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Abstra
t

We des
ribe a blo
k-
ipher mode of operation, EME, that turns an n-bit blo
k 
ipher into

a tweakable en
iphering s
heme that a
ts on strings of mn bits, where m 2 [1::n℄. The mode is

parallelizable, but as serial-eÆ
ient as the non-parallelizable mode CMC [6℄. EME 
an be used

to solve the disk-se
tor en
ryption problem. The algorithm entails two layers of ECB en
ryption

and a \lightweight mixing" in between. We prove EME se
ure, in the redu
tion-based sense of

modern 
ryptography. We motivate some of the design 
hoi
es in EME by showing that a few

simple modi�
ations of this mode are inse
ure.
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1 Introdu
tion

Tweakable en
iphering s
hemes and their use. A tweakable en
iphering s
heme is a fun
-

tion E that maps a plaintext P into a 
iphertext C = E

T

K

(P ) under the 
ontrol of a key K and

tweak T . The 
iphertext must have the same length as the plaintext and there must be an in-

verse D

T

K

to E

T

K

. We are interested in s
hemes that are se
ure in the sense of a tweakable, strong

pseudorandom-permutation (�gprp): an ora
le that maps (T; P ) into E

T

K

(P ) and maps (T;C) into

D

T

K

(C) must be indistinguishable (when the key K is random and se
ret) from an ora
le that

realizes a T -indexed family of random permutations and their inverses. A tweakable en
iphering

s
heme that is se
ure in the �gprp-sense makes a desirable tool for solving the disk-se
tor en
ryption

problem: one stores at disk-se
tor lo
ation T the 
iphertext C = E

T

K

(P ) for plaintext P . The IEEE

Se
urity in Storage Working Group [8℄ plans to standardize a �gprp-se
ure en
iphering s
heme.

Our 
ontribution. This paper spe
i�es EME, whi
h is a simple and parallelizable tweakable

en
iphering s
heme. The s
heme is built from a blo
k 
ipher, su
h as AES. By making EME par-

allelizable we a

ommodate ultra-high-speed mass-storage devi
es to the maximal extent possible

given our se
urity goals. When based on a blo
k 
ipher E: f0; 1g

k

� f0; 1g

n

! f0; 1g

n

our mode

uses a k-bit key and 2m+1 blo
k-
ipher 
alls to en
ipher anmn-bit plaintext in a way that depends

on an n-bit tweak. We require that m 2 [1::n℄.

The name EME is meant to suggest ECB-Mix-ECB, as en
iphering under EME involves ECB-

en
rypting the plaintext, a lightweight mixing step, and another ECB-en
ryption. For a des
ription

of EME look ahead to Figures 1 and 2.

We prove that EME is se
ure, assuming that the underling blo
k 
ipher is se
ure. The proof

is in the standard, provable-se
urity tradition: an atta
k on EME (as a �gprp with domainM =

f0; 1g

n

[ f0; 1g

2n

[ � � � [ f0; 1g

n

2

) is shown to imply an atta
k on the underlying blo
k 
ipher (as a

strong PRP with domain f0; 1g

n

).

We go on to motivate some of the 
hoi
es made in EME by showing that other 
hoi
es would

result in inse
ure s
hemes. Finally, we suggest an extension to EME that operates on se
tors that

are longer than mn bits.

CMC mode. The EME algorithm is follow-on work to the CMC method of Halevi and Rogaway [6℄.

Both modes are tweakable en
iphering s
hemes built from a blo
k 
ipher E: f0; 1g

k

� f0; 1g

n

!

f0; 1g

n

. But CMC is inherently sequential, as it is built around CBC en
ryption and de
ryption.

EME was designed to over
ome this limitation, whi
h was seen as potentially problemati
 for high-

speed en
ryption devi
es. The 
hange does not in
rease the serial 
omplexity; both modes use

2m+ 1 blo
k-
ipher 
alls (and little additional overhead) to a
t on an mn-bit messages.

Further history. Naor and Reingold gave an elegant approa
h for making a strong PRP on N

bits from a blo
k 
ipher on n < N bits [14, 15℄. Their approa
h involves a hashing step, a layer

of ECB en
ryption (say), and another hashing step. They do not give a fully-spe
i�ed mode, but

they do show how to 
arry out the hashing step given an xor-universal hash-fun
tion that maps N

bits to n bits [14℄. In pra
ti
e, instantiating this obje
t is problemati
: to 
ompare well with CMC

or EME one should �nd a 
onstru
tion that is simple and has a 
ollision bound of about 2

�128

and

is more eÆ
ient, in both hardware and software, than AES. No su
h 
onstru
tion is known.

An early, unpublished version of the CMC paper 
ontained buggy versions of the CMC and

EME algorithms. Joux dis
overed the problem [9℄ and thereby played a key role in our arriving

at a 
orre
t solution. CMC was easily �xed in response to Joux's atta
k, but EME did not admit

a simple �x. (Indeed, Se
tion 6.1 e�e
tively proves that no \simple �x" is possible for the earlier

buggy EME 
onstru
tion).

1



E�orts to 
onstru
t a blo
k 
ipher with a large blo
ksize from one with a smaller blo
ksize go

ba
k to Luby and Ra
ko� [13℄, who also put forward the notion of a PRP and a strong PRP. The


on
rete-se
urity treatment of PRPs that we use begins with Bellare, Kilian, and Rogaway [2℄. The

notion of a tweakable blo
k-
ipher is due to Liskov, Rivest, and Wagner [12℄. The �rst attempt

to dire
tly 
onstru
t an mn-bit blo
k 
ipher from an n-bit one is due to Zheng, Matsumoto, and

Imai [17℄. A di�erent approa
h is to build a wide-blo
ksize blo
k-
ipher from s
rat
h, as with

BEAR, LION, and Mer
y [1, 4℄.

Dis
ussion. EME has some advantages over CMC beyond its parallelizability. First, it uses a

single key for the underlying blo
k 
ipher, instead of two keys. All blo
k-
ipher 
alls are keyed by

this one key. Se
ond, en
iphering under EME uses only the forward dire
tion of the blo
k 
ipher,

while de
iphering now uses only the reverse dire
tion. This is 
onvenient when using a 
ipher su
h

as AES, where the two dire
tions are substantially di�erent, as a pie
e of hardware or 
ode might

need only to en
ipher or only to de
ipher. Finally, we prove EME se
ure as a variable-input-length

(VIL) 
ipher and not just as a �xed-input-length (FIL) one. This means that, in an atta
k, the

adversary may intermix plaintexts and 
iphertexts of various lengths.

We 
omment that the parallelizability goal is arguably of less utility for a �gprp-se
ure en
i-

phering s
heme than for some other 
ryptographi
 goals. This is be
ause, parallelizable or not,

a �gprp-se
ure en
ryption s
heme 
annot avoid having laten
y that grows with the length of the

message being pro
essed (to a
hieve the �gprp se
urity notion one 
annot output a single bit of


iphertext until the entire plaintext has been seen). Still, parallelizability is useful even here, and

the user 
ommunity wants it [7℄. More broadly, EME 
ontinues a tradition of trying to make modes

of operation (like CTR mode, IAPM/OCB [10, 16℄, and PMAC [3℄) that a
hieve parallelizability at

near-zero added 
omputational 
ost 
ompared to their intrinsi
ally serial 
ounterparts.

2 Preliminaries

Basi
s. We use the same notions and notation as in [6℄. A tweakable en
iphering s
heme is a

fun
tion E: K � T �M ! M where M =

S

i2I

f0; 1g

i

is the message spa
e (for some nonempty

index set I 2 N) and K 6= ; is the key spa
e and T 6= ; is the tweak spa
e. We require that for every

K 2 K and T 2 T we have that E(K;T; �) = E

T

K

(�) is a length-preserving permutation onM. The

inverse of an en
iphering s
heme E is the en
iphering s
heme D = E

�1

where X = D

T

K

(Y ) if and

only if E

T

K

(X) = Y . A blo
k 
ipher is the spe
ial 
ase of a tweakable en
iphering s
heme where the

message spa
e isM = f0; 1g

n

(for some n � 1) and the tweak spa
e is T = f"g (the empty string).

The number n is 
alled the blo
ksize.

An adversary A is a (possibly probabilisti
) algorithm with a

ess to some ora
les. Ora
les are

written as supers
ripts. By 
onvention, the running time of an algorithm in
ludes its des
ription

size. The notation A) 1 des
ribes the event that the adversary A outputs the bit one.

Se
urity measure. For a tweakable en
iphering s
heme E: K � T �M ! M we 
onsider the

advantage that the adversary A has in distinguishing E and its inverse from a random tweakable

permutation and its inverse:

Adv

�gprp

E

(A) = Pr

h

K

$

 K : A

E

K

(�;�)E

�1

K

(�;�)

) 1

i

� Pr

h

�

$

 Perm

T

(M) : A

�(�;�) �

�1

(�;�)

) 1

i

The notation show, in the bra
kets, an experiment to the left of the 
olon and an event to the

right of the 
olon. We are looking at the probability of the indi
ated event after performing the

spe
i�ed experiment. By X

$

 X we mean to 
hoose X at random from the �nite set X . By

Perm

T

(M) we mean the set of all fun
tions �: T �M !M where �(T; �) is a length-preserving
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permutation. By Perm(n) we mean all permutations on f0; 1g

n

. In writing �gprp the tilde serves

as a reminder that the PRP is tweakable and the � symbol is a reminder that this is the \strong"

(
hosen plaintext/
iphertext atta
k) notion of se
urity. For a blo
k 
ipher, we omit the tilde.

Without loss of generality we assume that an adversary never repeats an en
ipher query, never

repeats a de
ipher query, never queries its de
iphering ora
le with (T;C) if it got C in response to

some (T;M) en
ipher query, and never queries its en
iphering ora
le with (T;M) if it earlier got M

in response to some (T;C) de
ipher query. We 
all su
h queries pointless be
ause the adversary

\knows" the answer that it should re
eive.

When R is a list of resour
es and Adv

xxx

�

(A) has been de�ned, we write Adv

xxx

�

(R) for the

maximal value of Adv

xxx

�

(A) over all adversaries A that use resour
es at most R. Resour
es of

interest are the running time t and the number of ora
le queries q and the query 
omplexity �

n

(where n � 1 is a number). The query 
omplexity �

n

is measured as follows. A string X 
ontributes

maxfjXj=n; 1g to the query 
omplexity; a tuple of strings (X

1

;X

2

; : : :) 
ontributes the sum of

the 
ontributions of ea
h string; and the query 
omplexity of an adversary is the sum of the


ontributions from all ora
le queries plus the 
ontribution from the adversary's output. So, for

example, an adversary that asks ora
le queries (T

1

; P

1

) = (0

n

; 0

2n

) and then (T

2

; P

2

) = (0

n

; ") and

then outputs a bit b has query 
omplexity 3 + 2 + 1 = 6. The name of an argument (e.g., t or �

n

)

will be enough to make 
lear what resour
e it refers to.

Finite fields. We inter
hangeably view an n-bit string as: a string; a nonnegative integer less

than 2

n

(msb �rst); a formal polynomial over GF(2) (with the 
oeÆ
ient of x

n�1

�rst and the free

term last); and an abstra
t point in the �nite �led GF(2

n

). To do addition on �eld points, one xors

their string representations. To do multipli
ation on �eld points, one must �x a degree-n irredu
ible

polynomial. We 
hoose to use the lexi
ographi
ally �rst primitive polynomial of minimum weight.

For n = 128 this is the polynomial x

128

+x

7

+x

2

+x+1. See [5℄ for a list of the indi
ated polynomials.

We note that with this 
hoi
e of �eld-point representations, the point x = 0

n�2

10 = 2 will always

have order 2

n

� 1 in the multipli
ative subgroup of GF(2

n

), meaning that 2; 2

2

; 2

3

; : : : ; 2

2

n

�1

are

all distin
t. Finally, we note that given L = L

n�1

� � �L

1

L

0

2 f0; 1g

n

it is easy to 
ompute 2L.

We illustrate the pro
edure for n = 128, in whi
h 
ase 2L = L<<1 if �rstbit(L) = 0, and 2L =

(L<<1)� Const87 if �rstbit(L) = 1. (Here Const87 = 0

120

10

4

1

3

and �rstbit(L) means L

n�1

and

L<<1 means L

n�2

L

n�3

� � �L

1

L

0

0.)

3 Spe
i�
ation of EME

We 
onstru
t from blo
k 
ipher E: K � f0; 1g

n

! f0; 1g

n

a tweakable en
iphering s
heme that we

denote by EME[E℄ or EME-E. The en
iphering s
heme has key spa
e K, the same as the underlying


ipher, and tweak spa
e is T = f0; 1g

n

. The message spa
e M = f0; 1g

n

[ f0; 1g

2n

[ � � � f0; 1g

n

2


ontains any string having any number m of n-bit blo
ks, where m 2 [1::n℄. An illustration of

EME mode is given in Figure 2. In the �gures, all 
apitalized variables ex
ept forK are n-bit strings

(key K is an element of the key-spa
e K). Variable names P and C are meant to suggest plaintext

and 
iphertext. When we write E

T

K

(P

1

� � �P

m

) we mean that the in
oming plaintext P = P

1

� � �P

m

is silently partitioned into n-bit strings P

1

; : : : ; P

m

and when we write D

T

K

(C

1

� � �C

m

) we mean

that the in
oming 
iphertext C = C

1

� � �C

m

is partitioned into n-bit strings C

1

; : : : ; C

m

. It is an

error to provide E with a plaintext that is not mn bits for some m 2 [1 :: n℄, or to supply D with

a 
iphertext that is not mn bits for some m 2 [1::n℄.

4 Se
urity of EME

The following theorem relates the advantage an adversary 
an get in atta
king EME[E℄ to the

advantage that an adversary 
an get in atta
king the blo
k 
ipher E.
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Algorithm E

T

K

(P

1

� � �P

m

)

100 L 2E

K

(0

n

)

101 for i 2 [1 :: m℄ do

102 PP

i

 2

i�1

L� P

i

103 PPP

i

 E

K

(PP

i

)

110 SP  PPP

2

� � � � � PPP

m

111 MP  PPP

1

� SP � T

112 MC  E

K

(MP)

113 M  MP �MC

114 for i 2 [2 :: m℄ do CCC

i

 PPP

i

� 2

i�1

M

115 SC  CCC

2

� � � � � CCC

m

116 CCC

1

 MC � SC � T

120 for i 2 [1 :: m℄ do

121 CC

i

 E

K

(CCC

i

)

122 C

i

 CC

i

� 2

i�1

L

130 return C

1

� � �C

m

Algorithm D

T

Kt

(C

1

� � �C

m

)

200 L 2E

K

(0

n

)

201 for i 2 [1 :: m℄ do

202 CC

i

 2

i�1

L� C

i

203 CCC

i

 E

�1

K

(CC

i

)

210 SC  CCC

2

� � � � � CCC

m

211 MC  CCC

1

� SC � T

212 MP  E

�1

K

(MC )

213 M  MC �MP

214 for i 2 [2 :: m℄ do PPP

i

 CCC

i

� 2

i�1

M

215 SP  PPP

2

� � � � � PPP

m

216 PPP

1

 MP � SP � T

220 for i 2 [1 :: m℄ do

221 PP

i

 E

�1

K

(PPP

i

)

222 P

i

 PP

i

� 2

i�1

L

230 return P

1

� � �P

m

Figure 1: En
iphering (left) and de
iphering (right) under E = EME[E℄, where E: K � f0; 1g

n

! f0; 1g

n

is a

blo
k 
ipher. The tweak is T 2 f0; 1g

n

and the plaintext is P = P

1

� � �P

m

and the 
iphertext is C = C

1

� � �C

m

.

CCC

4

8L4L2LL

4M 8M2M

8L4LL 2L

MP

MC

SP � T

SC � T

CCC

1

PPP

1

CC

3

PP

3

PPP

3

CCC

3

P

3

C

3

CC

1

PP

1

P

1

C

1

CC

2

PP

2

CCC

2

PPP

2

P

2

C

2

PPP

4

PP

4

CC

4

P

4

C

4

Figure 2: En
iphering a four-blo
k message P

1

P

2

P

3

P

4

under EME. The boxes represent E

K

and L = 2E

K

(0

n

).

We set SP = PPP

2

� PPP

3

� PPP

4

and M =MP �MC and SC = CCC

2

� CCC

3

� CCC

4

.
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Theorem 1 [EME se
urity℄ Fix n; t; �

n

2 N and a blo
k 
ipher E: K�f0; 1g

n

! f0; 1g

n

. Then

Adv

�gprp

EME[Perm(n)℄

(�

n

) �

7 �

2

n

2

n

and (1)

Adv

�gprp

EME[E℄

(t; �

n

) �

7 �

2

n

2

n

+ 2Adv

�prp

E

(t

0

; �

n

) (2)

where t

0

= t+O(�

n

). 2

The heart of Theorem 1 is Equation (1), whi
h is given in Appendix B. Equation (2) embodies the

standard way to pass from the information-theoreti
 setting to the 
omplexity-theoreti
 one.

5 Proof Ideas

Sin
e the proof in Appendix B is quite long we give a brief sket
h here of some of its ideas. We


onsider an atta
k against EME as a game between the atta
ker and the mode itself, where the


ipher is repla
ed by a truly random permutation and this permutation is 
hosen \on the 
y"

during this game. We give names to all of the internal blo
ks that o

ur in the game, where an

internal blo
k is any of the n-bit values PP

i

, PPP

i

, MP , MC , CCC

i

, CC

i

that arise as the game

is played. For example, PPP

s

i

is the PPP

i

-blo
k of the s

th

query of the atta
ker.

As usual with su
h modes, the 
ore of the proof is to show that \a

idental 
ollisions" are

unlikely. An a

idental 
ollision is an equality between two internal blo
ks whi
h is not obviously

guaranteed due to the stru
ture of the mode. Spe
i�
ally, an equality between the i

th

blo
ks

in two di�erent en
ipher queries P

s

i

= P

t

i

implies that we also have the equalities PP

s

i

= PP

t

i

and PPP

s

i

= PPP

t

i

and so these do not 
ount as 
ollisions. (And likewise for de
ipher queries.)

Most other 
ollisions are 
onsidered a

idental 
ollisions and we show that those rarely happen.

1

Showing that a

idental 
ollisions are rare is ultimately done by 
ase analysis (but, as usual, it takes

a non-trivial argument to get there). For example, in one 
ase we show that with high probability

PP

s

i

6= PP

t

j

; in another 
ase we show that with high probability PPP

s

i

6= MC

t

.

The analysis of most of the 
ases is standard. Below we illustrate one of the more interesting


ases. We show that for an en
ipher query P

s

the blo
k MP

s

does not 
ollide with any of the

previous MP

r

blo
ks (
f. Claim 7 in Appendix B). This is easily seen if any of the plaintext blo
ks

P

s

i

is a \new blo
ks" (i.e., di�erent than P

r

i

for all r < s). But we need to show it also for the


ase where the plaintext P

s

was obtained by \mix-and-mat
hing" blo
ks from previous plaintext

ve
tors. So let r < s be the last plaintext that share some blo
ks with P

s

, i.e., P

r

i

= P

s

i

for some

index i. This means that all the blo
ks P

s

i

appeared in queries no later than r If queries s and r

sport the same plaintext ve
tors, P

r

= P

s

, and di�er only in the tweak values, T

r

6= T

s

, then we


learly have MP

r

�MP

s

= T

r

� T

s

6= 0. So assume that P

r

6= P

s

, let Eq be the set of indexes

where they are equal, and denote D

r

= f1::m

r

g � Eq and D

s

= f1::m

s

g � Eq , where m

s

and m

r

are the lengths (in blo
ks) of queries r and s. That is, P

r

i

= P

s

i

exa
tly for all i 2 Eq , whi
h means

that all the blo
ks P

s

i

for i 2 D

s

appeared in queries before query r. This, in turn, implies that the

value of PPP

s

i

for any i 2 D

s

depends only on things that were determined before query r.

Assume that query r was de
ipher (and that MC

r

did not already a

identally 
ollide with

anything), so MP

r

was 
hosen \almost at random" during the pro
essing of query r. We show

that the sum MP

s

�MP

r


an be expressed as aMP

r

+ �, where a 6= 0 is a 
onstant and � is some

1

A
tually, we only 
are about 
ollisions between two values in the domain of � or between two values in its range;


ollisions between a domain value and a range value, su
h as PP

s

i

= CC

r

i

, are in
onsequential and we ignore those.

5



expression that only depends on things that were determined before the 
hoi
e of MP

r

. Thus, the

sum MP

s

�MP

r

is rarely zero. We 
an write this sum as

MP

s

�MP

r

= T

s

�

m

s

X

i=1

PPP

s

i

� T

r

�

m

r

X

i=1

PPP

r

i

= T

r

� T

s

�

X

i2D

s

PPP

s

i

�

X

i2D

r

PPP

r

i

= things-that-were-determined-before-query-r �

X

i2D

r

PPP

r

i

Assuming thatD

r

is non-empty, it is suÆ
ient to show that we 
an express

P

i2D

r

PPP

r

i

= aMP

r

+�

where a is non-zero and � only depends on things that were determined before the 
hoi
e of MP

r

(
f. Claim 2 in Appendix B). There are two 
ases in this proof, depending on whether 1 2 D

r

or

not, but they both boil down to the same point: sin
e we use the value 2

i�1

(MC

s

�MP

s

) to mask

the CCC

i

blo
k, the sum of PPP

r

i

's 
an be written as

X

i2D

r

PPP

r

i

= some-expression-in-the-CCC

r

i

's-and-MC

r

�

 

X

i2D

0

2

i�1

!

MP

r

where D

0

is also a non-empty set, D

0

� [1::m

r

℄, and so the 
oeÆ
ient of MP

r

in this expression is

non-zero. The 
ase where query r is en
ipher is a bit longer, but it uses similar observations.

One last \tri
k" that is worth mentioning is the way we handle an adaptive adversary. To bound

the probability of a

idental 
ollisions we analyze this probability in the presen
e of an augmented

adversary, that 
an spe
ify both the queries and their answers. That is, we let the adversary spe
ify

the entire trans
ript (with some minor restri
tions) then 
hoose some \permutation" � that maps

the given queries to the given answers, and then 
onsider the probability of a

idental 
ollisions.

Clearly, this augmented adversary is no longer adaptive, hen
e the analysis be
omes more tra
table.

6 Some Inse
ure Modi�
ations

In this se
tion we justify two of our design 
hoi
es by showing that 
hanging them would result in

inse
ure s
hemes. Spe
i�
ally, we show that the blo
k-
ipher 
all that sits in between the two ECB

layers is e�e
tively unavoidable, and we show that that the length restri
tion m < n also is needed.

6.1 The \extra" blo
k-
ipher 
all is needed

The EME 
onstru
tion has three blo
k-
ipher invo
ations in its \
riti
al path" (that is, the 
on-

stru
tion is depth-3 in blo
k-
ipher gates). We now show that, in some sense, this is the best that

you 
an do for a 
onstru
tions of this type. Spe
i�
ally, we show that for a 
onstru
tion of the type

ECB-Mix-ECB, implementing the intermediate mixing layer by any linear transformation always

results in an inse
ure s
heme. This remains true even for an untweakable s
heme, even when one


onsiders only �xed-input-length inputs, even when ea
h blo
k-
ipher 
all in ea
h ECB en
ryption

layer uses an independent key, and even if the linear transformation in the middle is key-dependent.

This result implies that, as opposed to the Hash-En
rypt-Hash approa
h that was proven se
ure

by Naor and Reingold [15℄, the \dual" approa
h of En
rypt-Hash-En
rypt will not be se
ure under

typi
al assumptions.

2

Formally, �x m;n 2 N with m � 2, and let E: K � f0; 1g

n

! f0; 1g

n

be a blo
k 
ipher. The

s
heme E = BrokenEME is de�ned on message spa
e f0; 1g

mn

and key spa
e K

2m

�K

0

where K

0

is

a set of invertible linear transformations on f0; 1g

mn

. BrokenEME is keyed with 2m independent

keys K

1

; : : : ;K

m

;K

0

1

; : : : ;K

0

m

2 K, and with an invertible (possibly se
ret) linear transformation

3

2

This may seem somewhat surprising, as one may think that En
rypt-Hash-En
rypt should be at least as se
ure

sin
e it uses \more 
ryptography".

3

In fa
t, it is easy to see that the atta
k des
ribed below works also when T is an aÆne transformation.
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T : f0; 1g

mn

! f0; 1g

mn

. To en
ipher a plaintext P = P

1

� � �P

m

2 f0; 1g

mn

we do the following:

Set PPP

i

= E

k

i

(P

i

) for i = 1 : : : m. Let PPP = PPP

1

� � �PPP

m

be the 
on
atenation of the

PPP

i

blo
ks (PPP 2 f0; 1g

mn

).

Apply the linear transformation T to obtain CCC = CCC

1

� � �CCC

m

= T (PPP).

Set C

i

= E

k

0

i

(CCC

i

) for i = 1 : : : m. The 
iphertext is the 
on
atenation of all the C

i

blo
ks,

C = C

1

� � �C

m

2 f0; 1g

mn

.

De
iphering is done in the obvious way.

We now give an adversary A that atta
ks the mode, distinguishing it from a truly random

permutation and its inverse using only four queries. Denote the adversary with it's ora
les as

A

E D

. The adversary A pi
ks two mn-bit plaintexts that di�er only in their �rst blo
k, namely

P

1

= P

1

P

2

� � �P

m

and P

2

= P

0

1

P

2

� � �P

m

(with P

1

6= P

0

1

). Then A queries its ora
le as follows:

(1) Let C

1

= C

1

1

� � �C

1

m

 E(P

1

) and let C

2

= C

2

1

� � �C

2

m

 E(P

2

).

(2) Create two \
omplementing mixes" of the two 
iphertexts, for example C

3

= C

2

1

C

1

2

� � �C

1

m

and

C

4

= C

1

1

C

2

2

� � �C

2

m

.

(3) Let P

3

= P

3

1

� � �P

3

m

 D(C

3

) and let P

4

= P

4

1

� � �P

4

m

 D(C

4

).

If the plaintext ve
tors P

3

and P

4

agree in all but their �rst blo
k then A outputs 1 (\real")

while otherwise it outputs 0 (\random"). To see that this works, we denote the intermediate

variables in the four queries by PPP

i

j

and CCC

i

j

(i = 1::4 and j = 1::m) and denote the \ve
tor

of di�eren
es" between PPP

1

and PPP

2

by DP = DP

1

� � �DP

m

def

= PPP

1

� PPP

2

. Sin
e P

1

and P

2

agree everywhere ex
ept in their �rst blo
k, it follows that also the \ve
tor of di�eren
es"

DP is zero everywhere ex
ept in the �rst blo
k. Similarly, we denote the \ve
tor of di�eren
es"

between CCC

1

and CCC

2

by DC = DC

1

� � �DC

m

def

= CCC

1

� CCC

2

and sin
e we 
omputed

CCC

i

= T (PPP

i

) and T is a linear transformation, it follows that DC = T (PPP

1

)� T (PPP

2

) =

T (PPP

1

� PPP

2

) = T (DP). Re
all now that for any j 2 [1::m℄ we have either C

3

j

= C

1

j

and C

4

j

=

C

2

j

, or C

3

j

= C

2

j

and C

4

j

= C

1

j

. It follows that for all j, CCC

3

j

� CCC

4

j

= CCC

1

j

� CCC

2

j

= DC

j

,

namely CCC

3

� CCC

4

= DC . Putting this together we now 
ompute PPP

3

� PPP

4

as:

PPP

3

� PPP

4

= T

�1

(CCC

3

)� T

�1

(CCC

4

)

= T

�1

(CCC

3

�CCC

4

) = T

�1

(DC ) = T

�1

(T (DP)) = DP

This means that PPP

4

j

= PPP

3

j

for j = 2::m, and therefore also P

4

j

= P

3

j

for all but the �rst blo
k.

6.2 Ne
essity of the Length Restri
tion

Re
all that EME is de�ned on message spa
e M =

S

m2[1::n℄

f0; 1g

mn

. Here we show that the

restri
tion m � n is justi�ed. In fa
t, we do not know whether allowing m = n + 1 breaks the

se
urity of EME, but we 
an show that allowing m = n + 2 permits easy distinguishing atta
ks.

The details of the atta
k depend somewhat on the representation of the �eld GF(2

n

). Below

we demonstrate it for n = 128, where the �eld GF(2

128

) is represented using the polynomial

P

128

(x) = x

128

+ x

7

+ x

2

+ x+ 1.

Assume that m � n + 2 and let J be a nonempty proper subset of the indexes from 2 to m,

J � f2; 3; : : : ;mg, J 6= ;, su
h that in the �eld GF(2

n

) we have

P

j2J

2

j�1

= 0. For example, when

GF(2

128

) is represented using P

128

, we have

2

129

+ 2

8

+ 2

3

+ 2

2

+ 2

1

= 2(2

128

+ 2

7

+ 2

2

+ 2

1

+ 2

0

) = 0

so we 
an set J = f130; 9; 4; 3; 2g. The atta
k pro
eeds as follows:

7



(1) Pi
k an arbitrary tweak T . All the queries in the atta
k will use the same tweak T . (In

other words, the atta
k works also when EME is used as an untweakable s
heme.) Pi
k two

plaintext ve
tors that di�er only in their �rst blo
k, P

1

= P

1

P

2

: : : P

m

and P

2

= P

0

1

P

2

� � �P

m

(with P

1

6= P

0

1

).

(2) En
ipher both plaintext ve
tors to get C

1

= E(T; P

1

) and C

2

= E(T; P

2

).

(3) Create a 
iphertext ve
tor C

3

su
h that C

3

j

=

(

C

1

j

if j 2 J

C

2

j

if j =2 J

.

(4) De
ipher C

3

to get P

3

= D(T;C

3

).

Output 1 (\real") if P

3

and P

2

agree in all the blo
ks j 2 ([2::m℄ n J) and output 0 (\random")

otherwise. To see that this works we denote the intermediate variables in the three queries by

PPP

i

j

and CCC

i

j

and MP

i

and MC

i

and M

i

(i = 1::3 and j = 1::m).

We note that PPP

1

j

= PPP

2

j

for all j 2 [2::m℄, and in parti
ular for all j 2 J . Also, from the


onstru
tion of C

3

we get that CCC

3

j

= CCC

1

j

for j 2 J and CCC

3

j

= CCC

2

j

for j =2 J . Thus

MC

2

�MC

3

=

0

�

T �

m

X

j=1

CCC

2

j

1

A

�

0

�

T �

m

X

j=1

CCC

3

j

1

A

=

X

j2J

�

CCC

2

j

�CCC

3

j

�

=

X

j2J

�

CCC

2

j

� CCC

1

j

�

=

X

j2J

�

(PPP

2

j

� 2

j�1

M

2

)� (PPP

1

j

� 2

j�1

M

1

)

�

=

X

j2J

�

2

j�1

M

2

+ 2

j�1

M

1

�

= (M

2

+M

1

)

X

j2J

2

j�1

= 0

So we have MC

3

=MC

2

and therefore also MP

3

= MP

2

and M

3

=M

2

. Thus for any j =2 J , j > 1

we have PPP

3

j

= CCC

3

j

� 2

j�1

M

3

= CCC

2

j

+ 2

j�1

M

2

= PPP

2

j

and therefore also P

3

j

= P

2

j

.
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A Extending EME to Longer Messages

The restri
tion on the message size of EME, m � n, means, for example, that when using AES

as the underlying 
ipher one 
annot en
rypt messages longer than 2KB. In some appli
ations this

restri
tion 
ould be problemati
. We now des
ribe EME

+

, an extension of EME that 
an be used

to handle message of pra
ti
ally any length (as long as it is an integral number of blo
ks).

The idea is to divide the m-blo
k input into \
hunks" of at most n blo
ks ea
h su
h that in

ea
h \
hunk" we use 
onstru
tion similar to EME. Spe
i�
ally, in the �rst \
hunk" we use exa
tly

the same 
onstru
tion as in EME. In all the other \
hunks" we use a similar 
onstru
tion, ex
ept

that we repla
e the addition of SP � T and SC � T (before and after the \extra blo
k 
ipher 
all"

in between the two ECB layers) by additions of the mask M

1

from the �rst \
hunk".
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Algorithm E

T

K

(P

1

� � �P

m

)

100 L 2E

K

(0

n

)

101 for i 2 [1 :: m℄ do

102 PP

i

 2

i�1

L� P

i

, PPP

i

 E

K

(PP

i

)

110 MP

1

 PPP

1

� PPP

2

� � � � � PPP

m

� T

111 MC

1

 E

K

(MP

1

), M

1

 MP

1

�MC

1

112 for i 2 [2::n℄ do CCC

i

 PPP

i

� 2

i�1

M

1

113 for j 2 [2 :: dm=ne℄ do

114 MP

j

 PPP

(j�1)n+1

�M

1

115 MC

j

 E

K

(MP

j

), M

j

 MP

j

�MC

j

116 CCC

1+(j�1)n

 MC

j

�M

1

117 for i 2 [2 + (j � 1)n :: jn℄ do

118 CCC

i

 PPP

i

� 2

i�1 mod n

M

j

119 CCC

1

 MC

1

� CCC

2

� � � � � CCC

m

� T

120 for i 2 [1 :: m℄ do

121 CC

i

 E

K

(CCC

i

), C

i

 CC

i

� 2

i�1

L

130 return C

1

� � �C

m

Algorithm D

T

Kt

(C

1

� � �C

m

)

200 L 2E

K

(0

n

)

201 for i 2 [1 :: m℄ do

202 CC

i

 2

i�1

L� C

i

, CCC

i

 E

�1

K

(CC

i

)

210 MC

1

 CCC

1

� CCC

2

� � � � � CCC

m

� T

211 MP

1

 E

�1

K

(MC

1

), M

1

 MC

1

�MP

1

212 for i 2 [2::n℄ do PPP

i

 CCC

i

� 2

i�1

M

1

213 for j 2 [2 :: dm=ne℄ do

214 MC

j

 CCC

(j�1)n+1

�M

1

215 MP

j

 E

�1

K

(MC

j

), M

j

 MC

j

�MP

j

216 PPP

1+(j�1)n

 MP

j

�M

1

217 for i 2 [2 + (j � 1)n :: jn℄ do

218 PPP

i

 CCC

i

� 2

i�1 mod n

M

j

219 PPP

1

 MP

1

� PPP

2

� � � � � PPP

m

� T

220 for i 2 [1 :: m℄ do

221 PP

i

 E

�1

K

(PPP

i

), P

i

 PP

i

� 2

i�1

L

230 return P

1

� � �P

m

Figure 3: En
iphering (left) and de
iphering (right) under E = EME

+

[E℄, where E: K�f0; 1g

n

! f0; 1g

n

is a

blo
k 
ipher. The tweak is T 2 f0; 1g

n

and the plaintext is P = P

1

� � �P

m

and the 
iphertext is C = C

1

� � �C

m

.

. . .

. . .

P

n+2

C

n+2

CC

n+2

CCC

n+2

PPP

n+2

PP

n+2

PP

n+1

PPP

n+1

CCC

n+1

CC

n+1

C

n+1

P

n+1

C

2

P

2

CC

2

CCC

2

PPP

2

PP

2

2

n+1

L

2

n+1

L

2M

2

M

1

M

1

2

n

L

2

n

L2L

2L

2M

1

MC

2

MP

2

2

n�1

L

2

n�1

L

P

n

C

n

2

n�1

M

1

PP

n

PPP

n

CCC

n

CC

n

MP

1

MC

1

SC � T

L

SP � T

P

1

C

1

PPP

1

PP

1

CCC

1

CC

1

L

Figure 4: En
iphering an (n + 2)-blo
k message under EME

+

. The boxes represent E

K

and L = 2E

K

(0

n

).

We set SP = PPP

2

� � � �PPP

m

, M

i

= MP

i

�MC

i

, and SC = CCC

2

� � � � � CCC

m

.
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We spe
ify in Figure 3 both the forward dire
tion of our 
onstru
tion, E = EME

+

[E℄, and its

inverse D. An illustration of EME

+

mode is given in Figure 4. One observes that EME

+

is a

\proper extension" of EME in that when we use it on a message of length m � n blo
ks, we get

ba
k the original EME mode.

Although we have not written a proof of se
urity for EME

+

we expe
t that su
h proof 
an be

written. One would follow the arguments in the proof for the basi
 EME in Appendix B, ex
ept

that one needs to analyze a few more 
ases in the 
ase analysis (spe
i�
ally in the proof of Claim 7).

B Proof of Theorem 1 | Se
urity of EME

Our proof of se
urity for EME is divided into two parts: in Se
tion B.1 we 
arry out a game-

substitution argument, redu
ing the analysis of EME to the analysis of a simpler probabilisti


game. In Se
tion B.2 we analyze that simpler game. Before we begin we �rst re
all a little lemma,

saying that a (tweakable) truly random permutation looks very mu
h like an ora
le that just returns

random bits (as long as you never ask pointless queries). So instead of analyzing indistinguishability

from a random permutation we 
an analyze indistinguishability from random bits.

Let E: K � T � M ! M be a tweaked blo
k-
ipher and let D be its inverse. De�ne the

advantage of distinguishing E from random bits, Adv

�

g

rnd

E

, by

Adv

�

g

rnd

E

(A) = Pr[K

$

 K : A

E

K

(�;�)D

K

(�;�)

) 1 ℄� Pr[A

$(�;�) $(�;�)

) 1 ℄

where $(T;M) returns a random string of length jM j. We insist that A makes no pointless queries,

regardless of ora
le responses, and A asks no query (T;M) outside of T � M. We extend the

de�nition above in the usual way to its resour
e-bounded versions. We have the following lemma,

whose (standard) proof 
an be found, for example, in the full version of [6℄.

Lemma 2 [�gprp-se
urity � �

g

rnd-se
urity℄ Let E: K�T �M!M be a tweaked blo
k-
ipher

and let q � 1 be a number. Then jAdv

�gprp

E

(q) � Adv

�

g

rnd

E

(q)j � q(q � 1)=2

N+1

where N is the

length of a shortest string inM. 2

B.1 The game-substitution sequen
e

Fix n, �

n

, and q. Let A be an adversary that asks q ora
le (none pointless) and has query


omplexity �

n

. Our goal is to show that Adv

�

g

rnd

EME[Perm(n)℄

(A) � 2Pr[NON2 sets bad ℄ +

q�

n

2

n

where

NON2 is some probability spa
e and \NON2 sets bad " is an event de�ned there. Later we bound

Pr[NON2 sets bad ℄, and, putting that together with Lemma 2, we get Equation (1) of Theorem 1.

Game NON2 is obtained by a game-substitution argument, as 
arried out in works like [11℄.

The goal is to simplify the rather 
ompli
ated setting of A adaptively querying its ora
les, and to

arrive at a simpler setting where there is no adversary and no intera
tion|just a program that


ips 
oins and a 
ag bad that does or does not get set.

Game EME1. We begin by des
ribing the atta
k s
enario of A against EME[Perm(n)℄ as a

probabilisti
 game in whi
h the permutation � is 
hosen \on the 
y", as needed to answer the

queries of A. Initially, the partial fun
tion �: f0; 1g

n

! f0; 1g

n

is everywhere unde�ned. When we

need �(X) and � isn't yet de�ned at X we 
hoose this value randomly among the available range

values. When we need �

�1

(Y ) and there is no X for whi
h �(X) has been set to Y we likewise


hoose X at random from the available domain values. As we �ll in � its domain and its range thus

grows. In the game we keep tra
k of the domain and range of � by maintaining two sets, Domain

and Range, that in
lude all the points for whi
h � is already de�ned. We let Domain and Range be

11



Subroutine Choose-�(X):

010 Y

$

 f0; 1g

n

; if Y 2 Range then bad true , Y

$

 Range

011 if X 2 Domain then bad true , Y  �(X)

012 �(X) Y , Domain Domain [ fXg, Range Range [ fY g; return Y

Subroutine Choose-�

�1

(Y ):

020 X

$

 f0; 1g

n

; if X 2 Domain then bad true , X

$

 Domain

021 if Y 2 Range then bad true , X  �

�1

(Y )

022 �(X) Y , Domain Domain [ fXg, Range Range [ fY g; return X

Initialization:

030 bad false; for all X 2 f0; 1g

n

do �(X) undef

031 EZ

$

 f0; 1g

n

; L 2EZ

032 �(0

n

) EZ ; Domain f0

n

g; Range fEZg

Respond to the s-th adversary query as follows:

An en
ipher query, En
(T

s

;P

s

1

� � �P

s

m

s

):

110 for i 1 to m

s

do

111 Let r = r[s; i℄ be the smallest index s.t. P

s

i

= P

r

i

112 if r < s then PP

s

i

 PP

r

i

, PPP

s

i

 PPP

r

i

113 else PP

s

i

 P

s

i

� 2

i�1

L; PPP

s

i

 Choose-�(PP

s

i

)

120 MP

s

 PPP

s

1

� PPP

s

2

� � � � � PPP

s

m

s

� T

s

121 MC

s

 Choose-�(MP

s

)

122 for i 2 [2 :: m℄ do CCC

s

i

 PPP

s

i

� 2

i�1

(MP

s

�MC

s

)

123 CCC

s

1

 MC

s

� CCC

s

2

� � � � � CCC

s

m

� T

130 for i 1 to m

s

do

131 CC

s

i

 Choose-�(CCC

s

i

); C

s

i

 CC

s

i

� 2

i�1

L

140 return C

1

� � �C

m

s

A de
ipher query, De
(T

s

;C

s

1

� � �C

s

m

s

) :

210 for i 1 to m

s

do

211 Let r = r[s; i℄ be the smallest index s.t. C

s

i

= C

r

i

212 if r < s then CC

s

i

 CC

r

i

, CCC

s

i

 CCC

r

i

213 else CC

s

i

 C

s

i

� 2

i�1

L; CCC

s

i

 Choose-�

�1

(CC

s

i

)

220 MC

s

 CCC

s

1

� CCC

s

2

� � � � � CCC

s

m

s

� T

s

221 MP

s

 Choose-�

�1

(MC

s

)

222 for i 2 [2 :: m℄ do PPP

s

i

 CCC

s

i

� 2

i�1

(MP

s

�MC

s

)

223 PPP

s

1

 MP

s

� PPP

s

2

� � � � � PPP

s

m

� T

230 for i 1 to m

s

do

231 PP

s

i

 Choose-�

�1

(PPP

s

i

); P

s

i

 PP

s

i

� 2

i�1

L

240 return P

1

� � �P

m

s

Figure 5: Game EME1 des
ribes the atta
k of A on EME[Perm(n)℄, where the permutation � is 
hosen \on the


y" as needed. Game RND1 is the same as game EME1, ex
ept we do not exe
ute the shaded statements.
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Initialization:

000 bad false; EZ

$

 f0; 1g

n

; Domain Range f0

n

;EZg; L 2EZ

Respond to the s-th adversary query as follows:

An en
ipher query, En
(T

s

;P

s

1

� � �P

s

m

s

):

110 for i 1 to m

s

do

111 Let r = r[s; i℄ be the smallest index s.t. P

s

i

= P

r

i

112 if r < s then PP

s

i

 PP

r

i

, PPP

s

i

 PPP

r

i

113 else PP

s

i

 P

s

i

� 2

i�1

L; if PP

s

i

2 Domain then bad true

115 PPP

s

i

$

 f0; 1g

n

; if PPP

s

i

2 Range then bad true

116 Domain Domain [ fPP

s

i

g, Range Range [ fPPP

s

i

g

120 MP

s

 PPP

s

1

� PPP

s

2

� � � � � PPP

s

m

s

� T

s

; if MP

s

2 Domain then bad true

121 MC

s

$

 f0; 1g

n

; if MC

s

2 Range then bad true

122 Domain Domain [ fMP

s

g, Range Range [ fMC

s

g

123 for i 2 [2 :: m℄ do CCC

s

i

 PPP

s

i

� 2

i�1

(MP

s

�MC

s

)

124 CCC

s

1

 MC

s

� CCC

s

2

� � � � � CCC

s

m

� T

s

130 for i 1 to m

s

do

131 C

s

i

$

 f0; 1g

n

;

132 CC

s

i

 C

s

i

� 2

i�1

L; if CC

s

i

2 Range then bad true

133 if CCC

s

i

2 Domain then bad true

134 Domain Domain [ fCCC

s

i

g, Range Range [ fCC

s

i

g

140 return C

1

� � �C

m

s

A de
ipher query, De
(T

s

;C

s

1

� � �C

s

m

s

), is treated symmetri
ally

Figure 6: Game RND2 is indistinguishable from Game RND1 but 
hooses some of its variables in di�erent order.

the 
omplement of these sets relative to f0; 1g

n

. The game, denoted EME1, is shown in Figure 5.

Sin
e game EME1 a

urately represent the atta
k s
enario, we have that

Pr[A

E

�

D

�

) 1 ℄ = Pr[A

EME1

) 1 ℄ (3)

Game RND1. We next modify game EME1 by omitting the statements that immediately follow

the setting of bad to true. (This is the usual tri
k under the game-substitution approa
h.) Namely,

before we were making some 
onsisten
y 
he
ks after ea
h random 
hoi
e �(X) = Y

$

 f0; 1g

n

to

see if this value of Y was already in use, or if � was already de�ned at X, and we reset out 
hoi
e

of Y as needed. Now we still make these 
he
ks and set the 
ag bad, but we do not reset the 
hosen

value of Y . This means that � may end up not being a permutation, and moreover we may reset

its value on previously 
hosen points.

Still, the games EME1 and RND1 are synta
ti
ally identi
al apart from what happens after

the setting of the 
ag bad to true. On
e the 
ag bad is set to true the subsequent behavior of the

game does not impa
t the probability that an adversary A intera
ting with the game 
an set the


ag bad to true. This is exa
tly the setup used in the game-substitution method to 
on
lude that

Pr[A

EME1

) 1 ℄� Pr[A

RND1

) 1 ℄ � Pr[A

RND1

sets bad ℄ (4)

Game RND2. We now make three adversarially-invisible 
hanges to game RND1. First, we note

that the fun
tion � (and its inverse) are never used in game RND1, so we just remove them from

13



the 
ode. Next, instead of 
hoosing CC

s

i

$

 f0; 1g

n

and then setting C

s

i

 CC

s

i

� 2

i

L (in en
ipher

queries, line 131), we will now 
hoose C

s

i

$

 f0; 1g

n

and then set CC

s

i

 C

s

i

� 2

i

L. Clearly, this


hange preserves the distribution of all these variables. The analogous 
omments apply to the


hoi
e of PP

s

i

and P

s

i

in de
ipher queries; we 
ould just as well have 
hosen P

s

i

at random and

de�ned PP

s

i

using it. The last 
hange that we make is to arti�
ially add 0

n

also to the Range set,

and the value EZ (whi
h was meant to represent �(0

n

)) to the Domain set. This last 
hange is

meant to make the en
ipher and de
ipher dire
tions 
ompletely symmetri
, so that we 
an redu
e

the number of 
ases that we need to handle in the analysis to 
ome. Note that this last 
hange has

no e�e
t on the answers that are returned to the adversary. Its only e�e
t is to slightly in
rease

the probability that the 
ag bad is set.

The resulting game RND2 is des
ribed in Figure 6. (In that �gure we did not bother des
ribing

the de
ipher queries, as they are 
ompletely symmetri
 to the en
ipher queries.) It is 
lear that

the 
hanges we made do has no e�e
t on the probability that A returns one (as they do not 
hange

anything in the intera
tion between A and its ora
les), and they 
an only in
rease the probability

of setting 
ag bad. Hen
e we 
on
lude that

Pr[A

RND1

) 1 ℄ = Pr[A

RND2

) 1 ℄ and Pr[A

RND1

sets bad ℄ � Pr[A

RND2

sets bad ℄ (5)

We note that in game RND2 we respond to any m-blo
k En
-query by returning nm random bits,

C

1

� � �C

m

. Similarly, we respond to anym-blo
k De
-query by returning nm random bits, P

1

� � �P

m

.

Thus RND2 provides an adversary with an identi
al view to a pair of random-bit ora
les,

Pr[A

RND2

) 1 ℄ = Pr[A

�

g

rnd

) 1 ℄ (6)

Combining Equations 3, 4, 5, and 6, we thus have that

Adv

�

g

rnd

EME[Perm(n)℄

(A) = Pr[A

EME1

) 1 ℄� Pr[A

RND2

) 1 ℄

= Pr[A

EME1

) 1 ℄� Pr[A

RND1

) 1 ℄

� Pr[A

RND1

sets bad ℄

� Pr[A

RND2

sets bad ℄ (7)

Our task is thus to bound Pr[A

RND2

sets bad ℄.

Game RND3. Next we reorganize game RND2 so as to separate out (i) 
hoosing random values

to return to the adversary, (ii) de�ning intermediate variables, and (iii) setting the 
ag bad.

We remarked that game RND2 returns mn random bits in response to any m-blo
k query.

Now, in game RND3, shown in Figure 7, we make that even more 
lear by 
hoosing the ne
essary

C

s

= C

s

1

� � �C

s

m

s

or P

s

= P

s

1

� � �P

s

m

s

response just as soon as the s

th

query is made. Nothing else is

done at that point ex
ept for re
ording if the adversary made an En
 query or a De
 query.

When the adversary �nishes all of its ora
le queries and halts, we exe
ute the \�nalization"

step of game RND3. First, we go over all the variables of the game and determine their values, just

as we do in game RND2. While doing so, we 
olle
t all the values in the sets Domain and Range,

this time viewing them as multisets D and R, respe
tively. When we are done setting values to all

the variables, we go ba
k and look at D and R. The 
ag bad is set if (and only if) any of these

multisets 
ontains some value more than on
e. This pro
edure is designed to set bad under exa
tly

the same 
onditions as in game RND2. The following is thus 
lear:

Pr[A

RND2

sets bad ℄ = Pr[A

RND3

sets bad ℄ (8)
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Respond to the s-th adversary query as follows:

An en
ipher query, En
(T

s

;P

s

1

� � �P

s

m

s

):

010 ty

s

 En


011 C

s

= C

s

1

� � �C

s

m

s

$

 f0; 1g

nm

s

012 return C

s

A de
ipher query, De
(T

s

;C

s

1

� � �C

s

m

s

):

020 ty

s

 De


021 P

s

= P

s

1

� � �P

s

m

s

$

 f0; 1g

nm

s

022 return P

s

Finalization:

First phase

050 EZ

$

 f0; 1g

n

; L 2EZ ; D R f0

n

;EZ g // D;R are multisets

051 for s 1 to q do

100 if ty

s

= En
 then

110 for i 1 to m

s

do

111 Let r = r[s; i℄ be the smallest index s.t. P

s

i

= P

r

i

112 if r < s then PP

s

i

 PP

r

i

, PPP

s

i

 PPP

r

i

113 else PP

s

i

 P

s

i

� 2

i�1

L; D D [ fPP

s

i

g

114 PPP

s

i

$

 f0; 1g

n

; R R [ fPPP

s

i

g

120 MP

s

 PPP

s

1

� PPP

s

2

� � � � � PPP

s

m

s

� T

s

; D D [ fMP

s

g

121 MC

s

$

 f0; 1g

n

; R R [ fMC

s

g

122 for i 2 [2 :: m℄ do CCC

s

i

 PPP

s

i

� 2

i�1

(MP

s

�MC

s

)

123 CCC

s

1

 MC

s

� CCC

s

2

� � � � � CCC

s

m

� T

s

130 for i 1 to m

s

do

131 CC

s

i

 C

s

i

� 2

i�1

L; R Range [ fCC

s

i

g

132 D Domain [ fCCC

s

i

g

200 The 
ase ty

s

= De
 is treated symmetri
ally

Se
ond phase

300 bad (some value appears more than on
e in D)

or (some value appears more than on
e in R)

Figure 7: Game RND3 is adversarially indistinguishable from game RND2 but defers the setting of bad.

Game NON1. So far we have not 
hanged the stru
ture of the games at all: it has remained an

adversary asking q questions to an ora
le, our answering those questions, and the internal variable

bad either ending up true or false. The next step, however, a
tually gets rid of the adversary, as

well as all intera
tion in the game.

We want to bound the probability that bad gets set to true in game RND3. We may assume that

the adversary is deterministi
, and so the probability is over the random 
hoi
es P

s

$

 f0; 1g

nm

s

and

C

s

$

 f0; 1g

nm

s

that are made while answering the queries (in lines 011 and 021), and the random


hoi
es EZ

$

 f0; 1g

n

, PPP

s

i

$

 f0; 1g

n

, MP

s

$

 f0; 1g

n

, MC

s

$

 f0; 1g

n

, and CCC

s

i

$

 f0; 1g

n

that

are made in the �rst �nalization phase (lines 050, 113, 120, 213, and 220). We will now eliminate

the 
oins asso
iated to lines 011 and 021. Re
all that the adversary asks no pointless queries.

We would like to make the stronger statement that for any set of values that might be returned

to the adversary at lines 011 and 021, and for any set of queries (none pointless) asso
iated to

them, the �nalization step of game RND3 rarely sets bad. However, this statement isn't quite true.
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050 EZ

$

 f0; 1g

n

; L 2EZ ; D R f0

n

;EZ g // D;R are multisets

051 for s 1 to q do

100 if ty

s

= En
 then

110 for i 1 to m

s

do

111 Let r = r[s; i℄ be the smallest index s.t. P

s

i

= P

r

i

112 if r < s then PP

s

i

 PP

r

i

, PPP

s

i

 PPP

r

i

113 else PP

s

i

 P

s

i

� 2

i�1

L; D D [ fPP

s

i

g

114 PPP

s

i

$

 f0; 1g

n

; R R [ fPPP

s

i

g

120 MP

s

 PPP

s

1

� PPP

s

2

� � � � � PPP

s

m

s

� T

s

; D D [ fMP

s

g

121 MC

s

$

 f0; 1g

n

; R R [ fMC

s

g

122 for i 2 [2 :: m℄ do CCC

s

i

 PPP

s

i

� 2

i�1

(MP

s

�MC

s

)

123 CCC

s

1

 MC

s

� CCC

s

2

� � � � � CCC

s

m

� T

s

130 for i 1 to m

s

do

131 CC

s

i

 C

s

i

� 2

i�1

L; R Range [ fCC

s

i

g

132 D D [ fCCC

s

i

g

200 else (ty

s

= De
)

210 for i 1 to m

s

do

211 Let r = r[s; i℄ be the smallest index s.t. C

s

i

= C

r

i

212 if r < s then CC

s

i

 CC

r

i

, CCC

s

i

 CCC

r

i

213 else CC

s

i

 C

s

i

� 2

i�1

L; R R [ fCC

s

i

g

214 CCC

s

i

$

 f0; 1g

n

; D D [ fCCC

s

i

g

220 MC

s

 CCC

s

1

� CCC

s

2

� � � � � CCC

s

m

s

� T

s

; R R [ fMC

s

g

221 MP

s

$

 f0; 1g

n

; D D [ fMP

s

g

222 for i 2 [2 :: m℄ do PPP

s

i

 CCC

s

i

� 2

i�1

(MP

s

�MC

s

)

223 PPP

s

1

 MP

s

� PPP

s

2

� � � � � PPP

s

m

� T

s

230 for i 1 to m

s

do

231 PP

s

i

 P

s

i

� 2

i�1

L; D D [ fPP

s

i

g

232 R Range [ fPPP

s

i

g

300 bad (some value appears more than on
e in D)

or (some value appears more than on
e in R)

Figure 8: Game NON1 is based on game RND3 but now � = (ty;T;P;C) is a �xed, allowed trans
ript.

For example, assume that r-th and s-th queries (r < s) are both en
ipher queries, and that the

random 
hoi
es in line 011 spe
ify that the i'th 
iphertext blo
k in the two answers is the same,

C

r

i

= C

s

i

. Then the 
ag bad is sure to be set, sin
e we will have a \
ollision" between CC

r

i

and CC

s

i

.

Formally, sin
e in line 131 we set CC

r

i

= C

r

i

� 2

i�1

L = C

s

i

� 2

i�1

L = CC

s

1

, and sin
e both CC

r

i

and CC

s

i

are added to R we would set bad when we examine their values in line 300. A similar

example 
an be shown for de
ipher queries. We 
all su
h 
ollisions immediate 
ollisions. Formally,

an immediate 
ollision happens whenever we have C

r

i

= C

s

i

(r < s) and query s is an en
ipher

query, and whenever we have P

r

i

= P

s

i

(r < s) and query s is a de
ipher query. The probability of

an immediate 
ollision in game RND3 is at most

q

X

s=1

m

s

(s� 1)

2

n

<

q

2

n

q

X

s=1

m

s

=

q�

n

2

n

We make from the Finalization part of game RND3 a new game, game NON1 (for \nonintera
tive").

This game silently depends on a �xed trans
ript � = hty;T;P;Ci with ty = (ty

1

; � � � ; ty

q

), T =
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(T

1

; � � � ;T

q

), and P = (P

1

; � � � ;P

q

), and C = (C

1

; � � � ;C

q

) where ty

s

2 fEn
;De
g, T

s

2 f0; 1g

n

,

and P

s

= P

s

1

� � �P

s

m

s

and C

s

= C

s

1

� � �C

s

m

s

for jP

r

i

j = jC

r

i

j = n. This �xed trans
ript may not spe
ify

any immediate 
ollisions or pointless queries; we 
all su
h a trans
ript allowed. Thus saying that �

is allowed means that for all r < s we have the following: if ty

s

= En
 then (i) (T

s

;P

s

) 6= (T

r

;P

r

)

and (ii) C

s

i

6= C

r

i

for any i 2 [1::m℄; while if ty

s

= De
 then (i) (T

s

;C

s

) 6= (T

r

;C

r

) and (ii) P

s

i

6= P

r

i

for any i 2 [1::m℄. Now �x an allowed trans
ript � that maximizes the probability of the 
ag bad

being set. This one trans
ript � is hardwired into game NON1. We have that

Pr[A

RND3

sets bad ℄ � Pr[NON1 sets bad ℄ +

q�

n

2

n

(9)

This step 
an be viewed as 
onditioning on the presen
e or absen
e of an immediate 
ollision,

followed by the usual argument that an average of a 
olle
tion of real numbers is at most the

maximum of those numbers. One 
an also view the transition from game RND3 to game NON1 as

augmenting the adversary, letting it spe
ify not only the queries to the game, but also the answers

to these queries (as long as it does not spe
ify immediate 
ollisions or pointless queries). In terms of

game RND3, instead of having the ora
le 
hoose the answers to the queries at random in lines 011

and 021, we let the adversary supply both the queries and the answers. The ora
le just re
ords

these queries and answers. When the adversary is done, we exe
ute the �nalization step as before

to determine the bad 
ag. Clearly su
h an augmented adversary does not intera
t with the ora
le

at all, it just determines the entire trans
ript, giving it as input to the ora
le. Now maximizing

the probability of setting bad over all su
h augmented adversaries is the same as maximizing this

probability over all allowed trans
ripts.

Game NON2. Before we move to analyze the non-intera
tive game, we make one last 
hange,

aimed at redu
ing the number of 
ases that we need to handle in the analysis. We observe that due

to the 
omplete symmetry between D and R, it is suÆ
ient to analyze the 
ollision probability in

just one of them. Spe
i�
ally, be
ause of this symmetry we 
an assume w.l.o.g. that in game NON1

Pr[some value appears more than on
e in D℄ � Pr[some value appears more than on
e in R℄

and therefore Pr[NON1 sets bad ℄ � 2 � Pr[some value appears more than on
e in D℄.

We therefore repla
e the game NON1 by game NON2, in whi
h we only set the 
ag bad if there

is a 
ollision in D. We now 
an drop the 
ode that handles R, as well as anything else that doesn't

a�e
t the multiset D. The resulting game is des
ribed in Figure 9, and we have

Pr[NON1 sets bad ℄ � 2 � Pr[NON2 sets bad ℄ (10)

B.2 Analysis of the non-intera
tive game

In the analysis we view the multisetD as a set of formal variables (rather than a multiset 
ontaining

the values that these variables assume). Namely, whenever we set D D[fXg for some variableX

we think of it as setting D D [ f\X"g where \X" is the name of that formal variable. Viewed

in this light, our goal now is to bound the probability that two formal variables in D assume the

same value in the exe
ution of NON2. We observe that the formal variables in D are uniquely

determined by �|they don't depend on the random 
hoi
es made in the game NON2; spe
i�
ally,

D = fZero;EZg [ fMP

s

j s � qg

[ fPP

s

i

j ty

s

= De
; i � m

s

g [ fPP

s

i

j ty

s

= En
; i � m

s

; s = r[s; i℄g

[ fCCC

s

i

j ty

s

= En
; i � m

s

g [ fCCC

s

i

j ty

s

= De
; i � m

s

; s = r[s; i℄g
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050 EZ

$

 f0; 1g

n

; L 2EZ ; D f0

n

;EZg

051 for s 1 to q do

100 if ty

s

= En
 then

110 for i 1 to m

s

do

111 Let r = r[s; i℄ be the smallest index s.t. P

s

i

= P

r

i

112 if r < s then PP

s

i

 PP

r

i

, PPP

s

i

 PPP

r

i

113 else PP

s

i

 P

s

i

� 2

i�1

L; D D [ fPP

s

i

g

114 PPP

s

i

$

 f0; 1g

n

120 MP

s

 PPP

s

1

� PPP

s

2

� � � � � PPP

s

m

s

� T

s

; D D [ fMP

s

g

121 MC

s

$

 f0; 1g

n

122 for i 2 [2 :: m℄ do CCC

s

i

 PPP

s

i

� 2

i�1

(MP

s

�MC

s

)

123 CCC

s

1

 MC

s

� CCC

s

2

� � � � � CCC

s

m

� T

s

130 for i 1 to m

s

do D D [ fCCC

s

i

g

200 else (ty

s

= De
)

210 for i 1 to m

s

do

211 Let r = r[s; i℄ be the smallest index s.t. C

s

i

= C

r

i

212 if r < s then CCC

s

i

 CCC

r

i

213 else CCC

s

i

$

 f0; 1g

n

; D D [ fCCC

s

i

g

220 MC

s

 CCC

s

1

� CCC

s

2

� � � � � CCC

s

m

s

� T

s

221 MP

s

$

 f0; 1g

n

; D D [ fMP

s

g

222 for i 2 [2 :: m℄ do PPP

s

i

 CCC

s

i

� 2

i�1

(MP

s

�MC

s

)

223 PPP

s

1

 MP

s

� PPP

s

2

� � � � � PPP

s

m

� T

s

230 for i 1 to m

s

do PP

s

i

 P

s

i

� 2

i�1

L; D D [ fPP

s

i

g

300 bad (some value appears more than on
e in D)

Figure 9: Game NON2. Twi
e the probability that bad gets set in this game bounds the probability that bad

gets set in game NON1. We highlight random sele
tion by shading, and statements that grow D by boxing.

(where \Zero" is a formal 
onstant that always assumes the value 0

n

). We view the formal variables

in D as ordered a

ording to when they are assigned a value in the exe
ution of game NON2. This

ordering too is �xed, depending only on the �xed trans
ript � . Our goal is to show the following:

Throughout the remainder of this se
tion, in all probability 
laims, the impli
it experiment is

that of game NON2. We adopt the 
onvention that in an arithmeti
 or probability expression, a

formal variable impli
itly refers to its value. For example, Pr[X = X

0

℄ means the probability that

the value assigned to X is the same as the value assigned to X

0

. (At times we may still write \X"

to stress that we refer to the name of the formal variable X, or value(X) to stress that we refer to

the value of X.) The rest of this se
tion is devoted to 
ase analysis, proving the following 
laim:

Claim 1 For any two distin
t variable X;X

0

2 D we have that Pr[X = X

0

℄ � 2

�n

.

Before proving Claim 1, we show how to use it to 
omplete the proof of Theorem 1. Due to our


onventions on how to measure the query 
omplexity there are no more than 2�

n

+1 variables in D

so the union bound gives us that

Pr[NON2 sets bad ℄ �

�

2�

n

+ 1

2

�

=2

n

(11)
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Combining Lemma 2 with Equations 7, 8, 9, 10 and 11 we are done:

Adv

�gprp

EME[Perm(n)℄

(A) � Adv

�

g

rnd

EME[Perm(n)℄

(A) + q(q � 1)=2

n+1

� 2 � Pr[NON2 sets bad℄ + q�

n

=2

n

+ q(q � 1)=2

n+1

� 2 �

�

2�

n

+ 1

2

�

=2

n

+ q�

n

=2

n

+ q(q � 1)=2

n+1

�

(2�

n

+ 1)(2�

n

) + �

2

n

+ 0:5�

2

n

2

n

�

7 �

2

n

2

n

Sin
e A was an arbitrary adversary with query 
omplexity of �

n

we are done.

The 
ase analysis. We now need to prove Claim 1. We �rst prove a few 
laims (Claims 4

through 7 below), ea
h 
overing some spe
ial 
ases of 
ollisions, and then go through a systemati



ase analysis, showing that all possible 
ases are indeed 
overed by these 
laims.

Inspe
ting the 
ode of game NON2 we see that the only random 
hoi
es in the game are the

sele
tion EZ

$

 f0; 1g

n

in line 050, the sele
tions PPP

s

i

$

 f0; 1g

n

and MC

s

$

 f0; 1g

n

on en
ipher

(lines 114, 121), and the sele
tions CCC

s

i

$

 f0; 1g

n

andMP

s

$

 f0; 1g

n

on de
ipher (lines 213, 221).

Spe
i�
ally, the variables that are dire
tly 
hosen at random are EZ , the variables PPP

s

i

from

en
ipher queries su
h that s = r[s; i℄, the variables CCC

s

i

from de
ipher queries su
h that s = r[s; i℄,

the variables MP

s

from en
ipher queries, and the variables MC

s

from de
ipher queries. Hereafter

we refer to these variables as the free variables of the game, and we let F denote the set of them:

F = fEZg [ fMP

s

j ty

s

= De
g [ fMC

s

j ty

s

= En
g

[ fPPP

s

i

j ty

s

= En
; i � m

s

; s = r[s; i℄g

[ fCCC

s

i

j ty

s

= De
; i � m

s

; s = r[s; i℄g

The value of any other variable in the game 
an be expressed as a fun
tion in these free variables.

In fa
t, the bulk of the argument below is to show that for any pair of variables in D, either their

sum is some non-zero 
onstant, or else it depends linearly on at least one free variable. We �rst

prove a little helpful observation.

Claim 2 If r is an en
ipher query (ty

r

= En
) and I � [1::m

r

℄ is a non-empty set, then we have

P

i2I

CCC

r

i

= aMC

r

+ �, where a 6= 0 is a 
onstant (that depends on the set I) and � is an

expression involving only 
onstants and free variables that are determined before MC

r

in the game

NON2.

Likewise, if r is a de
ipher query (ty

r

= De
) and I � [1::m

r

℄ is a non-empty set, then

P

i2I

PPP

r

i

= aMP

r

+�, where a 6= 0 is a 
onstant and � is an expression involving only 
onstants

and free variables that are determined before MP

r

in the game NON2.

Proof : We prove here only the �rst assertion. The proof of the other assertion is 
ompletely

symmetri
. Sin
e r is an en
ipher query, then the values of all the CCC

r

i

's ex
ept the �rst (i.e.,

i 2 [2::m

r

℄), are set in line 122, CCC

r

i

 PPP

r

i

� 2

i�1

(MP

r

�MC

r

). If 1 =2 I then we have

X

i2I

CCC

r

i

=

X

i2I

PPP

r

i

� 2

i�1

(MP

r

�MC

r

)

= things-that-were-determined-before-MC

r

�

 

X

i2I

2

i�1

!

MC

r
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and the 
oeÆ
ient of MC

r

is non-zero sin
e I is non-empty.

4

For the 
ase where 1 2 I, sin
e in line 123 we set CCC

r

1

 MC

r

�

P

m

r

i=2

CCC

r

i

, we get

X

i2I

CCC

r

i

= CCC

r

1

�

X

i2I; i 6=1

CCC

r

i

=

 

MC

r

�

m

r

X

i=2

CCC

r

i

!

�

X

i2I; i 6=1

CCC

r

i

= MC

r

�

X

i=2I; 2�i�m

r

CCC

r

i

= MC

r

�

X

i=2I; 2�i�m

r

PPP

r

i

� 2

i�1

(MP

r

�MC

r

)

= things-that-were-determined-before-MC

r

�

0

�

1�

X

i=2I; 2�i�m

r

2

i�1

1

A

MC

r

and again, the 
oeÆ
ient of MC

r

is non-zero.

To simplify the 
ase analysis to 
ome, we 
onsider, for ea
h variable X 2 D, the last free

variable (in the ordering of the game NON2) that X depends on, denoted �(X). Formally, we have

a fun
tion �: D! F [ fnoneg that is de�ned as follows:

� As \Zero" is a 
onstant, we denote �(Zero) = none.

� For the formal variables EZ ;PP

s

i

2 D, this last free variable is EZ , �(EZ ) = �(PP

s

i

) = EZ .

� For a formal variable CCC

s

i

2 D this last free variable �(CCC

s

i

) is either CCC

s

i

itself (on

de
ipher)

5

or MC

s

(on en
ipher). (The last assertion is a 
orollary of Claim 2 for I = fig.)

� The rules for MP

s

are a bit more involved. Clearly, on de
ipher we have �(MP

s

) = MP

s

. For

en
ipher, re
all that we set (in line 120) MP

s

 T

s

�

P

m

i=1

PPP

s

i

, so the last free variable

that MP

s

depends on, is the \last of the free variables that any PPP

s

i

depends on".

Ea
h of these PPP

s

i

's 
an either be a free variable itself (if this is a \new blo
k", s = r[s; i℄),

or it 
an be set equal to some prior PPP

r

i

(if r = r[s; i℄ < s). In the latter 
ase, PPP

r

i

is either

a free variable (if query r is en
ipher), or else it depends on MP

r

(if query r is de
ipher). To

de�ne �(MP

s

), we therefore denote

rmax[s℄

def

= maxf r[s; i℄ j 1 � i � mg ; imax[s℄

def

= maxf i j r[s; i℄ = rmax[s℄g

and then, on en
ipher (ty

s

= En
) we have

�(MP

s

) =

(

MP

rmax[s℄

if ty

rmax[s℄

= De


PPP

rmax[s℄

imax[s℄

if ty

rmax[s℄

= En


A summary of all these 
ases appears in Figure 10. We stress that just like the sets D and F,

the fun
tion � too depends only on the �xed trans
ript � and not on the random 
hoi
es in the

game NON2. Justifying the name \last free variable" we observe the following, whi
h follows from

the pre
eding dis
ussion:

4

Here we use the fa
t that m

r

� n.

5

Note that CCC

s

i

2 D, whi
h means that C

s

i

is \a new blo
k", s = r[s; i℄.
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�(Zero) = none Z

�(EZ ) = EZ EZ

�(PP

s

i

) = EZ if ty

s

= De
 or s = r[s; i℄ PP

�(CCC

s

i

) =

(

CCC

s

i

if ty

s

= De
 and s = r[s; i℄

MC

s

if ty

s

= En


CCC1

CCC2

�(MP

s

) =

8

>

<

>

:

MP

s

if ty

s

= De


MP

rmax[s℄

if ty

s

= En
 and ty

rmax[s℄

= De


PPP

rmax[s℄

imax[s℄

if ty

s

= En
 and ty

rmax[s℄

= En


MM1

MM2

MM3

Figure 10: De�ning the last free variable, �(X), asso
iated to formal variable X 2 D. Trans
ript � =

(ty;T;P;C) has been �xed and it determines r[�; �℄, rmax[�℄ and imax[�℄.

Claim 3 Let X 2 D be a formal variable, and let Y = �(X). If Y 6= none then the value

that X assumes in game NON2 
an be expressed as value(X) = a � value(Y )� � where a 6= 0 is

a 
onstant (that depends on the name of the formal variable X and the �xed trans
ript � ) and �

is an expression involving only 
onstants and free variables that are determined before Y in the

game NON2. 2

As an immediate 
orollary of Claim 3, we get the following.

Claim 4 Let X;X

0

2 D be formal variables su
h that �(X) 6= �(X

0

). Then Pr[X = X

0

℄ = 2

�n

.

Proof : let Y = �(X) and let Y

0

= �(X

0

), and assume that Y

0

o

urs before Y in NON2. By Claim 3

above, we have X �X

0

= a �Y � � � a

0

�Y

0

� �

0

where a 6= 0 is a 
onstant, and � � a

0

�Y

0

� �

0

is an expression involving only 
onstants and free variables that are determined before Y . As the

value of Y is 
hosen at random from GF(2

n

), independently of the other free variables, it follows

that Pr[X = X

0

℄ = 2

�n

.

Claim 4 leaves us with the task of analyzing 
ollisions between variables that depend on the same

last free variable. These are handled in the next three propositions.

Claim 5 Let X;X

0

2 D be two distin
t formal variables, su
h that �(X) = �(X

0

) = EZ . Then

Pr[X = X

0

℄ � 2

�n

.

Proof : Re
all that L = 2EZ . The types of 
ollisions that we need to analyze are either EZ vs. PP

s

i

for some PP

s

i

2 D, or PP

s

i

vs. PP

s

0

i

0

for PP

s

i

;PP

s

0

i

0

2 D. We start with 
ollisions of the type PP

s

i

vs. PP

s

0

i

0

. If i 6= i

0

then we have

PP

s

i

� PP

s

0

i

0

= (P

s

i

� 2

i�1

L)� (P

s

0

0

i

� 2

i

0

�1

L) = P

s

i

� P

s

0

0

i

� (2

i

� 2

i

0

)EZ

and as i 6= i

0

, the 
oeÆ
ient of EZ is non-zero, and therefore Pr[PP

s

i

� PP

s

0

i

0

= 0

n

℄ = 2

�n

. If i = i

0

and s

0

< s then ne
essarily P

s

i

6= P

s

0

i

0

. (Otherwise, either query s is en
ipher, in whi
h 
ase r[s; i℄ < s
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and PP

s

i

=2 D, or query s is en
ipher, whi
h means that the trans
ript � spe
i�es an immediate


ollision.) Therefore, with probability one we have PP

s

i

� PP

s

0

i

0

= (P

s

i

� 2

i�1

L)� (P

s

0

i

� 2

i�1

L) =

P

s

i

� P

s

0

i

6= 0. For the other type of 
ollisions, EZ vs. PP

s

i

, we have

PP

s

i

� EZ = (P

s

i

� 2

i�1

L)� EZ = (P

s

i

� 2

i

EZ )� EZ = P

s

i

� (1� 2

i

)EZ

and again, sin
e i � 1 the 
oeÆ
ient of EZ is non-zero.

Claim 6 For any two distin
t variablesCCC

s

i

;CCC

s

0

i

0

2 D with �(CCC

s

i

) = �(CCC

s

0

i

0

), Pr[CCC

s

i

=

CCC

s

0

i

0

℄ = 2

�n

.

Proof : By inspe
ting Figure 10, we see that for two variable CCC

s

i

;CCC

s

0

i

0

2 D, the equality

�(CCC

s

i

) = �(CCC

s

0

i

0

) implies that s = s

0

, and that this is a en
ipher query, ty

s

= En
 (in whi
h


ase �(CCC

s

i

) = �(CCC

s

0

i

0

) = MC

s

).

By Claim 2 (with I = fi; i

0

g), we 
an write CCC

s

i

� CCC

s

i

0

= aMC

s

+ � where a is a non-zero


onstant and � is an expression involving only 
onstants and variables that were determined before

MC

s

. Hen
e we have

Pr[CCC

s

i

= CCC

s

0

i

0

℄ = Pr[aMC

s

+ � = 0

n

℄ = Pr[MC

s

= a

�1

�℄ = 2

�n

sin
e MC

s

is a free variable.

The most involved 
ase to analyze (indeed, the one that embodies the \real reason" that EME

is se
ure) is 
ollisions of the type MP

s

= MP

s

0

. These are analyzed in Claim 7 below.

Claim 7 For any two distin
t variables MP

s

;MP

t

2 D with �(MP

s

) = �(MP

t

), it holds that

Pr[MP

s

= MP

t

℄ � 2

�n

.

Proof : Fix some s < t su
h that �(MP

t

) = �(MP

s

). In Figure 10 we see that the equality

�(MP

s

) = �(MP

t

) implies that the later query t must be en
ipher (i.e., ty

t

= En
), and either

query s is de
ipher with rmax[t℄ = s, or query s is en
ipher with rmax[t℄ = rmax[s℄.

If the plaintext ve
tors in both queries are the same (i.e., they have P

s

= P

t

) then it must be that

the tweaks di�er between them, T

s

6= T

t

(sin
e the trans
ript � does not spe
ify pointless queries).

From P

s

= P

t

it follows that PPP

s

i

= PPP

t

i

for all i, and therefore with probability one we have

MP

s

�MP

t

= T

s

� T

t

6= 0.

So from now on we assume that P

s

6= P

t

. Let E be the set of indexes where P

s

;P

t

are equal,

E

def

= f i � min(m

s

;m

t

) j P

s

i

= P

t

i

g. We note that the sum MP

s

�MP

t


an be written as

MP

s

�MP

t

= T

s

�

m

s

X

i=1

PPP

s

i

� T

t

�

m

t

X

i=1

PPP

t

i

= T

s

� T

s

0

�

X

i�m

s

;i=2E

PPP

s

i

�

X

i�m

t

;i=2E

PPP

t

i

(12)

where the last equality is justi�ed sin
e P

s

i

= P

t

i

implies PPP

s

i

= PPP

t

i

.

We �rst analyze the 
ase where query s is de
ipher, ty

s

= De
, and furthermore P

s

is not a proper

pre�x of P

t

. Sin
e query s is de
ipher, we have in this 
ase rmax[t℄ = s, whi
h means that all the

blo
ks P

t

i

already appeared in queries no later than s, namely r[t; i℄ � s for all i 2 [1::m

t

℄. Sin
e for
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any i =2 E we have P

s

i

6= P

t

i

, it follows that for these indexes we have r[t; i℄ < s (if r[t; i℄ is de�ned

at all). Thus we get

MP

s

�MP

t

= T

s

� T

t

�

X

i�m

s

;i=2E

PPP

s

i

�

X

i�m

t

;i=2E

PPP

t

i

= T

s

� T

t

�

X

i�m

s

;i=2E

PPP

s

i

�

X

i�m

t

;i=2E

PPP

r[t;i℄

i

= things-that-were-determined-before-query-s �

X

i�m

s

;i=2E

PPP

s

i

(13)

Sin
e P

s

is not a proper pre�x of P

t

, it follows that the set D

s

def

= f1::m

s

g � E is non-empty.

And sin
e query s is de
ipher, we 
an apply Claim 2 to 
on
lude that

P

i2D

PPP

s

i

= aMP

s

+ �

where a 6= 0 and � depends only on things that were determined before MP

s

. Combining this with

Equation (13) we 
on
lude that MP

s

�MP

t

= aMP

s

+ �

0

for the same non-zero 
onstant a, where

�

0

is a di�erent expression, but it still depends only on things that were determined before MP

s

.

Therefore, Pr[MP

s

= MP

t

℄ = 2

�n

.

Next we analyze the 
ases where wither query s is en
ipher, ty

s

= En
, or P

s

is a proper pre�x of

P

t

. Re
all that query t is en
ipher, so ea
h PPP

t

i

is either a free variable (if it is a \new blo
k",

r[t; i℄ = t) or else it is identi
ally set to equal PPP

r[t;i℄

i

(if r[t; i℄ < t). And in the 
ase where query s

is en
ipher, then the same holds for ea
h PPP

s

i

. Either way, we 
an re-write Equation (12) as

MP

s

�MP

s

0

= T

s

� T

t

�

X

i�m

s

;i=2E

PPP

r[s;i℄

i

�

X

i�m

t

;i=2E

PPP

r[t;i℄

i

(14)

(In the 
ase that query s is de
ipher and P

s

is a proper pre�x of P

t

, the equality follows sin
e

the summation on i � m

s

; i =2 E ranges over an empty set.) Re
all that by de�nition we have

r[s; i℄ = r[t; i℄ if and only if i 2 E. Let query r be \the last query that MP

s

�MP

t

depends on",

and let I

s

; I

t

be the sets of indexes of PPP

s

i

's and PPP

t

i

's that \
ome from query r". That is, we

de�ne

R

def

= fr[s; i℄ j i � m

s

; i =2 Eg [ fr[t; i℄ j i � m

t

; i =2 Eg; r

def

= max(R)

and then I

s

def

= f i � m

s

j i =2 E; r[s; i℄ = r g; I

t

def

= f i � m

t

j i =2 E; r[t; i℄ = r g

From this de�nition it follows that the sets I

s

; I

t

are disjoint (sin
e r[s; i℄ 6= r[t; i℄ for i =2 E), and

their union is non-empty (sin
e R is non-empty). Using these notation we 
an rewrite Equation (14)

MP

s

�MP

t

= T

s

� T

t

�

0

�

X

i2I

s

PPP

r[s;i℄

i

�

X

i�m

s

;i=2(E[I

s

)

PPP

r[s;i℄

i

1

A

(15)

�

0

�

X

i2I

t

PPP

r[t;i℄

i

�

X

i�m

t

;i=2(E[I

t

)

PPP

r[t;i℄

i

1

A

= things-that-were-determined-before-query-r �

X

i2I

s

[I

t

PPP

r

i

If query r is de
ipher, ty

r

= De
, we 
an use Claim 2 to 
on
lude that

P

i2I

s

[I

t

PPP

r

i

= aMP

r

+ �

where a 6= 0

n

and � only depends on things that are determined before MP

r

, and sin
e MP

r

is a

free variable, it follows that Pr[MP

s

= MP

t

℄ = 2

�n

. If query r is en
ipher, ty

r

= En
, then all the

variables PPP

r

i

, i 2 I

s

[ I

t

, ar free variables, and again we have Pr[MP

s

= MP

t

℄ � 2

�n

.
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Proof of Claim 1. All that is left now is to verify that Claims 4 through 7 above indeed 
over

all the possible types of 
ollisions between X;X

0

2 D. So let X;X

0

2 D be two distin
t variables.

We partition the analysis to four 
ases, depending on the \type" of the variable X.

X = \Zero". Here X is the only variable in D with �(X) = none, so �(X) 6= �(X

0

). By Claim 4,

we have Pr[X = X

0

℄ = 2

�n

.

X = \EZ" or X = \PP

s

i

". In this 
ase we have �(X) = EZ . If �(X

0

) 6= EZ then again we get

Pr[X = X

0

℄ = 2

�n

from Claim 4. On the other hand, if �(X

0

) = �(X) = EZ then Claim 5

gives us Pr[X = X

0

℄ � 2

�n

.

X = \CCC

s

i

". In this 
ase �(X) 2 fCCC

s

i

;MC

s

g. Again, if �(X

0

) 6= �(X) then we get the usual

Pr[X = X

0

℄ = 2

�n

from Claim 4. So assume that �(X

0

) = �(X) 2 fCCC

s

i

;MC

s

g. This

means that X

0

is also of the form \CCC

t

j

", so from Claim 6 we have Pr[X = X

0

℄ � 2

�n

.

X = \MP

s

". In this 
ase �(X) 2 fMP

r

: r � qg [ fPPP

r

i

: r � q; i � m

r

g. As usual, if

�(X

0

) 6= �(X) then we have Pr[X = X

0

℄ = 2

�n

from Claim 4. So assume that �(X

0

) = �(X).

This means that X

0

is also of the form \MP

t

", so from Claim 7 we have Pr[X = X

0

℄ � 2

�n

.

This 
ompletes the proof of Claim 1.
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