
Symmetric Authentication

Within a Simulatable Cryptographic Library

Michael Backes, Birgit Pfitzmann, Michael Waidner

IBM Zurich Research Lab

{mbc,bpf,wmi}@zurich.ibm.com

Abstract

Proofs of security protocols typically employ simple abstractions of cryptographic op-
erations, so that large parts of such proofs are independent of cryptographic details. The
typical abstraction is the Dolev-Yao model, which treats cryptographic operations as a spe-
cific term algebra. However, there is no cryptographic semantics, i.e., no theorem that says
what a proof with the Dolev-Yao abstraction implies for the real protocol, even if provably
secure cryptographic primitives are used.

Recently we introduced an extension to the Dolev-Yao model for which such a crypto-
graphic semantics exists, i.e., where security is preserved if the abstractions are instantiated
with provably secure cryptographic primitives. Only asymmetric operations (digital sig-
natures and public-key encryption) are considered so far. Here we extend this model to
include a first symmetric primitive, message authentication, and prove that the extended
model still has all desired properties. The proof is a combination of a probabilistic, imperfect
bisimulation with cryptographic reductions and static information-flow analysis.

Considering symmetric primitives adds a major complication to the original model: we
must deal with the exchange of secret keys, which might happen any time before or after
the keys have been used for the first time. Without symmetric primitives only public keys
need to be exchanged.

1 Introduction

Proofs of security protocols typically employ simple abstractions of cryptographic operations,
so that large parts of such proofs are independent of cryptographic details, such as polynomial-
time restrictions, probabilistic behavior and error probabilities. This is particularly true for
tool-supported proofs, e.g., [16, 15, 12, 21, 22, 1, 14, 17].

The typical abstraction is the Dolev-Yao model [8]: Cryptographic operations, e.g., E for
encryption and D for decryption, are considered as operators in a term algebra where only
certain cancellation rules hold. (In other words, one considers the initial model of an equational
specification.) For instance, encrypting a message m twice does not yield another message from
the basic message space but the term E(E(m)). A typical cancellation rule is D(E(m)) = m for
all m.

However, there is no cryptographic semantics, i.e., no theorem that says what a proof with
the Dolev-Yao abstraction implies for the real protocol, even if provably secure cryptographic
primitives are used. In fact, one can construct protocols that are secure in the Dolev-Yao model,
but become insecure if implemented with certain provably secure cryptographic primitives [18].
Closing this gap has motivated a considerable amount of research in security and cryptography
over the past few years, e.g., [13, 19, 3, 11, 20, 7, 4].

1

The abstraction we introduced in [4] achieved a major step towards closing this gap: We
defined an ideal “cryptographic library” that offers abstract commands for generating nonces
and keys, for performing operations (signing, testing, encrypting, decrypting) with these keys on
messages, for dealing with lists and arbitrary application data, and for sending and receiving
messages. The library further supports nested operations in the intuitive sense. The ideal
cryptographic library has a simple deterministic behavior, and cryptographic objects are hidden
at the interface, which makes it suitable as a basis for formal protocol verification. While
the original Dolev-Yao model was a pure, memory-less algebra, our model is stateful, e.g., to
distinguish different nonces and to reflect that cryptographically secure encryption and signature
schemes are typically probabilistic. Thus our ideal cryptographic library corresponds more to
“the CSP Dolev-Yao model” or “the Strand-space Dolev-Yao model” than the pure algebraic
Dolev-Yao model.

This ideal cryptographic library is implemented by a real cryptographic library where the
commands are implemented by real cryptographic algorithms and messages are actually sent
between machines. The real system can be based on any cryptographically secure primitives.
Our definition of security is based on the simulatability approach: security essentially means
that anything an adversary against the real system can achieve can also be achieved by an
adversary against the ideal system. This is the strongest possible cryptographic relation between
a real and an ideal system. The definition in particular covers active attacks. In [4], our ideal
and real cryptographic libraries were shown to fulfill this definition. The general composition
theorem for the underlying model [20] implies that if a system that uses the abstract, ideal
cryptographic library is secure then the same system using the real cryptographic library is also
secure.

Only asymmetric cryptographic primitives (public-key encryption, digital signatures) are
considered in [4], i.e., all primitives based on shared secret keys were not included. The main
contribution of this paper is to add an important symmetric primitive to the framework of [4]:
message authentication. We present abstractions for commands and data related to message
authentication, e.g., commands for key generation, authentication, and authenticator testing,
and we present a concrete realization based on cryptographic primitives. We then show that
these two systems fulfill the simulatability definition if they are plugged into the existing cryp-
tographic library. The inclusion of symmetric primitives and the sending of secret keys add a
major complication to the original proof, because keys may be sent any time before or after the
keys have been used for the first time. In particular, this implies that a real adversary can send
messages which cannot immediately be simulated by a known term, because the keys needed to
test the validity of authenticators are not yet known, but may be sent later by the adversary.
Without symmetric primitives only public keys had to be exchanged, and the problem could be
avoided by appropriate tagging of all real messages with the public keys used in them, so that
messages could be immediately classified into correct terms or a specific garbage type [4].

Related Work. Abadi et. al. [3, 2] started to bridge the abstraction gap by considering a
Dolev-Yao model with nested algorithms specifically for symmetric encryption and synchronous
protocols. There, however, the adversary is restricted to passive eavesdropping. Consequently,
it was not necessary to choose a reactive model of a system and its honest users, and the security
goals were all formulated as indistinguishability, i.e., if two abstract systems are indistinguish-
able by passive adversaries, then this is also true for the two corresponding real systems. This
model does not yet contain theorems about composition or property preservation from the ab-
stract to the real system. The price we pay for the greater applicability of reactive simulatability

2

and for allowing active attacks is a much more complicated proof.
Several papers extended this work for specific models of specific classes of protocols. For in-

stance, [10] specifically considers strand spaces, and within this model information-theoretically
secure primitives.

The recent definitions of simulatability for reactive systems come with more or less worked-
out examples of abstractions of cryptographic systems; however, even with a composition the-
orem this does not automatically give a cryptographic library in the Dolev-Yao sense, i.e.,
with the possibility to nest abstract operations. For instance, the abstract secure channels in
[20] combine encryption and signatures in a fixed way, while the lower-level encryption sub-
system used in that paper, like the examples in [13], does not offer abstract, implementation-
independent outputs. The cryptographic primitives in [6, 7] are abstract, but do not support
nested operations: ideal cryptographic operations are defined through immediate interactions
with the adversary, i.e., they are not local to the party that performs them and the adversary
learns the structure of every term any honest party ever builds. The ideal system for signatures
even reveals every signed message to the adversary. Thus, by composing cryptographic opera-
tions already the ideal systems reveal too much information to the adversary; thus they cannot
be a sound basis for more complex protocols.

Our cryptographic library overcomes these problems. It supports nested operations in the
intuitive sense; operations that are performed locally are not visible to the adversary. It is
secure against arbitrary active attacks, and the composition theorem allows for safely using it
within the context of arbitrary surrounding interactive protocols. This holds independently of
the goals that one wants to prove about the surrounding protocols.

2 Overview of Simulatability

We start with a brief overview of the underlying security notion of simulatability, which is the
basic notion for comparing an ideal and a real system. For the moment, we only need to know
that an ideal and a real system each consist of several possible structures, typically derived from
an intended structure with a trust model. An intended structure represents a benign world,
where each user is honest and each machine behaves as specified. The trust model is then used
to determine the potentially malicious machines, i.e., machines which are considered to be under
control of the adversary. Moreover, the trust model classifies the “security” of each connection
between machines of the structure, e.g., that a connection is authentic, but not secret. Now for
each element of the trust model, this gives one separate structure.

Each structure interacts with an adversary A and honest users summarized as a single
machine H. The security definition is that for all polynomial-time honest users H and all
polynomial-time adversaries A1 on the real system, there exists an adversary A2 on the ideal
system such that the honest users H cannot notice the difference, as shown in Figure 1.

H

M
1

M
2

A
1

S

H

TH

A
2

S

Figure 1: Overview of the simulatability definition. A real system is shown on the left-hand
side, and an ideal system on the right-hand side. The view of H must be indistinguishable.

3

3 The Ideal System

For modeling and proving cryptographic protocols using our abstraction, it is sufficient to
understand and use the ideal cryptographic library described in this section. Thus, applying
our results to the verification of cryptographic protocols does not presuppose specific knowledge
about cryptography or probabilism. The subsequent sections only justify the cryptographic
faithfulness of this ideal library.

The ideal cryptographic library offers its users abstract cryptographic operations, such as
commands to encrypt or decrypt a message, to make or test a signature, and to generate a
nonce. All these commands have a simple, deterministic behavior in the ideal system. In a
reactive scenario, this semantics is based on state, e.g., of who already knows which terms. We
store state in a “database”. Each entry of the database has a type (e.g., “signature”), and
pointers to its arguments (e.g., a key and a message). This corresponds to the top level of a
Dolev-Yao term; an entire term can be found by following the pointers. Further, each entry
contains handles for those participants who already know it. The reason for using handles to
make an entry accessible for higher protocols is that an idealized cryptographic term and the
corresponding real message have to be presented in the same way to higher protocols to allow
for a provably secure implementation in the sense of simulatability. In the ideal library, handles
essentially point to Dolev-Yao-like terms, while in the real library they point to cryptographic
messages.

The ideal cryptographic library does not allow cheating by construction. For instance, if it
receives a command to encrypt a message m with a certain key, it simply makes an abstract
database entry for the ciphertext. Another user can only ask for decryption of this ciphertext if
he has handles to both the ciphertext and the secret key. Similarly, if a user issues a command
to sign a message, the ideal system looks up whether this user should have the secret key. If yes,
it stores that this message has been signed with this key. Later tests are simply look-ups in this
database. A send operation makes an entry known to other participants, i.e., it adds handles to
the entry. Our model does not only cover crypto operations, but it is an entire reactive system
and therefore contains an abstract network model.

In the following, we present our additions to this ideal system for capturing symmetric au-
thentication primitives, i.e., providing abstractions from authentication keys and authenticators,
and offering commands for key generation, authentication, and verification. Both authentica-
tors and authentication keys can be included into messages that are sent over the network,
which allows for sharing authentication keys with other participants. Before we introduce our
additions in detail, we explain the major design decisions. For understanding these decision,
it might be helpful for readers not familiar with message authentication to read Section 4.1
before, which contains the cryptographic definition of secure authentication schemes.

First, we have to allow for checking if authenticators have been created with the same secret
key; as the definition of secure authentication schemes does not exclude this, it can happen
in the real system. For public-key encryption and digital signatures, this was achieved in [4]
by tagging ciphertexts respectively signatures with the corresponding public key, so that the
public keys can be compared. For authenticators, this is clearly not possible as no public key
exists there. We solve this problem by tagging authenticators with an “empty” public key,
which serves as a key identifier for the secret key.

Secondly, as authentication keys can be exchanged between the users and the adversary, it
might happen that an authenticator is valid with respect to several authentication keys, e.g.,
because the adversary has created a suitable key. Hence it must be possible to tag authenticators
with additional key identifiers during the execution, i.e., authenticators are tagged with a list

4

of key identifiers. This list can also be empty which models authenticators from the adversary
for which no suitable key is known yet.

Thirdly, we have to reflect the special capabilities an adversary has in the real system. For
example, he might be able to transform an authenticator, i.e., to create a new authenticator
for a message for which the correct user has already created another authenticator. Such a
transformation is not excluded in the definition of secure authentication schemes, hence it
might happen in the real system. The ideal library therefore offers special commands for the
adversary to model capabilities of this kind.

3.1 Notation

We write “:=” for deterministic and “←” for probabilistic assignment, and “ R←” for uniform
random choice from a set. By x := y++ for integer variables x, y we mean y := y + 1;x := y.
The length of a message m is denoted as |m|, and ↓ is an error element available as an addition
to the domains and ranges of all functions and algorithms. The list operation is denoted as
l := (x1, . . . , xj), and the arguments are unambiguously retrievable as l[i], with l[i] = ↓ if
i > j. A database D is a set of functions, called entries, each over a finite domain called
attributes. For an entry x ∈ D, the value at an attribute att is written x.att . For a predicate
pred involving attributes, D[pred] means the subset of entries whose attributes fulfill pred . If
D[pred] contains only one element, we use the same notation for this element. Adding an entry
x to D is abbreviated D :⇐ x.

3.2 Structures and Parameters

The ideal system consists of a trusted host THH for every subset H of a set {1, . . . , n} of users,
denoting the possible honest users. It has a port inu? for inputs from and a port outu ! for
outputs to each user u ∈ H and for u = a, denoting the adversary.

The ideal system keeps track of the length of messages using a tuple L of abstract length
functions. We add functions ska len∗(k) and aut len∗(k, l) to L for the length of authentication
keys and authenticators, depending on a security parameter k and the length l of the message,
with the same conventions as for the other functions in [4]. In particular, this means that they
range over N, are polynomially bounded, and efficiently computable.

3.3 States

The state of THH consists of a database D and variables size, curhndu for u ∈ H ∪ {a}, and
stepsp? for each input port p?. The database D contains abstractions from real cryptographic
objects which correspond to the top levels of Dolev-Yao terms. An entry has the following
attributes:

• x.ind ∈ INDS, called index, consecutively numbers all entries in D. The set INDS is
isomorphic to N; we use it to distinguish index arguments from others. We use the index
as a primary key attribute of the database, i.e., we write D[i] for the selection D[ind = i].

• x.type ∈ typeset identifies the type of x. We add types ska, pka, and aut to typeset from [4],
denoting secret authentication keys, “empty” public keys that are needed as key identifier
for the corresponding authentication keys, and authenticators.

5

• x.arg = (a1, a2, . . . , aj) is a possibly empty list of arguments. Many values ai are indices
of other entries in D and thus in INDS. We sometimes distinguish them by a superscript
“ind”.

• x.hndu ∈ HNDS ∪{↓} for u ∈ H∪{a} are handles by which a user or adversary u knows
this entry. x.hndu = ↓ means that u does not know this entry. The set HNDS is yet
another set isomorphic to N. We always use a superscript “hnd” for handles.

• x.len ∈ N0 denotes the “length” of the entry, which is computed by applying the functions
from L.

Initially, D is empty. THH has a counter size ∈ INDS for the current number of elements
in D. New entries always receive ind := size++, and x.ind is never changed. For the handle
attributes, it has counters curhndu (current handle) initialized with 0, and each new handle for
u will be chosen as ihnd := curhnd++.

For each input port p?, THH maintains a counter stepsp? ∈ N0 initialized with 0 for the
number of inputs at that port, each with a bound boundp?. If that bound is reached, no further
inputs are accepted at that port, which is used to achieve polynomial runtime of the machine
THH independent of the environment. This is done by a length function becoming 0; these
length functions can generally be used to ensure that only polynomial-size inputs are considered
at certain ports. They are not written out explicitly, but can be derived easily from the domain
expectations given for the individual inputs. We have boundp? = max in(k) for all ports except
for ina?, where it can be a specific bound max ina(k) or any larger polynomial. Here, max in

is a parameter of the cryptographic library and can be an arbitrary polynomial; it denotes the
maximum number of inputs at each user ports. In contrast, max ina is derived in [4] according
to the security proof. Intuitively, it ensures polynomial runtime, but is still large enough to
ensure correct functional behavior, since it is never reached in a simulation. We have to enlarge
max ina in this work to allow for a correct simulation, but since any larger polynomial will do,
our security proof only has to ensure that our new bound is indeed polynomially bounded.

3.4 New Inputs and their Evaluation

The ideal system has several types of inputs: Basic commands are accepted at all ports inu?;
they correspond to cryptographic operations and have only local effects, i.e., only an output at
the port outu? for the same user occurs and only handles for u are involved. Local adversary
commands are of the same type, but only accepted at ina?; they model tolerated imperfections,
i.e., possibilities that an adversary may have, but honest users do not. Send commands output
values to other users. In the following, the notation j ← algo(i) for a command algo of THH

means that THH receives an input algo(i) and outputs j if the input and output port are
clear from the context. We only allow lists to be authenticated and transferred, because the
list-operation is a convenient place to concentrate all verifications that no secret keys of the
public-key systems from [4] are put into messages.

For dealing with symmetric authentication we only have to add new basic commands and
local adversary commands; the send commands are unchanged. We now define the precise new
inputs and how THH evaluates them. Handle arguments are tacitly required to be in HNDS
and existing, i.e., ≤ curhndu , at the time of execution.

The algorithm ihnd ← ind2hndu(i) (with side effect) denotes that THH determines a handle
ihnd for user u to an entry D[i]: If ihnd := D[i].hndu 6= ↓, it returns that, else it sets and returns
ihnd := D[i].hndu := curhndu++. On non-handles, it is the identity function. ind2hnd∗u applies
ind2hndu to each element of a list.

6

3.4.1 Basic Commands

First we consider basic commands. This comprises operations for key generation, creating and
verifying an authenticator, and extracting the message from an authenticator. We assume the
current input is made at port inu?, and the result goes to outu !.

• Key generation: skahnd ← gen auth key(). Set skahnd := curhndu++ and

D :⇐ (ind := size++, type := pka, arg := (), len := 0);

D :⇐ (ind := size++, type := ska, arg := (ind − 1),

hndu := skahnd, len := ska len∗(k)).

The first entry, an “empty” public key without handle, serves as the mentioned key
identifier for the secret key. Note that the argument of the secret key “points” to the
empty public key.

• Authenticator generation: authnd ← auth(skahnd, lhnd).

Let ska := D[hndu = skahnd ∧ type = ska].ind and l := D[hndu = lhnd ∧ type = list].ind .
Return ↓ if either of these is ↓, or if length := aut len∗(k,D[l].len) > max len(k). Other-
wise, set authnd := curhndu++, pka := ska− 1 and

D :⇐ (ind := size++, type := aut, arg := (l, pka),

hndu := authnd, len := length).

The general argument format for entries of type aut is (l, pka1, . . . , pkaj). The arguments
pka1, . . . , pkaj are the key identifiers of those secret keys for which this authenticator is
valid. We will see in Section 3.4.2 that additional key identifiers for an authenticator
can be added during the execution, e.g., because the adversary has created a suitable
key. Such arguments are appended at the end of the existing list. An empty sequence
of arguments pkai models authenticators from the adversary for which no suitable secret
key has been received yet.

• Authenticator verification: v ← auth test(authnd, skahnd, lhnd).

If aut := D[hndu = authnd ∧ type = aut].ind = ↓ or ska := D[hndu = skahnd ∧ type =
ska].ind = ↓, return ↓. Otherwise, let (l, pka1, . . . , pkaj) := D[aut].arg . If ska − 1 6∈
{pka1, . . . , pkaj} or D[l].hndu 6= lhnd, then v := false, else v := true.

The test ska − 1 ∈ {pka1, . . . , pkaj} is the lookup that the secret key is one of those for
which this authenticator is valid, i.e., that the cryptographic test would be successful in
the real system.

• Message retrieval: lhnd ← msg of aut(authnd).

Let l := D[hndu = authnd ∧ type = aut].arg [1] and return lhnd := ind2hndu(l).1

1This command implies that real authenticators must contain the message. The simulator in the proof needs
this to translate authenticators from the adversary into abstract ones. Thus we also offer message retrieval to
honest users so that they need not send the message separately.

7

3.4.2 Local Adversary Commands

The following local commands are only accepted at the port ina?. They model special capabili-
ties of the adversary. This comprises authentication transformation, which allows the adversary
to create a new authenticator for a message provided that the adversary already has a handle
for another authenticator for the same message. This capability has to be included in order to
be securely realizable by cryptographic primitives, since the security definition of authentication
schemes does not exclude such a transformation.

If an authenticator is received from the adversary for which no suitable key has been received
yet, we call the authenticator (temporarily) unknown. In the real system, this means that no
user will be able to check the validity of the authenticator. In the ideal system, this is modeled
by providing a command for generating an unknown authenticator. Such an authenticator can
become valid if a suitable secret key is received. A command for fixing authenticators takes
care of this. Finally, we allow the adversary to retrieve all information that we do not explicitly
require to be hidden, e.g., arguments and the type of a given handle. This is dealt with by a
command for parameter retrieval.

• Authentication transformation: trans authnd ← adv transform aut(authnd).

Return ↓ if aut := D[hnda = authnd ∧ type = aut].ind = ↓. Otherwise let
(l, pka1, . . . , pkaj) := D[aut].arg , set trans authnd := curhnda++ and

D :⇐ (ind := size++, type := aut, arg := (l, pka1),

hnd a := trans authnd, len := D[aut].len).

• Unknown authenticator: authnd ← adv unknown aut(lhnd).

Return ↓ if l := D[hnda = lhnd ∧ type = list].ind = ↓ or length := aut len∗(k,D[l].len) >

max len(k). Otherwise, set authnd := curhnda++ and

D :⇐ (ind := size++, type := aut, arg := (l), hnd a := authnd, len := length).

Note that no key identifier exists for this authenticator yet.

• Fixing authenticator: v ← adv fix aut validity(skahnd, authnd).

Return ↓ if aut := D[hnda = authnd ∧ type = aut].ind = ↓ or if ska := D[hndu =
skahnd ∧ type = ska].ind = ↓. Let (l, pka1, . . . , pkaj) := D[aut].arg and pka := ska − 1.
If pka 6∈ {pka1, . . . , pkaj} set D[aut].arg := (l, pka1, . . . , pkaj, pka) and output v := true.
Otherwise, output v := false.

• Parameter retrieval: (type , arg)← adv parse(mhnd).

This existing command always sets type := D[hnd a = mhnd].type , and for most types
arg := ind2hnd∗a(D[hnd a = mhnd].arg). This applies to the new types pka, ska, and aut.

Note that for authenticators, a handle to the “empty” public key is output in adv parse.
If the adversary wants to know whether two given authenticators have been created using the
same secret key, it simply parses them yielding handles to the corresponding “empty” public
keys, and compares these handles.

8

3.4.3 Send Commands

The ideal cryptographic library offers commands for virtually sending messages to other users.
Sending is modeled by adding new handles for the intended recipient and possibly the adversary
to the database entry modeling the message. These handles always point to a list entry, which
can contain arbitrary application data, ciphertexts, public keys, etc., and now also authenti-
cators and authentication keys. These commands are unchanged from [4]; as an example we
present those modeling insecure channels, which are the most commonly used ones, and omit
secure channels and authentic channels.

• send i(v, lhnd), for v ∈ {1, . . . , n}. Intuitively, the list l shall be sent to user v. Let
l ind := D[hndu = lhnd ∧ type = list].ind . If l ind 6= ↓, then output (u, v, ind2hnda(l

ind)) at
outa!.

• adv send i(u, v, lhnd), for u ∈ {1, . . . , n} and v ∈ H at port ina?. Intuitively, the adversary
wants to send list l to v, pretending to be u. Let l ind := D[hnda = lhnd ∧ type = list].ind .
If l ind 6= ↓ output (u, v, ind2hndv(l

ind)) at outv !.

3.5 Properties of the Ideal System

All properties shown about the ideal system in Lemmas 4.1 and 4.2 of [4] still hold, e.g., “well-
defined terms” stating that the database D represents well-defined, non-cyclic terms. The
invariant “correct key pairs” is extended by D[i].type = pka ⇐⇒ D[i + 1].type = ska for all
i ∈ N0.

We recall the definition owners(x) := {u ∈ H∪{a} | x.hndu 6= ↓} for x ∈ D. If |owners(x)| =
1, we write owner(x) for the element of owners(x).

4 Real System

The real cryptographic library offers its users the same commands as the ideal one, i.e., honest
users operate on cryptographic objects via handles. There is one separate database for each hon-
est user in the real system, each database contains real cryptographic keys, real authenticators,
etc., and real bitstrings are actually send between machines. The commands are implemented
by real cryptographic algorithms, and the simulatability proof will show that nevertheless, ev-
erything a real adversary can achieve can also be achieved by an adversary in the ideal system,
or otherwise the underlying cryptography can be broken. We now present our additions and
modifications to the real system, cf. [4], starting with a description of the underlying algorithms
for key generation, authentication, and authenticator testing.

4.1 Cryptographic Operations

We denote a memoryless symmetric authentication scheme by a tuple A = (genA, auth,

atest, ska len, aut len) of polynomial-time algorithms. For authentication key generation for
a security parameter k ∈ N, we write

sk ← genA(1k).

The length of sk is ska len(k) > 0. By

aut ← authsk (m)

9

we denote the (probabilistic) authentication of a message m ∈ {0, 1}+. Verification

b := atestsk (aut ,m)

is deterministic and returns true (then we say that the authenticator is valid) or false. Correctly
generated authenticators for keys of the correct length must always be valid. The length of
aut is aut len(k, |m|) > 0. This is also true for every aut ′ with atestsk (aut ′,m) = true for a
value sk ∈ {0, 1}ska len(k). The functions ska len and aut len must be bounded by multivariate
polynomials.

As the security definition we use security against existential forgery under adaptive chosen-
message attacks similar to [9]. We only use our notation for interacting machines, and we allow
that also the test function is adaptively attacked.

Definition 4.1 (Authentication Security) Given an authentication scheme, an authentication
machine Aut has one input and one output port, a variable sk initialized with ↓, and the following
transition rules:

• First generate a key as sk ← genA(1k).

• On input (auth,mj), return autj ← authsk (mj).

• On input (test, aut ′,m′), return v := atestsk (aut ′,m′).

The authentication scheme is called existentially unforgeable under adaptive chosen-message
attack if for every probabilistic polynomial-time machine Aaut that interacts with Aut, the prob-
ability is negligible (in k) that Aut outputs v = true on any input (test, aut ′,m′) where m′ was
not authenticated until that time, i.e., not among the mj ’s. ✸

Note that the definition does not exclude authenticator transformation, i.e., if a message mi has
been properly authenticated, creating another valid authenticator for mi is not excluded. This is
why we introduced the command adv transform aut as a tolerable imperfection in Section 3.4.2.
A well-known example of an authentication scheme that is provably secure under this definition
is HMAC [5].

4.2 Structures

The intended structure of the real cryptographic library consists of n machines {M1, . . . ,Mn}.
Each Mu has ports inu? and outu !, so that the same honest users can connect to the ideal
and the real system. Each Mu has connections to each Mv exactly as in [4], in particular an
insecure connection called netu,v ,i for normal use. They are called network connections and
the corresponding ports network ports. Any subset H of {1, . . . , n} can denote the indices of
correct machines. The resulting actual structure consists of the correct machines with modified
channels according to a channel model. In particular, an insecure channel is split in the actual
structure so that both machines actually interact with the adversary. Details of the channel
model are not needed here. Such a structure then interacts with honest users H and an adversary
A.

4.3 Lengths and Bounds

In the real system, we have length functions list len, nonce len, ska len, and aut len, correspond-
ing to the length of lists, nonces, authentication keys, and authenticators, respectively. These

10

functions can be arbitrary polynomials. For given functions list len, nonce len, ska len, and
aut len, the corresponding ideal length functions are computed as follows:

• ska len∗(k) := list len(|ska|, ska len(k), nonce len(k)); this must be bounded by max len(k);

• aut len′(k, l) := aut len(k, list len(nonce len(k), l));

• aut len∗(k, l) := list len(|aut|, nonce len(k), nonce len(k), l, aut len′(k, l)).

4.4 States of a Machine

The state of each machine Mu consists of a database Du and variables curhndu and stepsp? for
each input port p?. Each entry x in Du has the following attributes:

• x.hndu ∈ HNDS consecutively numbers all entries in Du. We use it as a primary key
attribute, i.e., we write Du[ihnd] for the selection Du[hndu = ihnd].

• x.word ∈ {0, 1}+ is the real representation of x.

• x.type ∈ typeset ∪ {null} identifies the type of x. The value null denotes that the entry
has not yet been parsed.

• x.add arg is a list of (“additional”) arguments. For entries of our new types it is always
().

Initially, Du is empty. Mu has a counter curhndu ∈ HNDS for the current size of Du. The
subroutine

(ihnd,Du) :← (i, type , add arg)

determines a handle for certain given parameters in Du: If an entry with the word i already
exists, i.e., ihnd := Du[word = i∧type 6∈ {sks, ske}].hndu 6= ↓,

2 it returns ihnd, assigning the input
values type and add arg to the corresponding attributes of Du[ihnd] only if Du[ihnd].type was null.
Else if |i| > max len(k), it returns ihnd = ↓. Otherwise, it sets and returns ihnd := curhndu++,
Du :⇐ (ihnd, i, type , add arg).

For each input port p?, Mu maintains a counter stepsp? ∈ N0 initialized with 0 for the number
of inputs at that port. All corresponding bounds boundp? are max in(k). Length functions for
inputs are tacitly defined by the domains of each input again.

4.5 Inputs and their Evaluation

Now we describe how Mu evaluates individual new inputs.

4.5.1 Constructors and One-level Parsing

The stateful commands are defined via functional constructors and parsing algorithms for each
type. A general functional algorithm

(type , arg)← parse(m),

2The restriction type 6∈ {sks, ske} (abbreviating secret keys of signature and public-key encryption schemes) is
included for compatibility to the original library. Similar statements will occur some more times, e.g., for entries
of type pks and pke denoting public signature and encryption keys. No further knowledge of such types is needed
for understanding the new work.

11

then parses arbitrary entries as follows: It first tests if m is of the form (type ,m1, . . . ,mj) with
type ∈ typeset \ {pka, sks, ske, garbage} and j ≥ 0. If not, it returns (garbage, ()). Otherwise
it calls a type-specific parsing algorithm arg ← parse type(m). If the result is ↓, parse again
outputs (garbage, ()). By

“parse mhnd”

we abbreviate that Mu calls (type , arg)← parse(Du[mhnd].word), assigns Du[mhnd].type := type
if it was still null, and may then use arg . By

“parse mhnd if necessary”

we mean the same except that Mu does nothing if Du[mhnd].type 6= null.

4.5.2 Basic Commands and parse type

First we consider basic commands. They are again local. In Mu this means that they produce
no outputs at the network ports. The term “tagged list” means a valid list of the real system.
We assume that tagged lists are efficiently encoded into {0, 1}+.

• Key constructor: sk∗ ← make auth key().

Let sk ← genA(1k), sr R← {0, 1}nonce len(k), and return sk∗ := (ska, sk , sr).

• Key generation: skahnd ← gen auth key().

Let sk∗ ← make auth key(), skahnd := curhndu++, and Du :⇐ (skahnd, sk∗, ska, ()).

• Key parsing: arg ← parse ska(sk∗).

If sk∗ is of the form (ska, sk , sr) with sk ∈ {0, 1}ska len(k) and sr ∈ {0, 1}nonce len(k), return
(), else ↓.

• Authenticator constructor: aut∗ ← make auth(sk∗, l), for sk∗, l ∈ {0, 1}+.

Set r
R← {0, 1}nonce len(k), sk := sk∗[2] and sr := sk∗[3]. Authenticate as aut ←

authsk ((r, l)), and return aut∗ := (aut, sr , r, l, aut).

• Authenticator generation: authnd ← auth(skahnd, lhnd).

Parse lhnd if necessary. If Du[skahnd].type 6= ska or Du[lhnd].type 6= list, then re-
turn ↓. Otherwise set sk∗ := Du[skahnd].word , l := Du[lhnd].word , and aut∗ ←
make auth(sk∗, l). If |aut∗| > max len(k), return ↓, else set authnd := curhndu++ and
Du :⇐ (authnd, aut∗, aut, ()).

• Authenticator parsing: arg ← parse aut(aut∗).

If aut∗ is not of the form (aut, sr , r, l, aut) with sr , r ∈ {0, 1}nonce len(k), l ∈ {0, 1}+, and
aut ∈ {0, 1}aut len′(k,|l|), return ↓. Also return ↓ if l is not a tagged list. Otherwise set
arg := (l).

• Authenticator verification: v ← auth test(authnd, skahnd, lhnd).

Parse authnd yielding arg =: (l), and parse skahnd. If Du[authnd].type 6= aut or
Du[skahnd].type 6= ska, return ↓. Else let (aut, sr , r, l, aut) := Du[authnd].word and
sk := Du[skahnd].word [2]. If sr 6= Du[skahnd].word [3]

or l 6= Du[lhnd].word , or atestsk (aut , (r, l)) = false, output v := false, else v := true.

12

• Message retrieval: lhnd ← msg of aut(authnd).

Parse authnd yielding arg =: (l). If Du[authnd].type 6= aut, return ↓, else let (lhnd,Du) :←
(l, list, ()).

4.5.3 Send Commands and Network Inputs

Similar to the ideal system, there is a command send i(v, lhnd) for sending a list l from u to v,
but now using the port netu,v ,i!, i.e., using the real insecure network: On input send i(v, lhnd)
for v ∈ {1, . . . , n}, Mu parses lhnd if necessary. If Du[lhnd].type = list, Mu outputs Du[lhnd].word
at port netu,v ,i!.

Inputs at network ports are simply tested for being tagged lists and stored as in [4].

5 Simulator

We now start with the proof that the real system is as secure as the ideal one. The main step
is to construct a simulator SimH for each set H of possible honest users such that for every real
adversary A, the combination SimH(A) of SimH and A achieves the same effects in the ideal
system as the adversary A in the real system, cf. Section 2. This is shown in Figure 2. This
figure also shows the ports of SimH. Roughly, the goal of SimH is to translate real bitstrings
coming from the adversary into abstract handles that represent corresponding terms in THH,
and vice versa. This will be described in the following.

5.1 States of the Simulator

The state of SimH consists of a database Da and variables curhnda and stepsp? for each input
port p?. Each entry in Da has the following attributes:

• x.hnd a ∈ HNDS is used as the primary key attribute in Da. However, its use is not as
straightforward as in the ideal and real system, since entries are created by completely
parsing an incoming message recursively.

• x.word ∈ {0, 1}∗ is the real representation of x.

• x.add arg is a list of additional arguments. Typically it is (). However, for our key
identifiers it is (adv) if the corresponding secret key was received from the adversary,
while for keys from honest users, where the simulator generated an authentication key, it
is of the form (honest, sk∗).

The variable curhnda denotes the current size of Da, except temporarily within an algorithm
id2real. The variables stepsp? count the inputs at each port. The corresponding bounds boundp?

are max in(k) for the network ports and max ina(k) for outa?. (These bounds were introduced
in Section 3.3.)

5.2 Input Evaluation of Send Commands

When SimH receives an “unsolicited” input from THH (in contrast to the immediate result of
a local command), this is the result m = (u, v, i, lhnd) of a send command by an honest user
(here for an insecure channel). SimH looks up if it already has a corresponding real message
l := Da[l

hnd].word and otherwise constructs it by an algorithm l ← id2real(lhnd) (with side-
effects). It outputs l at port netu,v ,i!.

13

net
u,v,x

(a)

• • •

out
a

in
u

out
u

S
H

in
a

net_id
u,v,x

A

Sim
H

D
a

with sk's for u H

clk !

H

TH
H

D

Msg. here:

word l

Msg. here:

(u, v, x, lhnd)Msg. here: index lind

• Results of cmds

• Received msgs

• Basic cmds

• Adv cmds

• Send cmds

net
u,v,x

(a)

Sim
H
(A)

Figure 2: Set-up of the simulator.

The algorithm id2real is recursive; each layer builds up a real word given the real words for
certain abstract components. We only need to add new type-dependent constructions for our
new types, but we briefly repeat the overall structure to set the context.

1. Call (type , (mhnd
1 , . . . ,mhnd

j)) ← adv parse(mhnd) at ina!, expecting type ∈ typeset \ {sks,

ske, garbage} and j ≤ max len(k), and mhnd
i ≤ max hnd(k) if mhnd

i ∈ HNDS and other-
wise |mhnd

i | ≤ max len(k) (with certain domain expectations in the arguments mhnd
i that

are automatically fulfilled in interaction with THH, also for the now extended command
adv parse for the new types).

2. For i := 1, . . . , j: If mhnd
i ∈ HNDS and mhnd

i > curhnda, set curhnda++.

3. For i := 1, . . . , j: If mhnd
i 6∈ HNDS, set mi := mhnd

i . Else if Da[m
hnd
i] 6= ↓, let

mi := Da[m
hnd
i].word . Else make a recursive call mi ← id2real(mhnd

i). Let arg real :=
(m1, . . . ,mj).

4. Construct and enter the real message m depending on type ; here we only list the new
types:

• If type = pka, call sk∗ ← make auth key() and set m := ǫ and Da :⇐
(mhnd,m, (honest, sk∗)).

• If type = ska, let pkahnd := mhnd
1 . We claim that Da[pkahnd].add arg is of the form

(honest, sk∗). Set m := sk∗ and Da :⇐ (mhnd,m, ()).

• If type = aut, we claim that pkahnd := mhnd
2 6= ↓. If Da[pkahnd].add arg [1] = honest,

let sk∗ := Da[pkahnd].add arg [2], else sk∗ := Da[pkahnd + 1].word . Further, let
l := m1 and set m← make auth(sk∗, l) and Da :⇐ (mhnd,m, ()).

5.3 Evaluation of Network Inputs

When SimH receives a bitstring l from A at a port netw ,u,i? with |l| ≤ max len(k), it verifies
that l is a tagged list. If yes, it translates l into a corresponding handle lhnd and outputs the
abstract sending command adv send i(w, u, lhnd) at port ina!.

For an arbitrary message m ∈ {0, 1}+, mhnd ← real2id(m) works as follows. If there is al-
ready a handle mhnd with Da[m

hnd].word = m, then real2id reuses that. Otherwise it recursively

14

parses the real message, builds up a corresponding term in THH, and enters all messages into
Da. For building up the abstract term, real2id makes extensive use of the special adversary
capabilities that THH provides. In the real system, the bitstring may, e.g., contain an authen-
ticator for which no matching authentication key is known yet. Therefore, the simulator has to
be able to insert such an authenticator with “unknown” key into the database of THH, which
explains the need for the command adv unknown aut. Similarly, the adversary might send a new
authentication key, which has to be added to all existing authenticator entries for which this key
is valid, or he might send a transformed authenticator, i.e., a new authenticator for a message
for which the correct user has already created another authenticator. Such a transformation
is not excluded by the definition of secure authentication schemes, hence it might occur in the
real system. All these cases can be covered by using the special adversary capabilities.

Formally, id2real sets (type , arg) := parse(m) and calls a type-specific algorithm add arg ←
real2id type(m, arg). After this, real2id sets mhnd := curhnda++ and Da :⇐ (mhnd,m, add arg).
We have to provide the type-specific algorithms for our new types.

• add arg ← real2id ska(m, ()). Call skahnd ← gen auth key() at ina! and set Da :⇐
(curhnda++, ǫ, (adv)) (for the key identifier), and add arg = () (for the secret key).

Let m =: (ska, sk, sr); this format is ensured by the preceding parsing. For each
handle authnd with Da[authnd].type = aut and Da[authnd].word = (aut, sr , r, l, aut) for
r ∈ {0, 1}nonce len(k), l ∈ {0, 1}+, and aut ∈ {0, 1}aut len′(k,|l|), and atestsk(aut , (r, l)) = true,
call v ← adv fix aut validity(skahnd, authnd) at ina!. Return add arg .

• add arg ← real2id aut(m, (l)). Make a recursive call lhnd ← real2id(l) and let
(aut, sr, r, l, aut) := m; parsing ensures this format.

Let Ska := {skahnd |Da[skahnd].type = ska∧Da[skahnd].word [3] = sr∧atestsk(aut, (r, l)) =
true for sk := Da[skahnd].word [2]} be the set of keys known to the adversary for which m

is valid.

Verify whether the adversary has already seen another authenticator for the same message
with a key only known to honest users:

Let Aut := {authnd | Da[authnd].word = (aut, sr, r, l, aut ′) ∧ Da[authnd].type = aut}. For
each authnd ∈ Aut , let (aut, argauthnd)← adv parse(authnd) and pkaauthnd := argauthnd [2].

We claim that there exists at most one pkaauthnd such that the corresponding secret key
was generated by an honest user, i.e., such that Da[pkaauthnd].add arg [1] = honest. If
such a pkaauthnd exists, let sk∗ := Da[pkaauthnd].add arg [2] and v := atestsk∗[2](aut, (r, l)).

If v = true, call trans authnd ← adv transform aut(authnd) at ina! and after that call
v ← adv fix aut validity(skahnd, trans authnd) at ina! for every skahnd ∈ Ska. Return ().

Else if Ska 6= ∅, let skahnd ∈ Ska arbitrary. Call authnd ← auth(skahnd, lhnd) at ina!, and for
every ska′hnd ∈ Ska \ {skahnd} (in any order), call v ← adv fix aut validity(ska′hnd, authnd)
at ina!. Return ().

If Ska = ∅, call authnd ← adv unknown aut(lhnd) at ina! and return ().

5.4 Properties of the Simulator

Two important properties have to be shown for the simulator. First, it has to be polynomial-
time, as the joint adversary SimH(A) might otherwise not be a valid polynomial-time adversary
on the ideal system. Secondly, we have to show that the interaction between THH and SimH in
the recursive algorithms cannot fail because one of the machine reaches its runtime bound.

15

Essentially, this can be shown as in [4], except that the interaction of THH and SimH

in real2id can additionally increase the number of steps linearly in the number of existing
authenticators and existing keys, since a new secret key might update the arguments of each
existing authenticator entry, and a new authenticator can get any existing key as an argument.
This is the reason why we had to enlarge the original bound max ina at ina? and outa? to
maintain the correct functionality of the simulator, cf. Section 3.3 and 5.1. However, only a
polynomial number of authenticators and keys can be created (a coarse bound is n ·max in(k)
for entries generated by honest users plus the polynomial runtime of A for the remaining ones).
We omit further details.

6 Proof of Correct Simulation

Given the simulator, we show that even the combination of arbitrary polynomial-time users H

and an arbitrary polynomial-time adversary A cannot distinguish the combination MH of the
real machines Mu from the combination THSimH of THH and SimH (for all sets H indicating
the correct machines). We do not repeat the precise definition of “combinations” here.

The proof is essentially a bisimulation. This means to define a mapping between the states
of two systems and a sufficient set of invariants so that one can show that every external input
to the two systems (in mapped states fulfilling the invariants) keeps the system in mapped
states fulfilling the invariants, and that outputs are identical. However, the states of both
systems are not immediately comparable: a simulated state has no real versions for data that
the adversary has not yet seen, while a real state has no global indices, adversary handles, etc.
We circumvent this problem by conducting the proof via a combined system CH, from which
both original systems THSimH and MH can be derived. The two derivations are two mappings,
and we perform the two bisimulations in parallel. By the transitivity of indistinguishability (of
the families of view of the same A and H in all three configurations), we obtain the desired
result. This is shown in Figure 3.

• • •
S
H

A

H

M
u

M
v

A
Sim

H

• • •
S
H

H

TH
H

A

• • •

S
H

H

THSim
H

C
H

M
H

1. Combine
2a. Bisimulation 2b. Bisimulation

3.
sec

poly

Figure 3: Overview of the Simulatability Proof.

Further, our bisimulation is probabilistic, as we will see in the invariant “strongly correct
arguments”. Moreover, certain “error sets” of runs remain where the bisimulation fails. We
show that these sets have negligible probability (in the security parameter) at the end; this is
sufficient for computational indistinguishability.

In addition to standard invariants, we have an information-flow invariant “word secrecy”
which helps us to show that the adversary cannot guess certain values in these final proofs

16

for the error sets. Although we can easily show that the probability of a truly random guess
hitting an already existing value is negligible, we can only exploit this if no information (in the
Shannon sense) about the particular value has been given to the adversary. We hence have to
show that the adversary did not even receive any partial information about this value, which
could be derivable since, e.g., the value was hidden within a nested term. Dealing with aspects
of this kind is solved by incorporating static information-flow analysis in the bisimulation proof.

6.1 Combined System

The combined system mainly contains a database D∗ structured like D in THH. An entry x

may have the following additional attributes:

• x.word ∈ {0, 1}∗ contains real data as in MH or SimH under the same handle(s).

• x.parsedu ∈ {true, false} for u ∈ H is ↓ if x.hndu = ↓; otherwise true indicates that the
entry would be parsed in Du, and false that it would still be of type null. As entries of
type pka do not exist in the real system, we always have parsedu = ↓ for them.

• x.owner for secret keys and authenticators is adv if the key or the authenticator was first
received from the adversary, otherwise honest.

Its state also contains variables size and curhndu as in THH, and all variables stepsp? as in
THSimH are equal to the step counters in MH. In the transitions of CH, the D-part of the
database D∗ and the variables size and curhndu are treated as in THH. An entry whose first
handle x.hndu is for u ∈ H gets the word that Mu would contain under this handle, and
otherwise that from SimH. Thus, essentially, entries created due to basic commands from H get
the words that Mu would construct, while words received in network inputs from A are parsed
completely and entered as by SimH. Outputs to H are made as in THH, outputs to A as in MH.

6.2 Derivations

We now define the derivations of the original systems from the combined system. They are the
mappings that we will show to be bisimulations. We use the following additional notation:

• Let ω abbreviate word lookup, i.e., ω(i) := D∗[i].word if i ∈ HNDS, else ω(i) := i. Let
ω∗, applied to a list, denote that ω is applied to each element.

• We give most derived variables and entire machine states a superscript ∗, because in the
bisimulation we have to compare them with the “original” versions. We make an exception
with some variables of THSimH that are equal by construction in CH; in particular D∗ is
CH’s extended database and the derived D-part for THH is immediately called D again.

For a given state of CH, we define derived states corresponding to the original systems. In the
following, we only define the derivations for entries of our new types, and of those that occur
in the upcoming proof.

THH: D: This is the restriction of D∗ to all attributes except word and parsedu .

curhndu (for u ∈ H ∪ {a}) and size: All these variables are equal to those in CH.

MH
∗: D∗

u: (For every u ∈ H.) We derive D∗
u as follows, starting with an empty database:

For every xhnd ≤ curhndu , let x := D∗[hndu = xhnd].ind , type := D∗[x].type , and
m := D∗[x].word . Then

17

• If D∗[x].parsedu = false, then D∗
u :⇐ (xhnd,m, null, ()).

• Else if type ∈ {ska, aut}, then D∗
u :⇐ (xhnd,m, type , ()).

curhnd∗
u : This variable equals curhndu of CH.

SimH
∗: D∗

a: We derive D∗
a as follows, starting with an empty database: For all xhnd ≤ curhnda,

let x := D∗[hnd a = xhnd].ind , type := D∗[x].type , and m := D∗[x].word .

• If type = pka, let ska ind := x + 1. If D∗[ska ind].owner = adv, then D∗
a :⇐

(xhnd,m, (adv)), else D∗
a :⇐ (xhnd,m, (honest, ω(ska ind))).

• If type ∈ {ska, aut}, then D∗
a :⇐ (xhnd,m, ()).

curhnd∗
a : This variable equals curhnda of CH.

6.3 Invariants in CH

For the bisimulation, we need invariants about CH. In the original library, there are invariants
index and handle uniqueness, well-defined terms, message correctness, key secrecy, no unparsed
secret keys, length bounds, fully defined, and correct key pairs. They are not explicitly used
in our upcoming proof and it is easy to see that they remain correct for our extension to the
library. In the following, we present the important invariants for the new proof. Each of them
already occurred in [4], except for “correct verification”, which trivially holds in the original
proof since it only makes statements about our new types. Each existing invariant is generalized
for dealing with our new types, leaving entries of old types unaffected.

• Word uniqueness. For each word m ∈ {0, 1}∗, we have |D∗[word = m ∧ type 6∈
{sks, ske, pka}]| ≤ 1.

• Correct length. For all i ≤ size, D∗[i].len = |D∗[i].word |, except if D∗[i].type ∈
{sks, ske, pka}.

• Word secrecy. We require that the adversary never obtains information about nonce-
like word components without adversary handles. For this, we define a set Pub Var of
“public” variables about which A may have some information. We claim that at all times,
no information from outside has flowed into Pub Var in the sense of information flow in
static program analysis. The set Pub Var contains

– all words D∗[i].word with D∗[i].hnd a 6= ↓;

– the state of A and H, and the THH-part of the state of CH;

– secret keys of public-key encryption and digital signature schemes where the public
keys are public, i.e., if D∗[i].hnd a 6= ↓ and D∗[i].type ∈ {pks, pks}, then also D∗[i +
1].word .3

“Word secrecy” implies that no information from random values sr in authentication keys or r

in authenticators has flowed into Pub Var unless the respective entries have adversary handles.
Absence of information flow in the static sense implies absence of Shannon information.

The remaining two invariants “correct arguments” and “strongly correct arguments” estab-
lish a relationship between the real message of an entry and its abstract type and arguments.
For each type, there is a separate relationship. In the following, we introduce such a relationship
for our new types.

3These secret keys are included because information from them flows into the public keys, signatures, and
decryptions, but they do not get adversary handles when those values are published. Note that this does not
apply for our key identifiers, as they carry no information about the corresponding secret key.

18

• Correct arguments. For all i ≤ size, the real message m := D∗[i].word and the ab-
stract type and arguments, type id := D∗[i].type and arg ind := D∗[i].arg , are compatible.
More precisely, let arg real := ω∗(arg ind). If type id 6∈ {sks, ske, pka}, let (type , argparse) :=
parse(m), and we require type = type id, and:

– If type = aut, then argparse = arg real[1]. (Parsing does not output the key identifiers.)

• Strongly correct arguments if a 6∈ owners(D∗[i]) or D∗[i].owner = honest. Let type :=
D∗[i].type , arg ind := D∗[i].arg and arg real := ω∗(arg ind). Then type 6= garbage and m :=
D∗[i].word has the following probability distribution:4

– If type = aut, then arg ind is of the form (l ind, pka ind
1 , . . . , pka ind

j). Let ska ind :=

pka ind
1 + 1 and arg ′real := ω∗(ska ind, l ind). Then m← make auth(arg ′real).

– If type = ska, then m← make auth key().

The following invariant is new, and deals with consistent verification in the ideal and real
system.

• Correct Verification. For all i, j ≤ size with D∗[i].type = aut and D∗[j].type = ska: Let
(aut, sr, r, l, aut) := D∗[i].word , (l ind, pka ind

1 , . . . , pka ind
j)) := D∗[i].arg , and (ska, sk, sr′) :=

D∗[j].word . Then pka ind := D∗[j].ind − 1 ∈ {pka ind
1 , . . . , pka ind

j } if and only if sr = sr′

and atestsk(aut, (r, l)) = true.

The following definition summarizes what we plan to do with these invariants:

Definition 6.1 (Bisimulation Property) By “an input retains all invariants” we mean the fol-
lowing:

• The resulting transition of CH retains the invariants if they were true before the input.

• If the input is made to MH or THSimH in the state derived from CH, then the probability
distribution of the next state equals that of the states derived from the next state of CH.
We call this “correct derivation”.

✸

All conditions are obviously true initially when all databases are empty and the counters 0. The
bisimulation shows that each input maintains the bisimulation property. Unfortunately, this is
not true for all runs of the system, e.g., if two nonces collide in the generation of two different
secret keys, or if the adversary successfully forges an authenticator. These runs are collected in
error sets.

6.4 The Bisimulation

6.4.1 Comparison of Basic Commands

We first consider the effects of a basic command c input at a port inu? with u ∈ H. Recall
that the actions of CH on a large part of its state are by definition equal to those of THH, and

4Here one sees that the bisimulation is probabilistic, i.e., we actually consider distributions of states before
and after a transition. This invariant says that in such a state distribution, and given the mentioned arguments,
m is distributed as described independent of other state parts.

19

so is CH’s output at outu !. We will not always mention this again. Moreover, “word secrecy”
is clear since the output at outu ! and the updates to the D-part of D∗ are made entirely with
commands from THH and thus within Pub Var . New or existing words only get a handle for
u, so that nothing is added to Pub Var .

• Key generation: skahnd ← gen auth key().

Both THH and Mu set skahnd := curhndu++, and make two entries in case of THH,
respectively one entry in case of Mu. In CH this gives D∗ :⇐ (ind := size++, type :=
pka, arg := (), len := 0) and D∗ :⇐ (ind := size++, type := ska, arg := (ind − 1), hnd u :=
skahnd, len := ska len∗(k), parsedu := true,word := sk∗) where sk∗ ← make auth key().

The outputs are equal, and “correct derivation” is clear. If “word uniqueness” is not
fulfilled, sk∗ matches an already existing value. In particular, the nonce sr within sk∗

then equals an old one at the same place within a word, hence we put the run in an error
set Nonce Coll .

“Correct length” is fulfilled because ska len∗(k) = list len(|ska|, ska len(k), nonce len(k)) =
|sk∗| by definition of make auth key; nothing is required for type pka. Under “correct
arguments”, nothing is required for type ska and pka. “Strongly correct arguments” is
obvious.

If “correct verification” is not fulfilled, the new secret key is a valid authentication key
for an existing authenticator. This in particular means that the newly generated nonce
sr in the new key equals an existing nonce in the authenticator. Hence, we put the run
in an error set Nonce Coll .

• Authenticator generation: authnd ← auth(skahnd, lhnd).

Let ska ind := D∗[hndu = skahnd].ind and l ind := D∗[hndu = lhnd].ind . Both THH and
Mu return ↓ if D∗[ska ind].type 6= ska or D∗[l ind].type 6= list. Their tests are equivalent by
“correct derivation”.

Further, THH returns ↓ if length := aut len∗(k,D∗[l ind].len) > max len(k). Else it sets
authnd := curhndu++ and makes a new entry D :⇐ (ind := size++, type := aut, arg :=
(l ind, ska ind − 1), hnd u := authnd, len := length).

Mu uses (sk∗, l) := ω(sk ind, l ind) and sets aut∗ ← make aut(sk∗, l). If |aut∗| > max len(k),
it returns ↓. This length test equals that in THH: By “strongly correct arguments”, the
key sk∗ was generated with make auth key(). With the notation from inside make auth,
this means that sk was correctly generated, and thus we have |aut| = aut len(k, |(r, l)|) =
aut len′(k, |l|). This yields |aut∗| = aut len∗(k, |l|), and by “correct length” for the entry
D∗[l ind] this is what THH verified. Hence either both do not change their state and return
↓, or both make the described updates and Mu sets authnd := curhndu++ and makes an
entry Du :⇐ (authnd, aut∗, aut, ()).

The outputs are equal, the update to D∗[ska ind] retains “correct derivation”, and no
invariants is affected.

Now we consider the new authenticator entry: “Correct derivation” is clear if we augment
THH’s entry with the word aut∗ and parsedu = true. If “word uniqueness” is not fulfilled,
then r within aut∗ equals an old value in the same place in a word; hence we put the
run in the error set Nonce Coll . “Correct length” is fulfilled as shown above. “Correct
arguments” follows by comparing the output format of make auth with the predicate in

20

parse aut. “Strongly correct arguments” holds by construction. If “correct verification” is
not fulfilled, then we again have a nonce collision as the nonce within the new authenticator
matches an existing one within a key. Hence, the run is put into the error set Nonce Coll .

• Authenticator verification: v ← auth test(authnd, skahnd, lhnd). Let aut ind := D∗[hndu =
authnd].ind and ska ind := D∗[hndu = skahnd].ind . Both THH and Mu return ↓ if
D∗[aut ind].type 6= aut or if D∗[ska ind].type 6= ska (indeed Mu has parsed the entries). Oth-
erwise, let (l ind, pka ind

1 , . . . , pka ind
j) := D∗[aut ind].arg , (aut, sr, r, l, aut) := D∗[aut ind].word ,

and (ska, sk, sr) := D∗[ska ind].word . By “correct arguments” for the entry D∗[aut ind], we
have l = ω∗(l ind), and hence lhnd = D∗[l ind].hndu if and only if l 6= Du[lhnd].word . THH

outputs false if pka ind
1 = ↓ or ska ind − 1 6∈ {pka ind

1 , . . . , pka ind
j }, and true otherwise. Mu

outputs false iff sr 6= Du[skahnd].word [3] or atestsk(aut, (r, l)) = false. This is equivalent
by “correct verification” and “correct derivation”. No invariants are affected here.

• Message retrieval: lhnd ← msg of aut(authnd).

We start exactly as in authenticator verification: Let aut ind := D∗[hndu = authnd].ind .
Both THH and Mu return ↓ if D∗[aut ind].type 6= aut. (Indeed Mu has parsed the entry.)
Otherwise, let (l ind, pka ind

1 , . . . , pka ind
j) := D∗[aut ind].arg , aut∗ := D∗[aut ind].word , and

(l) ← parse aut(aut∗). By “correct arguments” for the entry D∗[aut ind], we have l =
ω(l ind).

If D∗[l ind].hndu already exists, both return it. Otherwise THH adds it as lhnd :=
curhndu++. By “word uniqueness” and “correct derivation”, Mu does not find another
entry with the word l , and thus makes a new entry (lhnd, l , null, ()) with the same handle.
(Its test |l | ≤ max len(k) is true by “correct length” for D∗[l ind].) Equal outputs and
“correct derivation” are clear. The remaining invariants are unaffected.

6.4.2 Send Command from Honest User

We now consider an input send i(v, lhnd
u) at a port inu? with u ∈ H (the list lhnd

u should be sent
to v). Intuitively, this part of the proof shows that the adversary does not get any information
in the real system that it cannot get in the ideal system, because any real information can be
simulated indistinguishably given only the outputs from THH.

Let l ind := D∗[hndu = lhnd
u].ind . Now Mu always outputs l := D∗[l ind].word . An inductive

proof is used that id2real retains all invariants and produces the right outputs. By inspection
of id2real, we see that the first three steps of the algorithm are essentially independent of the
type of the considered entry (up to domain checks which are fulfilled by construction when
interacting with THH). In step 4, id2real then proceeds depending on type . Each of these
variants ends with an assignment to m, which is then output, and Da :⇐ (mhnd,m, add arg)
for certain arguments add arg .

In [4], it has been proven (in Lemma 7.6) that it is sufficient to show:

• a correct result m = m∗, where m∗ is the word the Mu produces, i.e., m∗ := D∗[m ind].word .
We further can assume “strongly correct arguments” for m∗.

• “correct derivation” of add arg in the new entry;

• “word secrecy” for m, i.e., no flow of secret information into m, where arguments mi are
not secret information.

21

For our new types, these conditions are also sufficient, which can be proven analogously to the
original proof. Since the proof mainly relies on a thorough investigation of the first three steps
of id2real, we have to omit the details here due to lack of space.

Authentication Keys If type = pka, then id2real sets sk∗ ← make auth key(), m := ǫ and
add arg := (honest, sk∗).

Let m ind := D∗[mhnd].ind and ska ind = m ind + 1 and sk∗real := D∗[ska ind].word . By
“strongly correct arguments” sk∗real was chosen with make auth key(). Moreover, we have
a 6∈ owners(D∗[ska ind]), because otherwise D∗[m ind] would also have got an a-handle at once. In
the derived D∗

a , we therefore have an entry (mhnd,m, (honest, sk∗real)) with the same distribution
as id2real’s choice. “Word secrecy” is clear since m = ǫ.

For type = ska, Let pkahnd := mhnd
1 . By construction, we have D∗[pkahnd].type = pka.5

Let pk ind := D∗[pkahnd].ind , ska ind = pka ind + 1. Analogously to the type pka, we know
that a 6∈ owners(D∗[ska ind]), and with “correct derivation” we obtain D∗

a [pkahnd].add arg =
(honest, ω(ska ind)). Now the output is m := ω(sk ind), which is equal to the output D∗[sk ind].word
in the real system. “Word secrecy” is clear.

Authenticators If type = aut, “strongly correct arguments” implies that arg ind is of the form
(l ind, pkaind

1 , . . . , pkaind
j) with pkaind

1 6= ↓. This proves the format claim in id2real.

Let ska ind := pka1
ind + 1 and (sk∗, l∗) := ω(ska ind, l ind). By “strongly correct arguments”,

m∗ is distributed as m∗ ← make auth(sk∗, l∗). If Da[pkaind
1].add arg [1] = honest, then “correct

derivation” of Da implies Da[pkahnd
1].add arg = (honest, sk∗), where pkahnd

1 = D∗[pka1
ind]. If

Da[pkaind
1].add arg = (adv) then “correct derivation” of Da implies Da[pkaind

1 + 1].word = sk∗.
In both cases, id2real sets m← make auth(sk∗, l∗). This is the same distribution.

For proving “word secrecy” for m, we only have to consider the parameter sk∗, because l∗

is a parameter m1 (and make auth is functional). By definition of “word secrecy”, sk∗ already
belongs to Pub Var , hence “word secrecy” is clear.

6.4.3 Network Input from the Adversary

We now consider the effects of an input l from A. Recall that on such an input CH acts
entirely like THSimH. Both Mu and SimH continue if l is a tagged list. Hence from now on,
we assume this. Now SimH and thus CH call lhnd

a ← real2id(l) to parse the input. Using a
lemma from [4], we only have to show the following properties of each call lhnd

a ← real2id(l) with
0 < |l| ≤ max len(k) and l ∈ Pub Var :

• At the end, D∗[hnd a = lhnd
a].word = l and D∗[hnd a = lhnd

a].type 6∈ {sks, ske}.

• “Correct derivation” of Da and curhnda.

• The invariants within D∗ are retained, where “strongly correct arguments” is already
clear and “word secrecy” need only be shown for the outermost call (without subcalls) if
more entries than D∗[hnd a = lhnd

a] are made or updated there.

The lemma carries over to our new types with marginal extensions of the proof.
If there is already a handle mhnd with Da[m

hnd].word = m, real2id returns that. The
postulated output condition is fulfilled by “correct derivation”, and the others because no

5This could as well be treated as an invariant, but it is obvious since secret keys always have their key identifier
as only argument by definition, and their argument never changes.

22

state changes are made. Otherwise, the word m is not yet present in Da. Then id2real sets
(type , arg) := parse(m). This yields type ∈ typeset\{sks, ske}. As parse is a functional algorithm,
no invariants are affected. Then id2real calls an algorithm add arg ← real2id type(m, arg) with
side-effects.

Finally it sets mhnd := curhnda++ and Da :⇐ (mhnd,m, add arg).
We therefore have to show the postulated properties for our new type-specific algorithms

together with those last two assignments.

Authentication Keys The algorithm real2id ska(m, ()) calls skahnd ← gen auth key() at ina!
and sets Da :⇐ (curhnda++, ǫ, (adv)) for the key identifier and add arg := () for the secret key.

Recall that the upcoming loop over all authnd can only modify the database D∗ by outputting
a command adv fix aut validity, which does not create new entries.

Hence THH also makes only two new entries with pkahnd := curhnda++ and
mhnd := curhnda++.
In CH, the key identifier entry results in D∗ :⇐ (ind := size++, type := pka, arg := (), hnd a :=

pkahnd, len := 0). The secret-key entry results in D∗ :⇐ (ind := size++, type := ska, arg :=
(ind − 1), hnd a := mhnd, len := ska len∗(k),word := m). It fulfills the postulated output con-
ditions. Here “correct derivation”, “correct length”, “word secrecy” and “correct arguments”
are clear. If “Word uniqueness” is not fulfilled, then there exists a prior entry x ∈ D∗ with
x.word = m, i.e., the adversary has guessed a key which it has not seen yet. This especially
implies that he has guessed the nonce sr, hence we put this run in an error set Nonce Guess.
We have x.hnd a = ↓ by “correct derivation” of Da, because m is not present in Da. Thus,
x.word 6∈ Pub Var .

Let pk ind := size − 1. Then “correct derivation” holds because sk ind := pk ind + 1 designates
the secret-key entry with D∗[sk ind].owner = adv, so that add arg = (adv) is the correct choice
in Da. “Correct arguments” and “word secrecy” are obvious. For “correct length”, nothing is
required for type pka. “Word uniqueness” need not be shown for this entry.

We now consider the for-loop, which checks if already existing authenticators are valid for
the new key. Let sk∗ := m = (ska, sk, sr), and assume that there exists a handle authnd

with Da[authnd].type = aut and Da[authnd].word = (aut, sr , r, l, aut) for r ∈ {0, 1}nonce len(k),
l ∈ {0, 1}+, aut ∈ {0, 1}aut len′(k,|l|), and atestsk(aut , (r, l)) = true. Then SimH calls v ←
adv fix aut validity(skahnd, authnd). Now THH returns ↓ if aut := D[hnda = authnd ∧ type =
aut].ind = ↓ or if ska := D[hndu = skahnd ∧ type = ska].ind = ↓. “Correct derivation” for the
authenticator entry and parsing of the secret key imply that these checks succeed.

Now let (l, pka1, . . . , pkaj) := D[aut].arg and pka := ska − 1. If pka 6∈ {pka1, . . . , pkaj}
set D[aut].arg =: (l, pka1, . . . , pkaj, pka). Here “correct derivation”, “correct length”, “word
uniqueness”, and “word secrecy” are clear. “Correct arguments” is also clear due to the special
format of type aut (parsing does not output the key identifiers). If pka 6= ↓ “strongly cor-
rect arguments” is unaffected. Otherwise the authenticator has been created by a command
adv unknown auth, hence a ∈ owners(D∗[pka1 + 1]).

The only invariant left to show is “correct verification”. Let i ≤ size with D∗[i].type = aut

and D∗[i].word = (aut, sr, r, l, aut) that fits to the key sk∗, i.e, atestsk(aut, (r, l)) = true.
Let authnd := D∗[i].hnd a. Because of the checks of SimH, it is sufficient to show that
the corresponding key identifier is added to the authenticator’s arguments. We distinguish
two cases: If a ∈ owners(D∗[i]), then this entry is present in Da, hence SimH outputs
adv fix aut validity(skahnd, authnd). The checks of THH will succeed since they correspond to
the checks of SimH by “correct derivation”. Hence if skahnd − 1 is not contained in the element

23

list, it is added, which retains the invariant. If a 6∈ owners(D∗[i]), i.e., the key fits to an authen-
ticator that the adversary has not seen yet, he especially has not seen the nonce r. Hence, we
put this run in an error set Nonce Guess . Because of a 6∈ owners(D∗[i]), we have authnd = ↓,
hence D∗[authnd].word 6∈ Pub Var .

Authenticators When real2id aut(m, (l)) is called, we know from parsing that l is a tagged
list and shorter than m, so that also |l| ≤ max len(k). Moreover, l ∈ Pub Var because they
were generated from m ∈ Pub Var by the functional algorithm parse. Hence when real2id aut

starts with a recursive call lhnd ← real2id(l); this call fulfill the postulated conditions by in-
duction hypothesis. Thus, it retains all invariants and ensures D∗[hnd a = lhnd].word = l.
Let l ind := D∗[hnd a = lhnd].ind and m = (aut, sr, r, l, aut). Let Ska := {skahnd | D∗[hnd a =
skahnd].type = ska ∧ D∗[hnda = skahnd].word [3] = sr ∧ atestsk(aut, (r, l)) = true for sk :=
D∗[hnd a = skahnd].word [2]}.

Case 1: Transformed Authenticator. SimH first verifies whether the adversary has
already seen another authenticator from an honest user for the same message. It sets Aut :=
{authnd | D∗[hnd a = authnd].word = (aut, sr, r′, l, aut ′) ∧ D∗[hnd a = authnd].type = aut}. For
each authnd ∈ Aut , it sets (aut, argauthnd)← adv parse(authnd) and pkaauthnd := argauthnd [2].

Now assume for contradiction that there exist two such distinct elements pkahnd
authnd

1

, pkahnd
authnd

2

with D∗[hnda = pkahnd
authnd

1

].add arg [1] = D∗[hnda = pkahnd
authnd

2

].add arg [1] = honest. Let

pka1 := D∗[hnd a = pkahnd
authnd

1

].ind and pka2 := D∗[hnd a = pkahnd
authnd

2

].ind . Since D∗[hnd a =

authnd
1].variword[2] = D∗[hnd a = authnd

2].word [2] = sr , we have Da[pka1 + 1].word [2] =
Da[pka2 + 1].word [2] = sr . But “correct derivation” implies that Da[pka1 + 1].owner =
Da[pka2 + 1].owner = honest, so “strongly correct arguments” implies that Da[pka1 + 1].word
and Da[pka2 + 1].word have been created by the command make auth key. This means that if
two such distinct elements existed, the nonces sr collided in two executions of make auth key.
In this case, we put the run into an error set Nonce Coll .

Now assume that there exists a unique pkaauthnd , and let sk∗ = Da[pkaauthnd].add arg [2].
Then the simulator checks if atestsk∗[2](aut, (r, l)) = true, i.e., it only continues the interaction
with THH if the check in the real system is correct. This is equivalent by “correct verification”.
In this case, it calls trans authnd ← adv transform aut(authnd) at ina! and sets add arg := ().

Let aut ind := D∗[hnd a = authnd].ind . By “correct derivation”, we have D∗[aut ind].type =
aut. With the preconditions about aut∗real, “correct arguments” for aut ind, and “word
uniqueness” for l, this implies D∗[aut ind].arg = (l ind, pkaind

1 , . . . , pkaind
j). Hence THH sets

trans authnd := curhnda++ and makes a new entry. Together with the new entry in Da,
this results in D∗ :⇐ (ind := size++, type := aut, arg := (l ind, pkaind

1), hnd a := authnd, len :=
D∗[aut ind].len ,word := m). “Correct derivation” is clearly retained, and the postulated out-
put condition is fulfilled. “Correct arguments” holds because we showed that the arguments
copied from D∗[aut ind] are those that we get by parsing m. For “correct length”, we use
that D∗[aut ind].len = |aut∗real| by “correct length” for aut ind. Thus we only have to show
|m| = |aut∗real|. This holds because both parse as authenticators with the same component l.
“Word secrecy” need not be shown for this entry. Finally, we prove “word uniqueness”: Assume
there were a prior entry x ∈ D∗ with x.word = m. It has x.hnd a = ↓ because the word m

does not exist in Da. This means that the adversary has guessed an authenticator that existed
in THH but that he has not been send yet. This in particular means that he has guessed the
inherent nonce r within m, hence we put the run in the error set Nonce Guess. We have

24

x.hnd a = ↓, hence x 6∈ Pub Var .
After that, SimH calls adv fix aut validity(skahnd, lhnd) for every skahnd ∈ Ska, i.e., it en-

ters the key identifiers for the valid secret keys. The only invariant that could be affected is
“correct verification”. We distinguish two cases: First, we assume that if an entry i in D∗

exists with D∗[i].type = ska, sk∗ := (ska, sk, sr) := D∗[i].word , and atestsk(aut, (r, l)) = true,
then there is an entry j with j.hnd a 6= ↓ that also fulfills these conditions. In this case, a
handle skahnd for j will be contained in Ska by “correct derivation” and hence SimH calls
v ← adv fix aut validity(authnd, skahnd). Then “correct verification” follows analogously to the
proof of the previous subsection for authentication keys. Secondly, if there exists an entry
i in D∗ that meets the above requirements, but for all entries j of the above form we have
j.hnd a = ↓, then the adversary has guessed a valid authenticator, which means that in particu-
lar, he has guessed the inherent nonce r. We hence put the run into the error set Nonce Guess.
We again obtain i 6∈ Pub Var because of i.hnd a = ↓.

Case 2: A Valid Key Exists in Da. We now consider the behavior of SimH if m

is not a transformed authenticator, but SimH finds a suitable secret key for testing the au-
thenticator, i.e., we have Ska 6= ∅. SimH then picks skahnd ∈ Ska arbitrarily, and calls
authnd ← auth(skahnd, lhnd).

THH sets ska := D∗[skahnd].ind , l := D∗[lhnd].ind and outputs ↓ if D∗[skahnd].type 6= ska or
D∗[lhnd].type 6= list. These checks are identical to the check of SimH in case of ska and to parsing
m in case of list, hence the checks succeed by “correct derivation”. Now THH sets length :=
aut len∗(k,D[l]) and aborts if length > max len(k). This is equivalent to SimH’s checks since
we know from parsing that |m| = list len(|aut|, nonce len(k), nonce len(k), |l|, aut len′(k, |l|)) =
aut len∗(k, |l|) and from “correct length” that D∗[l ind].len = |l|. Hence, THH makes a new entry;
in CH this yields D :⇐ (ind := size++, type := aut, arg := (l, ska − 1), hnd a := authnd, len :=
length,word = m). “Correct derivation”, “Correct arguments” are clear; “correct length” holds
as shown above. “Word secrecy” need not be shown for this entry. If “word uniqueness” is not
fulfilled, then m matches an existing authenticator entry x in D∗. Similar to the previous case,
we have x.hnd a = ↓ since x does not exist in Da, hence

the nonce r within m must have been guessed. Hence we put the run into an error set
Nonce Guess. Because of x.hnd a = ↓ we have x 6∈ Pub Var .

After that, SimH calls v ← adv fix aut validity(ska′hnd, lhnd) for every ska′hnd ∈ Ska \
{skahnd}, i.e., it enters the key identifiers for the valid secret keys. The only invariant that
could be affected is “correct verification”. We distinguish three cases: First, we assume that
if an entry i in D∗ exists with D∗[i].type = ska, sk∗ := (ska, sk, sr) := D∗[i].word , and
atestsk(aut, (r, l)) = true, then there is an entry j with j.hnd a 6= ↓ that also fulfills these condi-
tions. In this case, a handle ska′hnd for j will be contained in Ska by “correct derivation” and
hence SimH calls v ← adv fix aut validity(authnd, ska′hnd). Then “correct verification” follows
analogously to the proof of the previous subsection for authentication keys. Secondly, if there
exists an entry i in D∗ that meets the above requirements, but for all entries j of the above
form we have j.hnd a = ↓,

then the adversary has guessed a valid authenticator, which means that in particular, it has
guessed the inherent nonce r. We hence put the run into the error set Nonce Guess. We again
obtain i 6∈ Pub Var because of i.hnd a = ↓. Thirdly, no such entry i exists in D∗. In the case,
the adversary has produced a valid forgery for an (unknown) key of an honest user. Hence, we
put the run in an error set Auth Forge . We designate the forgery (sk, aut, (r, l)). Note that
atestsk(aut , (r, l)) = true because this was verified when parsing m, and that a 6∈ owners(D∗[i]).

25

Further, “strongly correct arguments” for D∗[i] implies that sk∗ was chosen in gen auth key,
and thus as sk ← genA(1k).

Case 3: No Valid Key Exists in Da. Now assume that Ska = ∅. This either means
that no key in Da has a suitable nonce sr or that the authenticator test fails for all keys in Da.
In all these cases, the command adv unknown aut(lhnd) is used to create a new authenticator
for l within THH but currently without any key identifier. THH returns ↓ if l := D[hnda =
lhnd ∧ type = list].ind = ↓ or length := aut len∗(k,D[l].len) > max len(k). This is equivalent to
SimH’s checks as shown in the previous case. THH now creates a new entry, corresponding to
the following entry in CH: D :⇐ (ind := size++, type := aut, arg := (l), hnd a := authnd, len :=
length,word = m). “Correct derivation” and “Correct arguments” are clear; “correct length”
holds as shown above. “Word secrecy” need not be shown for this entry. If “correct verification”
is not fulfilled, we can show similarly to the above case, that this authenticator is valid for an
existing key entry x of an honest user, which is not yet present in the database Da. Hence, we
put the run in the error set Nonce Coll if x is present in D∗ (i.e., does not have an adversary
handle yet) and inAuth Forge otherwise. Let again sk∗ := (ska, sk, sr) := x.word . We then
designate the forgery (sk, aut, (r, l)), and we have atestsk(aut , (r, l)) = true because this was
verified when parsing m, and that a 6∈ owners(D∗[x]). Further, “strongly correct arguments”
for D∗[x] imply that sk∗ was chosen in gen auth key, and thus as sk ← genA(1k).

6.5 Error Sets

We now show that the union of all error sets has negligible probability. More precisely, this
means sequences of error sets, indexed

by the basic security parameter k, such as (Auth Forgek)k∈N. We continue to omit the
parameter k when it is irrelevant. The proofs rely on the security of the cryptographic primitives.

Recall that we had error sets Nonce Coll , Nonce Guess, and Auth Forge . This gives a
constant number of sequences. Hence, if each sequence has negligible probability, then so has
the sequence of the set unions. Hence we now assume for contradiction that one sequence has
a larger probability for certain polynomial-time users H and adversary A.

Recall that the elements of the error sets are runs of the combined system CH. The proofs
rely on the fact that the execution of CH with H and A is polynomial-time. This has already
been shown for the original library, and this also holds our extension, since each new transition
is surely polynomial-time, and the number of interactions of THH and SimH in one transition
is always polynomially bounded, cf. Section 5.4.

6.5.1 Nonce Collisions

The error set Nonce Coll occurs in Sections 6.4.1 for the nonce-components sr in authentication
keys and r in authenticators. A run is put into this set if a new nonce, created randomly as
sr

R← {0, 1}nonce len(k) (similar for r), matches an already existing value.
Hence for every pair of a new nonce and an old value,
the success probability is bounded by 2−nonce len(k), which is negligible. As there are only

polynomially many such pairs, the overall probability is also negligible.

6.5.2 Nonce Guessing

The error set Nonce Guess occurs in Section 6.4.3 and 6.4.3. A run is put into this set if
the adversary has guessed an existing nonce value that ideally he should not have seen. In

26

all these cases we showed that the adversary had guessed the word of an entry x ∈ D∗ with
x.hnd a = ↓, x.word 6∈ Pub Var , and x.type ∈ {ska, aut}. “Strongly correct arguments” implies
that each of them contains a nonce part generated as sr

R← {0, 1}nonce len(k) for type ska and
r

R← {0, 1}nonce len(k) for type aut. “Word secrecy” means that no information flowed from sr

(respectively r) into Pub Var , which is a superset of the information known to the adversary A.
Hence for one guess at one value, the success probability is 2−nonce len(k) and thus negligible, and
there are only a polynomially many values and polynomially many opportunities of guessing.

6.5.3 Authenticator Forgery

The error set Auth Forge occurs in Section 6.4.3 for authenticator forgeries. In the runs put
into this set we designated a triple (sk, (r, l), aut) with atestsk(aut, (r, l)) = true for a key sk

chosen as sk ← genA(1k).
In the combined system CH, this secret key sk was a component D∗[sk ind].word [2] with

a 6∈ owners(D∗[sk ind]). Thus it is only used if the command auth is entered at a port inv? for
v ∈ H, and there within normal authentication aut ← authsk((r, l)). Further, if (r, l) had ever
been signed with sk before, the command auth would lead to an entry x ∈ D∗ with x.type = aut

and x.word of the form (aut, sr, r, l, aut ′). However, the existence of such an entry was excluded
in the conditions for putting the run in the set Auth Forge . Thus we have indeed a valid forgery
for the underlying authentication system.

This argument was almost a rigorous reduction proof already: We construct an adversary
Aaut against the signer machine Aut from Definition 4.1 by letting AAut execute CH, using the
given A and H as blackboxes. It only has to choose an index i

R← {1, . . . , n·max in(k)} indicating
for which of the up to n·max in(k) authentication keys generated due to inputs at ports inu? with
u ∈ H it uses sk obtained from the signer machine Aut instead. Hence the success probability
of Aaut for each k is at least (n ·max in(k))−1 (from guessing i correctly) times the probability
of Auth Forgek . Hence the security of the authentication scheme implies that the probability
of the sets Auth Forgek is negligible.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
In Proc. 4th ACM Conference on Computer and Communications Security, pages 36–47,
1997.

[2] M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpretation. In
Proc. 4th International Symposium on Theoretical Aspects of Computer Software (TACS),
pages 82–94, 2001.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryptography: The computational
soundness of formal encryption. In Proc. 1st IFIP International Conference on Theoret-
ical Computer Science, volume 1872 of Lecture Notes in Computer Science, pages 3–22.
Springer, 2000.

[4] M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic library.
IACR Cryptology ePrint Archive 2003/015, Jan. 2003. http://eprint.iacr.org/.

[5] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentica-
tion. In Advances in Cryptology: CRYPTO ’96, volume 1109 of Lecture Notes in Computer
Science, pages 1–15. Springer, 1996.

27

[6] R. Canetti. A unified framework for analyzing security of protocols. IACR Cryptology
ePrint Archive 2000/067, Dec. 2001. http://eprint.iacr.org/.

[7] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proc. 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pages 136–
145, 2001.

[8] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

[9] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[10] J. D. Guttman, F. J. Thayer Fabrega, and L. Zuck. The faithfulness of abstract proto-
col analysis: Message authentication. In Proc. 8th ACM Conference on Computer and
Communications Security, pages 186–195, 2001.

[11] M. Hirt and U. Maurer. Player simulation and general adversary structures in perfect
multiparty computation. Journal of Cryptology, 13(1):31–60, 2000.

[12] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol
analysis. Journal of Cryptology, 7(2):79–130, 1994.

[13] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework
for protocol analysis. In Proc. 5th ACM Conference on Computer and Communications
Security, pages 112–121, 1998.

[14] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.
In Proc. 2nd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 1055 of Lecture Notes in Computer Science, pages
147–166. Springer, 1996.

[15] C. Meadows. Using narrowing in the analysis of key management protocols. In Proc. 10th
IEEE Symposium on Security & Privacy, pages 138–147, 1989.

[16] J. K. Millen. The interrogator: A tool for cryptographic protocol security. In Proc. 5th
IEEE Symposium on Security & Privacy, pages 134–141, 1984.

[17] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of
Cryptology, 6(1):85–128, 1998.

[18] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of reactive systems.
Presented at the DERA/RHUL Workshop on Secure Architectures and Information Flow,
1999, Electronic Notes in Theoretical Computer Science (ENTCS), March 2000. http:

//www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/menu.htm.

[19] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure reactive
systems. In Proc. 7th ACM Conference on Computer and Communications Security, pages
245–254, 2000.

[20] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its ap-
plication to secure message transmission. In Proc. 22nd IEEE Symposium on Security &
Privacy, pages 184–200, 2001.

28

[21] A. W. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR. In
Proc. 8th IEEE Computer Security Foundations Workshop (CSFW), pages 98–107, 1995.

[22] S. Schneider. Security properties and CSP. In Proc. 17th IEEE Symposium on Security &
Privacy, pages 174–187, 1996.

29

