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Abstra
t. The goals of this paper are three-fold. First we introdu
e and motivate a generalization

of the fundamental 
on
ept of the indistinguishability of two systems, 
alled indi�erentiability. This

immediately leads to a generalization of the related notion of redu
ibility of one system to another.

Se
ond, we prove that indi�erentiability is the ne
essary and suÆ
ient 
ondition on two systems S

and T su
h that the se
urity of any 
ryptosystem using T as a 
omponent is not a�e
ted when T is

substituted by S. In 
ontrast to indistinguishability, indi�erentiability is appli
able in settings where

a possible adversary is assumed to have a

ess to additional information about the internal state of

the involved systems, for instan
e the publi
 parameter sele
ting a member from a family of hash

fun
tions.

Third, we state an easily veri�able 
riterion for a system U not to be redu
ible (a

ording to our

generalized de�nition) to another system V and, as an appli
ation, prove that a random ora
le is not

redu
ible to a weaker primitive, 
alled asyn
hronous bea
on, and also that an asyn
hronous bea
on

is not redu
ible to a �nite-length random string. Ea
h of these irredu
ibility results alone implies the

main theorem of Canetti, Goldrei
h and Halevi stating that there exist 
ryptosystems that are se
ure

in the random ora
le model but for whi
h repla
ing the random ora
le by any implementation leads

to an inse
ure 
ryptosystem.
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tions, indi�erentiability, se
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1 Introdu
tion

1.1 Motivation: Cryptographi
 Se
urity Proofs

The following generi
 methodology is often applied in 
ryptographi
 se
urity proofs. To prove the

se
urity of a 
ryptosystem C(�) with a

ess

1

to a (real) 
omponent system S, denoted C(S), one

�rst proves that the system C(T ) is se
ure for some idealized 
omponent system T . Se
ond, one

proves the following general relation between S and T : For any 
ryptosystem

~

C(�), the se
urity of

~

C(T ) is not a�e
ted if T is repla
ed by S. Let us 
onsider two examples.

Example 1. Let T be a sour
e of truly random bits (se
ret for two 
ommuni
ating parties A and

B) and let S be a pseudo-random bit generator (with se
ret key shared by A and B). If C(�) denotes

XOR-based en
ryption (i.e., C(T ) denotes the one-time pad and C(S) denotes an additive stream


ipher with key-stream generator S), then the se
urity of C(S) follows from the se
urity of C(T )

and the fa
t that, for any eÆ
ient distinguisher (or adversary), S behaves essentially like T , i.e.,

S and T are (
omputationally) indistinguishable.

1

The notation C(�) means that C takes as an argument (or is 
onne
ted to) a system that replies to queries by C.



Example 2. Let T be a random ora
le R, (i.e., a publi
ly a

essible random fun
tion) and let S be

a hash fun
tion H(F), where H is a hash algorithm depending on a publi
 parameter F (sele
ting

one fun
tion from a 
lass of fun
tions). In 
ontrast to pseudo-randomness (where the parameter is

se
ret), no hash fun
tion 
an implement a random ora
le in the above sense, as proved by Canetti,

Goldrei
h, and Halevi [5℄. In other words, there exists a 
ryptosystem C(�) su
h that C(R) is se
ure

while C(H(F)) is inse
ure for any hash algorithm H.

It is important to note that the formalization of this se
ond example is more involved than the

�rst. Obviously, a random ora
le is easily distinguishable from a hash fun
tion if one knows its

program and the publi
 parameter, but this fa
t does not prove the above mentioned 
laim that a

random ora
le 
an generally not be repla
ed by a hash fun
tion. What then is needed to prove this


laim and, more generally, similar impossibility results? It is the purpose of this paper to formalize

this problem and to provide the answer.

1.2 Random Ora
les, Bea
ons, and Other Systems

In this paper we 
onsider the following general question: For given systems S and T , 
an T be

repla
ed by S in the above sense? A natural extension of this question is whether a system U 
an

be redu
ed to a system V, i.e., whether there exists an eÆ
ient algorithm B su
h that U 
an be

repla
ed by B(V) (in the above sense).

An example for a system, whi
h we will 
onsider more 
losely, is the random ora
le. Its impor-

tan
e in 
ryptography is due to the so 
alled random ora
le methodology, �rst made expli
it by

Bellare and Rogaway [1℄, where the se
urity of 
ryptosystems is proven under the assumption that

any party has a

ess to a random ora
le. The methodology has later been used in many papers

(e.g. [7, 8, 15, 11, 1, 10, 2, 14℄). A (binary) random ora
le R 
an be thought of as an in�nite sequen
e

R

1

; R

2

; : : : of random bits where the nth bit R

n


an be a

essed in 
onstant time.

We also introdu
e a slightly weaker primitive, 
alled (binary) asyn
hronous bea
on

2

Q, de�ned

as a sequen
e of of random bits R

1

; R

2

; : : : whi
h is only sequentially a

essible, i.e., the time needed

to a

ess R

n

is O(n). Thus the only di�eren
e between a random ora
le and a bea
on is the 
ost

asso
iated with a

essing the randomness. A natural question is whether one 
an implement a

random ora
le using an asyn
hronous bea
on, i.e., whether there is an eÆ
ient algorithm B su
h

that B(Q) behaves like R. (Note that for ea
h input, B 
ould make polynomially many queries to

Q before generating the output.)

One 
an also 
onsider weaker variants of random ora
les or bea
ons whose bits are not uniformly

random, not independent, or both. Moreover, one 
an 
onsider systems between an asyn
hronous

bea
on and a random ora
le for whi
h one 
an a

ess the bits R

1

; R

2

; : : : faster than sequentially

but not in an arbitrary (random a

ess) manner.

3

Another system of interest is a �nite random

string F whi
h 
an be assumed to be given 
ompletely at unit 
ost O(1). In a sense, a random

ora
le and a �nite random string are two extreme points on the s
ale of systems we 
onsider, and

an asyn
hronous bea
on is somewhere in the middle.

For any two su
h systems U and V one 
an still ask the question whether U 
an be implemented

using V. This paper formalizes and solves this problem. We show that, loosely speaking, the answer

2

The term \bea
on", due to Rabin, is used here only in the sense des
ribed. In parti
ular, the fa
t that for Rabin's

bea
ons the randomness is available simultaneously to all parties, and that future bea
on outputs remain se
ret

until released, is not of relevan
e here.

3

For instan
e, the 
ost of a

essing R

n


ould be O((log n)

k

) for some k, or O(n

�

) for some � < 1, or any other

fun
tion of n.

2



to the above question is 
hara
terized by the rates at whi
h entropy 
an be a

essed in the systems

U and V (Se
tion 6). As spe
ial 
ases one sees that a random ora
le 
annot be implemented

using an asyn
hronous bea
on, and a bea
on 
annot be implemented using a �nite random string

(Se
tion 7). This also proves the main result of [5℄ as a simple 
onsequen
e of the fa
t that a

random ora
le R 
ontains substantially more entropy than a �nite random string F , in a manner

to be made pre
ise.

1.3 Indistinguishability and Indi�erentiability

Informally, two systems S and T are said to be indistinguishable if no (eÆ
ient) algorithm D(�),


onne
ted to either S or T , is able to de
ide whether it is intera
ting with S or T . As mentioned

above, the se
urity of a 
ryptosystem C(S) involving a 
omponent S is typi
ally proven by 
on-

sidering the 
ryptosystem C(T ) obtained from C(S) where the 
omponent S is repla
ed by an

idealized 
omponent T . The original system C(S) is se
ure if (a) the system C(T ) is se
ure, and

(b) the 
omponent S is indistinguishable from T (
f. Example 1).

The notion of redu
ibility is dire
tly based on indistinguishability. A system U is said to be

redu
ible to V if the system V 
an be used to 
onstru
t a new system B(V) whi
h is indistinguishable

from U . Again, redu
ibility is useful for 
ryptographi
 se
urity proofs: If U is redu
ible to V, then,

for any 
ryptosystem C(U) using U as a 
omponent, there is another 
ryptosystem based on V,

namely C(B(V)), having the same fun
tionality and, in parti
ular, providing the same se
urity as

C(U).

Allowing for this general type of se
urity proofs, the indistinguishability of two systems seems to

be a strong property. Nevertheless, it is in a 
ertain sense the weakest possible requirement needed

for se
urity proofs of this type. In fa
t, if two 
omponents S and T are not indistinguishable, then

there exists a 
ryptosystem C(T ) based on T whi
h is se
ure, while the system C(S) 
onstru
ted

from C(T ) by repla
ing T by S is inse
ure.

However, these 
onsiderations are all subje
t to the assumption that ea
h 
omponent (or prim-

itive) a 
ryptosystem is based on is a resour
e belonging to one spe
i�
 party whi
h has ex
lusive

a

ess to it, i.e., all other entities are unable to dire
tly in
uen
e the 
omponent's behavior or

obtain any information about its randomness. As des
ribed in Example 2, this is not the 
ase for

many 
omponents. Indeed, while for ea
h party the output of a random ora
le R is indistinguish-

able from the output of a lo
al random fun
tion R

lo


, the se
urity of a 
ryptosystem based on R

lo


(where, e.g., the randomness is used for a randomized en
ryption) might obviously be lost when

repla
ing this 
omponent by R.

In order to extend the de�nition of indistinguishability su
h as to in
lude this type of systems,

we will propose a new 
on
ept of indistinguishability, 
alled indi�erentiability (Se
tion 4). Together

with its derived notion of redu
ibility (Se
tion 5), it will allow for exa
tly the same general state-

ments about the se
urity of 
ryptosystems as the 
onventional de�nitions. In parti
ular, this means

that, �rst, if a 
omponent S is indi�erentiable from T , then the se
urity of any 
ryptosystem C(T )

based on T is not a�e
ted when repla
ing T by S. Se
ond, di�erentiability of S from T implies

the existen
e of a 
ryptosystem C(�) for whi
h this repla
ement of 
omponents is not possible,

i.e., C(T ) is se
ure but be
omes inse
ure if T is substituted by S. Thus, similar to 
onventional

indistinguishability, indi�erentiability is the weakest possible property allowing for se
urity proofs

of the generi
 type des
ribed above, but it applies to more general settings.

3



2 A Motivating Example: A Simple Proof of the Impossibility of

Implementing a Random Ora
le

As a motivating example for the general problem 
onsidered in this paper, we give a straight-

forward proof of the 
lassi
al impossibility result by Canetti, Goldrei
h, and Halevi [5℄ that a

random ora
le 
annot be realized by a (family of) hash fun
tions, showing intrinsi
 limitations of

the random ora
le methodology. The original proof is quite involved as it is based on te
hniques

like Mi
ali's CS-proofs [10℄. Very re
ently, the same authors proposed a new proof [6℄ of their result

based on a new type of intera
tive proof systems.

While this impossibility result also follows dire
tly from our general impossibility results

(
f. Se
tion 7), we give a self-
ontained proof in this se
tion before introdu
ing the de�nitions

required to formalize the general problem. After seeing this proof, it will be easier for the reader

to understand the motivation for the de�nitions and to follow the rest of the paper.

We show the following proposition whi
h dire
tly implies the separation result as formulated

in [5℄:

Proposition 1. There exists a signature s
heme C(�) (
onsisting of a key-generating, a signing

and a veri�
ation algorithm) with a

ess to either a random ora
le R or an implementation thereof

su
h that the following holds (with respe
t to some se
urity parameter k):

{ C(R) is se
ure, i.e., the probability that an atta
ker against C(R) is su

essful is negligible in k.

{ There is an adversary breaking C(f) for any arbitrary eÆ
iently 
omputable fun
tion f . In

parti
ular, C(H(F)) is inse
ure for any hash fun
tion H with publi
 parameter F .

{ C(�) is eÆ
ient (i.e., the running time of the algorithms is polynomially bounded in the size of

their input and the se
urity parameter k).

Proof. The proposition is proven by an expli
it 
onstru
tion of C based on an algorithm D(�) su
h

that the behavior of D(R) is di�erent from D(f). More pre
isely, let D(�) be an algorithm taking

as input a bitstring m (together with a se
urity parameter k) and generating a binary output su
h

that the following holds:

(a) D(R) outputs 0 for any input with overwhelming probability (over the randomness of R).

(b) For any eÆ
iently 
omputable fun
tion f , there exists an input m 
ausing D(f) to output 1.

4

(
) D(�) is eÆ
ient (i.e., its running time is polynomially bounded by the size of its input m and

the se
urity parameter k).

Constru
tion of C. Given an eÆ
ient signature s
heme

�

C(�) su
h that

�

C(R) is se
ure,

5

a new

eÆ
ient signature s
heme C(�) is obtained by modifying the signing algorithm of

�

C(�) as follows:

On input m, it �rst 
alls D(�) for input m. If D(�) outputs 0, m is signed as usual (i.e., by 
alling

�

C(�)). Otherwise, if D(�)'s output is 1, the signing algorithm of C(�) behaves 
ompletely inse
urely

(e.g., by revealing a se
ret key, as proposed in [5℄).

(In)se
urity and eÆ
ien
y of C. It is easy to see that C(�) satis�es the requirements of the

proposition: The se
urity of C(R) follows dire
tly from property (a). Furthermore, property (b)

implies that there is an inputm 
ausing C(f) to behave 
ompletely inse
urely. Finally, the eÆ
ien
y

of C(�) follows from the eÆ
ien
y of D(�) (property (
)) and the eÆ
ien
y of

�

C(�).

4

Moreover, in our 
onstru
tion of D, m 
an easily be determined given an algorithm whi
h eÆ
iently 
omputes f .

5

i.e., the su

ess probability of any atta
ker against

�

C(R) is negligible in k.

4



Constru
tion of D. It remains to be proven that an algorithm D(�) with the desired properties

(a){(
) indeed exists. We give an expli
it 
onstru
tion for D(�):

D(�) interprets its input m as a pair (�; t) 
onsisting of an en
oding of a program � for a

universal Turing ma
hine U and a unary en
oding of some integer t (in parti
ular, t � jmj). Let

q = 2j�j+ k (where j�j is the length of a binary representation of �). For inputs x = 1; : : : ; q, D(�)

simulates at most t steps of the program � on U , resulting in out
omes �(1); : : : ; �(q).

6

Similarly,

D(�) sends the queries x = 1; : : : ; q to the 
omponent it is 
onne
ted to (R or f), resulting in

answers a(1); : : : ; a(q). If �(x) = a(x) for all x = 1; : : : ; q, D(�) outputs 1, and 0 otherwise.

Let us now show that D(�) satis�es properties (a) { (
):

D satis�es property (a). For any �xed program �, let p

�

be the probability (over the randomness

of R) that for an input m en
oding �, D(R) outputs 1. By 
onstru
tion, this happens if and only

if �(x) = a(x) for all x = 1; : : : ; q. Sin
e, for ea
h x, the random output a(x) (of R) equals the

output �(x) (of the �xed program �) with probability at most 1=2 (assuming that ea
h output of

R 
onsists of at least one random bit), we have p

�

� 2

�q

= 2

�2j�j�k

. Hen
e, the probability p

l

of

the event that there exists a program � of length l su
h that D(R) outputs 1 is bounded by

p

l

�

X

�2f0;1g

l

p

�

� 2

l

� 2

�2l�k

= 2

�l�k

:

Finally, the probability p that there exists a program � of arbitrary length 
ausing D(R) to output

1 is bounded by

p �

1

X

l=1

p

l

�

1

X

l=1

2

�l

� 2

�k

� 2

�k

:

D satis�es property (b). Let � be an arbitrary program that eÆ
iently 
omputes f , and let t be

the maximum running time of � for all inputs y 2 f1; : : : ; qg where q = 2j�j+ k. By 
onstru
tion,

the values �(x) 
omputed by D(f) on input m := (�; t) satisfy �(x) = f(x). Consequently, the

equalities �(x) = a(x) tested by D(f) hold for all values x = 1; : : : ; q, 
ausing D(f) to output 1.

7

D satis�es property (
). The running time of D(R) is essentially given by the time needed to


ompute the q = 2j�j + k values �(1); : : : ; �(q). For the 
omputation of ea
h of these values, the

program � is exe
uted for at most t steps. Sin
e the size of � as well as the number t are both

bounded by the size of m (re
all that t is unary en
oded in m), the running time of D(R) is at

most O((2j�j + k) � t) � O((jmj+ k)

2

). ut

3 Basi
 De�nitions and Notation

The main results in this paper are statements about the se
urity of 
ryptosystems and the rela-

tions between the 
omponents they are based on. These obje
ts 
an generi
ally be des
ribed as

(intera
ting) systems, de�ned by their input/output behavior (Subse
tion 3.1). Additionally, to

analyze 
onstru
tions of resour
es based on weaker primitives, a notion of eÆ
ien
y for systems

(Subse
tion 3.2) is required. Finally, we need a general de�nition of se
urity for 
ryptosystems

(Subse
tion 3.3).

6

If the program � (run on U) does not generate an output after t steps, �(i) is set to some dummy value.

7

Note that, given the program �, the maximum running time t and, 
onsequently, the input m, 
an easily be


omputed.

5



3.1 Intera
ting Systems

Any type of (
ryptographi
) 
omponents or resour
es as well as the parties intera
ting with them


an be 
hara
terized as systems. For their representation, we will basi
ally adapt the terminology

introdu
ed in [9℄. A (X ;Y)-system is a sequen
e of 
onditional probability distributions P

Y

i

jX

i

Y

i�1

(for i 2 N) where X

i

:= [X

1

; : : : ;X

i

℄ and Y

i�1

:= [Y

1

; : : : ; Y

i�1

℄ and where X

i

, 
alled the ith

input, and Y

i

, the ith output, are random variables with range X and Y, respe
tively. Intuitively

speaking, a system is de�ned by the probability distribution of ea
h output Y

i


onditioned on all

previous inputs X

i

and outputs Y

i�1

. If ea
h output Y

i

of S only depends on the a
tual input X

i

,

and possibly some randomness, then S is 
alled random fun
tion. For instan
e, a system S might

be spe
i�ed by an algorithm, where, for ea
h input, the output is 
omputed a

ording to a given

sequen
e of instru
tions.

For 
onvenien
e, we will assume that the systems' inputs and outputs are �nite bitstrings. Sin
e

there is a 
anoni
al bije
tion between N and f0; 1g

�

,

8

any �nite bitstring 
an be identi�ed with a

natural number. From now on, saying that some number i 2 N is given as input to a system S, we

rather mean its representation as a binary string.

We will 
onsider 
on�gurations of intera
ting systems where ea
h system has 
ertain interfa
es

whi
h are 
onne
ted to the interfa
es of other systems.

9

A 
on�guration of systems is a set of

systems where the systems' interfa
es are pairwise 
onne
ted.

10

Any 
on�guration of intera
ting systems 
an be seen as a new system. Let, for instan
e, S be a

system with two interfa
es and let T be a system whose interfa
e is 
onne
ted to the �rst interfa
e

of S. The resulting system, denoted as S(T ), has one interfa
e 
orresponding to the se
ond (free)

interfa
e of S (
f. Fig. 1(a)). In this 
ase, the original system S is denoted as S(�) and T is 
alled


omponent of S(T ). More 
omplex 
onstru
tions 
an often be denoted similarly, e.g., S(U

1

;V(U

2

))

where S(�; �) is a system being 
onne
ted to a �rst interfa
e of a system U (denoted U

1

) as well as

to a system V(�) where the latter is itself 
onne
ted to a se
ond interfa
e of U (denoted U

2

) (
f.

Fig. 1(b)).

Many 
omplexity-theoreti
 and 
ryptographi
 properties of systems and parti
ularly of algo-

rithms are de�ned in terms of their asymptoti
 behavior with respe
t to some se
urity parameter

k. Thus, in the sequel, when speaking of a \system" S, we will rather mean a 
lass (S

k

)

k2N

pa-

rameterized by k, where ea
h S

k

is a system in the sense des
ribed above. Furthermore, a fun
tion

f : k 7! f(k) is said to be negligible in k if f(k) de
reases faster than the inverse of any polynomial

in k, i.e., lim

k!1

f(k) � p(k) = 0 for any polynomial p.

For instan
e, a se
urity parameter is needed to de�ne the 
omputational eÆ
ien
y of algorithms

intera
ting with systems. An algorithm B is said to be 
omputationally eÆ
ient if its running time

is bounded by a polynomial in its input size and the se
urity parameter k.

11

3.2 A Notion of EÆ
ien
y for Systems

Similarly to the 
omputational eÆ
ien
y of algorithms, we are interested in a 
ertain notion of

eÆ
ien
y for systems S and 
onstru
tions based on them. However, sin
e a system S is not ne
es-

8

One 
ould take the binary representation of the natural numbers, dropping the highest bit (whi
h always is a 1).

9

Formally, the inputs X

i

and outputs Y

i

of a system with n interfa
es are pairs, (X

0

i

; S

i

) and (Y

0

i

; R

i

), respe
tively,

where S

i

and R

i

take on values in f1; : : : ; ng indi
ating the interfa
es to be used.

10

If the interfa
e with index s of a system S is 
onne
ted to the interfa
e t of a system T , then any output of S of

the form (m;s) (for any arbitrary message m) is given as input (m; t) to T .

11

We will always impli
itly assume that k is given as input to any algorithm, but that the algorithms themselves

do not depend on k.

6



sarily des
ribed by an algorithm, the usual formulation in terms of the number of 
omputational

steps is not suÆ
iently general. A more abstra
t approa
h to over
ome this problem is to assign to

ea
h (X ;Y)-system S a 
ost fun
tion 
 with real range spe
ifying the amount of a 
ertain resour
e

(e.g., time), needed to pro
ess an input. For simpli
ity, we will assume that these 
osts only depend

on the a
tual input, i.e., 
 is a fun
tion mapping elements from X to R

+

.

The 
osts of a 
omposite system U 
onsisting of r systems S

(1)

; : : : ;S

(r)

are de�ned as the sum

of the 
osts of these systems when pro
essing an input of U . Consequently, if 
 is the 
ost fun
tion

of a 
omposite system U := S(T ) and �
 is the 
ost fun
tion of its 
omponent T , then (for all inputs

x of S(T ))


(x) �

n

X

i=1

�
(�x

i

);

where �x

1

; : : : ; �x

n

are S's queries (for some n 2 N) sent to T while pro
essing x.

Similarly to the usual notion of 
omputational eÆ
ien
y of algorithms, we say that a system S

(i.e., the 
lass (S

k

)

k2N

of systems S

k

with 
ost fun
tions 


k

) is 
ost-eÆ
ient if 


k

is bounded by a

polynomial in the input length and the se
urity parameter k, i.e., if there exists a polynomial p in

two arguments su
h that 


k

(x) � p(jxj; k) for all x in the input set of S and k 2 N. Additionally,

for two systems U and V, we de�ne � (V=U) to be the set of all systems B su
h that the 
osts �


k

of the system B(V) are bounded by a polynomial in the 
osts 


k

of the system U and the se
urity

parameter k. Clearly, for any B 2 � (V=U), if the system U is 
ost-eÆ
ient, then so is the system

B(V).

We will see in Se
tion 6 that the entropy of the output of a system expressed in terms of the


osts to produ
e this output is a measure allowing for de
iding whether a 
ertain redu
tion is

possible. Let the system S

k

be a random fun
tion with 
ost fun
tion 


k

whi
h is monotoni
ally

in
reasing in its inputs

12

, and let Y

1

; : : : ; Y

n

t

be the sequen
e of outputs of S

k

on inputs 1; : : : ; n

t

,

where n

t

is the maximal input x su
h that 


k

(x) � t. The fun
tions h

0

S

k

and h

1

S

k

are de�ned, based

on two di�erent entropy measures, as

h

0

S

k

(t) := H

0

(Y

1

; : : : ; Y

n

t

) and h

1

S

k

(t) := H

1

(Y

1

; : : : ; Y

n

t

);

respe
tively, where H

0

(X) := log

2

jX j,

13

and where H

1

is the min-entropy (de�ned as H

1

(X) :=

� log

2

max

x2X

P

X

(x)). Clearly, h

0

S

and h

1

S

are monotoni
ally in
reasing fun
tions, and h

0

S

(t) �

h

1

S

(t).

3.3 Cryptosystems and Se
urity

In the following, we will 
onsider settings involving n separated systems, 
alled parties P

1

; : : : ;P

n

,

having a

ess to 
ertain resour
es, i.e., systems providing interfa
es to these parties. As an example,

a broad
ast 
hannel for P

i

is the system whi
h simply takes an input value from its interfa
e to

P

i

and sends this value to all other interfa
es, i.e., to all other parties 
onne
ted to the resour
e.

Similarly, a private 
hannel from P

i

to P

j

is the system sending all inputs from P

i

as output to

the interfa
e P

j

is 
onne
ted to.

Resour
es 
an be used as building blo
ks for 
onstru
ting new, more powerful resour
es. For

n parties, su
h a 
onstru
tion is spe
i�ed by a set of n algorithms B

1

; : : : ;B

n

whi
h are run by

12

Similar to the inputs of a system, the inputs of a 
ost fun
tion 
an be regarded as natural numbers.

13

This de�nition requires a spe
i�
ation of the range of the sequen
e Y

1

; : : : ; Y

n

t

. For the rest of this paper, we will

assume that this range 
orresponds to a set of bitstrings of some �xed length l

t

, su
h that h

0

S

k

(t) � l

t

.

7



the parties P

1

; : : : ;P

n

and make 
alls to the original resour
es. For instan
e, given a broad
ast


hannel for a party P

i

, it is easy to 
onstru
t a private 
hannel from P

i

to any arbitrary party P

j

:

All parties ex
ept P

j

simply have to ignore the values they obtain from the broad
ast resour
e.

This, however, only works under the assumption that all parties behave 
orre
tly.

In a 
ryptographi
 setting, when making statements about a given 
on�guration of parties

intera
ting with resour
es, we generally have to distinguish between two di�erent types of players,

namely honest and dishonest parties, where the latter will be 
onsidered as being 
ontrolled by

one 
entral adversary.

The a

ess of the honest parties and the adversary to a given system S (or, more generally,

a set of systems) providing m interfa
es is spe
i�ed by a so 
alled a

ess stru
ture.

14

This is

a set of pairs (P;A), ea
h of them des
ribing a 
on
rete 
onstellation of honest parties and an

adversary intera
ting with the system. P and A are disjoint subsets of f1; : : : ;mg 
ontaining the

labels of interfa
es of S 
onne
ted to honest parties and the interfa
es 
ontrolled by the adversary,

respe
tively. For instan
e, the setting shown in Fig. 2 for a resour
e S providing 7 interfa
es is


hara
terized by the pair (P;A) = (f1; 2; 3; 4g; f6; 7g).

15

A 
ryptosystem C 
an generally be seen as a system providing interfa
es to be used by 
ertain

entities. Its se
urity is (with respe
t to an a

ess stru
ture �) 
hara
terized relative to an ideal

system whi
h by de�nition is se
ure.

16

Obviously, this requires the ability to 
ompare the se
urity

of 
ryptosystems, i.e., it needs to be spe
i�ed what it means for a 
ryptosystem C to be at least

as se
ure as another 
ryptosystem C

0

. Our de�nition is based on ideas proposed by Canetti [3, 4℄,

and by P�tzmann and Waidner [12, 13℄ (for the 
ase of stati
 adversaries), adapted to our general

notion of systems.

Informally, a 
ryptosystem C is said to be at least as se
ure as another 
ryptosystem C

0

if for

all atta
kers A on C there is an atta
ker A

0

on C

0

a
hieving the same goal as A. This de�nition

exa
tly 
aptures the idea that, if there is no atta
k on C being more su

essful than any atta
k on

C

0

, then, 
learly, C provides the same se
urity as C

0

. For a pre
ise de�nition, it needs, however, to

be spe
i�ed what it means that an atta
ker A a
hieves the same goal as another atta
ker A

0

.

Note that, in a realisti
 setting, the entities intera
ting with the 
ryptosystem (the honest

parties as well as the adversary) are generally not isolated. They are rather embedded in an

environment

~

E whi
h is a system providing interfa
es to ea
h of them. In order to make statements

about the o

urren
e of 
ertain events

17

, it is additionally assumed that

~

E generates some (�nal)

binary output. For 
onvenien
e, we will regard the environment

~

E together with the honest parties

as an extended environment system E (
f. Fig. 3). Let C and C

0

be two 
ryptosystems, and let �

be an a

ess stru
ture.

De�nition 1. C is said to be at least as se
ure as C

0

with respe
t to �, denoted C

�

� C

0

, if for

all pairs (P;A) in the a

ess stru
ture � and for all environments E the following holds: For any

atta
ker A a

essing C there is another atta
ker A

0

a

essing C

0

su
h that the di�eren
e between

14

The same term is often used in the 
ontext of se
ret sharing, where it has a di�erent meaning.

15

Note that it is not required that P [ A = f1; : : : ;mg, i.e., there might be \unused" interfa
es whi
h are not


onne
ted to a honest party nor to the adversary. In this 
ase, one might think of a prede�ned dummy system

being atta
hed to su
h interfa
es.

16

As an example, let C be a 
ryptosystem for n parties whi
h is se
ure as long as not more than t of these parties

are 
orrupted. Des
ribing C as a system with n interfa
es, one for ea
h party, this means that 
ertain 
onditions

hold with respe
t to the a

ess stru
ture 
ontaining all pairs (P;

�

P ) where P is a subset of f1; : : : ; ng having at

least n� t elements, and where

�

P is its 
omplement.

17

E.g., an event indi
ating that an atta
ker has a
hieved a 
ertain goal.

8



the probability distributions of the binary outputs of E(C;A) and E(C

0

;A

0

),

jProb[E(C;A) = 1℄� Prob[E(C

0

;A

0

) = 1℄j;

is negligible in the se
urity parameter k.

Similarly, C is 
omputationally at least as se
ure as C

0

, denoted C

�

�




C

0

, if, additionally, E, A,

and A

0

are eÆ
ient algorithms.

18

We will be 
on
erned with general relations between systems, e.g., whether a resour
e S 
an

be repla
ed by another resour
e T (without a�e
ting the se
urity of a 
ryptosystem based on

these resour
es). These relations not only depend on the input/output behavior of the 
onsidered

resour
es, but also on the way how the honest parties and a possible adversary might a

ess the

resour
e.

19

This motivates the following de�nition: An interfa
e of a system S is said to be private with

respe
t to an a

ess stru
ture � if, a

ording to �, the interfa
e is only used by honest parties,

while an adversary 
an never have a

ess to it.

20

Similarly, an interfa
e is 
alled publi
 with respe
t

to � if the interfa
e is not used by the honest parties, but the adversary has a

ess to it.

21

In the following, speaking of a resour
e S, we mean a system together with a spe
i�
ation,

de�ning for ea
h of its interfa
es whether it is private or publi
. If the publi
 and private interfa
es

of the resour
e S 
orrespond to the publi
 and private interfa
es with respe
t to a given a

ess

stru
ture �, then � is said to be 
ompatible with S.

In this paper, we will 
onsider resour
es whose interfa
es are all either private or publi
. For


onvenien
e, multiple interfa
es of the same type (publi
 or private) will be regarded as one single

interfa
e, i.e., we will restri
t ourselves to resour
es with only one private and one publi
 interfa
e.

Note that, by de�nition, the private interfa
e (usually denoted V

1

) of a resour
e V is only

a

essed by honest parties, while the publi
 interfa
e (V

2

) is not used by these parties. Any 
on-

stru
tion B of the honest parties based on V (e.g., a 
ryptosystem using V as a 
omponent) thus

results in a new resour
e W, denoted as B(V), whose private interfa
e W

1

is spe
i�ed by B(V

1

)

while the publi
 interfa
e W

2

of W is identi
al to the publi
 interfa
e V

2

of the original resour
e

V (
f. Fig. 4).

4 Indi�erentiability

4.1 The Conventional Notion of Indistinguishability

Before introdu
ing indi�erentiability as a generalization of indistinguishability, we �rst re
all the

standard de�nition of indistinguishability. Let S = (S

k

)

k2N

and T = (T

k

)

k2N

be two (X ;Y)-

systems.

18

In a 
omputational setting, it is essential that the output generated by the environment is binary. Otherwise, two

outputs might be di�erent while not being distinguishable by any eÆ
ient algorithm.

19

To see this, re
all the example mentioned at the beginning of this subse
tion, where the 
onstru
tion of a private


hannel based on a broad
ast 
hannel for n parties is 
onsidered. As long a an opponent has a

ess to the original

broad
ast 
hannel, it is obviously impossible to obtain priva
y. The given redu
tion thus only works if all pairs in

the a

ess stru
ture are of the form (P; ;) where ; is the empty set, i.e., if there is no adversary.

20

Formally, for a private interfa
e with index k: 8(P;A) 2 � : k =2 A ^ 9(P;A) 2 � : k 2 P .

21

Formally, for a publi
 interfa
e with index k: 8(P;A) 2 � : k =2 P ^ 9(P;A) 2 � : k 2 A.

9



De�nition 2. S and T are (
omputationally) indistinguishable if for any (
omputationally eÆ-


ient) algorithm D (
alled distinguisher), intera
ting with one of these systems and generating a

binary output (0 or 1), the advantage

�

�

Prob[D(S

k

) = 1℄� Prob[D(T

k

) = 1℄

�

�

is negligible in k.

The relation between indistinguishability and the se
urity of 
ryptosystems is summarized by

the following proposition, whi
h in its generalized form (Theorem 1) will be proven below. Let S

and T be two resour
es whi
h only have a private interfa
e.

Proposition 2. If and only if S and T are indistinguishable, then, for every 
ryptosystem C(T )

using T as a 
omponent, the 
ryptosystem C(S) obtained from C(T ) by repla
ing the 
omponent

T by S is at least as se
ure as C(T ).

The �rst impli
ation, stating that the se
urity of C(S) is an immediate 
onsequen
e of the

indistinguishability between S and T (and the se
urity of C(T )), is well-known in 
ryptography.

On the other hand, to our knowledge, the (simple) observation that this 
ondition is also ne
essary

in general has not previously been stated expli
itly.

It is important to note that Proposition 2 only applies to settings where the interfa
es of the

resour
es are private, i.e., a possible opponent has no dire
t a

ess to any additional information

being 
orrelated with the behavior of the systems.

4.2 Generalization to Indi�erentiability

We will now extend the de�nition of indistinguishability to resour
es whi
h additionally have a

publi
 interfa
e (as de�ned in Se
tion 3). A �rst attempt might be to 
onsider a distinguisher D

a

essing both the private as well as the publi
 interfa
e of the resour
es. However, it turns out

that su
h an approa
h leads to a too strong notion of indistinguishability (with respe
t to Proposi-

tion 2). This means, for instan
e, that there are resour
es S and T whi
h are not indistinguishable

(a

ording to su
h a de�nition) while, for any 
ryptosystem C(T ) based on T , repla
ing T by S

has no impa
t on its se
urity, i.e., the se
ond impli
ation of Proposition 2 would not hold.

A notion of indistinguishability over
oming this problem is formalized by the following de�-

nition, whi
h, unlike the 
onventional de�nition, is not symmetri
. Let again S = (S

k

)

k2N

and

T = (T

k

)

k2N

be two resour
es both of them having a private and a publi
 interfa
e with index 1

and 2, respe
tively (
f. Fig. 5).

De�nition 3. S is indi�erentiable from T , denoted S � T , if for any system D (
alled distin-

guisher) with binary output (0 or 1) there is a system P su
h that the advantage

�

�

Prob[D(S

1

k

;S

2

k

) = 1℄� Prob[D(T

1

k

;P(T

2

k

)) = 1℄

�

�

is negligible in k.

22

The indi�erentiability is 
omputational, denoted S




�

T , if for D and P only


omputationally eÆ
ient algorithms are 
onsidered.

22

(In)di�erentiability 
an equivalently be des
ribed in terms of (a spe
ial type of) a proof system: Consider a veri�er

(whi
h takes the role of the distinguisher D) intera
ting with the private interfa
e of a bla
kbox B (where either

B = S or B = T ) and a prover having a

ess to the publi
 interfa
e of B. Then, S is di�erentiable from T if,

given that B = S, there is a prover being able to 
onvin
e the veri�er of the fa
t that B = S.

10



Note that indistinguishability is a spe
ial (symmetri
) 
ase of indi�erentiability. Indeed, if

the resour
es have no publi
 interfa
e, indi�erentiability (De�nition 3) is obviously equivalent to

indistinguishability (De�nition 2).

One important point about our generalization of indistinguishability is that a similar relation

between the se
urity of 
ryptosystems and the indi�erentiability of its 
omponents as the one

stated in Proposition 2 (for indistinguishability) holds. One important di�eren
e is, however, the

asymmetri
 nature of indi�erentiability. The following theorem shows that indi�erentiability is the

exa
t (i.e., ne
essary and suÆ
ient) 
riterion needed to make general statements about the se
urity

of 
ryptosystems when substituting their 
omponents.

Let S = (S

k

)

k2N

and T = (T

k

)

k2N

be two resour
es having one private and one publi
 interfa
e.

Theorem 1. Let C range over the set of all 
ryptosystems. Then, for any a

ess stru
ture � being


ompatible with S and T ,

S � T () 8C : C(S)

�

� C(T ):

The same equivalen
e holds when \�" and \

�

�" are repla
ed by \




�

" and \

�

�




", respe
tively.

The theorem implies that if S is indi�erentiable from T and if a 
ryptosystem C(T ) based on

T is se
ure, then so is C(S), the 
ryptosystem obtained from C(T ) by repla
ing the 
omponent T

by S. Note that the asymmetry of indi�erentiability implies that there is an asymmetry on the

right hand side of the equivalen
e in Theorem 1. In fa
t, even if se
urity of C(S) implies se
urity

of C(T ), then se
urity of C(T ) does not ne
essarily imply se
urity of C(S).

The proof is given for the information-theoreti
 
ase, where all systems might be 
omputation-

ally unbounded. It 
an however easily be adapted to hold for the 
omputational 
ase.

Proof. To simplify the notation, set

d

D;P

(k) := jProb[D(S

1

k

;S

2

k

) = 1℄� Prob[D(T

1

k

;P(T

2

k

)) = 1℄j

where D is a distinguisher and P a system intera
ting with the systems S and T (having a private

and a publi
 interfa
e with index 1 and 2, respe
tively) as spe
i�ed by Fig. 5. Similarly, de�ne

e

E ;C;(P;A);A;A

0(k) := jProb[E(C(S

1

k

);A(S

2

k

)) = 1℄� Prob[E(C(T

1

k

);A

0

(T

2

k

)) = 1℄j

where E is an environment, C a 
ryptosystem, and where A, A

0

are atta
kers intera
ting with S

and T , respe
tively, a

ording to (P;A) 2 � (see Fig. 2 and Fig. 3).

The statement of the theorem 
an then be rewritten as

8D : 9P : d

D;P

(k) is negl. () 8C : 8(P;A) 2 � : 8E : 8A : 9A

0

: e

E ;C;(P;A);A;A

0(k) is negl.

Let us start with the �rst impli
ation (\=)"), whi
h is proven by 
ontradi
tion: Assume that

there exists a 
ryptosystem C, a pair (P;A) 2 � (de�ning the a

ess of the honest parties and the

adversary to C), an environment E , and an atta
ker A su
h that for all atta
kers A

0

the di�eren
e

e

E ;C;(P;A);A;A

0(k) is non-negligible in k. Let the distinguisher D be de�ned as the system resulting

from C, E , and A being 
ombined a

ording to (P;A) (
f. Fig. 6(a)). Furthermore, for any system

P, let the atta
ker A

0

be de�ned as A(P) (
f. Fig. 6(b)). The two settings involving the system S

(represented in Fig. 6(a) by solid lines and dashed lines, respe
tively) as well as the two settings

involving the system T (Fig. 6(b)) are then obviously equivalent, i.e., the probabilities of their

outputs are equal. We thus have d

D;P

(k) = e

E ;C;(P;A);A;A

0
(k), i.e., d

D;P

(k) is non-negligible.

11



The se
ond impli
ation (\(=") is as well proven by 
ontradi
tion: Assume that there is a dis-

tinguisherD whose advantage d

D;P

(k) for all systems P is non-negligible in k. Let the 
ryptosystem

C be identi
al to D,

23

and de�ne both the environment E and the atta
ker A as a trivial system

simply forwarding all queries (Fig. 7(a)). Then, for any atta
ker A

0

, set P := A

0

(Fig. 7(b)). Again,

the two settings involving the system S (Fig. 7(a)) as well as the two settings involving the system

T (Fig. 7(b)) are equivalent, i.e., e

E ;C;(P;A);A;A

0(k) equals d

D;P

(k) and is thus non-negligible. ut

5 Redu
tions and Redu
ibility

In 
ryptography one often asks whether a given system V 
an be used to 
onstru
t a (seemingly

stronger) system U whi
h is spe
i�ed by its fun
tionality. If this is the 
ase, one says that U is

redu
ible to V. The formal de�nition of redu
ibility makes 
lear that this 
on
ept is strongly related

to the notion of indistinguishability, or, in our generalized setting, to indi�erentiability.

Let U and V be two resour
es ea
h having a private (U

1

and V

1

) and a publi
 (U

2

and V

2

)

interfa
e.

De�nition 4. U is information-theoreti
ally se
urely (
omputationally se
urely) redu
ible to V,

denoted U ! V (U
!




V), if there exists a deterministi


24

(
omputationally eÆ
ient) algorithm

B 2 � (V

1

=U

1

), making 
alls to the private interfa
e of V, su
h that the resulting resour
e W (
f.

Fig. 4), having private interfa
e W

1

= B(V

1

) and publi
 interfa
e W

2

= V

2

, satis�es W � U

(W




�

U).

Analogously to indistinguishability and indi�erentiability, the 
on
ept of redu
ibility is useful

for 
ryptographi
 se
urity proofs. The following theorem is a dire
t 
onsequen
e of Theorem 1 and

the above de�nition of redu
ibility.

Theorem 2. Let C range over the set of all 
ryptosystems. Then, for any a

ess stru
ture � being


ompatible with U and V,

U ! V () 9B 2 � (V

1

=U

1

) : 8 C : C(B(V))

�

� C(U):

The same statement holds when \!" and \

�

�" are repla
ed by \
!




" and \

�

�




", respe
tively.

6 A SuÆ
ient Criterion for Irredu
ibility

The following theorem gives an easily veri�able suÆ
ient 
riterion for a resour
e U not to be

redu
ible to another resour
e V. This 
riterion will be formulated in terms of the entropy of the

output generated by these resour
es, as de�ned in Se
tion 3.

We will 
onsider resour
es with one private and one publi
 interfa
e whi
h are both spe
i�ed

by the same random fun
tion

25

. Let U = (U

k

)

k2N

and V = (V

k

)

k2N

be su
h resour
es, and assume

that the 
osts for a

essing their private interfa
e are given by 
 and 


0

, respe
tively, where, for

�xed t, the entropies h

1

U

k

(t) and h

0

V

k

(t) are monotoni
ally in
reasing in k.

Informally speaking, U is not redu
ible to V if h

1

U

k

(t) grows \suÆ
iently faster than" h

0

V

k

(t).

23

Motivated by a 
onstru
tion given in [5℄, one 
ould also de�ne a more \realisti
" 
ryptosystem 
ontaining D su
h

that, if D outputs 0, it performs some useful task, while, if D outputs 1, it behaves 
ompletely inse
urely by

revealing some se
ret information.

24

This is no restri
tion of generality, but implies that all (private and publi
) randomness to be used by B has to

be de�ned expli
itly as a part of the system V.

25

This implies that on the same inputs, the outputs are identi
al at both interfa
es.

12



Theorem 3. If for ea
h k 2 N and any polynomial p the fun
tion h

1

U

k

grows asymptoti
ally faster

than the fun
tion h

0

V

k

Æ p, then U 9 V. If, additionally, h

1

U

k

(t) grows at least linearly in t, and

h

0

V

k

(t) grows at most polynomially in t and k, then U 9




V.

The proof is a dire
t generalization of the proof of the separation result presented in Se
tion 2.

Proof. It has to be shown that B(V) 6� U for any B 2 � (V=U), i.e., satisfying the 
ondition that

B(V)'s 
osts �


k

are bounded by a polynomial p in the 
osts 


k

of U

k

and the se
urity parameter k,

�


k

(x) � p(k; 


k

(x)) : (1)

Similarly to the proof presented in Se
tion 2, we will �rst give an expli
it 
onstru
tion of a distin-

guisher for di�erentiating B(V) from U , and then show that it has all the desired properties.

Constru
tion of D The distinguisher D(�; �) for di�erentiating B(V) from U has two interfa
es

(
f. Fig. 5 where S = B(V) and T = U), 
alled D

1

and D

2

, respe
tively .

Let, for r 2 N, the min-entropy H

1

(Y

1

� � � Y

r

) of all outputs Y

i

of the system U

k

on inputs

X

i

:= i (for i = 1; : : : ; r) be denoted as

�

h

k

(r), and let l be some positive integer to be determined

later. For simpli
ity, let us assume (without loss of generality) that the fun
tions

�

h

k

as well as h

1

U

k

are invertible, and that the outputs of V are single bits.

D is 
onstru
ted as follows: First, D sends queries X

0

j

:= j for j = 1; : : : ; l to interfa
e D

2

and

stores the re
eived answers Y

0

1

; : : : ; Y

0

l

(whi
h by assumption are single bits). Then, D subsequently

simulates B(V) on test inputsX

i

:= i for i = 1; : : : ; n where n := (

�

h

k

)

�1

(l+k), resulting in out
omes

�

Y

i

. Thereby, any query X

0

2 f1; : : : ; lg of (the simulated) B to V is answered by the 
orresponding

stored value Y

0

X

0

. If X

0

> l, D stops with output 0. The same test inputs X

i

are then sent to

interfa
e D

1

, resulting in answers Y

i

. If Y

i

=

�

Y

i

for all i = 1; : : : ; n, D outputs 1, and 0 otherwise.

The above 
onstru
tion of D has however to be slightly modi�ed in order to avoid the following

te
hni
al problem: The stored values Y

0

1

; : : : ; Y

0

l

might be arbitrarily 
hosen by P, in whi
h 
ase

they do not ne
essarily 
orrespond to (potential) outputs of V. The number of queries of the

simulated system B and, in the 
omputational 
ase, the running time of the simulation of B, might

thus be unbounded when using Y

0

1

; : : : ; Y

0

l

as answers for B's queries. To over
ome this problem, D

simply stops the simulation of B on input x after some maximal number t

max

(x) of queries (and,

in the 
omputational 
ase, some maximal number t

0

max

(x) of 
omputational steps) of B, where

t

max

(x) (and t

0

max

(x)) is the maximal number of queries (
omputational steps) of B when re
eiving


orre
t answers to its queries.

We have to show the following properties of D:

(a) D(U

1

;P(U

2

)) outputs 1 with probability being negligible in k.

(b) D(B(V

1

);V

2

) outputs 1 with 
ertainty.

(
) In the 
omputational 
ase, D(�; �) is eÆ
ient.

D satis�es property (a). Note that D 
an only have output 1 if the n-tuples Y = (Y

1

; : : : ; Y

n

)

and

�

Y = (

�

Y

1

; : : : ;

�

Y

n

) are equal. It thus suÆ
es to verify that the probability of this event is

negligible in k.

Sin
e

�

Y is fully spe
i�ed by the bits Y

0

1

; : : : ; Y

0

l

used for the simulation of B(V) (and sin
e, by

de�nition, B is deterministi
) there are at most 2

l

possible values for

�

Y . Let

�

Y be the set of these

2

l

values. Obviously, Y 
an only be equal to

�

Y if Y 2

�

Y. This happens with probability at most

X

y2

�

Y

P

Y

(y) � j

�

Yj �max

y2

�

Y

P

Y

(y) � 2

l

� 2

�H

1

(Y )

= 2

l

� 2

�

�

h

k

(n)

� 2

�k

;

13



whi
h 
on
ludes the proof of property (a).

D satis�es property (b). We �rst show that the property holds for l satisfying

l � h

0

V

k

(p

k

((h

1

U

k

)

�1

(l + k))); (2)

(where p

k

(�) := p(k; �), p(�; �) being de�ned as in (1)). Se
ond, we prove that 
ondition (2) is always

satis�ed for l large enough (but polynomially bounded in the 
omputational 
ase).

By 
onstru
tion, D performs tests on inputs X

i

:= i for i = 1; : : : ; n where n := (

�

h

k

)

�1

(l + k).

Hen
e,




k

(x) � (h

1

U

k

)

�1

(l + k)

holds for all x = 1; : : : ; n. By assumption, the 
osts 
 and �
 (of U and B(V), respe
tively) satisfy


ondition (1). The 
osts 


0

k

(x

0

) of V for ea
h potential query x

0

of B to V are thus bounded by




0

k

(x

0

) � p

k

((h

1

U

k

)

�1

(l + k)) :

Let x

max

be the maximal query of B to V (i.e., x

0

� x

max

for all queries of B). It follows from

the de�nition of h

0

that the length l

0

of the list 
ontaining V's answers to the queries 1; : : : ; x

max

satis�es

l

0

� h

0

V

k

(p

k

((h

1

U

k

)

�1

(l + k))) :

By 
onstru
tion, D outputs 1 if the list of stored values Y

0

1

; : : : ; Y

0

l


ontains the answers to all

queries x

0

of B to V

1

. Clearly, this is the 
ase if l � l

0

, whi
h is true if l satis�es inequality (2).

It remains to be proven that (2) holds for l large enough: By assumption, for any k 2 N, the

fun
tion h

0

V

k

Æ p

k

Æ (h

1

U

k

)

�1

grows less than the identity fun
tion. Hen
e,

lim

l!1

l

h

0

V

k

(p

k

((h

1

U

k

)

�1

(l + k)))

� 1 ;

whi
h implies that (for any �xed k) there is a value for l satisfying (2).

D satis�es property (
). It has to be shown that in the 
omputational 
ase (where, by as-

sumption, h

0

V

k

(t) only grows polynomially in t and k), eÆ
ien
y of B implies eÆ
ien
y of D. By


onstru
tion (sin
e the simulation of B is only run for a 
ertain number of steps), if B is eÆ
ient

when intera
ting with V

1

, then ea
h simulation of B by D is eÆ
ient as well (for any arbitrary sys-

tem P 
onne
ted to D

2

). Furthermore, the number n of simulations is, by the assumption on h

1

U

k

,

itself bounded linearly in l. It thus remains to be shown that the minimal l satisfying inequality

(2) only grows polynomially in k. The straightforward 
al
ulation is omitted. ut

7 Appli
ations

7.1 Random Ora
les, Asyn
hronous Bea
ons, and Finite Random Strings

We will now apply the framework presented in the previous se
tions to the examples mentioned in

the introdu
tion (Se
tion 1), i.e., to random ora
les, bea
ons and �nite random strings. These are

modeled as a resour
e S whose outputs only depend on the previous inputs (i.e., S is a random

fun
tion, providing identi
al private and publi
 interfa
es with input set X = f0; 1g

�

and output

14



set Y = f0; 1g).

26

Ea
h query x 2 X to S is answered by R

x

where R = R

1

R

2

� � � is a (possibly

in�nite) bitstring randomly 
hosen a

ording to some distribution P

R

.

Random ora
les, bea
ons and �nite random strings only di�er by the length of the string R

and the 
ost fun
tion 
. For a random ora
le R, R has in�nite length and the 
osts are 
(x) := 1,

or, alternatively, 
(x) := jxj. (In the following, we only need an upper bound for the 
osts of a

random ora
le, i.e., 
(x) � jxj.) For a asyn
hronous bea
on Q, R is also an in�nite bitstring, but

the 
osts for the queries are higher, namely 
(x) := x, where x is interpreted as a natural number.

On the other hand, for a �nite random string F , the length of R is given as a fun
tion in the

se
urity parameter k whi
h is bounded by a polynomial p, and the 
osts are 
(x) := C for some


onstant C (whi
h possibly depends on the se
urity parameter k).

27

Moreover, for any query on

input x with x > jRj the output is 0. In the following, we say that a random ora
le, bea
on, or

�nite random string is uniform if R is uniformly distributed, and denote these obje
ts as R, Q,

and F , respe
tively.

7.2 Impossibility Results

It is obvious that an asyn
hronous bea
on 
an always be redu
ed to a random ora
le (using an

algorithm whi
h merely passes on the inputs and outputs) and that a �nite random string 
an

always be redu
ed to a bea
on (using the same trivial algorithm whi
h additionally 
he
ks that

the input is not larger than some prede�ned bound). However, it follows dire
tly from Theorem 3

that the inverse redu
tions are not possible.

Theorem 4. The following irredu
ibility results hold for both the information-theoreti
 and the


omputational 
ase (where \9" is repla
ed by \
9




"):

R9 Q and Q9 F :

The proof mainly 
onsists of the 
omputation of the entropies of the 
onsidered obje
ts whi
h

then allows to apply Theorem 3.

Proof. The main task required for the proof of this theorem is the 
omputation of the entropies

a

ording to the de�nitions in Se
tion 3. For a random ora
le, we obtain

h

1

R

k

(t) = h

0

R

k

(t) �

t

X

i=1

2

i

= 2

t+1

� 2;

and similarly, for an asyn
hronous bea
on,

h

1

Q

k

(t) = h

0

Q

k

(t) = t

(independently of k 2 N). Sin
e for a �nite random string the length of R is given by a fun
tion

in the se
urity parameter k whi
h is bounded by a polynomial p in k, we have

h

1

F

k

(t) = h

0

F

k

(t) =

(

0 if t < C

jR

k

j � p(k) otherwise:

26

We will assume that the outputs of random ora
les, bea
ons and �nite random strings are single bits. This entails

no restri
tion of generality sin
e any su
h random fun
tion providing outputs of some length l 
an eÆ
iently be

redu
ed to a 
orresponding random fun
tion with outputs of length 1 (as long as l grows only polynomially in the

se
urity parameter k).

27

Equivalently, one 
ould take any polynomial in jxj and jkj.
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(for all k 2 N). Note that the above expressions for h

0

R

k

, h

0

Q

k

and h

0

F

k

also hold if the respe
tive

systems are not uniform.

With these expressions for the entropies, the assertion follows dire
tly from Theorem 3. ut

Together with Theorem 2, it follows from this result that a random ora
le in general 
an not be

repla
ed by any algorithm intera
ting with an asyn
hronous bea
on, and similarly, a bea
on 
an

not be repla
ed by any algorithm intera
ting with a publi
 �nite random string without a�e
ting

the se
urity of an underlying 
ryptosystem. The failure of the random ora
le methodology 
an

thus be seen as a dire
t 
onsequen
e of ea
h of the two irredu
ibility results of Theorem 4.

8 Con
lusions

One 
ru
ial motivation for introdu
ing the notion of indi�erentiability is that it 
hara
terizes

exa
tly when one 
an repla
e a subsystem of a 
ryptosystem by another subsystem without a�e
ting

the se
urity. In 
ontrast to indistinguishability, indi�erentiability is appli
able in the important 
ase

of settings where a possible adversary is assumed to have a

ess to additional information about

a system. This generality is for instan
e 
ru
ial in the setting of the random ora
le methodology,

and our abstra
t framework yields as a simple 
onsequen
e, a
tually of ea
h of two di�erent

impossibility results, the impossibility result by Canetti, Goldrei
h and Halevi [5℄ stating that

random ora
les 
an not be implemented. In view of the highly involved arguments of [5℄ based on

CS-proofs, we hope to have presented a more generi
 approa
h to arguing about su
h impossibility

results, thus also appli
able in other 
ontexts where systems have publi
 parameters or an adversary


an obtain side-information about se
ret parameters.
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Fig. 1. Composition of systems.
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Fig. 2. A

ess of parties P
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; : : : ;P

4

and adversary A to system S, spe
i�ed by (P; A) = (f1; 2; 3; 4g; f6; 7g).
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Fig. 4. Constru
tion of new resour
e W = B(V) from original resour
e V.
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Fig. 5. Indi�erentiability: The distinguisher D for di�erentiating S from T is either 
onne
ted to the system S or

the system T . In the �rst 
ase (a), D has dire
t a

ess to the private (index 1) and the publi
 (index 2) interfa
e

of S, while, in the latter 
ase (b), the a

ess to the publi
 interfa
e of T is repla
ed by an arbitrary intermediate

system P.
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Fig. 6. Illustration for proof of Theorem 1 (\=)").
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