
On the random-orale methodology as applied to length-restrited

signature shemes

Ran Canetti

�

Oded Goldreih

y

Shai Halevi

�

July 30, 2003

Abstrat

In earlier work, we desribed a \pathologial" example of a signature sheme that is seure

in the Random Orale Model, but for whih no seure implementation exists. For that example,

however, it was ruial that the sheme is able to sign \long messages" (i.e., messages whose

length is not a-priori bounded). This left open the possibility that the Random Orale Method-

ology is sound with respet to signature shemes that sign only \short" messages (i.e., messages

of a-priori bounded length, smaller than the length of the keys in use), and are \memoryless"

(i.e., the only thing kept between di�erent signature generations is the initial signing-key). In

this work, we extend our negative result to address suh signature shemes. A key ingredient in

our proof is a new type of interative proof systems, whih may be of independent interest.

Keywords: Signature Shemes, The Random Orale Model, Interative Proof systems.

�

IBM Watson, P.O. Box 704, Yorktown Height, NY 10598, USA. fanetti,shaihg�watson.ibm.om

y

Department of Computer Siene, Weizmann Institute of Siene, Rehovot, Israel.

oded�wisdom.weizmann.a.il.

1

1 Introdution

A popular methodology for designing ryptographi protools onsists of the following two steps.

One �rst designs an ideal system in whih all parties (inluding the adversary) have orale aess

to a truly random funtion, and proves the seurity of this ideal system. Next, one replaes the

random orale by a \good ryptographi hashing funtion" suh as MD5 or SHA, providing all

parties (inluding the adversary) with a suint desription of this funtion. Thus, one obtains

an implementation of the ideal system in a \real-world" where random orales do not exist. This

methodology, expliitly formulated by Bellare and Rogaway [1℄ and hereafter referred to as the

random orale methodology, has been used in many works (see some referenes in [4℄).

In our earlier work [4℄ we investigated the relationship between the seurity of ryptographi

shemes in the RandomOrale Model, and the seurity of the shemes that result from implementing

the random orale by so alled \ryptographi hash funtions". In partiular, we demonstrated the

existene of \pathologial" signature shemes that are seure in the Random Orale Model, but for

whih no seure implementation exists. However, one feature of these signature shemes was that

they were required to sign \long messages", in partiular messages that are longer than the length

of the publi veri�ation-key. Thus, that work left open the possibility that the Random Orale

Methodology may still be sound with respet to limited shemes that only sign \short messages"

(i.e., messages that are signi�antly shorter than the length of the publi veri�ation-key). In this

work we extend the negative result of [4℄ and show that it holds also with respet to (memoryless)

signature shemes that are only required to sign \short messages". That is:

Theorem 1 (sketh) There exists an ordinary (i.e., memoryless) signature sheme that is seure in

the Random Orale Model, but has no seure implementations by funtion ensembles. Furthermore,

inseurity is demonstrated by an attak in whih the sheme is only applied to messages of poly-

logarithmi length (in the seurity parameter).

Indeed, the improvement of Theorem 1 over the orresponding result of [4℄ is merely in the \fur-

thermore" lause.

Our proof extends the tehnique from [4℄ of onstruting these \pathologial" signature shemes.

Intuitively, in these shemes the signer �rst heks whether the message to be signed ontains a

\proof of the non-randomness of the orale". If the signer is onvined it performs some highly

disastrous ation, and otherwise it just employs some seure signature sheme. Suh a sheme will

be seure in the Random Orale Model, sine the the signer is unlikely to be onvined that its

orale is not random. In a \real world implementation" of the sheme, on the other hand, the

orale is ompletely spei�ed by a portion of the publi veri�ation-key. The attaker, who has

aess to this spei�ation, an use it to onvine the signer that this orale is not random, thus

breaking the sheme. The \proof of non-randomness" that was used in [4℄ was non-interative,

and its length was longer than the veri�ation-key, whih is the reason that it is not appliable to

\short messages". The rux of our extension is a new type of interative proof systems, employing

a stateless veri�er and short messages, whih may be of independent interest.

To prove \non-randomness" of a funtion, we would like to show that there exists a program

that an predit the value of this funtion at \suÆiently many" points. However, it seems that

suh proof must be at least as long as said program. In our appliation, the proof needs to predit

a funtion desribed in a portion of the veri�ation-key, hene it needs to be of length omparable

to that portion. But we want a signature sheme that only signs short messages, so the attaker

(prover) annot submit to the signer (veri�er) suh a long proof in just one message. It follows

that we must use many messages to desribe the proof, or in other words, we must have a long

1

interation. But reall that in our appliation, the proof has to be reeived and veri�ed by the

signing devie, whih by standard de�nitions is stateless.

1

Thus, the essene of what we need is an

interative proof with a stateless veri�er.

At a �rst glane, this last notion may not seem interesting. What good is an interation if

the veri�er annot remember any of it? If it didn't aept after the prover's �rst message, why

would it aept after the seond? What makes this approah workable is the observation that the

veri�er's state an be kept by the prover, as long as the veri�er has some means of authentiating

this state. What we do is let the veri�er (i.e., signer) emulate a omputation of a Turing mahineM

(whih in turn veri�es a proof provided by the prover), and do so in an authentiated manner. The

messages presented to the veri�er will have the form (; �; aux), where is a ompressed version

of an instantaneous on�guration of the mahine, � is a \signature on ", and aux is an auxiliary

information to be used in the generation of a ompressed version of the next on�guration. If

the signature is valid then the veri�er will respond with the triple (

0

; �

0

; aux

0

), where

0

is a

ompressed version of the next on�guration, �

0

is a \signature on

0

", and aux

0

is an auxiliary

information regarding its update.

Relation to the adversarial-memory model. Our approah of emulating a omputation by

interation between a memoryless veri�er and an untrusted prover, is reminisent of the interation

between a CPU and an adversarially-ontrolled memory in the works of Goldreih and Ostrovsky [6℄

and Blum et al. [2℄. Indeed, the tehnique that we use in this paper to authentiate the state is

very lose to the \on line heker" of Blum et al. However, our problem still seems quite di�erent

than theirs. On one hand, our veri�er annot maintain state between interations, whereas the

CPUs in both the works from above maintain a small (updated) state. On the other hand, our

authentiity requirement is weaker than in [6, 2℄, in that our solution allows the adversary to \roll

bak" the memory to a previous state. (Also, a main onern of [6℄, whih is not required in our

ontext, is hiding the \memory-aess struture" from the adversary.)

Organization. We �rst present our interative proof with stateless veri�er while taking advantage

of several spei� features of our appliation: We start with an overview (Setion 2), and provide

the details in Setion 3. In Setion 4 we then sketh a more general treatment of this kind of

interative proofs.

2 Overview of our approah

On a high level, the negative result in our earlier work [4℄ an be desribed as starting from a

seure signature sheme in the Random Orale Model, and modifying it as follows: The signer in

the original sheme was interating with some orale (whih was random in the Random Orale

Model, but implemented by some funtion ensemble in the \real world"). In the modi�ed sheme,

the signer examines eah message before it signs it, looking for a \proof" that its orale is not

random. If it �nds suh a onvining \proof" it does some obviously stupid thing, like outputting

the seret key. Otherwise, it reverts to the original (seure) sheme. Hene, the ruial step in

the onstrution is to exhibit a \proof" as above. Namely, we have a prover and a veri�er, both

polynomial-time interative mahines with aess to an orale, suh that the following holds:

1

Indeed, the statelessness ondition is the reason that a non-interative information transfer seems a natural

hoie, but in the urrent work we are unwilling to pay the ost in terms of message length.

2

� When the orale is a truly random funtion, the veri�er rejets with overwhelming probability,

regardless of what the prover does. (The probability is taken also over the hoie of the orale.)

� For any polynomial-time funtion ensemble,

2

there is a polynomial-time prover that auses

the veri�er to aept with notieable probability, when the orale is implemented by a random

member of that ensemble. In this ase, the prover reeives a full desription of the funtion

used in the role of the orale. (In our appliation, this desription is part of the veri�ation-key

in the orresponding implementation of the signature sheme.)

In [4℄ we used orrelation-intratable funtions to devise suh a proof system.

3

However, simpler

onstrutions an be obtained. For example, when the orale is implemented by a polynomial-

time funtion ensemble, the prover ould essentially just send to the veri�er the desription of

the funtion that implements the orale. The veri�er an then evaluate that funtion on several

inputs, and ompare the outputs to the responses that it gets from the orale. If the outputs

math for suÆiently many inputs (where suÆiently many means more that the length of the

desription), then the veri�er onludes that the orale annot be a random funtion. Indeed,

roughly this simpli�ed proof was proposed by Holenstein, Maurer, and Renner [9℄. We remark that

both our original proof and the simpli�ed proof of Holenstein et al., are non-interative proofs of

non-randomness: The prover just sends one string to the veri�er, thus onvining it that its orale

is not a random funtion.

However, implementing the proof in this manner implies that the attaker must send to the

veri�er a omplete desription of the funtion, whih in our appliation may be almost as long as

the veri�ation-key. In terms of the resulting \pathologial example", this means that the signature

sheme that we onstrut must aept long enough messages.

Clearly, one an do away with the need for long messages, if we allow the signature sheme

to \keep history" and pass some evolving state from one signature to the next. In that ase the

attaker an feed the long proof to the sheme bit by bit, and the sheme would only at on it

one its history gets long enough. In partiular, this means that the signature sheme will not only

maintain a state (between signatures) but rather maintain a state of a-priori unbounded length.

Thus, the negative result will refer only to suh signature shemes, while we seek to present a

negative result that refers to any signature sheme (even stateless ones), and in partiular to ones

that only sign \short messages".

In this work we show how suh a result an be obtained. Spei�ally, we present a signature

sheme that operates in the random-orale model, with the following properties:

� The sheme is stateless: the signer only keeps in memory the seret key, and this key does

not evolve from one signature to the next.

� The sheme is only required to sign short messages: On seurity parameter k, the sheme

an only be applied to messages whose length is less than k. Furthermore, one ould even

restrit it to messages of length sub-linear in k (e.g., polylog(k)).

� The sheme is seure in the Random Orale Model : When the orale is implemented by a truly

random funtion, the sheme is existentially unforgeable under an adaptive hosen-message

attak.

2

A polynomial-time funtion ensemble is a sequene F = fF

k

g

k2N

of families of funtions, F

k

= ff

s

: f0; 1g

�

!

f0; 1g

`

out

(k)

g

s2f0;1g

k

, suh that there exists a polynomial-time algorithm that given s and x returns f

s

(x). In the

sequel we often all s the desription or the seed of the funtion f

s

.

3

We used (non-interative) CS-proofs (f. [12℄) to make it possible for the veri�er to run in �xed polynomial time,

regardless of the polynomial that bounds the running time of the ensemble.

3

� The sheme has no seure implementation: When the orale is implemented by any funtion

ensemble (even one with funtions having desription length that is polynomially longer than

k), the sheme is ompletely breakable under an adaptive hosen-message attak. We remark

that in this ase the funtion's desription is part of the veri�ation-key.

4

To onstrut suh a sheme we need to design a \proof system" that only uses very short messages.

As opposed to previous examples, we will now have an interative proof system, with the proof

taking plae during the attak. Eah ommuniation-round of the proof is being \implemented"

by the attaker (in the role of the prover) sending a message to be signed, and the signer (in the

role of the veri�er) signing that message.

The ideas that make this work are the following: We start from the aforementioned non-

interative proof (of \non-randomness"), where the veri�er is given the desription of a funtion,

and ompares that funtion to its own orale (i.e., ompares their values at suÆiently many points).

Then, instead of having the veri�er exeute the entire test on its own, we feed the exeution of this

test to the veri�er \one step at a time" (and, in partiular, the input funtion is fed \one step at a

time"). Namely, let M be the orale Turing mahine implementing the aforementioned test. The

adversary provides the veri�er with the relevant information pertaining to the urrent step in the

test (e.g., the state of the ontrol of M and the harater under the head) and the veri�er returns

the information for the next step. This requires only short messages, sine eah step of M has a

suint desription.

To keep the seurity of the sheme in the Random Orale Model, we need to make sure that the

adversary an only feed the veri�er with \valid states" of the mahine M . (Namely, states that an

indeed result from the exeution of this mahine on some input.) To do that, we have the veri�er

authentiate eah step of the omputation. That is, together with the \loal information" about the

urrent step, the veri�er also ompute an authentiation tag for the \global state" of the mahine

in this step, whih is done using Merkle trees [11℄. Suh authentiation has the property that it

an be omputed and veri�ed using only the path from the root to the urrent leaf in the tree,

and the authentiation tag itself is very short. A little more preisely, the urrent on�guration of

the mahine M (using some standard enoding) is viewed as the leaves of a Merkle tree, and the

veri�er provides the prover with an authentiation tag for the root of this tree. Then a typial step

in the proof proeeds as follows:

1. The attaker sends to the veri�er the \relevant leaf" of the tree (i.e., the one ontaining the

head of M), together with the entire path from the root to that leaf (and the siblings for that

path), and the authentiation tag for the root.

2. The veri�er heks the authentiation tag of the root and the validity of the root{leaf path

(using the siblings). If everything is valid, then the veri�er exeutes the next step of M , and

returns to the attaker the updated path to the root, and an authentiation tag for the new

root.

If the mahine M ever enters an aept state, then the veri�er aepts. This proof an still be

implemented using only short messages, sine the root-leaf path has only logarithmi depth. As for

seurity, sine it is infeasible for the attaker to \forge a state" of M , then the veri�er will aept

only if the mahine M indeed has an aepting omputation.

4

In ontrast, if the funtion's desription is only part of the signing-key then using any pseudorandom funtion [5℄

would yield a seure signature sheme. However, this would not be an appliation of the Random Orale Methodology,

whih expliitly refers to making the funtion's desription publi.

4

3 The details

We now esh out the desription from Setion 2. We begin in x3.1 with the basi test that we are

going to implement step-by-step. In x3.2 we desribe the Merkle-tree authentiation mehanism

that we use, and in x3.3 we desribe the omplete \interative proof system". Finally, we show in

x3.4 how this proof system is used to derive our ounter-example.

As we did in [4℄, we avoid making intratability assumptions by using the random orale itself

for various onstruts that we need. For example, we implement the Merkle-tree authentiation

mehanism (whih typially requires ollision-resistant hash funtions) by using the random orale.

We stress that we only rely on the seurity of this and other onstruts in the Random Orale

Model, and do not are whether or not its implementation is seure (beause we are going to

demonstrate the inseurity of the implementation anyhow). Formally, in the ontext of the proof

system, the seurity of the onstruts only e�ets the soundness of the proof, whih in turn refers

to the Random Orale Model.

In both the basi test and the authentiation mehanisms we use aess to an orale (whih

will be a random funtion in the Random Orale Model, and a random member in an arbitrary

funtion ensemble in the \real world"). When we work in the Random Orale Model, we wish these

two orales to be independent. Thus, we use the single orale to whih we have aess to de�ne

two orales that are independent if the original orale is random (e.g., using the orale O, we de�ne

orales O

i

(x)

def

= O(i; x)).

In the rest of this setion, we assume that the reader is familiar with the notion of a polynomial-

time funtion ensemble (as reviewed in Footnote 2).

3.1 The basi test

Our starting point is a very simple non-interative \proof of non-randomness" of an orale O. (The

basi idea for this proof is desribed by Holenstein et al. in [9℄.) The veri�er is a (non-interative)

orale Turing mahine, denoted M, whih is given a andidate proof, denoted �, as input. The input

� is supposed to be a program (or a desription of a Turing mahine) that predits O. Intuitively,

if O is random then no � may be suessful (when we try to use it in order to predit the value of O

on more than j�j predetermined inputs). On the other hand, if O has a short desription (as in ase

where it is taken from some funtion ensemble) then setting � to be the program that omputes

O will do perfetly well. The operation of M, on seurity parameter k, input � and aess to an

orale O, is given below:

Proedure M

O

(1

k

; �):

1. Let n = j�j be the bit length of �.

(� is viewed as a desription of a Turing-mahine.)

2. For i = 1 to 2n+ k, let y

i

 O(i) and z

i

 �(i).

3. If y

i

and z

i

agree on their �rst bit for all i 2 [1::2n + k℄, then aept.

4. Else rejet.

Below it will be onvenient to think of the mahineM as having one seurity-parameter tape (a read-

only tape ontaining 1

k

), one \regular" work tape that initially ontains �, one orale query tape

and one orale reply tape (the last having just a single bit, sine we only look at the �rst bit of the

answer). A on�guration of this mahine an therefore be desribed as a 4-tuple = (q; r; w; sp)

desribing the ontents of eah tape (i.e., q desribes the query, r the reply, w the ontents of

the work-tape and sp the seurity-parameter). By onvention, we assume that the desription of

5

eah tape inlude also the loation of the head on this tape, and that the desription of the work

tape also inludes the state of the �nite ontrol. Thus, for the above mahine M, we always have

jqj = log(2j�j + k) + log log(2j�j + k), jrj = 1, jwj � j�j + s

k

(�) + log(2j�j + k) + log(j�j + s(�) +

log(2j�j + k)) + O(1), jspj = k, where s

k

(�) is the spae require for omputing �(i) for the worst

possible i 2 [2j�j + k℄. It follows that jj = O(j�j+ s

k

(�) + k).

Note that M itself is not a \veri�er in the usual sense", beause its running time may depend

arbitrarily on its input. In partiular, for some inputs � (desribing a non-halting program), the

mahine M may not halt at all. Nonetheless, we may analyze what happens in the two ases that

we are about:

Proposition 2 (Properties of mahine M):

1. Random orale: For seurity parameter k, if the orale O is hosen uniformly from all the

Boolean funtions, then

Pr

O

h

9 � 2 f0; 1g

�

s.t. M

O

(1

k

; �) aepts

i

< 2

�k

2. Orale with suint desription: For every funtion ensemble ff

s

: f0; 1g

�

! f0; 1gg

s2f0;1g

�

(having a polynomial-time evaluation algorithm), there exists an eÆient mapping s 7! �

s

suh that for every s and every k it holds that M

f

s

(1

k

; �

s

) aepts in polynomial-time.

Proof Sketh: In Item 1, we apply the union bound on all possible (i.e., in�nitely many) �'s. For

eah �xed � 2 f0; 1g

�

, it holds that the probability that M

O

(1

k

; �) aepts is at most 2

�(2j�j+k)

,

where the probability is taken uniformly over all possible hoies of O. In Item 2, we use the

program �

s

obtained by hard-wiring the seed s into the polynomial-time evaluation algorithm

assoiated with the funtion ensemble. 2

3.2 Authentiating the on�guration

We next desribe the spei�s of how we use Merkle trees to authentiate the on�gurations of the

mahine M. In the desription below, we view the on�guration = (q; r; w; sp) as a binary string

(using some standard enoding).

We assume that the authentiation mehanism too has aess to a random orale, and this ran-

dom orale is independent of the one that is used by the mahine M. Below we denote this \authen-

tiation orale" by A. To be onrete, on seurity parameter k, denote `

out

= `

out

(k) =

l

log

2

(k)

m

,

5

and assume that the orale is hosen at random, from all the funtions A : f0; 1g

�

! f0; 1g

`

out

.

(Atually, we may onsider the funtions A : f0; 1g

3`

out

! f0; 1g

`

out

.) We stress again that we do

not lose muh generality by these assumptions, as they an be easily met in the Random Orale

Model. Also, when the seurity parameter is k, we use a random `

out

-bit string for authentiation

key, whih we denote by ak 2

R

f0; 1g

`

out

.

To authentiate a on�guration (on seurity parameter k, with aess to an orale A, and

with key ak), we �rst pad the binary enoding of to length 2

d

� `

out

(where d is an integer). We

then onsider a omplete binary tree with 2

d

leaves, where the i'th leaf ontains the i'th `

out

-bit

hunk of the on�guration. Eah internal node in this tree ontains an `

out

-bit string. For a node

at distane i from the root, this `

out

-bit string equals A(i; left; right), where left and right are

5

The hoie of `

out

(k) =

�

log

2

(k)

�

is somewhat arbitrary. For the onstrution below we need the output length

`

out

to satisfy !(log k) � `

out

(k) � o(k= log k), whereas the input length should be at least 2`

out

(k) +!(log k). (Note

that 2`

out

(k) + !(log k) < 3`

out

(k).)

6

the `

out

-bit strings in the left and right hildren of that node, respetively. The authentiation tag

for this on�guration equals A(d; ak; root), where root is the `

out

-bit string in the root of the tree.

The seurity property that we need here is slightly stronger than the usual notion for authen-

tiation odes. The usual notion would say that for an attaker who does not know the key ak, it

is hard to ome up with any valid pair (on�guration,tag) that was not previously given to him by

the party who knows ak. In our appliation, however, the veri�er is only presented with root{leaf

paths in the tree, never with omplete on�gurations. We therefore require that it is hard even to

ome up with a single path that \looks like it belongs to a valid on�guration", without this path

being part of a previously authentiated on�guration. We use the following notions:

De�nition 3 (valid paths) Let A : f0; 1g

�

! f0; 1g

`

out

be an orale and ak 2 f0; 1g

`

out

be a

string as above. A valid path with respet to A and ak is a triple

(h�

1

� � � �

d

i; h(v

1;0

; v

1;1

); :::; (v

d;0

; v

d;1

)i; t)

where the �

i

's are bits, and the v

i;b

's and t are all `

out

-bit strings, satisfying the following onditions:

1. For every i = 1; :::; d � 1, it holds that v

i;�

i

= A(i; v

i+1;0

; v

i+1;1

).

2. t = A(d; ak;A(0; v

1;0

; v

1;1

)).

This path is said to be onsistent with the on�guration if when plaing in the leaves and prop-

agating values desribed above,

6

then for every i = 1; :::; d � 1, the node reahed from the root by

following the path �

1

� � � �

i

is assigned the value v

i;�

i

, and the sibling of that node is assigned the

value v

i;�

i

.

In this de�nition, v

i;�

i

is the value laimed for the internal node reahed from the root by following

the path �

1

� � � �

i

. The value laimed for the root is v

0

def

= A(0; v

1;0

; v

1;1

), and this value is authen-

tiated by A(d; ak; v

0

), whih also authentiates the depth of the tree. Indeed, only the value of

the root is diretly authentiated, and this indiretly authentiates all the rest.

Fix some `

out

2 N, and let A be a random funtion from f0; 1g

�

to f0; 1g

`

out

and ak be a

random `

out

-bit string. Consider a forger, F , that an query the orale A on arbitrary strings, and

an also issue authentiation queries, where the query is a on�gurations and the answer is the

authentiation tag on orresponding to A and ak. The forger F is deemed suessful if at the end

of its run it outputs a path (�; �v; t) that is valid with respet to A and ak but is inonsistent with

any of the authentiation queries. One an easily prove the following:

Proposition 4 For any `

out

2 N and any forger F , the probability that F is suessful is at most

q

2

=2

`

out

, where q is the total number of queries made by F (i.e., both queries to the orale A and

authentiation queries). The probability is taken over the hoies of A and ak, as well as over the

oins of the forger F .

Proof Sketh: Intuitively, the authentiation of the root's value makes it hard to produe a

path that is valid with respet to A and (the unknown) ak but uses a di�erent value for the root.

Similarly for a path of a di�erent length for the same root value. On the other hand, it is hard to

form ollisions with respet to the values of internal nodes (i.e., obtain two pairs (u;w) and (u

0

; w

0

)

suh that for some i it holds that A(i; u; w) = A(i; u

0

; w

0

)). 2

6

That is, an internal node at distane i from the root is assigned the value A(i; u; w), where u and w are the values

assigned to its hildren.

7

3.3 An interative proof of non-randomness

We are now ready to desribe our interative proof, where a prover an onvine a \stateless"

veri�er that their ommon orale is not random, using only very short messages.

The setting is as follows: We have a prover and a veri�er, both work in polynomial time in

their input, both sharing a seurity parameter k 2 N (enoded in unary), and both having aess

to an orale, say O

0

: f0; 1g

�

! f0; 1g

`

out

. (The parameter `

out

is quite arbitrary. Below we assume

for onveniene that this is the same parameter as we use for the authentiation sheme, namely

`

out

=

l

log

2

(k)

m

.)

7

In this proof system, the prover is trying to onvine the veri�er that their

ommon orale in not random. Spei�ally, both prover and veri�er interpret their orale as two

separate orales, A and O (say, O(x) = O

0

(0x) and A(x) = O

0

(1x)), and the honest prover has

as input a desription of a Turing mahine that omputes the funtion O. However, we plae

some severe limitations on what the veri�er an do. Spei�ally, the veri�er has as private input

a random string ak 2 f0; 1g

`

out

, but other than this �xed string, it is not allowed to maintain any

state between steps. That is, when answering a message from the prover, the veri�er always begin

the omputation from a �xed state onsisting only of the seurity parameter k and the string ak.

In addition, on seurity parameter k, the veri�er is only allowed to see prover-messages of length

stritly smaller than k. (In fat, below we only use messages of size polylog(k).)

The proof that we desribe below onsists of two phases. In the �rst (initialization) phase, the

prover uses the veri�er to authentiate the initial on�guration of the mahine M

O

(1

k

; x), where k

is the seurity parameter that they both share, and x is some input that the prover hooses. For

the honest prover, this input x will be the desription of the Turing-mahine that implements the

orale O. In the seond (omputation) phase, the prover takes the veri�er step-by-step through

the omputation of M

O

(1

k

; x). For eah step, the prover gives to the veri�er the relevant part from

the urrent authentiated on�guration, and the veri�er returns the authentiation tag for the next

on�guration. The veri�er is onvined if the mahine M ever reahes the aepting state.

For notational onveniene, we assume below that on seurity parameter k, the veri�er only

agrees to authentiate on�gurations of M whose length is less than 2

`

out

(k)

. Indeed, in our appli-

ation the honest prover will never need to use larger on�guration (for large enough k).

3.3.1 Initialization phase

This phase onsists of two steps. In the �rst step, the prover will use the veri�er in order to

authentiate \blank on�guration" (laking a real input) for the omputation, whereas in the

seond step the prover will feed an input into this on�guration and obtain (via interation with

the veri�er) an initial on�guration �tting this input.

First step. The prover begins this phase by sending a message of the form (`Init', 0, sb) to the

veri�er, where the integer sb < 2

`

out

(k)

is an upper bound on the length of the on�gurations of M

in the omputation to ome, and it is enoded in binary. In response, the veri�er omputes a

blank on�guration, denoted

0

, of length sb and sends the authentiation tag for this on�guration,

with respet to orale A and key ak. The blank on�guration

0

onsists of the seurity-parameter

tape �lled with 1

k

, all the other tapes being \empty" (e.g., �lled with ?'s), the heads being at

the beginning of eah tape, and the �nite ontrol being in a speial blank state. Spei�ally, the

7

Note that even a binary orale (i.e., `

out

= 1) suÆes, sine in the Random Orale Model it is easy to onvert

one output length to another.

8

work-tape onsists of sb blanks (i.e., ?'s), and the query-tape onsists of `

out

(k)=2 = !(log k)

blanks.

8

We note that authentiating the blank on�guration in a straightforward manner (i.e., by writing

down the on�guration and omputing the labels of all nodes in the tree) takes time O(sb), whih

may be super-polynomial in k. Nonetheless, it is possible to ompute the authentiation tag in

time polynomial in k, beause the on�guration

0

is \highly uniform". Spei�ally, note that the

work tape is �lled with ?'s, and all the other tapes are of size polynomial in k. Thus, in every level

of the on�guration tree, almost all the nodes have the same value (exept, perhaps, a polynomial

number of them). Hene, the number of queries to A and total time that it takes to ompute the

authentiation tag is polynomial in k.

Conventions. For simpliity, we assume that the ontents of the query-tape as well as the ma-

hine's state are enoded in the �rst `

out

(k)-bit long blok of the on�guration. Typially, in all

subsequent modi�ations to the on�guration, we will use this blok as well as (possibly) some

other blok (in whih the \atual ation" takes plae). We denote by hii the bit-string desribing

the path from the root to the leaf that ontains the i'th loation in the work-tape. Needless to say,

we assume that the enoding is simple enough suh that hii an be omputed eÆiently from i.

Seond step. After obtaining the authentiation tag for the blank on�guration, the prover may

�ll in the input in this on�guration by sending messages of the form (`Init', i; b; �p

1

; �p

i

; t) to the

veri�er. Upon reeiving suh a message, the veri�er heks that (h1i; �p

1

; t) and (hii; �p

i

; t) are valid

paths w.r.t. A and ak, that path �p

1

shows the heads at the beginning of their tapes and the ontrol

in the speial \blank state", and that path �p

i

shows the i'th loation in the work-tape �lled with a

?. In ase all onditions hold, the veri�er replaes the ontents of the i'th loation in the work-tape

with the bit b, reomputes values along the path from that tape loation to the root, and returns

the new authentiation tag to the prover. That is, the values along that path as reorded in �p

i

orrespond to a setting of the i'th loation to ?, and setting this loation to b typially yields new

values that propagate from this leaf up-to the root.

Thus, using jxj rounds of interation, the honest prover an obtain (from the veri�er) the

authentiation tag on the initial on�guration of M(1

k

; x), where x is a string of the prover's

hoie. Note that a heating prover may obtain from the prover an authentiation tag that does

not orrespond to suh an initial on�guration. (In fat, even the honest prover obtains suh tags

in all but the last iterations of the urrent step.)

3.3.2 Computation phase

This phase begin with a message of the form (`Comp', �p

1

; t) that the prover sends. The veri�er

heks that (h1i; �p

1

; t) is a valid path, and that �p

1

shows the heads at the beginning of their tapes

and the ontrol in the speial \blank state". If these onditions hold, the veri�er hanges the state

to the initial state of M, reomputes the values on the path �p

1

from the initial tape loation to the

root, and returns the new authentiation tag to the prover. (In fat, one may view this step as

belonging to the initialization step.)

Thereafter, upon reeiving a message of the form (`Comp', i; j; �p

1

; �p

i

; �p

j

; t), where j 2 fi�1; i; i+

1g (and indeed when j = i it holds that �p

i

= �p

j

), the veri�er heks that (h1i; �p

1

; t), (hii; �p

i

; t),

(hji; �p

j

; t), are all valid paths. Furthermore, it heks that �p

i

ontains the head position and �p

j

8

On input (1

k

; x), the query tape of M is of size log

2

(2jxj + k). For ensemble F , the honest prover will use

jxj � poly(k) +O(1), and so the length of the query tape would be O(logk).

9

desribes a legal ontents of the position that the head will move to after the urrent step. That

is, �p

1

and �p

i

provide suÆient information to determine the single-step modi�ation of the urrent

on�guration (whih may inlude a movement of some heads and a hange in the ontents of a

single symbol in some of the tapes). In ase all onditions hold, then the veri�er exeutes the

urrent step (making a query to its orale O if this step is an orale query), reomputes the values

on the three paths to the root, and returns the new authentiation tag to the prover. If after this

step the mahine M enters its aept state, the veri�er aepts.

It an be seen that the honest prover an use these interation steps to take the veri�er step-

by-step through the omputation of M. It follows that if the input to the honest prover is indeed

a polynomial-time mahine that omputes the funtion O, then the veri�er will halt and aept

after polynomially many steps. We onlude this subsetion by showing that the above onstitutes

a proof system for non-randomness (satisfying additional properties that we will need in the next

subsetion).

Proposition 5 The above onstrution onstitutes a proof system with these properties:

EÆieny. Eah veri�er step an be omputed in time polynomial in the seurity parameter k.

Stateless veri�er. The veri�er is stateless in the sense that it begins every step from the same state,

onsisting only of the seurity parameter k and its private input ak 2 f0; 1g

`

out

. Formally, the

veri�er replies to eah inoming message m with V (1

k

; ak;m), where V is a �xed (eÆiently

omputable) funtion.

9

Soundness. If O

0

is hosen as a random funtion O

0

: f0; 1g

�

! f0; 1g

`

out

(k)

and ak is hosen at

random in f0; 1g

`

out

(k)

, then for every (possibly heating) prover P it holds that

Pr

O

0

;ak

h

The veri�er V

O

0

(1

k

; ak) aepts when talking to P

O

0

i

� (q+ `

out

(k) �m)

2

� 2

�`

out

+ 2

�k

where q is the total number of queries that P makes to the orale A and m is the total number

of messages that it sends to the veri�er V .

Completeness with short messages. For every polynomial-time-omputable funtion ensemble F ,

there exists a polynomial-time prover P

F

suh that:

1. For every hoie of s 2 f0; 1g

poly(k)

and ak 2 f0; 1g

`

out

(k)

, the veri�er V

f

s

(1

k

; ak) always

aepts when talking to P

F

(s).

2. On seurity parameter k, the prover P

F

(s) only sends to the veri�er poly(k) many mes-

sages, eah of length O((log k) � `

out

(k)) = O(log

3

k).

Proof Sketh: The only assertions that are not obvious are the soundness bound and the size of

the messages. For the soundness bound, reall that (by Proposition 2) whenO

0

is a random funtion

(and therefore also O is a random funtion), the probability that there exists an input x that makes

M

O

(1

k

; x) aept is at most 2

�k

. If there is no suh input, then the only way to make V

O

0

aept

is \forge" some valid paths, and (by Proposition 4) this an only be done with probability at most

q

2

2

�`

out

. Slightly more formal, onsider the transript of a proof in whih P

O

0

auses V

O

0

to aept.

Considering all the messages that P sent to V in this transript, one an easily de�ne a \depend-

on" relation among then (namely, when one message ontains an authentiation tag that was

9

We slightly abuse notations here, and use V for both the veri�er and the funtions that it implements.

10

obtained in a previous message). This, in turn, allows us to de�ne the omplete on�gurations that

were \rightly authentiated" during this transript (namely, those on�gurations that orrespond

to a omputation that starts from the initial on�guration of M

k

on some input x.) Hene, we

either �nd an initial on�guration from whih M(1

k

; x) aepts (a probability 2

�k

event), or we

�nd a omputation that begins from some non-initial on�guration. Sine the veri�er V

O

0

never

authentiates a non-initial on�guration unless it sees a valid path belonging to a on�guration

that diretly preedes it, the valid path belonging to the �rst non-initial on�guration must be a

forgery. (By making suitable orale alls before sending eah message to the veri�er, we an onvert

the heating prover to a forger that makes at most q + `

out

�m queries, and soundness follows.)

As for the size of the messages sent by the honest prover, let F be any polynomial-time-

omputable funtions ensemble. This means that there is a polynomial p(�) suh that on seurity

parameter k, speifying any funtion f

s

2 F

k

an be done using at most p(k) bits, and moreover,

omputing f

s

(x) for any jxj < k takes at most p(k) time. (Below we assume for onveniene that

p(k) � k.) For any f

s

2 F

k

, let �

s

be a desription of a Turing mahine omputing f

s

. By the

above, j�

s

j = jsj + O(1) < p(k) + O(1). This implies that for any f

s

2 F

k

, the non-interative

veri�er M(1

k

; �

s

) runs in time at most O(k + 2p(k)) � p(k) = O(p

2

(k)), and therefore it only has

on�gurations of length at most O(p

2

(k)).

The honest prover P

F

, having aess to s, an ompute the desription �

s

and take the veri�er

step-by-step through the exeution of M

f

s

(1

k

; �

s

), whih onsists only of O(p

2

(k)) steps. It begins

by sending a message (`Init', 0, sb), with the bound sb being set to sb = O(p

2

(k)), and in eah

step thereafter it only needs to send a onstant number of paths in the tree, eah of length log(sb).

Sine eah node in the tree ontains a string of length `

out

(k), it follows that the total length of

the prover's queries is O(log(sb) � `

out

(k)) = O(`

out

(k) � log(p

2

(k))) = O(`

out

(k) � log k). 2

3.4 The signature sheme

Combining the proof system from the previous setion with the ideas outlined in Setions 1 and 2,

it is quite straightforward to onstrut the desired signature sheme (summarized in the next

theorem).

Theorem 6 (Theorem 1, restated) There exists a signature sheme S that is existentially unforge-

able under a hosen message attak in the Random Orale Model, but suh that when implemented

with any eÆiently omputable funtion ensemble, the resulting sheme is totally breakable under

hosen message attak. Moreover, the signing algorithm of S is stateless, and on seurity parame-

ter k, it an only be applied to messages of size poly-logarithmi in k.

Proof: Let (P

pf

; V

pf

) be the proof system for \non-randomness" desribed in Setion 3.3. Let

S = (G

sig

; S

sig

; V

sig

) be any stateless signature sheme that is existentially unforgeable under a

hosen message attak in the Random Orale Model (we know that suh shemes exist, e.g., using

Naor-Yung [13℄ with the random orale used in the role of a universal one-way hash funtion)). We

view all the mahines P

pf

, V

pf

, G

sig

, S

sig

, and V

sig

as orale mahines (although G

sig

, S

sig

, or V

sig

may not use their orale). We modify the signature sheme to obtain a di�erent signature sheme

S

0

= (G

0

; S

0

; V

0

).

� On input 1

k

(k being the seurity parameter), the key generation algorithm G

0

�rst runs

G

sig

to obtain a private/publi key-pair of the original sheme, (sk; vk) G

O

sig

(1

k

). Then it

hooses a random `

out

-bit \authentiation key" ak 2

R

f0; 1g

`

out

(k)

(to be used by V

pf

). The

publi veri�ation key is just vk, and the seret signing key is the pair (sk; ak). (We assume

that the seurity parameter k is impliit in both vk and sk.)

11

� On message m, signing key (sk; ak) and aess to orale O, the signature algorithm S

0

works

as follows: If the message m is too long (i.e., jmj > log

4

k) then it outputs an empty sig-

nature ?.

10

Otherwise, it invokes both the proof-veri�er V

pf

and the signer S

sig

on the

message m to get �

pf

 V

O

pf

(ak;m), and �

sig

 S

O

sig

(sk;m).

If the proof-veri�er aepts (i.e., �

pf

= \aept") then the signature onsists of the seret key

� = (�

sig

; (sk; ak)). Otherwise, the signature is the pair � = (�

sig

; �

pf

).

� The veri�ation algorithm V

0

, on message m, alleged signature � = (�

1

; �

2

), veri�ation

key vk and aess to orale O, just invokes the original signature-veri�er V

sig

on the �rst part

of the signature, outputting V

O

sig

(vk;m; �

1

).

It is lear from the desription that this sheme is stateless, and that it an only be used to

sign messages of length at most log

4

k. It is also easy to see that with any implementation via

funtion ensemble, the resulting sheme is totally breakable under adaptive hosen message attak.

When implemented using funtion ensemble F , an attaker uses the presribed prover P

F

(of

Proposition 5). Reall that the seed s for the funtion f

s

that is used to implement the orale is

inluded in the publi key, so the attaker an just run P

F

(s). The attaker sends the prover's

messages to the signer S

0

, and the size of these messages is O(log

3

k) < log

4

k, where the onstant

in the O-notation depends on the ensemble F . The seond omponent of the signatures on these

messages are the replies from the proof-veri�er V

f

s

pf

. From Proposition 5 we onlude that after

signing polynomially many suh messages, the proof-veri�er aepts (with probability one), at

whih point the signing algorithm will output the seret signing key. Thus, we totally break the

sheme's implementation (by any funtion ensemble).

Next we show that the sheme S

0

is existentially unforgeable under a hosen message attak in

the Random Orale Model. Informally, the reason is that in the Random Orale Model a forger

will not be able to ause the proof-veri�er to aept, and thus it will be left with the task of forging

a signature with respet to the original (seure) signature sheme.

Formally, onsider a polynomial-time forger F

0

, attaking the sheme S

0

, let � = �(k) denote the

probability that F

0

issues a forgery, and assume { toward ontradition { that � is non-negligible.

Consider the invoations that the signing algorithm makes to the proof-veri�er V

pf

during the

attak. Let Æ = Æ(k) be the probability that V

pf

replies to some query with \aept". Sine we

an view the ombination of F

0

and the signing algorithm as a (heating) prover P

O

, Proposition 5

tells us that Æ � q

2

=2

`

out

+2

�k

where q is bounded by the running time of F

0

(whih is polynomial

in k). Hene Æ is negligible.

Next we show a polynomial-time forger F

sig

against the original sheme S that issues a forgery

with probability at least ��Æ, ontraditing the seurity of S. The forger F

sig

is given a publi key vk

that was generated by G

sig

(1

k

), it has aess to the signing orale S

O

sig

(sk; �) for the orresponding

signing key sk, and also aess to the random orale O. It piks at random an \authentiation key"

ak 2 f0; 1g

`

out

(k)

, and then invokes the forger F

0

on the same publi key vk.

When F

0

asks for a signature on a message m, the forger F

sig

behaves muh like the signature

algorithm S

0

. Namely, if jmj > log

4

k it returns ?. Otherwise, it omputes �

pf

 V

O

pf

(ak;m),

and it queries its signing orale on m to get �

sig

 S

O

sig

(sk;m). If the proof-veri�er aepts,

�

pf

= \aept", then F

sig

aborts. Else it returns the pair � = (�

sig

; �

pf

). If F

0

issues a forged

message m

0

with signature (�

0

1

; �

0

2

) then F

sig

issues the same forged message m

0

and signature �

0

1

.

It is lear that F

sig

sueeds in forging a signature if and only if F

0

forges a signature without

ausing the proof-veri�er V

pf

to aept, whih happens with probability at least �� Æ.

10

Alternatively, S

0

may return (S

O

sig

(sk;m);?), and we should note that in the (\real world") attak desribed

below only short messages are used.

12

Remark 7 (Message length) Traing through the arguments in this setion, it an be seen

that the message-length an be dereased from log

4

k to !(log

2

k): It suÆes to use a spae-bound

SB = !(log k), whih yields a (presribed) proof system with prover message of length !(log

2

k),

for any funtion ensemble. However, ahieving poly-logarithmi message length relies heavily on

the fat that we use the random orale for authentiation, and on the fat that the random orale

yields authentiation with \exponential hardness". In Setion 4 below, we instead use standard

ollision-intratable funtions and message-authentiation odes, that only enjoy \super-polynomial

hardness". In this ase, the ahievable message length would be O(k

�

) for any desired (�xed) � > 0.

4 A proof system for any NP-language

The desription in Setion 3 ombined the spei�s of our appliation (i.e., proving non-randomness

of an orale) with the general ideas underlying the onstrution of the new proof system. In this

setion, we apply the latter ideas in order to derive a new type of proof systems for any language

in NP .

The model is similar to ordinary interative proofs as in GMR [8℄ (and arguments as in BCC [3℄),

exept that the veri�er is stateless. That is, the veri�er is represented by a randomized proess

that given the veri�er's input and the urrent in-oming message, determines the veri�er's next

message. This proess is probabilisti polynomial-time, but it annot e�et the veri�er's state. In

partiular, the veri�er's deision to aept or rejet (or ontinue in the interation) will be reeted

in its next message. (In a sense, the veri�er will not even remember its deision, but merely notify

the world of it.)

The above model, per se, allows to prove membership in any NP-set, by merely having the

prover send the orresponding NP-witness. However, we are interested in suh proof systems in

whih the prover only sends short messages. This rules out the simple solution just suggested.

But, as stated, this model does not allow to do muh beyond using short NP-witnesses whenever

they exist. The reason being that, from the veri�er's point of view, there is no \relation" between

the various ommuniation rounds, and the only funtion of the multiple interations is to provide

multiple attempts of the same experiment. The situation hanges one we provide the veri�er with

an auxiliary seret input. This input is hosen uniformly from some domain and remains �xed

throughout the run of the protool. The goal of this auxiliary input is to model some very limited

form of state that is kept between sending a message and reeiving the response.

To summarize, we are interested in proof systems (or arguments) that satisfy the following three

onditions:

1. In addition to the ommon input, denoted x, the veri�er reeives an auxiliary seret input,

denoted s, that is hosen uniformly from some domain. As usual, we fous on a probabilisti

polynomial-time prover that also reeives an auxiliary input, denoted y.

2. The veri�er employs a stateless strategy. That is, there exists a probabilisti polynomial-time

algorithm V suh that the veri�er answers the urrent message m with V (x; s;m).

3. The prover an only send short messages. That is, it an only send messages of length `(jxj),

where `(n)� n (e.g., `(n) =

p

n).

One may think of suh proofs as proving statements to a hild: The veri�er's attention span limits

us to sending it only `(n) bits at a time, after whih its attention is diverted to something else.

Moreover, one we again apture the veri�er's attention, it has already forgotten everything that

had happened before.

13

Assuming the existene of ollision-resistant hash funtions, we an show that suh a proof

system an emulate any proof system (having an eÆient presribed prover strategy).

11

The emu-

lation will only be omputationally-sound (i.e., it is possible but not feasible to ause the veri�er

to aept false statements). In fat, we have already shown suh a proof system: It is impliit in

the desription of Setion 3, when one replaes the two di�erent roles of A (see proof of Propo-

sition 4) by a ollision-resistant hash funtion and a message-authentiation sheme, respetively.

Indeed, the desription in Setion 3 referred to the emulation of a spei� test, but it applies as

well to the emulation of any ordinary veri�er strategy (i.e., one that does maintain state between

ommuniation rounds). Spei�ally, one may �rst transform the original interative proof to one

in whih the prover sends a single bit in eah ommuniation round, and then emulate the intera-

tion of the resulting veri�er by following the desription in Setion 3. Note that what we need to

emulate in a non-trivial manner is merely the state maintained by the (resulting) veri�er between

ommuniation rounds.

Comments: Sine anyhow we are obtaining only a omputationally-sound interative proof (i.e.,

an argument system), we may as well emulate argument systems of low (total) ommuniation

omplexity (f. Kilian [10℄), rather than interative proofs or NP-proofs.

12

This way, the resulting

proof system will also have low (total) ommuniation omplexity (beause the length of the state

maintained by the original veri�er between ommuniation rounds need not exeed the length of

the total ommuniation). (We stress that the original argument systems of low ommuniation

omplexity annot be exeuted, per se, in the urrent model, beause its soundness relies on the

veri�er's memory of a previous message.) We also omment that (like in the desription of Se-

tion 3), we an handle the ase where the atual input (i.e., x) or part of it is sent to the veri�er

during the proof proess (rather than being handed to it at the very start).

Referenes

[1℄ M. Bellare and P. Rogaway. Random orales are pratial: a paradigm for designing eÆient

protools. In 1st Conferene on Computer and Communiations Seurity, pages 62{73. ACM,

1993.

[2℄ M. Blum, W. S. Evans, P. Gemmell, S. Kannan and M. Naor, Cheking the Corretness of

Memories, Algorithmia, 12(2/3), pages 225{244, 1994. Preliminary version in 32nd FOCS,

1991.

[3℄ G. Brassard, D. Chaum and C. Cr�epeau. Minimum Dislosure Proofs of Knowledge. JCSS,

Vol. 37, No. 2, pages 156{189, 1988. Preliminary version by Brassard and Cr�epeau in 27th

FOCS, 1986.

[4℄ R. Canetti, O. Goldreih and S. Halevi. The Random Orale Methodology, Revisited.

Preliminary version in Proeedings of the 30th Annual ACM Symposium on the The-

ory of Computing, Dallas, TX, May 1998. ACM. TR version(s) available on-line from

http://eprint.iar.org/1998/011 and http://xxx.lanl.gov/abs/s.CR/0010019.

11

In fat, the existene of one-way funtions suÆes, but this requires a minor modi�ation of the argument used

in Proposition 4. Spei�ally, instead of using a tree struture to hash on�gurations into short strings, we use the

tree as an authentiation tree, where ollision-resistant hashing is replaed by (length-dereasing) MACs.

12

Reall that interative proof systems are unlikely to have low (total) ommuniation omplexity; see the work of

Goldreih Vadhan and Wigderson [7℄.

14

[5℄ O. Goldreih, S. Goldwasser, and S. Miali. How to onstrut random funtions. Journal of

the ACM, 33(4):210{217, 1986.

[6℄ O. Goldreih and R. Ostrovsky. Software Protetion and Simulation on Oblivious RAMs.

JACM, Vol. 43, 1996, pages 431{473.

[7℄ O. Goldreih, S. Vadhan and A. Wigderson. On interative proofs with a laoni provers. In

Pro. of the 28th ICALP, Springer's LNCS 2076, pages 334{345, 2001.

[8℄ S. Goldwasser, S. Miali and C. Rako�. The Knowledge Complexity of Interative Proof

Systems. SICOMP, Vol. 18, pages 186{208, 1989. Preliminary version in 17th STOC, 1985.

[9℄ C. Holenstein and U. Maurer, and R. Renner. manusript, 1998.

[10℄ J. Kilian. A Note on EÆient Zero-Knowledge Proofs and Arguments. In 24th STOC, pages

723{732, 1992.

[11℄ R.C. Merkle. A erti�ed digital signature. Advanes in ryptology|CRYPTO '89, Vol. 435

of Leture Notes in Computer Siene, pages 218{238, Springer, New York, 1990.

[12℄ S. Miali. Computationally Sound Proofs. SICOMP, Vol. 30 (4), pages 1253{1298, 2000.

Preliminary version in 35th FOCS, 1994.

[13℄ M. Naor and M. Yung. Universal one-way hash funtions and their ryptographi appliations.

In Proeedings of the 21st Annual ACM Symposium on Theory of Computing, pages 33{43,

1989.

15

