ELLIPTIC CURVES SUITABLE FOR PAIRING BASED CRYPTOGRAPHY

FRIEDERIKE BREZING AND ANNEGRET WENG

ABSTRACT. We give a method for constructing ordinary elliptic curves over finite prime field \mathbb{F}_p with small security parameter k with respect to a prime ℓ dividing the group order $\#E(\mathbb{F}_p)$ such that $p \ll \ell^2$.

1. INTRODUCTION

Over the last few years there has been an increasing interest in pairing based cryptography. The primitives of pairing based crypto systems are two groups (G, *) and (H, \circ) in which the discrete logarithm problem is believed to be hard. Moreover, we require the existence of an efficiently computable, non-degenerate pairing $G \times G \to H$. This additional structure allows many interesting protocols for all kind of different applications [5, 7, 11, 14].

Well known examples of such a pairing are the Weil and the Tate pairing on an elliptic curve. Here, G is the group of points on an elliptic curve defined over a finite field \mathbb{F}_q and H is equal to the multiplicative group of a field extension $\mathbb{F}_{q^k}^*$.

Definition 1.1. Let E be an elliptic curve defined over \mathbb{F}_q whose group order $\#E(\mathbb{F}_q)$ is divisible by a prime ℓ . Then E has security parameter k if k is the smallest integer such that ℓ divides $q^k - 1$.

If E has security parameter k > 1 with respect to ℓ , the Weil pairing e_{ℓ} defines a non-degenerate pairing from the group of ℓ - torsion points in $E(\mathbb{F}_{q^k}^*)$ into $\mathbb{F}_{q^k}^*$. It can be evaluated in $\mathcal{O}(k^2 \log^3 q)$ bit operations. Supersingular elliptic curves have security parameter less than or equal to 6 [9, 13].

It is an interesting question whether there exist suitable elliptic curves with $k \ge 7$. Obviously, they can not be supersingular. But ordinary elliptic curves with such a small security parameter are very rare [2]. We are left with the problem to construct ordinary curves with relatively small security parameter (see e.g. [5, 8]).

Let E be an ordinary elliptic curve defined over a finite field \mathbb{F}_q and let ℓ be a prime dividing the group order $\#E(\mathbb{F}_q)$ such that E has security parameter k with respect to ℓ . We have

(1) $\#E(\mathbb{F}_q) = q + 1 - t \equiv 0 \mod \ell$ and

(2)
$$q^k - 1 \equiv 0 \mod \ell.$$

Inserting equation (2) in (1) shows that (t-1) must be a kth root of unity modulo ℓ . On the other hand, if E is an elliptic curve over \mathbb{F}_q satisfying equation (1) and $t = \zeta_k + 1 \mod \ell$ for some primitive kth roots of unity modulo ℓ , E has security parameter k with respect to ℓ . This fact has first been discovered by Cocks and Pinch [6].

Since E is ordinary, it has complex multiplication by some order \mathcal{O} of discriminant

Date: August 5, 2003.

dividing $t^2 - 4q$ in an imaginary quadratic field $K = \mathbb{Q}(\sqrt{D})$. Set

$$d = \begin{cases} \frac{D}{4} & \text{if } D \equiv 0 \mod 4\\ D & \text{else.} \end{cases}$$

The Frobenius element $\pi_q : (x, y) \to (x^q, y^q)$ corresponds to an element $w = \frac{a+b\sqrt{D}}{2} \in \mathcal{O}$ such that $\operatorname{Norm}_{K/\mathbb{Q}}(w) = w\overline{w} = q$. We have t = a.

This observation leads to a simple algorithm. Given an imaginary quadratic field $K = \mathbb{Q}(\sqrt{D})$. Take a prime ℓ with the properties that ℓ splits in \mathcal{O}_K and $\ell \equiv 1 \mod k$ and determine a kth root of unity $\zeta_k \mod \ell$. Set $a = \zeta_k + 1 \mod \ell$ and $b = \pm \frac{a-2}{\delta} \mod \ell$ where δ is a square root of $d \mod \ell$. Finally test whether $\operatorname{Norm}_{K/\mathbb{Q}}(w)$ is a prime p (or a prime power q). We find the corresponding elliptic curve defined over \mathbb{F}_p (or \mathbb{F}_q) using the complex multiplication method (for the CM method see e.g. [1]).

The correctness of this method can easily be seen by the following lemma which summarizes the discussion above.

Lemma 1.2. Let E/\mathbb{F}_q be an elliptic curve with complex multiplication by an order \mathcal{O} in $\mathbb{Q}(\sqrt{D})$ such that the Frobenius endomorphism corresponds to the imaginary quadratic integer $w = \frac{a+b\sqrt{D}}{2}$ with a, b constructed as above. Then $\#E(\mathbb{F}_q)$ is divisibly by ℓ and has security parameter k with respect to ℓ .

Proof. By the choice of b, we find

$$#E(\mathbb{F}_q) = \operatorname{Norm}_{\mathbb{Q}(\sqrt{D})/\mathbb{Q}}(w-1) = \frac{1}{4}((a-2)^2 - Db^2) \equiv 0 \mod \ell.$$

Since the trace t of π_q is equal to $a = \zeta_k + 1 \mod \ell$, the security parameter of E with respect to ℓ is equal to k.

Note that the case that $\operatorname{Norm}_{K/\mathbb{Q}}(w)$ is not a prime but a prime power is very unlikely. Hence in the following we only consider the case where $\operatorname{Norm}_{K/\mathbb{Q}}(w)$ is prime.

The values a and b are solutions of equations modulo ℓ . Hence, they will in general be of size $O(\ell)$ leading to a prime of size $O(\ell^2)$. Desirable would be to have p of size $O(\ell)$.

It is still an open question to find an algorithm for the construction of ordinary elliptic curves with arbitrary security parameter k where p is significantly smaller than ℓ . Barreto, Lynn and Scott describe a method to derive a better relation between p and ℓ for the case where k is divisible by 3 [5]. In this paper we extend their idea using the fact described above to get more examples of curves with $p \ll \ell^2$. Moreover we find examples where ℓ is a prime of low Hamming weight with respect to the basis 2. For such primes, the Weil resp. Tate pairing can efficiently be evaluated [4, 10].

Acknowledgements. The authors thank S. Galbraith and M. Scott for helpful comments on the paper. Especially, S. Galbraith suggested to look for examples where ℓ has small Hamming weight.

The necessary computations were done using Magma (http://magma.maths.usyd.edu.au/magma/).

2. The main idea

We explain the main idea in the case where D is odd. Note that it can easily be modified for $D \equiv 0 \mod 4$.

Given k and a discriminant D < 0 which is not too large. We can consider the number field $M(\zeta_n, D)$. Suppose $M \simeq \mathbb{Q}[x]/(f(x))$ where f is a irreducible polynomial of degree d where d = 2n or n depending on whether $\sqrt{D} \subseteq \mathbb{Q}(\zeta_n)$ or not.

Moreover we require that f represents primes.

Every element in M can be represented by a polynomial of degree $\leq d-1$. We can compute the polynomials $g_1, \ldots, g_{\varphi(k)}$ which represent the primitive kth roots of unity. Let $h_1, -h_1$ be the polynomials which represent \sqrt{D} . Suppose that g_i and h_i lie in $\mathbb{Z}[x]$.

We now set

$$a(x) = (g_i(x) + 1)$$

and

$$b'(x) = (a(x) - 2)h_j(x) \text{in } \mathbb{Q}[x]/(f(x))$$

for some i, j.

We test if there exists some congruence class $x_0 \mod (-D)$ such that $b'(x_0) \equiv 0 \mod (-D)$. For all $x_1, x_0 \equiv x_1 \mod (-D), b'(x_1)/D$ will be in \mathbb{Z} . We can now define

$$p(x) = \frac{1}{4}(a(x)^2 - \frac{b'(x)^2}{D}).$$

Now suppose the following conditions are satisfied:

- p(x) is irreducible,
- p(x) has integer values for $x_0 \mod (-D)$ and
- $f(Dy + x_0) \in \mathbb{Z}[y]$ is irreducible.

We can then try to find primes $\ell = f(x_1)$ for some $x_1 \equiv x_0 \mod D$ and test whether $p(x_1)$ is prime as well.

We easily check that if $a(x_1)$, $b'(x_1)$ are constructed as above, there exists an elliptic curve over the prime field $\mathbb{F}_{p(x_1)}$ with complex multiplication by the maximal order \mathcal{O}_K in $\mathbb{Q}(\sqrt{D})$ such that the Frobenius endomorphism of E corresponds to the element

$$\frac{a(x_1) \pm \frac{b'(x_1)}{D}\sqrt{D}}{2} \in \mathcal{O}_K.$$

The order $#E(\mathbb{F}_{p(x_1)})$ is equal to

$$\frac{(a(x_1)-2)^2 - \frac{b'(x_1)^2}{D}}{2}$$

and will by construction be divisible by ℓ .

The degrees of a(x) and b'(x) are less than equal to $\deg(f) - 1 = d - 1$. Hence, ℓ will be of size $O(x_1^d)$ and p of size $O(x_1^{2d-2})$ which is significantly smaller than $O(\ell^2)$. In special cases, the relation between ℓ and p will be even better.

Note that the assumption that a(x) and $b'(x) \in \mathbb{Z}[x]$ is very strong since only few number fields M have a power integer basis.

3. A better relation between ℓ and p

We demonstrate our idea presenting several examples. The first example has already been considered in [3]. It can easily be deduced from our general approach. In all our examples, the number field $M = \mathbb{Q}(\sqrt{D}, \zeta_n)$ is a cyclotomic field and therefore has a power integer basis.

1. Let $M = \mathbb{Q}(\zeta_9)$ and $K = \mathbb{Q}(\sqrt{-3})$. The 9th cyclotomic polynomial is given by $x^6 + x^3 + 1$. Suppose $\ell = x_0^6 + x_0^3 + 1$ for some integer x_0 and let D = -3. We would like to construct a suitable Frobenius element $\frac{a+b\sqrt{-3}}{2}$. The element a has to be equal to $\zeta_9 + 1$ where ζ_9 is a ninth root of unity. We set $a = x_0 + 1$. Moreover b should be equal to

$$\frac{\pm(a-2)}{\sqrt{-3}} = \frac{\pm\sqrt{-3}(a-2)}{3} = \frac{(x_0-1)(2x_0^3+1)}{3}.$$

We now choose $x_0 \equiv 1 \mod 3$. Then $a \equiv b \mod 2$ and $p = \operatorname{Norm}_{K/\mathbb{Q}}(\frac{a+b\sqrt{-3}}{2})$ is of size $O(\ell^{\frac{4}{3}})$.

2. Let $M = \mathbb{Q}(\zeta_{10}, \sqrt{-1})$ and $K = \mathbb{Q}(i)$. The number field M is generated by the polynomial $x^8 - x^6 + x^4 - x^2 + 1$. The primitive 10th roots of unity are represented by the polynomials

$$x^2, -x^4, -x^6 + x^4 - x^2 + 1, x^6$$

and the roots of -1 are given by the polynomials $\pm x^5$. Suppose that ℓ is equal to $x_0^8 - x_0^6 + x_0^4 - x_0^2 + 1$ for some integer x_0 . Set $a = (-x_0^6 + x_0^4 - x_0^2 + 2)$. Then b should be equal to

$$\frac{\pm (a-2)}{\sqrt{-1}} = \frac{\pm (-x_0^6 + x_0^4 - x_0^2)}{x_0^5} \equiv \pm (-x_0^5 + x_0^3) \mod \ell.$$

We have to ensure that $\operatorname{Norm}_{K/\mathbb{Q}}(\frac{a+b\sqrt{-1}}{2})$ is prime. We see that p is of order $O(\ell^{\frac{3}{2}})$.

3. $M = \mathbb{Q}(\zeta_{60})$. This field is generated by $f(x) = x^{16} + x^{14} - x^{10} - x^8 - x^6 + x^2 + 1$. We consider the cases k = 10, k = 12, k = 15, k = 20, k = 30 and k = 60 and D = -3.

We see that discriminant D = -1 is not possible because for all choice of a(x) and b'(x) there exist no x_1 such that $a_1(x_1) = b'(x_1) \equiv 0 \mod 2$. For D = -3 we collect from each case an example where the relation between p and ℓ is particularly good.

- (a) **k=10:** Thre exists no x_1 such that $b'_1(x_0) \equiv 0 \mod 3$.
- (b) **k=12:** Set $a = -x^5 + 1$ and $b = 2x^{15} + 2x^{10} x^5 1$. Take $x \equiv 2 \mod 3$.
- (c) $\mathbf{k} = 15$: Set $a = x^8 + 1$, $b = -2x^{14} + 2x^{12} + 2x^{10} + x^8 + 2x^6 + 2x^4 3$. More examples are given by $a = x^{14} x^{10} x^8 + x^2 + 1$, $b = x^{14} + x^{10} x^8 2x^6 + x^2$ and $a = x^{14} + x^{12} x^8 x^6 x^4 + 2$, $b = x^{14} + x^{12} + 2x^{10} + x^8 x^6 x^4$. Take $x \equiv 1 \mod 3$.
- (d) **k=20:** One possible solution is given by $a = -x^{11} + x + 1$ and $b = x^{11} 2x^{10} + x + 1$. Another possibity is $a = x^{11} x + 1$ and $b = x^{11} + 2x^{10} + x 1$. The element x has to be chosen $\equiv 1 \mod 3$.
- (e) **k=30:** One possible solution is given by $a = x^{12} x^2 + 1$ and $x^{12} + 2x^{10} + x^2 1$. The element x has to be chosen $\equiv 1 \mod 3$.
- (f) **k=60:** Set e.g. a = -x + 1 and $b = 2x^{11} + 2x^{10} x 1$ where $x \equiv 2 \mod 3$.
- 4. Let q be a prime. Consider $M = \mathbb{Q}(\zeta_q, i)$ and k = q. In this case the minimal polynomial is given by

$$f(x) = x^{2q-2} - x^{2q-4} + x^{2q-6} - x^{2q-8} + \dots + 1.$$

Note that $f(x)(x^2+1) = x^{2q}+1$. Hence $x^{2q} = -1 \mod f(x)$, i.e. the element $\sqrt{-1}$ corresponds to $\pm x^q \mod f(x)$.

Moreover we have x^2 is a primitive 2*q*th root of unity, i.e. $-x^2$ is a *q*th root of unity. We can set $a = -x^2 + 1$ and $b = (-x^2 - 1)x^q = -x^{q+2} - x^q$. The relation $\frac{\log(p)}{\log(\ell)}$ is approximately $\frac{q+2}{q-1}$.

5. Let q be a prime. Consider $M = \mathbb{Q}(\zeta_q, \zeta_3)$ and k = q. In this case the minimal polynomial is given by

$$f(x) = \frac{x^{2q} - x^q + 1}{x^2 - x + 1}.$$

We have $f(x)(x^3+1)\Phi(2q) = x^{3q}+1$ and $f(x)(x^2-x+1) = x^{2q}-x^q+1$. As above we see that $-x^3$ is a *q*th root of unity. We can choose $a = -x^3+1$. Now $(2x^q-1)^2+3=4(x^{2q}-x^q+1)\equiv 0 \mod f(x)$. So $(2x^q-1)$ corresponds

4

to the element $\sqrt{-3}$ and we set $b = (-x^3 - 1)(2x^q + 1)$. The relation $\frac{\log(p)}{\log(\ell)}$ is approximately $\frac{q+3}{q-1}$.

4. Cryptographically interesting examples

4.1. Curves with low Hamming weight. Pairing based cryptography is very efficient if the prime ℓ is a prime of low signed Hamming weight (see [4, 10]). For the signed Hamming weight we allow the coefficients of the binary expansion to be -1, 0, 1.

Using the method in section 2 we find some particularly nice examples. To find these examples we run through all cylcotomic fields with discriminant divisible by 3 or 4. For each field, we determine the minimal polynomial f(x) and test whether $f(x_0)$ is prime for some x_0 of low Hamming weight, say $x_0 = 2^i$, $x_0 = 2^i \pm 2^k$ or $x_0 = 3^i$. Next we choose a discriminant D = -3, -4, compute the corresponding polynomials a(x) and b'(x) and test whether $\frac{a(x_0)^2 - D(b(x_0)'/D)^2}{4}$ is prime, too.

1. Take $M = \mathbb{Q}(\zeta_{15}), k = 15$ and the imaginary quadratic field of discriminant D = -3.

Let $x_0 = 2^{32} + 1$ and $\ell = \Phi_{15}(x_0)$. The prime ℓ has 257 binary digits and signed Hamming weight 17. Set $a = x_0^4 + 1$ and $b = 2x_0^7 - 2x_0^6 - 2x_0^5 + x_0^4 - 2x_0^3 + 2x_0^2 - 3$. The prime p is given by $\frac{1}{4}(a^2 + 3(\frac{b}{3})^2)$. It is of order $O(\ell^{\frac{7}{4}})$. 2. Take $M = \mathbb{Q}(\zeta_{20}), k = 10$ and the imaginary quadratic field of discriminant

D = -1.

Let $x_0 = 2^{23} + 1$ and $\ell = \Phi_{20}(x_0)$. We have $\lfloor \log_2(\ell) \rfloor \sim 184$ and ℓ has signed Hamming weight 17. Set $a = x_0^2 + 1$ and $b = x_0^7 - x_0^5$. The prime $p = \frac{1}{4}(a^2 + b^2)$ is of order $O(\ell^{\frac{7}{4}})$

3. Take $M = \mathbb{Q}(\zeta_{48}), k = 24$ and the imaginary quadratic field of discriminant D = -3.

Let $x_0 = 2^{12} + 2$ and $\ell = \Phi_{48}(x_0)$. The prime ℓ has 185 binary digits and signed Hamming weight 24. Set $a = x_0^2 + 1$ and $b = -2x_0^{10} + 2x_0^8 + x_0^2 - 1$. The prime p is of order $O(\ell^{\frac{3}{4}})$.

The prime *p* is of order $O(e^{1})$. The prime *p* is given by $\frac{1}{4}(a^2 + 3(\frac{b}{3})^2)$. 4. Take $M = \mathbb{Q}(\zeta_{12}), k = 12$ and the imaginary quadratic field D = -3. Let $x_0 = 2^{39} + 2^{11} + 2^{10}$ and $\ell = \Phi_{12}(x_0)$. Then ℓ has 157 binary digits and signed Hamming weight 21. Set $a = -x_0^3 + x_0 + 1$ and $x_0^3 - 2 * x_0^2 + x_0 + 1$. The prime p is of order $O(\ell^{\frac{3}{2}})$.

4.2. Curves with fast addition chain. There exist natural numbers whose Hamming weight is not particularly small but which still allow a fast scalar multiplication.

Lemma 4.1. Let P be a point on an elliptic curve and let

$$m = 2^{j_1} \pm 2^{j_2} \pm 2^{j_3}$$

where $0 \leq j_3 < j_2 < j_1$. Then mP can be computed with j_1 doublings and two additions/subtractions.

Note that a subtraction has the same complexity as an addition, since taking the additive inverse on an elliptic curve is a free operation.

Proof. Set $Q_1 = 2^{j_3}P$, $Q_2 = 2^{j_2-j_3}Q_1$ and $Q_3 = 2^{j_1-j_2}Q_2$. We need j_1 doublings to compute Q_1 , Q_2 and Q_3 and 2 additions/subtractions to compute $Q_3 \pm Q_2 \pm Q_1$.

We can now consider the values of certain cyclotomic polynomials at m given as above.

Corollary 4.2. Let f be a polynomial of degree s with coefficients in $\{0, \pm 1\}$ and t non-zero coefficients. Then f(m) with m given as in Lemma 4.1 can be evaluted with sj_1 doublings and 2s + t - 1 additions/subtractions.

For the proof we just count the number of operations.

Example 4.3. 1. Take $m = 2^{22} + 2^{13} + 1$ and consider $M = \mathbb{Q}(\zeta_{24})$ with k = 8. We have $\Phi_{24} = x^8 - x^4 + 1$ and we realize $\ell = \Phi_{24}(m)$ and we can calculate ℓP with only $8 \cdot 22 = 176$ doublings and 18 additions. Note that the signed Hamming weight of $\Phi_{24}(m)$ is larger than 30.

We have $\lfloor \log_2(\ell) \rfloor \sim 176$. Set $a = x_0^5 - x_0 + 1$ and $b = x_0^5 + 2x_0^4 + x_0 - 1$. The prime p is of order $O(\ell^{\frac{5}{4}})$.

Alternatively, we can take $m = 2^{23} + 2^{17} + 2^6$. In this case, the evaluation takes $8 \cdot 23 = 184$ doublings and 18 additions. We set $a = -x_0^5 + x_0 + 1$ and $b = -x_0^5 + 2x_0^4 - x_0 - 1$. The prime is of order $O(\ell^{\frac{5}{4}})$.

 $b = -x_0^5 + 2x_0^4 - x_0 - 1$. The prime is of order $O(\ell^{\frac{5}{4}})$. Or we take $m = 2^{22} - 2^{10} - 2^4$ and $-x_0^5 + x_0 + 1$ and $b = -x_0^5 + 2x_0^4 - x_0 - 1$. In all three cases, we find an elliptic curve over \mathbb{F}_p with $p = \frac{1}{4} \left(a^2 + 3(\frac{b}{3})^2\right)$ with complex multiplication by $\mathbb{Z}[\zeta_3]$.

2. Take $\Phi_{20}(x) = x^8 - x^6 + x^4 - x^2 + 1$ and $m = 2^{20} + 2^{14} + 4$. Then $\ell = \Phi_{20}(m)$ can be computed using 160 doublings and 20 additions. Let k = 10 and set $a = -x_0^6 + x_0^4 - x_0^2 + 2$ and $b = 2x_0^5 - 2x_0^3$. We find an elliptic curve with complex multiplication by $\mathbb{Z}[i]$ over \mathbb{F}_p with $p = \frac{1}{4}(a^2 + b^2)$

References

- A.O.L. Atkin and F. Morain. Elliptic curves and primality proving. Math. Comp., 61:29-68, 1993.
- [2] R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve has subexponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm. *Journal of Cryptology*, 11(2):141-145, 1998.
- [3] P. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with prescribed embedding degrees. Proceedings of the Third Workshop on Security in Communication Networks (SCN'2002), LNCS, 2576, 2003.
- [4] S.L.M. Barreto, H.Y. Kim, B. Lynn, and P. Scott. Efficient algorithms for pairing based cryptosystems. Crypto 2002, LNCS, 2442:354-368, 2002.
- [5] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. Asiacrypt '01, LNCS, 2248:514-532, 2001.
- [6] C. Cocks and R.G.E. Pinch. unpublished manuscript. 2002.

of order $O(\ell^{\frac{3}{2}})$.

- [7] M. Franklin D. Boneh. Identity-based encryption from the weil pairing. Proceedings Crypto '01, LNCS, 2139:213-229, 2001.
- [8] R. Dupont, A. Enge, and F. Morain. Building curves with arbitrary small mov degree over finite fields. preprint, 2002.
- [9] G. Frey, M. Müller, and H.-G. Rück. The Tate pairing and the discrete logarithm applied to elliptic curve cryptosystems. *IEEE Trans. Inform. Theory*, 45(5):1717-1718, 1999.
- [10] S. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. ANTS IV, LNCS, 2369:324–337, 2002.
- [11] A. Joux. A one round protocol for tripartite diffie-hellman. Proceedings of ANTS, LNCS, 1838:385-393, 2000.
- [12] A. Lenstra and E. Verheul. Selecting cryptographic key sizes. Journal of Cryptology, 14:255-293, 2001.
- [13] Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field. *IEEE Trans. Inform. Theory*, 39(5):1639-1646, 1993.
- [14] E. Verheul. Self-blindable credential certificates from the weil pairing. Advances in Cryptology
 Asiacrypt 2001, LNCS, 2248:533-551, 2002.

ELLIPTIC CURVES SUITABLE FOR PAIRING BASED CRYPTOGRAPHY

FACHBEREICH MATHEMATIK, JOHANN WOLFGANG GOETHE-UNIVERSITÄT, ROBERT-MAYER-STR. 10, 60051 FRANKFURT

INSTITUT FÜR EXPERIMENTELLE MATHEMATIK, UNIVERSITÄT ESSEN-DUISBURG, ELLERNSTR. 29, 45326 ESSEN, GERMANY

 $E\text{-}mail\ address:\ \texttt{brezing@stud.uni-frankfurt.de}\ ,\ \texttt{weng@exp-math.uni-essen.de}$