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Abstrat. The goals of this paper are three-fold. First we introdue and motivate a generalization

of the fundamental onept of the indistinguishability of two systems, alled indi�erentiability. This

immediately leads to a generalization of the related notion of reduibility of one system to another.

Seond, we prove that indi�erentiability is the neessary and suÆient ondition on two systems S

and T suh that the seurity of any ryptosystem using T as a omponent is not a�eted when T is

substituted by S. In ontrast to indistinguishability, indi�erentiability is appliable in settings where

a possible adversary is assumed to have aess to additional information about the internal state of

the involved systems, for instane the publi parameter seleting a member from a family of hash

funtions.

Third, we state an easily veri�able riterion for a system U not to be reduible (aording to our

generalized de�nition) to another system V and, as an appliation, prove that a random orale is not

reduible to a weaker primitive, alled asynhronous beaon, and also that an asynhronous beaon

is not reduible to a �nite-length random string. Eah of these irreduibility results alone implies the

main theorem of Canetti, Goldreih and Halevi stating that there exist ryptosystems that are seure

in the random orale model but for whih replaing the random orale by any implementation leads

to an inseure ryptosystem.

Key words. Indistinguishability, redutions, indi�erentiability, seurity proofs, random orale method-

ology, hash funtions.

1 Introdution

1.1 Motivation: Cryptographi Seurity Proofs

The following generi methodology is often applied in ryptographi seurity proofs. To prove the

seurity of a ryptosystem C(�) with aess

1

to a (real) omponent system S, denoted C(S), one

�rst proves that the system C(T ) is seure for some idealized omponent system T . Seond, one

proves the following general relation between S and T : For any ryptosystem

~

C(�), the seurity of

~

C(T ) is not a�eted if T is replaed by S. Let us onsider two examples.

Example 1. Let T be a soure of truly random bits (seret for two ommuniating parties A and

B) and let S be a pseudo-random bit generator (with seret key shared by A and B). If C(�) denotes

XOR-based enryption (i.e., C(T ) denotes the one-time pad and C(S) denotes an additive stream

ipher with key-stream generator S), then the seurity of C(S) follows from the seurity of C(T )

and the fat that, for any eÆient distinguisher (or adversary), S behaves essentially like T , i.e.,

S and T are (omputationally) indistinguishable.

1

The notation C(�) means that C takes as an argument (or is onneted to) a system that replies to queries by C.



Example 2. Let T be a random orale R, (i.e., a publily aessible random funtion) and let S be

a hash funtion H(F), where H is a hash algorithm depending on a publi parameter F (seleting

one funtion from a lass of funtions). In ontrast to pseudo-randomness (where the parameter is

seret), no hash funtion an implement a random orale in the above sense, as proved by Canetti,

Goldreih, and Halevi [5℄. In other words, there exists a ryptosystem C(�) suh that C(R) is seure

while C(H(F)) is inseure for any hash algorithm H.

It is important to note that the formalization of this seond example is more involved than the

�rst. Obviously, a random orale is easily distinguishable from a hash funtion if one knows its

program and the publi parameter, but this fat does not prove the above mentioned laim that a

random orale an generally not be replaed by a hash funtion. What then is needed to prove this

laim and, more generally, similar impossibility results? It is the purpose of this paper to formalize

this problem and to provide the answer.

1.2 Random Orales, Beaons, and Other Systems

In this paper we onsider the following general question: For given systems S and T , an T be

replaed by S in the above sense? A natural extension of this question is whether a system U an

be redued to a system V, i.e., whether there exists an eÆient algorithm B suh that U an be

replaed by B(V) (in the above sense).

An example for a system, whih we will onsider more losely, is the random orale. Its impor-

tane in ryptography is due to the so alled random orale methodology, �rst made expliit by

Bellare and Rogaway [1℄, where the seurity of ryptosystems is proven under the assumption that

any party has aess to a random orale. The methodology has later been used in many papers

(e.g. [7, 8, 15, 11, 1, 10, 2, 14℄). A (binary) random orale R an be thought of as an in�nite sequene

R

1

; R

2

; : : : of random bits where the nth bit R

n

an be aessed in onstant time.

We also introdue a slightly weaker primitive, alled (binary) asynhronous beaon

2

Q, de�ned

as a sequene of of random bits R

1

; R

2

; : : : whih is only sequentially aessible, i.e., the time needed

to aess R

n

is O(n). Thus the only di�erene between a random orale and a beaon is the ost

assoiated with aessing the randomness. A natural question is whether one an implement a

random orale using an asynhronous beaon, i.e., whether there is an eÆient algorithm B suh

that B(Q) behaves like R. (Note that for eah input, B ould make polynomially many queries to

Q before generating the output.)

One an also onsider weaker variants of random orales or beaons whose bits are not uniformly

random, not independent, or both. Moreover, one an onsider systems between an asynhronous

beaon and a random orale for whih one an aess the bits R

1

; R

2

; : : : faster than sequentially

but not in an arbitrary (random aess) manner.

3

Another system of interest is a �nite random

string F whih an be assumed to be given ompletely at unit ost O(1). In a sense, a random

orale and a �nite random string are two extreme points on the sale of systems we onsider, and

an asynhronous beaon is somewhere in the middle.

For any two suh systems U and V one an still ask the question whether U an be implemented

using V. This paper formalizes and solves this problem. We show that, loosely speaking, the answer

2

The term \beaon", due to Rabin, is used here only in the sense desribed. In partiular, the fat that for Rabin's

beaons the randomness is available simultaneously to all parties, and that future beaon outputs remain seret

until released, is not of relevane here.

3

For instane, the ost of aessing R

n

ould be O((log n)

k

) for some k, or O(n

�

) for some � < 1, or any other

funtion of n.

2



to the above question is haraterized by the rates at whih entropy an be aessed in the systems

U and V (Setion 6). As speial ases one sees that a random orale annot be implemented

using an asynhronous beaon, and a beaon annot be implemented using a �nite random string

(Setion 7). This also proves the main result of [5℄ as a simple onsequene of the fat that a

random orale R ontains substantially more entropy than a �nite random string F , in a manner

to be made preise.

1.3 Indistinguishability and Indi�erentiability

Informally, two systems S and T are said to be indistinguishable if no (eÆient) algorithm D(�),

onneted to either S or T , is able to deide whether it is interating with S or T . As mentioned

above, the seurity of a ryptosystem C(S) involving a omponent S is typially proven by on-

sidering the ryptosystem C(T ) obtained from C(S) where the omponent S is replaed by an

idealized omponent T . The original system C(S) is seure if (a) the system C(T ) is seure, and

(b) the omponent S is indistinguishable from T (f. Example 1).

The notion of reduibility is diretly based on indistinguishability. A system U is said to be

reduible to V if the system V an be used to onstrut a new system B(V) whih is indistinguishable

from U . Again, reduibility is useful for ryptographi seurity proofs: If U is reduible to V, then,

for any ryptosystem C(U) using U as a omponent, there is another ryptosystem based on V,

namely C(B(V)), having the same funtionality and, in partiular, providing the same seurity as

C(U).

Allowing for this general type of seurity proofs, the indistinguishability of two systems seems to

be a strong property. Nevertheless, it is in a ertain sense the weakest possible requirement needed

for seurity proofs of this type. In fat, if two omponents S and T are not indistinguishable, then

there exists a ryptosystem C(T ) based on T whih is seure, while the system C(S) onstruted

from C(T ) by replaing T by S is inseure.

However, these onsiderations are all subjet to the assumption that eah omponent (or prim-

itive) a ryptosystem is based on is a resoure belonging to one spei� party whih has exlusive

aess to it, i.e., all other entities are unable to diretly inuene the omponent's behavior or

obtain any information about its randomness. As desribed in Example 2, this is not the ase for

many omponents. Indeed, while for eah party the output of a random orale R is indistinguish-

able from the output of a loal random funtion R

lo

, the seurity of a ryptosystem based on R

lo

(where, e.g., the randomness is used for a randomized enryption) might obviously be lost when

replaing this omponent by R.

In order to extend the de�nition of indistinguishability suh as to inlude this type of systems,

we will propose a new onept of indistinguishability, alled indi�erentiability (Setion 4). Together

with its derived notion of reduibility (Setion 5), it will allow for exatly the same general state-

ments about the seurity of ryptosystems as the onventional de�nitions. In partiular, this means

that, �rst, if a omponent S is indi�erentiable from T , then the seurity of any ryptosystem C(T )

based on T is not a�eted when replaing T by S. Seond, di�erentiability of S from T implies

the existene of a ryptosystem C(�) for whih this replaement of omponents is not possible,

i.e., C(T ) is seure but beomes inseure if T is substituted by S. Thus, similar to onventional

indistinguishability, indi�erentiability is the weakest possible property allowing for seurity proofs

of the generi type desribed above, but it applies to more general settings.

3



2 A Motivating Example: A Simple Proof of the Impossibility of

Implementing a Random Orale

As a motivating example for the general problem onsidered in this paper, we give a straight-

forward proof of the lassial impossibility result by Canetti, Goldreih, and Halevi [5℄ that a

random orale annot be realized by a (family of) hash funtions, showing intrinsi limitations of

the random orale methodology. The original proof is quite involved as it is based on tehniques

like Miali's CS-proofs [10℄. Very reently, the same authors proposed a new proof [6℄ of their result

based on a new type of interative proof systems.

While this impossibility result also follows diretly from our general impossibility results

(f. Setion 7), we give a self-ontained proof in this setion before introduing the de�nitions

required to formalize the general problem. After seeing this proof, it will be easier for the reader

to understand the motivation for the de�nitions and to follow the rest of the paper.

We show the following proposition whih diretly implies the separation result as formulated

in [5℄:

Proposition 1. There exists a signature sheme C(�) (onsisting of a key-generating, a signing

and a veri�ation algorithm) with aess to either a random orale R or an implementation thereof

suh that the following holds (with respet to some seurity parameter k):

{ C(R) is seure, i.e., the probability that an attaker against C(R) is suessful is negligible in k.

{ There is an adversary breaking C(f) for any arbitrary eÆiently omputable funtion f . In

partiular, C(H(F)) is inseure for any hash funtion H with publi parameter F .

{ C(�) is eÆient (i.e., the running time of the algorithms is polynomially bounded in the size of

their input and the seurity parameter k).

Proof. The proposition is proven by an expliit onstrution of C based on an algorithm D(�) suh

that the behavior of D(R) is di�erent from D(f). More preisely, let D(�) be an algorithm taking

as input a bitstring m (together with a seurity parameter k) and generating a binary output suh

that the following holds:

(a) D(R) outputs 0 for any input with overwhelming probability (over the randomness of R).

(b) For any eÆiently omputable funtion f , there exists an input m ausing D(f) to output 1.

4

() D(�) is eÆient (i.e., its running time is polynomially bounded by the size of its input m and

the seurity parameter k).

Constrution of C. Given an eÆient signature sheme

�

C(�) suh that

�

C(R) is seure,

5

a new

eÆient signature sheme C(�) is obtained by modifying the signing algorithm of

�

C(�) as follows:

On input m, it �rst alls D(�) for input m. If D(�) outputs 0, m is signed as usual (i.e., by alling

�

C(�)). Otherwise, if D(�)'s output is 1, the signing algorithm of C(�) behaves ompletely inseurely

(e.g., by revealing a seret key, as proposed in [5℄).

(In)seurity and eÆieny of C. It is easy to see that C(�) satis�es the requirements of the

proposition: The seurity of C(R) follows diretly from property (a). Furthermore, property (b)

implies that there is an inputm ausing C(f) to behave ompletely inseurely. Finally, the eÆieny

of C(�) follows from the eÆieny of D(�) (property ()) and the eÆieny of

�

C(�).

4

Moreover, in our onstrution of D, m an easily be determined given an algorithm whih eÆiently omputes f .

5

i.e., the suess probability of any attaker against

�

C(R) is negligible in k.

4



Constrution of D. It remains to be proven that an algorithm D(�) with the desired properties

(a){() indeed exists. We give an expliit onstrution for D(�):

D(�) interprets its input m as a pair (�; t) onsisting of an enoding of a program � for a

universal Turing mahine U and a unary enoding of some integer t (in partiular, t � jmj). Let

q = 2j�j+ k (where j�j is the length of a binary representation of �). For inputs x = 1; : : : ; q, D(�)

simulates at most t steps of the program � on U , resulting in outomes �(1); : : : ; �(q).

6

Similarly,

D(�) sends the queries x = 1; : : : ; q to the omponent it is onneted to (R or f), resulting in

answers a(1); : : : ; a(q). If �(x) = a(x) for all x = 1; : : : ; q, D(�) outputs 1, and 0 otherwise.

Let us now show that D(�) satis�es properties (a) { ():

D satis�es property (a). For any �xed program �, let p

�

be the probability (over the randomness

of R) that for an input m enoding �, D(R) outputs 1. By onstrution, this happens if and only

if �(x) = a(x) for all x = 1; : : : ; q. Sine, for eah x, the random output a(x) (of R) equals the

output �(x) (of the �xed program �) with probability at most 1=2 (assuming that eah output of

R onsists of at least one random bit), we have p

�

� 2

�q

= 2

�2j�j�k

. Hene, the probability p

l

of

the event that there exists a program � of length l suh that D(R) outputs 1 is bounded by

p

l

�

X

�2f0;1g

l

p

�

� 2

l

� 2

�2l�k

= 2

�l�k

:

Finally, the probability p that there exists a program � of arbitrary length ausing D(R) to output

1 is bounded by

p �

1

X

l=1

p

l

�

1

X

l=1

2

�l

� 2

�k

� 2

�k

:

D satis�es property (b). Let � be an arbitrary program that eÆiently omputes f , and let t be

the maximum running time of � for all inputs y 2 f1; : : : ; qg where q = 2j�j+ k. By onstrution,

the values �(x) omputed by D(f) on input m := (�; t) satisfy �(x) = f(x). Consequently, the

equalities �(x) = a(x) tested by D(f) hold for all values x = 1; : : : ; q, ausing D(f) to output 1.

7

D satis�es property (). The running time of D(R) is essentially given by the time needed to

ompute the q = 2j�j + k values �(1); : : : ; �(q). For the omputation of eah of these values, the

program � is exeuted for at most t steps. Sine the size of � as well as the number t are both

bounded by the size of m (reall that t is unary enoded in m), the running time of D(R) is at

most O((2j�j + k) � t) � O((jmj+ k)

2

). ut

3 Basi De�nitions and Notation

The main results in this paper are statements about the seurity of ryptosystems and the rela-

tions between the omponents they are based on. These objets an generially be desribed as

(interating) systems, de�ned by their input/output behavior (Subsetion 3.1). Additionally, to

analyze onstrutions of resoures based on weaker primitives, a notion of eÆieny for systems

(Subsetion 3.2) is required. Finally, we need a general de�nition of seurity for ryptosystems

(Subsetion 3.3).

6

If the program � (run on U) does not generate an output after t steps, �(i) is set to some dummy value.

7

Note that, given the program �, the maximum running time t and, onsequently, the input m, an easily be

omputed.

5



3.1 Interating Systems

Any type of (ryptographi) omponents or resoures as well as the parties interating with them

an be haraterized as systems. For their representation, we will basially adapt the terminology

introdued in [9℄. A (X ;Y)-system is a sequene of onditional probability distributions P

Y

i

jX

i

Y

i�1

(for i 2 N) where X

i

:= [X

1

; : : : ;X

i

℄ and Y

i�1

:= [Y

1

; : : : ; Y

i�1

℄ and where X

i

, alled the ith

input, and Y

i

, the ith output, are random variables with range X and Y, respetively. Intuitively

speaking, a system is de�ned by the probability distribution of eah output Y

i

onditioned on all

previous inputs X

i

and outputs Y

i�1

. If eah output Y

i

of S only depends on the atual input X

i

,

and possibly some randomness, then S is alled random funtion. For instane, a system S might

be spei�ed by an algorithm, where, for eah input, the output is omputed aording to a given

sequene of instrutions.

For onveniene, we will assume that the systems' inputs and outputs are �nite bitstrings. Sine

there is a anonial bijetion between N and f0; 1g

�

,

8

any �nite bitstring an be identi�ed with a

natural number. From now on, saying that some number i 2 N is given as input to a system S, we

rather mean its representation as a binary string.

We will onsider on�gurations of interating systems where eah system has ertain interfaes

whih are onneted to the interfaes of other systems.

9

A on�guration of systems is a set of

systems where the systems' interfaes are pairwise onneted.

10

Any on�guration of interating systems an be seen as a new system. Let, for instane, S be a

system with two interfaes and let T be a system whose interfae is onneted to the �rst interfae

of S. The resulting system, denoted as S(T ), has one interfae orresponding to the seond (free)

interfae of S (f. Fig. 1(a)). In this ase, the original system S is denoted as S(�) and T is alled

omponent of S(T ). More omplex onstrutions an often be denoted similarly, e.g., S(U

1

;V(U

2

))

where S(�; �) is a system being onneted to a �rst interfae of a system U (denoted U

1

) as well as

to a system V(�) where the latter is itself onneted to a seond interfae of U (denoted U

2

) (f.

Fig. 1(b)).

Many omplexity-theoreti and ryptographi properties of systems and partiularly of algo-

rithms are de�ned in terms of their asymptoti behavior with respet to some seurity parameter

k. Thus, in the sequel, when speaking of a \system" S, we will rather mean a lass (S

k

)

k2N

pa-

rameterized by k, where eah S

k

is a system in the sense desribed above. Furthermore, a funtion

f : k 7! f(k) is said to be negligible in k if f(k) dereases faster than the inverse of any polynomial

in k, i.e., lim

k!1

f(k) � p(k) = 0 for any polynomial p.

For instane, a seurity parameter is needed to de�ne the omputational eÆieny of algorithms

interating with systems. An algorithm B is said to be omputationally eÆient if its running time

is bounded by a polynomial in its input size and the seurity parameter k.

11

3.2 A Notion of EÆieny for Systems

Similarly to the omputational eÆieny of algorithms, we are interested in a ertain notion of

eÆieny for systems S and onstrutions based on them. However, sine a system S is not nees-

8

One ould take the binary representation of the natural numbers, dropping the highest bit (whih always is a 1).

9

Formally, the inputs X

i

and outputs Y

i

of a system with n interfaes are pairs, (X

0

i

; S

i

) and (Y

0

i

; R

i

), respetively,

where S

i

and R

i

take on values in f1; : : : ; ng indiating the interfaes to be used.

10

If the interfae with index s of a system S is onneted to the interfae t of a system T , then any output of S of

the form (m;s) (for any arbitrary message m) is given as input (m; t) to T .

11

We will always impliitly assume that k is given as input to any algorithm, but that the algorithms themselves

do not depend on k.

6



sarily desribed by an algorithm, the usual formulation in terms of the number of omputational

steps is not suÆiently general. A more abstrat approah to overome this problem is to assign to

eah (X ;Y)-system S a ost funtion  with real range speifying the amount of a ertain resoure

(e.g., time), needed to proess an input. For simpliity, we will assume that these osts only depend

on the atual input, i.e.,  is a funtion mapping elements from X to R

+

.

The osts of a omposite system U onsisting of r systems S

(1)

; : : : ;S

(r)

are de�ned as the sum

of the osts of these systems when proessing an input of U . Consequently, if  is the ost funtion

of a omposite system U := S(T ) and � is the ost funtion of its omponent T , then (for all inputs

x of S(T ))

(x) �

n

X

i=1

�(�x

i

);

where �x

1

; : : : ; �x

n

are S's queries (for some n 2 N) sent to T while proessing x.

Similarly to the usual notion of omputational eÆieny of algorithms, we say that a system S

(i.e., the lass (S

k

)

k2N

of systems S

k

with ost funtions 

k

) is ost-eÆient if 

k

is bounded by a

polynomial in the input length and the seurity parameter k, i.e., if there exists a polynomial p in

two arguments suh that 

k

(x) � p(jxj; k) for all x in the input set of S and k 2 N. Additionally,

for two systems U and V, we de�ne � (V=U) to be the set of all systems B suh that the osts �

k

of the system B(V) are bounded by a polynomial in the osts 

k

of the system U and the seurity

parameter k. Clearly, for any B 2 � (V=U), if the system U is ost-eÆient, then so is the system

B(V).

We will see in Setion 6 that the entropy of the output of a system expressed in terms of the

osts to produe this output is a measure allowing for deiding whether a ertain redution is

possible. Let the system S

k

be a random funtion with ost funtion 

k

whih is monotonially

inreasing in its inputs

12

, and let Y

1

; : : : ; Y

n

t

be the sequene of outputs of S

k

on inputs 1; : : : ; n

t

,

where n

t

is the maximal input x suh that 

k

(x) � t. The funtions h

0

S

k

and h

1

S

k

are de�ned, based

on two di�erent entropy measures, as

h

0

S

k

(t) := H

0

(Y

1

; : : : ; Y

n

t

) and h

1

S

k

(t) := H

1

(Y

1

; : : : ; Y

n

t

);

respetively, where H

0

(X) := log

2

jX j,

13

and where H

1

is the min-entropy (de�ned as H

1

(X) :=

� log

2

max

x2X

P

X

(x)). Clearly, h

0

S

and h

1

S

are monotonially inreasing funtions, and h

0

S

(t) �

h

1

S

(t).

3.3 Cryptosystems and Seurity

In the following, we will onsider settings involving n separated systems, alled parties P

1

; : : : ;P

n

,

having aess to ertain resoures, i.e., systems providing interfaes to these parties. As an example,

a broadast hannel for P

i

is the system whih simply takes an input value from its interfae to

P

i

and sends this value to all other interfaes, i.e., to all other parties onneted to the resoure.

Similarly, a private hannel from P

i

to P

j

is the system sending all inputs from P

i

as output to

the interfae P

j

is onneted to.

Resoures an be used as building bloks for onstruting new, more powerful resoures. For

n parties, suh a onstrution is spei�ed by a set of n algorithms B

1

; : : : ;B

n

whih are run by

12

Similar to the inputs of a system, the inputs of a ost funtion an be regarded as natural numbers.

13

This de�nition requires a spei�ation of the range of the sequene Y

1

; : : : ; Y

n

t

. For the rest of this paper, we will

assume that this range orresponds to a set of bitstrings of some �xed length l

t

, suh that h

0

S

k

(t) � l

t

.

7



the parties P

1

; : : : ;P

n

and make alls to the original resoures. For instane, given a broadast

hannel for a party P

i

, it is easy to onstrut a private hannel from P

i

to any arbitrary party P

j

:

All parties exept P

j

simply have to ignore the values they obtain from the broadast resoure.

This, however, only works under the assumption that all parties behave orretly.

In a ryptographi setting, when making statements about a given on�guration of parties

interating with resoures, we generally have to distinguish between two di�erent types of players,

namely honest and dishonest parties, where the latter will be onsidered as being ontrolled by

one entral adversary.

The aess of the honest parties and the adversary to a given system S (or, more generally,

a set of systems) providing m interfaes is spei�ed by a so alled aess struture.

14

This is

a set of pairs (P;A), eah of them desribing a onrete onstellation of honest parties and an

adversary interating with the system. P and A are disjoint subsets of f1; : : : ;mg ontaining the

labels of interfaes of S onneted to honest parties and the interfaes ontrolled by the adversary,

respetively. For instane, the setting shown in Fig. 2 for a resoure S providing 7 interfaes is

haraterized by the pair (P;A) = (f1; 2; 3; 4g; f6; 7g).

15

A ryptosystem C an generally be seen as a system providing interfaes to be used by ertain

entities. Its seurity is (with respet to an aess struture �) haraterized relative to an ideal

system whih by de�nition is seure.

16

Obviously, this requires the ability to ompare the seurity

of ryptosystems, i.e., it needs to be spei�ed what it means for a ryptosystem C to be at least

as seure as another ryptosystem C

0

. Our de�nition is based on ideas proposed by Canetti [3, 4℄,

and by P�tzmann and Waidner [12, 13℄ (for the ase of stati adversaries), adapted to our general

notion of systems.

Informally, a ryptosystem C is said to be at least as seure as another ryptosystem C

0

if for

all attakers A on C there is an attaker A

0

on C

0

ahieving the same goal as A. This de�nition

exatly aptures the idea that, if there is no attak on C being more suessful than any attak on

C

0

, then, learly, C provides the same seurity as C

0

. For a preise de�nition, it needs, however, to

be spei�ed what it means that an attaker A ahieves the same goal as another attaker A

0

.

Note that, in a realisti setting, the entities interating with the ryptosystem (the honest

parties as well as the adversary) are generally not isolated. They are rather embedded in an

environment

~

E whih is a system providing interfaes to eah of them. In order to make statements

about the ourrene of ertain events

17

, it is additionally assumed that

~

E generates some (�nal)

binary output. For onveniene, we will regard the environment

~

E together with the honest parties

as an extended environment system E (f. Fig. 3). Let C and C

0

be two ryptosystems, and let �

be an aess struture.

De�nition 1. C is said to be at least as seure as C

0

with respet to �, denoted C

�

� C

0

, if for

all pairs (P;A) in the aess struture � and for all environments E the following holds: For any

attaker A aessing C there is another attaker A

0

aessing C

0

suh that the di�erene between

14

The same term is often used in the ontext of seret sharing, where it has a di�erent meaning.

15

Note that it is not required that P [ A = f1; : : : ;mg, i.e., there might be \unused" interfaes whih are not

onneted to a honest party nor to the adversary. In this ase, one might think of a prede�ned dummy system

being attahed to suh interfaes.

16

As an example, let C be a ryptosystem for n parties whih is seure as long as not more than t of these parties

are orrupted. Desribing C as a system with n interfaes, one for eah party, this means that ertain onditions

hold with respet to the aess struture ontaining all pairs (P;

�

P ) where P is a subset of f1; : : : ; ng having at

least n� t elements, and where

�

P is its omplement.

17

E.g., an event indiating that an attaker has ahieved a ertain goal.

8



the probability distributions of the binary outputs of E(C;A) and E(C

0

;A

0

),

jProb[E(C;A) = 1℄� Prob[E(C

0

;A

0

) = 1℄j;

is negligible in the seurity parameter k.

Similarly, C is omputationally at least as seure as C

0

, denoted C

�

�



C

0

, if, additionally, E, A,

and A

0

are eÆient algorithms.

18

We will be onerned with general relations between systems, e.g., whether a resoure S an

be replaed by another resoure T (without a�eting the seurity of a ryptosystem based on

these resoures). These relations not only depend on the input/output behavior of the onsidered

resoures, but also on the way how the honest parties and a possible adversary might aess the

resoure.

19

This motivates the following de�nition: An interfae of a system S is said to be private with

respet to an aess struture � if, aording to �, the interfae is only used by honest parties,

while an adversary an never have aess to it.

20

Similarly, an interfae is alled publi with respet

to � if the interfae is not used by the honest parties, but the adversary has aess to it.

21

In the following, speaking of a resoure S, we mean a system together with a spei�ation,

de�ning for eah of its interfaes whether it is private or publi. If the publi and private interfaes

of the resoure S orrespond to the publi and private interfaes with respet to a given aess

struture �, then � is said to be ompatible with S.

In this paper, we will onsider resoures whose interfaes are all either private or publi. For

onveniene, multiple interfaes of the same type (publi or private) will be regarded as one single

interfae, i.e., we will restrit ourselves to resoures with only one private and one publi interfae.

Note that, by de�nition, the private interfae (usually denoted V

1

) of a resoure V is only

aessed by honest parties, while the publi interfae (V

2

) is not used by these parties. Any on-

strution B of the honest parties based on V (e.g., a ryptosystem using V as a omponent) thus

results in a new resoure W, denoted as B(V), whose private interfae W

1

is spei�ed by B(V

1

)

while the publi interfae W

2

of W is idential to the publi interfae V

2

of the original resoure

V (f. Fig. 4).

4 Indi�erentiability

4.1 The Conventional Notion of Indistinguishability

Before introduing indi�erentiability as a generalization of indistinguishability, we �rst reall the

standard de�nition of indistinguishability. Let S = (S

k

)

k2N

and T = (T

k

)

k2N

be two (X ;Y)-

systems.

18

In a omputational setting, it is essential that the output generated by the environment is binary. Otherwise, two

outputs might be di�erent while not being distinguishable by any eÆient algorithm.

19

To see this, reall the example mentioned at the beginning of this subsetion, where the onstrution of a private

hannel based on a broadast hannel for n parties is onsidered. As long a an opponent has aess to the original

broadast hannel, it is obviously impossible to obtain privay. The given redution thus only works if all pairs in

the aess struture are of the form (P; ;) where ; is the empty set, i.e., if there is no adversary.

20

Formally, for a private interfae with index k: 8(P;A) 2 � : k =2 A ^ 9(P;A) 2 � : k 2 P .

21

Formally, for a publi interfae with index k: 8(P;A) 2 � : k =2 P ^ 9(P;A) 2 � : k 2 A.

9



De�nition 2. S and T are (omputationally) indistinguishable if for any (omputationally eÆ-

ient) algorithm D (alled distinguisher), interating with one of these systems and generating a

binary output (0 or 1), the advantage

�

�

Prob[D(S

k

) = 1℄� Prob[D(T

k

) = 1℄

�

�

is negligible in k.

The relation between indistinguishability and the seurity of ryptosystems is summarized by

the following proposition, whih in its generalized form (Theorem 1) will be proven below. Let S

and T be two resoures whih only have a private interfae.

Proposition 2. If and only if S and T are indistinguishable, then, for every ryptosystem C(T )

using T as a omponent, the ryptosystem C(S) obtained from C(T ) by replaing the omponent

T by S is at least as seure as C(T ).

The �rst impliation, stating that the seurity of C(S) is an immediate onsequene of the

indistinguishability between S and T (and the seurity of C(T )), is well-known in ryptography.

On the other hand, to our knowledge, the (simple) observation that this ondition is also neessary

in general has not previously been stated expliitly.

It is important to note that Proposition 2 only applies to settings where the interfaes of the

resoures are private, i.e., a possible opponent has no diret aess to any additional information

being orrelated with the behavior of the systems.

4.2 Generalization to Indi�erentiability

We will now extend the de�nition of indistinguishability to resoures whih additionally have a

publi interfae (as de�ned in Setion 3). A �rst attempt might be to onsider a distinguisher D

aessing both the private as well as the publi interfae of the resoures. However, it turns out

that suh an approah leads to a too strong notion of indistinguishability (with respet to Proposi-

tion 2). This means, for instane, that there are resoures S and T whih are not indistinguishable

(aording to suh a de�nition) while, for any ryptosystem C(T ) based on T , replaing T by S

has no impat on its seurity, i.e., the seond impliation of Proposition 2 would not hold.

A notion of indistinguishability overoming this problem is formalized by the following de�-

nition, whih, unlike the onventional de�nition, is not symmetri. Let again S = (S

k

)

k2N

and

T = (T

k

)

k2N

be two resoures both of them having a private and a publi interfae with index 1

and 2, respetively (f. Fig. 5).

De�nition 3. S is indi�erentiable from T , denoted S � T , if for any system D (alled distin-

guisher) with binary output (0 or 1) there is a system P suh that the advantage

�

�

Prob[D(S

1

k

;S

2

k

) = 1℄� Prob[D(T

1

k

;P(T

2

k

)) = 1℄

�

�

is negligible in k.

22

The indi�erentiability is omputational, denoted S



�

T , if for D and P only

omputationally eÆient algorithms are onsidered.

22

(In)di�erentiability an equivalently be desribed in terms of (a speial type of) a proof system: Consider a veri�er

(whih takes the role of the distinguisher D) interating with the private interfae of a blakbox B (where either

B = S or B = T ) and a prover having aess to the publi interfae of B. Then, S is di�erentiable from T if,

given that B = S, there is a prover being able to onvine the veri�er of the fat that B = S.

10



Note that indistinguishability is a speial (symmetri) ase of indi�erentiability. Indeed, if

the resoures have no publi interfae, indi�erentiability (De�nition 3) is obviously equivalent to

indistinguishability (De�nition 2).

One important point about our generalization of indistinguishability is that a similar relation

between the seurity of ryptosystems and the indi�erentiability of its omponents as the one

stated in Proposition 2 (for indistinguishability) holds. One important di�erene is, however, the

asymmetri nature of indi�erentiability. The following theorem shows that indi�erentiability is the

exat (i.e., neessary and suÆient) riterion needed to make general statements about the seurity

of ryptosystems when substituting their omponents.

Let S = (S

k

)

k2N

and T = (T

k

)

k2N

be two resoures having one private and one publi interfae.

Theorem 1. Let C range over the set of all ryptosystems. Then, for any aess struture � being

ompatible with S and T ,

S � T () 8C : C(S)

�

� C(T ):

The same equivalene holds when \�" and \

�

�" are replaed by \



�

" and \

�

�



", respetively.

The theorem implies that if S is indi�erentiable from T and if a ryptosystem C(T ) based on

T is seure, then so is C(S), the ryptosystem obtained from C(T ) by replaing the omponent T

by S. Note that the asymmetry of indi�erentiability implies that there is an asymmetry on the

right hand side of the equivalene in Theorem 1. In fat, even if seurity of C(S) implies seurity

of C(T ), then seurity of C(T ) does not neessarily imply seurity of C(S).

The proof is given for the information-theoreti ase, where all systems might be omputation-

ally unbounded. It an however easily be adapted to hold for the omputational ase.

Proof. To simplify the notation, set

d

D;P

(k) := jProb[D(S

1

k

;S

2

k

) = 1℄� Prob[D(T

1

k

;P(T

2

k

)) = 1℄j

where D is a distinguisher and P a system interating with the systems S and T (having a private

and a publi interfae with index 1 and 2, respetively) as spei�ed by Fig. 5. Similarly, de�ne

e

E ;C;(P;A);A;A

0(k) := jProb[E(C(S

1

k

);A(S

2

k

)) = 1℄� Prob[E(C(T

1

k

);A

0

(T

2

k

)) = 1℄j

where E is an environment, C a ryptosystem, and where A, A

0

are attakers interating with S

and T , respetively, aording to (P;A) 2 � (see Fig. 2 and Fig. 3).

The statement of the theorem an then be rewritten as

8D : 9P : d

D;P

(k) is negl. () 8C : 8(P;A) 2 � : 8E : 8A : 9A

0

: e

E ;C;(P;A);A;A

0(k) is negl.

Let us start with the �rst impliation (\=)"), whih is proven by ontradition: Assume that

there exists a ryptosystem C, a pair (P;A) 2 � (de�ning the aess of the honest parties and the

adversary to C), an environment E , and an attaker A suh that for all attakers A

0

the di�erene

e

E ;C;(P;A);A;A

0(k) is non-negligible in k. Let the distinguisher D be de�ned as the system resulting

from C, E , and A being ombined aording to (P;A) (f. Fig. 6(a)). Furthermore, for any system

P, let the attaker A

0

be de�ned as A(P) (f. Fig. 6(b)). The two settings involving the system S

(represented in Fig. 6(a) by solid lines and dashed lines, respetively) as well as the two settings

involving the system T (Fig. 6(b)) are then obviously equivalent, i.e., the probabilities of their

outputs are equal. We thus have d

D;P

(k) = e

E ;C;(P;A);A;A

0
(k), i.e., d

D;P

(k) is non-negligible.

11



The seond impliation (\(=") is as well proven by ontradition: Assume that there is a dis-

tinguisherD whose advantage d

D;P

(k) for all systems P is non-negligible in k. Let the ryptosystem

C be idential to D,

23

and de�ne both the environment E and the attaker A as a trivial system

simply forwarding all queries (Fig. 7(a)). Then, for any attaker A

0

, set P := A

0

(Fig. 7(b)). Again,

the two settings involving the system S (Fig. 7(a)) as well as the two settings involving the system

T (Fig. 7(b)) are equivalent, i.e., e

E ;C;(P;A);A;A

0(k) equals d

D;P

(k) and is thus non-negligible. ut

5 Redutions and Reduibility

In ryptography one often asks whether a given system V an be used to onstrut a (seemingly

stronger) system U whih is spei�ed by its funtionality. If this is the ase, one says that U is

reduible to V. The formal de�nition of reduibility makes lear that this onept is strongly related

to the notion of indistinguishability, or, in our generalized setting, to indi�erentiability.

Let U and V be two resoures eah having a private (U

1

and V

1

) and a publi (U

2

and V

2

)

interfae.

De�nition 4. U is information-theoretially seurely (omputationally seurely) reduible to V,

denoted U ! V (U
!



V), if there exists a deterministi

24

(omputationally eÆient) algorithm

B 2 � (V

1

=U

1

), making alls to the private interfae of V, suh that the resulting resoure W (f.

Fig. 4), having private interfae W

1

= B(V

1

) and publi interfae W

2

= V

2

, satis�es W � U

(W



�

U).

Analogously to indistinguishability and indi�erentiability, the onept of reduibility is useful

for ryptographi seurity proofs. The following theorem is a diret onsequene of Theorem 1 and

the above de�nition of reduibility.

Theorem 2. Let C range over the set of all ryptosystems. Then, for any aess struture � being

ompatible with U and V,

U ! V () 9B 2 � (V

1

=U

1

) : 8 C : C(B(V))

�

� C(U):

The same statement holds when \!" and \

�

�" are replaed by \
!



" and \

�

�



", respetively.

6 A SuÆient Criterion for Irreduibility

The following theorem gives an easily veri�able suÆient riterion for a resoure U not to be

reduible to another resoure V. This riterion will be formulated in terms of the entropy of the

output generated by these resoures, as de�ned in Setion 3.

We will onsider resoures with one private and one publi interfae whih are both spei�ed

by the same random funtion

25

. Let U = (U

k

)

k2N

and V = (V

k

)

k2N

be suh resoures, and assume

that the osts for aessing their private interfae are given by  and 

0

, respetively, where, for

�xed t, the entropies h

1

U

k

(t) and h

0

V

k

(t) are monotonially inreasing in k.

Informally speaking, U is not reduible to V if h

1

U

k

(t) grows \suÆiently faster than" h

0

V

k

(t).

23

Motivated by a onstrution given in [5℄, one ould also de�ne a more \realisti" ryptosystem ontaining D suh

that, if D outputs 0, it performs some useful task, while, if D outputs 1, it behaves ompletely inseurely by

revealing some seret information.

24

This is no restrition of generality, but implies that all (private and publi) randomness to be used by B has to

be de�ned expliitly as a part of the system V.

25

This implies that on the same inputs, the outputs are idential at both interfaes.
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Theorem 3. If for eah k 2 N and any polynomial p the funtion h

1

U

k

grows asymptotially faster

than the funtion h

0

V

k

Æ p, then U 9 V. If, additionally, h

1

U

k

(t) grows at least linearly in t, and

h

0

V

k

(t) grows at most polynomially in t and k, then U 9



V.

The proof is a diret generalization of the proof of the separation result presented in Setion 2.

Proof. It has to be shown that B(V) 6� U for any B 2 � (V=U), i.e., satisfying the ondition that

B(V)'s osts �

k

are bounded by a polynomial p in the osts 

k

of U

k

and the seurity parameter k,

�

k

(x) � p(k; 

k

(x)) : (1)

Similarly to the proof presented in Setion 2, we will �rst give an expliit onstrution of a distin-

guisher for di�erentiating B(V) from U , and then show that it has all the desired properties.

Constrution of D The distinguisher D(�; �) for di�erentiating B(V) from U has two interfaes

(f. Fig. 5 where S = B(V) and T = U), alled D

1

and D

2

, respetively .

Let, for r 2 N, the min-entropy H

1

(Y

1

� � � Y

r

) of all outputs Y

i

of the system U

k

on inputs

X

i

:= i (for i = 1; : : : ; r) be denoted as

�

h

k

(r), and let l be some positive integer to be determined

later. For simpliity, let us assume (without loss of generality) that the funtions

�

h

k

as well as h

1

U

k

are invertible, and that the outputs of V are single bits.

D is onstruted as follows: First, D sends queries X

0

j

:= j for j = 1; : : : ; l to interfae D

2

and

stores the reeived answers Y

0

1

; : : : ; Y

0

l

(whih by assumption are single bits). Then, D subsequently

simulates B(V) on test inputsX

i

:= i for i = 1; : : : ; n where n := (

�

h

k

)

�1

(l+k), resulting in outomes

�

Y

i

. Thereby, any query X

0

2 f1; : : : ; lg of (the simulated) B to V is answered by the orresponding

stored value Y

0

X

0

. If X

0

> l, D stops with output 0. The same test inputs X

i

are then sent to

interfae D

1

, resulting in answers Y

i

. If Y

i

=

�

Y

i

for all i = 1; : : : ; n, D outputs 1, and 0 otherwise.

The above onstrution of D has however to be slightly modi�ed in order to avoid the following

tehnial problem: The stored values Y

0

1

; : : : ; Y

0

l

might be arbitrarily hosen by P, in whih ase

they do not neessarily orrespond to (potential) outputs of V. The number of queries of the

simulated system B and, in the omputational ase, the running time of the simulation of B, might

thus be unbounded when using Y

0

1

; : : : ; Y

0

l

as answers for B's queries. To overome this problem, D

simply stops the simulation of B on input x after some maximal number t

max

(x) of queries (and,

in the omputational ase, some maximal number t

0

max

(x) of omputational steps) of B, where

t

max

(x) (and t

0

max

(x)) is the maximal number of queries (omputational steps) of B when reeiving

orret answers to its queries.

We have to show the following properties of D:

(a) D(U

1

;P(U

2

)) outputs 1 with probability being negligible in k.

(b) D(B(V

1

);V

2

) outputs 1 with ertainty.

() In the omputational ase, D(�; �) is eÆient.

D satis�es property (a). Note that D an only have output 1 if the n-tuples Y = (Y

1

; : : : ; Y

n

)

and

�

Y = (

�

Y

1

; : : : ;

�

Y

n

) are equal. It thus suÆes to verify that the probability of this event is

negligible in k.

Sine

�

Y is fully spei�ed by the bits Y

0

1

; : : : ; Y

0

l

used for the simulation of B(V) (and sine, by

de�nition, B is deterministi) there are at most 2

l

possible values for

�

Y . Let

�

Y be the set of these

2

l

values. Obviously, Y an only be equal to

�

Y if Y 2

�

Y. This happens with probability at most

X

y2

�

Y

P

Y

(y) � j

�

Yj �max

y2

�

Y

P

Y

(y) � 2

l

� 2

�H

1

(Y )

= 2

l

� 2

�

�

h

k

(n)

� 2

�k

;

13



whih onludes the proof of property (a).

D satis�es property (b). We �rst show that the property holds for l satisfying

l � h

0

V

k

(p

k

((h

1

U

k

)

�1

(l + k))); (2)

(where p

k

(�) := p(k; �), p(�; �) being de�ned as in (1)). Seond, we prove that ondition (2) is always

satis�ed for l large enough (but polynomially bounded in the omputational ase).

By onstrution, D performs tests on inputs X

i

:= i for i = 1; : : : ; n where n := (

�

h

k

)

�1

(l + k).

Hene,



k

(x) � (h

1

U

k

)

�1

(l + k)

holds for all x = 1; : : : ; n. By assumption, the osts  and � (of U and B(V), respetively) satisfy

ondition (1). The osts 

0

k

(x

0

) of V for eah potential query x

0

of B to V are thus bounded by



0

k

(x

0

) � p

k

((h

1

U

k

)

�1

(l + k)) :

Let x

max

be the maximal query of B to V (i.e., x

0

� x

max

for all queries of B). It follows from

the de�nition of h

0

that the length l

0

of the list ontaining V's answers to the queries 1; : : : ; x

max

satis�es

l

0

� h

0

V

k

(p

k

((h

1

U

k

)

�1

(l + k))) :

By onstrution, D outputs 1 if the list of stored values Y

0

1

; : : : ; Y

0

l

ontains the answers to all

queries x

0

of B to V

1

. Clearly, this is the ase if l � l

0

, whih is true if l satis�es inequality (2).

It remains to be proven that (2) holds for l large enough: By assumption, for any k 2 N, the

funtion h

0

V

k

Æ p

k

Æ (h

1

U

k

)

�1

grows less than the identity funtion. Hene,

lim

l!1

l

h

0

V

k

(p

k

((h

1

U

k

)

�1

(l + k)))

� 1 ;

whih implies that (for any �xed k) there is a value for l satisfying (2).

D satis�es property (). It has to be shown that in the omputational ase (where, by as-

sumption, h

0

V

k

(t) only grows polynomially in t and k), eÆieny of B implies eÆieny of D. By

onstrution (sine the simulation of B is only run for a ertain number of steps), if B is eÆient

when interating with V

1

, then eah simulation of B by D is eÆient as well (for any arbitrary sys-

tem P onneted to D

2

). Furthermore, the number n of simulations is, by the assumption on h

1

U

k

,

itself bounded linearly in l. It thus remains to be shown that the minimal l satisfying inequality

(2) only grows polynomially in k. The straightforward alulation is omitted. ut

7 Appliations

7.1 Random Orales, Asynhronous Beaons, and Finite Random Strings

We will now apply the framework presented in the previous setions to the examples mentioned in

the introdution (Setion 1), i.e., to random orales, beaons and �nite random strings. These are

modeled as a resoure S whose outputs only depend on the previous inputs (i.e., S is a random

funtion, providing idential private and publi interfaes with input set X = f0; 1g

�

and output

14



set Y = f0; 1g).

26

Eah query x 2 X to S is answered by R

x

where R = R

1

R

2

� � � is a (possibly

in�nite) bitstring randomly hosen aording to some distribution P

R

.

Random orales, beaons and �nite random strings only di�er by the length of the string R

and the ost funtion . For a random orale R, R has in�nite length and the osts are (x) := 1,

or, alternatively, (x) := jxj. (In the following, we only need an upper bound for the osts of a

random orale, i.e., (x) � jxj.) For a asynhronous beaon Q, R is also an in�nite bitstring, but

the osts for the queries are higher, namely (x) := x, where x is interpreted as a natural number.

On the other hand, for a �nite random string F , the length of R is given as a funtion in the

seurity parameter k whih is bounded by a polynomial p, and the osts are (x) := C for some

onstant C (whih possibly depends on the seurity parameter k).

27

Moreover, for any query on

input x with x > jRj the output is 0. In the following, we say that a random orale, beaon, or

�nite random string is uniform if R is uniformly distributed, and denote these objets as R, Q,

and F , respetively.

7.2 Impossibility Results

It is obvious that an asynhronous beaon an always be redued to a random orale (using an

algorithm whih merely passes on the inputs and outputs) and that a �nite random string an

always be redued to a beaon (using the same trivial algorithm whih additionally heks that

the input is not larger than some prede�ned bound). However, it follows diretly from Theorem 3

that the inverse redutions are not possible.

Theorem 4. The following irreduibility results hold for both the information-theoreti and the

omputational ase (where \9" is replaed by \
9



"):

R9 Q and Q9 F :

The proof mainly onsists of the omputation of the entropies of the onsidered objets whih

then allows to apply Theorem 3.

Proof. The main task required for the proof of this theorem is the omputation of the entropies

aording to the de�nitions in Setion 3. For a random orale, we obtain

h

1

R

k

(t) = h

0

R

k

(t) �

t

X

i=1

2

i

= 2

t+1

� 2;

and similarly, for an asynhronous beaon,

h

1

Q

k

(t) = h

0

Q

k

(t) = t

(independently of k 2 N). Sine for a �nite random string the length of R is given by a funtion

in the seurity parameter k whih is bounded by a polynomial p in k, we have

h

1

F

k

(t) = h

0

F

k

(t) =

(

0 if t < C

jR

k

j � p(k) otherwise:

26

We will assume that the outputs of random orales, beaons and �nite random strings are single bits. This entails

no restrition of generality sine any suh random funtion providing outputs of some length l an eÆiently be

redued to a orresponding random funtion with outputs of length 1 (as long as l grows only polynomially in the

seurity parameter k).

27

Equivalently, one ould take any polynomial in jxj and jkj.

15



(for all k 2 N). Note that the above expressions for h

0

R

k

, h

0

Q

k

and h

0

F

k

also hold if the respetive

systems are not uniform.

With these expressions for the entropies, the assertion follows diretly from Theorem 3. ut

Together with Theorem 2, it follows from this result that a random orale in general an not be

replaed by any algorithm interating with an asynhronous beaon, and similarly, a beaon an

not be replaed by any algorithm interating with a publi �nite random string without a�eting

the seurity of an underlying ryptosystem. The failure of the random orale methodology an

thus be seen as a diret onsequene of eah of the two irreduibility results of Theorem 4.

8 Conlusions

One ruial motivation for introduing the notion of indi�erentiability is that it haraterizes

exatly when one an replae a subsystem of a ryptosystem by another subsystem without a�eting

the seurity. In ontrast to indistinguishability, indi�erentiability is appliable in the important ase

of settings where a possible adversary is assumed to have aess to additional information about

a system. This generality is for instane ruial in the setting of the random orale methodology,

and our abstrat framework yields as a simple onsequene, atually of eah of two di�erent

impossibility results, the impossibility result by Canetti, Goldreih and Halevi [5℄ stating that

random orales an not be implemented. In view of the highly involved arguments of [5℄ based on

CS-proofs, we hope to have presented a more generi approah to arguing about suh impossibility

results, thus also appliable in other ontexts where systems have publi parameters or an adversary

an obtain side-information about seret parameters.
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Fig. 1. Composition of systems.
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Fig. 2. Aess of parties P
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and adversary A to system S, spei�ed by (P; A) = (f1; 2; 3; 4g; f6; 7g).
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Fig. 4. Constrution of new resoure W = B(V) from original resoure V.
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Fig. 5. Indi�erentiability: The distinguisher D for di�erentiating S from T is either onneted to the system S or

the system T . In the �rst ase (a), D has diret aess to the private (index 1) and the publi (index 2) interfae

of S, while, in the latter ase (b), the aess to the publi interfae of T is replaed by an arbitrary intermediate

system P.
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Fig. 6. Illustration for proof of Theorem 1 (\=)").
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Fig. 7. Illustration for proof of Theorem 1 (\(=").
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