
Identity-Based Threshold Decryption

Joonsang Baek1 and Yuliang Zheng2

1 School of Network Computing, Monash University, Frankston, VIC 3199, Australia

joonsang.baek@infotech.monash.edu.au
2 Dept. of Software and Info. Systems, University of North Carolina at Charlotte,

Charlotte, NC 28223, USA

yzheng@uncc.edu

Abstract

In this paper, we examine issues related to the construction of identity-based threshold
decryption schemes and argue that it is important in practice to design an identity-based
threshold decryption scheme in which a private key associated with an identity is shared. A
major contribution of this paper is to construct the first identity-based threshold decryption
scheme secure against chosen-ciphertext attack. A formal proof of security of the scheme
is provided in the random oracle model, assuming the Bilinear Diffie-Hellman problem
is computationally hard. Another contribution of this paper is, by extending the pro-
posed identity-based threshold decryption scheme, to construct a mediated identity-based
encryption scheme secure against more powerful attacks than those considered previously.

1 Introduction

Threshold decryption is particularly useful where the centralization of the power to decrypt is a
concern. And the motivation for identity (ID)-based encryption originally proposed by Shamir
[17] is to provide confidentiality without the need of exchanging public keys or keeping public
key directories. A major advantage of ID-based encryption is that it allows one to encrypt a
message by using a recipient’s identifiers such as an email address.

A combination of these two concepts will allow one to build an “ID-based threshold de-
cryption” scheme. One possible application of such a scheme can be considered in a situation
where an identity denotes the name of the group sharing a decryption key. As an example,
suppose that Alice wishes to send a confidential message to a committee in an organization.
Alice can first encrypt the message using the identity (name) of the committee and then send
over the ciphertext. Let us assume that Bob who is the committee’s president has created
the identity and hence has obtained a matching private decryption key from the Private Key
Generator (PKG). Preparing for the time when Bob is away, he can share his private key out
among a number of decryption servers in such a way that any committee member can success-
fully decrypt the ciphertext if, and only if, the committee member obtains a certain number
of decryption shares from the decryption servers.

Another application of the ID-based threshold decryption scheme is to use it as a building
block to construct a mediated ID-based encryption scheme [7]. The idea is to split a private key
associated with the receiver Bob’s ID into two parts, and give one share to Bob and the other
to the Security Mediator (SEM). Accordingly, Bob can decrypt a ciphertext only with the help

1

of the SEM. As a result, instantaneous revocation of Bob’s privilege to perform decryption is
possible by instructing the SEM not to help him any more.

In this paper, we deal with the problem of constructing an ID-based threshold decryption
scheme which is efficient and practical while meets a strong security requirement. We also treat
the problem of applying the ID-based threshold decryption scheme to design a mediated ID-
based encryption scheme secure against more powerful attacks than those considered previously
in the literature.

2 Preliminaries

We first review the “admissible bilinear map”, which is the mathematical primitive that plays
on central role in Boneh and Franklin’s ID-based encryption scheme [4].

Bilinear Map. The admissible bilinear map ê [4] is defined over two groups of the same
prime-order q denoted by G and F in which the Computational Diffie-Hellman problem is
hard. (By G∗ and ZZ∗

q , we denote G \ {O} where O is the identity element of G, and ZZq \ {0}
respectively.) We will use an additive notation to describe the operation in G while we will use
a multiplicative notation for the operation in F . In practice, the group G is implemented using
a group of points on certain elliptic curves, each of which has a small MOV exponent [15], and
the group F will be implemented using a subgroup of the multiplicative group of a finite field.
The admissible bilinear map, denoted by ê : G × G → F , has the following properties.

• Bilinear: ê(aR1, bR2) = ê(R1, R2)
ab, where R1, R2 ∈ G and a, b ∈ ZZ∗

q .

• Non-degenerate: ê does not send all pairs of points in G×G to the identity in F . (Hence,
if R is a generator of G then ê(R, R) is a generator of F .)

• Computable: For all R1, R2 ∈ G, the map ê(R1, R2) is efficiently computable.

Throughout this paper, we will simply use the term “Bilinear map” to refer to the admissible
bilinear map defined above.

The “BasicIdent” Scheme. We now describe Boneh and Franklin’s basic version of ID-based
encryption scheme called “BasicIdent” which only gives semantic security (that is, indistin-
guishability under chosen plaintext attack).

In the setup stage, the PKG specifies a group G generated by P ∈ G∗ and the Bilinear map
ê : G × G → F . It also specifies two hash functions H1 : {0, 1}∗ → G∗ and H2 : F → {0, 1}l,
where l denotes the length of a plaintext.The PKG then picks a master key x uniformly at
random from ZZ∗

q and computes a public key YPKG = xP . The PKG publishes descriptions
of the group G and F and the hash functions H1 and H2. Bob, the receiver, then contacts
the PKG to get his private key DID = xQID where QID = H1(ID). Alice, the sender, can
now encrypt her message M ∈ {0, 1}l using Bob’s identity ID by computing U = rP and V =
H2(ê(QID, YPKG)r)⊕M , where r is chosen at random from ZZ∗

q and QID = H1(ID). The resulting
ciphertext C = (U, V) is sent to Bob. Bob decrypts C by computing M = V ⊕H2(ê(DID, U)).

3 Related Work and Discussion

Boneh and Franklin’s “Distributed PKG”. In order to prevent a single PKG from full possession
of the master key in ID-based encryption, Boneh and Franklin [4] suggested that the PKG’s

2

master key should be shared among a number of PKGs using the techniques of threshold
cryptography, which they call “Distributed PKG”. More precisely, the PKG’s master key x is
distributed into a number of PKGs in such a way that each of the PKG holds a share xi ∈ ZZ∗

q of
a Shamir’s (t, n) secret-sharing [16] of x ∈ ZZ∗

q and responds to a user’s private key extraction
request with Di

ID
= xiQID, where QID = H1(ID). If the technique of [11] is used, one can

ensure that the master key is jointly generated by PKGs so that the master key is not stored
or computed in any single location.

As an extension of the above technique, Boneh and Franklin suggested that the distributed
PKGs should function as decryption servers for threshold decryption. That is, each PKG
responds to a decryption query C = (U, V) in BasicIdent with ê(xiQID, U). However, we argue
that this method is not quite practical in practice since it requires each PKG to be involved at

all times (that is, on-line) in the generation of decryption shares because the value “U” changes
whenever a new ciphertext is created. Obviously, this creates a bottleneck on the PKGs and
also violates one of the basic requirements of an ID-based encryption scheme, “the PKG can
be closed after key generation”, which was envisioned by Shamir in his original proposal of
ID-based cryptography [17]. Moreover, there is a scalability problem when the number of
available distributed PKGs is not matched against the number of decryption servers required,
say, there are only 3 available PKGs while a certain application requires 5 decryption servers.

Therefore, a better approach would be sharing a private key associated with an identity

rather than sharing a master key of the PKG. In addition to its easy adaptability to the situ-
ation where an identity denotes a group sharing a decryption key as described in Section 1, an
advantage of this approach is that one can fully utilize Boneh and Franklin’s Distributed PKG
method without the above-mentioned scalability problem, dividing the role of “distributed
PKGs” from that of “decryption servers”. That is, an authorized dealer (a representative of
group, such as “Bob” described in Section 1, or a single PKG) may ask an identity to each
of the “distributed PKGs” for a partial private key associated the identity. Having obtained
enough partial private keys, the dealer can construct the whole private key and distribute it
into the “decryption servers” in his domain at will while the master key remains secret from
any parties.

Other Related Work on ID-Based Threshold Decryption. To our knowledge, other papers
that have treated “threshold decryption” in the context of ID-based cryptography are [8] and
[13]. Dodis and Yung [8] observed how threshold decryption can be realized in Gentry and
Silverberg [12]’s “hierarchical ID-based encryption” setting. Interestingly, their approach is to
share a private key (not the master key of the PKG) obtained from a user at a higher level.
Although this was inevitable in the hierarchical ID-based encryption setting and its advantage
in general ID-based cryptography was not mentioned in [8], it is more sound approach than
sharing the master key of the PKG as we discussed above. However, their threshold decryption
scheme is very-sketched and chosen-ciphertext security for the scheme was not considered in [8].
More recently, Libert and Quisquater [13] also constructed an ID-based threshold decryption
scheme. However, their approach was to share a master key of the PKG, which is different
from ours. Moreover, our scheme gives chosen-ciphertext security while Libert and Quisquater’s
scheme does not.

3

4 Security Notion for ID-based Threshold Decryption

4.1 Description of Generic ID-Based Threshold Decryption

A generic ID-based threshold decryption scheme, which we denote by “IDT HD”, consists of
algorithms GK, EX, DK, E, D, SV, and SC. Below, we describe each of the algorithms.

Like other ID-based cryptographic schemes, we assume the existence of a trusted PKG. The
PKG runs the key/common parameter generation algorithm GK to generate its master/public
key pair and all the necessary common parameters. The PKG’s public key and the common
parameters are given to every interested party.

On receiving a user’s private key extraction request which consists of an identity, the PKG
then runs the private key extraction algorithm EX to generate the private key associated with
the requested identity.

An authorized dealer who possesses the private key associated with an identity can run the
private key distribution algorithm DK to distribute the private key into n decryption servers.
DK makes use of an appropriate secret-sharing technique to generate shares of the private key
as well as verification keys that will be used for checking the validity of decryption shares.
Each share of the private key and its corresponding verification key are sent to an appropriate
decryption server. The decryption servers then keep their private key shares secret but publish
the verification keys. It is important to note here that the entity that runs DK can vary flexibly
depending on the cryptographic services that the PKG can offer. For example, if the PKG has
an only functionality of issuing private keys, the authorized dealer that runs DK would be a
normal user (such as Bob in the example given in Section 1) other than the PKG. However,
if the PKG has other functionalities, for example, organizing threshold decryption, the PKG
can run DK.

Given a user’s identity, any user that wants to encrypt a plaintext can run the encryption
algorithm E to obtain a ciphertext. A legitimate user that wants to decrypt a ciphertext gives
it to the decryption servers requesting decryption shares. The decryption servers then run the
decryption share generation algorithm D taking the ciphertext as input and send the resulting
decryption shares to the user. Note that the validity of the shares can be checked by running
the decryption share verification algorithm SV. When the user collects valid decryption shares
from at least t servers, the plaintext can be reconstructed by running the share combining
algorithm SC.

Below, we formally define IDT HD.

Definition 1 (ID-Based Threshold Decryption) The IDT HD scheme consists of the fol-
lowing algorithms.

• A randomized key/common parameter generation algorithm GC(k): Given a security pa-
rameter k ∈ IN, this algorithm computes the PKG’s master/public key pair (skPKG, pkPKG).
Then, it generates necessary common parameters, e.g., descriptions of hash functions and
mathematical groups. The output of this algorithm denoted by cp includes such param-
eters and the PKG’s public key pkPKG. Note that cp is given to all interested entities
while the matching master key skPKG of pkPKG is kept secret.

• A private key extraction algorithm EX(cp, ID): Given an identity ID, this algorithm
generates a private key associated with ID, denoted by skID.

4

• A randomized private key distribution algorithm DK(cp, skID, n, t): Given a private key
skID associated with an identity ID, a number of decryption servers n and a threshold
parameter t, this algorithm generates n shares of skID and provides each one to decryption
servers Γ1, Γ2, . . . ,Γn. It also generates a set of verification keys that can be used to
check the validity of each shared private key. We denote the shared private keys and
the matching verification keys by {ski}1≤i≤n and {vki}1≤i≤n, respectively. Note that for
each 1 ≤ i ≤ n, the pair (ski, vki) is sent to the decryption server Γi, then Γi publishes
vki but keeps ski as secret.

• A randomized encryption algorithm E(cp, ID, M): Given a public identity ID and a plain-
text M , this algorithm generates a ciphertext denoted by C.

• A decryption share generation algorithm D(cp, ski, C): Given a ciphertext C and a shared
private key ski of a decryption server Γi, this algorithm generates a decryption share δi,C .
Note that the value of δi,C can be a special symbol “Invalid Ciphertext”.

• A decryption share verification algorithm SV(cp, {vki}1≤i≤n, C, δi,C): Given a ciphertext
C, a set of verification keys {vki}1≤i≤n, and a decryption share δi,C , this algorithm checks
the validity of δi,C . The output of this algorithm is either “Valid Share” or “Invalid

Share”.

• A share combining algorithm SC(cp, C, {δi,C}i∈Φ): Given a ciphertext C and a set of
decryption shares {δi,C} where Φ ⊂ {1, . . . , n} such that |Φ| ≥ t (| · | denotes the car-
dinality), this algorithm outputs a plaintext M . Note that the combining algorithm
is allowed to output a special symbol “Invalid Ciphertext”, which is distinct from all
possible plaintexts.

4.2 Chosen Ciphertext Security for ID-Based Threshold Decryption

We now define a security notion for the IDT HD scheme against chosen-ciphertext attack,
which we call “IND-IDTHD-CCA”.

Definition 2 (IND-IDTHD-CCA) Let ACCA be an attacker assumed to be a probabilistic
Turing machine. Suppose that a security parameter k is given to ACCA as input. Now, consider
the following game in which the attacker ACCA interacts with the “Challenger”.

Phase 1: The Challenger runs the PKG’s key/common parameter generation algorithm
taking a security parameter k as input. The Challenger gives ACCA the resulting common
parameter cp which includes the PKG’s public key pkPKG. However, the Challenger keeps
the master key skPKG secret from ACCA.

Phase 2: ACCA issues a number of private key extraction queries. We denote each of
these queries by ID. On receiving the identity query ID, the Challenger runs the private
key extraction algorithm on input ID and obtains a corresponding private key skID. Then,
the Challenger returns skID to ACCA.

Phase 3: ACCA corrupts t − 1 out of n decryption servers.

Phase 4: ACCA issues a target identity query ID
∗. On receiving ID

∗, the Challenger
runs the private key extraction algorithm to obtain a private key skID∗ associated with

5

the target identity. The Challenger then runs the private key distribution algorithm
on input skID∗ with parameter (t, n) and obtains a set of private/verification key pairs
{(skID∗i

, vkID∗i
)}, where 1 ≤ i ≤ n. Next, the Challenger gives ACCA the private keys

of corrupted decryption servers and the verifications keys of all the decryption servers.
However, the private keys of uncorrupted servers are kept secret from ACCA.

Phase 5: ACCA issues arbitrary private key extraction queries and arbitrary decryption
share generation queries to the uncorrupted decryption servers. We denote each of these
queries by ID and C respectively. On receiving ID, the Challenger runs the private
key extraction algorithm to obtain a private key associated with ID and returns it to
ACCA. The only restriction here is that ACCA is not allowed to query the target identity
ID

∗ to the private key extraction algorithm. On receiving C, the Challenger runs the
decryption share generation algorithm taking C and the target identity ID

∗ as input to
obtain a corresponding decryption share and returns it to ACCA.

Phase 6: ACCA outputs two equal-length plaintexts (M0, M1). Then the Challenger
chooses a bit β uniformly at random and runs the encryption algorithm on input cp, Mβ

and ID
∗ to obtain a target ciphertext C∗ = E(cp, ID∗, Mβ). Finally, the Challenger gives

(C∗, ID∗) to ACCA.

Phase 7: ACCA issues arbitrary private key extraction queries and arbitrary decryption
share generation queries. We denote each of these queries by ID and C respectively. On
receiving ID, the Challenger runs the private key extraction algorithm to obtain a private
key associated with ID and returns it to ACCA. As Phase 5, the only restriction here is
that ACCA is not allowed to query the target identity ID

∗ to the private key extraction
algorithm. On receiving C, the Challenger runs the decryption share generation algo-
rithm on input C to obtain a corresponding decryption share and returns it to ACCA.
Differently from Phase 5, the target ciphertext C∗ is not allowed to query in this phase.

Phase 8: ACCA outputs a guess β̃ ∈ {0, 1}.

We define the attacker ACCA’s success by

SuccIND−IDTHD−CCA

IDT HD,ACCA (k) = 2 · Pr[β̃ = β] − 1.

We denote by SuccIND−IDTHD−CCA
IDT HD (tIDCCA, qE , qD) the maximum of the attacker ACCA’s

success over all attackers ACCA having running time tIDCCA and making at most qE private
key extraction queries and qD decryption share generation queries. Note that the running time
and the number of queries are all polynomial in the security parameter k.

The ID-based threshold decryption scheme IDT HD is said to be IND-IDTHD-CCA secure
if SuccIND−IDTHD−CCA

IDT HD (tIDCCA, qE , qD) is negligible in k.

5 Our ID-Based Threshold Decryption Scheme

5.1 Building Blocks

First, we present necessary building blocks that will be used to construct our ID-based threshold
decryption scheme. We remark that since our ID-based threshold decryption scheme is also of
the Diffie-Hellman (DH)-type, it follows Shoup and Gennaro [18]’s framework for the design of

6

DH-based threshold decryption schemes to some extent. However, our scheme has a number
of features that distinguishes itself from the schemes in [18] due to the special property of the
underlying group G.

Publicly Checkable Encryption. Publicly checkable encryption is a particularly impor-
tant tool for building threshold decryption schemes secure against chosen-ciphertext attack
as discussed by Lim and Lee [14]. The main reason is that in the threshold decryption, the
attacker has decryption shares as additional information as well as a ciphertext, hence there is
a big chance for the attacker to get enough decryption shares to recover the plaintext before
the validity of the ciphertext is checked. (Readers are referred to [14] and [18] for more detailed
discussions on this issue.)

The public checkability of ciphertexts in threshold decryption schemes is usually given by
non-interactive zero-knowledge (NIZK) proofs, e.g., [18, 10]. However, we emphasize that in
our scheme, this can be done without a NIZK proof, by simply creating a tag on the ElGamal
[9] ciphertext in a similar way as was done in the signature scheme of Boneh et al. [5].

Let M ∈ {0, 1}l be a message. Then, encrypt M by creating a ciphertext C = (U, V, W) =
(rP, H2(κ) ⊕ M, rH3(U, V)) where κ = ê(H1(ID), YPKG)r for hash functions H1 : {0, 1}∗ → G∗,
H2 : F → {0, 1}l, and H3 : G∗ × {0, 1}l → G∗. Without recovering M during the decryption
process (that is, leaving the ciphertext C intact), the validity of C can be checked by testing
if ê(P, W) = ê(U, H3), where H3 = H3(U, V) ∈ G∗. Note that this validity test exploits the
fact that the Decisional Diffie-Hellman (DDH) problem can be solved in polynomial time in
the group G, and passing the test implies that (P, U, H3, W) is a Diffie-Hellman tuple since
(P, U, H3, W) = (P, rP, sP, rsP) assuming that H3 = sP ∈R G∗ for some s ∈ ZZ∗

q .
Sharing a Point on G. In order to share a private key DID ∈ G, we need some trick. In

what follows, we present a Shamir’s (t, n)-secret-sharing over G.
Let q be a prime order of a group G (of points on elliptic curve). Let S ∈ G∗ be a point to

share. Suppose that we have chosen integers t (a threshold) and n satisfying 1 ≤ t ≤ n < q.
First, we pick R1, R2, . . . , Rt−1 at random from G∗. Then, we define a function F : IN∪{0} → G
such that F (u) = S +

∑t−1
l=1

ulRl. (Note that in practice, “picking Rl at random from G∗” can
be implemented by computing rlP for randomly chosen rl ∈ ZZ∗

q , where P ∈ G∗ is a generator
of G.) We then compute Si = F (i) ∈ G for 1 ≤ i ≤ n and send (i, Si) to the i-th member of
the group of cardinality n. When the number of shares reaches the threshold t, the function
F (u) can be reconstructed by computing F (u) =

∑

j∈Φ cΦ
ujSj where cΦ

uj =
∏

ι∈Φ,ι 6=j
u−ι
j−ι

∈ ZZq

is the Lagrange coefficient for a set Φ ⊂ {1, . . . , n} such that |Φ| ≥ t.
Zero Knowledge Proof for the Equality of Two Discrete Logarithms Based on

the Bilinear Map. To ensure that all decryption shares are consistent, that is, to give
robustness to threshold decryption, we need a certain checking procedure. In contrast to
the ciphertext validity checking mechanism of in our publicly checkable encryption presented
above, we need a non-interactive zero-knowledge proof system since the share of the key κ is
the element of the group F , where the DDH problem is believed to be hard.

Motivated by [6] and [18], we construct a zero-knowledge proof of membership system for

the language LEDLogF
P,P̃

def
= {(µ, µ̃) ∈ F×F| logg µ = logg̃ µ̃} where g = ê(P, P) and g̃ = ê(P, P̃)

for generators P and P̃ of G (the groups G and F and the Bilinear map ê are as defined in
Section 2) as follows.

Suppose that (P, P̃ , g, g̃) and (κ, κ̃) ∈ LEDLogF
P,P̃

are given to the Prover and the Verifier,

and the Prover knows a secret S ∈ G∗. The proof system which we call “ZKBm” works as
follows.

7

• The Prover chooses a non-identity element T uniformly at random from G and computes
γ = ê(T, P) and γ̃ = ê(T, P̃). The Prover sends γ and γ̃ to the Verifier.

• The Verifier chooses h uniformly at random from ZZ∗
q and sends it to the Prover.

• On receiving h, the Prover computes L = T + hS ∈ G and sends it to the Verifier. The
Verifier checks if ê(L, P) = γκh and ê(L, P̃) = γ̃κ̃h. If the equality holds then the Verifier
returns “Accept”, otherwise, returns “Reject”.

The above protocol actually satisfies completeness, soundness and zero-knowledge against
the honest Verifier We state the following lemma regarding the security of ZKBm.

Lemma 1 The ZKBm protocol satisfies completeness, soundness and zero-knowledge against

the honest Verifier.

Proof. As preliminaries, we first prove the following two claims.

Claim 1 Let P and P̃ be generators of G. Then ê(P, P̃) is a generator of F .

Proof. The proof will use the basic fact from the elementary abstract algebra that if a is a
generator of a finite cyclic group G of order n, then the other generators of G are the elements
of the form ar, where gcd(r, n) = 1.

First, note that the two groups G and F are cyclic because their order q is a prime. Since
P̃ is another generator of G by assumption, we can write P̃ = uP , where gcd(u, q) = 1. Then,
by the bilinear property of ê, we have ê(P, P̃) = ê(P, uP) = ê(P, P)u. Also, by the non-
degenerate property of ê, ê(P, P) is a generator of F . Hence, ê(P, P̃) is also a generator of F
since ê(P, P̃) = ê(P, P)u and gcd(u, q)=1. ⊓⊔

Claim 2 Let P and P̃ be generators of G. Then, (κ, κ̃) ∈ LEDLogF
P,P̃

if and only if there exists

a non-identity element S ∈ G such that κ = ê(S, P) and κ̃ = ê(S, P̃).

Proof. By Claim 1, g and g̃ are generators of F . Now, suppose that (κ, κ̃) ∈ LEDLogF
P,P̃

.

Then, by definition of LEDLogF
P,P̃

, there exists x ∈ ZZ∗
q such that gx = g̃x. Since g = ê(P, P)

and g̃ = ê(P, P̃), gx = g̃x implies ê(P, P)x = ê(P, P̃)x. But, since ê(P, P)x = ê(xP, P) and
ê(P, P̃)x = ê(xP, P̃) by the bilinear property of ê, we obtain κ = ê(S, P) and κ̃ = ê(S, P̃) by
letting S = xP . The proof of converse is also easy. ⊓⊔

Now, we show that the protocol is complete. That is, if the Prover and the Verifier fol-
low the protocol without cheating, the Verifier accepts the Prover’s claim with overwhelm-
ing probability: Assume that (κ, κ̃) ∈ LEDLogF

P,P̃

. By Claim 2, we have κ = ê(S, P) and

κ̃ = ê(S, P̃) for some S ∈ G. Assume that the Prover sends (γ, γ̃) where γ = ê(T, P) and
γ̃ = ê(T, P̃) for random T ∈ G to the honest Verifier. Now, observe from the above protocol
that ê(L, P) = ê(T + hS, P) and that γκh = ê(T, P)ê(S, P)h = ê(T, P)ê(hS, P). By the bilin-
ear property of ê, we have ê(T, P)ê(hS, P) = ê(T + hS, P). Thus, we obtain ê(L, P) = γκh

and this implies that the above protocol satisfies completeness property.

8

Second, we show the soundness of the protocol: Assume that (κ, κ̃) /∈ LEDLogF
P,P̃

. Namely,

we have κ = ê(S, P) and κ̃ = ê(S′, P̃) for some S 6= S′ ∈ G. Assume that a cheating
Prover sends (γ, γ̃) where γ = ê(T, P) and γ = ê(T ′, P̃) to the honest Verifier. If the Verifier
is to accept this, we should have that ê(L, P) = γκh and ê(L, P̃) = γ̃κ̃h, which implies
T + hS = T ′ + hS′. Now suppose that T = tP , T ′ = t′P ; S = xP and S′ = x′P for
t, t′, x, x′ ∈ ZZ∗

q . Then, T + hS = T ′ + hS′ implies (t − t′) + h(x − x′) = 0. However, this
happens with probability 1/q, since we have assumed that S′ 6= S which implies x′ 6= x.

Finally, we can construct a simulator which simulates the communication between the
Prover and the Verifier provided that the Verifier behaves honestly. More precisely, the sim-
ulator chooses h̄ and L̄ uniformly at random from ZZ∗

q and G respectively. Then, it computes

γ̄ = ê(L̄, P)/κh̄ and ¯̃γ = ê(L̄, P̃)/κ̃h̄. The output of the simulator is a tuple (γ̄, ¯̃γ, h̄, L̄). It
can be easily verified that the simulated values are identically distributed as those in the real
communication if the Verifier behaves honestly. As a result, the above protocol becomes a
zero-knowledge proof against a honest Verifier. ⊓⊔

Note that ZKBm can easily be converted to a NIZK proof, making the random challenge an
output of a random oracle [1]. Note also that the above protocol can be viewed as a proof that
(g, g̃, κ, κ̃) is a Diffie-Hellman tuple since if (κ, κ̃) ∈ LEDLogF

P,P̃

then κ = gx and κ̃ = g̃x for some

x ∈ ZZ∗
q and hence (g, g̃, κ, κ̃) = (g, g̃, gx, g̃x) = (g, gy, gx, gxy) for some y ∈ ZZ∗

q .

5.2 Description of Our Scheme – IdThdBm

We now describe our ID-based threshold decryption scheme. We call our scheme “IdThdBm”,
meaning “ID-based threshold decryption scheme from the bilinear map”. IdThdBm consists of
the following algorithms.

• GK(k): Given a security parameter k, this algorithm generates two groups G and F of the
same prime order q ≥ 2k and chooses a generator P of G. Then, it specifies the Bilinear
map ê : G×G → F and the hash functions H1, H2, H3 and H4 such that H1 : {0, 1}∗ → G∗;
H2 : F → {0, 1}l; H3 : G∗ × {0, 1}l → G∗; H4 : F × F × F → ZZ∗

q , where l denotes the
length of a plaintext. Next, it chooses the PKG’s master key x uniformly at random
from ZZ∗

q and computes the PKG’s public key YPKG = xP . Finally, it returns a common
parameter cp = (G, q, P , ê, H1, H2, H3, H4, YPKG) while keeping the master key x secret.

• EX(cp, ID): Given an identity ID, this algorithm computes QID = H1(ID) and DID = xQID.
Then, it returns the private key DID associated with ID.

• DK(cp, ID, DID, t, n) where 1 ≤ t ≤ n < q: Given a private key DID, the number of de-
cryption servers n and a threshold parameter t, this algorithm first picks R1, R2, . . . , Rt−1

at random from G∗ and constructs F (u) = DID +
∑t−1

j=1 ujRj for u ∈ {0} ∪ IN. It then
computes each server Γi’s private key Si = F (i) and verification key yi = ê(Si, P) for
1 ≤ i ≤ n. Subsequently, it secretly sends the distributed private key Si and the ver-
ification key yi to server Γi for 1 ≤ i ≤ n. Γi then keeps Si as secret while making yi

public.

• E(cp, ID, m): Given a plaintext M ∈ {0, 1}l and an identity ID, this algorithm chooses
r uniformly at random from ZZ∗

q , and subsequently computes QID = H1(ID) and κ =

9

ê(QID, YPKG)r. It then computes

U = rP ; V = H2(κ) ⊕ M ; W = rH3(U, V)

and returns a ciphertext C = (U, V, W).

• D(cp, Si, C): Given a private key Si of each decryption server and a ciphertext C =
(U, V, W), this algorithm computes H3 = H3(U, V) and checks if ê(P, W) = ê(U, H3).

If C has passed the above test, this algorithm computes κi = ê(Si, U), κ̃i = ê(Ti, U),
ỹi = ê(Ti, P), λi = H4(κi, κ̃i, ỹi), and Li = Ti + λiSi for random Ti ∈ G, and outputs
δi,C = (i, κi, κ̃i, ỹi, λi, Li). Otherwise, it returns δi,C =(i, “Invalid Ciphertext”).

• SV(cp, {yi}1≤i≤n, C, δi,C): Given a ciphertext C = (U, V, W), a set of verification keys
{y1, . . . , yn}, and a decryption share δi,C , this algorithm computes H3 = H3(U, V) and
checks if ê(P, W) = ê(U, H3).

If C has passed the above test then this algorithm does the following:

- If δi,C is of the form (i, “Invalid Ciphertext”) then return “Invalid Share”.

- Else parse δi,C as (i, κi, κ̃i, ỹi, λi, Li) and compute λ′
i = H4(κi, κ̃i, ỹi).

- Check if λ′
i = λi, ê(Li, U)/κ

λ′

i

i = κ̃i and ê(Li, P)/y
λ′

i

i = ỹi.

- If the test above holds, return “Valid Share”, else output “Invalid Share”.

Otherwise, does the following:

- If δi,C is of the form (i, “Invalid Ciphertext”), return “Valid Share”, else output
“Invalid Share”.

• SC(cp, C, {δj,C}j∈Φ): Given a ciphertext C and a set of valid decryption shares {δj,C}j∈Φ

where |Φ| ≥ t, this algorithm computes H3 = H3(U, V) and checks if ê(P, W) = ê(U, H3).

If C has not passed the above test, this algorithm returns “Invalid Ciphertext”. (In this
case, all the decryption shares are of the form (i, “Invalid Ciphertext”).) Otherwise, it

computes κ =
∏

j∈Φ κ
cΦ
0j

j and M = H2(κ) ⊕ V , and returns M .

5.3 Security Analysis – IdThdBm

Bilinear Diffie-Hellman Problem. First, we review the Bilinear Diffie-Hellman (BDH) problem,
which was introduced by Boneh and Franklin [4].

Definition 3 (BDH) Let G and F be two groups of a prime order q ≥ 2k, where k is security
parameter. Let P ∈ G∗ be a generator of G. Suppose that there exists a bilinear map ê :
G × G → F . Let ABDH be an attacker modelled as a probabilistic Turing machine taking the
security parameter k as input. Suppose that a, b, and c are uniformly chosen at random from
ZZ∗

q and aP , bP , and cP are computed.

ABDH is to solve the following problem:

• Given (G, q, ê, P, aP, bP, cP), compute ê(P, P)abc.

10

We define ABDH’s success by

SuccBDH
G,ABDH(k) = Pr[ABDH outputs ê(P, P)abc].

We denote by SuccBDH
G (tBDH) the maximal success probability SuccBDH

G,ABDH(k) over all at-
tackers having running time bounded by tBDH which is polynomial in the security parameter
k.

The BDH problem is said to be computationally intractable if SuccBDH
G (tBDH) is negligible

in k.

Proof of Security. Regarding the security of the IdThdBm scheme, we obtain the following
theorem implying that the IdThdBm scheme is IND-IDTHD-CCA secure in the random oracle
model assuming that the BDH problem is computationally intractable.

Theorem 1 Suppose that an IND-IDTHD-CCA attacker for the scheme IdThdBm issues up to

qE private key extraction queries, qD decryption share generation queries, qH1
, qH2

, qH3
, and

qH4
queries to to the random oracles H1, H2, H3, and H4 respectively. Using this attacker as a

subroutine, we can construct an attacker for solving the BDH problem in the group G, whose

running time is bounded by tBDH . Concretely, we obtain the following advantage bound:

1

qH1

SuccIND−IDTHD−CCA
IdThdBm

(tIDCCA, qE , qD, qH1
, qH2

, qH3
, qH4

)

≤ 2SuccBDH
G (tBDH) +

qD + qDqH4

2k−1
,

where tBDH = tIDCCA + max(qE , qH1
)O(k3) + qH1

+ qH2
O(k3) + qH4

qDO(k3) for a security

parameter k.

To prove the above theorem, we derive a non-ID-based threshold decryption scheme called
“ThdBm” from the IdThdBm scheme, which will be described shortly. We then show in Lemma
2 that the IND-THD-CCA security of the ThdBm scheme, which will be defined after the
description of ThdBm, implies the IND-IDTHD-CCA security of the IdThdBm scheme. Next,
we show in Lemma 3 that the intractability of the BDH problem implies the THD-IND-CCA
security of the ThdBm scheme. Combining Lemmas 2 and 3, we obtain Theorem 1.

As mentioned, we describe the ThdBm scheme. Actually, ThdBm is very similar to IdThdBm

except for some differences in the key/common parameter generation and encryption algo-
rithms. We only describe these two algorithms here.

• GK(k, t, n): Taking a security parameter k as input, this algorithm generates two groups
G and F of the same prime order q ≥ 2k and chooses a generator P of G. Then, it
specifies the Bilinear map ê : G × G → F and the following hash functions H2, H3, and
H4 such that H2 : F → {0, 1}l; H3 : G∗ ×{0, 1}l → G∗; H4 : F → ZZ∗

q , where l denotes the
length of a plaintext. Next, it chooses x uniformly at random from ZZ∗

q and computes
Y = xP . Then, it chooses Q uniformly at random from G∗ and computes D = xQ. Note
that (Y, D) will be a public/private key pair. Now, given a private key D, the number of
decryption servers n and a threshold parameter t, this algorithm picks R1, R2, . . . , Rt−1

at random from G and computes F (x) = D+
∑t−1

j=1 xjRj . Then, it computes each server’s
private key Si = F (i) for 1 ≤ i ≤ n and verification key yi = ê(Si, P) for 1 ≤ i ≤ n.
Finally, it outputs a common parameter cp = (G, q, P, ê,H2, H3, H4, Y, Q), and sends the
verification/private key pair (yi, Si) to each decryption server Γi for 1 ≤ i ≤ n. Upon
receiving (yi, Si), each decryption server publishes yi where 1 ≤ i ≤ n.

11

• E(cp, m): Given a plaintext message m ∈ {0, 1}l, this algorithm chooses r uniformly at
random from ZZ∗

q and computes d = ê(Q, Y), κ = dr in turn. Then, it computes U = rP ,
V = H2(κ) ⊕ m and W = rH3(U, V), and outputs a ciphertext C = (U, V, W).

We now review the chosen-ciphertext security notion of (non-ID-based) threshold decryp-
tion. First, we denote a generic (t, n) threshold decryption scheme in the non-ID-based setting
by “T HD”. The T HD scheme consists of a key/common parameter generation algorithm GK,
an encryption algorithm E, a decryption share generation algorithm D, a decryption share
verification algorithm SV, and a share combining algorithm SC.

By running GC, a trusted dealer generates a public key and its matching private key,
and shares the private key among a n decryption servers. The dealer also generates (public)
verification keys that will be used for share verification. Given the public key, a sender encrypts
a plaintext by running E. A user who wants to decrypt a ciphertext gives the ciphertext to the
decryption servers requesting decryption shares. The decryption servers then run D to generate
corresponding decryption shares. The user can check the validity of the shares by running SV.
When the user collects valid decryption shares from at least t servers, the ciphertext can be
decrypted by running SC.

We now review the security notion for the threshold decryption scheme against chosen-
ciphertext attack, which we call “IND-THD-CCA”, defined in [18].

Definition 4 (IND-THD-CCA) Let BCCA be an attacker assumed to be a probabilistic
Turing machine. Suppose that a security parameter k is given to BCCA as input. Now, consider
the following game in which the attacker BCCA interacts with the “Challenger”.

Phase 1: BCCA corrupts a fixed subset of t − 1 servers.

Phase 2: The Challenger runs the key/common parameter generation algorithm GK

taking a security parameter k as input. The Challenger gives BCCA the resulting private
keys of the corrupted servers, the public key, the verification key and the common pa-
rameter. However, the Challenger keeps the private keys of uncorrupted servers secret
from BCCA.

Phase 3: BCCA adaptively interacts with the uncorrupted decryption servers, submitting
ciphertexts and obtaining decryption shares.

Phase 4: BCCA chooses two equal-length plaintexts (M0, M1). If these are given to the
encryption algorithm then the Challenger chooses β ∈ {0, 1} at random and returns a
target ciphertext C∗ = E(cp, pk, Mβ) to BCCA.

Phase 5: BCCA adaptively interacts with the uncorrupted decryption servers, submitting
ciphertexts and obtaining decryption shares. However, the target ciphertext C∗ is not
allowed to query to the decryption servers.

Phase 6: BCCA outputs a guess β̃ ∈ {0, 1}.

We define the attacker BCCA’s success by

SuccIND−THD−CCA

T HD,BCCA (k) = 2 · Pr[β̃ = β] − 1.

12

We denote by SuccIND−THD−CCA
T HD (tCCA, qD) the maximum of the attacker BCCA’s success

over all attackers BCCA having running time tCCA and making at most qD decryption share
generation queries. Note that the running time and the number of queries are all polynomial
in the security parameter k.

The scheme T HD is said to be IND-THD-CCA secure if SuccIND−THD−CCA
T HD (tCCA, qD) is

negligible in k.

We now prove the following lemma.

Lemma 2 Suppose that an IND-IDTHD-CCA attacker for the IdThdBm scheme issues up to

qE private key extraction queries, qD decryption share generation queries, qH1
, qH2

, qH3
, and

qH4
queries to the random oracles H1, H2, H3, and H4 respectively. Using this attacker as a

subroutine, we can construct an IND-THD-CCA attacker for the ThdBm scheme, whose running

time and the number of decryption share generation queries and the random oracle queries to

H2, H3, and H4 are bounded by tCCA, q′D and q′H2
, q′H3

, and q′H4
respectively. Concretely, we

obtain the following advantage bound:

1

qH1

SuccIDTHD−IND−CCA
IdThdBm

(tIDCCA, qE , qD, qH1
, qH2

, qH3
, qH4

)

≤ SuccTHD−IND−CCA
ThdBm

(tCCA, q′D, q′H2
, q′H3

, q′H4
),

where tCCA = tIDCCA + max(qE , qH1
)O(k3), q′D = qD, q′H2

= qH2
, q′H3

= qH3
and q′H4

= qH4

for a security parameter k. Here, tIDCCA denotes the running time of the IDTHD-IND-CCA

attacker.

Proof. For notational convenience, we assume that the same group parameters {G, q, ê, P}
and security parameter k are given to attackers for IdThdBm and ThdBm.

Let ACCA denote an attacker that defeats the IND-IDTHD-CCA security of the IdThdBm

scheme. We assume that ACCA has access to the common parameter cpIdThdBm = (G, q, P , ê,
H1, H2, H3, H4, YPKG) of the IdThdBm scheme, where YPKG = x′P for random x′ ∈ ZZ∗

q . We

also assume that ACCA has access to its decryption servers and a set of verification keys.
Let BCCA denote an attacker that defeats the THD-IND-CCA security of the ThdBm scheme.

We assume that BCCA has access to the common parameter cpThdBm = (G, q, P , ê, H2, H3, H4,
Y , Q) of the ThdBm scheme, where Y = xP for random x ∈ ZZ∗

q and Q has been randomly

chosen from G. Also, we assume that BCCA has access to its decryption servers and a set of
verification keys.

Our aim is to simulate the view of ACCA in the real attack game denoted by G0 until we
obtain a game denoted by G1, which is related to the ability of the attacker BCCA to defeat
the THD-IND-CCA security of the ThdBm scheme.

• Game G0: As mentioned, this game is identical to the real attack game described in
Definition 2. We denote by E0 the event that ACCA’s output β̄ ∈ {0, 1} is equal to
β ∈ {0, 1} chosen by the Challenger. We use a similar notation Ei for all Games Gi.
Since Game G1 is the same as the real attack game, we have

Pr[E0] =
1

2
+

1

2
SuccIND−IDTHD−CCA

IdThdBm,ACCA (k).

13

• Game G1: First, we replace YPKG of ACCA’s common parameter cpIdThdBm by Y of BCCA’s
common parameter cpThdBm setting YPKG = Y . We also replace ACCA’s decryption servers
by BCCA’s decryption servers. We then randomly choose an index µ from the range
[1, 2, . . . , qH1

] where qH1
denotes the maximum number queries to the random oracle H1

made by ACCA. By IDµ, we denote the µ-th query to the random oracle H1. We hope
IDµ would be a target identity ID

∗ that ACCA outputs in Phase 4 of the real attack game
of IND-IDTHD-CCA described in Definition 2.

Now, we simulate ACCA’s random oracle H1, which can be queried at any time during the
attack. Whenever H1 is queried at ID, we perform the following:

– If the query ID exists in the entry 〈(ID, τ), QID〉 ∈ H1List, return QID to ACCA. (Note
that H1List is the “input-output” list for the simulation of H1.)

– Otherwise, do the following.

∗ If ID = IDµ, set QID = Q and return QID to ACCA. (Note that Q is from BCCA’s
common parameter cpThdBm.)

∗ Else (ID 6= IDµ), do the following.

· Choose τ uniformly at random from ZZ∗
q .

· Compute QID = τP and return QID to ACCA.

If ACCA issues ID as a private key extraction query, we perform the following:

– If the query ID exists in the entry 〈(ID, QID), τ)〉 ∈ H1List, extract τ from it, compute
DID = τY , and return DID to ACCA.

– Otherwise, do the following.

∗ If ID = IDµ, terminate the whole game. (Note, however, that if IDµ = ID
∗, this

query is not allowed.)

∗ Else (ID 6= IDµ), do the following.

· Choose τ uniformly at random from ZZ∗
q .

· Compute QID = τP and save 〈(ID, τ), QID〉 into H1List.

· Compute DID = τY and return DID to ACCA.

If ACCA corrupts t− 1 decryption servers during the attack, that is, ACCA obtains private
keys {Si}1≤i≤t−1 of corrupted decryption servers, we give them to BCCA.

If ACCA submits a pair of two equal-length plaintexts (M0, M1), we give it to BCCA, then
BCCA uses (M0, M1) as its plaintext-pair to be challenged. BCCA queries (M0, M1) to its
Challenger, and obtains a target ciphertext C∗ such that

C∗ = (U, V, W) = (rP, Mβ ⊕ H2(ê(Q, Y)r), rH3(U, V)),

where r and β are chosen uniformly at random from ZZ∗
q and {0, 1} respectively. We

simply return the C∗ to ACCA as a target ciphertext.

If ACCA issues decryption share generation queries after it submits the target identity,
BCCA uses its decryption servers to answer those queries. Note, however, that ACCA is
not allowed to query C∗ to any of the uncorrupted decryption servers.

Finally, if ACCA submits its guess β̃, we give it to BCCA.

14

Note that due to the randomness of τ in ZZ∗
q and Q, the above simulation of the random oracle

H1 is perfect. Note also that DID = τYPKG = τY = τxP = xτP = xQID and that

C∗ = (rP, Mβ ⊕ H2(ê(QIDµ , YPKG)r), rH3(U, V))

= (rP, Mβ ⊕ H2(ê(QID∗ , YPKG)r), rH3(U, V))

= (rP, Mβ ⊕ H2(ê(H1(ID
∗), YPKG)r), rH3(U, V)).

Hence, as long as IDµ = ID
∗, the private keys associated with IDs and the target ciphertext

C∗ that ACCA obtain in the simulation are identically distributed as those ACCA obtain in the
real attack. (Note that if IDµ = ID

∗, we do not terminate the game.)
Since µ has been uniformly chosen from [1, qH1

] and the bit β is uniformly chosen from
{0, 1}, we have

Pr[E1] −
1

2
≥

1

qH1

(

Pr[E0] −
1

2

)

.

Thus, by definition of Pr[E0] and Pr[E1], we obtain

SuccIND−THD−CCA

ThdBm,BCCA (k) ≥
1

qH1

SuccIND−IDTHD−CCA

IdThdBm,ACCA (k).

Finally note that the running time tCCA of an arbitrary IND-THD-CCA attacker for the
scheme ThdBm is lower-bounded by tIDCCA + max(qE , qH1

)O(k3). Note also that the number
of queries to the random oracles H2, H3, H4 and the decryption servers made by BCCA are
the same as the number of those ACCA has made. Hence, we obtain the bound in the lemma
statement. ⊓⊔

Lemma 3 Suppose that an IND-THD-CCA attacker for the ThdBm scheme issues up to qD

decryption share generation queries, qH2
, qH3

, and qH4
queries to the random oracles H2, H3,

and H4 respectively. Using this attacker as a subroutine, we can construct a BDH attacker

for the group G, whose running time is bounded by tBDH . Concretely, we obtain the following

advantage bound:

1

2
SuccIND−THD−CCA

ThdBm
(t, qH2

, qH3
, qH4

qD) ≤ SuccBDH
G (tBDH) +

qD + qDqH4

2k
,

where tBDH = tCCA + qH2
+ qH3

O(k3) + qH4
qDO(k3) for a security parameter k.

Proof. For notational convenience, we assume that the same group parameters {G, q, ê, P}
and security parameter k are given to attackers for ThdBm and the BDH problem.

Let BCCA be an attacker that defeats the THD-IND-CCA security of the ThdBm scheme.
Let ABDH be an attacker for the BDH problem. Suppose that (G, q, ê, P, aP, bP, cP) is given to
ABDH. Also, suppose that the (same) security parameter k is given to BCCA.

We start with Game G0 which is the same as the real attack game associated with BCCA.
Then, we modify this game until we completely simulate the view of BCCA and obtain a game
in which ABDH is able to solve the BDH problem.

15

• Game G0: This game is actually the same as the real attack game. However, we repeat
it for cleaning up notations.

First, we run the key/common parameter generation algorithm of the ThdBm scheme on
input a security parameter k, a threshold parameter t and a number of decryption servers
n. We give BCCA the resulting common parameter cpThdBm = (G, q, ê, P,H2, H3, H4, Y, Q)
where Y = xP for random x ∈ ZZ∗

q and the set of verification keys {yi}, where 1 ≤ i ≤ n.
But we keep the private key D = xQ as secret.

If BCCA submits a pair of plaintexts (M0, M1), we choose a bit β uniformly at random
and create a target ciphertext C∗ = (U∗, V ∗, W ∗) as follows.

U∗ = r∗P, V ∗ = H∗
2 ⊕ Mβ , and W ∗ = r∗H∗

3 ,

where κ∗ = ê(Q, Y)r∗ for random r∗ ∈ ZZ∗
q , H∗

2 = H2(κ
∗) and H∗

3 = H3(U
∗, V ∗).

Once all the decryption servers are set up, BCCA can issue decryption share generation
queries at its will. We denote those queries by C = (U, V, W). Note that C is different
from the target ciphertext C∗.

On input C∗, BCCA outputs β̃. We denote by E0 the event β̃ = β and use a similar
notation Ei for all Gi. Since game G0 is the same as the real attack game, we have

Pr[E0] =
1

2
+

1

2
SuccTHD−IND−CCA

ThdBm,BCCA (k).

• Game G1: First, we replace replace Y and Q in cpThdBm by bP and cP respectively, all of
which are given to ABDH. We denote bP and cP by YBDH and QBDH respectively. Now,
we assume that a subset of t − 1 decryption servers have been corrupted without loss
of generality. Let Φ′ = {0, 1, . . . , t − 1}. Then, we choose S1, S2, . . . , St−1 uniformly at
random from G and compute

yi = ê(QBDH, YBDH)cΦ
′

i0

t−1
∏

j=1

ê(Sj , P)cΦ
′

ij ,

where t ≤ i ≤ n and cΦ′

ij denotes a Lagrange coefficient with respect to the set Φ′. We
send Si where 1 ≤ i ≤ t− 1 to each of the corrupted servers and send yi where t ≤ i ≤ n
to each of the uncorrupted decryption servers. Then, BCCA obtains access to {Si} and
{yi}.

Now, we modify the target ciphertext C∗ = (U∗, V ∗, W ∗) as follows. First, we choose
κ+ uniformly at random from F and replace κ∗ by κ+. We also choose H+

2 uniformly
at random from {0, 1}l, replace H∗

2 by H+
2 and V ∗ by V + = H+

2 ⊕ Mβ. Accordingly,
whenever the random oracle H2 is queried at κ+, we respond with H+

2 .

Summing up, we obtain a new challenge ciphertext denoted by C∗
+ such that C∗

+ =
(U∗, V +, W ∗), where V + = H+

2 ⊕ Mβ and H+
2 = H2(κ

+) for random κ+ ∈ F .

Note that the attacker BCCA’s view has the same distribution in both Game G0 and
Game G1, since we have replaced one set of random variables by another set of random
variables which is different, yet has the same distribution.

Thus, we have

Pr[E1] = Pr[E0].

16

• Game G2: In this game, we restore the queries to the random oracle H2. That is, if H2

is queried at κ+, we do not respond with H+
2 any more but respond with an answer from

the random oracle H2 instead. We assume that this rule applies to all the forthcoming
games.

By the above rule, κ+ and H+
2 are used only in the target ciphertext C∗

+. Accordingly,
the distribution of input to BCCA does not depend on β. Hence, we get Pr[E2] = 1/2.

Note that Game G2 and Game G1 may differ if the random oracle H1 is queried at κ∗.
Let AskH22

denotes the event that, in game G2, H2 is queried at κ∗. We will use the
same notation AskH2i

to denote such events in all other games.

Now, we have

|Pr[E2] − Pr[E1]| ≤ Pr[AskH22
].

• Game G3: In this game, we further modify the target ciphertext C∗
+ = (U∗, V +, W ∗).

First, we replace U∗ by aP . We keep V +(= H+
2 ⊕ Mβ = H2(κ

+) ⊕ Mβ) as it is, but
define κ+ as the BDH key ê(P, P)abc. Then, we choose s+ uniformly at random from
ZZ∗

q , compute s+aP and replace W ∗ by s+aP . Finally, we modify the computation of
the random oracle H3 as follows. Whenever H3 is queried at (aP, V +), we compute
H+

3 = s+P and respond with H+
3 . Namely, we set H+

3 = H2(aP, V +).

Summing up, we have obtained a new target ciphertext denoted by C∗
BDH = (UBDH,

VBDH, WBDH) such that

UBDH = aP ; VBDH = V +; WBDH = s+aP,

where V + = H2(ê(P, P)abc) ⊕ Mβ . Moreover, we have H3(UBDH, VBDH) = H+
3 = s+P .

Note that we have replaced one set of random variables {U∗, W ∗} by another set of
random variables {aP, s+aP} which is different, yet has the same distribution. Note also
that C∗

BDH is a valid ciphertext since ê(P, WBDH) = ê(UBDH, H+
3) by the construction

of H+
3 and WBDH. Hence, the attacker BCCA’s view has the same distribution in both

Game G2 and Game G3, and we have

Pr[AskH23
] = Pr[AskH22

].

• Game G4: In this game, we modify the random oracle H3. Note that we have already
dealt with the simulation of the random oracles H3 appeared in the target ciphertext
C∗

BDH, namely, the case when H3 is queried at (UBDH, VBDH). In the following, we deal
with the rest of simulation.

Whenever H3 is queried at (U, V) 6= (UBDH, VBDH), we choose s uniformly at random from
ZZ∗

q , computes H3 = sY and respond with H3. Let H3List be a list of all “input-output”
pairs of the random oracle H3. Specifically, H3List consists of the pairs 〈(U, V), H3〉 where
H3 = H3(U, V) = sY . Notice that this list grows as BCCA’s attack proceeds.

Because H3 is assumed to be a random oracle, the above generation of the outputs of H3

perfectly simulates the real oracle. Hence, BCCA’s view in this game remains the same as
that in the previous game. Hence, we have

Pr[AskH24
] = Pr[AskH23

].

17

Note that the decryption oracle has been regarded as perfect up to this game. The rest
of games will deal with simulation of the decryption oracle.

• Game G5: In this game, we make the decryption oracle reject all ciphertexts C =
(U, V, W) such that H3 = H3(U, V) has not been queried. If C is a valid ciphertext while
H3(U, V) has not been queried, BCCA’s view in Game G5 and Game G4 may differ.

Note that if a ciphertext C is valid then it should be the case that ê(P, W) = ê(U, H3).
However, since we have assumed that H3 has not been queried in this game, the above
equality holds with probability at most 1/2k since output of the simulated random oracle
H3 is uniformly distributed in G. Adding up all the decryption queries up to qD, we have

|Pr[AskH25
] − Pr[AskH24

]| ≤
qD

2k
.

• Game G6: In this game, we modify the decryption oracle in the previous game to yield a
decryption oracle simulator which decrypts a submitted decryption query C = (U, V, W)
without the private key. Note that the case when H3(U, V) has not been queried are
excluded in this game since it was already dealt with in the previous game. Hence, we
assume that H3(U, V) has been queried at some point.

Now we describe the complete specification of the decryption oracle simulator. On input
a ciphertext C = (U, V, W), the decryption oracle simulator works as follows.

– Extract 〈(U, V), H3〉 from H3List.

– If ê(P, W) = ê(U, H3)

∗ Compute K = (1/s)W . (Note here that (1/s)W = (1/s)rsY = rY = rxP .)

∗ Compute κ = ê(Q, K)

∗ For t ≤ i ≤ n, compute κi = κcΦ
′

i0
∏t−1

j=1 ê(Sj , U)cΦ
′

ij .

∗ Return κi.

– Else reject C.

Note in the above construction that

κi = κcΦ
′

i0

t−1
∏

j=1

ê(Sj , U)cΦ
′

ij = ê(Q, K)cΦ
′

i0

t−1
∏

j=1

ê(Sj , U)cΦ
′

ij

= ê(Q, rxP)cΦ
′

i0

t−1
∏

j=1

ê(Sj , rP)cΦ
′

ij = ê(Q, xP)rcΦ
′

i0

t−1
∏

j=1

ê(Sj , P)rcΦ
′

ij

=
(

ê(Q, Y)cΦ
′

i0

t−1
∏

j=1

ê(Sj , P)cΦ
′

ij

)r
= yr

i .

Hence, κi is a correct i-th share of the BDH key κ = ê(Q, Y)r. However, we need more
efforts to simulate a decryption share δi containing κi completely. This can be done as
follows.

First, we simulate the random oracle H4 in a classical way. That is, if H4 is queried, we
choose H4 uniformly at random from ZZ∗

q and respond with it. As usual, we maintain

18

an “input-output” list H4List for H4 whose entry is of the form 〈(κ, κ̃, ỹ), H4〉. Next,
we choose Li and λi uniformly at random from G and ZZ∗

q respectively, and compute

κ̃i = ê(Li, U)/κλi

i and ỹi = ê(Li, P)/yλi

i . Then, we set λi = H4(κi, κ̃i, ỹi). Finally,
we check whether there exists an entry 〈(κ, κ̃, ỹ), H4〉 in H4List satisfying H4 = λi but
(κ, κ̃, ỹ) 6= (κi, κ̃i, ỹi). If such entry exists then we return “Abort” message to BCCA.
Otherwise, we return the simulated value δi = (i, κi, κ̃i, ỹi, Li) to BCCA as a decryption
share corresponding to C and save 〈(κi, κ̃i, ỹi,), λi〉 to H4List.

Since H3 are assumed to have already been queried in this game (i.e., these case were
already dealt with in the previous game), the above simulated decryption share generation
server perfectly simulates the real one except the error (collision) in the simulation of H4

occurs. Note that this happens with probability qH4
/2k, considering up to qH4

queries to
H4. Adding up all the decryption queries up to qD, we have

|Pr[AskH26
] − Pr[AskH25

]| ≤
qDqH4

2k
.

Now, recall that the target ciphertext used so far is C∗
BDH that constructed in Game G3.

Accordingly, AskH26
denotes an event that the BDH key ê(P, P)abc has been queried to the

random oracle H2. Note also that we have used the easiness of the DDH problem in the group
G to simulate the decryption oracle.

Therefore, at this stage, ABDH can solve the BDH problem by outputting the queries to the
random oracle H2. That is, we have

Pr[AskH26
] ≤ SuccBDH

G,ABDH(k).

Thus, putting all the bounds we have obtained in each game together, we have

1

2
SuccIND−THD−CCA

ThdBm,BCCA (k) = |Pr[E0] − Pr[E2]| ≤ Pr[AskH22
] ≤ Pr[AskH25

] +
qD

2k

≤
qD

2k
+ Pr[AskH26

] +
qDqH4

2k
≤

qD + qDqH4

2k
+ SuccBDH

G,ABDH(k).

Considering the running time tBDH and queries of an arbitrary BDH-attacker for the group G,
we obtain the bound in the lemma statement. ⊓⊔

6 Application to Mediated ID-Based Encryption

6.1 Security Issues in Mediated ID-Based Encryption

The main motivation of mediated cryptography [3] is to revoke a user’s privilege to perform
cryptographic operations such as decrypting ciphertexts or signing messages instantaneously.
In [3], Boneh et al. constructed the first mediated encryption and signature schemes using the
RSA primitive. Their idea is to split a user’s private key into two parts and give one piece to
the on-line Security Mediator (SEM) and the other to the user. To decrypt or sign, the user
must acquire a message-specific token which is associated with the SEM part of private key
from the SEM. As a result, revocation is achieved by instructing the SEM not to issue tokens
for the user.

Recently, the problem of realizing mediated encryption in the ID-based setting was con-
sidered by Ding and Tsudik [7]. They proposed an ID-based mediated encryption scheme

19

based on RSA-OAEP [2]. Although their scheme offers good performance and practicality, it
has a drawback which stems from the fact that a common RSA modulus is used for all the
users within the system and hence, to guarantee the security of Ding and Tsudik’s scheme,
one should assume that the SEM’s private key must be protected throughout the life of the
system.

As an alternative to Ding and Tsudik’s solution, Libert and Quisquater [13] proposed a
new mediated ID-based encryption scheme based on Boneh and Franklin’s ID-based encryption
scheme. In term of security, it has an advantage over Ding and Tsudik’s scheme in a sense
that a compromise of the SEM’s private key does not lead to a break of the whole system. In
contrast to this positive result, Libert and Quisquater observed that even though the SEM’s

private key is protected, their scheme as well as Ding and Tsudik’s scheme are not secure against
“inside attack” in which the attacker who possesses the user part of private key conducts
chosen-ciphertext attack. As a result, it should be strictly assumed in those schemes that
users’ private keys must be protected to ensure chosen-ciphertext security. In practice, this

assumption is fairly strong in that there may be more chance for users to compromise their
private keys than the SEM does since the SEM is usually assumed to be a trusted entity
configured by a system administrator.

However, in the following section, we present a new mediated ID-based encryption scheme
based on our IdThdBm scheme, which is secure against ciphertext attack in a strong sense, that
is, secure against chosen-ciphertext attack conducted by the attacker that obtains the user
part of private key.

6.2 Description of Our Scheme – mIdeBm

We describe our mediated ID-based encryption scheme “mIdeBm” based on the IdThdBm scheme
with (t, n) = (2, 2) as follows.

• Setup: Given a security parameter k, the PKG runs the key generation algorithm of
IdThdBm. The output of this algorithm cp = (G, q, P , ê, H1, H2, H3, H4, YPKG) is as
defined in the description of IdThdBm. Note that cp is given to all interested parties while
the master key x is kept secret within the PKG.

• Keygen: Given a user’s identity ID, the PKG computes QID = H1(ID) and DID = xQID.
It then splits DID using the (2, 2)-secret-sharing technique as follows1.

– Pick R at random from G∗ and construct F (u) = DID + uR for u ∈ {0} ∪ IN.

– Compute DID,sem = F (1) and DID,user = F (2).

The PKG gives DID,sem to the SEM and DID,user to the user.

• Encrypt: Given a plaintext M ∈ {0, 1}l and a user’s identity ID, a sender creates a
ciphertext C = (U, V, W) such that

U = rP ; V = H2(κ) ⊕ M ; W = rH3(U, V),

where κ = ê(H1(ID), YPKG)r for random r ∈ ZZ∗
q .

1In this particular case of (2, 2)-secret-sharing, one may share DID by taking a random DID,sem and computing
DID,user = DID − DID,sem for efficiency.

20

• Decrypt: When receiving C = (U, V, W), a user forwards it to the SEM. The SEM and
the user perform the following in parallel.

– SEM (We call this procedure “SEM oracle”):

1. Check if the user’s identity ID is revoked. If it is, return “ID Revoked”.

2. Otherwise, do the following:

∗ Compute H3 = H3(U, V) and check if ê(P, W) = ê(U, H3). If C has passed
this test, compute κsem = ê(DID,sem, U) and send δID,sem,C = (sem, κsem)
to the user. Otherwise, send δID,sem,C = (sem, “Invalid Ciphertext”) to the
user.

– User (We call this procedure “User oracle”):

1. Compute H3 = H3(U, V) and check if ê(P, W) = ê(U, H3). If C has passed this
test, compute κuser = ê(DID,user, U). Otherwise, return “Reject” and terminate.

2. Get δID,sem,C from the SEM and do the following:

∗ If δID,sem,C is of the form (sem, “Invalid Ciphertext”), return “Reject” and

terminate. Otherwise, compute κ = κ
cΦ
01

semκ
cΦ
02

user where cΦ
01 and cΦ

02 denote the
Lagrange coefficients for the set Φ = {1, 2} and M = H2(κ)⊕V , and return
M .

Notice that in the SEM oracle of the above scheme, the validity of a ciphertext is checked
before generating a token in the same way as the decryption share generation algorithm of
IdThdBm does.

6.3 Security Analysis – mIdeBm

In this section, we show that the chosen-ciphertext security of the above scheme against the
strong attacker that obtains the user part of private key is relative to the IND-IDTHD-CCA
(Definition 2) security of the (2, 2)-IdThdBm scheme.

To begin with, we define IND-mID-sCCA (indistinguishability of mediated ID-based en-
cryption against strong chosen-ciphertext attack), which is similar to IND-mID-wCCA (“w”
stands for “weak”) defined in [13] but assumes the stronger attacker that can corrupt users to
get their private keys.

Definition 5 (IND-mID-sCCA) Let ACCA′
be an attacker that defeats the IND-mID-sCCA

security of an mediated ID-based encryption scheme MIDE which consists of Setup, Keygen,
Encrypt and Decrypt algorithms. (For details of these algorithms, readers are referred to
mIdeBm given in Section 6.2.) We assume that ACCA′

is a probabilistic Turing machine taking
a security parameter k as input. Consider the following game in which the attacker ACCA′

interacts with the “Challenger”.

Phase 1: The Challenger runs the Setup algorithm taking a security parameter k. The
Challenger then gives the common parameter to ACCA′

.

Phase 2: Having obtained the common parameter, ACCA′
issues the following queries.

– “User key extraction” query ID: On receiving this query, the Challenger runs the
Keygen algorithm to obtain the user part of private key and sends it to ACCA′

.

21

– “SEM key extraction” query ID: On receiving this query, the Challenger runs the
Keygen algorithm to obtain the SEM part of private key and sends it to ACCA′

.

– “SEM oracle” query (ID, C): On receiving this query, the Challenger runs the Key-
gen algorithm to obtain a SEM part of private key. Taking the resulting private key
as input, the Challenger runs the SEM oracle in the Decrypt algorithm to obtain a
decryption token for C and sends it to ACCA′

.

– “User oracle” query (ID, C): On receiving this query, the Challenger runs the Key-
gen algorithm to obtain a User part of private key. Taking the resulting private key
as input, the Challenger runs the User oracle in the Decrypt algorithm to obtain a
decryption token for C and sends it to ACCA′

.

Phase 3: ACCA′
selects two equal-length plaintexts (M0, M1) and a target identity ID

∗

which was not queried before. On receiving (M0, M1) and ID
∗, the Challenger runs the

Keygen algorithm to obtain User and SEM parts of the private key associated with ID
∗.

The Challenger then chooses β ∈ {0, 1} at random and creates a target ciphertext C∗ by
encrypting Mβ under the target identity ID

∗. The Challenger gives the target ciphertext

and the User part of the private key to ACCA′
.

Phase 4: ACCA′
continues to issue “User key extraction” query ID 6= ID

∗, “SEM key
extraction” query ID 6= ID

∗, “SEM oracle” query (ID, C) 6= (ID∗, C∗), and “User oracle”
query (ID, C) 6= (ID∗, C∗). The details of these queries are as described in Phase 2.

Phase 5: ACCA′
outputs a guess β̃ ∈ {0, 1}.

We define the attacker ACCA′
’s success by

SuccIND−mID−sCCA

MIDE,ACCA′ (k) = 2 · Pr[β̃ = β] − 1.

We denote by SuccIND−mID−sCCA
MIDE (tCCA, qE,user, qE,sem, qD,sem, qD,user) the maximum of

the attacker ACCA′
’s success over all attackers ACCA′

having running time tCCA and making
at most qE,user “User key extraction” queries, qE,sem “SEM key extraction” queries, qD,sem

“SEM oracle” queries, and qD,user “User oracle” queries. Note that the running time and the
number of queries are all polynomial in the security parameter k.

The mediated ID-based encryption scheme MIDE is said to be IND-mID-sCCA secure if
SuccIND−mID−sCCA

MIDE (tCCA, qE,user, qE,sem, qD,sem, qD,user) is negligible in k.

We now state and prove the following theorem.

Theorem 2 Suppose that an IND-mID-sCCA attacker for the mIdeBm scheme issues up to

qE,user “User key extraction” queries, qE,sem “SEM key extraction” queries, qD,sem “SEM ora-

cle”, and qD,user “User oracle” queries. Using this attacker as a subroutine, we can construct

an IND-IDTHD-CCA attacker for the IdThdBm scheme with (t, n) = (2, 2), whose running time

and the number of private key extraction and decryption share generation queries are bounded

by tIDCCA, qE, and qD respectively. Concretely, we obtain the following advantage bound:

SuccIND−mID−sCCA
mIdeBm

(tCCA,E,user , qE,sem, qD,sem, qD,user)

≤ SuccIND−IDTHD−CCA
IdThdBm

(tIDCCA, qE , qD),

22

where tIDCCA = tCCA+max(qE,user, qE,sem, qD,sem, qD,user)O(k3), qE = O(1)(qE,user+qE,sem+
qD,sem + qD,user), qD = O(1)(qD,sem + qD,user) for a security parameter k. Here, tCCA denotes

the running time of the ID-mID-sCCA attacker.

Proof. For notational convenience, we assume that the same group parameter cp = {G, q, ê, P, YPKG}
where YPKG = xP and security parameter k are given to attackers for mIdeBm and IdThdBm.

Let ACCA′
denote an attacker that defeats the IND-mID-sCCA security of the mIdeBm

scheme. Let ACCA denote an attacker that defeats the IND-IDTHD-CCA security of the
IdThdBm scheme with (t, n) = (2, 2).

Our aim is to simulate the view of ACCA′
in the real attack game denoted by G0 until we

obtain a game denoted by G1, which is related to the ability of the attacker ACCA to defeat
the IND-IDTHD-CCA security of the IdThdBm scheme.

• Game G0: As mentioned, this game is identical to the real attack game described in
Definition 5. We denote by E0 the event that ACCA′

’s output β̄ ∈ {0, 1} is equal to
β ∈ {0, 1} chosen by the Challenger. We use a similar notation Ei for all Games Gi.
Since Game G1 is the same as the real attack game, we have

Pr[E0] =
1

2
+

1

2
SuccIND−mID−sCCA

mIdeBm,ACCA (k).

• Game G1: First, we give ACCA’s common parameter to ACCA′
. We then deal with the

simulation of ACCA′
’s view in Phase 2 of the real attack game as follows.

On receiving ACCA′
’s “User key extraction” queries, each of which consists of ID, we

perform the following:

– Search UserKeyList which consists of 〈identity, corresponding user part of private
key〉 pairs for an entry that is matched against ID.

∗ If there exists such an entry, extract a corresponding user part of private key
and return it to ACCA′

as an answer.

∗ Otherwise, do the following:

· Forward ID as a “private key extraction” query to ACCA’s Challenger to ob-
tain a private key DID associated with ID. (On receiving ID, the Challenger
runs the private key extraction algorithm of IdThdBm taking ID as input
and returns a private key DID associated with ID to ACCA.)

· Get DID from the communication between the Challenger and ACCA and
split it into DID,sem and DID,user using the (2, 2) secret-sharing technique
presented in Section 5.1.

· Return DID,user to ACCA′
as an answer.

· Add 〈ID, DID,user〉 to UserKeyList. Also, add 〈ID, DID,sem〉 to SEMKeyList

which consists of 〈identity, corresponding SEM part of private key〉 pairs.

We answer ACCA′
’s “SEM key extraction” queries in a similar way as we do for the “User

key extraction” queries. Note that in this case, SEMKeyList and UserKeyList are also
updated concurrently.

On receiving ACCA′
’s “SEM oracle” queries, each of which consists of (ID, C) where

C = (U, V, W), we perform the following:

23

– Search SEMKeyList for an entry 〈ID, DID,sem〉.

∗ If there exists such an entry, extract DID,sem from it. Then, check if ê(P, W) =
ê(U, H3) for H3 = H3(U, V).

· If C has passed this test, compute κsem = ê(DID,sem, U) and return δID,sem,C =

(sem, κsem) to ACCA′
.

· Otherwise, return δID,sem,C = (sem, “Invalid Ciphertext”) to ACCA′
.

∗ If 〈ID, DID,sem〉 does not exist in SEMKeyList, do the following:

· Forward ID as a “private key extraction” query to ACCA’s Challenger to
obtain a private key DID associated with ID.

· Get DID from the communication between the Challenger and ACCA and
split it into DID,sem and DID,user using the (2, 2) secret-sharing technique.

· Compute κsem = ê(DID,sem, U) and return δID,sem,C = (sem, κsem) to ACCA′
.

· Add 〈ID, DID,sem〉 and 〈ID, DID,user〉 to SEMKeyList and UserKeyList respec-
tively.

On receiving ACCA′
’s “User oracle” queries, each of which consists of (ID, C), we perform

the following:

– Search SEMKeyList for an entry 〈ID, DID,sem〉.

∗ If there exists such an entry, search UserKeyList for the corresponding entry
〈ID, DID,user〉. (Recall that SEMKeyList and UserKeyList are updated concur-
rently. Hence if there exists an entry in SEMKeyList, we can always find the
corresponding entry in UserKeyList.) Then, check if ê(P, W) = ê(U, H3) for
H3 = H3(U, V).

· If C has passed this test, compute κsem = ê(DID,sem, U) and κuser =
ê(DID,user, U), and combine them using the Lagrange interpolation tech-

nique and return the resulting value to ACCA′
.

· Otherwise, return “Reject” to ACCA′
.

∗ If 〈ID, DID,sem〉 does not exist in SEMKeyList, do the following:

· Forward ID as a “private key extraction” query to ACCA’s Challenger to
obtain a private key DID associated with ID.

· Get DID from the communication between the Challenger and ACCA and
split it into DID,sem and DID,user using the (2, 2) secret-sharing technique.

· Perform the same routine as we do for the case when 〈ID, DID,sem〉 exists
in SEMKeyList and return a special symbol “Reject” or a certain value to
ACCA′

· Add 〈ID, DID,sem〉 and 〈ID, DID,user〉 to SEMKeyList and UserKeyList respec-
tively.

In Phase 3, if ACCA′
issues two equal-length plaintexts (M0, M1) and a target identity

ID
∗, we forward (M0, M1, ID

∗) to ACCA’s Challenger. On receiving (M0, M1, ID
∗), the

Challenger runs the private key extraction algorithm of IdThdBm to get a private key
DID∗ associated with ID

∗ and runs the private key distribution algorithm of IdThdBm to
split DID∗ into S∗

1 and S∗
2 . The Challenger returns S∗

2 to ACCA as a corrupted party’s
private key. We then rename S∗

1 and S∗
2 as DID∗,sem and DID∗,user respectively and

24

send DID∗,user to ACCA′
. (That is, the strong attacker ACCA′

possesses the user part of
private key.) Now, the Challenger chooses β ∈ {0, 1} at random and runs the encryption
algorithm E of IdThdBm taking (Mβ , ID∗) as input and gets a target ciphertext C∗. If the

Challenger returns C∗, we send that to ACCA′
.

On receiving ACCA′
’s “User key extraction” and “SEM key extraction” queries in Phase

4, we answer them in the same way we did in Phase 2.

If ACCA′
issues “SEM oracle” queries, each of which consists of (ID, C) 6= (ID∗, C∗), in

Phase 4, we perform the following:

– If ID 6= ID
∗, answer the query in the same way we did for the SEM oracle query in

Phase 2.

– If ID = ID
∗ (in this case, C 6= C∗), do the following:

∗ Forward C to ACCA’s Challenger as a “decryption share generation” query. (On
receiving C, the Challenger runs the decryption share generation algorithm of
IdThdBm taking (S∗

1(= DID∗,sem), C) as input, gets a corresponding decryption
share δ1,C and returns it to ACCA.)

∗ Get δ1,C from the communication between the Challenger and ACCA. Then, do
the following:

If δ1,C 6= (1, “Invalid Ciphertext”),

· Take κ1 out from δ1,C

· Rename κ1 as κsem and send δID∗,sem,C = (sem, κsem) to ACCA′
.

If δ1,C = (1, “Invalid Ciphertext”),

· Send δID∗,sem,C = (sem, “Invalid Ciphertext”) to ACCA′
.

If ACCA′
issues “User oracle” queries, each of which consists of (ID, C) 6= (ID∗, C∗), in

Phase 4, we perform the following:

– If ID 6= ID
∗, answer the query in the exactly same way we did for the “User oracle”

query in Phase 2.

– If ID = ID
∗ (in this case, C 6= C∗), do the following:

∗ Forward C to ACCA’s Challenger as a “decryption share generation” query. (On
receiving C, the Challenger runs the decryption share generation algorithm of
IdThdBm taking (S∗

1(= DID∗,sem), C) as input, gets a corresponding decryption
share δ1,C and returns it to ACCA.)

∗ Get δ1,C from the communication between the Challenger and ACCA. Then, do
the following:

If δ1,C 6= (1, “Invalid Ciphertext”),

· Take out κ1 from δ1,C , rename it as κsem, and form δID∗,sem,C = (sem, κsem).

· Compute κuser = ê(DID∗,user, U). (Recall that the ACCA’s Challenger re-
turned DID∗,user as a corrupted party’s private key.)

· Check the validity of C. If C is invalid, that is, ê(P, W) 6= ê(U, H3) for
H3 = H3(U, V), return “Reject”. Otherwise, combine the shares κuser and
κsem using the Lagrange interpolation technique and return the resulting
value to ACCA′

.

25

If δ1,C = (1, “Invalid Ciphertext”),

· Send “Reject” to ACCA′
.

Finally, once ACCA′
outputs a guess β′ ∈ {0, 1}, we return it as ACCA’s guess.

Note from the simulation that ACCA′
’s view in the real attack game is identical to it’s

view in Game G1. Note also that the bit β is uniformly chosen. Hence we have

Pr[E1] −
1

2
≥ Pr[E0] −

1

2
.

By definition of Pr[E0] and Pr[E1], we obtain

SuccIND−IDTHD−CCA

IdThdBm,ACCA (k) ≥ SuccIND−mID−sCCA

mIdeBm,ACCA′ (k).

Considering the running time and the number of queries, we obtain the bound in the theorem
statement. ⊓⊔

7 Concluding Remarks

In this paper, we discussed the issues related to the realization of ID-based threshold decryption
and proposed the first threshold ID-based decryption scheme provably secure against chosen-
ciphertext attack. We also showed how our ID-based threshold decryption scheme can result
in a mediated ID-based encryption scheme secure against “inside attack”, whereby an attacker
who possesses a user part of private key conducts chosen-ciphertext attack.

Interesting future research would be finding more security applications where “ID-based
threshold decryption” is particularly useful.

Acknowledgement

The authors are grateful to anonymous referees for their helpful comments. The first author
also thanks Ron Steinfeld and John Malone-Lee for their valuable comments on the earlier
version of this paper.

References

[1] M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for Designing Efficient

Protocols, Proceedings of the First ACM Conference on Computer and Communications Security
1993, pages 62–73.

[2] M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, Advances in Cryptology -Proceedings
of Eurocrypt ’94, LNCS 950, Springer-Verlag 1994, pages 92–111.

[3] D. Boneh, X. Ding, G. Tsudik and C. Wong, A Method for Fast Revocation of Public Key Certifi-

cates and Security Capabilities, Proceedings of the 10th USENIX Security Symposium, USENIX,
2001.

[4] D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing, Proceedings of
CRYPTO 2001, LNCS 2139, Springer-Verlag 2001, pages 213–229.

26

[5] D. Boneh, B. Lynn and H. Shacham, “Short Signatures from the Weil Pairing”, dvances in Cryp-
tology - Proceedings of ASIACRYPT 2001, LNCS 2248 LNCS, pages 566–582, Springer-Verlag,
2001.

[6] D. Chaum and T. Perderson, Wallet Databases with Observers, Proceedings of CRYPTO ’92,
LNCS 740, Springer-Verlag 1992, pages 89–105.

[7] X. Ding and G. Tsudik, Simple Identity-Based Cryptography with Mediated RSA, Proceedings
CT-RSA 2003, LNCS 2612, Springer-Verlag 2003, pages 192–209.

[8] Y. Dodis and M Yung, Exposure-Resilience for Free: The Hierarchical ID-based Encryption Case,
Proceedings of IEEE Security in Storage Workshop 2002, pages 45–52.

[9] T. ElGamal, A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms,
IEEE Trans. Info. Theory, 31, 1985, pages 469–472.

[10] P. Fouque and D. Pointcheval, Threshold Cryptosystems Secure Chosen-Ciphertext Attacks, Pro-
ceedings of ASIACRYPT 2001, LNCS 2248, Springer-Verlag 2001, pages 351–368.

[11] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, Secure Distributed Key Generation for

Discrete-Log Based Cryptosystem, Proceedings of EUROCRYPT ’99, LNCS 1592, Springer-Verlag
1999, pages 295–310.

[12] C. Gentry and A. Silverberg, Hierarchical ID-Based Cryptography, Proceedings of ASIACRYPT
2002, LNCS 2501, Springer-Verlag 2002, pages 548–566.

[13] B. Libert and J. Quisquater, Efficient Revocation and Threshold Pairing Based Cryptosystems,
Principles of Distributed Computing (PODC) 2003.

[14] C. Lim and P. Lee, Another Method for Attaining Security Against Adaptively Chosen Ciphertext

Attack, Proceedings of CRYPTO ’93, LNCS 773, Springer-Verlag 1993, pages 410–434.

[15] A. J. Menezes, T. Okamoto, and S. A. Vanstone: Reducing Elliptic Curve Logarithms to a Finite

Field, IEEE Tran. on Info. Theory, Vol. 31, pages 1639–1646, IEEE, 1993.

[16] A. Shamir, How to Share a Secret, Communications of the ACM, Vol. 22, 1979, pages 612–613.

[17] A. Shamir, Identity-based Cryptosystems and Signature Schemes, Proceedings of CRYPTO ’84,
LNCS 196, Springer-Verlag 1984, pages 47–53.

[18] V. Shoup and R. Gennaro, Securing Threshold Cryptosystems against Chosen Ciphertext Attack,
Journal of Cryptology, Vol. 15, Springer-Verlag 2002, pages 75–96.

27

