
Domain Extender for Collision Resistant Hash Funtions: Improving

Upon Merkle-Damg�ard Iteration

Palash Sarkar

Cryptology Researh Group

Applied Statistis Unit

Indian Statistial Institute

203, B.T. Road, Kolkata

India 700108

palash�isial.a.in

Abstrat

We study the problem of seurely extending the domain of a ollision resistant ompression funtion.

A new onstrution based on direted ayli graphs is desribed. This generalizes the usual iterated

hashing onstrutions. Our main ontribution is to introdue a new tehnique for hashing arbitrary

length strings. Combined with DAG based hashing, this tehnique gives a new hashing algorithm. The

amount of padding and the number of invoations of the ompression funtion required by the new

algorithm is smaller than the general Merkle-Damg�ard algorithm. Lastly, we desribe the design of a

new parallel hash algorithm.

Keywords : hash funtion, ompression funtion, omposition priniple, ollision resistane, direted

ayli graph.

1 Introdution

Hash funtions are a basi ryptographi primitive and are used extensively in digital signature protools.

For suh appliations, a hash funtion must satisfy ertain neessary properties inluding ollision resistane

and pre-image resistane. Collision resistane implies that it should be omputationally intratable to �nd

two elements in the domain whih are mapped to the same element in the range. On the other hand,

pre-image resistane means that given an element of the range, it should be omputationally intratable

to �nd its pre-image.

Constrution of ollision resistant and pre-image resistant hash funtions are of both pratial and

theoretial interest. Most pratial hash funtions are designed from srath. The advantage of designing

a hash funtion from srath is that one an use simple logial/arithmeti operations to design the algorithm

and hene ahieve very high speeds. The disadvantage is that we obtain no proof of ollision resistane.

Hene a user has to assume that the funtion is ollision resistant. A well aepted intuition in this area is

that it is more plausible to assume a funtion to be ollision resistant when the domain is �xed (and small)

rather than when it is in�nite (or very large). A �xed domain funtion whih is assumed to be ollision

resistant is often alled a ompression funtion.

For pratial use, it is required to hash messages of arbitrary lengths. Hene one must look for methods

whih extend the domain of a ompression funtion in a \seure" manner, i.e., the extended domain hash

funtion is ollision resistant provided the ompression funtion is ollision resistant. Any method whih

ahieves this is often alled a omposition priniple.

1

Composition priniples based on iterated appliations of the ompression funtion are known and these

are alled variants of the Merkle-Damg�ard algorithm [2, 4℄. The most general of these algorithms an

hash arbitrarily long messages and assumes the ompression funtion to be only ollision resistant. Other

variants an hash messages of a maximum possible length or assumes the ompression funtion to be

both ollision resistant and one-way. See Setion 3 for a detailed disussion of several variants of the

Merkle-Damg�ard algorithm.

Our Contributions: In this paper, we are onerned with the problem of onstruting a hash funtion

whih an hash arbitrarily long messages and whih an be proved to be ollision resistant under the

assumption that the ompression funtion is ollision resistant. To justify the non-triviality of the problem

we desribe a onstrution whih an be proved to be seure if the ompression funtion is both ollision

resistant and one-way while it is inseure if the ompression funtion is only ollision resistant.

The �rst step in our onstrution is to onsider a very general lass of domain extending algorithms.

The struture of any algorithm in the lass that we onsider an be desribed using a direted ayli graph

(DAG). In Setion 5, we provide a onstrution of a seure domain extending algorithm using an arbitrary

DAG. The Merkle-Damg�ard algorithm uses a dipath and is a speial ase of DAG based algorithms.

Our main ontribution (in Setion 6) is to provide a solution to the problem of hashing arbitrary length

strings for DAG based algorithms. Our algorithm improves upon the (general) Merkle-Damg�ard algorithm

both in terms of padding length and number of invoations. Our onstrution an be proved to be ollision

resistant under the assumption that the ompression funtion is only ollision resistant.

In Setion 8, we provide some onrete examples of hashing strutures and show that these an be

ombined niely to design a parallel hash funtion. We note, however, that we do not provide a detailed

spei�ation of an atual hash funtion. Suh a spei�ation will neessarily involve many pratial and

implementation issues whih are not really within the sope of the urrent work.

A theoretial justi�ation of our work is provided by the fat that our results improve upon a �fteen

year old lassial work. Sine our work improves upon the Merkle-Damg�ard algorithm, a natural question

is whether further improvements are possible. This naturally leads to the problem of obtaining non-trivial

lower bounds (and optimal algorithms) on padding lengths and number of invoations. These problems

an provide motivation for future researh.

2 Preliminaries

We write jxj for the length of a string and x

1

jjx

2

for the onatenation of two strings x

1

and x

2

. The

reverse of the string x will be denoted by x

r

. By an (n;m) funtion we will mean a funtion whih maps

f0; 1g

n

to f0; 1g

m

. All logarithms in the paper are in base two.

For n > m, let h be an (n;m) funtion. Two n-bit strings x and x

0

in X are said to ollide for h, if

x 6= x

0

but h(x) = h(x

0

). A hash funtion h : X ! Y is said to be ollision resistant if it is omputationally

intratable to �nd ollisions for h. A formal de�nition of this onept requires the onsideration of a family

of funtions (see [2, 5℄).

In this paper, we are interested in \seurely" extending the domain of a hash funtion. More preisely,

given an (n;m) funtion h : f0; 1g

n

! f0; 1g

m

, with n > m+1, we onstrut a funtion h

1

: [

i�1

f0; 1g

i

!

f0; 1g

m

, suh that one an prove the following: Given any ollision for h

1

, it is possible to obtain a

ollision for h. The last statement is formalized in terms of a Turing redution between two suitably

de�ned problems (see below). The advantage of this method is that we only prove a redution and at no

point are we required to use a formal de�nition of ollision resistane. This approah has been previously

used in the study of hash funtions [6℄.

2

We now turn to the task of de�ning our approah to reduibilities between di�erent problems related

to the property of ollision resistane. Consider the following problem as de�ned in [6℄.

Problem : Collision Col(n;m)

Instane : An (n;m) hash funtion h.

Find : x; x

0

2 f0; 1g

n

suh that x 6= x

0

and h(x) = h(x

0

).

By an (�; q) (probabilisti) algorithm for Collision we mean an algorithm whih invokes the hash funtion

h at most q times and solves Col(n;m) with probability of suess at least �.

The domain of h is the set of all n-bit strings. We would like to extend the domain to the set of all

nonempty binary strings, i.e., to onstrut a funtion h

1

: [

i�1

f0; 1g

i

! f0; 1g

m

. We would like to relate

the diÆulty of �nding ollisions for h

1

to that of �nding ollisions for h. Thus, we onsider the following

problem.

Problem : Arbitrary length ollision ALC(n;m;L)

Instane : An (n;m) hash funtion h and an integer L � 1.

Find : x; x

0

2 [

L

i=1

f0; 1g

i

suh that x 6= x

0

and h

1

(x) = h

1

(x

0

).

By an (�; q; L) (probabilisti) algorithm A for Arbitrary length ollision we will mean an algorithm that

makes at most q invoations of the funtion h and solves ALC(n;m;L) with probability of suess at least

�.

Later we show Turing redutions from Collision to Arbitrary Length Collision. Informally, this means

that given orale aess to an algorithm for solving ALC(n;m;L) for h

1

it is possible to onstrut an

algorithm to solve Col(n;m) for h. These will show that our onstrutions preserve the intratibility of

�nding ollisions.

Pre-image resistane: This is an important property for ryptographi hash funtions. Informally, this

means that given y 2 f0; 1g

m

, it is omputationally infeasible to �nd an x, suh that f(x) = y. Pre-image

resistane (or one-wayness) is a ruially important property on its own. On the other hand, this property

is sometimes used to prove seurity of domain extending tehniques for ollision resistant hash funtions.

Suppose the domain of an (n;m) hash funtion h is extended to obtain the hash funtion H(). For ertain

onstrutions [2℄, one an show that h

1

is ollision resistant if h is both ollision resistant and one-way.

We would like to emphasize that this is not the approah we will take in this paper. In our onstrutions,

we will assume h to be only ollision resistant.

3 Iterated Hashing

In this setion, we briey review iterative tehniques for extending the domain of a ollision resistant

ompression funtion. These tehniques are attributed to [4, 2℄ and are ommonly alled the Merkle-

Damg�ard onstrutions.

Let h be an (n;m) ompression funtion and IV be an m-bit string. Eah of the domain extending

methods desribed below use IV and h to onstrut a new funtion whih an hash \long" strings to obtain

m-bit digest. The IV an be hosen randomly, but one hosen it annot be hanged and beomes part of

the spei�ation for the extended domain hash funtion.

3

3.1 Constrution I: Basi Iteration

We de�ne a hash funtion H

(I)

whose domain onsists of all binary strings whose length is a multiple of

(n �m). Let x be a message whose length is i(n �m) for some i � 1. We write x = x

1

jj � � � jjx

i

, where

eah x

j

is a string of length (n �m). De�ne z

1

= h(IVjjx

1

) and for j > 1, de�ne z

j

= h(z

j�1

jjx

j

). The

digest of x under H

(I)

is de�ned to be z

i

, i.e., H

(I)

= z

i

.

The funtion H

(I)

an be proved to be ollision resistant. Briey, the argument proeeds as follows.

Suppose x and x

0

are two strings suh that x 6= x

0

and H

(I)

(x) = H

(I)

(x

0

). If we have jxj = jx

0

j, then an

easy bakward indution shows that there must be a ollision for the funtion h. On the other hand, if

jxj 6= jx

0

j, then it an be argued that the ollision for H

(I)

either leads to a ollision for h or a pre-image

of IV under h. Thus, if we assume that h is both ollision resistant and pre-image resistant, then H

(I)

is

ollision resistant.

3.2 Constrution II: General Constrution

Our desription of the general version (whih appears in [2℄) is from [7℄ for the ase n�m > 1. (The ase

n�m = 1 is a little more ompliated. We do not mention it here sine we will not onsider suh values

of n and m for our onstrutions.)

Let H

(II)

be the extended domain hash funtion whih is to be de�ned. Let x be a message to be

hashed and we have to de�ne the digest H

(II)

(x). Write x = x

1

jjx

2

jj : : : jjx

k

, where jx

1

j = jx

2

j = � � � =

jx

k�1

j = n �m � 1 and jx

k

j = n �m � 1 � d with 0 � d � n �m � 2. For 1 � i � k � 1, let y

i

= x

i

;

y

k

= x

k

jj0

d

and y

k+1

is the (n �m � 1)-bit binary representation of d. De�ne z

1

= h(IVjj0jjy

1

) and for

1 � i � k, de�ne z

i+1

= h(z

i

jj1jjy

i+1

). The digest of x under H

(II)

is z

k+1

, i.e., H

(II)

(x) = z

k+1

.

Note that the domain onsists of all possible binary strings, i.e., there is no length restrition on the

input message x. It an be shown that H

(II)

is ollision resistant assuming h to be only ollision resistant.

(See [7℄ for a proof.)

3.3 Constrution III: SHA Family Constrution

The spei�ation of the SHA family of onstrutions uses a variant of the iterative hashing tehnique. We

denote this variant by H

(III)

.

Let x be the message to be hashed. First we form the string: pad(x) = xjj1jj0

k

jjbin

(jxj); where is a

onstant suh that < n�m, bin

(jxj) is the -bit binary representation of x and k is the least non-negative

integer suh that jxj+ 1 + k � (n�m�) mod (n�m), or equivalently x+ + 1 + k � 0 mod (n�m).

The length of pad(x) is equal to l(n�m) for some l � 1. (For SHA-256, n = 768, m = 256 and = 64.)

The message digest is de�ned to be H

(III)

(x) = H

(I)

(pad(x)).

This onstrution an only handle messages of lengths less than 2

. Putting = 64 (as in SHA-256) is

usually suÆient for all pratial purposes. The maximum amount of padding is n�m whih is a onstant,

i.e., independent of the message length.

3.4 Constrution IV: Another Length Bounded Constrution

We de�ne a funtion H

(IV)

whih like H

(III)

an also hash all binary strings of a maximum possible length.

Let the message be x. Append the minimum number of zeros to x so as to make the length a multiple

of (n�m). Now divide x into l bloks x

0

; : : : ; x

l�1

of lengths (n�m) bits eah. De�ne y

0

= h(IVjjx

0

) and

for 1 � i � l � 1, de�ne y

i

= h(y

i�1

jjx

i

). Finally de�ne z = h(y

l�1

jjw), where w is the (n�m)-bit binary

4

Table 1: Comparison of features of di�erent onstrutions for a message x.

Cons. domain sz. length res. padding # invo. assumption on h()

I in�nite jxj = i(n�m), none

jxj

n�m

.r. and

i � 1 one-way

II in�nite none 2n�m� 2 .r.

+

l

jxj

n�m�1

m

1 +

l

jxj

n�m�1

m

III 2

, jxj < 2

, m a+

l

jxj

n�m

m

, .r.

 < n�m < n�m a 2 f0; 1g

IV < 2

n�m

jxj < 2

n�m

2n�m� 1 1 +

l

jxj

n�m

m

.r.

representation of jxj, i.e. w = bin

n�m

(jxj). The digest of x is z. Clearly, this algorithm an be applied only

when the length of x is less than 2

n�m

. Again, this onstrution an be proved to be ollision resistant

assuming h to be only ollision resistant.

3.5 Role of IV

Eah of the onstrutions desribed above use anm-bit string as an IV. The IV is essential in Constrution I,

sine in this onstrution we require h to be suh that it is infeasible to �nd a pre-image of IV under h. On

the other hand, for Construtions II to IV, we an replae IV by the initial m bits of the message without

a�eting the ollision resistane of the extended domain hash funtion. If we do this, then in ertain ases,

we an hash an extra m bits without inreasing the number of invoations of h. In general, this is not

a signi�ant gain, though it may beome signi�ant if we repeatedly hash short messages suh as digital

erti�ates.

3.6 Disussion

In Table 1, we ompare the properties of the di�erent onstrutions. For eah onstrution, we provide

the size of the extended domain; the restrition on the lengths of messages to be hashed; the maximum

amount of padding; the maximum number of invoations of h() that are made while extending the domain;

and the seurity assumption made on h(). (In our ount of the number of padded bits, we also inlude the

IV.) The �rst onstrution is proved to be ollision resistant under the assumption that h() is both ollision

resistant and one-way, while the other three onstrutions an be proved to be ollision resistant under the

assumption that h() is only ollision resistant. Constrution II an handle arbitrary length strings, while

the Construtions III and IV an handle bounded length strings. On the other hand, Construtions III

and IV are more eÆient than Constrution II.

Question: The theoretial question that now arises is whether it is possible to obtain a onstrution whih

an handle arbitrary length strings, whose ollision resistane is based only on the ollision resistane of h

and whih is more eÆient than Constrution II?

5

4 DiÆulty of Domain Extension

We would like to provide some evidene that it is non-trivial to obtain an answer to the question raised in

Setion 3.6. It is often believed that \padding with the length at the end is suÆient to ensure ollision

resistane". Investigating suh a laim in full generality is diÆult. Instead, we onsider a \natural"

extension of Constrution III (the SHA family onstrution) to arbitrary length strings and show the

following two fats.

� It is orret if we assume h to be both ollision resistant and one-way on IV but

� It is inorret when we assume h to be only ollision resistant.

For an integer i, let bin(i) denote the minimum length binary representation of i and for a binary string

x, let �(x) denote the minimum length binary representation of the length of x, i.e., �(x) = bin(jxj).

Constrution V: We want to de�ne a funtion H

(V)

whih an handle arbitrary length strings. As in

Constrution III, de�ne

pad(x) = xjj1jj0

k

jjbin(jxj)

= xjj1jj0

k

jj�(x)

where k is the minimum non-negative integer whih satis�es the equation jxj+j�(x)j+1+k � 0 mod (n�m).

This ensures that the length of pad(x) is equal to l(n �m) for some l � 1 and hene we an apply the

iterative tehnique as in Constrution III to ompute the message digest. (The exat Constrution III is

obtained by substituting bin

(jxj) for bin(x).)

The digest of x under H

(V)

is de�ned to be H

(I)

(pad(x)), i.e., H

(V)

(x) = H

(I)

(pad(x)). Sine we do

not put any bound on the length of bin(jxj), this onstrution an handle arbitrary length strings. Let us

now onsider the orretness of Constrution V.

Condition 1: Suppose h is both ollision resistant and it is infeasible to �nd a pre-image of IV. Then,

using an argument as in the ase of Constrution I, it is possible to show by a bakward indution that a

ollision for H

(V)

either provides a ollision for h or a pre-image of IV under h.

Condition 2: Suppose that we want to assume h to be only ollision resistant. We show that assuming h

to be only ollision resistant is not suÆient to show the orretness of Constrution V. Let us onsider the

meaning of this statement in more details. Suppose that there is some element in the range of h whih has

a unique pre-image. Then the ability to �nd this pre-image (or even knowing it a priori) does not violate

the ollision resistane of h. On the other hand, the knowledge of this pre-image an make it possible to

onstrut a ollision for H

(V)

. This is the approah that we take below.

Our �rst task is to hoose a suitable ollision resistant h. For this, we must assume that some funtion

h

0

() with suitable parameters is ollision resistant, as otherwise the question is moot. (See [1℄ for a similar

situation in regard to universal one-way hash funtions.)

Suppose h

0

() is an (n;m

0

) ollision resistant funtion, with m

0

= m� 1 and n�m = 2

�

� 16. Further,

let IV and � be arbitrarym-bit and (n�m)-bit strings respetively. Using h

0

, we de�ne an (n;m) funtion h

for whih it is infeasible to �nd ollisions and for whih IVjj� is the only pre-image of IV. Write IV = IV

0

jjb,

6

where jIV

0

j = m� 1 and b is a bit. For any n-bit string x, de�ne

h(x) = IV if x = IVjj�;

= IV

0

jj(1� b) if h

0

(x) = IV

0

and x 6= IVjj�;

= h

0

(x)jj0 if h

0

(x) 6= IV

0

:

9

=

;

(1)

Clearly, IV has the unique pre-image IVjj� under h. On the other hand, any ollision for h yields a ollision

for h

0

. Hene, h is ollision resistant if h

0

is ollision resistant. (Note that h is not surjetive, but that is

not relevant to the assumption that h is ollision resistant.) Note that if we use Constrution I to extend

the domain of h, then we get a funtion H

(I)

with the following property: H

(I)

(�

i

) = IV for all i � 1, where

�

i

denotes i many repetitions of �.

The onversion from h

0

to h works for any IV and �. Choose IV to be an arbitrary m-bit string; and

� = y

0

jj1jj0

��1

jj1, where y

0

is an arbitrary string of length (n�m�1��). Then we an de�ne the funtion

h as above. (The justi�ation for hoosing � as above will beome lear later.)

Consider the funtion H

(V)

. This funtion is de�ned for any h and IV and hene also for h and IV

de�ned as above. We show that for suh h and IV it is possible to exhibit a ollision for H

(V)

.

We de�ne two strings x and x

0

in the following manner. String x is a \short" string, while string x

0

is

a \long" string. De�ne x = 0

n�m�1��

and then �(x) = dlog(n�m� 1� �)e = � and hene

pad(x) = 0

n�m�1��

jj1jj�(x):

Note that in this ase k = 0 and jpad(x)j = n�m.

We now de�ne the string x

0

. First we set the length of x

0

by de�ning �(x

0

) = 1jjpad(x) and hene

j�(x

0

)j = n � m + 1. This sets the length of x

0

to be 2

n�m

+ (n � m) + jxj. At this point, we know

pad(x

0

) = x

0

jj1jj0

��1

jj�(x

0

): This sets the length of pad(x

0

) to be 2

n�m

+ 3(n �m). We write x

0

= z

0

jjy

0

where jz

0

j = 2

n�m

+n�m. (Note jy

0

j = jxj, and we ould, if we like, hoose y

0

= x.) Reall � = y

0

jj1jj0

��1

jj1

and is of length (n�m). We de�ne z

0

to be i many repetitions of �, i.e., z

0

= �

i

, where i = 1 + 2

n�m��

.

Thus, we an write

pad(x

0

) = �

2+2

n�m��

jjpad(x)

i.e., 2 + 2

n�m��

repetitions of � followed by pad(x). Now,

H

(V)

(x

0

) = H

(I)

(pad(x

0

))

= H

(I)

(�

2+2

n�m��

jjpad(x))

= h(H

(I)

(�

2+2

n�m��

); pad(x))

= h(IV; pad(x))

= H

(I)

(pad(x))

= H

(V)

(x):

Clearly, x 6= x

0

and hene we obtain a ollision for H

(V)

. Thus, H

(V)

is not ollision resistant, even though

h is ollision resistant. In fat, in the proof we have used the fat that IV has a unique and known pre-image

under h.

In view of this, we onsider the problem of extending the domain of a ollision resistant hash funtion

to be a non-trivial problem.

5 DAG Hashing

So far, we have onsidered iterated hashing. Our main task will be to provide a new onstrution for

seurely extending the domain of a ollision resistant hash funtion. We atually do this for a general lass

7

of hashing algorithms whose struture an be desribed using a direted ayli graph (DAG).

A DAG D is de�ned as D = (V;A) where V is a �nite non empty set of nodes and A is a set of ars

suh that D ontains no direted yles. For any node v of D, we will denote by �(v) (resp. �(v)) the

set of all ars oming into (resp. going out of) v. It is well known (and easy to prove) that any DAG

ontains at least one node of indegree zero and at least one node of outdegree zero. We make the following

de�nition.

De�nition 1 Let D = (V;A) be a DAG. A node with indegree zero will be alled an exposed node; a node

with outdegree zero will be alled an output node and all other nodes will be alled internal nodes.

If v is an exposed node and u is an output node, we have �(v) = �(u) = ;. Given a DAG D, let l(D) be the

maximum number of nodes on any path from an exposed node to an output node (ounting both the start

and the end nodes). We will all l(D) to be the depth of D. To eah node v, of D we assign a non negative

integer alled its level in the following manner. For eah output node v of D, set level(v) = l(D)� 1; drop

all the output nodes from D to get a new DAG D

1

. For eah output node of v of D

1

, set level(v) = l(D)�2;

again drop all the output nodes from D

1

to get a new DAG D

2

. Continue this proess until all nodes of

D have been assigned level numbers. The level numbers of the nodes partition V into l disjoint subsets

S

0

; : : : ; S

l�1

, where l = l(D) and S

i

= fv : level(v) = ig. Note that all output nodes are at the same level,

but the exposed nodes an be at di�erent levels. However, all nodes at level zero are neessarily exposed

nodes.

An assignment � on D = (V;A) is a funtion � : A ! N whih assigns a positive integer to eah ar

of D. Let n and m be two positive integers with n > m and D be a DAG. An assignment � is said to be

proper with respet to (n;m;D) if the following ondition holds.

For any node v of D, (a)

P

e2�(v)

�(e) = m and (b)

P

e2�(v)

�(e) � n.

For any node v, we de�ne the fan-in of v to be �(v) =

P

e2�(v)

�(e). Thus, for a proper assignment � on

(n;m;D) and any node v, we have �(v) � n. For any exposed node v, we have �(v) = 0.

A struture is a tuple S = (n;m;D = (V;A); �) where � is a proper assignment on (n;m;D). By an

exposed or output node of a struture S we will mean an exposed or output node of the underlying DAG

D. Similarly, by the depth of a struture we will mean the depth of the underlying DAG.

5.1 Constrution

Given a struture S and an (n;m) ompression funtion h, we an de�ne a hash funtion h

S

in the following

manner. The hash funtion takes as input a message x (whose length we speify later) and produes as

output a digest y = h(x). The basi idea is to invoke the hash funtion h for eah node v of D. The

funtion h takes n bits as input and produes m bits as output. To ensure this we have to parse (or

format) the message x properly. We �rst desribe this formatting proedure. For any node v, the input

to v will be written as z(v) and the output of v will be written as y(v). The input z(v) is formed by

onatenating a part of the message x and some portions of the outputs of previous invoations of h as is

made preise below. The substring of the message whih is provided as input to v is denoted by x(v) and

is of length jx(v)j = n � �(v). As a notational onveniene, we will assume V = fv

1

; : : : ; v

t

g and write

x

i

= x(v

i

), z

i

= z(v

i

) and y

i

= y(v

i

).

We assoiate a non empty string �(e) of length at most m to eah ar e of D in the following manner.

Let �(v

i

) = fe

i;1

; : : : ; e

i;k

i

g and write y

i

= y

i;1

jj : : : jjy

i;k

i

, where jy

i;j

j = �(e

i;j

) for 1 � j � k

i

. Then

�(e

i;j

) = y

i;j

. For any node v

i

write �(v

i

) = fe

i;1

; : : : ; e

i;r

i

g. Then the input z

i

to v

i

is formed by

onatenating x

i

and �(e

i;1

); : : : ; �(e

i;r

i

), i.e., z

i

= x

i

jj�(e

i;1

)jj : : : jj�(e

i;r

i

). For any exposed node v, we

8

have �(v) = ; and onsequently z(v) = x(v) and jx(v)j = n. Given a message x, the omputation of h

S

(x)

is desribed as follows.

Computation of h

S

(x)

1. For i = 0 to l(D)� 1 do

2. For v

j

2 S

i

3. set y

j

= h(z

j

).

4. End do.

5. End do.

6. z = � (the empty string).

7. For v 2 S

l(D)�1

set z = zjjy(v).

8. output z.

We say that the hash funtion h

S

is assoiated to the struture S and the ompression funtion h.

Remark : The loop in Steps 2 to 4 involves the invoation of h for eah node in S

i

. These invoations an

be arried out in parallel and hene a parallel exeution of the algorithm will require exatly l(D) parallel

rounds. Thus, the depth of a struture determines the number of parallel rounds required to ompute the

output of the assoiated hash funtion.

5.2 Properties of h

S

The following result desribes the lengths of the input and output strings of the hash funtion h

S

.

Proposition 2 Let S = (n;m;D = (V;A); �) be a struture and h : f0; 1g

n

! f0; 1g

m

be a ompression

funtion. Then h

S

: f0; 1g

N

! f0; 1g

M

where N = t(n�m) + sm and M = sm, where t = jV j and s is

the number of output nodes in D.

Proof. The outputs of all the output nodes are onatenated and provided as output of h

S

. The length

of the output of eah node is m bits, hene the length of the output of h

S

is sm bits.

The alulation of the input size is as follows. There are t nodes in D. The funtion h is invoked one

for eah of these nodes and hene h is invoked a total of t times. Eah invoation of h requires an n-bit

input. Thus, a total of tn bits are required as input to all the invoations. An input to an invoation

of h either omes diretly from the message x or is a part of the intermediate output of some previous

invoation of h. There are (t� s) intermediate outputs whih provide a total of (t� s)m bits. Hene the

message x has to provide a total of exatly tn� (t� s)m = t(n�m) + sm bits.

The next result shows that the onstrution desribed above preserves the property of ollision resis-

tane.

Theorem 3 Let h

S

be a hash funtion onstruted from a struture S = (n;m;D; �) and a ompression

funtion h desribed as above. Then, it is possible to �nd a ollision for h

S

if and only if it is possible to

�nd a ollision for h.

Proof. If: We have to show that any ollision for h an be extended to a ollision for h

S

. Let x

1

and x

0

1

be distint n-bit strings whih ollide for h. Let v be an exposed node of the struture S. We now de�ne

two strings x and x

0

in the domain of h

S

suh that x 6= x

0

and h

S

(x) = h

S

(x

0

). Note that to de�ne x

and x

0

it is enough to de�ne the orresponding inputs x(u) and x

0

(u) to eah node u of S. We do this as

follows: Set x(v) = x

1

, x

0

(v) = x

0

1

and for any u 6= v, set x(u) and x

0

(u) both to be equal to an arbitrary

binary string of appropriate length. Then it is lear that x 6= x

0

. Moreover, h

S

(x) = h

S

(x

0

) sine the

9

outputs of the invoation of h at node v are equal and the inputs to all other nodes are equal. Thus, x

and x

0

provide a ollision for h.

Only If: For 0 � i � l(D)� 1, we de�ne three sequenes of sets ZList

i

;XList

i

and YList

i

, where

XList

i

= fx(v) : level(v) = ig, ZList

i

= fz(v) : level(v) = ig and YList

i

= fy(v) : level(v) = ig.

Note that the message x an be written as a onatenation (in an appropriate order) of the strings in XList

i

for 0 � i � l(D)� 1.

For the proof, assume that there are two messages x and x

0

suh that x 6= x

0

but h

S

(x) = h

S

(x

0

).

We show that it is possible to �nd a ollision for h. In the following, we will use primed and unprimed

notations to denote quantities orresponding to x

0

and x respetively.

Our proof tehnique is the following. Assume that there is no ollision for any of the invoations of

h. We show that this implies x = x

0

whih ontradits the hypothesis that x 6= x

0

. Hene, there must be

a ollision for some invoation of h. We now turn to the proof of the fat that if there is no ollision for

h, then x = x

0

. This is proved by bakward indution on i. More preisely, we show that if there is no

ollision for h, then for eah i, we have XList

i

= XList

0

i

. Consequently, x = x

0

. We now turn to the atual

proof.

We are given that h

S

(x) = h

S

(x

0

). This implies that YList

l(D)�1

(x) = YList

0

l(D)�1

(x

0

) and onsequently

for eah v 2 S

l(D)�1

, we have h(z(v)) = y(v) = y

0

(v) = h(z

0

(v)). Sine there is no ollision for h, we must

have z(v) = z

0

(v) and onsequently ZList

l(D)�1

= ZList

0

l(D)�1

. This in turn implies that for eah v 2 S

l(D)�1

we have x(v) = x

0

(v) and for eah u 2 S

l(D)�2

we have y(u) = y

0

(u). Hene XList

l(D)�1

= XList

0

l(D)�1

and

YList

l(D)�2

= YList

0

l(D)�2

.

For the indution step assume that we have shown XList

i+1

= XList

0

i+1

and YList

i

= YList

0

i

for all

i � k + 1. Then using an argument similar to the one given above it follows that XList

i

= XList

0

i

and

YList

i�1

= YList

0

i�1

. This shows that XList

i

= XList

0

i

for 1 � i � l(D)�1. Now one more appliation of the

previous argument shows that XList

0

= XList

0

0

. Hene XList

i

= XList

0

i

for all 0 � i � l(D)� 1 as desired.

6 Hashing Arbitrary Length Strings

The hash funtion h

S

an handle only strings of one partiular length. We would like to obtain a funtion

whih an handle strings of any length. Tehniques to handle arbitrary length strings have been introdued

before by Damg�ard [2℄ (see Constrution II in Setion 3.2) for the speial ase of strutures where the

underlying DAG is a direted path. It does not seem to be easy to adapt the tehnique of [2℄ to the more

general ase of DAG that we onsider here. Thus, we present a new method for handling arbitrary length

strings, whih is also of independent interest. To desribe the onstrution of hash funtion whih an

handle arbitrary length strings we need to introdue an in�nite family of DAGs. To keep the desription

reasonably simple, we assume that eah DAG in the family has a single output node. The preise de�nition

of the family that we onsider is given below.

Let fD

k

g

k�1

be a family of DAGs where D

k

= (V

k

; A

k

) is suh that jV

k

j = k and D

k

has exatly

one output node. Given positive integers n and m with n > m, a family of strutures F is de�ned as

F = fS

k

g

k�1

where S

k

= (n;m;D

k

; �

k

), where �

k

is a proper assignment on D

k

. Given a ompression

funtion h : f0; 1g

n

! f0; 1g

m

, and a family of strutures F , we de�ne a family of hash funtions fh

k

g

k�1

,

where h

k

= h

S

k

. From Proposition 2, we have

h

k

: f0; 1g

k(n�m)+m

! f0; 1g

m

:

10

Note that h

1

= h. From Theorem 3, we know that the ability to �nd a ollision for any h

k

implies the

ability to �nd a ollision for h.

We want to de�ne a hash funtion whih an handle strings of any length. Eah h

k

an handle only

�xed length strings. More preisely, h

1

an handle strings of length n, h

2

an handle strings of length

2n�m, h

3

an handle strings of length 3n� 2m and so on. First we need to \�ll the gaps" in the lengths.

For this we de�ne a funtion h

�

: [

i�1

f0; 1g

i

! f0; 1g

m

in the following manner.

h

�

(x) = h

1

(xjj0

n�jxj

) if 1 � jxj � n;

= h

k+1

(xjj0

(k+1)(n�m)+m�jxj

) if k(n�m) +m < jxj � (k + 1)(n�m) +m:

�

(2)

Note that the amount of padding done to x in the de�nition of h

�

is at most (n� 1) in the �rst ase and

at most (n �m � 1) in the seond ase. The funtion h

�

(x) is not ollision resistant. For example, the

images of the strings 1 and 10

n�1

are same, sine h

�

(1) = h(10

n�1

) = h

�

(10

n�1

). We modify the funtion

h

�

(x) to a funtion h

1

(x) : [

i�1

f0; 1g

i

! f0; 1g

m

whih is ollision resistant (assuming that h is ollision

resistant). To do this we �rst need to introdue a length extrating funtion.

Given a binary string x, reall that �(x) denotes the minimum length binary representation of the

length of x. For example, if x = 110001101010, then �(x) = 1100, sine the length of x is 12. The iterates

of �() are de�ned as usual: �

0

(x) = x and for i > 0, �

i

(x) = �(�

i�1

(x)). The following result states some

simple properties of the funtion �(). Reall that the reverse of a binary string y is denoted by y

r

.

Proposition 4 Let x be a binary string. Then

1. The �rst bit of y = �(x) is 1 and hene the last bit of y

r

is also 1.

2. �(x) = x if and only if x = 1 or x = 10.

3. j�(x)j = 1 + blog jxj = dlog(jxj+ 1)e.

4. If jxj > 1, then there is a positive integer j, suh that �

j

(x) = 10.

Remark : For the onstrution of h

1

given below to work, there must exist a j suh that jX

j

j � n�m.

If n�m = 1 and jxj > 1, then this annot be ahieved. Thus, heneforth we will assume n�m � 2. From

a pratial point of view, this is not really a onstraint sine all known pratial ompression funtions

satisfy this ondition.

Now we are in a position to de�ne the funtion h

1

. Reall that x

r

denotes the reverse of the string x.

Let IV be an initialization vetor, i.e., a string of length m.

Computation of h

1

(x).

1. De�ne X

0

= x and for i > 0, de�ne X

i

= �

i

(X

0

) = �(X

i�1

).

2. Let j be the least positive integer suh that jX

j

j � n�m.

3. De�ne Y

0

= h

�

(IVjj0jjX

0

).

4. For 1 � i � j � 1, de�ne Y

i

= h

�

(Y

i�1

jj1jjX

i

).

5. Y

j

= h

�

(Y

j�1

jjX

r

j

).

6. Output Y

j

.

Remark : The value of j in the above algorithm will be more than one only if the length of the message is

greater than 2

n�m

. For pratial ompression funtions (suh as SHA, RIPEMD, et.) the value of (n�m)

is at least 128. Thus, for all pratial ompression funtions and pratial sized messages the value of j

will be equal to one.

We next prove that h

1

is ollision resistant if h is ollision resistant.

Theorem 5 If there is an (�; q; L)-algorithm to solve ALC(n;m;L) for h

1

, then there is an (�; q + 2�)-

algorithm to solve Col(n;m) for h, where � is the number of invoations of h made by h

1

in hashing a

message of length L.

11

Proof. Given any message x, the omputation of the digest involves several invoations of the funtion

h

�

. At eah stage, the funtion h

�

in turn invokes h

k

on a suitably padded string. There are (j + 1)

invoations of h

�

. Suppose that at the ith (0 � i � j) invoation of h

�

, the funtion h

k

i

is invoked.

Also denote the padded input to h

k

i

by W

i

. Thus, Y

0

= h

�

(IVjj0jjX

0

) = h

k

0

(W

0

), for 1 � i � j � 1,

Y

i

= h

�

(Y

i�1

jj1jjX

i

) = h

k

i

(W

i

) and Y

j

= h

�

(Y

j�1

jjX

r

j

) = h

k

j

(W

j

). Further, we have jW

i

j = k

i

(n�m) +m

and for 0 � i � j, jY

i

j = m.

Assume h

1

(x) = h

1

(x

0

) and x 6= x

0

. We show that this implies that there is a ollision for h. The

proof is by bakward indution. We will use primed and unprimed notation to denote the quantities

orresponding to x and x

0

respetively.

By hypothesis, we have h

1

(x) = Y

j

= Y

0

j

0

= h

1

(x

0

). From the de�nition of h

1

we have

h

�

(Y

j�1

jjX

r

j

) = h

k

j

(W

j

) = Y

j

= Y

0

j

0

= h

k

0

j

0

(W

0

j

0

) = h

�

(Y

0

j

0

�1

jjX

0

r

j

0

):

By de�nition of j and j

0

, we have jX

j

j; jX

0

j

0

j � n �m and hene jY

j�1

jjX

j

j; jY

0

j

0

�1

jjX

0

j

0

j � n. From the

de�nition of h

�

it follows that k

j

= k

0

j

0

= 1 and jW

j

j = jW

0

j

0

j = n. If W

j

6= W

0

j

0

then we obtain a ollision

for h

1

and hene for h (sine h = h

1

) and we are done. On the other hand, if there is no ollision for h, we

must have W

j

=W

0

j

0

. Hene

W

j

= Y

j�1

jjX

r

j

jj0

n�m�jX

j

j

= Y

0

j

0

�1

jjX

0

r

j

0

jj0

n�m�jX

0

j

0

j

=W

0

j

0

:

Sine both the strings X

r

j

and X

0

r

j

0

end with a 1, by the above ondition we must have jX

r

j

j = jX

0

r

j

0

j. This

implies Y

j�1

= Y

0

j

0

�1

and X

j

= X

0

j

0

. Now there are two ases to onsider.

Case j = j

0

: We have �(X

j�1

) = X

j

= X

0

j

0

= �(X

0

j

0

�1

) and hene jX

j�1

j = jX

0

j

0

�1

j. Thus, jW

j�1

j =

jW

0

j

0

�1

j and onsequently k

j�1

= k

0

j

0

�1

. Also we have

h

k

j�1

(W

j�1

) = Y

j�1

= Y

0

j

0

�1

= h

k

0

j

0

�1

(W

0

j

0

�1

):

Using Theorem 3, we obtain that eitherW

j�1

=W

0

j

0

�1

or we obtain a ollision for h. In the seond ase, we

are done and in the �rst ase we obtain W

j�1

=W

0

j

0

�1

and onsequently Y

j�2

= Y

0

j

0

�2

and X

j�1

= X

0

j

0

�1

.

Repeating the above argument for i = j � 2; : : : ; 1, we obtain that W

j�2

= W

0

j

0

�2

, W

j�3

= W

0

j

0

�3

, : : :,

W

1

=W

0

1

and onsequently Y

j�3

= Y

0

j

0

�3

and X

j�2

= X

0

j

0

�2

, Y

j�4

= Y

0

j

0

�4

and X

j�3

= X

0

j

0

�3

, : : :, Y

0

= Y

0

0

and X

1

= X

0

1

. Now we have

�(X

0

) = X

1

= X

0

1

= �(X

0

0

):

Consequently, jX

0

j = jX

0

0

j and so jW

0

j = jW

0

0

j. This fores k

0

= k

0

0

. Thus, we have

h

k

0

(W

0

) = Y

0

= Y

0

0

= h

k

0

(W

0

0

):

Again using Theorem 3, we have that either there is a ollision for h or W

0

= W

0

0

. In the �rst ase we

are done and in the seond ase, we have W

0

= W

0

0

and hene x = X

0

= X

0

0

= x

0

whih ontradits the

hypothesis. Hene there is a ollision for h.

Case j 6= j

0

: Without loss of generality assume j

0

> j and j

0

� j = l > 0. Proeeding as in the above ase,

we have Y

0

= Y

0

l

and X

1

= X

0

l+1

. Again �(X

0

) = X

1

= X

0

l+1

= �(X

0

l

) and hene jX

0

j = jX

0

l

j whih implies

jW

0

j = jW

0

l

j. This fores k

0

= k

0

l

. Thus, we have

h

k

0

(W

0

) = Y

0

= Y

0

l

= h

k

0

l

(W

0

l

):

The string W

0

is formed by (possibly) padding 0's to the end of IVjj0jjX

0

and the string W

0

l

is formed by

(possibly) padding 0's to the end of Y

0

l�1

jj1jjX

0

l

. Thus, W

0

and W

0

l

di�er in the (m+1)th bit position and

hene W

0

6=W

0

l

. Hene by Theorem 3 there must be a ollision for h.

12

Let A be an (�; q; L)-algorithm to solve ALC(n;m;L) for h

1

. Then A is suessful with probability �

and in this ase let (x; x

0

) be the output of A. Thus, jxj; jx

0

j � L and so h

1

invokes h at most � times for

hashing either x or x

0

. The algorithm B to solve Col(n;m) for h is as follows. B �rst exeutes A. If A

fails, then B also fails. If A sueeds and returns (x; x

0

), then B invokes h

1

on both x and x

0

and \sans

bakwards" until a ollision for h is found. By the above disussion, if (x; x

0

) is a ollision for h

1

, then

with probability one, the bakward san will produe a ollision for h. Thus, the suess probability of

B is also �. Further, the number of invoations of h made by B is found as follows: q times during the

exeution of A and at most � times eah on x and x

0

, giving a total of at most q + 2� invoations.

7 Comparison to Iterated Hashing

In this setion, we perform a omparison of the new onstrution to the several variations of the Merkle-

Damg�ard onstrutions. Before getting into the details, we would like to point a few things.

� Our onstrution is more general in the sense that it works over an arbitrary DAG, whereas the

variations of the Merkle-Damg�ard algorithm works only with dipaths. Also, we would like to point

out that the mehanism in Merkle-Damg�ard algorithm for handling arbitrary length strings and the

assoiated argument does not arry over to the ase of arbitrary DAGs.

� The detailed omparison that we present below is only to Constrution II, sine this is the algorithm

whih an hash arbitrary length strings and assumes h to be only ollision resistant.

� From a pratial point of view, in general, we do not expet our algorithm to replae the Constru-

tion III. For most ryptographi purposes, omputation of the hash funtion requires a very small

fration of the total time. Hene, parallel hash omputation algorithms (and onsequently DAGs)

would be required only for speial purpose appliations. On the other hand, we believe that the

issue of obtaining an eÆient parallel hash algorithm whih an handle arbitrary length strings is of

signi�ant theoretial interest.

7.1 Padding EÆieny

The funtion h

1

performs some amount of padding to the string x before hashing it. We determine the

maximum amount of padding that is done and show that this is (asymptotially) less than the amount of

padding performed in Constrution II. Given integer i, we de�ne log

�

(i) to be the least integer k suh that

log(log(: : : (log(

| {z }

k

jxj) : : :)) � 1:

Note that the parameters n and m of the ompression funtion h are independent of the message length

jxj and an be assumed to be onstant in an asymptoti analysis.

Proposition 6 Let x be a binary string with jxj > n. Then the maximum amount of padding done to the

string x in the omputation of h

1

(x) is

n+ j(n�m) + j�(x)j + j�

2

(x)j+ � � �+ j�

j�1

(x)j

where j is the minimum positive integer suh that j�

j

(x)j � n�m.

13

Proof. The maximum amount of padding in Step 3 is m+1+ (n�m� 1). In Step 4, there is a loop; for

eah value of i (1 � i � j�1) the maximum amount of padding is 1+ jX

i

j+(n�m�1) = (n�m)+ j�

i

(x)j.

The padding in Step 5 is equal to (n�m). Adding up all these gives the required result.

The maximum amount of padding done to x in Constrution II is 2n�m� 2+

l

jxj

n�m�1

m

(see [7℄). As-

suming n andm to be onstants, the amount of padding is O(jxj). On the other hand, assuming n andm to

be onstants, the maximum amount of padding in our algorithm is bounded above by O((log

�

jxj)(log jxj)).

Hene, in an asymptoti sense our padding sheme is more eÆient than the Merkle-Damg�ard padding

sheme. The asymptoti ineÆieny in the Merkle-Damg�ard onstrution arises due to the fat that one

bit of padding is done to eah message blok.

7.2 Invoation EÆieny

We ompare the invoation eÆieny of our algorithm to Constrution II, i.e., we ompare the number of

invoations of the ompression funtion h for a message x made by Constrution II and our algorithm.

We �rst ompute the number of invoations of h made by our algorithm. The algorithm to ompute

h

1

invokes h

�

exaty j + 1 times, i.e., for i = 0; : : : ; j. Suppose as in the proof of Theorem 5 that the

ith invoation of h

�

is made on the string W

i

whih is obtained by possibly padding 0s to IVjj0jjX

0

if

i = 0; to Y

i�1

jj1jjX

i

if 1 � i � j � 1; and to Y

j�1

jjX

j

if i = j. Then from Proposition 2, it follows that

jW

i

j = (n�m)(k

i

� 1) + n. Now jW

i

j = m+ 1 + jX

i

j+ j�

i

j for 0 � i � j � 1 and jW

j

j = m+ jX

j

j+ j�

j

j,

where �

i

s are the all zero strings whih are used as pads to obtain the W

i

s. Further, j�

i

j � n�m� 1 for

all 0 � i � j. Thus, we obtain k

i

=

l

jX

i

j+1

(n�m)

m

if 0 � i � j � 1; and k

i

=

l

jX

i

j

(n�m)

m

if i = j. The value of k

i

is

the number of invoations of h made by h

k

i

. Note that k

j

= 1. Hene the total number of invoations of

h made in the omputation of h

1

is obtained by adding all the k

i

s and is given in the following result.

Proposition 7 The total number B of invoations of h made in the omputation of h

1

is equal to

B =

�

jxj+ 1

n�m

�

+

�

j�(x)j+ 1

n�m

�

+ � � �+

�

j�

j�1

(x)j+ 1

n�m

�

+ 1

In Constrution II, the number of invoations A of the ompression funtion h is equal to A = 1+

l

jxj

n�m�1

m

:

On the other hand, the number B of invoations of h in our algorithm is given by Proposition 7. Note

that j � log

�

jxj. Using this fat and some simple algebrai simpli�ation we obtain

A�B >

jxj

(n�m)(n�m� 1)

�

n�m+ 1 + log

�

jxj(n�m+ 2 + log jxj)

n�m

> 0

for suÆiently large jxj. Thus, in an asymptoti sense, our algorithm is more eÆient than the Merkle-

Damg�ard algorithm.

7.3 Optimal Constrution?

Consider the problem of seure domain extension to arbitrary length strings. Both Constrution II and

our algorithm perform this task. We have shown that our algorithm improves upon the Merkle-Damg�ard

algorithm both in terms of reduing the amount of padding and the number of invoations. This suggests

the following two problems.

14

Lower Bound: Let A be an algorithm whih seurely extends the domain of a ompression funtion

h to arbitrary length strings. What is the minimum amount of padding and minimum number of

invoations of h that A has to make on an input x of length jxj?

Constrution: Is there a onstrution whih improves upon our algorithm?

At this point, we do not know the answer to either of these two question. In partiular, for the �rst question,

we have not even been able to prove that the amount of padding annot be onstant (i.e. independent

of the length of x). On the other hand, for the seond question, it might seem that a padding of length

proportional to log jxj might be suÆient. However, atually obtaining suh a onstrution along with a

orretness proof does not seem to be easy. We believe that the resolution of these questions an form

tasks of future researh and the answers will be important for the understanding of ollision resistant hash

funtions.

8 Conrete Examples

In this setion, we provide some examples of DAGs whih an be used to extend the domain of a ollision

resistant ompression funtion. To do this it will be easier to de�ne a notion of omposition of strutures

in the following manner.

Let S

1

= (n;m;D

1

= (V

1

; A

1

); �

1

) and S

2

= (n;m;D

2

= (V

2

; A

2

); �

2

) be two strutures suh that the

number of output nodes of D

1

is at most equal to the number of exposed nodes of D

2

. Let fu

1

; : : : ; u

r

g be

the output nodes of D

1

and fv

1

; : : : ; v

s

g (r � s) be the exposed nodes of D

2

. De�ne a DAG D = (V;A),

where V = V

1

[V

2

and A = A

1

[A

2

[f(u

1

; v

1

); : : : ; (u

r

; v

r

)g. De�ne a proper assignment � on D in the

following manner: �(e) = �

i

(e) if e 2 A

i

, i = 1; 2 and �(e) = m otherwise. We de�ne S = S

1

� S

2

to be

the partial omposition of S

1

and S

2

where S = (n;m;D; �). In ase r = s, i.e., the number of output

nodes of D

1

is equal to the number of exposed nodes of D

2

we will say that S is the total omposition or

simply the omposition of S

1

and S

2

. Also we will denote the total omposition by the symbol Æ. Note

that Æ is an assoiative operation while � is not and neither of the two operations are ommutative.

From now on we will expliitly write a struture as S = (n;m; r

1

; r

2

;D; �) where r

1

(resp. r

2

) is the

number of exposed (resp. output) nodes of D. Thus, we an ompose S

1

= (n;m; r

1

; r

2

;D

1

; �

1

) and

S

2

= (n;m; r

2

; r

3

;D

2

; �

2

) to obtain S = S

1

Æ S

2

= (n;m; r

1

; r

3

;D; �). Let h

S

1

; h

S

2

and h

S

be the hash

funtions assoiated with the strutures S

1

;S

2

and S respetively. Then h

S

1

is an (t

1

(n�m) + r

2

m; r

2

m)

funtion, h

S

2

is an (t

2

(n�m) + r

3

m; r

3

m) funtion and h

S

is an ((t

1

+ t

2

)(n�m) + r

3

m; r

3

m) funtion

where t

1

and t

2

are the numbers of nodes in D

1

and D

2

respetively.

We now provide some examples of strutures. In eah of the ases below we assume the existene of a

suitable (n;m) ompression funtion h.

Example 1 (isolated nodes): For i � 1, de�ne K

i

= (n;m; i; i;D = (f1; : : : ; ig; ;); �) to be the struture

orresponding to the digraph onsisting of i nodes and no ars. Hene eah node is both an exposed and

an output node. The depth of K

i

is one. The assoiated hash funtion h

K

i

is an (in; im) funtion.

Example 2 (dipath): For r � 1, de�ne P

(r)

to be the direted path on r nodes and � assigns m to eah

ar of P

(r)

. This de�nes a struture P

(r)

= (n;m; 1; 1; P

(r)

; �). The depth of P

(r)

is r. The assoiated

hash funtion h

P

(r)

is an (r(n �m) +m;m) funtion. A variation of this struture (whih inludes an

initialization vetor) is used in the Merkle-Damg�ard onstrution [2, 4℄.

Example 3 (parallel dipaths): For r; q � 1, de�ne P

(r)

q

to be the union of q opies of P

(r)

and the

orresponding struture is denoted by P

(r)

q

= (n;m; q; q; P

(r)

; �), where � again assigns m to eah ar of

15

P

(r)

q

. The depth of P

(r)

q

is r and also note that K

i

= P

(1)

i

. The assoiated hash funtion h

P

(r)

q

is an

(rq(n�m) + qm; qm) funtion.

Example 4 (ontrating binary tree): For t � 1, let T

t

be the binary tree with t levels and 2

t

� 1

nodes de�ned by T

t

= (f1; : : : ; 2

t

� 1g; f(i; bi=2) : 2 � i � 2

t

� 1g). We de�ne an assignment � whih

assigns m to eah ar of T

t

. Then the fan-in of any non exposed node is 2m and sine � is proper we must

have n � 2m. We denote the orresponding struture by T

t

= (n;m; 2

t�1

; 1; T

t

; �). The depth of T

t

is t.

The assoiated hash funtion h

T

t

is a ((2

t

� 1)(n�m) +m;m) hash funtion.

Example 5 (expanding binary tree): For t � 1, let I

t

be the inverted binary tree of t levels: I

t

=

(f1; : : : ; 2

t

� 1g; f(i; 2i); (i; 2i + 1) : 1 � i � 2

t�1

� 1g). The assignment � assigns (m=2) to eah ar of I

t

.

We denote the orresponding struture by I

t

= (n;m; 1; 2

t�1

; I

t

; �). The depth of I

t

is t. The assoiated

hash funtion h

I

t

is a ((2

t

� 1)(n�m) + 2

t�1

m; 2

t�1

m) funtion.

Example 6 (parallel struture): For t � 1 and r � 0, de�ne S

(r)

t

= I

t

Æ P

(r)

2

t�1

Æ T

t

. The numbers of

exposed and output nodes of S

(r)

t

are both one and its depth is 2t+ r. The assoiated hash funtion h

S

(r)

t

is a ((2

t

(r + 2)� 2)(n�m) +m;m) funtion.

Example 7 (inremental parallel struture): For r � 0, t � 1 and 1 � s � 2

t�1

de�ne the struture

S

(r;s)

t

= (I

t

Æ P

(r)

2

t�1

) Æ (K

s

� T

t

): (3)

The numbers of exposed and output nodes of S

(r;s)

t

are both one and its depth is 2t + r + 1. The hash

funtion h

S

(r;s)

t

assoiated to the struture S

(r;s)

t

is an ((2

t+1

+ r2

t�1

+ s� 2)(n�m) +m;m) funtion.

Remark : We note that the basi idea behind Example 7 is already present in Damg�ard [2℄. However, we

provide muh more details.

8.1 A Parallelizable Hash Algorithm

We build on Example 7 above to obtain a parallel algorithm for extending the domain of a ollision resistant

hash funtion. The algorithm will use 2

t�1

proessors and its struture will be S

(r;s)

t

for some r and s whih

are determined by the length of the message x in the following manner. De�ne �(t) = (2

t+1

�2)(n�m)+m

and Æ(t) = 2

t�1

(n�m). Let x be the string whih is to be hashed.

1. Write jxj � �(t) = rÆ(t) +

1

, where

1

is a unique integer from the set f1; : : : ; Æ(t)g.

2. Write

1

=

2

(n�m) +

3

, where

3

is a unique integer from the set f1; : : : ; n�mg.

3. Set x = xjj0

n�m�

3

. Note that the amount of padding is at most (n�m� 1).

Note that 1 �

2

< 2

t

. The above steps de�ne the parameters r;

1

;

2

and

3

. We further de�ne s =

2

+1.

For t � 1, we de�ne the funtion g

�

t

: [

i��(t)

f0; 1g

i

! f0; 1g

m

by

g

�

t

(x) = h

S

(r;s)

t

(xjj0

n�m�

3

) (4)

where h

S

(r;s)

t

is the hash funtion assoiated with the struture S

(r;s)

t

. Note that the amount of padding

done to the string x is at most n�m� 1.

Remark : One onstraint for using the struture T

t

is that the (n;m) ompression funtion h must

satisfy n � 2m. The struture S

(r;s)

t

ontains the struture T

t

and hene this onstraint also holds for

S

(r;s)

t

. However, from a pratial point of view this is not really a onstraint, sine all known pratial

ompression funtions satisfy this ondition.

16

We now de�ne H

�

t

: [

i�1

f0; 1g

i

! f0; 1g

m

in the following manner. First, for the sake of onveniene,

we need to de�ne a funtion g

0

: [

2n�m�1

i=n+1

f0; 1g

i

! f0; 1g

m

in the following manner. Let x be a string with

n < jxj < 2n �m and w = xjj0

2n�m�jxj

. Write w = w

1

jjw

2

where jw

1

j = n and jw

2

j = n�m. We de�ne

g

0

(x) = h(h(w

1

)jjw

2

).

H

�

t

(x) = h(xjj0

n�jxj

) if jxj � n;

= g

0

(x) if n < jxj < 2n�m;

= g

�

i

(x) if �(i) � jxj < �(i+ 1) and 1 � i < t;

= g

�

t

(x) if jxj � �(t):

9

>

>

=

>

>

;

(5)

The desired funtion H

1

t

is obtained from the funtion H

�

t

using the onstrution of Setion 6.

Computation of H

1

t

(x)

1. Let X

0

= x and for i � 1, X

i

= �(X

i�1

) = �

i

(X

0

).

2. Let j be the least positive integer suh that jX

j

j � n�m.

3. Set Y

0

= H

�

t

(IVjj0jjX

0

).

4. For i = 1 to j � 1 set Y

i

= H

�

t

(Y

i�1

jj1jjX

i

).

5. Y

j

= H

�

t

(Y

j�1

jjX

r

j

).

6. Output Y

j

.

The ollision resistane of H

1

t

is proved in a manner similar to that of Theorem 5 and this gives us the

following result.

Theorem 8 Let H

1

t

be the hash funtion de�ned as above. Then, a ollision for H

1

t

yields a ollision

for h.

9 Conlusion

We have onsidered the problem of seurely extending the domain of a ollision resistant hash funtion

using an arbitrary DAG. A new eÆient onstrution has been presented. This onstrution improves upon

the general Merkle-Damg�ard algorithm both in the amount of padded bits and the number of invoations

of the ompression funtion. The proof of ollision resistane of our onstrution requires the ompression

funtion to only ollision resistant (one-wayness is not used in the proof). In this paper, we have entirely

onentrated on the property of ollision resistane. In fat, all the domain extending tehniques onsidered

here also preserve the property of pre-image resistane.

Aknowledgement: The onstrution in Setion 6 was inorret in an earlier version of the paper. The

error was disovered while disussing the paper with several other people. We would like to thank Rana

Barua, Mridul Nandi and Bimal Roy for this.

Referenes

[1℄ M. Bellare and P. Rogaway, Collision-resistant hashing: towards making UOWHFs pratial, in:

Proeedings of Crypto 1997, Leture Notes in Computer Siene, volume 1294, Springer, 1997, pp.

470-484.

17

[2℄ I. B. Damg�ard, A design priniple for hash funtions, in: Proeedings of Crypto 1989, Leture Notes

in Computer Siene, volume 435, Springer, 1990, pp. 416-427.

[3℄ W. DiÆe and Martin E. Hellman. New Diretions in Cryptography. IEEE Transations on Information

Theory, volume IT-22, number 6, pages 644{654, year 1976.

[4℄ R. C. Merkle, One way hash funtions and DES, in: Proeedings of Crypto 1989, Leture Notes in

Computer Siene, volume 435, Springer, 1990, pp. 428-446.

[5℄ B. Preneel, The state of ryptographi hash funtions, in: Letures on Data Seurity: Modern Cryp-

tology in Theory and Pratie, Leture Notes in Computer Siene, volume 1561, Springer 1999, pp.

158-182.

[6℄ D. R. Stinson, Some observations on the theory of ryptographi hash funtions, Designs, Codes and

Cryptography, to appear.

[7℄ D. R. Stinson. Cryptography: Theory and Pratie, CRC Press, seond edition, 2002.

18

