
A reduction of the space for the parallelized

Pollard lambda search

on elliptic curves over prime finite fields and on

anomalous binary elliptic curves

Igor Semaev

Department of Mathematics

University of Leuven,Celestijnenlaan 200B

3001 Heverlee,Belgium

Igor.Semaev@wis.kuleuven.ac.be

August 11, 2003

Abstract

Let E be an elliptic curve defined over a prime finite field Fp by a
Weierstrass equation. In this paper we introduce a new partition of E(Fp)
into classes which are generally larger than {±R}. We give an effective
procedure to compute representatives of such classes. So one can iterate
the pseudorandom function, related to a discrete logarithm problem in
E(Fp), on the set of representatives of classes and get probably some
speed up in computing discrete logarithms. The underlying idea how to
enlarge known classes on anomalous binary elliptic curves is given.

1 Introduction

Let E be the elliptic curve defined over the prime field Fp of characteristic p by
the equation

eY 2 = f(X), where f(X) = a1X
3 + a2X

2 + a3X + a4. (1)

Let e, a1, a2, a3, a4 be integer numbers. We denote |f | = maxi |ai|. Let Q be
a point from the group E(Fp) that generates a subgroup of E(Fp) of order m.
The discrete logarithm problem is given a point P ∈< Q > find the residue
r(modm) such that P = rQ in E(Fp). This problem is one of the hard problem
in the public key cryptography, [1] and [2]. The best algorithm for solving the
discrete logarithm problem on a general elliptic curve over a large prime finite
field is the parallelized Pollard lambda-method, see [3] and [4]. In this algorithm
each processor involved in the computation iterates a pseudorandom function on

1

< Q >. This function is chosen such that the logarithm of ψ(R) is expressed by
affine functions in the logarithm of R and the unknown logarithm of P , which we
just want to compute. In [5] it was found that it is faster to iterate the function
ψ on the classes {±R} of points in < Q >. It resulted in the reduction of the
space for the parallelized Pollard lambda search for two times. This reduction
speeds up the discrete logarithm computation by a factor of

√
2.

In the present paper we introduce a new partition of E(Fp) into classes which
are generally larger than {±R}. We give an effective procedure to compute
representatives of such classes. So one can iterate the pseudorandom function on
the set of representatives of classes and get probably some speed up in computing
discrete logarithms. The number of points in a class doesn’t exceed O(

√
log p).

So the speed up doesn’t exceed a factor bounded by O(4
√

log p). In reality it
is about a constant closed to 1 because most of classes should be like {±R}.
We should also mention here that the number of new classes and the number
of points in each class apparently depend on the size |f | of the polynomial f .
Namely, the less |f |, the bigger some classes and so the less the number of
classes.

In the last Section of the paper the underlying idea how to enlarge known
classes on anomalous binary elliptic curves is given.

2 Auxiliary algorithms

We consider the curve (1) as an elliptic curve over the field Q of rational num-
bers. Let R = (x, y) be a point from E(Q) and x = x′/x′′ be the representation
of the rational number x in its lowest terms. We put |x| = max{|x′|, |x′′|} and
|R| = |x|. We assume that the integer numbers e, a1, a2, a3, a4 take O(log |x|)
bits for their representation.

First we consider if there exists a natural number n > 1 and a point R1 ∈
E(Q) such that nR1 = R. Then we show how to find such a point R1 in the
case when it exists. It is obvious that we can restrict ourselves to working
with x-coordinates of the points R,R1. So to find the point R1 is to find its
x-coordinate x1. For the sake of the application here we are searching R1 such
that |R1| < |R|/2. Intuitively it is the most probable case.

We’ll give an heuristic algorithm that solves this problem in O(log2 |x|) bi-
nary operations. It is well-known that if nR1 = R then

n2 log |R1| +O(1) = log |R|, (2)

where O(1) depends on E and n, see [8]. Euristically it implies that n =
O(

√

log |x|). Let n be a natural number that satisfies the restriction above.
First we test if a point R1 exists for this n. Let q be a prime number of the size
about the size of n. We consider the reduction of the rational elliptic curve (1)
modulo q. That is a homomorphic map

E(Q) → E(Fq),

2

where E(Fq) is the group of points on the elliptic curve (1) modulo q or a group
isomorphic to the additive or the multiplicative group of the finite field Fq. Let
n divides Nq = |E(Fq)|. It is obvious that if

(Nq/n)R 6= P∞

in E(Fq) then R isn’t nth power of any point in E(Q). If the point R passes l
such tests for different q one can say that R is a nth power with the probability
of the mistake about 1/nl. To accomplish this test one doesn’t need the y-
coordinate of the point R. See the formulae in the end of this Section. So the
complexity of this test is O(log3 q) = o(log |x|) binary operations. It takes some
time to find such a q. One can show that it is no more than O(log1+ε |x|) binary
operations. But we can neglect this time in the forthcoming application, for
q can be precomputed. We see now that the complexity of a few tests for all
possible n is bounded by O(log1/2+ε |x|) binary operations for small ε.

We take the maximal n that has passed a number of tests above. We’ll
explain now how to find a point R1 ∈ E(Q) such that nR1 = R. We consider
two possibilities.

Let E(Q) not have any nontrivial n-torsion points. Then we fix a list of
prime numbers q such that n is coprime to Nq = |E(Fq)| and

∏

q q > |x|2. For
each q we solve the equation

Rn
q ≡ R (mod q)

in Rq ∈ E(Fq) by formulae

Rq ≡ Rmq (mod q),

where mq is a natural number such that nmq ≡ 1(modNq). Let xq be the x-
coordinate of Rq. Then using the Chinese Remainder Theorem and the extended
Euclidean Algorithm we find a rational number x1 congruent to xq modulo q

for all q from the list such that |x1| <
√

∏

q q. If |x1| ≥ |x|/2 we try smaller n

or say that the problem hasn’t solution. If |x1| < |x|/2, which is more probable,
we terminate. The complexity of this step is O(log2 |x|) binary operations.

Let E(Q) have a nontrivial n-torsion point now. Then the number Nq =
|E(Fq)| isn’t coprime to n for any prime number q. So if we use the same step
as above we have too many solutions as the result of the Chinese Remainder
Theorem. So we apply Henzel Lemma. It is obvious that we can restrict our-
selves to the case when n is a prime number. According to Mazur’s Theorem,
see [8], n = 2, 3 or 5. We’ll give an example of the application of Henzel Lemma
when n = 2. When n = 3 or 5 the method is similar.

Using the duplication formula on E we get

x =
f ′(x1)

2 − 4a2f(x1) − 8a1x1f(x1)

4a1f(x1)
.

That is x1 is a root of the polynomial

a2
1X

4 − 4xa2
1X

3 − (2a1a3 + 4a1a2x)X
2 −

(4a1a3x+ 8a1a4)X + a2
3 − 4a2a4 − 4a1a4x.

3

in X. We fix a prime number q and a natural number t such that qt > |x|2.
For each root modulo q of the polynomial above we apply Henzel Lemma to
get a root x′1 of this polynomial modulo qt. With some small probability the
polynomial may have a lot of solutions modulo some qs, where 1 < s ≤ t. In
this case we take another prime number q and repeat the computations. Then
with the extended Euclidean Algorithm we find a rational x1 ≡ x′1(mod qt),
where |x1| ≤

√

qt. If |x1| < |x|/2, which is more probable, we terminate. The
complexity of this step is O(log2 |x|) binary operations as above.

Let P = (x, y) be any affine point on E defined by (1). We denote nP =
(xn, yn), so x1 = x and y1 = y. If nP = P∞ we put xn = ∞. The x-coordinate
of nP doesn’t depend on y. We are going to give an algorithm for computing
xn without using y-coordinates. This algorithm is a slight generalization of
that due to Montgomery [7] designed for a particular case when f(0) = 0. Let
P1 = (x1, y1) and P2 = (x2, y2) be two affine points on E such that x1 6= x2. In
fact we need to consider only this case. We denote

P3 = (x3, y3) = P1 + P2,

P4 = (x4, y4) = P1 − P2.

One can see that x3, x4 are roots of a quadratic polynomial, whose coefficients
are symmetric functions in x1 and x2. Really, we derive

x3 =
eλ2

3 − a2

a1
− x1 − x2,

x4 =
eλ2

4 − a2

a1
− x1 − x2,

where λ3 = (y1 − y2)/(x1 − x2) and λ4 = (y1 + y2)/(x1 − x2). Then

x3 + x4 =
e(λ2

3
+λ2

4
)−2(a2+a1(x1+x2))

a1

=

A(x1, x2),

and

x3x4 =
e2λ2

3
λ2

4
−e(a2+a1(x1+x2))(λ

2

3
+λ2

4
)+(a2+a1(x1+x2))

2

a2

1

=

B(x1, x2),

Since λ2
3λ

2
4 and λ2

3 + λ2
4 are symmetric functions in x1, x2, the x-coordinates x3

and x4 are roots of the polynomial

X2 −A(x1, x2)X +B(x1, x2),

where A(x1, x2) and B(x1, x2) are symmetric functions in x1 and x2.

4

For the duplication on E we use the usual formulae. That is

x2m =
eλ2 − a2

a1
− 2xm,

where λ2 = (f ′(xm))2/(4ef(xm)). Therefore

x2m =
(f ′(xm))2 − 4a2f(xm)

4a1f(xm)
− 2xm (3)

At each step of the algorithm that computes xn we have a pair of x-coordinates
(xm, xm+1). The initial pair is (x1, x2). If xm 6= xm+1, then we compute
(x2m, x2m+1) or (x2m+1, x2m+2) by formulae (3) and

x2m+1 = A(xm, xm+1) − x1 or x2m+1 = B(xm, xm+1)/x1.

Really, x2m+1, x1 are roots of the polynomialX2−A(xm, xm+1)X+B(xm, xm+1).
If xm = xm+1, then (2m+ 1)P = P∞ and we put x2m+1 = ∞. Let xm+1 = ∞
now. It is easy to see that x2m+1 = xm. Similarly when xm = ∞ then
x2m+1 = xm+1. This gives a way to compute xn. Let n0, . . . , nt−1, 1 be the
2-adic expansion of the natural number n, that is

n = n0 + . . .+ nt−12
t−1 + 2t,

where ni = 0 or 1. Then we put m0 = 1 and compute

(xmi
, xmi+1) =

{

(x2mi
, x2mi+1), if nt−i = 0,

(x2mi+1, x2mi+2), if nt−i = 1,

for i ≥ 1. Finally we have xn = xmt
.

3 The algorithm

We define a pseudorandom function ψ on the set of x-coordinates of points.
Let’s denote by xP the x-coordinate of the point P ∈ E(Fp). We partition Fp

into t ≥ 3 roughly equal size sets S1, S2, . . . , St and fix t small different natural
numbers r1, r2, . . . , rt bigger than 1. To define ψ we put

ψ(xP) = xrkP ,

when xP ∈ Sk. According to the terminology introduced in [6] this is a mul-
tiplicative method of getting a pseudorandom function on E(Fp). To compute
xrkP one needs nothing but xP and formulae given in the previous Section. As
we’ll see there is a step in the algorithm, when we should use usual formulae
involving y-coordinates for the arithmetic operation on E. It is only to set up
initial points for processors iterating the pseudorandom function ψ.

Before presenting the algorithm we discuss the representation of residues
modulo p by rational numbers. Let x be a nonzero residue modulo p. By means

5

of the extended Euclidean Algorithm applied to x and p one finds a pair of
integer numbers x′ and x′′ such that

x ≡ x′

x′′
(mod p) and 1 ≤ |x′|, x′′ < √

p. (4)

It is easy to understand that there exists one or two such pairs. Let they be
two, namely x′, x′′ and x′1, x

′′

1 . Then the numbers x′ and x′1 have different signs
and

x′x′′1 − x′1x
′′ = ±p.

Therefore if

x ≡ x′

x′′
(mod p) and 1 ≤ |x′|, x′′ < √

p/2

then there exists only one pair satisfying (4). We are able to define the rep-

resentation of a point P ∈ E(Fp) by a rational number. It is x′

x′′
in its lowest

terms satisfying (4), where x = xP . The integer numbers x′ and x′′ are the
result of a fixed variant of the extended Euclidean Algorithm applied to xP

and p. If xP ≡ 0(mod p) we represent xp by 0. There won’t be any confusion
even if there are two pairs of integer numbers satisfying (4). Therefore we put
|xP | = max{|x′|, |x′′|}.

We’ll give an informal description of the algorithm. For each natural number
s, where 1 ≤ s ≤ O(

√
log p), one should have precomputed a few small prime

numbers q such that s divides Nq(d). Here Nq(d) is the order of the group of
points defined over Fq on the rational elliptic curve

dY 2 = f(X) (5)

taken modulo q. Only two variants for d should be taken into account. Namely,
when d is a square modulo q and a nonsquare. Obviously one can restrict himself
to the case when s is a prime number. It reduces the number of tests described
in Section 2.

Then for each s, coprime to the order of the torsion group on the rational
elliptic curve (5), which only depends on the polynomial f(X), one should
have precomputed a list of small prime numbers q, together with sq, such that
gcd(s,Nq(d)) = 1, and

ssq ≡ 1(modNq(d)),

and
∏

q q > p. We conjecture that such a list of small prime numbers may be
found. Therefore one solves the equation sR1 = R on rational curve (5) in one
step by using the Chinese Remainder Theorem.

Let s not be coprime to the order of the torsion group on the rational elliptic
curve (5) and l be their gcd. Then one should have precomputed a list of small
prime numbers q, together with sq, such that gcd(s,Nq(d) = l, and

ssq ≡ l(modNq(d)),

and
∏

q q > p. We conjecture that such a list of small prime numbers may be
found. Therefore one solves the equation sR1 = R on the rational curve (5) in

6

two steps. At the first one finds lR1 by using the Chinese Remainder Theorem.
At the second step computes R1 by using Henzel Lemma.

The input of the algorithm is the points Q,P ∈ E(Fp) such that Q generates
a group of order m and P ∈< Q >. The output is the residue r modulo m such
that P = rQ. We suppose using T ≥ 2 processors and one central processor.

Step 1 On processor i generate random numbers ui and vi, compute the point
Pi0 = uiP + viQ in E(Fp) and put xi0 to be the x-coordinate of Pi0. Set
up the initial values for other parameters ri0 = 1 and si0 = 1.

Iterate ψ on the processor i with the starting point xi0. That is given
xij ∈ Sk, where j ≥ 0, compute

x = ψ(xij) and rij+1 ≡ rijrk(modm).

Compute the representation (4) of the residue x modulo p by using the
extended Euclidean Algorithm. Then the rational point

R = (
x′

x′′
,

1

(x′′)2
)

is on the rational elliptic curve Ed defined by the equation (5), where

d = (x′′)4f(x′

x′′
). We remark that one needs to compute neither d nor

1
(x′′)2 as integer numbers. One should only decide weather d is a square

modulo small prime numbers q from the list or not.

Using the precomputed list of small q find, by tests described in Section
2, the maximal s such that sR1 = R in Ed(Q). When s > 1 with another
precomputed list of small q find R1 = (x1, y1) for |x1| < |x|/2, if such a
point exists. In the case when R1 doesn’t exist, which is very unlikely,
take smaller s > 1 and repeat the computation. We remark that all
computations are being done on Ed modulo some small prime numbers q
and they don’t make any use of the y-coordinates of points involved. In
particular one only needs to compute x1 at this step. Put

xij+1 ≡
{

x1, if s > 1 and R1 exists,

x, if s = 1 or R1 doesn’t exist,

and sij+1 ≡ sijs(modm), where s = 1 if R1 doesn’t exist.

At each iteration on processor i compute the string of five numbers -
(xij , rij , sij , ui, vi). Send this string to the central processor, when xij

belongs to a set of distinguished numbers. We consider xij to be distin-
guished if |xij | < 2l, where l depends on the memory space available on
the central processor and the number T of processors working in parallel.

Step 2 A useful collision occurs when there are two strings

(xij , rij , sij , ui, vi) and (xi1j1 , ri1j1 , si1j1 , ui1 , vi1)

7

in the central processor’s memory such that xij = xi1j1 and i 6= i1. It
implies that

ri1j1sijPi10 = ±rijsi1j1Pi0

and therefore

ri1j1sij(rui1 + vi1) ≡ ±rijsi1j1(rui + vi)

modulo m. Solving this congruence get(with a good probability) two
variants for r. Then test which of them is true by comparing the x-
coordinates of the points rP and Q.

This finishes the description of the algorithm. We are going to explain why
this algorithm may be better than the previous variants of the Pollard lambda
search. Let’s consider the particular case when

1. coefficients of the polynomial f(X) are small, for example, they are bounded
by a constant when p is large,

2. the point Q generates the whole group E(Fp), which is a cyclic group of
prime order.

Let’s take a small rational number x = x′

x′′
in its lowest terms and consider the

rational point

R1 = (
x′

x′′
,

1

(x′′)2
)

on the rational elliptic curve Ed defined by the equation (5), where d =

(x′′)4f(x′

x′′
). Then with the probability about 1/2 the integer number ed is a

square modulo p. If it is the case there exists a point R̄1 ∈ E(Fp) =< Q >,

whose x-coordinate is just x′

x′′
taken modulo p. This rational number is the repre-

sentation of xR̄1
, introduced above. Because of the coefficients of the polynomial

f(X) are small, some small powers sR1 in Ed(Q) have x-coordinates bounded
by

√
p/2. From (2) it follows that |s| should be bounded by O(

√

log p/ log |x|).
Let R, the point from the first step of the algorithm taken modulo p, be in the
set

{sR̄1/ |s| = O(
√

log p/ log |x|)}. (6)

Then one finds the point R1 and the number s such that sR1 = R in an effective
way described in Section 2. One can say that sets like (6) are classes in a
partition of E(Fp) and R̄1 or its x-coordinate is a representative of the class. It
really looks like a partition. We’ll give an euristic argument for this. The
condition 2) implies that curves (5) have not any nontrivial torsion. So it
follows from Mordell’s Theorem, see [8], that if R1 and R2 are two rational
points on the same rational elliptic curve (5) and l1R1 = l2R2 for some integer
numbers l1, l2, then there exists a rational point R3 on the same curve such
that R1, R2 ∈< R3 >. It means that, when classes like (6) intersect, they are
subclasses of a bigger class like (6).

8

The previously known classes, introduced in [5], look like

{±R̄1}. (7)

We see that classes (6) are generally larger than classes (7). Therefore the
number of classes in the partition of < Q > is generally less, at least for the
case defined by conditions 1) and 2). Using this partition of E(Fp) reduces the
space for the Pollard lambda search and may slightly affect its effectiveness for
this reason.

4 A remark about implementation

When the point R taken modulo p is in the trivial class like (7), one only needs
few tests to recognize this event. It takes a negligible time to do. When R
taken modulo p is in a nontrivial class like (6) it takes more time to find a
representative of this class. One should use the Chinese Remainder Theorem
with the modulus about p. So it takes time comparable with few multiplications
modulo p to do.

There are two points why the application of the Euclidean Algorithm doesn’t
increase much the cost of iterating the function ψ or probably even reduces it.

1 Let xij be given by the representation (4). Then the computation of x =
ψ(xij) is going faster because the algorithm described in Section 2 deals
with smaller numbers.

2 The Euclidean Algorithm can be incorporated into the algorithm implement-
ing the arithmetic operation on E, see formulas in Section 2. Let this
algorithm compute a division modulo p at its last step. Then one changes
this division by the reduction of a 2-dimensional lattice. Really, let the
algorithm should compute x ≡ a/b modulo p, where a, b are integer num-
bers. In order to do this computation one defines the lattice in Z2 gen-
erated by vectors (a, b), (0, p), (p, 0). Then one applies the 3-dimensional
lattice reduction algorithm, see [9], which manages such lattices as well,
or the pairwise Gaussian Reduction, described in the same paper. The
reduction algorithm computes the Minkowski reduced basis of the lattice
above. The shortest nonzero vector of the basis gives a representation (4)
for x in most cases. If it is not the case then sum or difference of basis’
vectors will work. If there are two such representations for x one takes the
vector with the positive coordinates.

5 Curves recommended by FIPS

FIPS 186-2 recommends two sorts of elliptic curves for using in the public key
cryptography. They are elliptic curves defined over a large prime finite field Fp

and anomalous elliptic curves over the field F2 of two elements. The elliptic

9

curve E over Fp is defined by the equation

Y 2 = X3 − 3X + b, (8)

where b2c ≡ −27(mod p). The integer number c is being produced with the
SHA-1 algorithm and looks like a random residue modulo p. The equation has
an equivalent form

3bY 2 = X3 + cX + c. (9)

We see that the polynomials on the right-hand sides of the equations (8) and
(9) depend on large numbers of the size about the size of p. For such curves new
classes found in the present paper coincide with the classes {±R} introduced in
[5].

The picture is quite different for an anomalous curve E over F2. Such a
curve is defined by the equation

Y 2 +XY = X3 + αX + 1,

where α = 0 or 1. Let F2l be the finite field of 2l elements. We fix some
irreducible polynomial h(X) of degree l. So we fix a representation of the field’s
elements by polynomials because F2l

∼= F2[X]/h(X). Let

a = a(X) = a′(X)/a′′(X)

be a rational function in F2(X) in its lowest terms. Let a be a small function,
that is its size |a| = max{deg a′(X),deg a′′(X)} is small. With the probability
about 1/2 the equation in Y

Y 2 + aY = a3 + αa+ 1,

considered modulo h(X), has a solution in F2l . In this case there is a point
R ∈ E(F2l), whose x-coordinate is just a(X) taken modulo h(X). Because
a is small, some small powers sR have x-coordinates represented by rational
functions, the size of which is bounded by l/2. One can see that |s| should be
bounded by

√

l/|a|. So one defines the class

{sR/|s| = O(
√

l/|a|}.

Such classes are similar to classes (6) and can be used in the same way. In
particular the representative of the class can be computed in an effective way
by means introduced in Section 2. One only need to change small prime numbers
by irreducible polynomials over F2 of small degrees. Naturally one can use this
idea to enlarge classes introduced in [5], [6]. Those classes include points derived
from a fixed one by applying automorphisms from the Galua group of the field
F2l over F2. We are going to give a detailed presentation of this method in our
next paper.

10

References

[1] V.Miller, Use of elliptic curves in cryptography. Advances in cryptology—
CRYPTO ’85 (Santa Barbara, Calif., 1985), 417–426, Lecture Notes in Com-
put. Sci., 218(1986), Springer, Berlin, 417–426.

[2] N. Koblitz Elliptic curve cryptosystems, Math. Comp. 48 (1987), 203–209.

[3] J.Pollard Monte-Carlo methods for index computation mod p, Math.Comp.
32 (1978), 918–924.

[4] P.van Oorschot and M.Wiener, Parallel collision search with cryptanalytic
applications, J. Cryptology 12 (1999), no. 1, 1–28.

[5] M.Wiener and R.Zuccherato, Faster attacks on elliptic curve cryptosys-
tems. Selected areas in cryptography (Kingston, ON, 1998), Lecture Notes
in Comput. Sci., 1556(1999), Springer, Berlin, 190–200.

[6] R.Gallant, R.Lambert,and S.Vanstone, Improving the parallelized Pollard
lambda search on anomalous binary curves. Math. Comp. 69 (2000), no.
232, 1699–1705.

[7] P.Montgomery, Speeding the Pollard and elliptic curve methods of factor-
ization. Math. Comp. 48 (1987), no. 177, 243–264.

[8] J.Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathe-
matics, 106. Springer-Verlag, New York, 1986.

[9] I.Semaev, A 3-dimensional lattice reduction algorithm. Cryptography and
lattices (Providence, RI, 2001), Lecture Notes in Comput. Sci., 2146(2001),
Springer, Berlin, 181–193.

11

