
A Parallelizable Eniphering Mode

Shai Halevi

�

Phillip Rogaway

y

July 28, 2003

Abstrat

We desribe a blok-ipher mode of operation, EME, that turns an n-bit blok ipher into

a tweakable eniphering sheme that ats on strings of mn bits, where m 2 [1::n℄. The mode is

parallelizable, but as serial-eÆient as the non-parallelizable mode CMC [6℄. EME an be used

to solve the disk-setor enryption problem. The algorithm entails two layers of ECB enryption

and a \lightweight mixing" in between. We prove EME seure, in the redution-based sense of

modern ryptography. We motivate some of the design hoies in EME by showing that a few

simple modi�ations of this mode are inseure.

Key words: Blok-ipher usage, ryptographi standards, disk enryption, modes of operation,

provable seurity, setor-level enryption, symmetri enryption.

�

IBM T.J. Watson Researh Center, P.O. Box 704, Yorktown Heights, NY 10598, USA, shaih�watson.ibm.om

http://www.researh.ibm.om/people/s/shaih/

y

Department of Computer Siene, University of California, Davis, CA 95616, USA, and Department

of Computer Siene, Faulty of Siene, Chiang Mai University, 50200 Thailand, rogaway�s.udavis.edu

http://www.s.udavis.edu/~rogaway

Contents

1 Introdution 1

2 Preliminaries 2

3 Spei�ation of EME 3

4 Seurity of EME 3

5 Proof Ideas 5

6 Some Inseure Modi�ations 6

6.1 The \extra" blok-ipher all is needed . 6

6.2 Neessity of the Length Restrition . 7

Referenes 8

A Extending EME to Longer Messages 9

B Proof of Theorem 1 | Seurity of EME 11

B.1 The game-substitution sequene . 11

B.2 Analysis of the non-interative game . 17

1 Introdution

Tweakable eniphering shemes and their use. A tweakable eniphering sheme is a fun-

tion E that maps a plaintext P into a iphertext C = E

T

K

(P) under the ontrol of a key K and

tweak T . The iphertext must have the same length as the plaintext and there must be an in-

verse D

T

K

to E

T

K

. We are interested in shemes that are seure in the sense of a tweakable, strong

pseudorandom-permutation (�gprp): an orale that maps (T; P) into E

T

K

(P) and maps (T;C) into

D

T

K

(C) must be indistinguishable (when the key K is random and seret) from an orale that

realizes a T -indexed family of random permutations and their inverses. A tweakable eniphering

sheme that is seure in the �gprp-sense makes a desirable tool for solving the disk-setor enryption

problem: one stores at disk-setor loation T the iphertext C = E

T

K

(P) for plaintext P . The IEEE

Seurity in Storage Working Group [8℄ plans to standardize a �gprp-seure eniphering sheme.

Our ontribution. This paper spei�es EME, whih is a simple and parallelizable tweakable

eniphering sheme. The sheme is built from a blok ipher, suh as AES. By making EME par-

allelizable we aommodate ultra-high-speed mass-storage devies to the maximal extent possible

given our seurity goals. When based on a blok ipher E: f0; 1g

k

� f0; 1g

n

! f0; 1g

n

our mode

uses a k-bit key and 2m+1 blok-ipher alls to enipher anmn-bit plaintext in a way that depends

on an n-bit tweak. We require that m 2 [1::n℄.

The name EME is meant to suggest ECB-Mix-ECB, as eniphering under EME involves ECB-

enrypting the plaintext, a lightweight mixing step, and another ECB-enryption. For a desription

of EME look ahead to Figures 1 and 2.

We prove that EME is seure, assuming that the underling blok ipher is seure. The proof

is in the standard, provable-seurity tradition: an attak on EME (as a �gprp with domainM =

f0; 1g

n

[f0; 1g

2n

[� � � [f0; 1g

n

2

) is shown to imply an attak on the underlying blok ipher (as a

strong PRP with domain f0; 1g

n

).

We go on to motivate some of the hoies made in EME by showing that other hoies would

result in inseure shemes. Finally, we suggest an extension to EME that operates on setors that

are longer than mn bits.

CMC mode. The EME algorithm is follow-on work to the CMC method of Halevi and Rogaway [6℄.

Both modes are tweakable eniphering shemes built from a blok ipher E: f0; 1g

k

� f0; 1g

n

!

f0; 1g

n

. But CMC is inherently sequential, as it is built around CBC enryption and deryption.

EME was designed to overome this limitation, whih was seen as potentially problemati for high-

speed enryption devies. The hange does not inrease the serial omplexity; both modes use

2m+ 1 blok-ipher alls (and little additional overhead) to at on an mn-bit messages.

Further history. Naor and Reingold gave an elegant approah for making a strong PRP on N

bits from a blok ipher on n < N bits [14, 15℄. Their approah involves a hashing step, a layer

of ECB enryption (say), and another hashing step. They do not give a fully-spei�ed mode, but

they do show how to arry out the hashing step given an xor-universal hash-funtion that maps N

bits to n bits [14℄. In pratie, instantiating this objet is problemati: to ompare well with CMC

or EME one should �nd a onstrution that is simple and has a ollision bound of about 2

�128

and

is more eÆient, in both hardware and software, than AES. No suh onstrution is known.

An early, unpublished version of the CMC paper ontained buggy versions of the CMC and

EME algorithms. Joux disovered the problem [9℄ and thereby played a key role in our arriving

at a orret solution. CMC was easily �xed in response to Joux's attak, but EME did not admit

a simple �x. (Indeed, Setion 6.1 e�etively proves that no \simple �x" is possible for the earlier

buggy EME onstrution).

1

E�orts to onstrut a blok ipher with a large bloksize from one with a smaller bloksize go

bak to Luby and Rako� [13℄, who also put forward the notion of a PRP and a strong PRP. The

onrete-seurity treatment of PRPs that we use begins with Bellare, Kilian, and Rogaway [2℄. The

notion of a tweakable blok-ipher is due to Liskov, Rivest, and Wagner [12℄. The �rst attempt

to diretly onstrut an mn-bit blok ipher from an n-bit one is due to Zheng, Matsumoto, and

Imai [17℄. A di�erent approah is to build a wide-bloksize blok-ipher from srath, as with

BEAR, LION, and Mery [1, 4℄.

Disussion. EME has some advantages over CMC beyond its parallelizability. First, it uses a

single key for the underlying blok ipher, instead of two keys. All blok-ipher alls are keyed by

this one key. Seond, eniphering under EME uses only the forward diretion of the blok ipher,

while deiphering now uses only the reverse diretion. This is onvenient when using a ipher suh

as AES, where the two diretions are substantially di�erent, as a piee of hardware or ode might

need only to enipher or only to deipher. Finally, we prove EME seure as a variable-input-length

(VIL) ipher and not just as a �xed-input-length (FIL) one. This means that, in an attak, the

adversary may intermix plaintexts and iphertexts of various lengths.

We omment that the parallelizability goal is arguably of less utility for a �gprp-seure eni-

phering sheme than for some other ryptographi goals. This is beause, parallelizable or not,

a �gprp-seure enryption sheme annot avoid having lateny that grows with the length of the

message being proessed (to ahieve the �gprp seurity notion one annot output a single bit of

iphertext until the entire plaintext has been seen). Still, parallelizability is useful even here, and

the user ommunity wants it [7℄. More broadly, EME ontinues a tradition of trying to make modes

of operation (like CTR mode, IAPM/OCB [10, 16℄, and PMAC [3℄) that ahieve parallelizability at

near-zero added omputational ost ompared to their intrinsially serial ounterparts.

2 Preliminaries

Basis. We use the same notions and notation as in [6℄. A tweakable eniphering sheme is a

funtion E: K � T �M ! M where M =

S

i2I

f0; 1g

i

is the message spae (for some nonempty

index set I 2 N) and K 6= ; is the key spae and T 6= ; is the tweak spae. We require that for every

K 2 K and T 2 T we have that E(K;T; �) = E

T

K

(�) is a length-preserving permutation onM. The

inverse of an eniphering sheme E is the eniphering sheme D = E

�1

where X = D

T

K

(Y) if and

only if E

T

K

(X) = Y . A blok ipher is the speial ase of a tweakable eniphering sheme where the

message spae isM = f0; 1g

n

(for some n � 1) and the tweak spae is T = f"g (the empty string).

The number n is alled the bloksize.

An adversary A is a (possibly probabilisti) algorithm with aess to some orales. Orales are

written as supersripts. By onvention, the running time of an algorithm inludes its desription

size. The notation A) 1 desribes the event that the adversary A outputs the bit one.

Seurity measure. For a tweakable eniphering sheme E: K � T �M ! M we onsider the

advantage that the adversary A has in distinguishing E and its inverse from a random tweakable

permutation and its inverse:

Adv

�gprp

E

(A) = Pr

h

K

$

 K : A

E

K

(�;�)E

�1

K

(�;�)

) 1

i

� Pr

h

�

$

 Perm

T

(M) : A

�(�;�) �

�1

(�;�)

) 1

i

The notation show, in the brakets, an experiment to the left of the olon and an event to the

right of the olon. We are looking at the probability of the indiated event after performing the

spei�ed experiment. By X

$

 X we mean to hoose X at random from the �nite set X . By

Perm

T

(M) we mean the set of all funtions �: T �M !M where �(T; �) is a length-preserving

2

permutation. By Perm(n) we mean all permutations on f0; 1g

n

. In writing �gprp the tilde serves

as a reminder that the PRP is tweakable and the � symbol is a reminder that this is the \strong"

(hosen plaintext/iphertext attak) notion of seurity. For a blok ipher, we omit the tilde.

Without loss of generality we assume that an adversary never repeats an enipher query, never

repeats a deipher query, never queries its deiphering orale with (T;C) if it got C in response to

some (T;M) enipher query, and never queries its eniphering orale with (T;M) if it earlier got M

in response to some (T;C) deipher query. We all suh queries pointless beause the adversary

\knows" the answer that it should reeive.

When R is a list of resoures and Adv

xxx

�

(A) has been de�ned, we write Adv

xxx

�

(R) for the

maximal value of Adv

xxx

�

(A) over all adversaries A that use resoures at most R. Resoures of

interest are the running time t and the number of orale queries q and the query omplexity �

n

(where n � 1 is a number). The query omplexity �

n

is measured as follows. A string X ontributes

maxfjXj=n; 1g to the query omplexity; a tuple of strings (X

1

;X

2

; : : :) ontributes the sum of

the ontributions of eah string; and the query omplexity of an adversary is the sum of the

ontributions from all orale queries plus the ontribution from the adversary's output. So, for

example, an adversary that asks orale queries (T

1

; P

1

) = (0

n

; 0

2n

) and then (T

2

; P

2

) = (0

n

; ") and

then outputs a bit b has query omplexity 3 + 2 + 1 = 6. The name of an argument (e.g., t or �

n

)

will be enough to make lear what resoure it refers to.

Finite fields. We interhangeably view an n-bit string as: a string; a nonnegative integer less

than 2

n

(msb �rst); a formal polynomial over GF(2) (with the oeÆient of x

n�1

�rst and the free

term last); and an abstrat point in the �nite �led GF(2

n

). To do addition on �eld points, one xors

their string representations. To do multipliation on �eld points, one must �x a degree-n irreduible

polynomial. We hoose to use the lexiographially �rst primitive polynomial of minimum weight.

For n = 128 this is the polynomial x

128

+x

7

+x

2

+x+1. See [5℄ for a list of the indiated polynomials.

We note that with this hoie of �eld-point representations, the point x = 0

n�2

10 = 2 will always

have order 2

n

� 1 in the multipliative subgroup of GF(2

n

), meaning that 2; 2

2

; 2

3

; : : : ; 2

2

n

�1

are

all distint. Finally, we note that given L = L

n�1

� � �L

1

L

0

2 f0; 1g

n

it is easy to ompute 2L.

We illustrate the proedure for n = 128, in whih ase 2L = L<<1 if �rstbit(L) = 0, and 2L =

(L<<1)� Const87 if �rstbit(L) = 1. (Here Const87 = 0

120

10

4

1

3

and �rstbit(L) means L

n�1

and

L<<1 means L

n�2

L

n�3

� � �L

1

L

0

0.)

3 Spei�ation of EME

We onstrut from blok ipher E: K � f0; 1g

n

! f0; 1g

n

a tweakable eniphering sheme that we

denote by EME[E℄ or EME-E. The eniphering sheme has key spae K, the same as the underlying

ipher, and tweak spae is T = f0; 1g

n

. The message spae M = f0; 1g

n

[f0; 1g

2n

[� � � f0; 1g

n

2

ontains any string having any number m of n-bit bloks, where m 2 [1::n℄. An illustration of

EME mode is given in Figure 2. In the �gures, all apitalized variables exept forK are n-bit strings

(key K is an element of the key-spae K). Variable names P and C are meant to suggest plaintext

and iphertext. When we write E

T

K

(P

1

� � �P

m

) we mean that the inoming plaintext P = P

1

� � �P

m

is silently partitioned into n-bit strings P

1

; : : : ; P

m

and when we write D

T

K

(C

1

� � �C

m

) we mean

that the inoming iphertext C = C

1

� � �C

m

is partitioned into n-bit strings C

1

; : : : ; C

m

. It is an

error to provide E with a plaintext that is not mn bits for some m 2 [1 :: n℄, or to supply D with

a iphertext that is not mn bits for some m 2 [1::n℄.

4 Seurity of EME

The following theorem relates the advantage an adversary an get in attaking EME[E℄ to the

advantage that an adversary an get in attaking the blok ipher E.

3

Algorithm E

T

K

(P

1

� � �P

m

)

100 L 2E

K

(0

n

)

101 for i 2 [1 :: m℄ do

102 PP

i

 2

i�1

L� P

i

103 PPP

i

 E

K

(PP

i

)

110 SP PPP

2

� � � � � PPP

m

111 MP PPP

1

� SP � T

112 MC E

K

(MP)

113 M MP �MC

114 for i 2 [2 :: m℄ do CCC

i

 PPP

i

� 2

i�1

M

115 SC CCC

2

� � � � � CCC

m

116 CCC

1

 MC � SC � T

120 for i 2 [1 :: m℄ do

121 CC

i

 E

K

(CCC

i

)

122 C

i

 CC

i

� 2

i�1

L

130 return C

1

� � �C

m

Algorithm D

T

Kt

(C

1

� � �C

m

)

200 L 2E

K

(0

n

)

201 for i 2 [1 :: m℄ do

202 CC

i

 2

i�1

L� C

i

203 CCC

i

 E

�1

K

(CC

i

)

210 SC CCC

2

� � � � � CCC

m

211 MC CCC

1

� SC � T

212 MP E

�1

K

(MC)

213 M MC �MP

214 for i 2 [2 :: m℄ do PPP

i

 CCC

i

� 2

i�1

M

215 SP PPP

2

� � � � � PPP

m

216 PPP

1

 MP � SP � T

220 for i 2 [1 :: m℄ do

221 PP

i

 E

�1

K

(PPP

i

)

222 P

i

 PP

i

� 2

i�1

L

230 return P

1

� � �P

m

Figure 1: Eniphering (left) and deiphering (right) under E = EME[E℄, where E: K � f0; 1g

n

! f0; 1g

n

is a

blok ipher. The tweak is T 2 f0; 1g

n

and the plaintext is P = P

1

� � �P

m

and the iphertext is C = C

1

� � �C

m

.

CCC

4

8L4L2LL

4M 8M2M

8L4LL 2L

MP

MC

SP � T

SC � T

CCC

1

PPP

1

CC

3

PP

3

PPP

3

CCC

3

P

3

C

3

CC

1

PP

1

P

1

C

1

CC

2

PP

2

CCC

2

PPP

2

P

2

C

2

PPP

4

PP

4

CC

4

P

4

C

4

Figure 2: Eniphering a four-blok message P

1

P

2

P

3

P

4

under EME. The boxes represent E

K

and L = 2E

K

(0

n

).

We set SP = PPP

2

� PPP

3

� PPP

4

and M =MP �MC and SC = CCC

2

� CCC

3

� CCC

4

.

4

Theorem 1 [EME seurity℄ Fix n; t; �

n

2 N and a blok ipher E: K�f0; 1g

n

! f0; 1g

n

. Then

Adv

�gprp

EME[Perm(n)℄

(�

n

) �

7 �

2

n

2

n

and (1)

Adv

�gprp

EME[E℄

(t; �

n

) �

7 �

2

n

2

n

+ 2Adv

�prp

E

(t

0

; �

n

) (2)

where t

0

= t+O(�

n

). 2

The heart of Theorem 1 is Equation (1), whih is given in Appendix B. Equation (2) embodies the

standard way to pass from the information-theoreti setting to the omplexity-theoreti one.

5 Proof Ideas

Sine the proof in Appendix B is quite long we give a brief sketh here of some of its ideas. We

onsider an attak against EME as a game between the attaker and the mode itself, where the

ipher is replaed by a truly random permutation and this permutation is hosen \on the y"

during this game. We give names to all of the internal bloks that our in the game, where an

internal blok is any of the n-bit values PP

i

, PPP

i

, MP , MC , CCC

i

, CC

i

that arise as the game

is played. For example, PPP

s

i

is the PPP

i

-blok of the s

th

query of the attaker.

As usual with suh modes, the ore of the proof is to show that \aidental ollisions" are

unlikely. An aidental ollision is an equality between two internal bloks whih is not obviously

guaranteed due to the struture of the mode. Spei�ally, an equality between the i

th

bloks

in two di�erent enipher queries P

s

i

= P

t

i

implies that we also have the equalities PP

s

i

= PP

t

i

and PPP

s

i

= PPP

t

i

and so these do not ount as ollisions. (And likewise for deipher queries.)

Most other ollisions are onsidered aidental ollisions and we show that those rarely happen.

1

Showing that aidental ollisions are rare is ultimately done by ase analysis (but, as usual, it takes

a non-trivial argument to get there). For example, in one ase we show that with high probability

PP

s

i

6= PP

t

j

; in another ase we show that with high probability PPP

s

i

6= MC

t

.

The analysis of most of the ases is standard. Below we illustrate one of the more interesting

ases. We show that for an enipher query P

s

the blok MP

s

does not ollide with any of the

previous MP

r

bloks (f. Claim 7 in Appendix B). This is easily seen if any of the plaintext bloks

P

s

i

is a \new bloks" (i.e., di�erent than P

r

i

for all r < s). But we need to show it also for the

ase where the plaintext P

s

was obtained by \mix-and-mathing" bloks from previous plaintext

vetors. So let r < s be the last plaintext that share some bloks with P

s

, i.e., P

r

i

= P

s

i

for some

index i. This means that all the bloks P

s

i

appeared in queries no later than r If queries s and r

sport the same plaintext vetors, P

r

= P

s

, and di�er only in the tweak values, T

r

6= T

s

, then we

learly have MP

r

�MP

s

= T

r

� T

s

6= 0. So assume that P

r

6= P

s

, let Eq be the set of indexes

where they are equal, and denote D

r

= f1::m

r

g � Eq and D

s

= f1::m

s

g � Eq , where m

s

and m

r

are the lengths (in bloks) of queries r and s. That is, P

r

i

= P

s

i

exatly for all i 2 Eq , whih means

that all the bloks P

s

i

for i 2 D

s

appeared in queries before query r. This, in turn, implies that the

value of PPP

s

i

for any i 2 D

s

depends only on things that were determined before query r.

Assume that query r was deipher (and that MC

r

did not already aidentally ollide with

anything), so MP

r

was hosen \almost at random" during the proessing of query r. We show

that the sum MP

s

�MP

r

an be expressed as aMP

r

+ �, where a 6= 0 is a onstant and � is some

1

Atually, we only are about ollisions between two values in the domain of � or between two values in its range;

ollisions between a domain value and a range value, suh as PP

s

i

= CC

r

i

, are inonsequential and we ignore those.

5

expression that only depends on things that were determined before the hoie of MP

r

. Thus, the

sum MP

s

�MP

r

is rarely zero. We an write this sum as

MP

s

�MP

r

= T

s

�

m

s

X

i=1

PPP

s

i

� T

r

�

m

r

X

i=1

PPP

r

i

= T

r

� T

s

�

X

i2D

s

PPP

s

i

�

X

i2D

r

PPP

r

i

= things-that-were-determined-before-query-r �

X

i2D

r

PPP

r

i

Assuming thatD

r

is non-empty, it is suÆient to show that we an express

P

i2D

r

PPP

r

i

= aMP

r

+�

where a is non-zero and � only depends on things that were determined before the hoie of MP

r

(f. Claim 2 in Appendix B). There are two ases in this proof, depending on whether 1 2 D

r

or

not, but they both boil down to the same point: sine we use the value 2

i�1

(MC

s

�MP

s

) to mask

the CCC

i

blok, the sum of PPP

r

i

's an be written as

X

i2D

r

PPP

r

i

= some-expression-in-the-CCC

r

i

's-and-MC

r

�

X

i2D

0

2

i�1

!

MP

r

where D

0

is also a non-empty set, D

0

� [1::m

r

℄, and so the oeÆient of MP

r

in this expression is

non-zero. The ase where query r is enipher is a bit longer, but it uses similar observations.

One last \trik" that is worth mentioning is the way we handle an adaptive adversary. To bound

the probability of aidental ollisions we analyze this probability in the presene of an augmented

adversary, that an speify both the queries and their answers. That is, we let the adversary speify

the entire transript (with some minor restritions) then hoose some \permutation" � that maps

the given queries to the given answers, and then onsider the probability of aidental ollisions.

Clearly, this augmented adversary is no longer adaptive, hene the analysis beomes more tratable.

6 Some Inseure Modi�ations

In this setion we justify two of our design hoies by showing that hanging them would result in

inseure shemes. Spei�ally, we show that the blok-ipher all that sits in between the two ECB

layers is e�etively unavoidable, and we show that that the length restrition m < n also is needed.

6.1 The \extra" blok-ipher all is needed

The EME onstrution has three blok-ipher invoations in its \ritial path" (that is, the on-

strution is depth-3 in blok-ipher gates). We now show that, in some sense, this is the best that

you an do for a onstrutions of this type. Spei�ally, we show that for a onstrution of the type

ECB-Mix-ECB, implementing the intermediate mixing layer by any linear transformation always

results in an inseure sheme. This remains true even for an untweakable sheme, even when one

onsiders only �xed-input-length inputs, even when eah blok-ipher all in eah ECB enryption

layer uses an independent key, and even if the linear transformation in the middle is key-dependent.

This result implies that, as opposed to the Hash-Enrypt-Hash approah that was proven seure

by Naor and Reingold [15℄, the \dual" approah of Enrypt-Hash-Enrypt will not be seure under

typial assumptions.

2

Formally, �x m;n 2 N with m � 2, and let E: K � f0; 1g

n

! f0; 1g

n

be a blok ipher. The

sheme E = BrokenEME is de�ned on message spae f0; 1g

mn

and key spae K

2m

�K

0

where K

0

is

a set of invertible linear transformations on f0; 1g

mn

. BrokenEME is keyed with 2m independent

keys K

1

; : : : ;K

m

;K

0

1

; : : : ;K

0

m

2 K, and with an invertible (possibly seret) linear transformation

3

2

This may seem somewhat surprising, as one may think that Enrypt-Hash-Enrypt should be at least as seure

sine it uses \more ryptography".

3

In fat, it is easy to see that the attak desribed below works also when T is an aÆne transformation.

6

T : f0; 1g

mn

! f0; 1g

mn

. To enipher a plaintext P = P

1

� � �P

m

2 f0; 1g

mn

we do the following:

Set PPP

i

= E

k

i

(P

i

) for i = 1 : : : m. Let PPP = PPP

1

� � �PPP

m

be the onatenation of the

PPP

i

bloks (PPP 2 f0; 1g

mn

).

Apply the linear transformation T to obtain CCC = CCC

1

� � �CCC

m

= T (PPP).

Set C

i

= E

k

0

i

(CCC

i

) for i = 1 : : : m. The iphertext is the onatenation of all the C

i

bloks,

C = C

1

� � �C

m

2 f0; 1g

mn

.

Deiphering is done in the obvious way.

We now give an adversary A that attaks the mode, distinguishing it from a truly random

permutation and its inverse using only four queries. Denote the adversary with it's orales as

A

E D

. The adversary A piks two mn-bit plaintexts that di�er only in their �rst blok, namely

P

1

= P

1

P

2

� � �P

m

and P

2

= P

0

1

P

2

� � �P

m

(with P

1

6= P

0

1

). Then A queries its orale as follows:

(1) Let C

1

= C

1

1

� � �C

1

m

 E(P

1

) and let C

2

= C

2

1

� � �C

2

m

 E(P

2

).

(2) Create two \omplementing mixes" of the two iphertexts, for example C

3

= C

2

1

C

1

2

� � �C

1

m

and

C

4

= C

1

1

C

2

2

� � �C

2

m

.

(3) Let P

3

= P

3

1

� � �P

3

m

 D(C

3

) and let P

4

= P

4

1

� � �P

4

m

 D(C

4

).

If the plaintext vetors P

3

and P

4

agree in all but their �rst blok then A outputs 1 (\real")

while otherwise it outputs 0 (\random"). To see that this works, we denote the intermediate

variables in the four queries by PPP

i

j

and CCC

i

j

(i = 1::4 and j = 1::m) and denote the \vetor

of di�erenes" between PPP

1

and PPP

2

by DP = DP

1

� � �DP

m

def

= PPP

1

� PPP

2

. Sine P

1

and P

2

agree everywhere exept in their �rst blok, it follows that also the \vetor of di�erenes"

DP is zero everywhere exept in the �rst blok. Similarly, we denote the \vetor of di�erenes"

between CCC

1

and CCC

2

by DC = DC

1

� � �DC

m

def

= CCC

1

� CCC

2

and sine we omputed

CCC

i

= T (PPP

i

) and T is a linear transformation, it follows that DC = T (PPP

1

)� T (PPP

2

) =

T (PPP

1

� PPP

2

) = T (DP). Reall now that for any j 2 [1::m℄ we have either C

3

j

= C

1

j

and C

4

j

=

C

2

j

, or C

3

j

= C

2

j

and C

4

j

= C

1

j

. It follows that for all j, CCC

3

j

� CCC

4

j

= CCC

1

j

� CCC

2

j

= DC

j

,

namely CCC

3

� CCC

4

= DC . Putting this together we now ompute PPP

3

� PPP

4

as:

PPP

3

� PPP

4

= T

�1

(CCC

3

)� T

�1

(CCC

4

)

= T

�1

(CCC

3

�CCC

4

) = T

�1

(DC) = T

�1

(T (DP)) = DP

This means that PPP

4

j

= PPP

3

j

for j = 2::m, and therefore also P

4

j

= P

3

j

for all but the �rst blok.

6.2 Neessity of the Length Restrition

Reall that EME is de�ned on message spae M =

S

m2[1::n℄

f0; 1g

mn

. Here we show that the

restrition m � n is justi�ed. In fat, we do not know whether allowing m = n + 1 breaks the

seurity of EME, but we an show that allowing m = n + 2 permits easy distinguishing attaks.

The details of the attak depend somewhat on the representation of the �eld GF(2

n

). Below

we demonstrate it for n = 128, where the �eld GF(2

128

) is represented using the polynomial

P

128

(x) = x

128

+ x

7

+ x

2

+ x+ 1.

Assume that m � n + 2 and let J be a nonempty proper subset of the indexes from 2 to m,

J � f2; 3; : : : ;mg, J 6= ;, suh that in the �eld GF(2

n

) we have

P

j2J

2

j�1

= 0. For example, when

GF(2

128

) is represented using P

128

, we have

2

129

+ 2

8

+ 2

3

+ 2

2

+ 2

1

= 2(2

128

+ 2

7

+ 2

2

+ 2

1

+ 2

0

) = 0

so we an set J = f130; 9; 4; 3; 2g. The attak proeeds as follows:

7

(1) Pik an arbitrary tweak T . All the queries in the attak will use the same tweak T . (In

other words, the attak works also when EME is used as an untweakable sheme.) Pik two

plaintext vetors that di�er only in their �rst blok, P

1

= P

1

P

2

: : : P

m

and P

2

= P

0

1

P

2

� � �P

m

(with P

1

6= P

0

1

).

(2) Enipher both plaintext vetors to get C

1

= E(T; P

1

) and C

2

= E(T; P

2

).

(3) Create a iphertext vetor C

3

suh that C

3

j

=

(

C

1

j

if j 2 J

C

2

j

if j =2 J

.

(4) Deipher C

3

to get P

3

= D(T;C

3

).

Output 1 (\real") if P

3

and P

2

agree in all the bloks j 2 ([2::m℄ n J) and output 0 (\random")

otherwise. To see that this works we denote the intermediate variables in the three queries by

PPP

i

j

and CCC

i

j

and MP

i

and MC

i

and M

i

(i = 1::3 and j = 1::m).

We note that PPP

1

j

= PPP

2

j

for all j 2 [2::m℄, and in partiular for all j 2 J . Also, from the

onstrution of C

3

we get that CCC

3

j

= CCC

1

j

for j 2 J and CCC

3

j

= CCC

2

j

for j =2 J . Thus

MC

2

�MC

3

=

0

�

T �

m

X

j=1

CCC

2

j

1

A

�

0

�

T �

m

X

j=1

CCC

3

j

1

A

=

X

j2J

�

CCC

2

j

�CCC

3

j

�

=

X

j2J

�

CCC

2

j

� CCC

1

j

�

=

X

j2J

�

(PPP

2

j

� 2

j�1

M

2

)� (PPP

1

j

� 2

j�1

M

1

)

�

=

X

j2J

�

2

j�1

M

2

+ 2

j�1

M

1

�

= (M

2

+M

1

)

X

j2J

2

j�1

= 0

So we have MC

3

=MC

2

and therefore also MP

3

= MP

2

and M

3

=M

2

. Thus for any j =2 J , j > 1

we have PPP

3

j

= CCC

3

j

� 2

j�1

M

3

= CCC

2

j

+ 2

j�1

M

2

= PPP

2

j

and therefore also P

3

j

= P

2

j

.

Referenes

[1℄ R. Anderson and E. Biham. Two pratial and provably seure blok iphers: BEAR and

LION. In Fast Software Enryption, Third International Workshop, volume 1039 of Leture

Notes in Computer Siene, pages 113{120, 1996. www.s.tehnion.a.il/�biham/.

[2℄ M. Bellare, J. Kilian, and P. Rogaway. The seurity of the ipher blok haining mes-

sage authentiation ode. Journal of Computer and System Sienes, 61(3):362{399, 2000.

www.s.udavis.edu/�rogaway.

[3℄ J. Blak and P. Rogaway. A blok-ipher mode of operation for parallelizable message authen-

tiation. In L. Knudsen, editor, Advanes in Cryptology { EUROCRYPT '01, volume 2332 of

Leture Notes in Computer Siene. Springer-Verlag, 2001.

[4℄ P. Crowley. Mery: A fast large blok ipher for disk setor enryption. In B. Shneier,

editor, Fast Software Enryption: 7th International Workshop, volume 1978 of Leture

Notes in Computer Siene, pages 49{63, New York, USA, Apr. 2000. Springer-Verlag.

www.iphergoth.org/rypto/mery.

[5℄ S. Duplihan. A primitive polynomial searh program. Web doument. Available at

http://users2.ev1.net/�sduplihan/primitivepolynomials/primivitePolynomials.htm, 2003.

8

[6℄ S. Halevi and P. Rogaway. A tweakable eniphering mode. In D. Boneh, editor, Advanes

in Cryptology { CRYPTO '03, volume 2729 of Leture Notes in Computer Siene. Springer-

Verlag, 2003. Full version available on the ePrint arhive, http://eprint.iar.org, 2003.

[7℄ J. Hughes. Personal ommuniation, 2002.

[8℄ IEEE. Seurity in Storage Working Group (SISWG). See www.siswg.org. Call for algorithms

at www.mail-arhive.om/ryptography�wasabisystems.om/msg02102.html, May 2002.

[9℄ A. Joux. Cryptanalysis of the EMD mode of operation. In Advanes in Cryptology { EURO-

CRYPT '03, volume 2656 of Leture Notes in Computer Siene. Springer-Verlag, 2003.

[10℄ C. Jutla. Enryption modes with almost free message integrity. In Advanes in Cryptogra-

phy { EUROCRYPT'01, volume 2999 of Leture Notes in Computer Siene, pages 529{544.

Springer-Verlag, 2001.

[11℄ J. Kilian and P. Rogaway. How to protet DES against exhaustive key searh. Journal of

Cryptology, 14(1):17{35, 2001. Earlier version in CRYPTO '96. www.s.udavis.edu/�rogaway.

[12℄ M. Liskov, R. Rivest, and D. Wagner. Tweakable blok iphers. In Advanes in

Cryptology { CRYPTO '02, Leture Notes in Computer Siene. Springer-Verlag, 2002.

www.s.berkeley.edu/�daw/.

[13℄ M. Luby and C. Rako�. How to onstrut pseudorandom permutations from pseudorandom

funtions. SIAM J. of Computation, 17(2), April 1988.

[14℄ M. Naor and O. Reingold. A pseudo-random enryption mode. Manusript, available from

www.wisdom.weizmann.a.il/�naor/.

[15℄ M. Naor and O. Reingold. On the onstrution of pseudo-random permutations: Luby-Rako�

revisited. Journal of Cryptology, 12(1):29{66, 1999. (Earlier version in STOC '97.) Available

from www.wisdom.weizmann.a.il/�naor/.

[16℄ P. Rogaway, M. Bellare, J. Blak, and T. Krovetz. OCB: A blok-ipher mode of operation

for eÆient authentiated enryption. In Eighth ACM Conferene on Computer and Commu-

niations Seurity (CCS-8). ACM Press, 2001.

[17℄ Y. Zheng, T. Matsumoto, and H. Imai. On the onstrution of blok iphers provably seure

and not relying on any unproved hypotheses. In Advanes in Cryptology { CRYPTO '89,

volume 435 of Leture Notes in Computer Siene, pages 461{480. Springer-Verlag, 1989.

A Extending EME to Longer Messages

The restrition on the message size of EME, m � n, means, for example, that when using AES

as the underlying ipher one annot enrypt messages longer than 2KB. In some appliations this

restrition ould be problemati. We now desribe EME

+

, an extension of EME that an be used

to handle message of pratially any length (as long as it is an integral number of bloks).

The idea is to divide the m-blok input into \hunks" of at most n bloks eah suh that in

eah \hunk" we use onstrution similar to EME. Spei�ally, in the �rst \hunk" we use exatly

the same onstrution as in EME. In all the other \hunks" we use a similar onstrution, exept

that we replae the addition of SP � T and SC � T (before and after the \extra blok ipher all"

in between the two ECB layers) by additions of the mask M

1

from the �rst \hunk".

9

Algorithm E

T

K

(P

1

� � �P

m

)

100 L 2E

K

(0

n

)

101 for i 2 [1 :: m℄ do

102 PP

i

 2

i�1

L� P

i

, PPP

i

 E

K

(PP

i

)

110 MP

1

 PPP

1

� PPP

2

� � � � � PPP

m

� T

111 MC

1

 E

K

(MP

1

), M

1

 MP

1

�MC

1

112 for i 2 [2::n℄ do CCC

i

 PPP

i

� 2

i�1

M

1

113 for j 2 [2 :: dm=ne℄ do

114 MP

j

 PPP

(j�1)n+1

�M

1

115 MC

j

 E

K

(MP

j

), M

j

 MP

j

�MC

j

116 CCC

1+(j�1)n

 MC

j

�M

1

117 for i 2 [2 + (j � 1)n :: jn℄ do

118 CCC

i

 PPP

i

� 2

i�1 mod n

M

j

119 CCC

1

 MC

1

� CCC

2

� � � � � CCC

m

� T

120 for i 2 [1 :: m℄ do

121 CC

i

 E

K

(CCC

i

), C

i

 CC

i

� 2

i�1

L

130 return C

1

� � �C

m

Algorithm D

T

Kt

(C

1

� � �C

m

)

200 L 2E

K

(0

n

)

201 for i 2 [1 :: m℄ do

202 CC

i

 2

i�1

L� C

i

, CCC

i

 E

�1

K

(CC

i

)

210 MC

1

 CCC

1

� CCC

2

� � � � � CCC

m

� T

211 MP

1

 E

�1

K

(MC

1

), M

1

 MC

1

�MP

1

212 for i 2 [2::n℄ do PPP

i

 CCC

i

� 2

i�1

M

1

213 for j 2 [2 :: dm=ne℄ do

214 MC

j

 CCC

(j�1)n+1

�M

1

215 MP

j

 E

�1

K

(MC

j

), M

j

 MC

j

�MP

j

216 PPP

1+(j�1)n

 MP

j

�M

1

217 for i 2 [2 + (j � 1)n :: jn℄ do

218 PPP

i

 CCC

i

� 2

i�1 mod n

M

j

219 PPP

1

 MP

1

� PPP

2

� � � � � PPP

m

� T

220 for i 2 [1 :: m℄ do

221 PP

i

 E

�1

K

(PPP

i

), P

i

 PP

i

� 2

i�1

L

230 return P

1

� � �P

m

Figure 3: Eniphering (left) and deiphering (right) under E = EME

+

[E℄, where E: K�f0; 1g

n

! f0; 1g

n

is a

blok ipher. The tweak is T 2 f0; 1g

n

and the plaintext is P = P

1

� � �P

m

and the iphertext is C = C

1

� � �C

m

.

. . .

. . .

P

n+2

C

n+2

CC

n+2

CCC

n+2

PPP

n+2

PP

n+2

PP

n+1

PPP

n+1

CCC

n+1

CC

n+1

C

n+1

P

n+1

C

2

P

2

CC

2

CCC

2

PPP

2

PP

2

2

n+1

L

2

n+1

L

2M

2

M

1

M

1

2

n

L

2

n

L2L

2L

2M

1

MC

2

MP

2

2

n�1

L

2

n�1

L

P

n

C

n

2

n�1

M

1

PP

n

PPP

n

CCC

n

CC

n

MP

1

MC

1

SC � T

L

SP � T

P

1

C

1

PPP

1

PP

1

CCC

1

CC

1

L

Figure 4: Eniphering an (n + 2)-blok message under EME

+

. The boxes represent E

K

and L = 2E

K

(0

n

).

We set SP = PPP

2

� � � �PPP

m

, M

i

= MP

i

�MC

i

, and SC = CCC

2

� � � � � CCC

m

.

10

We speify in Figure 3 both the forward diretion of our onstrution, E = EME

+

[E℄, and its

inverse D. An illustration of EME

+

mode is given in Figure 4. One observes that EME

+

is a

\proper extension" of EME in that when we use it on a message of length m � n bloks, we get

bak the original EME mode.

Although we have not written a proof of seurity for EME

+

we expet that suh proof an be

written. One would follow the arguments in the proof for the basi EME in Appendix B, exept

that one needs to analyze a few more ases in the ase analysis (spei�ally in the proof of Claim 7).

B Proof of Theorem 1 | Seurity of EME

Our proof of seurity for EME is divided into two parts: in Setion B.1 we arry out a game-

substitution argument, reduing the analysis of EME to the analysis of a simpler probabilisti

game. In Setion B.2 we analyze that simpler game. Before we begin we �rst reall a little lemma,

saying that a (tweakable) truly random permutation looks very muh like an orale that just returns

random bits (as long as you never ask pointless queries). So instead of analyzing indistinguishability

from a random permutation we an analyze indistinguishability from random bits.

Let E: K � T � M ! M be a tweaked blok-ipher and let D be its inverse. De�ne the

advantage of distinguishing E from random bits, Adv

�

g

rnd

E

, by

Adv

�

g

rnd

E

(A) = Pr[K

$

 K : A

E

K

(�;�)D

K

(�;�)

) 1 ℄� Pr[A

$(�;�) $(�;�)

) 1 ℄

where $(T;M) returns a random string of length jM j. We insist that A makes no pointless queries,

regardless of orale responses, and A asks no query (T;M) outside of T � M. We extend the

de�nition above in the usual way to its resoure-bounded versions. We have the following lemma,

whose (standard) proof an be found, for example, in the full version of [6℄.

Lemma 2 [�gprp-seurity � �

g

rnd-seurity℄ Let E: K�T �M!M be a tweaked blok-ipher

and let q � 1 be a number. Then jAdv

�gprp

E

(q) � Adv

�

g

rnd

E

(q)j � q(q � 1)=2

N+1

where N is the

length of a shortest string inM. 2

B.1 The game-substitution sequene

Fix n, �

n

, and q. Let A be an adversary that asks q orale (none pointless) and has query

omplexity �

n

. Our goal is to show that Adv

�

g

rnd

EME[Perm(n)℄

(A) � 2Pr[NON2 sets bad ℄ +

q�

n

2

n

where

NON2 is some probability spae and \NON2 sets bad " is an event de�ned there. Later we bound

Pr[NON2 sets bad ℄, and, putting that together with Lemma 2, we get Equation (1) of Theorem 1.

Game NON2 is obtained by a game-substitution argument, as arried out in works like [11℄.

The goal is to simplify the rather ompliated setting of A adaptively querying its orales, and to

arrive at a simpler setting where there is no adversary and no interation|just a program that

ips oins and a ag bad that does or does not get set.

Game EME1. We begin by desribing the attak senario of A against EME[Perm(n)℄ as a

probabilisti game in whih the permutation � is hosen \on the y", as needed to answer the

queries of A. Initially, the partial funtion �: f0; 1g

n

! f0; 1g

n

is everywhere unde�ned. When we

need �(X) and � isn't yet de�ned at X we hoose this value randomly among the available range

values. When we need �

�1

(Y) and there is no X for whih �(X) has been set to Y we likewise

hoose X at random from the available domain values. As we �ll in � its domain and its range thus

grows. In the game we keep trak of the domain and range of � by maintaining two sets, Domain

and Range, that inlude all the points for whih � is already de�ned. We let Domain and Range be

11

Subroutine Choose-�(X):

010 Y

$

 f0; 1g

n

; if Y 2 Range then bad true , Y

$

 Range

011 if X 2 Domain then bad true , Y �(X)

012 �(X) Y , Domain Domain [fXg, Range Range [fY g; return Y

Subroutine Choose-�

�1

(Y):

020 X

$

 f0; 1g

n

; if X 2 Domain then bad true , X

$

 Domain

021 if Y 2 Range then bad true , X �

�1

(Y)

022 �(X) Y , Domain Domain [fXg, Range Range [fY g; return X

Initialization:

030 bad false; for all X 2 f0; 1g

n

do �(X) undef

031 EZ

$

 f0; 1g

n

; L 2EZ

032 �(0

n

) EZ ; Domain f0

n

g; Range fEZg

Respond to the s-th adversary query as follows:

An enipher query, En(T

s

;P

s

1

� � �P

s

m

s

):

110 for i 1 to m

s

do

111 Let r = r[s; i℄ be the smallest index s.t. P

s

i

= P

r

i

112 if r < s then PP

s

i

 PP

r

i

, PPP

s

i

 PPP

r

i

113 else PP

s

i

 P

s

i

� 2

i�1

L; PPP

s

i

 Choose-�(PP

s

i

)

120 MP

s

 PPP

s

1

� PPP

s

2

� � � � � PPP

s

m

s

� T

s

121 MC

s

 Choose-�(MP

s

)

122 for i 2 [2 :: m℄ do CCC

s

i

 PPP

s

i

� 2

i�1

(MP

s

�MC

s

)

123 CCC

s

1

 MC

s

� CCC

s

2

� � � � � CCC

s

m

� T

130 for i 1 to m

s

do

131 CC

s

i

 Choose-�(CCC

s

i

); C

s

i

 CC

s

i

� 2

i�1

L

140 return C

1

� � �C

m

s

A deipher query, De(T

s

;C

s

1

� � �C

s

m

s

) :

210 for i 1 to m

s

do

211 Let r = r[s; i℄ be the smallest index s.t. C

s

i

= C

r

i

212 if r < s then CC

s

i

 CC

r

i

, CCC

s

i

 CCC

r

i

213 else CC

s

i

 C

s

i

� 2

i�1

L; CCC

s

i

 Choose-�

�1

(CC

s

i

)

220 MC

s

 CCC

s

1

� CCC

s

2

� � � � � CCC

s

m

s

� T

s

221 MP

s

 Choose-�

�1

(MC

s

)

222 for i 2 [2 :: m℄ do PPP

s

i

 CCC

s

i

� 2

i�1

(MP

s

�MC

s

)

223 PPP

s

1

 MP

s

� PPP

s

2

� � � � � PPP

s

m

� T

230 for i 1 to m

s

do

231 PP

s

i

 Choose-�

�1

(PPP

s

i

); P

s

i

 PP

s

i

� 2

i�1

L

240 return P

1

� � �P

m

s

Figure 5: Game EME1 desribes the attak of A on EME[Perm(n)℄, where the permutation � is hosen \on the

y" as needed. Game RND1 is the same as game EME1, exept we do not exeute the shaded statements.

12

Initialization:

000 bad false; EZ

$

 f0; 1g

n

; Domain Range f0

n

;EZg; L 2EZ

Respond to the s-th adversary query as follows:

An enipher query, En(T

s

;P

s

1

� � �P

s

m

s

):

110 for i 1 to m

s

do

111 Let r = r[s; i℄ be the smallest index s.t. P

s

i

= P

r

i

112 if r < s then PP

s

i

 PP

r

i

, PPP

s

i

 PPP

r

i

113 else PP

s

i

 P

s

i

� 2

i�1

L; if PP

s

i

2 Domain then bad true

115 PPP

s

i

$

 f0; 1g

n

; if PPP

s

i

2 Range then bad true

116 Domain Domain [fPP

s

i

g, Range Range [fPPP

s

i

g

120 MP

s

 PPP

s

1

� PPP

s

2

� � � � � PPP

s

m

s

� T

s

; if MP

s

2 Domain then bad true

121 MC

s

$

 f0; 1g

n

; if MC

s

2 Range then bad true

122 Domain Domain [fMP

s

g, Range Range [fMC

s

g

123 for i 2 [2 :: m℄ do CCC

s

i

 PPP

s

i

� 2

i�1

(MP

s

�MC

s

)

124 CCC

s

1

 MC

s

� CCC

s

2

� � � � � CCC

s

m

� T

s

130 for i 1 to m

s

do

131 C

s

i

$

 f0; 1g

n

;

132 CC

s

i

 C

s

i

� 2

i�1

L; if CC

s

i

2 Range then bad true

133 if CCC

s

i

2 Domain then bad true

134 Domain Domain [fCCC

s

i

g, Range Range [fCC

s

i

g

140 return C

1

� � �C

m

s

A deipher query, De(T

s

;C

s

1

� � �C

s

m

s

), is treated symmetrially

Figure 6: Game RND2 is indistinguishable from Game RND1 but hooses some of its variables in di�erent order.

the omplement of these sets relative to f0; 1g

n

. The game, denoted EME1, is shown in Figure 5.

Sine game EME1 aurately represent the attak senario, we have that

Pr[A

E

�

D

�

) 1 ℄ = Pr[A

EME1

) 1 ℄ (3)

Game RND1. We next modify game EME1 by omitting the statements that immediately follow

the setting of bad to true. (This is the usual trik under the game-substitution approah.) Namely,

before we were making some onsisteny heks after eah random hoie �(X) = Y

$

 f0; 1g

n

to

see if this value of Y was already in use, or if � was already de�ned at X, and we reset out hoie

of Y as needed. Now we still make these heks and set the ag bad, but we do not reset the hosen

value of Y . This means that � may end up not being a permutation, and moreover we may reset

its value on previously hosen points.

Still, the games EME1 and RND1 are syntatially idential apart from what happens after

the setting of the ag bad to true. One the ag bad is set to true the subsequent behavior of the

game does not impat the probability that an adversary A interating with the game an set the

ag bad to true. This is exatly the setup used in the game-substitution method to onlude that

Pr[A

EME1

) 1 ℄� Pr[A

RND1

) 1 ℄ � Pr[A

RND1

sets bad ℄ (4)

Game RND2. We now make three adversarially-invisible hanges to game RND1. First, we note

that the funtion � (and its inverse) are never used in game RND1, so we just remove them from

13

the ode. Next, instead of hoosing CC

s

i

$

 f0; 1g

n

and then setting C

s

i

 CC

s

i

� 2

i

L (in enipher

queries, line 131), we will now hoose C

s

i

$

 f0; 1g

n

and then set CC

s

i

 C

s

i

� 2

i

L. Clearly, this

hange preserves the distribution of all these variables. The analogous omments apply to the

hoie of PP

s

i

and P

s

i

in deipher queries; we ould just as well have hosen P

s

i

at random and

de�ned PP

s

i

using it. The last hange that we make is to arti�ially add 0

n

also to the Range set,

and the value EZ (whih was meant to represent �(0

n

)) to the Domain set. This last hange is

meant to make the enipher and deipher diretions ompletely symmetri, so that we an redue

the number of ases that we need to handle in the analysis to ome. Note that this last hange has

no e�et on the answers that are returned to the adversary. Its only e�et is to slightly inrease

the probability that the ag bad is set.

The resulting game RND2 is desribed in Figure 6. (In that �gure we did not bother desribing

the deipher queries, as they are ompletely symmetri to the enipher queries.) It is lear that

the hanges we made do has no e�et on the probability that A returns one (as they do not hange

anything in the interation between A and its orales), and they an only inrease the probability

of setting ag bad. Hene we onlude that

Pr[A

RND1

) 1 ℄ = Pr[A

RND2

) 1 ℄ and Pr[A

RND1

sets bad ℄ � Pr[A

RND2

sets bad ℄ (5)

We note that in game RND2 we respond to any m-blok En-query by returning nm random bits,

C

1

� � �C

m

. Similarly, we respond to anym-blok De-query by returning nm random bits, P

1

� � �P

m

.

Thus RND2 provides an adversary with an idential view to a pair of random-bit orales,

Pr[A

RND2

) 1 ℄ = Pr[A

�

g

rnd

) 1 ℄ (6)

Combining Equations 3, 4, 5, and 6, we thus have that

Adv

�

g

rnd

EME[Perm(n)℄

(A) = Pr[A

EME1

) 1 ℄� Pr[A

RND2

) 1 ℄

= Pr[A

EME1

) 1 ℄� Pr[A

RND1

) 1 ℄

� Pr[A

RND1

sets bad ℄

� Pr[A

RND2

sets bad ℄ (7)

Our task is thus to bound Pr[A

RND2

sets bad ℄.

Game RND3. Next we reorganize game RND2 so as to separate out (i) hoosing random values

to return to the adversary, (ii) de�ning intermediate variables, and (iii) setting the ag bad.

We remarked that game RND2 returns mn random bits in response to any m-blok query.

Now, in game RND3, shown in Figure 7, we make that even more lear by hoosing the neessary

C

s

= C

s

1

� � �C

s

m

s

or P

s

= P

s

1

� � �P

s

m

s

response just as soon as the s

th

query is made. Nothing else is

done at that point exept for reording if the adversary made an En query or a De query.

When the adversary �nishes all of its orale queries and halts, we exeute the \�nalization"

step of game RND3. First, we go over all the variables of the game and determine their values, just

as we do in game RND2. While doing so, we ollet all the values in the sets Domain and Range,

this time viewing them as multisets D and R, respetively. When we are done setting values to all

the variables, we go bak and look at D and R. The ag bad is set if (and only if) any of these

multisets ontains some value more than one. This proedure is designed to set bad under exatly

the same onditions as in game RND2. The following is thus lear:

Pr[A

RND2

sets bad ℄ = Pr[A

RND3

sets bad ℄ (8)

14

Respond to the s-th adversary query as follows:

An enipher query, En(T

s

;P

s

1

� � �P

s

m

s

):

010 ty

s

 En

011 C

s

= C

s

1

� � �C

s

m

s

$

 f0; 1g

nm

s

012 return C

s

A deipher query, De(T

s

;C

s

1

� � �C

s

m

s

):

020 ty

s

 De

021 P

s

= P

s

1

� � �P

s

m

s

$

 f0; 1g

nm

s

022 return P

s

Finalization:

First phase

050 EZ

$

 f0; 1g

n

; L 2EZ ; D R f0

n

;EZ g // D;R are multisets

051 for s 1 to q do

100 if ty

s

= En then

110 for i 1 to m

s

do

111 Let r = r[s; i℄ be the smallest index s.t. P

s

i

= P

r

i

112 if r < s then PP

s

i

 PP

r

i

, PPP

s

i

 PPP

r

i

113 else PP

s

i

 P

s

i

� 2

i�1

L; D D [fPP

s

i

g

114 PPP

s

i

$

 f0; 1g

n

; R R [fPPP

s

i

g

120 MP

s

 PPP

s

1

� PPP

s

2

� � � � � PPP

s

m

s

� T

s

; D D [fMP

s

g

121 MC

s

$

 f0; 1g

n

; R R [fMC

s

g

122 for i 2 [2 :: m℄ do CCC

s

i

 PPP

s

i

� 2

i�1

(MP

s

�MC

s

)

123 CCC

s

1

 MC

s

� CCC

s

2

� � � � � CCC

s

m

� T

s

130 for i 1 to m

s

do

131 CC

s

i

 C

s

i

� 2

i�1

L; R Range [fCC

s

i

g

132 D Domain [fCCC

s

i

g

200 The ase ty

s

= De is treated symmetrially

Seond phase

300 bad (some value appears more than one in D)

or (some value appears more than one in R)

Figure 7: Game RND3 is adversarially indistinguishable from game RND2 but defers the setting of bad.

Game NON1. So far we have not hanged the struture of the games at all: it has remained an

adversary asking q questions to an orale, our answering those questions, and the internal variable

bad either ending up true or false. The next step, however, atually gets rid of the adversary, as

well as all interation in the game.

We want to bound the probability that bad gets set to true in game RND3. We may assume that

the adversary is deterministi, and so the probability is over the random hoies P

s

$

 f0; 1g

nm

s

and

C

s

$

 f0; 1g

nm

s

that are made while answering the queries (in lines 011 and 021), and the random

hoies EZ

$

 f0; 1g

n

, PPP

s

i

$

 f0; 1g

n

, MP

s

$

 f0; 1g

n

, MC

s

$

 f0; 1g

n

, and CCC

s

i

$

 f0; 1g

n

that

are made in the �rst �nalization phase (lines 050, 113, 120, 213, and 220). We will now eliminate

the oins assoiated to lines 011 and 021. Reall that the adversary asks no pointless queries.

We would like to make the stronger statement that for any set of values that might be returned

to the adversary at lines 011 and 021, and for any set of queries (none pointless) assoiated to

them, the �nalization step of game RND3 rarely sets bad. However, this statement isn't quite true.

15

050 EZ

$

 f0; 1g

n

; L 2EZ ; D R f0

n

;EZ g // D;R are multisets

051 for s 1 to q do

100 if ty

s

= En then

110 for i 1 to m

s

do

111 Let r = r[s; i℄ be the smallest index s.t. P

s

i

= P

r

i

112 if r < s then PP

s

i

 PP

r

i

, PPP

s

i

 PPP

r

i

113 else PP

s

i

 P

s

i

� 2

i�1

L; D D [fPP

s

i

g

114 PPP

s

i

$

 f0; 1g

n

; R R [fPPP

s

i

g

120 MP

s

 PPP

s

1

� PPP

s

2

� � � � � PPP

s

m

s

� T

s

; D D [fMP

s

g

121 MC

s

$

 f0; 1g

n

; R R [fMC

s

g

122 for i 2 [2 :: m℄ do CCC

s

i

 PPP

s

i

� 2

i�1

(MP

s

�MC

s

)

123 CCC

s

1

 MC

s

� CCC

s

2

� � � � � CCC

s

m

� T

s

130 for i 1 to m

s

do

131 CC

s

i

 C

s

i

� 2

i�1

L; R Range [fCC

s

i

g

132 D D [fCCC

s

i

g

200 else (ty

s

= De)

210 for i 1 to m

s

do

211 Let r = r[s; i℄ be the smallest index s.t. C

s

i

= C

r

i

212 if r < s then CC

s

i

 CC

r

i

, CCC

s

i

 CCC

r

i

213 else CC

s

i

 C

s

i

� 2

i�1

L; R R [fCC

s

i

g

214 CCC

s

i

$

 f0; 1g

n

; D D [fCCC

s

i

g

220 MC

s

 CCC

s

1

� CCC

s

2

� � � � � CCC

s

m

s

� T

s

; R R [fMC

s

g

221 MP

s

$

 f0; 1g

n

; D D [fMP

s

g

222 for i 2 [2 :: m℄ do PPP

s

i

 CCC

s

i

� 2

i�1

(MP

s

�MC

s

)

223 PPP

s

1

 MP

s

� PPP

s

2

� � � � � PPP

s

m

� T

s

230 for i 1 to m

s

do

231 PP

s

i

 P

s

i

� 2

i�1

L; D D [fPP

s

i

g

232 R Range [fPPP

s

i

g

300 bad (some value appears more than one in D)

or (some value appears more than one in R)

Figure 8: Game NON1 is based on game RND3 but now � = (ty;T;P;C) is a �xed, allowed transript.

For example, assume that r-th and s-th queries (r < s) are both enipher queries, and that the

random hoies in line 011 speify that the i'th iphertext blok in the two answers is the same,

C

r

i

= C

s

i

. Then the ag bad is sure to be set, sine we will have a \ollision" between CC

r

i

and CC

s

i

.

Formally, sine in line 131 we set CC

r

i

= C

r

i

� 2

i�1

L = C

s

i

� 2

i�1

L = CC

s

1

, and sine both CC

r

i

and CC

s

i

are added to R we would set bad when we examine their values in line 300. A similar

example an be shown for deipher queries. We all suh ollisions immediate ollisions. Formally,

an immediate ollision happens whenever we have C

r

i

= C

s

i

(r < s) and query s is an enipher

query, and whenever we have P

r

i

= P

s

i

(r < s) and query s is a deipher query. The probability of

an immediate ollision in game RND3 is at most

q

X

s=1

m

s

(s� 1)

2

n

<

q

2

n

q

X

s=1

m

s

=

q�

n

2

n

We make from the Finalization part of game RND3 a new game, game NON1 (for \noninterative").

This game silently depends on a �xed transript � = hty;T;P;Ci with ty = (ty

1

; � � � ; ty

q

), T =

16

(T

1

; � � � ;T

q

), and P = (P

1

; � � � ;P

q

), and C = (C

1

; � � � ;C

q

) where ty

s

2 fEn;Deg, T

s

2 f0; 1g

n

,

and P

s

= P

s

1

� � �P

s

m

s

and C

s

= C

s

1

� � �C

s

m

s

for jP

r

i

j = jC

r

i

j = n. This �xed transript may not speify

any immediate ollisions or pointless queries; we all suh a transript allowed. Thus saying that �

is allowed means that for all r < s we have the following: if ty

s

= En then (i) (T

s

;P

s

) 6= (T

r

;P

r

)

and (ii) C

s

i

6= C

r

i

for any i 2 [1::m℄; while if ty

s

= De then (i) (T

s

;C

s

) 6= (T

r

;C

r

) and (ii) P

s

i

6= P

r

i

for any i 2 [1::m℄. Now �x an allowed transript � that maximizes the probability of the ag bad

being set. This one transript � is hardwired into game NON1. We have that

Pr[A

RND3

sets bad ℄ � Pr[NON1 sets bad ℄ +

q�

n

2

n

(9)

This step an be viewed as onditioning on the presene or absene of an immediate ollision,

followed by the usual argument that an average of a olletion of real numbers is at most the

maximum of those numbers. One an also view the transition from game RND3 to game NON1 as

augmenting the adversary, letting it speify not only the queries to the game, but also the answers

to these queries (as long as it does not speify immediate ollisions or pointless queries). In terms of

game RND3, instead of having the orale hoose the answers to the queries at random in lines 011

and 021, we let the adversary supply both the queries and the answers. The orale just reords

these queries and answers. When the adversary is done, we exeute the �nalization step as before

to determine the bad ag. Clearly suh an augmented adversary does not interat with the orale

at all, it just determines the entire transript, giving it as input to the orale. Now maximizing

the probability of setting bad over all suh augmented adversaries is the same as maximizing this

probability over all allowed transripts.

Game NON2. Before we move to analyze the non-interative game, we make one last hange,

aimed at reduing the number of ases that we need to handle in the analysis. We observe that due

to the omplete symmetry between D and R, it is suÆient to analyze the ollision probability in

just one of them. Spei�ally, beause of this symmetry we an assume w.l.o.g. that in game NON1

Pr[some value appears more than one in D℄ � Pr[some value appears more than one in R℄

and therefore Pr[NON1 sets bad ℄ � 2 � Pr[some value appears more than one in D℄.

We therefore replae the game NON1 by game NON2, in whih we only set the ag bad if there

is a ollision in D. We now an drop the ode that handles R, as well as anything else that doesn't

a�et the multiset D. The resulting game is desribed in Figure 9, and we have

Pr[NON1 sets bad ℄ � 2 � Pr[NON2 sets bad ℄ (10)

B.2 Analysis of the non-interative game

In the analysis we view the multisetD as a set of formal variables (rather than a multiset ontaining

the values that these variables assume). Namely, whenever we set D D[fXg for some variableX

we think of it as setting D D [f\X"g where \X" is the name of that formal variable. Viewed

in this light, our goal now is to bound the probability that two formal variables in D assume the

same value in the exeution of NON2. We observe that the formal variables in D are uniquely

determined by �|they don't depend on the random hoies made in the game NON2; spei�ally,

D = fZero;EZg [fMP

s

j s � qg

[fPP

s

i

j ty

s

= De; i � m

s

g [fPP

s

i

j ty

s

= En; i � m

s

; s = r[s; i℄g

[fCCC

s

i

j ty

s

= En; i � m

s

g [fCCC

s

i

j ty

s

= De; i � m

s

; s = r[s; i℄g

17

050 EZ

$

 f0; 1g

n

; L 2EZ ; D f0

n

;EZg

051 for s 1 to q do

100 if ty

s

= En then

110 for i 1 to m

s

do

111 Let r = r[s; i℄ be the smallest index s.t. P

s

i

= P

r

i

112 if r < s then PP

s

i

 PP

r

i

, PPP

s

i

 PPP

r

i

113 else PP

s

i

 P

s

i

� 2

i�1

L; D D [fPP

s

i

g

114 PPP

s

i

$

 f0; 1g

n

120 MP

s

 PPP

s

1

� PPP

s

2

� � � � � PPP

s

m

s

� T

s

; D D [fMP

s

g

121 MC

s

$

 f0; 1g

n

122 for i 2 [2 :: m℄ do CCC

s

i

 PPP

s

i

� 2

i�1

(MP

s

�MC

s

)

123 CCC

s

1

 MC

s

� CCC

s

2

� � � � � CCC

s

m

� T

s

130 for i 1 to m

s

do D D [fCCC

s

i

g

200 else (ty

s

= De)

210 for i 1 to m

s

do

211 Let r = r[s; i℄ be the smallest index s.t. C

s

i

= C

r

i

212 if r < s then CCC

s

i

 CCC

r

i

213 else CCC

s

i

$

 f0; 1g

n

; D D [fCCC

s

i

g

220 MC

s

 CCC

s

1

� CCC

s

2

� � � � � CCC

s

m

s

� T

s

221 MP

s

$

 f0; 1g

n

; D D [fMP

s

g

222 for i 2 [2 :: m℄ do PPP

s

i

 CCC

s

i

� 2

i�1

(MP

s

�MC

s

)

223 PPP

s

1

 MP

s

� PPP

s

2

� � � � � PPP

s

m

� T

s

230 for i 1 to m

s

do PP

s

i

 P

s

i

� 2

i�1

L; D D [fPP

s

i

g

300 bad (some value appears more than one in D)

Figure 9: Game NON2. Twie the probability that bad gets set in this game bounds the probability that bad

gets set in game NON1. We highlight random seletion by shading, and statements that grow D by boxing.

(where \Zero" is a formal onstant that always assumes the value 0

n

). We view the formal variables

in D as ordered aording to when they are assigned a value in the exeution of game NON2. This

ordering too is �xed, depending only on the �xed transript � . Our goal is to show the following:

Throughout the remainder of this setion, in all probability laims, the impliit experiment is

that of game NON2. We adopt the onvention that in an arithmeti or probability expression, a

formal variable impliitly refers to its value. For example, Pr[X = X

0

℄ means the probability that

the value assigned to X is the same as the value assigned to X

0

. (At times we may still write \X"

to stress that we refer to the name of the formal variable X, or value(X) to stress that we refer to

the value of X.) The rest of this setion is devoted to ase analysis, proving the following laim:

Claim 1 For any two distint variable X;X

0

2 D we have that Pr[X = X

0

℄ � 2

�n

.

Before proving Claim 1, we show how to use it to omplete the proof of Theorem 1. Due to our

onventions on how to measure the query omplexity there are no more than 2�

n

+1 variables in D

so the union bound gives us that

Pr[NON2 sets bad ℄ �

�

2�

n

+ 1

2

�

=2

n

(11)

18

Combining Lemma 2 with Equations 7, 8, 9, 10 and 11 we are done:

Adv

�gprp

EME[Perm(n)℄

(A) � Adv

�

g

rnd

EME[Perm(n)℄

(A) + q(q � 1)=2

n+1

� 2 � Pr[NON2 sets bad℄ + q�

n

=2

n

+ q(q � 1)=2

n+1

� 2 �

�

2�

n

+ 1

2

�

=2

n

+ q�

n

=2

n

+ q(q � 1)=2

n+1

�

(2�

n

+ 1)(2�

n

) + �

2

n

+ 0:5�

2

n

2

n

�

7 �

2

n

2

n

Sine A was an arbitrary adversary with query omplexity of �

n

we are done.

The ase analysis. We now need to prove Claim 1. We �rst prove a few laims (Claims 4

through 7 below), eah overing some speial ases of ollisions, and then go through a systemati

ase analysis, showing that all possible ases are indeed overed by these laims.

Inspeting the ode of game NON2 we see that the only random hoies in the game are the

seletion EZ

$

 f0; 1g

n

in line 050, the seletions PPP

s

i

$

 f0; 1g

n

and MC

s

$

 f0; 1g

n

on enipher

(lines 114, 121), and the seletions CCC

s

i

$

 f0; 1g

n

andMP

s

$

 f0; 1g

n

on deipher (lines 213, 221).

Spei�ally, the variables that are diretly hosen at random are EZ , the variables PPP

s

i

from

enipher queries suh that s = r[s; i℄, the variables CCC

s

i

from deipher queries suh that s = r[s; i℄,

the variables MP

s

from enipher queries, and the variables MC

s

from deipher queries. Hereafter

we refer to these variables as the free variables of the game, and we let F denote the set of them:

F = fEZg [fMP

s

j ty

s

= Deg [fMC

s

j ty

s

= Eng

[fPPP

s

i

j ty

s

= En; i � m

s

; s = r[s; i℄g

[fCCC

s

i

j ty

s

= De; i � m

s

; s = r[s; i℄g

The value of any other variable in the game an be expressed as a funtion in these free variables.

In fat, the bulk of the argument below is to show that for any pair of variables in D, either their

sum is some non-zero onstant, or else it depends linearly on at least one free variable. We �rst

prove a little helpful observation.

Claim 2 If r is an enipher query (ty

r

= En) and I � [1::m

r

℄ is a non-empty set, then we have

P

i2I

CCC

r

i

= aMC

r

+ �, where a 6= 0 is a onstant (that depends on the set I) and � is an

expression involving only onstants and free variables that are determined before MC

r

in the game

NON2.

Likewise, if r is a deipher query (ty

r

= De) and I � [1::m

r

℄ is a non-empty set, then

P

i2I

PPP

r

i

= aMP

r

+�, where a 6= 0 is a onstant and � is an expression involving only onstants

and free variables that are determined before MP

r

in the game NON2.

Proof : We prove here only the �rst assertion. The proof of the other assertion is ompletely

symmetri. Sine r is an enipher query, then the values of all the CCC

r

i

's exept the �rst (i.e.,

i 2 [2::m

r

℄), are set in line 122, CCC

r

i

 PPP

r

i

� 2

i�1

(MP

r

�MC

r

). If 1 =2 I then we have

X

i2I

CCC

r

i

=

X

i2I

PPP

r

i

� 2

i�1

(MP

r

�MC

r

)

= things-that-were-determined-before-MC

r

�

X

i2I

2

i�1

!

MC

r

19

and the oeÆient of MC

r

is non-zero sine I is non-empty.

4

For the ase where 1 2 I, sine in line 123 we set CCC

r

1

 MC

r

�

P

m

r

i=2

CCC

r

i

, we get

X

i2I

CCC

r

i

= CCC

r

1

�

X

i2I; i 6=1

CCC

r

i

=

MC

r

�

m

r

X

i=2

CCC

r

i

!

�

X

i2I; i 6=1

CCC

r

i

= MC

r

�

X

i=2I; 2�i�m

r

CCC

r

i

= MC

r

�

X

i=2I; 2�i�m

r

PPP

r

i

� 2

i�1

(MP

r

�MC

r

)

= things-that-were-determined-before-MC

r

�

0

�

1�

X

i=2I; 2�i�m

r

2

i�1

1

A

MC

r

and again, the oeÆient of MC

r

is non-zero.

To simplify the ase analysis to ome, we onsider, for eah variable X 2 D, the last free

variable (in the ordering of the game NON2) that X depends on, denoted �(X). Formally, we have

a funtion �: D! F [fnoneg that is de�ned as follows:

� As \Zero" is a onstant, we denote �(Zero) = none.

� For the formal variables EZ ;PP

s

i

2 D, this last free variable is EZ , �(EZ) = �(PP

s

i

) = EZ .

� For a formal variable CCC

s

i

2 D this last free variable �(CCC

s

i

) is either CCC

s

i

itself (on

deipher)

5

or MC

s

(on enipher). (The last assertion is a orollary of Claim 2 for I = fig.)

� The rules for MP

s

are a bit more involved. Clearly, on deipher we have �(MP

s

) = MP

s

. For

enipher, reall that we set (in line 120) MP

s

 T

s

�

P

m

i=1

PPP

s

i

, so the last free variable

that MP

s

depends on, is the \last of the free variables that any PPP

s

i

depends on".

Eah of these PPP

s

i

's an either be a free variable itself (if this is a \new blok", s = r[s; i℄),

or it an be set equal to some prior PPP

r

i

(if r = r[s; i℄ < s). In the latter ase, PPP

r

i

is either

a free variable (if query r is enipher), or else it depends on MP

r

(if query r is deipher). To

de�ne �(MP

s

), we therefore denote

rmax[s℄

def

= maxf r[s; i℄ j 1 � i � mg ; imax[s℄

def

= maxf i j r[s; i℄ = rmax[s℄g

and then, on enipher (ty

s

= En) we have

�(MP

s

) =

(

MP

rmax[s℄

if ty

rmax[s℄

= De

PPP

rmax[s℄

imax[s℄

if ty

rmax[s℄

= En

A summary of all these ases appears in Figure 10. We stress that just like the sets D and F,

the funtion � too depends only on the �xed transript � and not on the random hoies in the

game NON2. Justifying the name \last free variable" we observe the following, whih follows from

the preeding disussion:

4

Here we use the fat that m

r

� n.

5

Note that CCC

s

i

2 D, whih means that C

s

i

is \a new blok", s = r[s; i℄.

20

�(Zero) = none Z

�(EZ) = EZ EZ

�(PP

s

i

) = EZ if ty

s

= De or s = r[s; i℄ PP

�(CCC

s

i

) =

(

CCC

s

i

if ty

s

= De and s = r[s; i℄

MC

s

if ty

s

= En

CCC1

CCC2

�(MP

s

) =

8

>

<

>

:

MP

s

if ty

s

= De

MP

rmax[s℄

if ty

s

= En and ty

rmax[s℄

= De

PPP

rmax[s℄

imax[s℄

if ty

s

= En and ty

rmax[s℄

= En

MM1

MM2

MM3

Figure 10: De�ning the last free variable, �(X), assoiated to formal variable X 2 D. Transript � =

(ty;T;P;C) has been �xed and it determines r[�; �℄, rmax[�℄ and imax[�℄.

Claim 3 Let X 2 D be a formal variable, and let Y = �(X). If Y 6= none then the value

that X assumes in game NON2 an be expressed as value(X) = a � value(Y)� � where a 6= 0 is

a onstant (that depends on the name of the formal variable X and the �xed transript �) and �

is an expression involving only onstants and free variables that are determined before Y in the

game NON2. 2

As an immediate orollary of Claim 3, we get the following.

Claim 4 Let X;X

0

2 D be formal variables suh that �(X) 6= �(X

0

). Then Pr[X = X

0

℄ = 2

�n

.

Proof : let Y = �(X) and let Y

0

= �(X

0

), and assume that Y

0

ours before Y in NON2. By Claim 3

above, we have X �X

0

= a �Y � � � a

0

�Y

0

� �

0

where a 6= 0 is a onstant, and � � a

0

�Y

0

� �

0

is an expression involving only onstants and free variables that are determined before Y . As the

value of Y is hosen at random from GF(2

n

), independently of the other free variables, it follows

that Pr[X = X

0

℄ = 2

�n

.

Claim 4 leaves us with the task of analyzing ollisions between variables that depend on the same

last free variable. These are handled in the next three propositions.

Claim 5 Let X;X

0

2 D be two distint formal variables, suh that �(X) = �(X

0

) = EZ . Then

Pr[X = X

0

℄ � 2

�n

.

Proof : Reall that L = 2EZ . The types of ollisions that we need to analyze are either EZ vs. PP

s

i

for some PP

s

i

2 D, or PP

s

i

vs. PP

s

0

i

0

for PP

s

i

;PP

s

0

i

0

2 D. We start with ollisions of the type PP

s

i

vs. PP

s

0

i

0

. If i 6= i

0

then we have

PP

s

i

� PP

s

0

i

0

= (P

s

i

� 2

i�1

L)� (P

s

0

0

i

� 2

i

0

�1

L) = P

s

i

� P

s

0

0

i

� (2

i

� 2

i

0

)EZ

and as i 6= i

0

, the oeÆient of EZ is non-zero, and therefore Pr[PP

s

i

� PP

s

0

i

0

= 0

n

℄ = 2

�n

. If i = i

0

and s

0

< s then neessarily P

s

i

6= P

s

0

i

0

. (Otherwise, either query s is enipher, in whih ase r[s; i℄ < s

21

and PP

s

i

=2 D, or query s is enipher, whih means that the transript � spei�es an immediate

ollision.) Therefore, with probability one we have PP

s

i

� PP

s

0

i

0

= (P

s

i

� 2

i�1

L)� (P

s

0

i

� 2

i�1

L) =

P

s

i

� P

s

0

i

6= 0. For the other type of ollisions, EZ vs. PP

s

i

, we have

PP

s

i

� EZ = (P

s

i

� 2

i�1

L)� EZ = (P

s

i

� 2

i

EZ)� EZ = P

s

i

� (1� 2

i

)EZ

and again, sine i � 1 the oeÆient of EZ is non-zero.

Claim 6 For any two distint variablesCCC

s

i

;CCC

s

0

i

0

2 D with �(CCC

s

i

) = �(CCC

s

0

i

0

), Pr[CCC

s

i

=

CCC

s

0

i

0

℄ = 2

�n

.

Proof : By inspeting Figure 10, we see that for two variable CCC

s

i

;CCC

s

0

i

0

2 D, the equality

�(CCC

s

i

) = �(CCC

s

0

i

0

) implies that s = s

0

, and that this is a enipher query, ty

s

= En (in whih

ase �(CCC

s

i

) = �(CCC

s

0

i

0

) = MC

s

).

By Claim 2 (with I = fi; i

0

g), we an write CCC

s

i

� CCC

s

i

0

= aMC

s

+ � where a is a non-zero

onstant and � is an expression involving only onstants and variables that were determined before

MC

s

. Hene we have

Pr[CCC

s

i

= CCC

s

0

i

0

℄ = Pr[aMC

s

+ � = 0

n

℄ = Pr[MC

s

= a

�1

�℄ = 2

�n

sine MC

s

is a free variable.

The most involved ase to analyze (indeed, the one that embodies the \real reason" that EME

is seure) is ollisions of the type MP

s

= MP

s

0

. These are analyzed in Claim 7 below.

Claim 7 For any two distint variables MP

s

;MP

t

2 D with �(MP

s

) = �(MP

t

), it holds that

Pr[MP

s

= MP

t

℄ � 2

�n

.

Proof : Fix some s < t suh that �(MP

t

) = �(MP

s

). In Figure 10 we see that the equality

�(MP

s

) = �(MP

t

) implies that the later query t must be enipher (i.e., ty

t

= En), and either

query s is deipher with rmax[t℄ = s, or query s is enipher with rmax[t℄ = rmax[s℄.

If the plaintext vetors in both queries are the same (i.e., they have P

s

= P

t

) then it must be that

the tweaks di�er between them, T

s

6= T

t

(sine the transript � does not speify pointless queries).

From P

s

= P

t

it follows that PPP

s

i

= PPP

t

i

for all i, and therefore with probability one we have

MP

s

�MP

t

= T

s

� T

t

6= 0.

So from now on we assume that P

s

6= P

t

. Let E be the set of indexes where P

s

;P

t

are equal,

E

def

= f i � min(m

s

;m

t

) j P

s

i

= P

t

i

g. We note that the sum MP

s

�MP

t

an be written as

MP

s

�MP

t

= T

s

�

m

s

X

i=1

PPP

s

i

� T

t

�

m

t

X

i=1

PPP

t

i

= T

s

� T

s

0

�

X

i�m

s

;i=2E

PPP

s

i

�

X

i�m

t

;i=2E

PPP

t

i

(12)

where the last equality is justi�ed sine P

s

i

= P

t

i

implies PPP

s

i

= PPP

t

i

.

We �rst analyze the ase where query s is deipher, ty

s

= De, and furthermore P

s

is not a proper

pre�x of P

t

. Sine query s is deipher, we have in this ase rmax[t℄ = s, whih means that all the

bloks P

t

i

already appeared in queries no later than s, namely r[t; i℄ � s for all i 2 [1::m

t

℄. Sine for

22

any i =2 E we have P

s

i

6= P

t

i

, it follows that for these indexes we have r[t; i℄ < s (if r[t; i℄ is de�ned

at all). Thus we get

MP

s

�MP

t

= T

s

� T

t

�

X

i�m

s

;i=2E

PPP

s

i

�

X

i�m

t

;i=2E

PPP

t

i

= T

s

� T

t

�

X

i�m

s

;i=2E

PPP

s

i

�

X

i�m

t

;i=2E

PPP

r[t;i℄

i

= things-that-were-determined-before-query-s �

X

i�m

s

;i=2E

PPP

s

i

(13)

Sine P

s

is not a proper pre�x of P

t

, it follows that the set D

s

def

= f1::m

s

g � E is non-empty.

And sine query s is deipher, we an apply Claim 2 to onlude that

P

i2D

PPP

s

i

= aMP

s

+ �

where a 6= 0 and � depends only on things that were determined before MP

s

. Combining this with

Equation (13) we onlude that MP

s

�MP

t

= aMP

s

+ �

0

for the same non-zero onstant a, where

�

0

is a di�erent expression, but it still depends only on things that were determined before MP

s

.

Therefore, Pr[MP

s

= MP

t

℄ = 2

�n

.

Next we analyze the ases where wither query s is enipher, ty

s

= En, or P

s

is a proper pre�x of

P

t

. Reall that query t is enipher, so eah PPP

t

i

is either a free variable (if it is a \new blok",

r[t; i℄ = t) or else it is identially set to equal PPP

r[t;i℄

i

(if r[t; i℄ < t). And in the ase where query s

is enipher, then the same holds for eah PPP

s

i

. Either way, we an re-write Equation (12) as

MP

s

�MP

s

0

= T

s

� T

t

�

X

i�m

s

;i=2E

PPP

r[s;i℄

i

�

X

i�m

t

;i=2E

PPP

r[t;i℄

i

(14)

(In the ase that query s is deipher and P

s

is a proper pre�x of P

t

, the equality follows sine

the summation on i � m

s

; i =2 E ranges over an empty set.) Reall that by de�nition we have

r[s; i℄ = r[t; i℄ if and only if i 2 E. Let query r be \the last query that MP

s

�MP

t

depends on",

and let I

s

; I

t

be the sets of indexes of PPP

s

i

's and PPP

t

i

's that \ome from query r". That is, we

de�ne

R

def

= fr[s; i℄ j i � m

s

; i =2 Eg [fr[t; i℄ j i � m

t

; i =2 Eg; r

def

= max(R)

and then I

s

def

= f i � m

s

j i =2 E; r[s; i℄ = r g; I

t

def

= f i � m

t

j i =2 E; r[t; i℄ = r g

From this de�nition it follows that the sets I

s

; I

t

are disjoint (sine r[s; i℄ 6= r[t; i℄ for i =2 E), and

their union is non-empty (sine R is non-empty). Using these notation we an rewrite Equation (14)

MP

s

�MP

t

= T

s

� T

t

�

0

�

X

i2I

s

PPP

r[s;i℄

i

�

X

i�m

s

;i=2(E[I

s

)

PPP

r[s;i℄

i

1

A

(15)

�

0

�

X

i2I

t

PPP

r[t;i℄

i

�

X

i�m

t

;i=2(E[I

t

)

PPP

r[t;i℄

i

1

A

= things-that-were-determined-before-query-r �

X

i2I

s

[I

t

PPP

r

i

If query r is deipher, ty

r

= De, we an use Claim 2 to onlude that

P

i2I

s

[I

t

PPP

r

i

= aMP

r

+ �

where a 6= 0

n

and � only depends on things that are determined before MP

r

, and sine MP

r

is a

free variable, it follows that Pr[MP

s

= MP

t

℄ = 2

�n

. If query r is enipher, ty

r

= En, then all the

variables PPP

r

i

, i 2 I

s

[I

t

, ar free variables, and again we have Pr[MP

s

= MP

t

℄ � 2

�n

.

23

Proof of Claim 1. All that is left now is to verify that Claims 4 through 7 above indeed over

all the possible types of ollisions between X;X

0

2 D. So let X;X

0

2 D be two distint variables.

We partition the analysis to four ases, depending on the \type" of the variable X.

X = \Zero". Here X is the only variable in D with �(X) = none, so �(X) 6= �(X

0

). By Claim 4,

we have Pr[X = X

0

℄ = 2

�n

.

X = \EZ" or X = \PP

s

i

". In this ase we have �(X) = EZ . If �(X

0

) 6= EZ then again we get

Pr[X = X

0

℄ = 2

�n

from Claim 4. On the other hand, if �(X

0

) = �(X) = EZ then Claim 5

gives us Pr[X = X

0

℄ � 2

�n

.

X = \CCC

s

i

". In this ase �(X) 2 fCCC

s

i

;MC

s

g. Again, if �(X

0

) 6= �(X) then we get the usual

Pr[X = X

0

℄ = 2

�n

from Claim 4. So assume that �(X

0

) = �(X) 2 fCCC

s

i

;MC

s

g. This

means that X

0

is also of the form \CCC

t

j

", so from Claim 6 we have Pr[X = X

0

℄ � 2

�n

.

X = \MP

s

". In this ase �(X) 2 fMP

r

: r � qg [fPPP

r

i

: r � q; i � m

r

g. As usual, if

�(X

0

) 6= �(X) then we have Pr[X = X

0

℄ = 2

�n

from Claim 4. So assume that �(X

0

) = �(X).

This means that X

0

is also of the form \MP

t

", so from Claim 7 we have Pr[X = X

0

℄ � 2

�n

.

This ompletes the proof of Claim 1.

24

