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ABSTRACT. We give a method for constructing ordinary elliptic curves over
finite prime field F, with small security parameter k with respect to a prime
¢ dividing the group order #FE(F,) such that p << 2.

1. INTRODUCTION

Over the last few years there has been an increasing interest in pairing based
cryptography. The primitives of pairing based crypto systems are two groups (G, *)
and (H, o) in which the discrete logarithm problem is believed to be hard. Moreover,
we require the existence of an efficiently computable, non-degenerate pairing G x
G — H. This additional structure allows many interesting protocols for all kind of
different applications [5, 7, 11, 14].

Well known examples of such a pairing are the Weil and the Tate pairing on an
elliptic curve. Here, G is the group of points on an elliptic curve defined over a
finite field F, and H is equal to the multiplicative group of a field extension ]F‘;k .

Definition 1.1. Let E be an elliptic curve defined over F, whose group order
#E(F,) is divisible by a prime £. Then E has security parameter k if k is
the smallest integer such that ¢ divides ¢* — 1.

If F has security parameter £ > 1 with respect to £, the Weil pairing e, defines
a non-degenerate pairing from the group of /- torsion points in E(IF‘;k) into IF;,C It
can be evaluated in O(k?log® ¢) bit operations. Supersingular elliptic curves have
security parameter less than or equal to 6 [9, 13].
It is an interesting question whether there exist suitable elliptic curves with &£ > 7.
Obviously, they can not be supersingular. But ordinary elliptic curves with such a
small security parameter are very rare [2]. We are left with the problem to construct
ordinary curves with relatively small security parameter (see e.g. [5, 8]).
Let E be an ordinary elliptic curve defined over a finite field F, and let £ be a
prime dividing the group order #E(IF,;) such that E has security parameter k with
respect to £. We have

(1) #E(F,)=q¢+1—t=0 mod ¢ and

(2) ¢* —1=0 mod¢.

Inserting equation (2) in (1) shows that (¢ — 1) must be a kth root of unity modulo
¢. On the other hand, if E is an elliptic curve over F, satisfying equation (1) and
t = (x +1 mod ¢ for some primitive kth roots of unity modulo ¢, FE has security
parameter k with respect to £. This fact has first been discovered by Cocks and
Pinch [6].

Since FE is ordinary, it has complex multiplication by some order O of discriminant
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dividing t* — 4¢ in an imaginary quadratic field K = Q(v/D). Set

g=] % #D=0 mod4
~ | D else.

The Frobenius element 7, : (z,y) — (z9,y?) corresponds to an element w =

%ﬁ € O such that Normg/g(w) = ww = q. We have t = a.

This observation leads to a simple algorithm. Given an imaginary quadratic field
K = Q(v/D). Take a prime ¢ with the properties that ¢ splits in Ok and £ = 1
mod k and determine a kth root of unity (; modulo £. Set a = (;, + 1 mod ¢ and
b= :I:“g2 mod ¢ where 0 is a square root of d modulo ¢. Finally test whether
Normg /g (w) is a prime p (or a prime power ¢g). We find the corresponding elliptic
curve defined over I, (or F,) using the complex multiplication method (for the CM
method see e.g. [1]).

The correctness of this method can easily be seen by the following lemma which
summarizes the discussion above.

Lemma 1.2. Let E/F, be an elliptic curve with complex multiplication by an order
O in Q(\/D) such that the Frobenius endomorphism corresponds to the imaginary

quadratic integer w = @ with a,b constructed as above. Then #E(F,) is
divisibly by £ and has security parameter k with respect to £.

Proof. By the choice of b, we find
1
#E(F,;) = Normg /5 o(w — 1) = Z((a —2)2-Db*) =0 mod L.

Since the trace t of 7, is equal to a = (; + 1 mod ¢, the security parameter of E
with respect to £ is equal to k. [l

Note that the case that Normg /g (w) is not a prime but a prime power is very un-
likely. Hence in the following we only consider the case where Norm g /o (w) is prime.

The values a and b are solutions of equations modulo ¢. Hence, they will in general
be of size O(f) leading to a prime of size O(£?). Desirable would be to have p of
size O(().

It is still an open question to find an algorithm for the construction of ordinary
elliptic curves with arbitrary security parameter k where p is significantly smaller
than ¢. Barreto, Lynn and Scott describe a method to derive a better relation be-
tween p and £ for the case where k is divisible by 3 [5]. In this paper we extend their
idea using the fact described above to get more examples of curves with p << £2.
Moreover we find examples where £ is a prime of low Hamming weight with respect
to the basis 2. For such primes, the Weil resp. Tate pairing can efficiently be
evaluated [4, 10].

Acknowledgements. The authors thank S. Galbraith and M. Scott for helpful
comments on the paper. Especially, S. Galbraith suggested to look for examples
where £ has small Hamming weight.

The necessary computations were done using Magma
(http://magma.maths.usyd.edu.au/magma/).

2. THE MAIN IDEA

We explain the main idea in the case where D is odd. Note that it can easily be
modified for D =0 mod 4.
Given k and a discriminant D < 0 which is not too large. We can consider the
number field M ((,, D). Suppose M ~ Q[z]/(f(x)) where f is a irreducible poly-
nomial of degree d where d = 2n or n depending on whether VD C Q(¢n) or not.
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Moreover we require that f represents primes.
Every element in M can be represented by a polynomial of degree < d —1. We can
compute the polynomials g1, ... , g, Which represent the primitive kth roots of
unity. Let hi, —h; be the polynomials which represent v/D. Suppose that g; and
h; lie in Z[x].
We now set
a(z) = (gi(x) + 1)

and

b'(z) = (a(z) — 2)h;(2)in Qz]/(f(z))-
for some i, j.
We test if there exists some congruence class xyp mod (—D) such that b'(z¢) = 0
mod (=D). For all 21, zg = 1 mod (—D), b'(x1)/D will be in Z. We can now
define

() = 2(a)? - LI

Now suppose the following conditions are satisfied:

e p(zx) is irreducible,

e p(z) has integer values for o mod (—D) and

o f(Dy+ zo) € Z[y] is irreducible.
We can then try to find primes £ = f(z1) for some 21 = xy mod D and test
whether p(x;) is prime as well.
We easily check that if a(z1), b'(z1) are constructed as above, there exists an elliptic
curve over the prime field F,(,,) with complex multiplication by the maximal order
Ok in Q(v/D) such that the Frobenius endomorphism of E corresponds to the
element

a(zy) £ %\/ﬁ 0
5 € Ugk.

The order #E(Fp(,,)) is equal to

(afay) —2)* — MG

2
and will by construction be divisible by £.
The degrees of a(z) and b'(z) are less than equal to deg(f) — 1 = d — 1. Hence,
¢ will be of size O(z{) and p of size O(22?~?) which is significantly smaller than
O(£?). In special cases, the relation between ¢ and p will be even better.
Note that the assumption that a(z) and b'(z) € Z[z] is very strong since only few
number fields M have a power integer basis.

3. A BETTER RELATION BETWEEN { AND p

We demonstrate our idea presenting several examples. The first example has
already been considered in [3]. It can easily be deduced from our general approach.
In all our examples, the number field M = Q(vV/D,(,) is a cyclotomic field and
therefore has a power integer basis.

1. Let M = Q({y) and K = Q(v/—3). The 9th cyclotomic polynomial is given by
2% + 23 + 1. Suppose £ = z§ + z3 + 1 for some integer o and let D = —3. We
would like to construct a suitable Frobenius element %\/__3 The element a
has to be equal to {9 + 1 where (g is a ninth root of unity. We set a = zq + 1.
Moreover b should be equal to

+(a—2) +V/-3a—-2) (z0—1)(2z)+1)

V=3 3 3
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We now choosezp =1 mod 3. Thena =b mod 2andp = NormK/@(aHﬁ)
is of size O((3).

. Let M = Q((10,v—1) and K = Q(i). The number field M is generated by
the polynomial 28 — 2% + z* — 22 + 1. The primitive 10th roots of unity are
represented by the polynomials

o2, -zt —2b +xt —2? 1,28

and the roots of —1 are given by the polynomials +x°.
Suppose that ¢ is equal to z§ — z§ + z — 2% + 1 for some integer zo. Set
a = (—z§ + 4 — x3 +2).. Then b should be equal to
+(a—2)  F(—af+ ) — 2}
(a=2) _ xlzeot20-20) _ +(—zf +x3) mod L.

Ve 7

We have to ensure that Norm g q(

We see that p is of order O(£3).

. M = Q((s0). This field is generated by f(z) = 26 +214 —210—28 —26 4+ 22 1.

We consider the cases k = 10, k = 12, k = 15, k = 20, £ = 30 and k£ = 60 and

D =-3.

We see that discriminant D = —1 is not possible because for all choice of

a(z) and b'(z) there exist no 1 such that a;(z1) = b'(z1) = 0 mod 2. For

D = —3 we collect from each case an example where the relation between p

and / is particularly good.

(a) k=10: Thre exists no z; such that bj(zo) =0 mod 3.

(b) k=12: Set a = —2°+1 and b = 22'5+22'0 — 25 — 1. Take z =2 mod 3.

(c) k=15: Set a = 28 +1,b = —22'* + 222 + 220 + 28 4 220 + 22* — 3. More
examples are given by a = z'* —210—28 422 +1,b = 214 4210 —2® 226422
anda=a'"4+22 —28 — 26 — 22 +2,b=2™ + 212 + 2210 4 28 — 25 — 2%,
Take x =1 mod 3.

(d) k=20: One possible solution is given by a = —z'' + 4+ 1 and b = z'! —
220424 1. Another possibityisa = z'' —z+1and b = ' +22'0 42— 1.
The element z has to be chosen =1 mod 3.

(e) k=30: One possible solution is given by a = z'?2 — 2? + 1 and z'? +
2210 + 22 — 1. The element z has to be chosen =1 mod 3.

(f) k=60: Set e.g. a = —z + 1 and b = 22" +22'9 — 2 — 1 where z = 2
mod 3.

. Let g be a prime. Consider M = Q({,,%) and k = ¢. In this case the minimal

polynomial is given by

flz) =272 — g2 % 2076 28 L 41,

a+by/—
2

b

) is prime.

Note that f(z)(z*>+1) = 229+ 1. Hence 2?? = —1 mod f(z), i.e. the element
v/—1 corresponds to +z¢ mod f(z).

Moreover we have 2 is a primitive 2¢gth root of unity, i.e. —z2 is a gth root
of unity. We can set a = —z? + 1 and b = (—2% — 1)z = —29"? — 27, The
log(p) a+2

log(¢) qg—1"

. Let ¢ be a prime. Consider M = Q((;,(3) and k = ¢. In this case the minimal
polynomial is given by

2

relation is approximately

227 — 37+ 1

We have f(z)(z® + 1)®(2¢) = 23?7 + 1 and f(z)(z? —z + 1) = 2% — 27 + 1.
As above we see that —xz? is a gth root of unity. We can choose a = —z3 + 1.

Now (227 —1)2+3 =4(2? —27+1) =0 mod f(z). So (29— 1) corresponds
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to the element /—3 and we set b = (—z® — 1)(2z7 + 1). The relation llzig)) is
g+3

qg—1"

approximately

4. CRYPTOGRAPHICALLY INTERESTING EXAMPLES

4.1. Curves with low Hamming weight. Pairing based cryptography is very
efficient if the prime ¢ is a prime of low signed Hamming weight (see [4, 10]). For
the signed Hamming weight we allow the coefficients of the binary expansion to be
-1,0,1.

Using the method in section 2 we find some particularly nice examples. To find
these examples we run through all cylcotomic fields with discriminant divisible by
3 or 4. For each field, we determine the minimal polynomial f(z) and test whether
f(xg) is prime for some zy of low Hamming weight, say zo = 2!, zo = 2 + 2% or
zo = 3'. Next we choose a discriminant D = —3, —4, compute the corresponding

. a(z0)2—D(b(zo)' /D)2
polynomials a(x) and b'(x) and test whether (20) (4( 0)' /D)

1. Take M = Q((15), k = 15 and the imaginary quadratic field of discriminant
D = -3.
Let 9 = 232+1 and £ = ®;5(w). The prime £ has 257 binary digits and signed
Hamming weight 17. Set a = z3+1 and b = 22§ — 22§ — 225 + 23 — 223+ 223 - 3.
The prime p is given by (a® +3(%)?). It is of order O(£7).

2. Take M = Q((20), k = 10 and the imaginary quadratic field of discriminant
D =-1.
Let o = 223 + 1 and £ = $30(xo). We have [log, ()] ~ 184 and ¢ has signed
Hamming weight 17. Set @ = 23 +1 and b = 2 —=z§. The prime p = 1(a>+b?)
is of order O(£7)

3. Take M = Q({48), k = 24 and the imaginary quadratic field of discriminant
D =-3.
Let 2o = 2'2 + 2 and £ = ®,45(xo). The prime ¢ has 185 binary digits and
sigend Hamming weight 24. Set @ = 2 + 1 and b = —2z{° + 22§ + 2§ — 1.
The prime p is of order O(£3).
The prime p is given by 1(a® + 3(2)?).

4. Take M = Q((12), k = 12 and the imaginary quadratic field D = —3.
Let mop = 239 + 211 4 210 and ¢ = ®;5(z). Then ¢ has 157 binary digits and
signed Hamming weight 21. Set a = —z3 + 29 + 1 and 23 — 2 x 23 + xo + 1.
The prime p is of order O(£3).

is prime, too.

4.2. Curves with fast addition chain. There exist natural numbers whose Ham-
ming weight is not particularly small but which still allow a fast scalar multiplica-
tion.

Lemma 4.1. Let P be a point on an elliptic curve and let
m =27t £ 27> 4 27

where 0 < j3 < j2 < j1. Then mP can be computed with j; doublings and two
additions/subtractions.

Note that a subtraction has the same complexity as an addition, since taking
the additive inverse on an elliptic curve is a free operation.

Proof. Set Q1 = 273 P, Qs = 272773Q); and Q3 = 271 772Q,. We need j; doublings to
compute @1, @2 and Q3 and 2 additions/subtractions to compute Q3+ Q2+Q;. O

We can now consider the values of certain cyclotomic polynomials at m given as
above.
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Corollary 4.2. Let f be a polynomial of degree s with coefficients in {0,+1} and
t non-zero coefficients. Then f(m) with m given as in Lemma 4.1 can be evaluted
with sj1 doublings and 2s + t — 1 additions/subtractions.

For the proof we just count the number of operations.

Example 4.3. 1. Take m = 222 4+ 23 + 1 and consider M = Q((»4) with k = 8.

(1]
2]

(3]

(4]
(5]

[6]
(7]

(8]
(9]
(10]
(1]
[12]
[13]

[14]

We have ®54 = 2% — 2* + 1 and we realize £ = ®54(m) and we can calculate
(P with only 8 -22 = 176 doublings and 18 additions. Note that the signed
Hamming weight of ®24(m) is larger than 30.

We have |log,(¢)| ~ 176. Set a = x5 — zo + 1 and b = 2] + 224 + 29 — 1. The
prime p is of order O(£%).

Alternatively, we can take m = 223 + 217 + 26, In this case, the evaluation
takes 8 - 23 = 184 doublings and 18 additions. We set a = —z5 + zo + 1 and
b= —ad + 224 — o — 1. The prime is of order O(£%).

Or we take m = 222 — 210 — 2% and —z] +zo + 1 and b = —x + 22§ — 2o — 1.
In all three cases, we find an elliptic curve over F, with p = 1 (a* +3(%)?)
with complex multiplication by Z[(3].

Take ®9(z) = 2% — 2 + 2* —22 +1 and m = 220 + 24 + 4. Then ¢ = ®y(m)
can be computed using 160 doublings and 20 additions.

Let k = 10 and set a = —z§ + =5 — 23 + 2 and b = 225 — 2z3. We find an
elliptic curve with complex multiplication by Z[i] over F, with p = 1(a? +?)
of order O(£3).
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