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Abstra
t

In earlier work, we des
ribed a \pathologi
al" example of a signature s
heme that is se
ure

in the Random Ora
le Model, but for whi
h no se
ure implementation exists. For that example,

however, it was 
ru
ial that the s
heme is able to sign \long messages" (i.e., messages whose

length is not a-priori bounded). This left open the possibility that the Random Ora
le Method-

ology is sound with respe
t to signature s
hemes that sign only \short" messages (i.e., messages

of a-priori bounded length, smaller than the length of the keys in use), and are \memoryless"

(i.e., the only thing kept between di�erent signature generations is the initial signing-key). In

this work, we extend our negative result to address su
h signature s
hemes. A key ingredient in

our proof is a new type of intera
tive proof systems, whi
h may be of independent interest.
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1 Introdu
tion

A popular methodology for designing 
ryptographi
 proto
ols 
onsists of the following two steps.

One �rst designs an ideal system in whi
h all parties (in
luding the adversary) have ora
le a

ess

to a truly random fun
tion, and proves the se
urity of this ideal system. Next, one repla
es the

random ora
le by a \good 
ryptographi
 hashing fun
tion" su
h as MD5 or SHA, providing all

parties (in
luding the adversary) with a su

in
t des
ription of this fun
tion. Thus, one obtains

an implementation of the ideal system in a \real-world" where random ora
les do not exist. This

methodology, expli
itly formulated by Bellare and Rogaway [1℄ and hereafter referred to as the

random ora
le methodology, has been used in many works (see some referen
es in [4℄).

In our earlier work [4℄ we investigated the relationship between the se
urity of 
ryptographi


s
hemes in the RandomOra
le Model, and the se
urity of the s
hemes that result from implementing

the random ora
le by so 
alled \
ryptographi
 hash fun
tions". In parti
ular, we demonstrated the

existen
e of \pathologi
al" signature s
hemes that are se
ure in the Random Ora
le Model, but for

whi
h no se
ure implementation exists. However, one feature of these signature s
hemes was that

they were required to sign \long messages", in parti
ular messages that are longer than the length

of the publi
 veri�
ation-key. Thus, that work left open the possibility that the Random Ora
le

Methodology may still be sound with respe
t to limited s
hemes that only sign \short messages"

(i.e., messages that are signi�
antly shorter than the length of the publi
 veri�
ation-key). In this

work we extend the negative result of [4℄ and show that it holds also with respe
t to (memoryless)

signature s
hemes that are only required to sign \short messages". That is:

Theorem 1 (sket
h) There exists an ordinary (i.e., memoryless) signature s
heme that is se
ure in

the Random Ora
le Model, but has no se
ure implementations by fun
tion ensembles. Furthermore,

inse
urity is demonstrated by an atta
k in whi
h the s
heme is only applied to messages of poly-

logarithmi
 length (in the se
urity parameter).

Indeed, the improvement of Theorem 1 over the 
orresponding result of [4℄ is merely in the \fur-

thermore" 
lause.

Our proof extends the te
hnique from [4℄ of 
onstru
ting these \pathologi
al" signature s
hemes.

Intuitively, in these s
hemes the signer �rst 
he
ks whether the message to be signed 
ontains a

\proof of the non-randomness of the ora
le". If the signer is 
onvin
ed it performs some highly

disastrous a
tion, and otherwise it just employs some se
ure signature s
heme. Su
h a s
heme will

be se
ure in the Random Ora
le Model, sin
e the the signer is unlikely to be 
onvin
ed that its

ora
le is not random. In a \real world implementation" of the s
heme, on the other hand, the

ora
le is 
ompletely spe
i�ed by a portion of the publi
 veri�
ation-key. The atta
ker, who has

a

ess to this spe
i�
ation, 
an use it to 
onvin
e the signer that this ora
le is not random, thus

breaking the s
heme. The \proof of non-randomness" that was used in [4℄ was non-intera
tive,

and its length was longer than the veri�
ation-key, whi
h is the reason that it is not appli
able to

\short messages". The 
rux of our extension is a new type of intera
tive proof systems, employing

a stateless veri�er and short messages, whi
h may be of independent interest.

To prove \non-randomness" of a fun
tion, we would like to show that there exists a program

that 
an predi
t the value of this fun
tion at \suÆ
iently many" points. However, it seems that

su
h proof must be at least as long as said program. In our appli
ation, the proof needs to predi
t

a fun
tion des
ribed in a portion of the veri�
ation-key, hen
e it needs to be of length 
omparable

to that portion. But we want a signature s
heme that only signs short messages, so the atta
ker

(prover) 
annot submit to the signer (veri�er) su
h a long proof in just one message. It follows

that we must use many messages to des
ribe the proof, or in other words, we must have a long
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intera
tion. But re
all that in our appli
ation, the proof has to be re
eived and veri�ed by the

signing devi
e, whi
h by standard de�nitions is stateless.

1

Thus, the essen
e of what we need is an

intera
tive proof with a stateless veri�er.

At a �rst glan
e, this last notion may not seem interesting. What good is an intera
tion if

the veri�er 
annot remember any of it? If it didn't a

ept after the prover's �rst message, why

would it a

ept after the se
ond? What makes this approa
h workable is the observation that the

veri�er's state 
an be kept by the prover, as long as the veri�er has some means of authenti
ating

this state. What we do is let the veri�er (i.e., signer) emulate a 
omputation of a Turing ma
hineM

(whi
h in turn veri�es a proof provided by the prover), and do so in an authenti
ated manner. The

messages presented to the veri�er will have the form (

; �; aux), where 

 is a 
ompressed version

of an instantaneous 
on�guration of the ma
hine, � is a \signature on 

", and aux is an auxiliary

information to be used in the generation of a 
ompressed version of the next 
on�guration. If

the signature is valid then the veri�er will respond with the triple (



0

; �

0

; aux

0

), where 



0

is a


ompressed version of the next 
on�guration, �

0

is a \signature on 



0

", and aux

0

is an auxiliary

information regarding its update.

Relation to the adversarial-memory model. Our approa
h of emulating a 
omputation by

intera
tion between a memoryless veri�er and an untrusted prover, is reminis
ent of the intera
tion

between a CPU and an adversarially-
ontrolled memory in the works of Goldrei
h and Ostrovsky [6℄

and Blum et al. [2℄. Indeed, the te
hnique that we use in this paper to authenti
ate the state is

very 
lose to the \on line 
he
ker" of Blum et al. However, our problem still seems quite di�erent

than theirs. On one hand, our veri�er 
annot maintain state between intera
tions, whereas the

CPUs in both the works from above maintain a small (updated) state. On the other hand, our

authenti
ity requirement is weaker than in [6, 2℄, in that our solution allows the adversary to \roll

ba
k" the memory to a previous state. (Also, a main 
on
ern of [6℄, whi
h is not required in our


ontext, is hiding the \memory-a

ess stru
ture" from the adversary.)

Organization. We �rst present our intera
tive proof with stateless veri�er while taking advantage

of several spe
i�
 features of our appli
ation: We start with an overview (Se
tion 2), and provide

the details in Se
tion 3. In Se
tion 4 we then sket
h a more general treatment of this kind of

intera
tive proofs.

2 Overview of our approa
h

On a high level, the negative result in our earlier work [4℄ 
an be des
ribed as starting from a

se
ure signature s
heme in the Random Ora
le Model, and modifying it as follows: The signer in

the original s
heme was intera
ting with some ora
le (whi
h was random in the Random Ora
le

Model, but implemented by some fun
tion ensemble in the \real world"). In the modi�ed s
heme,

the signer examines ea
h message before it signs it, looking for a \proof" that its ora
le is not

random. If it �nds su
h a 
onvin
ing \proof" it does some obviously stupid thing, like outputting

the se
ret key. Otherwise, it reverts to the original (se
ure) s
heme. Hen
e, the 
ru
ial step in

the 
onstru
tion is to exhibit a \proof" as above. Namely, we have a prover and a veri�er, both

polynomial-time intera
tive ma
hines with a

ess to an ora
le, su
h that the following holds:

1

Indeed, the statelessness 
ondition is the reason that a non-intera
tive information transfer seems a natural


hoi
e, but in the 
urrent work we are unwilling to pay the 
ost in terms of message length.
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� When the ora
le is a truly random fun
tion, the veri�er reje
ts with overwhelming probability,

regardless of what the prover does. (The probability is taken also over the 
hoi
e of the ora
le.)

� For any polynomial-time fun
tion ensemble,

2

there is a polynomial-time prover that 
auses

the veri�er to a

ept with noti
eable probability, when the ora
le is implemented by a random

member of that ensemble. In this 
ase, the prover re
eives a full des
ription of the fun
tion

used in the role of the ora
le. (In our appli
ation, this des
ription is part of the veri�
ation-key

in the 
orresponding implementation of the signature s
heme.)

In [4℄ we used 
orrelation-intra
table fun
tions to devise su
h a proof system.

3

However, simpler


onstru
tions 
an be obtained. For example, when the ora
le is implemented by a polynomial-

time fun
tion ensemble, the prover 
ould essentially just send to the veri�er the des
ription of

the fun
tion that implements the ora
le. The veri�er 
an then evaluate that fun
tion on several

inputs, and 
ompare the outputs to the responses that it gets from the ora
le. If the outputs

mat
h for suÆ
iently many inputs (where suÆ
iently many means more that the length of the

des
ription), then the veri�er 
on
ludes that the ora
le 
annot be a random fun
tion. Indeed,

roughly this simpli�ed proof was proposed by Holenstein, Maurer, and Renner [9℄. We remark that

both our original proof and the simpli�ed proof of Holenstein et al., are non-intera
tive proofs of

non-randomness: The prover just sends one string to the veri�er, thus 
onvin
ing it that its ora
le

is not a random fun
tion.

However, implementing the proof in this manner implies that the atta
ker must send to the

veri�er a 
omplete des
ription of the fun
tion, whi
h in our appli
ation may be almost as long as

the veri�
ation-key. In terms of the resulting \pathologi
al example", this means that the signature

s
heme that we 
onstru
t must a

ept long enough messages.

Clearly, one 
an do away with the need for long messages, if we allow the signature s
heme

to \keep history" and pass some evolving state from one signature to the next. In that 
ase the

atta
ker 
an feed the long proof to the s
heme bit by bit, and the s
heme would only a
t on it

on
e its history gets long enough. In parti
ular, this means that the signature s
heme will not only

maintain a state (between signatures) but rather maintain a state of a-priori unbounded length.

Thus, the negative result will refer only to su
h signature s
hemes, while we seek to present a

negative result that refers to any signature s
heme (even stateless ones), and in parti
ular to ones

that only sign \short messages".

In this work we show how su
h a result 
an be obtained. Spe
i�
ally, we present a signature

s
heme that operates in the random-ora
le model, with the following properties:

� The s
heme is stateless: the signer only keeps in memory the se
ret key, and this key does

not evolve from one signature to the next.

� The s
heme is only required to sign short messages: On se
urity parameter k, the s
heme


an only be applied to messages whose length is less than k. Furthermore, one 
ould even

restri
t it to messages of length sub-linear in k (e.g., polylog(k)).

� The s
heme is se
ure in the Random Ora
le Model : When the ora
le is implemented by a truly

random fun
tion, the s
heme is existentially unforgeable under an adaptive 
hosen-message

atta
k.

2

A polynomial-time fun
tion ensemble is a sequen
e F = fF

k

g

k2N

of families of fun
tions, F

k

= ff

s

: f0; 1g

�

!

f0; 1g

`

out

(k)

g

s2f0;1g

k

, su
h that there exists a polynomial-time algorithm that given s and x returns f

s

(x). In the

sequel we often 
all s the des
ription or the seed of the fun
tion f

s

.

3

We used (non-intera
tive) CS-proofs (
f. [12℄) to make it possible for the veri�er to run in �xed polynomial time,

regardless of the polynomial that bounds the running time of the ensemble.
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� The s
heme has no se
ure implementation: When the ora
le is implemented by any fun
tion

ensemble (even one with fun
tions having des
ription length that is polynomially longer than

k), the s
heme is 
ompletely breakable under an adaptive 
hosen-message atta
k. We remark

that in this 
ase the fun
tion's des
ription is part of the veri�
ation-key.

4

To 
onstru
t su
h a s
heme we need to design a \proof system" that only uses very short messages.

As opposed to previous examples, we will now have an intera
tive proof system, with the proof

taking pla
e during the atta
k. Ea
h 
ommuni
ation-round of the proof is being \implemented"

by the atta
ker (in the role of the prover) sending a message to be signed, and the signer (in the

role of the veri�er) signing that message.

The ideas that make this work are the following: We start from the aforementioned non-

intera
tive proof (of \non-randomness"), where the veri�er is given the des
ription of a fun
tion,

and 
ompares that fun
tion to its own ora
le (i.e., 
ompares their values at suÆ
iently many points).

Then, instead of having the veri�er exe
ute the entire test on its own, we feed the exe
ution of this

test to the veri�er \one step at a time" (and, in parti
ular, the input fun
tion is fed \one step at a

time"). Namely, let M be the ora
le Turing ma
hine implementing the aforementioned test. The

adversary provides the veri�er with the relevant information pertaining to the 
urrent step in the

test (e.g., the state of the 
ontrol of M and the 
hara
ter under the head) and the veri�er returns

the information for the next step. This requires only short messages, sin
e ea
h step of M has a

su

in
t des
ription.

To keep the se
urity of the s
heme in the Random Ora
le Model, we need to make sure that the

adversary 
an only feed the veri�er with \valid states" of the ma
hine M . (Namely, states that 
an

indeed result from the exe
ution of this ma
hine on some input.) To do that, we have the veri�er

authenti
ate ea
h step of the 
omputation. That is, together with the \lo
al information" about the


urrent step, the veri�er also 
ompute an authenti
ation tag for the \global state" of the ma
hine

in this step, whi
h is done using Merkle trees [11℄. Su
h authenti
ation has the property that it


an be 
omputed and veri�ed using only the path from the root to the 
urrent leaf in the tree,

and the authenti
ation tag itself is very short. A little more pre
isely, the 
urrent 
on�guration of

the ma
hine M (using some standard en
oding) is viewed as the leaves of a Merkle tree, and the

veri�er provides the prover with an authenti
ation tag for the root of this tree. Then a typi
al step

in the proof pro
eeds as follows:

1. The atta
ker sends to the veri�er the \relevant leaf" of the tree (i.e., the one 
ontaining the

head of M), together with the entire path from the root to that leaf (and the siblings for that

path), and the authenti
ation tag for the root.

2. The veri�er 
he
ks the authenti
ation tag of the root and the validity of the root{leaf path

(using the siblings). If everything is valid, then the veri�er exe
utes the next step of M , and

returns to the atta
ker the updated path to the root, and an authenti
ation tag for the new

root.

If the ma
hine M ever enters an a

ept state, then the veri�er a

epts. This proof 
an still be

implemented using only short messages, sin
e the root-leaf path has only logarithmi
 depth. As for

se
urity, sin
e it is infeasible for the atta
ker to \forge a state" of M , then the veri�er will a

ept

only if the ma
hine M indeed has an a

epting 
omputation.

4

In 
ontrast, if the fun
tion's des
ription is only part of the signing-key then using any pseudorandom fun
tion [5℄

would yield a se
ure signature s
heme. However, this would not be an appli
ation of the Random Ora
le Methodology,

whi
h expli
itly refers to making the fun
tion's des
ription publi
.
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3 The details

We now 
esh out the des
ription from Se
tion 2. We begin in x3.1 with the basi
 test that we are

going to implement step-by-step. In x3.2 we des
ribe the Merkle-tree authenti
ation me
hanism

that we use, and in x3.3 we des
ribe the 
omplete \intera
tive proof system". Finally, we show in

x3.4 how this proof system is used to derive our 
ounter-example.

As we did in [4℄, we avoid making intra
tability assumptions by using the random ora
le itself

for various 
onstru
ts that we need. For example, we implement the Merkle-tree authenti
ation

me
hanism (whi
h typi
ally requires 
ollision-resistant hash fun
tions) by using the random ora
le.

We stress that we only rely on the se
urity of this and other 
onstru
ts in the Random Ora
le

Model, and do not 
are whether or not its implementation is se
ure (be
ause we are going to

demonstrate the inse
urity of the implementation anyhow). Formally, in the 
ontext of the proof

system, the se
urity of the 
onstru
ts only e�e
ts the soundness of the proof, whi
h in turn refers

to the Random Ora
le Model.

In both the basi
 test and the authenti
ation me
hanisms we use a

ess to an ora
le (whi
h

will be a random fun
tion in the Random Ora
le Model, and a random member in an arbitrary

fun
tion ensemble in the \real world"). When we work in the Random Ora
le Model, we wish these

two ora
les to be independent. Thus, we use the single ora
le to whi
h we have a

ess to de�ne

two ora
les that are independent if the original ora
le is random (e.g., using the ora
le O, we de�ne

ora
les O

i

(x)

def

= O(i; x)).

In the rest of this se
tion, we assume that the reader is familiar with the notion of a polynomial-

time fun
tion ensemble (as reviewed in Footnote 2).

3.1 The basi
 test

Our starting point is a very simple non-intera
tive \proof of non-randomness" of an ora
le O. (The

basi
 idea for this proof is des
ribed by Holenstein et al. in [9℄.) The veri�er is a (non-intera
tive)

ora
le Turing ma
hine, denoted M, whi
h is given a 
andidate proof, denoted �, as input. The input

� is supposed to be a program (or a des
ription of a Turing ma
hine) that predi
ts O. Intuitively,

if O is random then no � may be su

essful (when we try to use it in order to predi
t the value of O

on more than j�j predetermined inputs). On the other hand, if O has a short des
ription (as in 
ase

where it is taken from some fun
tion ensemble) then setting � to be the program that 
omputes

O will do perfe
tly well. The operation of M, on se
urity parameter k, input � and a

ess to an

ora
le O, is given below:

Pro
edure M

O

(1

k

; �):

1. Let n = j�j be the bit length of �.

(� is viewed as a des
ription of a Turing-ma
hine.)

2. For i = 1 to 2n+ k, let y

i

 O(i) and z

i

 �(i).

3. If y

i

and z

i

agree on their �rst bit for all i 2 [1::2n + k℄, then a

ept.

4. Else reje
t.

Below it will be 
onvenient to think of the ma
hineM as having one se
urity-parameter tape (a read-

only tape 
ontaining 1

k

), one \regular" work tape that initially 
ontains �, one ora
le query tape

and one ora
le reply tape (the last having just a single bit, sin
e we only look at the �rst bit of the

answer). A 
on�guration of this ma
hine 
an therefore be des
ribed as a 4-tuple 
 = (q; r; w; sp)

des
ribing the 
ontents of ea
h tape (i.e., q des
ribes the query, r the reply, w the 
ontents of

the work-tape and sp the se
urity-parameter). By 
onvention, we assume that the des
ription of

5



ea
h tape in
lude also the lo
ation of the head on this tape, and that the des
ription of the work

tape also in
ludes the state of the �nite 
ontrol. Thus, for the above ma
hine M, we always have

jqj = log(2j�j + k) + log log(2j�j + k), jrj = 1, jwj � j�j + s

k

(�) + log(2j�j + k) + log(j�j + s(�) +

log(2j�j + k)) + O(1), jspj = k, where s

k

(�) is the spa
e require for 
omputing �(i) for the worst

possible i 2 [2j�j + k℄. It follows that j
j = O(j�j+ s

k

(�) + k).

Note that M itself is not a \veri�er in the usual sense", be
ause its running time may depend

arbitrarily on its input. In parti
ular, for some inputs � (des
ribing a non-halting program), the

ma
hine M may not halt at all. Nonetheless, we may analyze what happens in the two 
ases that

we 
are about:

Proposition 2 (Properties of ma
hine M):

1. Random ora
le: For se
urity parameter k, if the ora
le O is 
hosen uniformly from all the

Boolean fun
tions, then

Pr

O

h

9 � 2 f0; 1g

�

s.t. M

O

(1

k

; �) a

epts

i

< 2

�k

2. Ora
le with su

in
t des
ription: For every fun
tion ensemble ff

s

: f0; 1g

�

! f0; 1gg

s2f0;1g

�

(having a polynomial-time evaluation algorithm), there exists an eÆ
ient mapping s 7! �

s

su
h that for every s and every k it holds that M

f

s

(1

k

; �

s

) a

epts in polynomial-time.

Proof Sket
h: In Item 1, we apply the union bound on all possible (i.e., in�nitely many) �'s. For

ea
h �xed � 2 f0; 1g

�

, it holds that the probability that M

O

(1

k

; �) a

epts is at most 2

�(2j�j+k)

,

where the probability is taken uniformly over all possible 
hoi
es of O. In Item 2, we use the

program �

s

obtained by hard-wiring the seed s into the polynomial-time evaluation algorithm

asso
iated with the fun
tion ensemble. 2

3.2 Authenti
ating the 
on�guration

We next des
ribe the spe
i�
s of how we use Merkle trees to authenti
ate the 
on�gurations of the

ma
hine M. In the des
ription below, we view the 
on�guration 
 = (q; r; w; sp) as a binary string

(using some standard en
oding).

We assume that the authenti
ation me
hanism too has a

ess to a random ora
le, and this ran-

dom ora
le is independent of the one that is used by the ma
hine M. Below we denote this \authen-

ti
ation ora
le" by A. To be 
on
rete, on se
urity parameter k, denote `

out

= `

out

(k) =

l

log

2

(k)

m

,

5

and assume that the ora
le is 
hosen at random, from all the fun
tions A : f0; 1g

�

! f0; 1g

`

out

.

(A
tually, we may 
onsider the fun
tions A : f0; 1g

3`

out

! f0; 1g

`

out

.) We stress again that we do

not lose mu
h generality by these assumptions, as they 
an be easily met in the Random Ora
le

Model. Also, when the se
urity parameter is k, we use a random `

out

-bit string for authenti
ation

key, whi
h we denote by ak 2

R

f0; 1g

`

out

.

To authenti
ate a 
on�guration 
 (on se
urity parameter k, with a

ess to an ora
le A, and

with key ak), we �rst pad the binary en
oding of 
 to length 2

d

� `

out

(where d is an integer). We

then 
onsider a 
omplete binary tree with 2

d

leaves, where the i'th leaf 
ontains the i'th `

out

-bit


hunk of the 
on�guration. Ea
h internal node in this tree 
ontains an `

out

-bit string. For a node

at distan
e i from the root, this `

out

-bit string equals A(i; left; right), where left and right are

5

The 
hoi
e of `

out

(k) =

�

log

2

(k)

�

is somewhat arbitrary. For the 
onstru
tion below we need the output length

`

out

to satisfy !(log k) � `

out

(k) � o(k= log k), whereas the input length should be at least 2`

out

(k) +!(log k). (Note

that 2`

out

(k) + !(log k) < 3`

out

(k).)

6



the `

out

-bit strings in the left and right 
hildren of that node, respe
tively. The authenti
ation tag

for this 
on�guration equals A(d; ak; root), where root is the `

out

-bit string in the root of the tree.

The se
urity property that we need here is slightly stronger than the usual notion for authen-

ti
ation 
odes. The usual notion would say that for an atta
ker who does not know the key ak, it

is hard to 
ome up with any valid pair (
on�guration,tag) that was not previously given to him by

the party who knows ak. In our appli
ation, however, the veri�er is only presented with root{leaf

paths in the tree, never with 
omplete 
on�gurations. We therefore require that it is hard even to


ome up with a single path that \looks like it belongs to a valid 
on�guration", without this path

being part of a previously authenti
ated 
on�guration. We use the following notions:

De�nition 3 (valid paths) Let A : f0; 1g

�

! f0; 1g

`

out

be an ora
le and ak 2 f0; 1g

`

out

be a

string as above. A valid path with respe
t to A and ak is a triple

(h�

1

� � � �

d

i; h(v

1;0

; v

1;1

); :::; (v

d;0

; v

d;1

)i; t)

where the �

i

's are bits, and the v

i;b

's and t are all `

out

-bit strings, satisfying the following 
onditions:

1. For every i = 1; :::; d � 1, it holds that v

i;�

i

= A(i; v

i+1;0

; v

i+1;1

).

2. t = A(d; ak;A(0; v

1;0

; v

1;1

)).

This path is said to be 
onsistent with the 
on�guration 
 if when pla
ing 
 in the leaves and prop-

agating values des
ribed above,

6

then for every i = 1; :::; d � 1, the node rea
hed from the root by

following the path �

1

� � � �

i

is assigned the value v

i;�

i

, and the sibling of that node is assigned the

value v

i;�

i

.

In this de�nition, v

i;�

i

is the value 
laimed for the internal node rea
hed from the root by following

the path �

1

� � � �

i

. The value 
laimed for the root is v

0

def

= A(0; v

1;0

; v

1;1

), and this value is authen-

ti
ated by A(d; ak; v

0

), whi
h also authenti
ates the depth of the tree. Indeed, only the value of

the root is dire
tly authenti
ated, and this indire
tly authenti
ates all the rest.

Fix some `

out

2 N, and let A be a random fun
tion from f0; 1g

�

to f0; 1g

`

out

and ak be a

random `

out

-bit string. Consider a forger, F , that 
an query the ora
le A on arbitrary strings, and


an also issue authenti
ation queries, where the query is a 
on�gurations 
 and the answer is the

authenti
ation tag on 
 
orresponding to A and ak. The forger F is deemed su

essful if at the end

of its run it outputs a path (�; �v; t) that is valid with respe
t to A and ak but is in
onsistent with

any of the authenti
ation queries. One 
an easily prove the following:

Proposition 4 For any `

out

2 N and any forger F , the probability that F is su

essful is at most

q

2

=2

`

out

, where q is the total number of queries made by F (i.e., both queries to the ora
le A and

authenti
ation queries). The probability is taken over the 
hoi
es of A and ak, as well as over the


oins of the forger F .

Proof Sket
h: Intuitively, the authenti
ation of the root's value makes it hard to produ
e a

path that is valid with respe
t to A and (the unknown) ak but uses a di�erent value for the root.

Similarly for a path of a di�erent length for the same root value. On the other hand, it is hard to

form 
ollisions with respe
t to the values of internal nodes (i.e., obtain two pairs (u;w) and (u

0

; w

0

)

su
h that for some i it holds that A(i; u; w) = A(i; u

0

; w

0

)). 2

6

That is, an internal node at distan
e i from the root is assigned the value A(i; u; w), where u and w are the values

assigned to its 
hildren.

7



3.3 An intera
tive proof of non-randomness

We are now ready to des
ribe our intera
tive proof, where a prover 
an 
onvin
e a \stateless"

veri�er that their 
ommon ora
le is not random, using only very short messages.

The setting is as follows: We have a prover and a veri�er, both work in polynomial time in

their input, both sharing a se
urity parameter k 2 N (en
oded in unary), and both having a

ess

to an ora
le, say O

0

: f0; 1g

�

! f0; 1g

`

out

. (The parameter `

out

is quite arbitrary. Below we assume

for 
onvenien
e that this is the same parameter as we use for the authenti
ation s
heme, namely

`

out

=

l

log

2

(k)

m

.)

7

In this proof system, the prover is trying to 
onvin
e the veri�er that their


ommon ora
le in not random. Spe
i�
ally, both prover and veri�er interpret their ora
le as two

separate ora
les, A and O (say, O(x) = O

0

(0x) and A(x) = O

0

(1x)), and the honest prover has

as input a des
ription of a Turing ma
hine that 
omputes the fun
tion O. However, we pla
e

some severe limitations on what the veri�er 
an do. Spe
i�
ally, the veri�er has as private input

a random string ak 2 f0; 1g

`

out

, but other than this �xed string, it is not allowed to maintain any

state between steps. That is, when answering a message from the prover, the veri�er always begin

the 
omputation from a �xed state 
onsisting only of the se
urity parameter k and the string ak.

In addition, on se
urity parameter k, the veri�er is only allowed to see prover-messages of length

stri
tly smaller than k. (In fa
t, below we only use messages of size polylog(k).)

The proof that we des
ribe below 
onsists of two phases. In the �rst (initialization) phase, the

prover uses the veri�er to authenti
ate the initial 
on�guration of the ma
hine M

O

(1

k

; x), where k

is the se
urity parameter that they both share, and x is some input that the prover 
hooses. For

the honest prover, this input x will be the des
ription of the Turing-ma
hine that implements the

ora
le O. In the se
ond (
omputation) phase, the prover takes the veri�er step-by-step through

the 
omputation of M

O

(1

k

; x). For ea
h step, the prover gives to the veri�er the relevant part from

the 
urrent authenti
ated 
on�guration, and the veri�er returns the authenti
ation tag for the next


on�guration. The veri�er is 
onvin
ed if the ma
hine M ever rea
hes the a

epting state.

For notational 
onvenien
e, we assume below that on se
urity parameter k, the veri�er only

agrees to authenti
ate 
on�gurations of M whose length is less than 2

`

out

(k)

. Indeed, in our appli-


ation the honest prover will never need to use larger 
on�guration (for large enough k).

3.3.1 Initialization phase

This phase 
onsists of two steps. In the �rst step, the prover will use the veri�er in order to

authenti
ate \blank 
on�guration" (la
king a real input) for the 
omputation, whereas in the

se
ond step the prover will feed an input into this 
on�guration and obtain (via intera
tion with

the veri�er) an initial 
on�guration �tting this input.

First step. The prover begins this phase by sending a message of the form (`Init', 0, sb) to the

veri�er, where the integer sb < 2

`

out

(k)

is an upper bound on the length of the 
on�gurations of M

in the 
omputation to 
ome, and it is en
oded in binary. In response, the veri�er 
omputes a

blank 
on�guration, denoted 


0

, of length sb and sends the authenti
ation tag for this 
on�guration,

with respe
t to ora
le A and key ak. The blank 
on�guration 


0


onsists of the se
urity-parameter

tape �lled with 1

k

, all the other tapes being \empty" (e.g., �lled with ?'s), the heads being at

the beginning of ea
h tape, and the �nite 
ontrol being in a spe
ial blank state. Spe
i�
ally, the

7

Note that even a binary ora
le (i.e., `

out

= 1) suÆ
es, sin
e in the Random Ora
le Model it is easy to 
onvert

one output length to another.
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work-tape 
onsists of sb blanks (i.e., ?'s), and the query-tape 
onsists of `

out

(k)=2 = !(log k)

blanks.

8

We note that authenti
ating the blank 
on�guration in a straightforward manner (i.e., by writing

down the 
on�guration and 
omputing the labels of all nodes in the tree) takes time O(sb), whi
h

may be super-polynomial in k. Nonetheless, it is possible to 
ompute the authenti
ation tag in

time polynomial in k, be
ause the 
on�guration 


0

is \highly uniform". Spe
i�
ally, note that the

work tape is �lled with ?'s, and all the other tapes are of size polynomial in k. Thus, in every level

of the 
on�guration tree, almost all the nodes have the same value (ex
ept, perhaps, a polynomial

number of them). Hen
e, the number of queries to A and total time that it takes to 
ompute the

authenti
ation tag is polynomial in k.

Conventions. For simpli
ity, we assume that the 
ontents of the query-tape as well as the ma-


hine's state are en
oded in the �rst `

out

(k)-bit long blo
k of the 
on�guration. Typi
ally, in all

subsequent modi�
ations to the 
on�guration, we will use this blo
k as well as (possibly) some

other blo
k (in whi
h the \a
tual a
tion" takes pla
e). We denote by hii the bit-string des
ribing

the path from the root to the leaf that 
ontains the i'th lo
ation in the work-tape. Needless to say,

we assume that the en
oding is simple enough su
h that hii 
an be 
omputed eÆ
iently from i.

Se
ond step. After obtaining the authenti
ation tag for the blank 
on�guration, the prover may

�ll in the input in this 
on�guration by sending messages of the form (`Init', i; b; �p

1

; �p

i

; t) to the

veri�er. Upon re
eiving su
h a message, the veri�er 
he
ks that (h1i; �p

1

; t) and (hii; �p

i

; t) are valid

paths w.r.t. A and ak, that path �p

1

shows the heads at the beginning of their tapes and the 
ontrol

in the spe
ial \blank state", and that path �p

i

shows the i'th lo
ation in the work-tape �lled with a

?. In 
ase all 
onditions hold, the veri�er repla
es the 
ontents of the i'th lo
ation in the work-tape

with the bit b, re
omputes values along the path from that tape lo
ation to the root, and returns

the new authenti
ation tag to the prover. That is, the values along that path as re
orded in �p

i


orrespond to a setting of the i'th lo
ation to ?, and setting this lo
ation to b typi
ally yields new

values that propagate from this leaf up-to the root.

Thus, using jxj rounds of intera
tion, the honest prover 
an obtain (from the veri�er) the

authenti
ation tag on the initial 
on�guration of M(1

k

; x), where x is a string of the prover's


hoi
e. Note that a 
heating prover may obtain from the prover an authenti
ation tag that does

not 
orrespond to su
h an initial 
on�guration. (In fa
t, even the honest prover obtains su
h tags

in all but the last iterations of the 
urrent step.)

3.3.2 Computation phase

This phase begin with a message of the form (`Comp', �p

1

; t) that the prover sends. The veri�er


he
ks that (h1i; �p

1

; t) is a valid path, and that �p

1

shows the heads at the beginning of their tapes

and the 
ontrol in the spe
ial \blank state". If these 
onditions hold, the veri�er 
hanges the state

to the initial state of M, re
omputes the values on the path �p

1

from the initial tape lo
ation to the

root, and returns the new authenti
ation tag to the prover. (In fa
t, one may view this step as

belonging to the initialization step.)

Thereafter, upon re
eiving a message of the form (`Comp', i; j; �p

1

; �p

i

; �p

j

; t), where j 2 fi�1; i; i+

1g (and indeed when j = i it holds that �p

i

= �p

j

), the veri�er 
he
ks that (h1i; �p

1

; t), (hii; �p

i

; t),

(hji; �p

j

; t), are all valid paths. Furthermore, it 
he
ks that �p

i


ontains the head position and �p

j

8

On input (1

k

; x), the query tape of M is of size log

2

(2jxj + k). For ensemble F , the honest prover will use

jxj � poly(k) +O(1), and so the length of the query tape would be O(logk).
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des
ribes a legal 
ontents of the position that the head will move to after the 
urrent step. That

is, �p

1

and �p

i

provide suÆ
ient information to determine the single-step modi�
ation of the 
urrent


on�guration (whi
h may in
lude a movement of some heads and a 
hange in the 
ontents of a

single symbol in some of the tapes). In 
ase all 
onditions hold, then the veri�er exe
utes the


urrent step (making a query to its ora
le O if this step is an ora
le query), re
omputes the values

on the three paths to the root, and returns the new authenti
ation tag to the prover. If after this

step the ma
hine M enters its a

ept state, the veri�er a

epts.

It 
an be seen that the honest prover 
an use these intera
tion steps to take the veri�er step-

by-step through the 
omputation of M. It follows that if the input to the honest prover is indeed

a polynomial-time ma
hine that 
omputes the fun
tion O, then the veri�er will halt and a

ept

after polynomially many steps. We 
on
lude this subse
tion by showing that the above 
onstitutes

a proof system for non-randomness (satisfying additional properties that we will need in the next

subse
tion).

Proposition 5 The above 
onstru
tion 
onstitutes a proof system with these properties:

EÆ
ien
y. Ea
h veri�er step 
an be 
omputed in time polynomial in the se
urity parameter k.

Stateless veri�er. The veri�er is stateless in the sense that it begins every step from the same state,


onsisting only of the se
urity parameter k and its private input ak 2 f0; 1g

`

out

. Formally, the

veri�er replies to ea
h in
oming message m with V (1

k

; ak;m), where V is a �xed (eÆ
iently


omputable) fun
tion.

9

Soundness. If O

0

is 
hosen as a random fun
tion O

0

: f0; 1g

�

! f0; 1g

`

out

(k)

and ak is 
hosen at

random in f0; 1g

`

out

(k)

, then for every (possibly 
heating) prover P it holds that

Pr

O

0

;ak

h

The veri�er V

O

0

(1

k

; ak) a

epts when talking to P

O

0

i

� (q+ `

out

(k) �m)

2

� 2

�`

out

+ 2

�k

where q is the total number of queries that P makes to the ora
le A and m is the total number

of messages that it sends to the veri�er V .

Completeness with short messages. For every polynomial-time-
omputable fun
tion ensemble F ,

there exists a polynomial-time prover P

F

su
h that:

1. For every 
hoi
e of s 2 f0; 1g

poly(k)

and ak 2 f0; 1g

`

out

(k)

, the veri�er V

f

s

(1

k

; ak) always

a

epts when talking to P

F

(s).

2. On se
urity parameter k, the prover P

F

(s) only sends to the veri�er poly(k) many mes-

sages, ea
h of length O((log k) � `

out

(k)) = O(log

3

k).

Proof Sket
h: The only assertions that are not obvious are the soundness bound and the size of

the messages. For the soundness bound, re
all that (by Proposition 2) whenO

0

is a random fun
tion

(and therefore also O is a random fun
tion), the probability that there exists an input x that makes

M

O

(1

k

; x) a

ept is at most 2

�k

. If there is no su
h input, then the only way to make V

O

0

a

ept

is \forge" some valid paths, and (by Proposition 4) this 
an only be done with probability at most

q

2

2

�`

out

. Slightly more formal, 
onsider the trans
ript of a proof in whi
h P

O

0


auses V

O

0

to a

ept.

Considering all the messages that P sent to V in this trans
ript, one 
an easily de�ne a \depend-

on" relation among then (namely, when one message 
ontains an authenti
ation tag that was

9

We slightly abuse notations here, and use V for both the veri�er and the fun
tions that it implements.
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obtained in a previous message). This, in turn, allows us to de�ne the 
omplete 
on�gurations that

were \rightly authenti
ated" during this trans
ript (namely, those 
on�gurations that 
orrespond

to a 
omputation that starts from the initial 
on�guration of M

k

on some input x.) Hen
e, we

either �nd an initial 
on�guration from whi
h M(1

k

; x) a

epts (a probability 2

�k

event), or we

�nd a 
omputation that begins from some non-initial 
on�guration. Sin
e the veri�er V

O

0

never

authenti
ates a non-initial 
on�guration unless it sees a valid path belonging to a 
on�guration

that dire
tly pre
edes it, the valid path belonging to the �rst non-initial 
on�guration must be a

forgery. (By making suitable ora
le 
alls before sending ea
h message to the veri�er, we 
an 
onvert

the 
heating prover to a forger that makes at most q + `

out

�m queries, and soundness follows.)

As for the size of the messages sent by the honest prover, let F be any polynomial-time-


omputable fun
tions ensemble. This means that there is a polynomial p(�) su
h that on se
urity

parameter k, spe
ifying any fun
tion f

s

2 F

k


an be done using at most p(k) bits, and moreover,


omputing f

s

(x) for any jxj < k takes at most p(k) time. (Below we assume for 
onvenien
e that

p(k) � k.) For any f

s

2 F

k

, let �

s

be a des
ription of a Turing ma
hine 
omputing f

s

. By the

above, j�

s

j = jsj + O(1) < p(k) + O(1). This implies that for any f

s

2 F

k

, the non-intera
tive

veri�er M(1

k

; �

s

) runs in time at most O(k + 2p(k)) � p(k) = O(p

2

(k)), and therefore it only has


on�gurations of length at most O(p

2

(k)).

The honest prover P

F

, having a

ess to s, 
an 
ompute the des
ription �

s

and take the veri�er

step-by-step through the exe
ution of M

f

s

(1

k

; �

s

), whi
h 
onsists only of O(p

2

(k)) steps. It begins

by sending a message (`Init', 0, sb), with the bound sb being set to sb = O(p

2

(k)), and in ea
h

step thereafter it only needs to send a 
onstant number of paths in the tree, ea
h of length log(sb).

Sin
e ea
h node in the tree 
ontains a string of length `

out

(k), it follows that the total length of

the prover's queries is O(log(sb) � `

out

(k)) = O(`

out

(k) � log(p

2

(k))) = O(`

out

(k) � log k). 2

3.4 The signature s
heme

Combining the proof system from the previous se
tion with the ideas outlined in Se
tions 1 and 2,

it is quite straightforward to 
onstru
t the desired signature s
heme (summarized in the next

theorem).

Theorem 6 (Theorem 1, restated) There exists a signature s
heme S that is existentially unforge-

able under a 
hosen message atta
k in the Random Ora
le Model, but su
h that when implemented

with any eÆ
iently 
omputable fun
tion ensemble, the resulting s
heme is totally breakable under


hosen message atta
k. Moreover, the signing algorithm of S is stateless, and on se
urity parame-

ter k, it 
an only be applied to messages of size poly-logarithmi
 in k.

Proof: Let (P

pf

; V

pf

) be the proof system for \non-randomness" des
ribed in Se
tion 3.3. Let

S = (G

sig

; S

sig

; V

sig

) be any stateless signature s
heme that is existentially unforgeable under a


hosen message atta
k in the Random Ora
le Model (we know that su
h s
hemes exist, e.g., using

Naor-Yung [13℄ with the random ora
le used in the role of a universal one-way hash fun
tion)). We

view all the ma
hines P

pf

, V

pf

, G

sig

, S

sig

, and V

sig

as ora
le ma
hines (although G

sig

, S

sig

, or V

sig

may not use their ora
le). We modify the signature s
heme to obtain a di�erent signature s
heme

S

0

= (G

0

; S

0

; V

0

).

� On input 1

k

(k being the se
urity parameter), the key generation algorithm G

0

�rst runs

G

sig

to obtain a private/publi
 key-pair of the original s
heme, (sk; vk)  G

O

sig

(1

k

). Then it


hooses a random `

out

-bit \authenti
ation key" ak 2

R

f0; 1g

`

out

(k)

(to be used by V

pf

). The

publi
 veri�
ation key is just vk, and the se
ret signing key is the pair (sk; ak). (We assume

that the se
urity parameter k is impli
it in both vk and sk.)

11



� On message m, signing key (sk; ak) and a

ess to ora
le O, the signature algorithm S

0

works

as follows: If the message m is too long (i.e., jmj > log

4

k) then it outputs an empty sig-

nature ?.

10

Otherwise, it invokes both the proof-veri�er V

pf

and the signer S

sig

on the

message m to get �

pf

 V

O

pf

(ak;m), and �

sig

 S

O

sig

(sk;m).

If the proof-veri�er a

epts (i.e., �

pf

= \a

ept") then the signature 
onsists of the se
ret key

� = (�

sig

; (sk; ak)). Otherwise, the signature is the pair � = (�

sig

; �

pf

).

� The veri�
ation algorithm V

0

, on message m, alleged signature � = (�

1

; �

2

), veri�
ation

key vk and a

ess to ora
le O, just invokes the original signature-veri�er V

sig

on the �rst part

of the signature, outputting V

O

sig

(vk;m; �

1

).

It is 
lear from the des
ription that this s
heme is stateless, and that it 
an only be used to

sign messages of length at most log

4

k. It is also easy to see that with any implementation via

fun
tion ensemble, the resulting s
heme is totally breakable under adaptive 
hosen message atta
k.

When implemented using fun
tion ensemble F , an atta
ker uses the pres
ribed prover P

F

(of

Proposition 5). Re
all that the seed s for the fun
tion f

s

that is used to implement the ora
le is

in
luded in the publi
 key, so the atta
ker 
an just run P

F

(s). The atta
ker sends the prover's

messages to the signer S

0

, and the size of these messages is O(log

3

k) < log

4

k, where the 
onstant

in the O-notation depends on the ensemble F . The se
ond 
omponent of the signatures on these

messages are the replies from the proof-veri�er V

f

s

pf

. From Proposition 5 we 
on
lude that after

signing polynomially many su
h messages, the proof-veri�er a

epts (with probability one), at

whi
h point the signing algorithm will output the se
ret signing key. Thus, we totally break the

s
heme's implementation (by any fun
tion ensemble).

Next we show that the s
heme S

0

is existentially unforgeable under a 
hosen message atta
k in

the Random Ora
le Model. Informally, the reason is that in the Random Ora
le Model a forger

will not be able to 
ause the proof-veri�er to a

ept, and thus it will be left with the task of forging

a signature with respe
t to the original (se
ure) signature s
heme.

Formally, 
onsider a polynomial-time forger F

0

, atta
king the s
heme S

0

, let � = �(k) denote the

probability that F

0

issues a forgery, and assume { toward 
ontradi
tion { that � is non-negligible.

Consider the invo
ations that the signing algorithm makes to the proof-veri�er V

pf

during the

atta
k. Let Æ = Æ(k) be the probability that V

pf

replies to some query with \a

ept". Sin
e we


an view the 
ombination of F

0

and the signing algorithm as a (
heating) prover P

O

, Proposition 5

tells us that Æ � q

2

=2

`

out

+2

�k

where q is bounded by the running time of F

0

(whi
h is polynomial

in k). Hen
e Æ is negligible.

Next we show a polynomial-time forger F

sig

against the original s
heme S that issues a forgery

with probability at least ��Æ, 
ontradi
ting the se
urity of S. The forger F

sig

is given a publi
 key vk

that was generated by G

sig

(1

k

), it has a

ess to the signing ora
le S

O

sig

(sk; �) for the 
orresponding

signing key sk, and also a

ess to the random ora
le O. It pi
ks at random an \authenti
ation key"

ak 2 f0; 1g

`

out

(k)

, and then invokes the forger F

0

on the same publi
 key vk.

When F

0

asks for a signature on a message m, the forger F

sig

behaves mu
h like the signature

algorithm S

0

. Namely, if jmj > log

4

k it returns ?. Otherwise, it 
omputes �

pf

 V

O

pf

(ak;m),

and it queries its signing ora
le on m to get �

sig

 S

O

sig

(sk;m). If the proof-veri�er a

epts,

�

pf

= \a

ept", then F

sig

aborts. Else it returns the pair � = (�

sig

; �

pf

). If F

0

issues a forged

message m

0

with signature (�

0

1

; �

0

2

) then F

sig

issues the same forged message m

0

and signature �

0

1

.

It is 
lear that F

sig

su

eeds in forging a signature if and only if F

0

forges a signature without


ausing the proof-veri�er V

pf

to a

ept, whi
h happens with probability at least �� Æ.

10

Alternatively, S

0

may return (S

O

sig

(sk;m);?), and we should note that in the (\real world") atta
k des
ribed

below only short messages are used.

12



Remark 7 (Message length) Tra
ing through the arguments in this se
tion, it 
an be seen

that the message-length 
an be de
reased from log

4

k to !(log

2

k): It suÆ
es to use a spa
e-bound

SB = !(log k), whi
h yields a (pres
ribed) proof system with prover message of length !(log

2

k),

for any fun
tion ensemble. However, a
hieving poly-logarithmi
 message length relies heavily on

the fa
t that we use the random ora
le for authenti
ation, and on the fa
t that the random ora
le

yields authenti
ation with \exponential hardness". In Se
tion 4 below, we instead use standard


ollision-intra
table fun
tions and message-authenti
ation 
odes, that only enjoy \super-polynomial

hardness". In this 
ase, the a
hievable message length would be O(k

�

) for any desired (�xed) � > 0.

4 A proof system for any NP-language

The des
ription in Se
tion 3 
ombined the spe
i�
s of our appli
ation (i.e., proving non-randomness

of an ora
le) with the general ideas underlying the 
onstru
tion of the new proof system. In this

se
tion, we apply the latter ideas in order to derive a new type of proof systems for any language

in NP .

The model is similar to ordinary intera
tive proofs as in GMR [8℄ (and arguments as in BCC [3℄),

ex
ept that the veri�er is stateless. That is, the veri�er is represented by a randomized pro
ess

that given the veri�er's input and the 
urrent in-
oming message, determines the veri�er's next

message. This pro
ess is probabilisti
 polynomial-time, but it 
annot e�e
t the veri�er's state. In

parti
ular, the veri�er's de
ision to a

ept or reje
t (or 
ontinue in the intera
tion) will be re
e
ted

in its next message. (In a sense, the veri�er will not even remember its de
ision, but merely notify

the world of it.)

The above model, per se, allows to prove membership in any NP-set, by merely having the

prover send the 
orresponding NP-witness. However, we are interested in su
h proof systems in

whi
h the prover only sends short messages. This rules out the simple solution just suggested.

But, as stated, this model does not allow to do mu
h beyond using short NP-witnesses whenever

they exist. The reason being that, from the veri�er's point of view, there is no \relation" between

the various 
ommuni
ation rounds, and the only fun
tion of the multiple intera
tions is to provide

multiple attempts of the same experiment. The situation 
hanges on
e we provide the veri�er with

an auxiliary se
ret input. This input is 
hosen uniformly from some domain and remains �xed

throughout the run of the proto
ol. The goal of this auxiliary input is to model some very limited

form of state that is kept between sending a message and re
eiving the response.

To summarize, we are interested in proof systems (or arguments) that satisfy the following three


onditions:

1. In addition to the 
ommon input, denoted x, the veri�er re
eives an auxiliary se
ret input,

denoted s, that is 
hosen uniformly from some domain. As usual, we fo
us on a probabilisti


polynomial-time prover that also re
eives an auxiliary input, denoted y.

2. The veri�er employs a stateless strategy. That is, there exists a probabilisti
 polynomial-time

algorithm V su
h that the veri�er answers the 
urrent message m with V (x; s;m).

3. The prover 
an only send short messages. That is, it 
an only send messages of length `(jxj),

where `(n)� n (e.g., `(n) =

p

n).

One may think of su
h proofs as proving statements to a 
hild: The veri�er's attention span limits

us to sending it only `(n) bits at a time, after whi
h its attention is diverted to something else.

Moreover, on
e we again 
apture the veri�er's attention, it has already forgotten everything that

had happened before.

13



Assuming the existen
e of 
ollision-resistant hash fun
tions, we 
an show that su
h a proof

system 
an emulate any proof system (having an eÆ
ient pres
ribed prover strategy).

11

The emu-

lation will only be 
omputationally-sound (i.e., it is possible but not feasible to 
ause the veri�er

to a

ept false statements). In fa
t, we have already shown su
h a proof system: It is impli
it in

the des
ription of Se
tion 3, when one repla
es the two di�erent roles of A (see proof of Propo-

sition 4) by a 
ollision-resistant hash fun
tion and a message-authenti
ation s
heme, respe
tively.

Indeed, the des
ription in Se
tion 3 referred to the emulation of a spe
i�
 test, but it applies as

well to the emulation of any ordinary veri�er strategy (i.e., one that does maintain state between


ommuni
ation rounds). Spe
i�
ally, one may �rst transform the original intera
tive proof to one

in whi
h the prover sends a single bit in ea
h 
ommuni
ation round, and then emulate the intera
-

tion of the resulting veri�er by following the des
ription in Se
tion 3. Note that what we need to

emulate in a non-trivial manner is merely the state maintained by the (resulting) veri�er between


ommuni
ation rounds.

Comments: Sin
e anyhow we are obtaining only a 
omputationally-sound intera
tive proof (i.e.,

an argument system), we may as well emulate argument systems of low (total) 
ommuni
ation


omplexity (
f. Kilian [10℄), rather than intera
tive proofs or NP-proofs.

12

This way, the resulting

proof system will also have low (total) 
ommuni
ation 
omplexity (be
ause the length of the state

maintained by the original veri�er between 
ommuni
ation rounds need not ex
eed the length of

the total 
ommuni
ation). (We stress that the original argument systems of low 
ommuni
ation


omplexity 
annot be exe
uted, per se, in the 
urrent model, be
ause its soundness relies on the

veri�er's memory of a previous message.) We also 
omment that (like in the des
ription of Se
-

tion 3), we 
an handle the 
ase where the a
tual input (i.e., x) or part of it is sent to the veri�er

during the proof pro
ess (rather than being handed to it at the very start).
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