
Domain Extender for Collision Resistant Hash Fun
tions: Improving

Upon Merkle-Damg�ard Iteration

Palash Sarkar

Cryptology Resear
h Group

Applied Statisti
s Unit

Indian Statisti
al Institute

203, B.T. Road, Kolkata

India 700108

palash�isi
al.a
.in

Abstra
t

We study the problem of se
urely extending the domain of a
ollision resistant
ompression fun
tion.

A new
onstru
tion based on dire
ted a
y
li
 graphs is des
ribed. This generalizes the usual iterated

hashing
onstru
tions. Our main
ontribution is to introdu
e a new te
hnique for hashing arbitrary

length strings. Combined with DAG based hashing, this te
hnique gives a new hashing algorithm. The

amount of padding and the number of invo
ations of the
ompression fun
tion required by the new

algorithm is smaller than the general Merkle-Damg�ard algorithm. Lastly, we des
ribe the design of a

new parallel hash algorithm.

Keywords : hash fun
tion,
ompression fun
tion,
omposition prin
iple,
ollision resistan
e, dire
ted

a
y
li
 graph.

1 Introdu
tion

Hash fun
tions are a basi

ryptographi
 primitive and are used extensively in digital signature proto
ols.

For su
h appli
ations, a hash fun
tion must satisfy
ertain ne
essary properties in
luding
ollision resistan
e

and pre-image resistan
e. Collision resistan
e implies that it should be
omputationally intra
table to �nd

two elements in the domain whi
h are mapped to the same element in the range. On the other hand,

pre-image resistan
e means that given an element of the range, it should be
omputationally intra
table

to �nd its pre-image.

Constru
tion of
ollision resistant and pre-image resistant hash fun
tions are of both pra
ti
al and

theoreti
al interest. Most pra
ti
al hash fun
tions are designed from s
rat
h. The advantage of designing

a hash fun
tion from s
rat
h is that one
an use simple logi
al/arithmeti
 operations to design the algorithm

and hen
e a
hieve very high speeds. The disadvantage is that we obtain no proof of
ollision resistan
e.

Hen
e a user has to assume that the fun
tion is
ollision resistant. A well a

epted intuition in this area is

that it is more plausible to assume a fun
tion to be
ollision resistant when the domain is �xed (and small)

rather than when it is in�nite (or very large). A �xed domain fun
tion whi
h is assumed to be
ollision

resistant is often
alled a
ompression fun
tion.

For pra
ti
al use, it is required to hash messages of arbitrary lengths. Hen
e one must look for methods

whi
h extend the domain of a
ompression fun
tion in a \se
ure" manner, i.e., the extended domain hash

fun
tion is
ollision resistant provided the
ompression fun
tion is
ollision resistant. Any method whi
h

a
hieves this is often
alled a
omposition prin
iple.

1

Composition prin
iples based on iterated appli
ations of the
ompression fun
tion are known and these

are
alled variants of the Merkle-Damg�ard algorithm [2, 4℄. The most general of these algorithms
an

hash arbitrarily long messages and assumes the
ompression fun
tion to be only
ollision resistant. Other

variants
an hash messages of a maximum possible length or assumes the
ompression fun
tion to be

both
ollision resistant and one-way. See Se
tion 3 for a detailed dis
ussion of several variants of the

Merkle-Damg�ard algorithm.

Our Contributions: In this paper, we are
on
erned with the problem of
onstru
ting a hash fun
tion

whi
h
an hash arbitrarily long messages and whi
h
an be proved to be
ollision resistant under the

assumption that the
ompression fun
tion is
ollision resistant. To justify the non-triviality of the problem

we des
ribe a
onstru
tion whi
h
an be proved to be se
ure if the
ompression fun
tion is both
ollision

resistant and one-way while it is inse
ure if the
ompression fun
tion is only
ollision resistant.

The �rst step in our
onstru
tion is to
onsider a very general
lass of domain extending algorithms.

The stru
ture of any algorithm in the
lass that we
onsider
an be des
ribed using a dire
ted a
y
li
 graph

(DAG). In Se
tion 5, we provide a
onstru
tion of a se
ure domain extending algorithm using an arbitrary

DAG. The Merkle-Damg�ard algorithm uses a dipath and is a spe
ial
ase of DAG based algorithms.

Our main
ontribution (in Se
tion 6) is to provide a solution to the problem of hashing arbitrary length

strings for DAG based algorithms. Our algorithm improves upon the (general) Merkle-Damg�ard algorithm

both in terms of padding length and number of invo
ations. Our
onstru
tion
an be proved to be
ollision

resistant under the assumption that the
ompression fun
tion is only
ollision resistant.

In Se
tion 8, we provide some
on
rete examples of hashing stru
tures and show that these
an be

ombined ni
ely to design a parallel hash fun
tion. We note, however, that we do not provide a detailed

spe
i�
ation of an a
tual hash fun
tion. Su
h a spe
i�
ation will ne
essarily involve many pra
ti
al and

implementation issues whi
h are not really within the s
ope of the
urrent work.

A theoreti
al justi�
ation of our work is provided by the fa
t that our results improve upon a �fteen

year old
lassi
al work. Sin
e our work improves upon the Merkle-Damg�ard algorithm, a natural question

is whether further improvements are possible. This naturally leads to the problem of obtaining non-trivial

lower bounds (and optimal algorithms) on padding lengths and number of invo
ations. These problems

an provide motivation for future resear
h.

2 Preliminaries

We write jxj for the length of a string and x

1

jjx

2

for the
on
atenation of two strings x

1

and x

2

. The

reverse of the string x will be denoted by x

r

. By an (n;m) fun
tion we will mean a fun
tion whi
h maps

f0; 1g

n

to f0; 1g

m

. All logarithms in the paper are in base two.

For n > m, let h be an (n;m) fun
tion. Two n-bit strings x and x

0

in X are said to
ollide for h, if

x 6= x

0

but h(x) = h(x

0

). A hash fun
tion h : X ! Y is said to be
ollision resistant if it is
omputationally

intra
table to �nd
ollisions for h. A formal de�nition of this
on
ept requires the
onsideration of a family

of fun
tions (see [2, 5℄).

In this paper, we are interested in \se
urely" extending the domain of a hash fun
tion. More pre
isely,

given an (n;m) fun
tion h : f0; 1g

n

! f0; 1g

m

, with n > m+1, we
onstru
t a fun
tion h

1

: [

i�1

f0; 1g

i

!

f0; 1g

m

, su
h that one
an prove the following: Given any
ollision for h

1

, it is possible to obtain a

ollision for h. The last statement is formalized in terms of a Turing redu
tion between two suitably

de�ned problems (see below). The advantage of this method is that we only prove a redu
tion and at no

point are we required to use a formal de�nition of
ollision resistan
e. This approa
h has been previously

used in the study of hash fun
tions [6℄.

2

We now turn to the task of de�ning our approa
h to redu
ibilities between di�erent problems related

to the property of
ollision resistan
e. Consider the following problem as de�ned in [6℄.

Problem : Collision Col(n;m)

Instan
e : An (n;m) hash fun
tion h.

Find : x; x

0

2 f0; 1g

n

su
h that x 6= x

0

and h(x) = h(x

0

).

By an (�; q) (probabilisti
) algorithm for Collision we mean an algorithm whi
h invokes the hash fun
tion

h at most q times and solves Col(n;m) with probability of su

ess at least �.

The domain of h is the set of all n-bit strings. We would like to extend the domain to the set of all

nonempty binary strings, i.e., to
onstru
t a fun
tion h

1

: [

i�1

f0; 1g

i

! f0; 1g

m

. We would like to relate

the diÆ
ulty of �nding
ollisions for h

1

to that of �nding
ollisions for h. Thus, we
onsider the following

problem.

Problem : Arbitrary length
ollision ALC(n;m;L)

Instan
e : An (n;m) hash fun
tion h and an integer L � 1.

Find : x; x

0

2 [

L

i=1

f0; 1g

i

su
h that x 6= x

0

and h

1

(x) = h

1

(x

0

).

By an (�; q; L) (probabilisti
) algorithm A for Arbitrary length
ollision we will mean an algorithm that

makes at most q invo
ations of the fun
tion h and solves ALC(n;m;L) with probability of su

ess at least

�.

Later we show Turing redu
tions from Collision to Arbitrary Length Collision. Informally, this means

that given ora
le a

ess to an algorithm for solving ALC(n;m;L) for h

1

it is possible to
onstru
t an

algorithm to solve Col(n;m) for h. These will show that our
onstru
tions preserve the intra
tibility of

�nding
ollisions.

Pre-image resistan
e: This is an important property for
ryptographi
 hash fun
tions. Informally, this

means that given y 2 f0; 1g

m

, it is
omputationally infeasible to �nd an x, su
h that f(x) = y. Pre-image

resistan
e (or one-wayness) is a
ru
ially important property on its own. On the other hand, this property

is sometimes used to prove se
urity of domain extending te
hniques for
ollision resistant hash fun
tions.

Suppose the domain of an (n;m) hash fun
tion h is extended to obtain the hash fun
tion H(). For
ertain

onstru
tions [2℄, one
an show that h

1

is
ollision resistant if h is both
ollision resistant and one-way.

We would like to emphasize that this is not the approa
h we will take in this paper. In our
onstru
tions,

we will assume h to be only
ollision resistant.

3 Iterated Hashing

In this se
tion, we brie
y review iterative te
hniques for extending the domain of a
ollision resistant

ompression fun
tion. These te
hniques are attributed to [4, 2℄ and are
ommonly
alled the Merkle-

Damg�ard
onstru
tions.

Let h be an (n;m)
ompression fun
tion and IV be an m-bit string. Ea
h of the domain extending

methods des
ribed below use IV and h to
onstru
t a new fun
tion whi
h
an hash \long" strings to obtain

m-bit digest. The IV
an be
hosen randomly, but on
e
hosen it
annot be
hanged and be
omes part of

the spe
i�
ation for the extended domain hash fun
tion.

3

3.1 Constru
tion I: Basi
 Iteration

We de�ne a hash fun
tion H

(I)

whose domain
onsists of all binary strings whose length is a multiple of

(n �m). Let x be a message whose length is i(n �m) for some i � 1. We write x = x

1

jj � � � jjx

i

, where

ea
h x

j

is a string of length (n �m). De�ne z

1

= h(IVjjx

1

) and for j > 1, de�ne z

j

= h(z

j�1

jjx

j

). The

digest of x under H

(I)

is de�ned to be z

i

, i.e., H

(I)

= z

i

.

The fun
tion H

(I)

an be proved to be
ollision resistant. Brie
y, the argument pro
eeds as follows.

Suppose x and x

0

are two strings su
h that x 6= x

0

and H

(I)

(x) = H

(I)

(x

0

). If we have jxj = jx

0

j, then an

easy ba
kward indu
tion shows that there must be a
ollision for the fun
tion h. On the other hand, if

jxj 6= jx

0

j, then it
an be argued that the
ollision for H

(I)

either leads to a
ollision for h or a pre-image

of IV under h. Thus, if we assume that h is both
ollision resistant and pre-image resistant, then H

(I)

is

ollision resistant.

3.2 Constru
tion II: General Constru
tion

Our des
ription of the general version (whi
h appears in [2℄) is from [7℄ for the
ase n�m > 1. (The
ase

n�m = 1 is a little more
ompli
ated. We do not mention it here sin
e we will not
onsider su
h values

of n and m for our
onstru
tions.)

Let H

(II)

be the extended domain hash fun
tion whi
h is to be de�ned. Let x be a message to be

hashed and we have to de�ne the digest H

(II)

(x). Write x = x

1

jjx

2

jj : : : jjx

k

, where jx

1

j = jx

2

j = � � � =

jx

k�1

j = n �m � 1 and jx

k

j = n �m � 1 � d with 0 � d � n �m � 2. For 1 � i � k � 1, let y

i

= x

i

;

y

k

= x

k

jj0

d

and y

k+1

is the (n �m � 1)-bit binary representation of d. De�ne z

1

= h(IVjj0jjy

1

) and for

1 � i � k, de�ne z

i+1

= h(z

i

jj1jjy

i+1

). The digest of x under H

(II)

is z

k+1

, i.e., H

(II)

(x) = z

k+1

.

Note that the domain
onsists of all possible binary strings, i.e., there is no length restri
tion on the

input message x. It
an be shown that H

(II)

is
ollision resistant assuming h to be only
ollision resistant.

(See [7℄ for a proof.)

3.3 Constru
tion III: SHA Family Constru
tion

The spe
i�
ation of the SHA family of
onstru
tions uses a variant of the iterative hashing te
hnique. We

denote this variant by H

(III)

.

Let x be the message to be hashed. First we form the string: pad(x) = xjj1jj0

k

jjbin

(jxj); where
 is a

onstant su
h that
 < n�m, bin

(jxj) is the
-bit binary representation of x and k is the least non-negative

integer su
h that jxj+ 1 + k � (n�m�
) mod (n�m), or equivalently x+
 + 1 + k � 0 mod (n�m).

The length of pad(x) is equal to l(n�m) for some l � 1. (For SHA-256, n = 768, m = 256 and
 = 64.)

The message digest is de�ned to be H

(III)

(x) = H

(I)

(pad(x)).

This
onstru
tion
an only handle messages of lengths less than 2

. Putting
 = 64 (as in SHA-256) is

usually suÆ
ient for all pra
ti
al purposes. The maximum amount of padding is n�m whi
h is a
onstant,

i.e., independent of the message length.

3.4 Constru
tion IV: Another Length Bounded Constru
tion

We de�ne a fun
tion H

(IV)

whi
h like H

(III)

an also hash all binary strings of a maximum possible length.

Let the message be x. Append the minimum number of zeros to x so as to make the length a multiple

of (n�m). Now divide x into l blo
ks x

0

; : : : ; x

l�1

of lengths (n�m) bits ea
h. De�ne y

0

= h(IVjjx

0

) and

for 1 � i � l � 1, de�ne y

i

= h(y

i�1

jjx

i

). Finally de�ne z = h(y

l�1

jjw), where w is the (n�m)-bit binary

4

Table 1: Comparison of features of di�erent
onstru
tions for a message x.

Cons. domain sz. length res. padding # invo
. assumption on h()

I in�nite jxj = i(n�m), none

jxj

n�m

.r. and

i � 1 one-way

II in�nite none 2n�m� 2
.r.

+

l

jxj

n�m�1

m

1 +

l

jxj

n�m�1

m

III 2

, jxj < 2

, m a+

l

jxj

n�m

m

,
.r.

 < n�m
 < n�m a 2 f0; 1g

IV < 2

n�m

jxj < 2

n�m

2n�m� 1 1 +

l

jxj

n�m

m

.r.

representation of jxj, i.e. w = bin

n�m

(jxj). The digest of x is z. Clearly, this algorithm
an be applied only

when the length of x is less than 2

n�m

. Again, this
onstru
tion
an be proved to be
ollision resistant

assuming h to be only
ollision resistant.

3.5 Role of IV

Ea
h of the
onstru
tions des
ribed above use anm-bit string as an IV. The IV is essential in Constru
tion I,

sin
e in this
onstru
tion we require h to be su
h that it is infeasible to �nd a pre-image of IV under h. On

the other hand, for Constru
tions II to IV, we
an repla
e IV by the initial m bits of the message without

a�e
ting the
ollision resistan
e of the extended domain hash fun
tion. If we do this, then in
ertain
ases,

we
an hash an extra m bits without in
reasing the number of invo
ations of h. In general, this is not

a signi�
ant gain, though it may be
ome signi�
ant if we repeatedly hash short messages su
h as digital

erti�
ates.

3.6 Dis
ussion

In Table 1, we
ompare the properties of the di�erent
onstru
tions. For ea
h
onstru
tion, we provide

the size of the extended domain; the restri
tion on the lengths of messages to be hashed; the maximum

amount of padding; the maximum number of invo
ations of h() that are made while extending the domain;

and the se
urity assumption made on h(). (In our
ount of the number of padded bits, we also in
lude the

IV.) The �rst
onstru
tion is proved to be
ollision resistant under the assumption that h() is both
ollision

resistant and one-way, while the other three
onstru
tions
an be proved to be
ollision resistant under the

assumption that h() is only
ollision resistant. Constru
tion II
an handle arbitrary length strings, while

the Constru
tions III and IV
an handle bounded length strings. On the other hand, Constru
tions III

and IV are more eÆ
ient than Constru
tion II.

Question: The theoreti
al question that now arises is whether it is possible to obtain a
onstru
tion whi
h

an handle arbitrary length strings, whose
ollision resistan
e is based only on the
ollision resistan
e of h

and whi
h is more eÆ
ient than Constru
tion II?

5

4 DiÆ
ulty of Domain Extension

We would like to provide some eviden
e that it is non-trivial to obtain an answer to the question raised in

Se
tion 3.6. It is often believed that \padding with the length at the end is suÆ
ient to ensure
ollision

resistan
e". Investigating su
h a
laim in full generality is diÆ
ult. Instead, we
onsider a \natural"

extension of Constru
tion III (the SHA family
onstru
tion) to arbitrary length strings and show the

following two fa
ts.

� It is
orre
t if we assume h to be both
ollision resistant and one-way on IV but

� It is in
orre
t when we assume h to be only
ollision resistant.

For an integer i, let bin(i) denote the minimum length binary representation of i and for a binary string

x, let �(x) denote the minimum length binary representation of the length of x, i.e., �(x) = bin(jxj).

Constru
tion V: We want to de�ne a fun
tion H

(V)

whi
h
an handle arbitrary length strings. As in

Constru
tion III, de�ne

pad(x) = xjj1jj0

k

jjbin(jxj)

= xjj1jj0

k

jj�(x)

where k is the minimum non-negative integer whi
h satis�es the equation jxj+j�(x)j+1+k � 0 mod (n�m).

This ensures that the length of pad(x) is equal to l(n �m) for some l � 1 and hen
e we
an apply the

iterative te
hnique as in Constru
tion III to
ompute the message digest. (The exa
t Constru
tion III is

obtained by substituting bin

(jxj) for bin(x).)

The digest of x under H

(V)

is de�ned to be H

(I)

(pad(x)), i.e., H

(V)

(x) = H

(I)

(pad(x)). Sin
e we do

not put any bound on the length of bin(jxj), this
onstru
tion
an handle arbitrary length strings. Let us

now
onsider the
orre
tness of Constru
tion V.

Condition 1: Suppose h is both
ollision resistant and it is infeasible to �nd a pre-image of IV. Then,

using an argument as in the
ase of Constru
tion I, it is possible to show by a ba
kward indu
tion that a

ollision for H

(V)

either provides a
ollision for h or a pre-image of IV under h.

Condition 2: Suppose that we want to assume h to be only
ollision resistant. We show that assuming h

to be only
ollision resistant is not suÆ
ient to show the
orre
tness of Constru
tion V. Let us
onsider the

meaning of this statement in more details. Suppose that there is some element in the range of h whi
h has

a unique pre-image. Then the ability to �nd this pre-image (or even knowing it a priori) does not violate

the
ollision resistan
e of h. On the other hand, the knowledge of this pre-image
an make it possible to

onstru
t a
ollision for H

(V)

. This is the approa
h that we take below.

Our �rst task is to
hoose a suitable
ollision resistant h. For this, we must assume that some fun
tion

h

0

() with suitable parameters is
ollision resistant, as otherwise the question is moot. (See [1℄ for a similar

situation in regard to universal one-way hash fun
tions.)

Suppose h

0

() is an (n;m

0

)
ollision resistant fun
tion, with m

0

= m� 1 and n�m = 2

�

� 16. Further,

let IV and � be arbitrarym-bit and (n�m)-bit strings respe
tively. Using h

0

, we de�ne an (n;m) fun
tion h

for whi
h it is infeasible to �nd
ollisions and for whi
h IVjj� is the only pre-image of IV. Write IV = IV

0

jjb,

6

where jIV

0

j = m� 1 and b is a bit. For any n-bit string x, de�ne

h(x) = IV if x = IVjj�;

= IV

0

jj(1� b) if h

0

(x) = IV

0

and x 6= IVjj�;

= h

0

(x)jj0 if h

0

(x) 6= IV

0

:

9

=

;

(1)

Clearly, IV has the unique pre-image IVjj� under h. On the other hand, any
ollision for h yields a
ollision

for h

0

. Hen
e, h is
ollision resistant if h

0

is
ollision resistant. (Note that h is not surje
tive, but that is

not relevant to the assumption that h is
ollision resistant.) Note that if we use Constru
tion I to extend

the domain of h, then we get a fun
tion H

(I)

with the following property: H

(I)

(�

i

) = IV for all i � 1, where

�

i

denotes i many repetitions of �.

The
onversion from h

0

to h works for any IV and �. Choose IV to be an arbitrary m-bit string; and

� = y

0

jj1jj0

��1

jj1, where y

0

is an arbitrary string of length (n�m�1��). Then we
an de�ne the fun
tion

h as above. (The justi�
ation for
hoosing � as above will be
ome
lear later.)

Consider the fun
tion H

(V)

. This fun
tion is de�ned for any h and IV and hen
e also for h and IV

de�ned as above. We show that for su
h h and IV it is possible to exhibit a
ollision for H

(V)

.

We de�ne two strings x and x

0

in the following manner. String x is a \short" string, while string x

0

is

a \long" string. De�ne x = 0

n�m�1��

and then �(x) = dlog(n�m� 1� �)e = � and hen
e

pad(x) = 0

n�m�1��

jj1jj�(x):

Note that in this
ase k = 0 and jpad(x)j = n�m.

We now de�ne the string x

0

. First we set the length of x

0

by de�ning �(x

0

) = 1jjpad(x) and hen
e

j�(x

0

)j = n � m + 1. This sets the length of x

0

to be 2

n�m

+ (n � m) + jxj. At this point, we know

pad(x

0

) = x

0

jj1jj0

��1

jj�(x

0

): This sets the length of pad(x

0

) to be 2

n�m

+ 3(n �m). We write x

0

= z

0

jjy

0

where jz

0

j = 2

n�m

+n�m. (Note jy

0

j = jxj, and we
ould, if we like,
hoose y

0

= x.) Re
all � = y

0

jj1jj0

��1

jj1

and is of length (n�m). We de�ne z

0

to be i many repetitions of �, i.e., z

0

= �

i

, where i = 1 + 2

n�m��

.

Thus, we
an write

pad(x

0

) = �

2+2

n�m��

jjpad(x)

i.e., 2 + 2

n�m��

repetitions of � followed by pad(x). Now,

H

(V)

(x

0

) = H

(I)

(pad(x

0

))

= H

(I)

(�

2+2

n�m��

jjpad(x))

= h(H

(I)

(�

2+2

n�m��

); pad(x))

= h(IV; pad(x))

= H

(I)

(pad(x))

= H

(V)

(x):

Clearly, x 6= x

0

and hen
e we obtain a
ollision for H

(V)

. Thus, H

(V)

is not
ollision resistant, even though

h is
ollision resistant. In fa
t, in the proof we have used the fa
t that IV has a unique and known pre-image

under h.

In view of this, we
onsider the problem of extending the domain of a
ollision resistant hash fun
tion

to be a non-trivial problem.

5 DAG Hashing

So far, we have
onsidered iterated hashing. Our main task will be to provide a new
onstru
tion for

se
urely extending the domain of a
ollision resistant hash fun
tion. We a
tually do this for a general
lass

7

of hashing algorithms whose stru
ture
an be des
ribed using a dire
ted a
y
li
 graph (DAG).

A DAG D is de�ned as D = (V;A) where V is a �nite non empty set of nodes and A is a set of ar
s

su
h that D
ontains no dire
ted
y
les. For any node v of D, we will denote by �(v) (resp. �(v)) the

set of all ar
s
oming into (resp. going out of) v. It is well known (and easy to prove) that any DAG

ontains at least one node of indegree zero and at least one node of outdegree zero. We make the following

de�nition.

De�nition 1 Let D = (V;A) be a DAG. A node with indegree zero will be
alled an exposed node; a node

with outdegree zero will be
alled an output node and all other nodes will be
alled internal nodes.

If v is an exposed node and u is an output node, we have �(v) = �(u) = ;. Given a DAG D, let l(D) be the

maximum number of nodes on any path from an exposed node to an output node (
ounting both the start

and the end nodes). We will
all l(D) to be the depth of D. To ea
h node v, of D we assign a non negative

integer
alled its level in the following manner. For ea
h output node v of D, set level(v) = l(D)� 1; drop

all the output nodes from D to get a new DAG D

1

. For ea
h output node of v of D

1

, set level(v) = l(D)�2;

again drop all the output nodes from D

1

to get a new DAG D

2

. Continue this pro
ess until all nodes of

D have been assigned level numbers. The level numbers of the nodes partition V into l disjoint subsets

S

0

; : : : ; S

l�1

, where l = l(D) and S

i

= fv : level(v) = ig. Note that all output nodes are at the same level,

but the exposed nodes
an be at di�erent levels. However, all nodes at level zero are ne
essarily exposed

nodes.

An assignment � on D = (V;A) is a fun
tion � : A ! N whi
h assigns a positive integer to ea
h ar

of D. Let n and m be two positive integers with n > m and D be a DAG. An assignment � is said to be

proper with respe
t to (n;m;D) if the following
ondition holds.

For any node v of D, (a)

P

e2�(v)

�(e) = m and (b)

P

e2�(v)

�(e) � n.

For any node v, we de�ne the fan-in of v to be �(v) =

P

e2�(v)

�(e). Thus, for a proper assignment � on

(n;m;D) and any node v, we have �(v) � n. For any exposed node v, we have �(v) = 0.

A stru
ture is a tuple S = (n;m;D = (V;A); �) where � is a proper assignment on (n;m;D). By an

exposed or output node of a stru
ture S we will mean an exposed or output node of the underlying DAG

D. Similarly, by the depth of a stru
ture we will mean the depth of the underlying DAG.

5.1 Constru
tion

Given a stru
ture S and an (n;m)
ompression fun
tion h, we
an de�ne a hash fun
tion h

S

in the following

manner. The hash fun
tion takes as input a message x (whose length we spe
ify later) and produ
es as

output a digest y = h(x). The basi
 idea is to invoke the hash fun
tion h for ea
h node v of D. The

fun
tion h takes n bits as input and produ
es m bits as output. To ensure this we have to parse (or

format) the message x properly. We �rst des
ribe this formatting pro
edure. For any node v, the input

to v will be written as z(v) and the output of v will be written as y(v). The input z(v) is formed by

on
atenating a part of the message x and some portions of the outputs of previous invo
ations of h as is

made pre
ise below. The substring of the message whi
h is provided as input to v is denoted by x(v) and

is of length jx(v)j = n � �(v). As a notational
onvenien
e, we will assume V = fv

1

; : : : ; v

t

g and write

x

i

= x(v

i

), z

i

= z(v

i

) and y

i

= y(v

i

).

We asso
iate a non empty string �(e) of length at most m to ea
h ar
 e of D in the following manner.

Let �(v

i

) = fe

i;1

; : : : ; e

i;k

i

g and write y

i

= y

i;1

jj : : : jjy

i;k

i

, where jy

i;j

j = �(e

i;j

) for 1 � j � k

i

. Then

�(e

i;j

) = y

i;j

. For any node v

i

write �(v

i

) = fe

i;1

; : : : ; e

i;r

i

g. Then the input z

i

to v

i

is formed by

on
atenating x

i

and �(e

i;1

); : : : ; �(e

i;r

i

), i.e., z

i

= x

i

jj�(e

i;1

)jj : : : jj�(e

i;r

i

). For any exposed node v, we

8

have �(v) = ; and
onsequently z(v) = x(v) and jx(v)j = n. Given a message x, the
omputation of h

S

(x)

is des
ribed as follows.

Computation of h

S

(x)

1. For i = 0 to l(D)� 1 do

2. For v

j

2 S

i

3. set y

j

= h(z

j

).

4. End do.

5. End do.

6. z = � (the empty string).

7. For v 2 S

l(D)�1

set z = zjjy(v).

8. output z.

We say that the hash fun
tion h

S

is asso
iated to the stru
ture S and the
ompression fun
tion h.

Remark : The loop in Steps 2 to 4 involves the invo
ation of h for ea
h node in S

i

. These invo
ations
an

be
arried out in parallel and hen
e a parallel exe
ution of the algorithm will require exa
tly l(D) parallel

rounds. Thus, the depth of a struture determines the number of parallel rounds required to
ompute the

output of the asso
iated hash fun
tion.

5.2 Properties of h

S

The following result des
ribes the lengths of the input and output strings of the hash fun
tion h

S

.

Proposition 2 Let S = (n;m;D = (V;A); �) be a stru
ture and h : f0; 1g

n

! f0; 1g

m

be a
ompression

fun
tion. Then h

S

: f0; 1g

N

! f0; 1g

M

where N = t(n�m) + sm and M = sm, where t = jV j and s is

the number of output nodes in D.

Proof. The outputs of all the output nodes are
on
atenated and provided as output of h

S

. The length

of the output of ea
h node is m bits, hen
e the length of the output of h

S

is sm bits.

The
al
ulation of the input size is as follows. There are t nodes in D. The fun
tion h is invoked on
e

for ea
h of these nodes and hen
e h is invoked a total of t times. Ea
h invo
ation of h requires an n-bit

input. Thus, a total of tn bits are required as input to all the invo
ations. An input to an invo
ation

of h either
omes dire
tly from the message x or is a part of the intermediate output of some previous

invo
ation of h. There are (t� s) intermediate outputs whi
h provide a total of (t� s)m bits. Hen
e the

message x has to provide a total of exa
tly tn� (t� s)m = t(n�m) + sm bits.

The next result shows that the
onstru
tion des
ribed above preserves the property of
ollision resis-

tan
e.

Theorem 3 Let h

S

be a hash fun
tion
onstru
ted from a stru
ture S = (n;m;D; �) and a
ompression

fun
tion h des
ribed as above. Then, it is possible to �nd a
ollision for h

S

if and only if it is possible to

�nd a
ollision for h.

Proof. If: We have to show that any
ollision for h
an be extended to a
ollision for h

S

. Let x

1

and x

0

1

be distin
t n-bit strings whi
h
ollide for h. Let v be an exposed node of the stru
ture S. We now de�ne

two strings x and x

0

in the domain of h

S

su
h that x 6= x

0

and h

S

(x) = h

S

(x

0

). Note that to de�ne x

and x

0

it is enough to de�ne the
orresponding inputs x(u) and x

0

(u) to ea
h node u of S. We do this as

follows: Set x(v) = x

1

, x

0

(v) = x

0

1

and for any u 6= v, set x(u) and x

0

(u) both to be equal to an arbitrary

binary string of appropriate length. Then it is
lear that x 6= x

0

. Moreover, h

S

(x) = h

S

(x

0

) sin
e the

9

outputs of the invo
ation of h at node v are equal and the inputs to all other nodes are equal. Thus, x

and x

0

provide a
ollision for h.

Only If: For 0 � i � l(D)� 1, we de�ne three sequen
es of sets ZList

i

;XList

i

and YList

i

, where

XList

i

= fx(v) : level(v) = ig, ZList

i

= fz(v) : level(v) = ig and YList

i

= fy(v) : level(v) = ig.

Note that the message x
an be written as a
on
atenation (in an appropriate order) of the strings in XList

i

for 0 � i � l(D)� 1.

For the proof, assume that there are two messages x and x

0

su
h that x 6= x

0

but h

S

(x) = h

S

(x

0

).

We show that it is possible to �nd a
ollision for h. In the following, we will use primed and unprimed

notations to denote quantities
orresponding to x

0

and x respe
tively.

Our proof te
hnique is the following. Assume that there is no
ollision for any of the invo
ations of

h. We show that this implies x = x

0

whi
h
ontradi
ts the hypothesis that x 6= x

0

. Hen
e, there must be

a
ollision for some invo
ation of h. We now turn to the proof of the fa
t that if there is no
ollision for

h, then x = x

0

. This is proved by ba
kward indu
tion on i. More pre
isely, we show that if there is no

ollision for h, then for ea
h i, we have XList

i

= XList

0

i

. Consequently, x = x

0

. We now turn to the a
tual

proof.

We are given that h

S

(x) = h

S

(x

0

). This implies that YList

l(D)�1

(x) = YList

0

l(D)�1

(x

0

) and
onsequently

for ea
h v 2 S

l(D)�1

, we have h(z(v)) = y(v) = y

0

(v) = h(z

0

(v)). Sin
e there is no
ollision for h, we must

have z(v) = z

0

(v) and
onsequently ZList

l(D)�1

= ZList

0

l(D)�1

. This in turn implies that for ea
h v 2 S

l(D)�1

we have x(v) = x

0

(v) and for ea
h u 2 S

l(D)�2

we have y(u) = y

0

(u). Hen
e XList

l(D)�1

= XList

0

l(D)�1

and

YList

l(D)�2

= YList

0

l(D)�2

.

For the indu
tion step assume that we have shown XList

i+1

= XList

0

i+1

and YList

i

= YList

0

i

for all

i � k + 1. Then using an argument similar to the one given above it follows that XList

i

= XList

0

i

and

YList

i�1

= YList

0

i�1

. This shows that XList

i

= XList

0

i

for 1 � i � l(D)�1. Now one more appli
ation of the

previous argument shows that XList

0

= XList

0

0

. Hen
e XList

i

= XList

0

i

for all 0 � i � l(D)� 1 as desired.

6 Hashing Arbitrary Length Strings

The hash fun
tion h

S

an handle only strings of one parti
ular length. We would like to obtain a fun
tion

whi
h
an handle strings of any length. Te
hniques to handle arbitrary length strings have been introdu
ed

before by Damg�ard [2℄ (see Constru
tion II in Se
tion 3.2) for the spe
ial
ase of stru
tures where the

underlying DAG is a dire
ted path. It does not seem to be easy to adapt the te
hnique of [2℄ to the more

general
ase of DAG that we
onsider here. Thus, we present a new method for handling arbitrary length

strings, whi
h is also of independent interest. To des
ribe the
onstru
tion of hash fun
tion whi
h
an

handle arbitrary length strings we need to introdu
e an in�nite family of DAGs. To keep the des
ription

reasonably simple, we assume that ea
h DAG in the family has a single output node. The pre
ise de�nition

of the family that we
onsider is given below.

Let fD

k

g

k�1

be a family of DAGs where D

k

= (V

k

; A

k

) is su
h that jV

k

j = k and D

k

has exa
tly

one output node. Given positive integers n and m with n > m, a family of stru
tures F is de�ned as

F = fS

k

g

k�1

where S

k

= (n;m;D

k

; �

k

), where �

k

is a proper assignment on D

k

. Given a
ompression

fun
tion h : f0; 1g

n

! f0; 1g

m

, and a family of stru
tures F , we de�ne a family of hash fun
tions fh

k

g

k�1

,

where h

k

= h

S

k

. From Proposition 2, we have

h

k

: f0; 1g

k(n�m)+m

! f0; 1g

m

:

10

Note that h

1

= h. From Theorem 3, we know that the ability to �nd a
ollision for any h

k

implies the

ability to �nd a
ollision for h.

We want to de�ne a hash fun
tion whi
h
an handle strings of any length. Ea
h h

k

an handle only

�xed length strings. More pre
isely, h

1

an handle strings of length n, h

2

an handle strings of length

2n�m, h

3

an handle strings of length 3n� 2m and so on. First we need to \�ll the gaps" in the lengths.

For this we de�ne a fun
tion h

�

: [

i�1

f0; 1g

i

! f0; 1g

m

in the following manner.

h

�

(x) = h

1

(xjj0

n�jxj

) if 1 � jxj � n;

= h

k+1

(xjj0

(k+1)(n�m)+m�jxj

) if k(n�m) +m < jxj � (k + 1)(n�m) +m:

�

(2)

Note that the amount of padding done to x in the de�nition of h

�

is at most (n� 1) in the �rst
ase and

at most (n �m � 1) in the se
ond
ase. The fun
tion h

�

(x) is not
ollision resistant. For example, the

images of the strings 1 and 10

n�1

are same, sin
e h

�

(1) = h(10

n�1

) = h

�

(10

n�1

). We modify the fun
tion

h

�

(x) to a fun
tion h

1

(x) : [

i�1

f0; 1g

i

! f0; 1g

m

whi
h is
ollision resistant (assuming that h is
ollision

resistant). To do this we �rst need to introdu
e a length extra
ting fun
tion.

Given a binary string x, re
all that �(x) denotes the minimum length binary representation of the

length of x. For example, if x = 110001101010, then �(x) = 1100, sin
e the length of x is 12. The iterates

of �() are de�ned as usual: �

0

(x) = x and for i > 0, �

i

(x) = �(�

i�1

(x)). The following result states some

simple properties of the fun
tion �(). Re
all that the reverse of a binary string y is denoted by y

r

.

Proposition 4 Let x be a binary string. Then

1. The �rst bit of y = �(x) is 1 and hen
e the last bit of y

r

is also 1.

2. �(x) = x if and only if x = 1 or x = 10.

3. j�(x)j = 1 + blog jxj
 = dlog(jxj+ 1)e.

4. If jxj > 1, then there is a positive integer j, su
h that �

j

(x) = 10.

Remark : For the
onstru
tion of h

1

given below to work, there must exist a j su
h that jX

j

j � n�m.

If n�m = 1 and jxj > 1, then this
annot be a
hieved. Thus, hen
eforth we will assume n�m � 2. From

a pra
ti
al point of view, this is not really a
onstraint sin
e all known pra
ti
al
ompression fun
tions

satisfy this
ondition.

Now we are in a position to de�ne the fun
tion h

1

. Re
all that x

r

denotes the reverse of the string x.

Let IV be an initialization ve
tor, i.e., a string of length m.

Computation of h

1

(x).

1. De�ne X

0

= x and for i > 0, de�ne X

i

= �

i

(X

0

) = �(X

i�1

).

2. Let j be the least positive integer su
h that jX

j

j � n�m.

3. De�ne Y

0

= h

�

(IVjj0jjX

0

).

4. For 1 � i � j � 1, de�ne Y

i

= h

�

(Y

i�1

jj1jjX

i

).

5. Y

j

= h

�

(Y

j�1

jjX

r

j

).

6. Output Y

j

.

Remark : The value of j in the above algorithm will be more than one only if the length of the message is

greater than 2

n�m

. For pra
ti
al
ompression fun
tions (su
h as SHA, RIPEMD, et
.) the value of (n�m)

is at least 128. Thus, for all pra
ti
al
ompression fun
tions and pra
ti
al sized messages the value of j

will be equal to one.

We next prove that h

1

is
ollision resistant if h is
ollision resistant.

Theorem 5 If there is an (�; q; L)-algorithm to solve ALC(n;m;L) for h

1

, then there is an (�; q + 2�)-

algorithm to solve Col(n;m) for h, where � is the number of invo
ations of h made by h

1

in hashing a

message of length L.

11

Proof. Given any message x, the
omputation of the digest involves several invo
ations of the fun
tion

h

�

. At ea
h stage, the fun
tion h

�

in turn invokes h

k

on a suitably padded string. There are (j + 1)

invo
ations of h

�

. Suppose that at the ith (0 � i � j) invo
ation of h

�

, the fun
tion h

k

i

is invoked.

Also denote the padded input to h

k

i

by W

i

. Thus, Y

0

= h

�

(IVjj0jjX

0

) = h

k

0

(W

0

), for 1 � i � j � 1,

Y

i

= h

�

(Y

i�1

jj1jjX

i

) = h

k

i

(W

i

) and Y

j

= h

�

(Y

j�1

jjX

r

j

) = h

k

j

(W

j

). Further, we have jW

i

j = k

i

(n�m) +m

and for 0 � i � j, jY

i

j = m.

Assume h

1

(x) = h

1

(x

0

) and x 6= x

0

. We show that this implies that there is a
ollision for h. The

proof is by ba
kward indu
tion. We will use primed and unprimed notation to denote the quantities

orresponding to x and x

0

respe
tively.

By hypothesis, we have h

1

(x) = Y

j

= Y

0

j

0

= h

1

(x

0

). From the de�nition of h

1

we have

h

�

(Y

j�1

jjX

r

j

) = h

k

j

(W

j

) = Y

j

= Y

0

j

0

= h

k

0

j

0

(W

0

j

0

) = h

�

(Y

0

j

0

�1

jjX

0

r

j

0

):

By de�nition of j and j

0

, we have jX

j

j; jX

0

j

0

j � n �m and hen
e jY

j�1

jjX

j

j; jY

0

j

0

�1

jjX

0

j

0

j � n. From the

de�nition of h

�

it follows that k

j

= k

0

j

0

= 1 and jW

j

j = jW

0

j

0

j = n. If W

j

6= W

0

j

0

then we obtain a
ollision

for h

1

and hen
e for h (sin
e h = h

1

) and we are done. On the other hand, if there is no
ollision for h, we

must have W

j

=W

0

j

0

. Hen
e

W

j

= Y

j�1

jjX

r

j

jj0

n�m�jX

j

j

= Y

0

j

0

�1

jjX

0

r

j

0

jj0

n�m�jX

0

j

0

j

=W

0

j

0

:

Sin
e both the strings X

r

j

and X

0

r

j

0

end with a 1, by the above
ondition we must have jX

r

j

j = jX

0

r

j

0

j. This

implies Y

j�1

= Y

0

j

0

�1

and X

j

= X

0

j

0

. Now there are two
ases to
onsider.

Case j = j

0

: We have �(X

j�1

) = X

j

= X

0

j

0

= �(X

0

j

0

�1

) and hen
e jX

j�1

j = jX

0

j

0

�1

j. Thus, jW

j�1

j =

jW

0

j

0

�1

j and
onsequently k

j�1

= k

0

j

0

�1

. Also we have

h

k

j�1

(W

j�1

) = Y

j�1

= Y

0

j

0

�1

= h

k

0

j

0

�1

(W

0

j

0

�1

):

Using Theorem 3, we obtain that eitherW

j�1

=W

0

j

0

�1

or we obtain a
ollision for h. In the se
ond
ase, we

are done and in the �rst
ase we obtain W

j�1

=W

0

j

0

�1

and
onsequently Y

j�2

= Y

0

j

0

�2

and X

j�1

= X

0

j

0

�1

.

Repeating the above argument for i = j � 2; : : : ; 1, we obtain that W

j�2

= W

0

j

0

�2

, W

j�3

= W

0

j

0

�3

, : : :,

W

1

=W

0

1

and
onsequently Y

j�3

= Y

0

j

0

�3

and X

j�2

= X

0

j

0

�2

, Y

j�4

= Y

0

j

0

�4

and X

j�3

= X

0

j

0

�3

, : : :, Y

0

= Y

0

0

and X

1

= X

0

1

. Now we have

�(X

0

) = X

1

= X

0

1

= �(X

0

0

):

Consequently, jX

0

j = jX

0

0

j and so jW

0

j = jW

0

0

j. This for
es k

0

= k

0

0

. Thus, we have

h

k

0

(W

0

) = Y

0

= Y

0

0

= h

k

0

(W

0

0

):

Again using Theorem 3, we have that either there is a
ollision for h or W

0

= W

0

0

. In the �rst
ase we

are done and in the se
ond
ase, we have W

0

= W

0

0

and hen
e x = X

0

= X

0

0

= x

0

whi
h
ontradi
ts the

hypothesis. Hen
e there is a
ollision for h.

Case j 6= j

0

: Without loss of generality assume j

0

> j and j

0

� j = l > 0. Pro
eeding as in the above
ase,

we have Y

0

= Y

0

l

and X

1

= X

0

l+1

. Again �(X

0

) = X

1

= X

0

l+1

= �(X

0

l

) and hen
e jX

0

j = jX

0

l

j whi
h implies

jW

0

j = jW

0

l

j. This for
es k

0

= k

0

l

. Thus, we have

h

k

0

(W

0

) = Y

0

= Y

0

l

= h

k

0

l

(W

0

l

):

The string W

0

is formed by (possibly) padding 0's to the end of IVjj0jjX

0

and the string W

0

l

is formed by

(possibly) padding 0's to the end of Y

0

l�1

jj1jjX

0

l

. Thus, W

0

and W

0

l

di�er in the (m+1)th bit position and

hen
e W

0

6=W

0

l

. Hen
e by Theorem 3 there must be a
ollision for h.

12

Let A be an (�; q; L)-algorithm to solve ALC(n;m;L) for h

1

. Then A is su

essful with probability �

and in this
ase let (x; x

0

) be the output of A. Thus, jxj; jx

0

j � L and so h

1

invokes h at most � times for

hashing either x or x

0

. The algorithm B to solve Col(n;m) for h is as follows. B �rst exe
utes A. If A

fails, then B also fails. If A su

eeds and returns (x; x

0

), then B invokes h

1

on both x and x

0

and \s
ans

ba
kwards" until a
ollision for h is found. By the above dis
ussion, if (x; x

0

) is a
ollision for h

1

, then

with probability one, the ba
kward s
an will produ
e a
ollision for h. Thus, the su

ess probability of

B is also �. Further, the number of invo
ations of h made by B is found as follows: q times during the

exe
ution of A and at most � times ea
h on x and x

0

, giving a total of at most q + 2� invo
ations.

7 Comparison to Iterated Hashing

In this se
tion, we perform a
omparison of the new
onstru
tion to the several variations of the Merkle-

Damg�ard
onstru
tions. Before getting into the details, we would like to point a few things.

� Our
onstru
tion is more general in the sense that it works over an arbitrary DAG, whereas the

variations of the Merkle-Damg�ard algorithm works only with dipaths. Also, we would like to point

out that the me
hanism in Merkle-Damg�ard algorithm for handling arbitrary length strings and the

asso
iated argument does not
arry over to the
ase of arbitrary DAGs.

� The detailed
omparison that we present below is only to Constru
tion II, sin
e this is the algorithm

whi
h
an hash arbitrary length strings and assumes h to be only
ollision resistant.

� From a pra
ti
al point of view, in general, we do not expe
t our algorithm to repla
e the Constru
-

tion III. For most
ryptographi
 purposes,
omputation of the hash fun
tion requires a very small

fra
tion of the total time. Hen
e, parallel hash
omputation algorithms (and
onsequently DAGs)

would be required only for spe
ial purpose appli
ations. On the other hand, we believe that the

issue of obtaining an eÆ
ient parallel hash algorithm whi
h
an handle arbitrary length strings is of

signi�
ant theoreti
al interest.

7.1 Padding EÆ
ien
y

The fun
tion h

1

performs some amount of padding to the string x before hashing it. We determine the

maximum amount of padding that is done and show that this is (asymptoti
ally) less than the amount of

padding performed in Constru
tion II. Given integer i, we de�ne log

�

(i) to be the least integer k su
h that

log(log(: : : (log(

| {z }

k

jxj) : : :)) � 1:

Note that the parameters n and m of the
ompression fun
tion h are independent of the message length

jxj and
an be assumed to be
onstant in an asymptoti
 analysis.

Proposition 6 Let x be a binary string with jxj > n. Then the maximum amount of padding done to the

string x in the
omputation of h

1

(x) is

n+ j(n�m) + j�(x)j + j�

2

(x)j+ � � �+ j�

j�1

(x)j

where j is the minimum positive integer su
h that j�

j

(x)j � n�m.

13

Proof. The maximum amount of padding in Step 3 is m+1+ (n�m� 1). In Step 4, there is a loop; for

ea
h value of i (1 � i � j�1) the maximum amount of padding is 1+ jX

i

j+(n�m�1) = (n�m)+ j�

i

(x)j.

The padding in Step 5 is equal to (n�m). Adding up all these gives the required result.

The maximum amount of padding done to x in Constru
tion II is 2n�m� 2+

l

jxj

n�m�1

m

(see [7℄). As-

suming n andm to be
onstants, the amount of padding is O(jxj). On the other hand, assuming n andm to

be
onstants, the maximum amount of padding in our algorithm is bounded above by O((log

�

jxj)(log jxj)).

Hen
e, in an asymptoti
 sense our padding s
heme is more eÆ
ient than the Merkle-Damg�ard padding

s
heme. The asymptoti
 ineÆ
ien
y in the Merkle-Damg�ard
onstru
tion arises due to the fa
t that one

bit of padding is done to ea
h message blo
k.

7.2 Invo
ation EÆ
ien
y

We
ompare the invo
ation eÆ
ien
y of our algorithm to Constru
tion II, i.e., we
ompare the number of

invo
ations of the
ompression fun
tion h for a message x made by Constru
tion II and our algorithm.

We �rst
ompute the number of invo
ations of h made by our algorithm. The algorithm to
ompute

h

1

invokes h

�

exa
ty j + 1 times, i.e., for i = 0; : : : ; j. Suppose as in the proof of Theorem 5 that the

ith invo
ation of h

�

is made on the string W

i

whi
h is obtained by possibly padding 0s to IVjj0jjX

0

if

i = 0; to Y

i�1

jj1jjX

i

if 1 � i � j � 1; and to Y

j�1

jjX

j

if i = j. Then from Proposition 2, it follows that

jW

i

j = (n�m)(k

i

� 1) + n. Now jW

i

j = m+ 1 + jX

i

j+ j�

i

j for 0 � i � j � 1 and jW

j

j = m+ jX

j

j+ j�

j

j,

where �

i

s are the all zero strings whi
h are used as pads to obtain the W

i

s. Further, j�

i

j � n�m� 1 for

all 0 � i � j. Thus, we obtain k

i

=

l

jX

i

j+1

(n�m)

m

if 0 � i � j � 1; and k

i

=

l

jX

i

j

(n�m)

m

if i = j. The value of k

i

is

the number of invo
ations of h made by h

k

i

. Note that k

j

= 1. Hen
e the total number of invo
ations of

h made in the
omputation of h

1

is obtained by adding all the k

i

s and is given in the following result.

Proposition 7 The total number B of invo
ations of h made in the
omputation of h

1

is equal to

B =

�

jxj+ 1

n�m

�

+

�

j�(x)j+ 1

n�m

�

+ � � �+

�

j�

j�1

(x)j+ 1

n�m

�

+ 1

In Constru
tion II, the number of invo
ations A of the
ompression fun
tion h is equal to A = 1+

l

jxj

n�m�1

m

:

On the other hand, the number B of invo
ations of h in our algorithm is given by Proposition 7. Note

that j � log

�

jxj. Using this fa
t and some simple algebrai
 simpli�
ation we obtain

A�B >

jxj

(n�m)(n�m� 1)

�

n�m+ 1 + log

�

jxj(n�m+ 2 + log jxj)

n�m

> 0

for suÆ
iently large jxj. Thus, in an asymptoti
 sense, our algorithm is more eÆ
ient than the Merkle-

Damg�ard algorithm.

7.3 Optimal Constru
tion?

Consider the problem of se
ure domain extension to arbitrary length strings. Both Constru
tion II and

our algorithm perform this task. We have shown that our algorithm improves upon the Merkle-Damg�ard

algorithm both in terms of redu
ing the amount of padding and the number of invo
ations. This suggests

the following two problems.

14

Lower Bound: Let A be an algorithm whi
h se
urely extends the domain of a
ompression fun
tion

h to arbitrary length strings. What is the minimum amount of padding and minimum number of

invo
ations of h that A has to make on an input x of length jxj?

Constru
tion: Is there a
onstru
tion whi
h improves upon our algorithm?

At this point, we do not know the answer to either of these two question. In parti
ular, for the �rst question,

we have not even been able to prove that the amount of padding
annot be
onstant (i.e. independent

of the length of x). On the other hand, for the se
ond question, it might seem that a padding of length

proportional to log jxj might be suÆ
ient. However, a
tually obtaining su
h a
onstru
tion along with a

orre
tness proof does not seem to be easy. We believe that the resolution of these questions
an form

tasks of future resear
h and the answers will be important for the understanding of
ollision resistant hash

fun
tions.

8 Con
rete Examples

In this se
tion, we provide some examples of DAGs whi
h
an be used to extend the domain of a
ollision

resistant
ompression fun
tion. To do this it will be easier to de�ne a notion of
omposition of stru
tures

in the following manner.

Let S

1

= (n;m;D

1

= (V

1

; A

1

); �

1

) and S

2

= (n;m;D

2

= (V

2

; A

2

); �

2

) be two stru
tures su
h that the

number of output nodes of D

1

is at most equal to the number of exposed nodes of D

2

. Let fu

1

; : : : ; u

r

g be

the output nodes of D

1

and fv

1

; : : : ; v

s

g (r � s) be the exposed nodes of D

2

. De�ne a DAG D = (V;A),

where V = V

1

[V

2

and A = A

1

[A

2

[f(u

1

; v

1

); : : : ; (u

r

; v

r

)g. De�ne a proper assignment � on D in the

following manner: �(e) = �

i

(e) if e 2 A

i

, i = 1; 2 and �(e) = m otherwise. We de�ne S = S

1

� S

2

to be

the partial
omposition of S

1

and S

2

where S = (n;m;D; �). In
ase r = s, i.e., the number of output

nodes of D

1

is equal to the number of exposed nodes of D

2

we will say that S is the total
omposition or

simply the
omposition of S

1

and S

2

. Also we will denote the total
omposition by the symbol Æ. Note

that Æ is an asso
iative operation while � is not and neither of the two operations are
ommutative.

From now on we will expli
itly write a stru
ture as S = (n;m; r

1

; r

2

;D; �) where r

1

(resp. r

2

) is the

number of exposed (resp. output) nodes of D. Thus, we
an
ompose S

1

= (n;m; r

1

; r

2

;D

1

; �

1

) and

S

2

= (n;m; r

2

; r

3

;D

2

; �

2

) to obtain S = S

1

Æ S

2

= (n;m; r

1

; r

3

;D; �). Let h

S

1

; h

S

2

and h

S

be the hash

fun
tions asso
iated with the stru
tures S

1

;S

2

and S respe
tively. Then h

S

1

is an (t

1

(n�m) + r

2

m; r

2

m)

fun
tion, h

S

2

is an (t

2

(n�m) + r

3

m; r

3

m) fun
tion and h

S

is an ((t

1

+ t

2

)(n�m) + r

3

m; r

3

m) fun
tion

where t

1

and t

2

are the numbers of nodes in D

1

and D

2

respe
tively.

We now provide some examples of stru
tures. In ea
h of the
ases below we assume the existen
e of a

suitable (n;m)
ompression fun
tion h.

Example 1 (isolated nodes): For i � 1, de�ne K

i

= (n;m; i; i;D = (f1; : : : ; ig; ;); �) to be the stru
ture

orresponding to the digraph
onsisting of i nodes and no ar
s. Hen
e ea
h node is both an exposed and

an output node. The depth of K

i

is one. The asso
iated hash fun
tion h

K

i

is an (in; im) fun
tion.

Example 2 (dipath): For r � 1, de�ne P

(r)

to be the dire
ted path on r nodes and � assigns m to ea
h

ar
 of P

(r)

. This de�nes a stru
ture P

(r)

= (n;m; 1; 1; P

(r)

; �). The depth of P

(r)

is r. The asso
iated

hash fun
tion h

P

(r)

is an (r(n �m) +m;m) fun
tion. A variation of this stru
ture (whi
h in
ludes an

initialization ve
tor) is used in the Merkle-Damg�ard
onstru
tion [2, 4℄.

Example 3 (parallel dipaths): For r; q � 1, de�ne P

(r)

q

to be the union of q
opies of P

(r)

and the

orresponding stru
ture is denoted by P

(r)

q

= (n;m; q; q; P

(r)

; �), where � again assigns m to ea
h ar
 of

15

P

(r)

q

. The depth of P

(r)

q

is r and also note that K

i

= P

(1)

i

. The asso
iated hash fun
tion h

P

(r)

q

is an

(rq(n�m) + qm; qm) fun
tion.

Example 4 (
ontra
ting binary tree): For t � 1, let T

t

be the binary tree with t levels and 2

t

� 1

nodes de�ned by T

t

= (f1; : : : ; 2

t

� 1g; f(i; bi=2
) : 2 � i � 2

t

� 1g). We de�ne an assignment � whi
h

assigns m to ea
h ar
 of T

t

. Then the fan-in of any non exposed node is 2m and sin
e � is proper we must

have n � 2m. We denote the
orresponding stru
ture by T

t

= (n;m; 2

t�1

; 1; T

t

; �). The depth of T

t

is t.

The asso
iated hash fun
tion h

T

t

is a ((2

t

� 1)(n�m) +m;m) hash fun
tion.

Example 5 (expanding binary tree): For t � 1, let I

t

be the inverted binary tree of t levels: I

t

=

(f1; : : : ; 2

t

� 1g; f(i; 2i); (i; 2i + 1) : 1 � i � 2

t�1

� 1g). The assignment � assigns (m=2) to ea
h ar
 of I

t

.

We denote the
orresponding stru
ture by I

t

= (n;m; 1; 2

t�1

; I

t

; �). The depth of I

t

is t. The asso
iated

hash fun
tion h

I

t

is a ((2

t

� 1)(n�m) + 2

t�1

m; 2

t�1

m) fun
tion.

Example 6 (parallel stru
ture): For t � 1 and r � 0, de�ne S

(r)

t

= I

t

Æ P

(r)

2

t�1

Æ T

t

. The numbers of

exposed and output nodes of S

(r)

t

are both one and its depth is 2t+ r. The asso
iated hash fun
tion h

S

(r)

t

is a ((2

t

(r + 2)� 2)(n�m) +m;m) fun
tion.

Example 7 (in
remental parallel stru
ture): For r � 0, t � 1 and 1 � s � 2

t�1

de�ne the stru
ture

S

(r;s)

t

= (I

t

Æ P

(r)

2

t�1

) Æ (K

s

� T

t

): (3)

The numbers of exposed and output nodes of S

(r;s)

t

are both one and its depth is 2t + r + 1. The hash

fun
tion h

S

(r;s)

t

asso
iated to the stru
ture S

(r;s)

t

is an ((2

t+1

+ r2

t�1

+ s� 2)(n�m) +m;m) fun
tion.

Remark : We note that the basi
 idea behind Example 7 is already present in Damg�ard [2℄. However, we

provide mu
h more details.

8.1 A Parallelizable Hash Algorithm

We build on Example 7 above to obtain a parallel algorithm for extending the domain of a
ollision resistant

hash fun
tion. The algorithm will use 2

t�1

pro
essors and its stru
ture will be S

(r;s)

t

for some r and s whi
h

are determined by the length of the message x in the following manner. De�ne �(t) = (2

t+1

�2)(n�m)+m

and Æ(t) = 2

t�1

(n�m). Let x be the string whi
h is to be hashed.

1. Write jxj � �(t) = rÆ(t) +

1

, where

1

is a unique integer from the set f1; : : : ; Æ(t)g.

2. Write

1

=

2

(n�m) +

3

, where

3

is a unique integer from the set f1; : : : ; n�mg.

3. Set x = xjj0

n�m�

3

. Note that the amount of padding is at most (n�m� 1).

Note that 1 �

2

< 2

t

. The above steps de�ne the parameters r;

1

;

2

and

3

. We further de�ne s =

2

+1.

For t � 1, we de�ne the fun
tion g

�

t

: [

i��(t)

f0; 1g

i

! f0; 1g

m

by

g

�

t

(x) = h

S

(r;s)

t

(xjj0

n�m�

3

) (4)

where h

S

(r;s)

t

is the hash fun
tion asso
iated with the stru
ture S

(r;s)

t

. Note that the amount of padding

done to the string x is at most n�m� 1.

Remark : One
onstraint for using the stru
ture T

t

is that the (n;m)
ompression fun
tion h must

satisfy n � 2m. The stru
ture S

(r;s)

t

ontains the stru
ture T

t

and hen
e this
onstraint also holds for

S

(r;s)

t

. However, from a pra
ti
al point of view this is not really a
onstraint, sin
e all known pra
ti
al

ompression fun
tions satisfy this
ondition.

16

We now de�ne H

�

t

: [

i�1

f0; 1g

i

! f0; 1g

m

in the following manner. First, for the sake of
onvenien
e,

we need to de�ne a fun
tion g

0

: [

2n�m�1

i=n+1

f0; 1g

i

! f0; 1g

m

in the following manner. Let x be a string with

n < jxj < 2n �m and w = xjj0

2n�m�jxj

. Write w = w

1

jjw

2

where jw

1

j = n and jw

2

j = n�m. We de�ne

g

0

(x) = h(h(w

1

)jjw

2

).

H

�

t

(x) = h(xjj0

n�jxj

) if jxj � n;

= g

0

(x) if n < jxj < 2n�m;

= g

�

i

(x) if �(i) � jxj < �(i+ 1) and 1 � i < t;

= g

�

t

(x) if jxj � �(t):

9

>

>

=

>

>

;

(5)

The desired fun
tion H

1

t

is obtained from the fun
tion H

�

t

using the
onstru
tion of Se
tion 6.

Computation of H

1

t

(x)

1. Let X

0

= x and for i � 1, X

i

= �(X

i�1

) = �

i

(X

0

).

2. Let j be the least positive integer su
h that jX

j

j � n�m.

3. Set Y

0

= H

�

t

(IVjj0jjX

0

).

4. For i = 1 to j � 1 set Y

i

= H

�

t

(Y

i�1

jj1jjX

i

).

5. Y

j

= H

�

t

(Y

j�1

jjX

r

j

).

6. Output Y

j

.

The
ollision resistan
e of H

1

t

is proved in a manner similar to that of Theorem 5 and this gives us the

following result.

Theorem 8 Let H

1

t

be the hash fun
tion de�ned as above. Then, a
ollision for H

1

t

yields a
ollision

for h.

9 Con
lusion

We have
onsidered the problem of se
urely extending the domain of a
ollision resistant hash fun
tion

using an arbitrary DAG. A new eÆ
ient
onstru
tion has been presented. This
onstru
tion improves upon

the general Merkle-Damg�ard algorithm both in the amount of padded bits and the number of invo
ations

of the
ompression fun
tion. The proof of
ollision resistan
e of our
onstru
tion requires the
ompression

fun
tion to only
ollision resistant (one-wayness is not used in the proof). In this paper, we have entirely

on
entrated on the property of
ollision resistan
e. In fa
t, all the domain extending te
hniques
onsidered

here also preserve the property of pre-image resistan
e.

A
knowledgement: The
onstru
tion in Se
tion 6 was in
orre
t in an earlier version of the paper. The

error was dis
overed while dis
ussing the paper with several other people. We would like to thank Rana

Barua, Mridul Nandi and Bimal Roy for this.

Referen
es

[1℄ M. Bellare and P. Rogaway, Collision-resistant hashing: towards making UOWHFs pra
ti
al, in:

Pro
eedings of Crypto 1997, Le
ture Notes in Computer S
ien
e, volume 1294, Springer, 1997, pp.

470-484.

17

[2℄ I. B. Damg�ard, A design prin
iple for hash fun
tions, in: Pro
eedings of Crypto 1989, Le
ture Notes

in Computer S
ien
e, volume 435, Springer, 1990, pp. 416-427.

[3℄ W. DiÆe and Martin E. Hellman. New Dire
tions in Cryptography. IEEE Transa
tions on Information

Theory, volume IT-22, number 6, pages 644{654, year 1976.

[4℄ R. C. Merkle, One way hash fun
tions and DES, in: Pro
eedings of Crypto 1989, Le
ture Notes in

Computer S
ien
e, volume 435, Springer, 1990, pp. 428-446.

[5℄ B. Preneel, The state of
ryptographi
 hash fun
tions, in: Le
tures on Data Se
urity: Modern Cryp-

tology in Theory and Pra
ti
e, Le
ture Notes in Computer S
ien
e, volume 1561, Springer 1999, pp.

158-182.

[6℄ D. R. Stinson, Some observations on the theory of
ryptographi
 hash fun
tions, Designs, Codes and

Cryptography, to appear.

[7℄ D. R. Stinson. Cryptography: Theory and Pra
ti
e, CRC Press, se
ond edition, 2002.

18

