

x

2

;�x

4

;�x

6

+ x

4

� x

2

+ 1; x

6

and the roots of �1 are given by the polynomials �x

5

.

Suppose that ` is equal to x

8

0

� x

6

0

+ x

4

0

� x

2

0

+ 1 for some integer x

0

. Set

a = (�x

6

0

+ x

4

0

� x

2

0

+ 2):. Then b should be equal to

�(a� 2)

p

�1

=

�(�x

6

0

+ x

4

0

� x

2

0

)

x

5

0

� �(�x

5

0

+ x

3

0

) mod `:

We have to ensure that Norm

K=Q

(

a+b

p

�1

2

) is prime.

We see that p is of order O(`

3

2

):

3. M = Q(�

60

). This �eld is generated by f(x) = x

16

+x

14

�x

10

�x

8

�x

6

+x

2

+1.

We onsider the ases k = 10, k = 12, k = 15, k = 20, k = 30 and k = 60 and

D = �3.

We see that disriminant D = �1 is not possible beause for all hoie of

a(x) and b

0

(x) there exist no x

1

suh that a

1

(x

1

) = b

0

(x

1

) � 0 mod 2. For

D = �3 we ollet from eah ase an example where the relation between p

and ` is partiularly good.

(a) k=10: Thre exists no x

1

suh that b

0

1

(x

0

) � 0 mod 3.

(b) k=12: Set a = �x

5

+1 and b = 2x

15

+2x

10

�x

5

�1. Take x � 2 mod 3.

() k=15: Set a = x

8

+1; b = �2x

14

+2x

12

+2x

10

+x

8

+2x

6

+2x

4

�3. More

examples are given by a = x

14

�x

10

�x

8

+x

2

+1; b = x

14

+x

10

�x

8

�2x

6

+x

2

and a = x

14

+x

12

�x

8

�x

6

�x

4

+2; b = x

14

+x

12

+2x

10

+x

8

�x

6

�x

4

.

Take x � 1 mod 3.

(d) k=20: One possible solution is given by a = �x

11

+x+1 and b = x

11

�

2x

10

+x+1. Another possibity is a = x

11

�x+1 and b = x

11

+2x

10

+x�1.

The element x has to be hosen � 1 mod 3.

(e) k=30: One possible solution is given by a = x

12

� x

2

+ 1 and x

12

+

2x

10

+ x

2

� 1. The element x has to be hosen � 1 mod 3.

(f) k=60: Set e.g. a = �x + 1 and b = 2x

11

+ 2x

10

� x � 1 where x � 2

mod 3.

4. Let q be a prime. Consider M = Q(�

q

; i) and k = q. In this ase the minimal

polynomial is given by

f(x) = x

2q�2

� x

2q�4

+ x

2q�6

� x

2q�8

+ : : :+ 1:

Note that f(x)(x

2

+1) = x

2q

+1. Hene x

2q

= �1 mod f(x), i.e. the element

p

�1 orresponds to �x

q

mod f(x).

Moreover we have x

2

is a primitive 2qth root of unity, i.e. �x

2

is a qth root

of unity. We an set a = �x

2

+ 1 and b = (�x

2

� 1)x

q

= �x

q+2

� x

q

. The

relation

log(p)

log(`)

is approximately

q+2

q�1

.

5. Let q be a prime. ConsiderM = Q(�

q

; �

3

) and k = q. In this ase the minimal

polynomial is given by

f(x) =

x

2q

� x

q

+ 1

x

2

� x+ 1

:

We have f(x)(x

3

+ 1)�(2q) = x

3q

+ 1 and f(x)(x

2

� x + 1) = x

2q

� x

q

+ 1.

As above we see that �x

3

is a qth root of unity. We an hoose a = �x

3

+1.

Now (2x

q

�1)

2

+3 = 4(x

2q

�x

q

+1) � 0 mod f(x). So (2x

q

�1) orresponds



ELLIPTIC CURVES SUITABLE FOR PAIRING BASED CRYPTOGRAPHY 5

to the element

p

�3 and we set b = (�x

3

� 1)(2x

q

+1). The relation

log(p)

log(`)

is

approximately

q+3

q�1

.

4. Cryptographially interesting examples

4.1. Curves with low Hamming weight. Pairing based ryptography is very

eÆient if the prime ` is a prime of low signed Hamming weight (see [4, 10℄). For

the signed Hamming weight we allow the oeÆients of the binary expansion to be

�1; 0; 1.

Using the method in setion 2 we �nd some partiularly nie examples. To �nd

these examples we run through all ylotomi �elds with disriminant divisible by

3 or 4. For eah �eld, we determine the minimal polynomial f(x) and test whether

f(x

0

) is prime for some x

0

of low Hamming weight, say x

0

= 2

i

, x

0

= 2

i

� 2

k

or

x

0

= 3

i

. Next we hoose a disriminant D = �3;�4, ompute the orresponding

polynomials a(x) and b

0

(x) and test whether

a(x

0

)

2

�D(b(x

0

)

0

=D)

2

4

is prime, too.

1. Take M = Q(�

15

), k = 15 and the imaginary quadrati �eld of disriminant

D = �3.

Let x

0

= 2

32

+1 and ` = �

15

(x

0

): The prime ` has 257 binary digits and signed

Hamming weight 17. Set a = x

4

0

+1 and b = 2x

7

0

�2x

6

0

�2x

5

0

+x

4

0

�2x

3

0

+2x

2

0

�3.

The prime p is given by

1

4

(a

2

+ 3(

b

3

)

2

). It is of order O(`

7

4

).

2. Take M = Q(�

20

), k = 10 and the imaginary quadrati �eld of disriminant

D = �1.

Let x

0

= 2

23

+ 1 and ` = �

20

(x

0

): We have blog

2

(`) � 184 and ` has signed

Hamming weight 17. Set a = x

2

0

+1 and b = x

7

0

�x

5

0

. The prime p =

1

4

(a

2

+b

2

)

is of order O(`

7

4

)

3. Take M = Q(�

48

), k = 24 and the imaginary quadrati �eld of disriminant

D = �3.

Let x

0

= 2

12

+ 2 and ` = �

48

(x

0

): The prime ` has 185 binary digits and

sigend Hamming weight 24. Set a = x

2

0

+ 1 and b = �2x

10

0

+ 2x

8

0

+ x

2

0

� 1.

The prime p is of order O(`

5

4

).

The prime p is given by

1

4

(a

2

+ 3(

b

3

)

2

).

4. Take M = Q(�

12

), k = 12 and the imaginary quadrati �eld D = �3.

Let x

0

= 2

39

+ 2

11

+ 2

10

and ` = �

12

(x

0

): Then ` has 157 binary digits and

signed Hamming weight 21. Set a = �x

3

0

+ x

0

+ 1 and x

3

0

� 2 � x

2

0

+ x

0

+ 1.

The prime p is of order O(`

3

2

):

4.2. Curves with fast addition hain. There exist natural numbers whose Ham-

ming weight is not partiularly small but whih still allow a fast salar multiplia-

tion.

Lemma 4.1. Let P be a point on an ellipti urve and let

m = 2

j

1

� 2

j

2

� 2

j

3

where 0 � j

3

< j

2

< j

1

. Then mP an be omputed with j

1

doublings and two

additions/subtrations.

Note that a subtration has the same omplexity as an addition, sine taking

the additive inverse on an ellipti urve is a free operation.

Proof. Set Q

1

= 2

j

3

P , Q

2

= 2

j

2

�j

3

Q

1

and Q

3

= 2

j

1

�j

2

Q

2

. We need j

1

doublings to

ompute Q

1

, Q

2

and Q

3

and 2 additions/subtrations to ompute Q

3

�Q

2

�Q

1

.

We an now onsider the values of ertain ylotomi polynomials at m given as

above.
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Corollary 4.2. Let f be a polynomial of degree s with oeÆients in f0;�1g and

t non-zero oeÆients. Then f(m) with m given as in Lemma 4.1 an be evaluted

with sj

1

doublings and 2s+ t� 1 additions/subtrations.

For the proof we just ount the number of operations.

Example 4.3. 1. Take m = 2

22

+2

13

+1 and onsiderM = Q(�

24

) with k = 8.

We have �

24

= x

8

� x

4

+ 1 and we realize ` = �

24

(m) and we an alulate

`P with only 8 � 22 = 176 doublings and 18 additions. Note that the signed

Hamming weight of �

24

(m) is larger than 30.

We have blog

2

(`) � 176. Set a = x

5

0

� x

0

+1 and b = x

5

0

+2x

4

0

+x

0

� 1: The

prime p is of order O(`

5

4

).

Alternatively, we an take m = 2

23

+ 2

17

+ 2

6

. In this ase, the evaluation

takes 8 � 23 = 184 doublings and 18 additions. We set a = �x

5

0

+ x

0

+ 1 and

b = �x

5

0

+ 2x

4

0

� x

0

� 1. The prime is of order O(`

5

4

).

Or we take m = 2

22

� 2

10

� 2

4

and �x

5

0

+x

0

+1 and b = �x

5

0

+2x

4

0

�x

0

� 1.

In all three ases, we �nd an ellipti urve over F

p

with p =

1

4

�

a

2

+ 3(

b

3

)

2

�

with omplex multipliation by Z[�

3

℄.

2. Take �

20

(x) = x

8

�x

6

+x

4

�x

2

+1 and m = 2

20

+2

14

+4. Then ` = �

20

(m)

an be omputed using 160 doublings and 20 additions.

Let k = 10 and set a = �x

6

0

+ x

4

0

� x

2

0

+ 2 and b = 2x

5

0

� 2x

3

0

. We �nd an

ellipti urve with omplex multipliation by Z[i℄ over F

p

with p =

1

4

(a

2

+ b

2

)

of order O(`

3

2

).
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