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We desribe several notions of \ryptographi transforms," symmetri shemes designed to

meet a variety of privay and authentiity goals. We onsider goals, suh as replay-avoidane

and in-order paket delivery, that have not been fully addressed in previous works in this area.

We then provide an analysis of possible ways to ombine standard enryption and message

authentiation shemes in order to provably meet these goals. Our results further narrow the

gap between the provable-seurity results from the theoretial ommunity and the needs of

developers who implement real systems.
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1 Introdution

Symmetri ryptosystems are generally designed to protet both the privay and the authentiity

of transmitted data. The traditional approah for onstruting suh ryptosystems has been ad

ho, meaning without formal justi�ation or proofs of seurity. Unfortunately, suh ad ho analyses

are highly error-prone, as evidened by the fat that some natural ways of ombining standard

(privay-only) enryption shemes with standard message authentiation shemes (MACs) are a-

tually inseure (e.g., see [5, 18℄). This raises the question: how an one onstrut symmetri

ryptosystems that provably provide some form of privay and authentiity?

Katz and Yung [16℄, Bellare and Namprempre [5℄, and Krawzyk [18℄ were the �rst to onsider

this question. They introdued formal notions of seurity for privay- and authentiity-providing

symmetri onstruts (aka unforgeable enryption or authentiated enryption shemes). They then

onsidered ways of onstruting authentiated enryption shemes that provably met their notions

of seurity.

While these and subsequent works took important steps to address the needs of those imple-

menting ryptographi appliations, there still remains a gap between what the theory ommunity

has proven and what implementors need. For example, the formal notions of seurity onsidered

in these works do not apture seurity requirements that many developers have for the symmetri

ryptographi portions of their appliations, inluding resistane to replay or out-of-order deliv-

ery attaks. Also, in the ase of the works that onsider ways of ombining standard enryption

shemes with standard MACs [5, 18, 4, 20℄, there are a number of natural onstrutions that fall

outside of the proposed models. These observations suggest that developers wishing to design new

privay- and authentiity-providing symmetri ryptosystems have to fall bak on ad ho analyses,

prove the seurity of their onstrutions themselves, or design within the onstraints of previous

results.

We address these onerns as follows. First, we introdue new formal notions of seurity aptur-

ing ommon implementation goals. Then we perform an analysis of many natural ways to ombine

standard enryption shemes and MACs. Beause of the generality of our results, we believe that

they will be useful to many developers, who will no longer have to argue the seurity of their

onstrutions themselves or work within the on�nes of previous provable-seurity results.

Modeling symmetri ryptosystems. We use the term ryptographi transform (CT) to refer

to the portion of a ryptographi appliation that takes appliation data and turns it into an

outgoing paket with the intent of proteting the privay of a designated portion of the data, and

the authentiity of all of the data. The di�erene between a CT and a more traditional authentiated

enryption sheme is that the latter is essentially a low-level, appliation-independent ryptographi

primitive, whereas a CT an be appliation-dependent. For example, an appliation's CT might

preproess data in some data- or appliation-dependent way. And a CT might try to enfore some

seurity poliies (e.g., replay detetion) that are beyond the sope of authentiated enryption

shemes.

Fousing on ommon design goals, we identify �ve lasses of CTs. For four of them, we formalize

new notions of seurity. The �rst type of CT is essentially an authentiated enryption sheme

designed to authentiate more data than it enrypts; for this type we adopt a variant of the seurity

notions in [20℄. The seond type is designed to protet against replay attaks. The third type is

designed to protet against replay and re-ordering attaks. For these three types, pakets are

allowed to be dropped. The fourth and �fth types are designed to ensure that pakets are aepted

in exatly the order in whih they were generated. For the fourth type, no paket should be aepted

after deteting a forgery attempt. For the �fth type, aeptane of legitimate pakets should not

be a�eted by forgery attempts. A variant of the fourth type was onsidered in [4℄. We use the
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labels Type 1{Type 5 to refer to these di�erent types of CTs. Sine we believe that the �rst four

types will be the most useful in appliations, we defer disussion of Type 5 CTs to the appendies.

Building ryptographi transforms. After de�ning the �ve types of CTs, we onsider the

problem of designing CTs that provably satisfy the orresponding notions of seurity. We fous

on onstruting CTs that use as their underlying building bloks standard enryption shemes and

standard MACs.

1

There are essentially three approahes (or paradigms) for onstruting CTs from enryption

shemes and MACs. Eah approah begins by preproessing the input in some possibly appliation-

dependent way. Then the approah either (1) runs the enryption and MAC algorithms in parallel

on the preproessed data, (2) runs the MAC algorithm on the preproessed data, and then runs the

enryption algorithm on the preproessed data and the output of the MAC, or (3) runs the enryp-

tion algorithm on the preproessed data, and then runs the MAC algorithm on the preproessed

data and the output of the enryption algorithm.

The seurity of the CT depends in part on the initial preproessing step. In order to be as

general as possible, we adopt the approah of [6, 4℄ and view the preproessing step as an enoding

sheme. We speify seurity properties for these enoding shemes that, if met, guarantee that a

transform built using them, in ombination with seure enryption and MAC shemes, will provably

meet one of our notions of a seure CT. By presenting our results in terms of the seurity properties

of enoding shemes, and not for spei� preproessing algorithms, we give developers the freedom

to implement the preproessing step any way they want, as long as the properties we speify are

satis�ed.

Sine we onsider three approahes and �ve CT types, for a total of 15 ombinations, it is

impratial to summarize all our results here. Instead, we informally disuss an example that

illustrates the generality of our provable-seurity results. Consider a CT that uses CBC mode as

its underlying enryption sheme and UMAC as its underlying MAC. LetM be the payload message

for the CT and let H be some �xed-length header or ontrol information. The CT is designed to

protet the privay of M and the integrity of both M and H. It �rst generates a random CBC

mode IV I and a UMAC none N . It MACs the message IkHkM , where k denotes onatenation,

using the none N , to get some tag � . Then it enrypts Mk� in CBC mode, using the IV I, to

get some intermediate value � (we assume that Mk� is a multiple of the underlying blok ipher's

blok length). Finally, the CT outputs NkIkHk�. This message is sent to the reeiver, who an

reover M and H the natural way. The reeiver rejets pakets with MAC veri�ation failures or

with repeated none values. Assuming that the blok ipher used in CBC mode is seure and that

UMAC is seure, this CT will provably be a seure Type 2 CT. We remark that the provable-seurity

of this CT does not follow from previous results.

Helping developers. Sine we address requirements and goals of real-world systems, and our

analyses are performed in a very general way, we believe that our results will be partiularly valuable

to developers who want to design new (or analyze existing) CTs.

Related work. Katz and Yung [16℄ and Bellare and Namprempre [5℄ formalized the notion of an

authentiated enryption sheme. The latter and Krawzyk [18℄ explored the three basi paradigms

for reating suh shemes: Enrypt-and-MAC (E&M), MAC-then-Enrypt (MtE), and Enrypt-

then-MAC (EtM). The paradigms we onsider, alled Enode-then-fE&M, MtE, EtMg, are natural

1

We note that it is also possible to design a CT that uses as its underlying omponent an authentiated enryption

sheme. The main reason we do not onsider CTs that are built this way is that, sine urrently all dediated

authentiated enryption modes are either overed by patents or have omparable software speeds to the ombination

of standard enryption shemes and standard MACs, and beause of the exibility gained with using standard

enryption shemes and MACs as blak boxes, a signi�ant population of developers will likely use suh CTs in their

appliations.
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extensions of these paradigms, appropriately modi�ed to use enoding shemes. Unfortunately, the

researh results in [5, 18℄ do not apply to many real-world CTs sine many suh CTs are not basi

E&M, MtE, or EtM onstrutions.

Bellare, Kohno and Namprempre [4℄, noting that the SSH protool was not one of the basi

E&M, MtE, or EtM onstrutions, analyzed that protool diretly. They formalized a notion similar

to, but slightly less general than, our notion of a Type 4 CT. The main di�erene is that our Type 4

notion spei�ally addresses the \assoiated-data problem" (see the next paragraph). The authors

also analyzed a variant (again less general) of our Enode-then-E&M paradigm with respet to

meeting this Type 4-like notion.

Rogaway [20℄ introdued the notion of authentiated-enryption with assoiated-data (AEAD)

to address the problem that symmetri ryptosystems must often authentiate more data than they

enrypt. Our notion of a Type 1 ryptographi transform essentially orresponds to the AEAD

notion. Rogaway onsidered methods in whih one an ombine some privay omponent with

some MAC omponent to reate an AEAD sheme. However, he disussed only two of the three

basi approahes for ombining these omponents, and only in the ontext of ahieving the AEAD

goal. Furthermore, he made more restritive requirements on the underlying omponents than we

do. For example, standard enryption shemes, whih do not take nones as input, annot be used

as Rogaway's underlying privay omponent, and in some ases we (unlike Rogaway) allow the use

of MACs that are not pseudorandom funtions (e.g., traditional Carter-Wegman MACs).

The idea of using enodings to apture and model the important properties of some sub-

omponent of a larger sheme omes from [6℄ and was also used in [4℄.

In [10℄ Dodis and An onsider methods of onstruting authentiated enryption shemes apa-

ble of enapsulating long messages from authentiated enryption shemes apable only of enap-

sulating short messages.

There is a parallel researh program exploring the onstrution of authentiated enryption

shemes diretly from blok iphers, rather than from existing enryption shemes and MACs

(e.g., [16, 12, 15, 21, 7, 17℄). Another researh program investigates the onstrution of authenti-

ated enryption primitives (e.g., [11, 13, 1℄).

Overview. Our models of ryptographi transforms are presented in Setion 2. We disuss the

underlying building bloks (enryption shemes and MACs) with whih seure CTs an be built in

Setion 3. Setion 4 desribes our approah for generalizing the three basi methods for reating

ryptographi transforms and, in partiular, our use of enoding shemes. The three paradigms

(Enode-then-fE&M, MtE, EtMg) and our results for eah of them are disussed in Setions 5, 6,

and 7, respetively. We present onlusions and disussion of future work in Setion 8.

In order to onserve spae, we defer some of our formal de�nitions and theorem statements to

the appendies. The details we defer are not ritial to the understanding of the body of this paper.

2 Cryptographi Transforms

A ryptographi transform (CT) takes a user's or appliation's (privay-ritial) payload data and

some (non-private) assoiated data and transforms the input in suh a way as to ensure the privay

of the payload data and the integrity

2

of both the payload data and the assoiated data. An

example ryptographi transform is shown in Figure 1. Note that the CT itself may load payload

data into pakets, add sequene numbers, et.

In order to ensure the orret interpretation of our results, we must �rst de�ne what we mean

(from an API perspetive) by a ryptographi transform. Then we desribe our seurity notions.

2

We use the terms integrity and authentiity interhangeably.
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payloadpayloadpld len

ad len

pdl padding

tr

assoiated data

payload

assoiated data

PREPROCESS

iphertext �

tag �

ENCRYPT MAC

assoiated dataad len

enapsulated paket

Figure 1: An example ryptographi transform (similar to the SSH CT but with assoiated data). Note the

additional data added by the preproessing step, the fat that the ounter is not inluded in the enapsulated

paket, and the fat that some data is MACed but not enrypted.

Preliminaries. If x and y are strings, then jxj denotes the length of x in bits and xky denotes their

onatenation. The empty string is denoted ". If a

1

; : : : ; a

m

are strings, then ha

1

; : : : ; a

m

i denotes

an injetive enoding from those strings into another string suh that a

1

; : : : ; a

m

are reoverable.

When we say an algorithm is stateful, we mean that it uses and updates its state and that the

entity exeuting it maintains the state between invoations. Let the initial state of any (stateful

or stateless) algorithm be ". If f is a randomized (resp., deterministi) algorithm, then x

R

 f(y)

(resp., x f(y)) denotes the proess of running f on input y and assigning the result to x.

Cryptographi transforms. A ryptographi transform CT = (KG;Enap;Deap) onsists of

three algorithms and is de�ned for some key spae KeySp

CT

, assoiated-data spae AdSp

CT

, and

message spae MsgSp

CT

. The randomized key-generation algorithm KG returns a key K 2 KeySp

CT

(for example, KG might return a random 128- or 256-bit string); we write this as K

R

 KG. The

possibly randomized and possibly stateful enapsulation algorithm Enap takes a key K 2 KeySp

CT

,

assoiated dataM

a

2 AdSp

CT

, and a messageM

s

2 MsgSp

CT

, and outputs an enapsulated message

C 2 f0; 1g

�

; we write this as C

R

 Enap

K

(M

a

;M

s

). We often refer to C as an enapsulated paket or

a iphertext. The deterministi and possibly stateful deapsulation algorithm Deap takes a keyK 2

KeySp

CT

and a message C 2 f0; 1g

�

, and outputs a pair of messages (M

a

;M

s

) 2 AdSp

CT

�MsgSp

CT

or the pair (?;?) on error; we write this as (M

a

;M

s

) Deap

K

(C). We require that if one of M

a

or M

s

is ?, then both are ?. We say that Deap

K

aepts C if Deap

K

(C) 6= (?;?); otherwise

Deap

K

rejets C. (We return (?;?) on error instead of a single element ? beause it makes our

de�nitions easier to manipulate.)

We onsider �ve lasses of CTs. These types of CTs are designed to provide and run on top of

di�erent types of ommuniation hannels (e.g., reliable transport, unreliable transport). We shall

desribe four of them in detail shortly. Type 5 is disussed in the appendies.

Separating funtionality and seurity properties. As is tradition in modern ryptogra-

phy, we distinguish between the funtionality/onsisteny requirements for CTs and their seurity

goals. In partiular, we all any objet CT = (KG;Enap;Deap) that satis�es our onsisteny

requirements a ryptographi transform. But we only all it a seure CT if it also satis�es our

seurity requirements. We state the seurity goals �rst sine in some ases the onsisteny require-

ments need only be met if an adversary has not already sueeded in breahing the seurity of the
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sheme.

3

The �ve types of CTs have di�erent integrity goals (and onsisteny requirements), but they

all share the same privay goal.

4

We �rst desribe the notion of privay for CTs. Then we make

some general omments about our integrity notions for the �ve CT types. We then briey disuss

reation and side-hannel attaks. In the subsetions that follow, we desribe the �rst four types

of CTs and de�ne their integrity properties and onsisteny requirements. The relevant formal

seurity de�nitions appear in Appendix B. Here we provide brief desriptions of the notions.

Chosen-plaintext privay. Our notion of privay for CTs is based on the notion of left-or-

right-indistinguishability under hosen-plaintext attaks [2℄. Consider an adversary with aess

to an enapsulation orale that on input assoiated data M

a

and messages M

0

, M

1

returns the

enapsulation of M

a

;M

b

, where b is a hidden, randomly hosen bit. The adversary \wins" if it

guesses bit b, i.e., if it guesses whih sequene of messages was enapsulated. A CT is t-priv-pa-

seure if the probability that an adversary with reasonable resoures wins is lose to 1/2 (i.e., if

suh an adversary annot do muh better than randomly guess bit b).

Integrity of iphertexts and hosen-ipher-text privay. The integrity notion for a

Type n CT is alled t-int-txtn. These notions address the integrity of the iphertexts generated

by the enapsulation algorithm. This is di�erent from proteting the integrity of the original inputs

to the enapsulation method (f. [5℄). Indeed, the latter, in ombination with the t-priv-pa notion,

is insuÆient to guarantee privay under hosen-iphertext attaks, whereas t-int-txtn-seurity

together with t-priv-pa-seurity imply a strong notion of privay under hosen-iphertext attaks

that we all t-priv-an-seurity. (These results are straightforward extensions of results in [5℄ for

authentiated enryption shemes.) Sine t-priv-pa and t-int-txtn imply t-priv-an, we fous

all our disussions on the former two notions.

Reation and side-hannel attaks. Vaudenay [22℄ identi�ed a lass of attaks against ryp-

tosystems whose deapsulation algorithms return di�erent error odes, depending on how the de-

apsulation fails (e.g., the error ode returned for bad padding is di�erent than the error ode

returned for a failed MAC veri�ation). To avoid these attaks, a ryptographi transform should

always return the same error ode upon failure, regardless of the reason for failure. Our onstru-

tions are seure against this type of attak beause they always return the same error message,

(?;?).

Furthermore, to avoid Canvel's [9℄ timing-attak derivatives of [22℄, one should ensure that the

length of time taken by the deapsulation routine does not depend on whether the deapsulation

algorithm aborts prematurely. I.e., an adversary should not be able to learn the reason for a

deapsulation algorithm's failure by observing the timing harateristis of the deapsulator.

2.1 Type 1 Cryptographi Transforms

For Type 1 CTs, a reeiver (or deapsulator) will aept any enapsulated paket sent by the sender

(or enapsulator), in any order, and possibly multiple times. A Type 1 CT is essentially an AEAD

sheme [20℄.

Integrity. The integrity notion for Type 1 CTs onsiders an adversary with hosen-plaintext

aess to an enapsulator and hosen-iphertext aess to the orresponding deapsulator. The

adversary \wins" or \forges" if it an make the deapsulator aept a iphertext not returned

3

If an adversary forges a message, it may plae the deapsulator in a state that it annot reover from. Therefore,

onsisteny an only be guaranteed in the absene of a suessful adversary.

4

We omment that this is natural sine the di�erenes between the various types of CTs beome apparent only

when one onsiders the deapsulation algorithm.
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by the enapsulator. Informally, a Type 1 CT is t-int-txt1-seure if the probability that any

adversary with reasonable resoures wins is small.

Consisteny requirements. For a Type 1 CT, CT = (KG;Enap;Deap), we require that

Deap

K

(Enap

K

(M

a

;M

s

)) = (M

a

;M

s

) for all messages M

a

, M

s

in CT's message spaes, all keys in

the key spae, and all internal states of the enapsulator and deapsulator.

2.2 Type 2 Cryptographi Transforms

Type 2 CTs are designed to protet against replay attaks.

Integrity. Consider an adversary with hosen-plain-text aess to an enapsulator and hosen-

iphertext aess to the orresponding deapsulator. The adversary \wins" or \forges" if it an

make the deapsulator aept a iphertext that the enapsulator did not generate, or make it aept

the same iphertext twie. Informally, a Type 2 CT is t-int-txt2-seure if the probability that

any adversary with reasonable resoures wins is small.

Consisteny requirements. For a Type 2 CT, CT = (KG;Enap;Deap), we require that, for all

messages M

a

, M

s

in CT's message spaes and all keys K in the key spae, if C = Enap

K

(M

a

;M

s

)

for any internal state of the enapsulator, C has not already been submitted to Deap

K

, and an

adversary has not already sueeded in breaking the integrity of CT, then Deap

K

(C) = (M

a

;M

s

).

We also make the following requirement: for any two message pairs (M

1

a

;M

1

s

), (M

2

a

;M

2

s

), if the

enapsulator omputes C

1

R

 Enap

K

(M

1

a

;M

1

s

) at some point in time and C

2

R

 Enap

K

(M

2

a

;M

2

s

)

at some other time, it is the ase that C

1

6= C

2

(even if (M

1

a

;M

1

s

) = (M

2

a

;M

2

s

)). Otherwise, a

legitimately enapsulated message might inorretly be rejeted by the reeiver.

2.3 Type 3 Cryptographi Transforms

Type 3 CTs are designed to protet against replay attaks and re-ordering attaks, but are not

intended to protet against paket loss.

Integrity. Consider an adversary with hosen-plain-text aess to an enapsulator and hosen-

iphertext aess to the orresponding deapsulator. The adversary \wins" or \forges" if it an

make the deapsulator aept a iphertext that the enapsulator did not generate, aept the same

iphertext twie, or aept a iphertext that was generated before the last aepted iphertext. For

example, if C

i

denotes the i-th iphertext returned by the enapsulator, the adversary will win if

it queries the deapsulator with C

5

followed by C

1

and the deapsulator aepts C

1

. Informally,

a Type 3 CT is t-int-txt3-seure if the probability that any adversary with reasonable resoures

wins is small.

Consisteny requirements. For a Type 3 CT, CT = (KG;Enap;Deap), we require that, for all

messages M

a

, M

s

in CT's message spaes and all keys K, if C = Enap

K

(M

a

;M

s

) for any internal

state of the enapsulator, C or a iphertext generated after C has not already been submitted to

Deap

K

, and an adversary has not already sueeded in forging, then Deap

K

(C) = (M

a

;M

s

).

We also make the following requirement: for any two message pairs (M

1

a

;M

1

s

), (M

2

a

;M

2

s

), if the

enapsulator omputes C

1

R

 Enap

K

(M

1

a

;M

1

s

) at some point in time and C

2

R

 Enap

K

(M

2

a

;M

2

s

)

at some other point in time, it is the ase that C

1

6= C

2

(even if (M

1

a

;M

1

s

) = (M

2

a

;M

2

s

)).

2.4 Type 4 Cryptographi Transforms

Type 4 CTs are designed to ensure the in-order delivery of pakets. If an adversary tries to forge,

the forgery attempt should be deteted and all future pakets (even if generated by the legitimate

7



enapsulator) should be rejeted. Thus a Type 4 CT only has to work if all pakets are delivered

in order (i.e., no bad paket is injeted into the ommuniations stream).

5

This type of CT is

designed to run on top of a reliable transport protool like TCP. The notion of a Type 4 CT is

losely related to the notion used in [4℄ to analyze the SSH ryptographi transform; the di�erene

is that a Type 4 CT's enapsulation algorithm an take assoiated data as input.

Integrity. Consider an adversary with hosen-plain-text aess to an enapsulator and hosen-

iphertext aess to the orresponding deapsulator. The integrity game for Type 4 CTs begins

with a ag phase set to 0. If at any point the sequene of queries to the deapsulation orale fails to

be a pre�x of the responses from the enapsulation orale, phase is set to 1. An adversary wins if it

an fore the deapsulation orale to aept a message after phase beomes 1. Informally, a Type

4 CT is t-int-txt4-seure if the probability that any adversary with reasonable resoures wins is

small.

Consisteny requirements. Consider some sequene of message pairs (M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : :

and, for i = 1; 2; : : :, let C

i

= Enap

K

(M

i

a

;M

i

s

), starting with Enap

K

in its initial state. Then if

Deap

K

is run on the sequene C

1

; C

2

; : : : in order and without the injetion of additional pakets,

we require that Deap

K

(C

i

) = (M

i

a

;M

i

s

).

3 Building Bloks

Composition-based ryptographi transforms are built using two base ryptographi omponents:

enryption shemes and MACs. We onsider eah of these omponents in turn.

3.1 Base enryption shemes

A symmetri enryption sheme SE = (K; E ;D) onsists of three algorithms and is de�ned for some

key spae KeySp

SE

, IV-spae IVSp

SE

, and message spae MsgSp

SE

. The randomized key-generation

algorithm K returns a key K 2 KeySp

SE

; we write this as K

R

 K. The possibly randomized and

stateful enryption algorithm E takes a key K 2 KeySp

SE

, an IV I 2 IVSp

SE

, and a message

M 2 MsgSp

SE

, and returns a iphertext C 2 f0; 1g

�

; we write this as C

R

 E

I

K

(M). Example values

for IVSp

SE

are f"g (when SE takes no IV) and f0; 1g

i

for some positive integer i. The stateless and

deterministi deryption algorithm D takes a key K 2 KeySp

SE

, an IV I 2 IVSp

SE

, and a iphertext

C 2 f0; 1g

�

, and returns a message M 2 f0; 1g

�

; we write this as M  D

I

K

(C). Note that the

derypted message M may be a string not in MsgSp

SE

. The following onsisteny requirement

must be met. D

I

K

(E

I

K

(M)) =M for all M 2 MsgSp

SE

, I 2 IVSp

SE

, K 2 KeySp

SE

, and any internal

state of E

K

.

Deviating from tradition, we onsider three types of base enryption shemes: noned enryption

shemes, length-based IV enryption shemes, and random IVed enryption shemes. For a noned

enryption sheme we require that the enryption algorithm is always invoked with a new and

distint IV in IVSp

SE

. For a length-based IV enryption sheme, we require that the �rst IV is

randomly seleted from IVSp

SE

, and eah subsequent IV is a deterministi funtion of the initial

IV and the lengths of all previous plaintexts. We all this deterministi funtion the length-based

IV-deriving funtion for the enryption sheme. (Our results ould easily be extended for use with

length-based enryption shemes where the �rst IV is some �xed onstant, like the all zero blok.)

5

We remark that a Type 4 CT may be vulnerable to a DoS attak in whih an adversary simply modi�es one

of the enapsulated pakets. Type 5 CTs are similar to Type 4 CTs but are not vulnerable to suh a DoS attak.

Despite the DoS attak against Type 4 CTs, these CTs more losely math the design goals of a CT for use with a

reliable transport protool (as evidened, for example, by the SSH protool's use of a Type 4 CT).
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For a random IVed enryption sheme we require that the enryption algorithm is always invoked

with a randomly seleted IV in IVSp

SE

. If IVSp

SE

= f"g, then the random IV is always ", and this

is how we model standard enryption shemes, whih do not take IVs as input.

Looking ahead, we note that we an enfore these requirements on the IVs through our use

of enodings. The main reason we do not simply have the underlying enryption sheme in a CT

generate its own IVs is that we want to be able to manipulate the IVs before invoking the enryption

sheme (e.g., we want to be able to MAC the IV in a MAC-then-Enrypt-style CT).

Privay. Our notion of privay for symmetri enryption shemes is based on the notion of left-or-

right-indistinguishability from [2℄ and is losely related to the t-priv-pa notion for CTs. Consider

an adversary with aess to an enryption orale that on input an IV and a pair of messages, returns

the enryption of either the �rst message or the seond message, depending on a hidden random

bit. The adversary \wins" if it guesses this bit, i.e., if it guesses whih sequene of messages was

enrypted. Informally, an enryption sheme is ind-pa-seure if the probability that an adversary,

using reasonable resoures and respeting the IV properties of the sheme, wins is not muh greater

than 1/2. The formalization of this notion appears in Appendix B.

Example shemes. There are numerous examples of ind-pa-seure enryption shemes. An

example of a noned enryption sheme is a CTR mode sheme whih alloates part of the blok

ipher input to a none and the remainder to a blok ounter. An example of a length-based IV

enryption sheme is a CTR mode variant that uses a random b-bit unsigned integer C as its initial

ounter (where b is the underlying blok ipher's blok size) and, after enrypting l bloks, uses

the integer C + l mod 2

b

as the IV for the next message. An example of a random IVed enryption

sheme is a CBC mode sheme that reeives a random b-bit IV. Of ourse, a more traditional

enryption sheme is a CBC mode instane that generates its own random b-bit IV (aording to

our notation, suh a sheme would have IV spae f"g).

3.2 Message-authentiation shemes

A message-authentiation sheme or MAC MA = (K;T ;V) onsists of three algorithms and is

de�ned for some key spae KeySp

MA

, IV-spae IVSp

MA

, message spae MsgSp

MA

, and tag spae

TagSp

MA

. The randomized key-generation algorithm returns a key K 2 KeySp

MA

; we write

this as K

R

 K. The tagging algorithm, whih may be randomized and stateful, takes a key

K 2 KeySp

MA

, an IV I 2 IVSp

MA

, and a messageM 2 MsgSp

MA

, and returns a tag � 2 TagSp

MA

;

we write this as �

R

 T

I

K

(M). The deterministi and stateless veri�ation algorithm takes a key

K 2 KeySp

MA

, an IV I 2 IVSp

MA

, a message M 2 MsgSp

MA

, and a andidate tag � 2 f0; 1g

�

,

and returns a bit; we write this as b V

I

K

(M; �). The following onsisteny requirement must be

met. V

I

K

(M; T

I

K

(M)) = 1 for all M 2 MsgSp

MA

, I 2 IVSp

MA

, K 2 KeySp

MA

, and any internal

state of T

K

.

As with base enryption shemes, we onsider di�erent types of MACs: noned MACs and on-

ventional MACs (i.e., MACs that do not take nones as input). For a noned MAC we require that

the tagging algorithm is always invoked with a new and distint IV in IVSp

MA

. For a onventional

MAC, IVSp

MA

= f"g. Expliitly taking a none as input is nie beause it allows one to share

the none between, for example, a Carter-Wegman MAC and CTR mode enryption. (Although

we ould also onsider random IV or length-based IV MACs, we do not do so beause, unlike with

enryption shemes, we have no reason to manipulate suh MAC IVs separately, and therefore

allowing the aller to supply the random IV or length-based IV provides no lear advantage; the

MAC an generate suh IVs itself.)

Unforgeability of MACs. The main notion of seurity for MACs that we onsider is strong
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unforgeability under hosen-message attaks [5℄. This notion is desribed formally in Appendix B.

Intuitively, we say that a MAC is uf-seure (or unforgeable) if the probability is small that any

adversary using reasonable resoures and respeting the IV properties of the MAC makes the

veri�ation algorithm aept some 3-tuple (I;M; �) suh that the tagging algorithm was never run

on (I;M) or, if run on (I;M), never generated � as the tag.

Pseudorandomness of MACs. Another notion of seurity for MACs is pseudorandomness.

This notion only applies when IVSp

MA

= f"g (or, phrased more appropriately, when the tagging

algorithm is a funtion from KeySp

MA

� MsgSp

MA

to TagSp

MA

). Essentially, a MAC is a se-

ure pseudorandom funtion (PRF ) if an adversary with hosen-plaintext aess to a funtion f ,

mapping MsgSp

MA

to TagSp

MA

, annot tell whether the funtion is an instane of the MAC de-

termined by a randomly seleted key, or a randomly seleted funtion from MsgSp

MA

to TagSp

MA

.

See Appendix B. As shown in [3℄, if a MAC is a seure PRF, then it is also uf-seure.

Privay of MACs. The ind-pa notion of privay for symmetri enryption shemes an also be

applied to MACs (see Appendix B). Although most popular MACs are not ind-pa-seure, some

are (the notable example is Carter-Wegman MACs).

Example shemes. Popular examples of MACs inlude HMAC [19℄, OMAC [14℄, and UMAC [8℄.

The �rst two have IV-spae f"g and the third takes a none as input. All these examples are uf-

seure assuming the IV properties are respeted. OMAC (and a number of other MACs) are also

provably-seure PRFs, assuming that the underlying blok ipher is seure. UMAC is ind-pa-seure

against none-respeting adversaries.

4 The Three Paradigms

We reall the three basi methods to ombine enryption shemes with MACs [5, 18℄: Enrypt-and-

MAC (E&M), MAC-then-Enrypt (MtE), and Enrypt-then-MAC (EtM). Let E

K

e

be an enryption

algorithm with key K

e

, and T

K

t

a MAC tagging algorithm with key K

t

. The E&M enryption

algorithm is de�ned as E

hK

e

;K

t

i

(M)

def

= E

K

e

(M)kT

K

t

(M). The MtE enryption algorithm is de�ned

as E

hK

e

;K

t

i

(M)

def

= E

K

e

(MkT

K

t

(M)). The EtM enryption algorithm is de�ned as E

hK

e

;K

t

i

(M)

def

=

�kT

K

t

(�), where � = E

K

e

(M).

In this work we onsider generalizations of the three paradigms, whih we all Enode-then-

E&M, Enode-then-MtE, and Enode-then-EtM. For eah of these paradigms, we onsider the �ve

types of ryptographi transforms. The enodings play a ritial role in the Enode-then-fE&M,

MtE, EtMg onstrutions. In partiular, enodings allow us to formally model CTs that preproess

payload data without having to speify exatly how appliations should do the preproessing. Also,

the enoding shemes are what provide the logi to, for example, detet replay attaks.

4.1 Enodings

An enoding sheme EC is an un-keyed publi transformation that onsists of four algorithms:

Enode, DeodeA, DeodeB, and DeodeC. All algorithms may be stateful and Enode may be

randomized. The deoding algorithms DeodeA, DeodeB, and DeodeC may all share the same

state. The spei� properties of the algorithms depend on the paradigm in question and the type

of CT that is being onstruted. We desribe them in detail in the following setions. Here we

disuss some ommonalities between the algorithms of enoding shemes for di�erent paradigms

and CT types.
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Enoding and enapsulating. Algorithm Enode pre-proesses a CT enapsulation algorithm's

input messages M

a

, M

s

. Spei�ally, on inputM

a

;M

s

, Enode outputs a 5-tuple (M

p

;M

o

;M

n

;M

e

;

M

t

). Intuitively, M

p

is leartext data ommuniated with the iphertext, M

o

is the IV/none for

use with the base enryption sheme, M

e

is the input for the base enryption sheme, M

n

is the

IV/none for use with the base MAC, and M

t

is the input for the base MAC.

The di�erent paradigms then use these �ve strings in slightly di�erent ways and slightly di�erent

orders. For Enode-then-E&M CTs, the enapsulation algorithm enrypts M

e

with IV M

o

to get a

string �, MACs M

t

with IV M

n

to get a tag � , and outputs hM

p

; �; �i. For Enode-then-MtE CTs,

the enapsulation algorithm MACs M

t

with IV M

n

to get a tag � , enrypts hM

e

; �i with IV M

o

to get a string �, and outputs hM

p

; �i. For Enode-then-EtM CTs, the enapsulation algorithm

enrypts M

e

with IV M

o

to get a string �, MACs hM

t

; �i with IV M

n

to get a tag � , and outputs

hM

p

; �; �i.

Deoding and deapsulating. The deoding algorithms DeodeA, DeodeB, and DeodeC are

used in reversing the proess. The deapsulation proess typially involves �rst invoking DeodeA

on M

p

to get bak (at least) M

o

, the IV used with the underlying enryption sheme. In the ase

of Enode-then-EtM onstrutions, DeodeA returns the MAC IV M

n

and M

t

in order to allow for

tag veri�ation before deryption. After the underlying enryption sheme reovers the message

M

e

, the transforms invoke DeodeB(M

p

;M

e

) to reover (at least) M

a

and M

s

. If all goes well, then

the transform's deapsulation algorithm returnsM

a

and M

s

to the user or higher-level appliation.

However, all may not go well in the deapsulation proess. For example, DeodeA or DeodeB

may return the symbol ?, indiating that there was a deoding failure. This an happen, for

instane, in Type 2 deoding algorithms if the deoding algorithms detet a replayed message.

When DeodeA or DeodeB return ?, the deapsulation algorithm does not aept the paket.

It may also be the ase that DeodeA and DeodeB do not detet any problems (and return

strings instead of ?) but the MAC tag veri�ation fails. When this ours, the deapsulation al-

gorithm invokes DeodeC(?). If the tag veri�ation sueeds, the deapsulation algorithm invokes

DeodeC(>). By alling DeodeC in this way, the deapsulation algorithm tells the deoding al-

gorithms whether the paket was aepted. The deoding algorithms an then update their state.

For example, for CTs designed to protet against out-of-order delivery attaks, it is prudent to

inrement the number of pakets reeived only if the paket atually deapsulated orretly and

passed the tag veri�ation proess.

Respeting the IV properties of SE and MA. Consider the underlying enryption sheme

SE and the underlying MAC MA that the Enode algorithm is ombined with in an Enode-

then-fE&M,MtE,EtMg onstrution. Note that these underlying shemes may have ertain IV

requirements in order for them to be seure. For example, SE might require that the IV is a none;

i.e., that the IV never repeats, or that the IVs be random (or always the empty string "). Consider

any sequene of messages (M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : :, let Enode begin in its initial state, and for

i = 1; 2; : : : let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) = Enode(M

i

a

;M

i

s

). We all an enoding sheme none-

respeting for enryption if it is the ase that M

i

o

6= M

j

o

for all distint i; j. We all an enoding

sheme none-respeting for MACing ifM

i

n

6=M

j

n

for all distint i; j. An enoding sheme is length-

based IV-respeting for enryption with respet to some length-based IV-deriving funtion if the

�rst M

o

value the enoding sheme generates is hosen uniformly at random from IVSp

SE

, and all

subsequent M

o

values are generated aording to the length-based IV-deriving funtion, the initial

M

o

value, and the lengths of all previous M

e

values. An enoding sheme is random-IV-respeting

for enryption if the enoding algorithm always piks the value M

o

uniformly at random from

IVSp

SE

.

Note that if the IV spaes are �nite, then it is impossible to run a none-respeting enoding
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enapsulated paket

Figure 2: The Enode-then-E&M enapsulation method.

sheme on an in�nite number of inputs. Therefore, we assoiate to any enoding sheme EC a pa-

rameter MaxNum

EC

, and we assume that the enoding sheme is not invoked more than MaxNum

EC

times per appliation (i.e., beginning in its initial state, the enoding algorithm will not be asked

to enode more than MaxNum

EC

pairs of messages). In the above disussion and in the following

setions, whenever we write \for i = 1; 2; : : :, run Enode," we assume that the iterations stop before

i gets larger than MaxNum

EC

. (We use the same onvention when disussing CTs built from EC.)

5 Enode-then-E&M

We �rst fous on Enode-then-E&M ryptographi transforms. The enapsulation algorithm of

suh a CT works as shown in Figure 2. An E&M enoding sheme is used to \glue" together

the enryption and MAC omponents of an Enode-then-E&M CT. For an E&M enoding sh-

eme EC

E&M

= (Enode;DeodeA;DeodeB;DeodeC), Enode behaves as desribed in Setion 4.1.

DeodeA, on input a string M

p

, outputs a string M

o

, or ? on error. DeodeB, on input two mes-

sages M

p

;M

e

, returns a 4-tuple of messages (M

a

;M

s

;M

n

;M

t

), or (?;?;?;?) on error (if any one

of M

a

, M

s

, M

n

, or M

t

is ?, then all of them are ?). DeodeC takes as input the symbol > or the

symbol ? and returns nothing.

An enryption sheme, a MAC, and an appropriate E&M enoding sheme an be ombined to

obtain an Enode-then-E&M CT as follows.

Constrution 5.1 (Enode-then-E&M) Let EC

E&M

= (Enode;DeodeA;DeodeB;DeodeC),

SE = (K

e

; E ;D), andMA = (K

t

;T ;V) be E&M enoding, enryption, and message-authentiation

shemes, respetively, with ompatible message spaes (e.g., the outputs from Enode are suitable

inputs to E and T ). Let all states initially be ". We assoiate to these shemes an Enode-then-

E&M ryptographi transform CT = (KG;Enap;Deap) whose onstituent algorithms are de�ned

as follows:
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Algorithm KG

K

e

R

 K

e

; K

t

R

 K

t

Return hK

e

;K

t

i

Algorithm Enap

hK

e

;K

t

i

(M

a

;M

s

)

(M

p

;M

o

;M

n

;M

e

;M

t

)

R

 Enode(M

a

;M

s

)

�

R

 E

M

o

K

e

(M

e

) ; �

R

 T

M

n

K

t

(M

t

)

Return hM

p

; �; �i

Algorithm Deap

hK

e

;K

t

i

(C)

If st =? then return (?;?)

If there does not exist M

p

; �; � s.t. C = hM

p

; �; �i then

st Box ; return (?;?)

Parse C as hM

p

; �; �i ; M

o

 DeodeA(M

p

)

If M

o

= ? then st Box ; return (?;?)

M

e

 D

M

o

K

e

(�)

(M

a

;M

s

;M

n

;M

t

) DeodeB(M

p

;M

e

)

If M

s

= ? then st Box ; return (?;?)

v  V

M

n

K

t

(M

t

; �)

If v = 0 then st Box ; DeodeC(?) ; return (?;?)

DeodeC(>)

Return (M

a

;M

s

)

For a Type 4 CT, eah boxed portion of the deapsulator should be ?. For all other types, the

boxed portion should be st. Reall that ha

1

; : : : ; a

m

i denotes an enoding of the strings a

1

; : : : ; a

m

suh that a

1

; : : : ; a

m

are reoverable. For the all to DeodeB(M

p

;M

e

), reall that if any one of M

a

;

M

s

;M

n

;M

t

is ?, then they are all ?. Although only Deap expliitly maintains state in the above

pseudoode, the underlying enoding, enryption, and MAC shemes may also maintain state. E.g.,

the underlying enoding and deoding algorithms may maintain state in order to protet against

replay attaks.

Consisteny requirements for E&M enoding shemes. Consider any two pairs of messages

(M

a

;M

s

), (M

a

;M

0

s

) with jM

s

j = jM

0

s

j. Let (M

p

;M

o

;M

n

;M

e

;M

t

)

R

 Enode(M

a

;M

s

) for Enode in

some state, and (M

0

p

;M

0

o

;M

0

n

;M

0

e

;M

0

t

)

R

 Enode(M

a

;M

0

s

) for Enode in some (possibly di�erent)

state. We require that jM

e

j = jM

0

e

j and jM

t

j = jM

0

t

j. If this were not the ase, Constrution 5.1

might not preserve privay.

Consider also any two sequenes of message pairs (M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : : and (N

1

a

; N

1

s

); (N

2

a

;

N

2

s

); : : :. Let Enode begin in its initial state and for i = 1; 2; : : : let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) =

Enode(M

i

a

;M

i

s

). Similarly, let Enode begin in its initial state and for i = 1; 2; : : : let (N

i

p

; N

i

o

; N

i

n

;

N

i

e

; N

i

t

) = Enode(N

i

a

; N

i

s

). If Enode is randomized, assume that both sequenes are generated

using the same random tape. Further assume that the randomness used in eah invoation is

reoverable from the output and that the amount of randomness used per invoation depends only

on the lengths of the inputs. Consider any index i. If jM

j

s

j = jN

j

s

j and M

j

a

= N

j

a

for all j � i, then

we require that M

i

p

= N

i

p

, M

i

o

= N

i

o

, and M

i

n

= N

i

n

.

Let (M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : : be a sequene of message pairs and, beginning with Enode in its

initial state, let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) = Enode(M

i

a

;M

i

s

) for i = 1; 2; : : : up to MaxNum

EC

E&M

. We

make the following additional onsisteny requirements on EC

E&M

, depending on the type of CT

in question. In what follows we use the notation Deode[ABC℄ to denote any one of the deoding

algorithms.

Type 1. For any i and for any state of the deoder, we require that DeodeA(M

i

p

) = M

i

o

and

DeodeB(M

i

p

;M

i

e

) = (M

i

a

;M

i

s

;M

i

n

;M

i

t

).

Type 2. For any distint indies i; j, we require that (M

i

p

;M

i

e

) 6= (M

j

p

;M

j

e

).

For any i, we require that for any state of the deoder, DeodeA(M

i

p

) = M

i

o

. Furthermore, if

DeodeB has not been invoked with (M

i

p

;M

i

e

) or if DeodeB has been invoked with (M

i

p

;M

i

e

) but

for eah suh invoation the next all to Deode[ABC℄ was DeodeC(?), then it must be the ase

that DeodeB(M

i

p

;M

i

e

) = (M

i

a

;M

i

s

;M

i

n

;M

i

t

).

Type 3. For any distint indies i; j, we require that (M

i

p

;M

i

e

) 6= (M

j

p

;M

j

e

).
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For any i, we require that for any state of the deoder, DeodeA(M

i

p

) = M

i

o

. Furthermore,

if DeodeB has not been invoked with (M

j

p

;M

j

e

) for any j � i, or if DeodeB has been invoked

with (M

j

p

;M

j

e

), for some j � i, but for eah suh invoation the next all to Deode[ABC℄ was

DeodeC(?), then DeodeB(M

i

p

;M

i

e

) = (M

i

a

;M

i

s

;M

i

n

;M

i

t

).

Type 4. For i = 1; 2; : : : and the deoder beginning in its initial state, let m

i

o

= DeodeA(M

i

p

) and

(m

i

a

;m

i

s

;m

i

n

;m

i

t

) = DeodeB(M

i

p

;M

i

e

). We require that M

i

a

= m

i

a

, M

i

s

= m

i

s

, M

i

o

= m

i

o

, M

i

n

= m

i

n

,

and M

i

t

= m

i

t

for all i.

Seurity requirements for E&M enoding shemes. The seurity requirements for E&M

enoding shemes are formalized in Appendix C. For all types of CTs we de�ne a property, alled

e&m-oll-seurity, that measures the probability of a ollision in theM

n

;M

t

outputs of the enoding

sheme. Consider a sequene of inputs (M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : : to Enode and, beginning with

Enode in its initial state, for i = 1; 2; : : : let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) = Enode(M

i

a

;M

i

s

). Intuitively,

we say that the enoding sheme is e&m-oll-seure if the probability that (M

i

n

;M

i

t

) = (M

j

n

;M

j

t

)

for distint indies i; j is small. We note that it is very easy to design an E&M enoding sheme

that is e&m-oll-seure: simply inlude a ounter or some random string in one or both of M

n

or

M

t

.

For Type n E&M enoding shemes (i.e., E&M enoding shemes used to onstrut Type n CTs)

we also de�ne a seurity property alled e&m-sen. We distill the important aspets of these seurity

properties here. Essentially, in order for Type 1{Type 3 E&M enoding shemes to be e&m-se1{

e&m-se3-seure, it should be the ase that if (M

p

;M

e

) and (M

0

p

;M

0

e

) are distint pairs of strings,

then they do not deode (via DeodeB) to idential M

n

;M

t

strings. For Type 2 E&M enoding

shemes it should also be the ase that if DeodeB(M

p

;M

e

) is alled followed by a all DeodeC(>),

then the next time DeodeB(M

p

;M

e

) is alled, DeodeB returns (?;?;?;?). For Type 3 E&M

enoding shemes it should also be the ase that if M

p

;M

e

were in the output of one invoation

of Enode, M

0

p

;M

0

e

were in the output of some later Enode invoation, and DeodeB(M

0

p

;M

0

e

) is

alled followed by a all DeodeC(>), then a later all DeodeB(M

p

;M

e

) returns (?;?;?;?).

Consider some interation with the enoding and deoding algorithms. Let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;

M

i

t

) denote the 5-tuple returned by Enode after its i-th invoation. Let (m

j

p

;m

j

e

) denote the

parameters to the j-th all to DeodeB and let (m

j

a

;m

j

s

;m

j

n

;m

j

t

) denote the response. Then for

Type 4 enoding shemes it should be the ase that (M

i

n

;M

i

t

) 6= (m

j

n

;m

j

t

) for all i 6= j. And, if

(M

j

p

;M

j

e

) 6= (m

j

p

;m

j

e

), then it should be the ase that (M

j

n

;M

j

t

) 6= (m

j

n

;m

j

t

).

5.1 Summary of results

Chosen-plaintext privay. We are now in a position to desribe how to ombine a standard

enryption sheme with a MAC in an Enrypt-and-MAC fashion in order to yield a CT that

preserves privay under hosen-plaintext attaks. The following summary distills the important

properties from Theorem D.1.

Result 5.2 (Privay of Enode-then-E&M) To onstrut a Type n Enode-then-E&M sheme

CT from an enryption sheme SE and a MAC MA, one should use a Type n E&M enoding

sheme EC that is e&m-oll-seure and that respets the IV requirements of SE andMA. If SE is

a seure enryption sheme (ind-pa-seure), MA is a seure PRF or privay preserving (ind-pa-

seure), and all the omponents satisfy their respetive onsisteny requirements, then CT will be

a ryptographi transform that provably provides privay under hosen-plaintext attaks (i.e., CT

will be t-priv-pa-seure).
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The statement in Theorem D.1 is atually more general than Result 5.2. In partiular, the theorem

implies that ifMA is ind-pa-seure, then the enoding sheme need not be e&m-oll-seure. We

have hosen to formulate the result as we did beause most popular MACs are not ind-pa-seure,

and those that are require a none and hene any enoding sheme that respets the IV requirements

of the MAC is trivially e&m-oll-seure.

We point out that developers should have no trouble �nding seure building bloks. For example,

many popular MACs are either proven to be or believed to be seure PRFs. And there are well-

known enryption shemes that are provably ind-pa-seure. (For further disussions of the building

bloks, see Setion 3.)

As noted above, it is very easy to reate enoding shemes that are e&m-oll-seure (for example,

the enoding sheme an simply append a ounter to the input to the MAC). Looking ahead, we

omment that in order to ahieve some of our other goals (like resistane to replay attaks), we

will have to inlude ounters in the input to the MAC anyway, so requiring suh ounters for the

e&m-oll property does not introdue additional overhead or osts for the CT.

Integrity. We now onsider how to design Enode-then-E&M CTs that provably meet the CT

integrity goals. The following interprets the results in Theorem D.4.

Result 5.3 (Integrity of Enode-then-E&M) To onstrut a Type n Enode-then-E&M sh-

eme CT from an enryption sheme SE and a MACMA, one should use a Type n E&M enoding

sheme EC that is e&m-sen-seure and that respets the IV requirements of MA. If the SE en-

ryption algorithm is length-preserving, MA is unforgeable (uf-seure), and all the omponents

satisfy their respetive onsisteny requirements, then CT will be a ryptographi transform that

provably meets the t-int-txtn integrity notion.

It is not hard to �nd underlying omponents that satisfy the properties desribed in Result 5.3.

As with Result 5.2, we omment that the results in Theorem D.4 are more general than Result

5.3. In partiular, it is possible for a Type n CT to be t-int-txtn-seure even if the underlying

enryption algorithm is not length-preserving (see Appendix D for details). However, unless one

formally veri�es that it is safe to use a spei� non-length preserving base enryption sheme,

one should losely follow the reommendation for using length-preserving enryption shemes. To

see the importane of this, we note that [4℄ shows that, in the ontext of SSH, if the underlying

enryption sheme is standard CBC mode (whih generates the random IV itself and is therefore not

length-preserving), then there is an attak on the integrity of the transform. Also, if the underlying

enryption sheme is a CTR mode variant that maintains the ounter itself (i.e., that doesn't take

an IV as input) and inludes that ounter in the iphertext, then an attaker with known-plaintext

aess to the enapsulator an learn the keystream value generated by eah initial ounter and,

sine the ounter is not inluded in the input to the MAC, attak the integrity of the iphertexts.

We believe that our length-preserving restrition on the enryption algorithm will not be a major

onern for many developers sine many of them will want to avoid the extra paket expansion that

omes with using non-length-preserving enryption shemes anyway.

6 Enode-then-MtE

We now turn our attention to the Enode-then-MtE paradigm for CTs. The algorithms that

onstitute an MtE enoding sheme EC

MtE

= (Enode;DeodeA;DeodeB;DeodeC), have the same

APIs as those in an E&M enoding sheme.

An enryption sheme, a MAC, and an appropriate MtE enoding sheme an be ombined to

obtain an Enode-then-MtE CT as follows (see also Figure 3).
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Figure 3: The Enode-then-MtE enapsulation method.

Constrution 6.1 (Enode-then-MtE) Let EC

MtE

= (Enode;DeodeA;DeodeB;DeodeC), let

SE = (K

e

; E ;D), and letMA = (K

t

;T ;V) respetively be MtE enoding, enryption, and message-

authentiation shemes with ompatible message spaes (e.g., the outputs from Enode are suitable

inputs to E and T ). Assume that T always produes tags of the same length. Let all states initially

be ". We assoiate to these shemes an Enode-then-MtE ryptographi transform CT = (KG;

Enap;Deap) whose onstituent algorithms are de�ned as follows:

Algorithm KG

K

e

R

 K

e

; K

t

R

 K

t

Return hK

e

;K

t

i

Algorithm Enap

hK

e

;K

t

i

(M

a

;M

s

)

(M

p

;M

o

;M

n

;M

e

;M

t

)

R

 Enode(M

a

;M

s

)

�

R

 T

M

n

K

t

(M

t

) ; �

R

 E

M

o

K

e

(hM

e

; �i)

Return hM

p

; �i

Algorithm Deap

hK

e

;K

t

i

(C)

If st =? then return (?;?)

If there does not exist M

p

; � s.t. C = hM

p

; �i then

st Box ; return (?;?)

Parse C as hM

p

; �i ; M

o

 DeodeA(M

p

)

If M

o

= ? then st Box ; return (?;?)

M  D

M

o

K

e

(�)

If there does not exist M

e

; � s.t. M = hM

e

; �i then

st Box ; DeodeC(?) ; return (?;?)

Parse M as hM

e

; �i

(M

a

;M

s

;M

n

;M

t

) DeodeB(M

p

;M

e

)

If M

s

= ? then st Box ; return (?;?)

v  V

M

n

K

t

(M

t

; �)

If v = 0 then st Box ; DeodeC(?) ; return (?;?)

DeodeC(>)

Return (M

a

;M

s

)

For a Type 4 CT, eah boxed portion of the deapsulator should be ?. For all other types, the

boxed portion should be st. For the all to DeodeB(M

p

;M

e

), reall that if any one of M

a

;M

s

;

M

n

;M

t

is ?, then they are all ?. Although only Deap expliitly maintains state in the above

pseudoode, the underlying enoding, enryption, and MAC shemes may also maintain state. We

require that the length of the ombined string hM

e

; �i depend only on the lengths of M

e

and � .

Consisteny requirements for MtE enoding shemes. Consider any two pairs of mes-

sages (M

a

;M

s

), (M

a

;M

0

s

), where jM

s

j = jM

0

s

j. Let (M

p

;M

o

;M

n

;M

e

;M

t

)

R

 Enode(M

a

;M

s

) for

Enode in some state, and (M

0

p

;M

0

o

;M

0

n

;M

0

e

;M

0

t

)

R

 Enode(M

a

;M

0

s

) for Enode is in some (possibly

di�erent) state. We require that jM

e

j = jM

0

e

j. Consider also any two sequenes of message pairs

(M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : : and (N

1

a

; N

1

s

); (N

2

a

; N

2

s

); : : :. Let Enode begin in its initial state and for
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i = 1; 2; : : : let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) = Enode(M

i

a

;M

i

s

). Similarly, let Enode begin in its initial

state and for i = 1; 2; : : : let (N

i

p

; N

i

o

; N

i

n

; N

i

e

; N

i

t

) = Enode(N

i

a

; N

i

s

). If Enode is randomized, as-

sume that both sequenes are generated using the same random tape. Unlike with E&M enoding

shemes, we do not require that the randomness used in eah invoation be reoverable from the

output. Consider any index i. If jM

j

s

j = jN

j

s

j and M

j

a

= N

j

a

for all j � i, then we require that

M

i

p

= N

i

p

and M

i

o

= N

i

o

.

The remainder of the onsisteny requirements for Type 1{Type 4 MtE enoding shemes are

the same as those for the orresponding E&M enoding shemes.

Seurity requirements for MtE enoding shemes. For Type n MtE enoding shemes

we onsider a seurity notion, alled mte-sen, that is idential to the e&m-sen notion de�ned for

Type n E&M enoding shemes. The formal desriptions are in Appendix C.

6.1 Summary of results

Chosen-plaintext privay. The following shows how to ensure that an Enode-then-MtE

CT will provably preserve privay under hosen-plaintext attaks. It interprets the result in

Theorem E.1. This result essentially says that an Enode-then-MtE CT should use an under-

lying enryption sheme that preserves privay under hosen-plaintext attaks. As disussed in

Setion 3, many suh enryption shemes exist.

Result 6.2 (Privay of Enode-then-MtE) To onstrut a Type n Enode-then-E&M sheme

CT from an enryption sheme SE and a MACMA (that always produes tags of the same length),

one should use an MtE enoding sheme EC that respets the IV properties of SE . If SE is ind-pa-

seure and all the omponents satisfy their respetive onsisteny requirements, then CT will be

a ryptographi transform that provably provides privay under hosen-plaintext attaks (i.e., CT

will be t-priv-pa-seure).

Integrity. The following distills the integrity results from Theorem E.4.

Result 6.3 (Integrity of Enode-then-MtE) To onstrut a Type n Enode-then-E&M sheme

CT from an enryption sheme SE and a MACMA, one should use a Type nMtE enoding sheme

EC that is mte-sen-seure and that respets the IV requirements of MA. If the SE enryption

algorithm is length-preserving,MA is unforgeable (uf-seure) and always outputs tags of the same

length, and all the omponents satisfy their respetive onsisteny requirements, then CT will be a

ryptographi transform that provably meets the t-int-txtn integrity notion.

We again omment that it is not hard to �nd base omponents that satisfy the requirements in

Result 6.3.

As with our Enode-then-E&M disussions, we note that the length-preserving requirements on

the base enryption sheme are not overly restritive sine developers will likely try to avoid the

extra paket expansion assoiated with non-length-preserving enryption algorithms anyway. In

some situations, it seems possible to prove that the use of some non-length-preserving enryption

shemes is safe (suh proofs will likely make use of the fat that if the MAC is a seure PRF, then

part of the plaintext for the base enryption sheme will not be known to an attaker). Exploring

this spei� senario would take us a�eld from our urrent goal of modeling generi omposition-

based CTs, and (if there is suitable interest from developers) may be a topi of future work.

7 Enode-then-EtM

We now onsider the Enode-then-EtM paradigm. See Figure 4. For an EtM enoding sheme

EC

EtM

= (Enode;DeodeA;DeodeB;DeodeC), the enoding algorithm Enode, whih may be
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Figure 4: The Enode-then-EtM enapsulation method.

both randomized and stateful, takes as input two messages M

a

;M

s

and returns a 5-tuple of mes-

sages (M

p

;M

o

;M

n

;M

e

;M

t

). These messages have essentially the same roles as in E&M and MtE

enoding shemes. An important di�erene is that M

t

is ombined with the output of the enryp-

tion algorithm before MACing. The deoding algorithms may also be stateful, but not randomized.

They may share state. DeodeA, on input a string M

p

, outputs a 3-tuple (M

o

;M

n

;M

t

), or (?;?;

?) on error (if one is ? then all are ?). DeodeB, on input two messages M

p

;M

e

, returns a pair

(M

a

;M

s

), or (?;?) on error (if either M

a

or M

s

is ?, then both are ?). The signature of DeodeC

is as before.

An enryption sheme, a MAC, and an appropriate EtM enoding sheme an be ombined to

obtain an Enode-then-EtM CT as follows.

Constrution 7.1 (Enode-then-EtM) Let EC

EtM

= (Enode;DeodeA;DeodeB;DeodeC), let

SE = (K

e

; E ;D), and letMA = (K

t

;T ;V) respetively be EtM enoding, enryption, and message-

authentiation shemes with ompatible message spaes (e.g., the outputs from Enode are suitable

inputs to E and T ). Let all states initially be ". We assoiate to these shemes an Enode-then-

EtM ryptographi transform CT = (KG;Enap;Deap) whose onstituent algorithms are de�ned

as follows:

Algorithm KG

K

e

R

 K

e

; K

t

R

 K

t

Return hK

e

;K

t

i

Algorithm Enap

hK

e

;K

t

i

(M

a

;M

s

)

(M

p

;M

o

;M

n

;M

e

;M

t

)

R

 Enode(M

a

;M

s

)

�

R

 E

M

o

K

e

(M

e

) ; �

R

 T

M

n

K

t

(hM

t

; �i)

C  hM

p

; �; �i

Return C

Algorithm Deap

hK

e

;K

t

i

(C)

If st =? then return (?;?)

If there does not exist M

p

; �; � s.t. C = hM

p

; �; �i then

st Box ; return (?;?)

Parse C as hM

p

; �; �i ; (M

o

;M

n

;M

t

) DeodeA(M

p

)

If M

o

= ? then st Box ; return (?;?)

v  V

M

n

K

t

(hM

t

; �i; �)

If v = 0 then st Box ; DeodeC(?) ;

return (?;?)

M

e

 D

M

o

K

e

(�)

If M

e

= ? then st Box ; DeodeC(?) ;

return (?;?)

(M

a

;M

s

) DeodeB(M

p

;M

e

)

If M

s

= ? then st Box ; return (?;?)

DeodeC(>)

Return (M

a

;M

s

)
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For a Type 4 CT, eah boxed portion of the deapsulator should be ?. For all other types, the

boxed portion should be st. For the all to DeodeA(M

p

), reall that if any one of M

o

;M

n

;M

t

is

?, then they are all ?. For the all to DeodeB(M

p

;M

e

), reall that if any one of M

a

;M

s

is ?,

then they are both ?. Although only Deap expliitly maintains state in the above pseudoode,

the underlying enoding, enryption, and MAC shemes may also maintain state.

Consisteny requirements for EtM enoding shemes. Consider any two pairs of mes-

sages (M

a

;M

s

); (M

a

;M

0

s

) with jM

s

j = jM

0

s

j. Let (M

p

;M

o

;M

n

;M

e

;M

t

)

R

 Enode(M

a

;M

s

) for

Enode in some state, and (M

0

p

;M

0

o

;M

0

n

;M

0

e

;M

0

t

)

R

 Enode(M

a

;M

0

s

) for Enode in some (possibly

di�erent) state. We require that jM

e

j = jM

0

e

j. Consider also any two sequenes of message pairs

(M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : : and (N

1

a

; N

1

s

); (N

2

a

; N

2

s

); : : :. For i = 1; 2; : : : let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) =

Enode(M

i

a

;M

i

s

) and (N

i

p

; N

i

o

; N

i

n

; N

i

e

; N

i

t

) = Enode(N

i

a

; N

i

s

). Assume that eah sequene is gener-

ated with Enode starting in its initial state. If Enode is randomized, assume that both sequenes

are generated using the same random tape. Consider any index i. If jM

j

s

j = jN

j

s

j and M

j

a

= N

j

a

for all j � i, then we require that M

i

p

= N

i

p

, M

i

o

= N

i

o

, M

i

n

= N

i

n

, and M

i

t

= N

i

t

.

We make the following additional onsisteny requirements on EC

EtM

, depending on the type of

CT in question. Let (M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : : be a sequene of messages and, beginning with Enode

in its initial state, let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) = Enode(M

i

a

;M

i

s

) for i = 1; 2; : : : up to MaxNum

EC

EtM

.

In what follows we use the notation Deode[ABC℄ to denote any one of the deoding algorithms.

Type 1. For any i and for any state of the deoder, we require that DeodeA(M

i

p

) = (M

i

o

;M

i

n

;M

i

t

)

and DeodeB(M

i

p

;M

i

e

) = (M

i

a

;M

i

s

).

Type 2. For any distint indies i; j, we require that (M

i

p

;M

i

e

) 6= (M

j

p

;M

j

e

).

For any i, we require that for any state of the deoder, DeodeA(M

i

p

) = (M

i

o

;M

i

n

;M

i

t

). If

DeodeB has not been invoked with (M

i

p

;M

i

e

) or if DeodeB has been invoked with (M

i

p

;M

i

e

) but

for eah suh invoation the next all to Deode[ABC℄ was DeodeC(?), then DeodeB(M

i

p

;M

i

e

) =

(M

i

a

;M

i

s

).

Type 3. For any distint indies i; j, we require that (M

i

p

;M

i

e

) 6= (M

j

p

;M

j

e

).

For any i, we require that for any state of the deoder, DeodeA(M

i

p

) = (M

i

o

;M

i

n

;M

i

t

). Fur-

thermore, if DeodeB has not been invoked with (M

j

p

;M

j

e

) for any j � i, or if DeodeB has been

invoked with (M

j

p

;M

j

e

), for some j � i, but for eah suh invoation the next all to Deode[ABC℄

was DeodeC(?), then DeodeB(M

i

p

;M

i

e

) = (M

i

a

;M

i

s

).

Type 4. For i = 1; 2; : : : and the deoder beginning in its initial state, let (m

i

o

;m

i

n

;m

i

t

) =

DeodeA(M

i

p

) and (m

i

a

;m

i

s

) = DeodeB(M

i

p

;M

i

e

). We require that M

i

a

= m

i

a

, M

i

s

= m

i

s

, M

i

o

= m

i

o

,

M

i

n

= m

i

n

, and M

i

t

= m

i

t

for all i.

Seurity requirements for EtM enoding shemes. The seurity requirements for EtM

enoding shemes are formalized in Appendix C. For Type n EtM enoding shemes (i.e., EtM

enoding shemes used to onstrut Type n CTs) we de�ne a seurity property alled etm-sen. In

order for Type 1{Type 3 EtM enoding shemes to be etm-se1{etm-se3-seure, it must be the ase

that if M

p

and M

0

p

are distint strings, then they do not deode (via DeodeA) to idential M

n

;M

t

strings. For Type 2 EtM enoding shemes it should also be the ase that if DeodeB(M

p

;M

e

) is

alled followed by a all DeodeC(>), then the next time DeodeB(M

p

;M

e

) is invoked, the response

is (?;?). For Type 3 EtM enoding shemes it should also be the ase that if M

p

;M

e

were in the

output of one invoation of Enode, M

0

p

;M

0

e

were in the output of some later Enode invoation,

and DeodeB(M

0

p

;M

0

e

) is alled followed by a all DeodeC(>), then a later all DeodeB(M

p

;M

e

)

returns (?;?).

Consider some interation with the enoding and deoding algorithms. Let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;
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M

i

t

) denote the 5-tuple returned by Enode after its i-th invoation. Let m

j

p

denote the parameter

to the j-th all to DeodeA and let (m

j

o

;m

j

n

;m

j

t

) denote the response. Then for Type 4 enoding

shemes it should be the ase that (M

i

n

;M

i

t

) 6= (m

j

n

;m

j

t

) for all i 6= j. And, if M

j

p

6= m

j

p

, then it

should be the ase that (M

j

n

;M

j

t

) 6= (m

j

n

;m

j

t

).

7.1 Summary of results

Chosen-plaintext privay. The following result, whih interprets Theorem F.1, shows how to

design an Enode-then-EtM CT that preserves privay under hosen-plaintexts attaks.

Result 7.2 (Privay of Enode-then-EtM) To onstrut a Type n Enode-then-EtM sheme

CT from an enryption sheme SE and a MAC, one should use a Type n EtM enoding sheme

that respets the IV properties of SE. If all the omponents satisfy their respetive onsisteny

requirements and SE is ind-pa-seure, then CT will be a ryptographi transform that provably

provides privay under hosen-plaintext attaks (i.e., CT will be t-priv-pa-seure).

Integrity. We now show how to onstrut Enode-then-EtM ryptographi transforms meeting

the CT integrity goals. The following distills the results from Theorem F.2.

Result 7.3 (Integrity of Enode-then-EtM) To onstrut a Type n Enode-then-EtM sheme

CT from an enryption sheme SE and a MAC MA, one should use a Type n etm-sen-seure

EtM enoding sheme that respets the IV requirements of MA. If all the omponents satisfy

their respetive onsisteny requirements and MA is unforgeable (uf-seure), then CT will be a

ryptographi transform that provably meets the t-int-txtn integrity notion.

Observe that for an Enode-then-EtM CT, the base enryption sheme is not required to be length

preserving. As for the previous paradigms, it is not hard to �nd base omponents that satisfy the

requirements in the above guidelines.

8 Conlusions and Future Work

In this paper we formalize what it means for di�erent types of ryptographi transforms to be

seure, and we present guidelines for developers on how to build suh ryptographi transforms.

The analyses and reommendations are done in a general way, thereby allowing developers to ontrol

the spei�s of how to instantiate the reommendations.

Although our results enompass many of the ways developers might naturally onstrut ryp-

tographi transforms, we do note that there are some ways of onstruting CTs that annot be

modeled with any of the three paradigms Enode-then-fE&M, MtE, EtMg. Consider, for example,

a ryptographi transform that �rst MACs some string and then uses the MAC tag as the IV for

the underlying enryption sheme. Suh a onstrution falls outside of the three paradigms beause

it introdues additional interonnetions between the enryption and authentiation omponents.

We also do not onsider enryption shemes with hained initialization vetors sine doing so would

require feedbak from the the enryption omponent to the enoding omponent. Considering these

and other more advaned omposition methods is the topi of future researh.
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A Type 5 Cryptographi Transforms

Type 5 CTs are designed to ensure the in-order delivery of pakets. Unlike Type 4 CTs, bogus

pakets should be rejeted, but should not ause the CT deapsulation algorithm to rejet all future

(possibly legitimate) pakets.

In what follows we present the onsisteny requirements for Type 5 ryptographi transforms,

as well as the onsisteny requirements for Type 5 E&M, MtE, and EtM enoding shemes. The

notions of privay and integrity for Type 5 CTs are de�ned in Appendix B. The notions of seurity

for Type 5 enoding shemes are de�ned in Appendix C.

Consisteny requirements. For a Type 5 CT, CT = (KG;Enap;Deap), let (M

1

a

;M

1

s

); (M

2

a

;

M

2

s

); : : : denote a sequene of message pairs and C

1

; C

2

; : : : denote their enapsulation under Enap

and any key K. We require that if Deap

K

has not yet aepted any message (i.e., Deap

K

is in

its initial state or has always returned (?;?)), then Deap

K

(C

1

) = (M

1

a

;M

1

s

). For i � 1, if the

only pakets aepted by Deap

K

are C

1

; C

2

; : : : ; C

i

, in that order but with possibly some bad (and

rejeted) pakets in the sequene of messages given to Deap

K

, then Deap

K

(C

i+1

) = (M

i+1

a

;M

i+1

s

).
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Consisteny requirements for Type 5 E&M enoding shemes. We use the term alling

sequene to denote some sequene of alls to Deode[ABC℄ as they might appear in Constrution 5.1.

I.e., a alling sequene onsists of a all DeodeA(M

p

) for some M

p

and, if the response is not ?,

a all DeodeB(M

p

;M

e

) for some M

e

, and, if the response is not (?;?;?;?), a all to DeodeC.

We say that (M

p

;M

e

) is suessfully deoded if, in a alling sequene, the responses of the �rst two

deoding algorithms are not ? or (?;?;?;?), respetively, and DeodeC(>) is alled.

Assume that the deoding algorithms are always alled as per the alling sequene (e.g., a

DeodeB all is always followed by a DeodeC all unless DeodeB returns (?;?;?;?)). Fix i � 0

and assume that the only messages that have been suessfully deoded are (M

1

p

;M

1

e

); : : : ; (M

i

p

;M

i

e

),

and that they were deoded in order. We require that after invoking DeodeA(M

i+1

p

) followed by

DeodeB(M

i+1

p

;M

i+1

e

) and then DeodeC(>), the response to the �rst all isM

i+1

o

and the response

to the seond all is (M

i+1

a

;M

i+1

s

;M

i+1

n

;M

i+1

t

).

Consisteny requirements for Type 5 MtE enoding shemes. We use the term alling

sequene to refer to some sequene of alls to Deode[ABC℄ as they might appear in Constrution 6.1.

I.e., a alling sequene onsists of a all DeodeA(M

p

) and, if the response is not ?, either a all

DeodeC(?) �nalizing the alling sequene, or a all DeodeB(M

p

;M

e

) for some M

e

and, if the

response is not (?;?;?;?), a all to DeodeC. We say that (M

p

;M

e

) is suessfully deoded if,

in a alling sequene, the responses of deoding algorithms DeodeA and DeodeB are not ? or

(?;?;?;?), respetively, and DeodeC(?) is never alled.

Assume that the deoding algorithms are always alled in suessive alling sequenes. Fix i � 0

and assume that the only messages that have been suessfully deoded are (M

1

p

;M

1

e

); : : : ; (M

i

p

;M

i

e

),

and that they were deoded in order. We require that after invoking DeodeA(M

i+1

p

) followed by

DeodeB(M

i+1

p

;M

i+1

e

) and then DeodeC(>), the response to the �rst all isM

i+1

o

and the response

to the seond all is (M

i+1

a

;M

i+1

s

;M

i+1

n

;M

i+1

t

).

Consisteny requirements for Type 5 EtM enoding shemes. We use the term alling

sequene to refer to some sequene of alls to Deode[ABC℄ as they might appear in Constrution 7.1.

Note that they have exatly the same form as alling sequenes for Type 5 MtE enoding shemes.

We say that (M

p

;M

e

) is suessfully deoded if, in a alling sequene, the responses of deoding

algorithms DeodeA and DeodeB are not (?;?;?) or (?;?), respetively, and DeodeC(?) is

never alled.

Assume that the deoding algorithms are always alled in suessive alling sequenes. Fix i � 0

and assume that the only messages that have been suessfully deoded are (M

1

p

;M

1

e

); : : : ; (M

i

p

;M

i

e

),

and that they were deoded in order. We require that after invoking DeodeA(M

i+1

p

) followed by

DeodeB(M

i+1

p

;M

i+1

e

) and then DeodeC(>), the response to the �rst all is (M

i+1

o

;M

i+1

n

;M

i+1

t

)

and the response to the seond all is (M

i+1

a

;M

i+1

s

).

B Formal Notions of Seurity

We use a onrete seurity treatment in order to model shemes based on �nite objets suh as

blok iphers and ryptographi hash funtions. To an adversary attaking a given sheme we

assoiate a number, alled the advantage, that measures its suess in breaking the sheme with

respet to a partiular notion of seurity. Intuitively, the smaller the adversary's advantage against

a sheme, the stronger the sheme is with respet to that adversary. For eah of the seurity notions

we onsider here and in Appendix C, take \seure" to mean that the advantage (with respet to

that seurity notion) of any adversary with \reasonable" resoures is \small".
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Cryptographi transforms. In what follows we present hosen-plaintext privay and integrity

notions for ryptographi transforms. As noted in the body of this paper, if a Type n CT meets

the t-int-txtn integrity notion and the t-priv-pa notion, then it will also provably meet a very

strong notion of privay under hosen-iphertext attaks (the proof of this fat follows the proof of

a similar result for authentiated enryption shemes in [5℄). This means that it suÆes to onsider

the notions t-priv-pa and t-int-txtn. We do not disuss hosen-iphertext privay notions further.

Let CT = (KG;Enap;Deap) be a ryptographi transform with key spae KeySp

CT

, assoiated

data spae AdSp

CT

, and message spae MsgSp

CT

. For K 2 KeySp

CT

and b 2 f0; 1g, we denote

by Enap

K

(�;LR(�; �; b)) an orale that takes input M

a

2 AdSp

CT

and M

0

;M

1

2 MsgSp

CT

, and

returns Enap

K

(M

a

;M

b

) (i.e., the enapsulation of the assoiated data and either the left message

(b = 0) or the right message (b = 1)). In the tradition of [2℄, we all this orale a left-or-right (LR)

enapsulation orale. To de�ne privay of a ryptographi transform we onsider adversaries that

have aess to an LR enapsulation orale Enap

K

(�;LR(�; �; b)), for K returned by KG.

De�nition B.1 (Privay for ryptographi transforms) Let CT = (KG;Enap;Deap) be a

ryptographi transform and let b 2 f0; 1g. Let A be an adversary with aess to an LR enapsu-

lation orale Enap

K

(�;LR(�; �; b)). Assume A returns a bit. Consider the following experiment.

Experiment Exp

t-priv-pa-b

CT

(A)

K

R

 KG

Run A

Enap

K

(�;LR(�;�;b))

Reply to Enap

K

(M

a

;LR(M

0

;M

1

; b)) queries as follows:

C

R

 Enap

K

(M

a

;M

b

) ; A( C

Until A returns a bit d

Return d

We require that for all queries M

a

;M

0

;M

1

to Enap

K

(�;LR(�; �; b)), jM

0

j = jM

1

j. We de�ne the

t-priv-pa advantage of t-priv-pa adversary A as

Adv

t-priv-pa

CT

(A) = Pr

h

Exp

t-priv-pa-1

CT

(A) = 1

i

� Pr

h

Exp

t-priv-pa-0

CT

(A) = 1

i

:

De�nition B.2 (Integrity for ryptographi transforms) Let CT = (KG;Enap;Deap) be a

ryptographi transform. Let A

1

, A

2

, A

3

, A

4

, and A

5

be adversaries eah with aess to an enap-

sulation orale Enap

K

(�; �) and a deapsulation-veri�ation orale Deap

�

K

(�). The deapsulation-

veri�ation orale, on input C, invokes Deap

K

(C) and returns 1 if Deap

K

(C) 6= (?;?) and 0

otherwise. Consider the experiments de�ned below. Eah experiment returns 1 if the adversary

\wins" and 0 otherwise.

Experiment Exp

t-int-txt1

CT

(A

1

)

K

R

 KG ; S  ;

Run A

Enap

K

(�;�);Deap

�

K

(�)

1

Reply to Enap

K

(M

a

;M

s

) queries as follows:

C

R

 Enap

K

(M

a

;M

s

) ; S  S [ fCg ; A

1

( C

Reply to Deap

�

K

(C) queries as follows:

(M

a

;M

s

) Deap

K

(C)

If (M

a

;M

s

) 6= (?;?) and C 62 S then return 1 EndIf

If (M

a

;M

s

) 6= (?;?) then A

1

( 1

Else A

1

( 0 EndIf

Until A

1

halts
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Return 0

Experiment Exp

t-int-txt2

CT

(A

2

)

K

R

 KG ; S  ; ; S

0

 ;

Run A

Enap

K

(�;�);Deap

�

K

(�)

2

Reply to Enap

K

(M

a

;M

s

) queries as follows:

C

R

 Enap

K

(M

a

;M

s

) ; S  S [ fCg ; A

2

( C

Reply to Deap

�

K

(C) queries as follows:

(M

a

;M

s

) Deap

K

(C)

If (M

a

;M

s

) 6= (?;?) and (C =2 S or C 2 S

0

) then return 1 EndIf

If (M

a

;M

s

) 6= (?;?) then S

0

 S

0

[ fCg ; A

2

( 1

Else A

2

( 0 EndIf

Until A

2

halts

Return 0

Experiment Exp

t-int-txt3

CT

(A

3

)

K

R

 KG ; i 0 ; j  0

Run A

Enap

K

(�;�);Deap

�

K

(�)

3

Reply to Enap

K

(M

a

;M

s

) queries as follows:

i i+ 1 ; C

i

R

 Enap

K

(M

a

;M

s

) ; A

3

( C

i

Reply to Deap

�

K

(C) queries as follows:

(M

a

;M

s

) Deap

K

(C)

If (M

a

;M

s

) 6= (?;?) and C =2 fC

j+1

; : : : ; C

i

gthen return 1 EndIf

If (M

a

;M

s

) 6= (?;?) then j  index of C in fC

j+1

; : : : ; C

i

g ; A

3

( 1

Else A

3

( 0 EndIf

Until A

3

halts

Return 0

Experiment Exp

t-int-txt4

CT

(A

4

)

K

R

 KG ; i 0 ; j  0 ; phase 0

Run A

Enap

K

(�;�);Deap

�

K

(�)

4

Reply to Enap

K

(M

a

;M

s

) queries as follows:

i i+ 1 ; C

i

R

 Enap

K

(M

a

;M

s

) ; A

4

( C

i

Reply to Deap

�

K

(C) queries as follows:

j  j + 1 ; (M

a

;M

s

) Deap

K

(C)

If j > i or C 6= C

j

then phase 1 EndIf

If (M

a

;M

s

) 6= (?;?) and phase = 1 then return 1 EndIf

If (M

a

;M

s

) 6= (?;?) then A

4

( 1

Else A

4

( 0 EndIf

Until A

4

halts

Return 0

Experiment Exp

t-int-txt5

CT

(A

5

)

K

R

 KG ; i 0 ; j  0

Run A

Enap

K

(�;�);Deap

�

K

(�)

5

Reply to Enap

K

(M

a

;M

s

) queries as follows:

i i+ 1 ; C

i

R

 Enap

K

(M

a

;M

s

) ; A

5

( C

i

Reply to Deap

�

K

(C) queries as follows:

(M

a

;M

s

) Deap

K

(C)
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If (M

a

;M

s

) 6= (?;?) and (j + 1 > i or C 6= C

j+1

) then return 1 EndIf

If (M

a

;M

s

) 6= (?;?) then j  j + 1 ; A

5

( 1

Else A

5

( 0 EndIf

Until A

5

halts

Return 0

For n = 1; : : : ; 5, we de�ne the t-int-txtn advantage of t-int-txtn adversary A

n

as

Adv

t-int-txtn

CT

(A

n

) = Pr

�

Exp

t-int-txtn

CT

(A

n

) = 1

�

:

Privay for symmetri enryption shemes and MACs. We now desribe a notion of

hosen-plaintext privay for enryption shemes and MACs. Although the notion is most intuitive

when applied to enryption shemes, there are some situations where having a privay-preserving

MAC is useful.

To de�ne the privay of a symmetri enryption sheme or MAC SE = (K; E ;D), we give

an adversary aess to a left-or-right (LR) enryption (or tagging) orale E

K

(�;LR(�; �; b)), for

some unknown key K returned by K and a bit b. On input I;M

0

;M

1

, where I 2 IVSp

SE

and

M

0

;M

1

2 MsgSp

SE

, the orale returns E

I

K

(M

b

). The following notion of seurity extends the notion

of left-or-right-indistinguishability from [2℄ to enryption shemes that expliitly take a none or

IV as input.

De�nition B.3 (Privay for symmetri enryption and MAC shemes) Let SE = (K; E ;

D) be a symmetri enryption sheme or a message-authentiation sheme, and let b 2 f0; 1g. Let

A

pa

be an adversary with aess to a left-or-right enryption (or tagging) orale E

K

(�;LR(�; �; b)).

Assume A

pa

returns a bit. Consider the following experiment.

Experiment Exp

ind-pa-b

SE

(A

pa

)

K

R

 K

Run A

E

K

(�;LR(�;�;b))

pa

Reply to E

K

(I;LR(M

0

;M

1

; b)) queries as follows:

C

R

 E

I

K

(M

b

) ; A

pa

( C

Until A

pa

returns a bit d

Return d

We require that for all queries I;M

0

;M

1

to E

K

(�;LR(�; �; b)), jM

0

j = jM

1

j. We all the adversary

A

pa

none-respeting if it never queries its orale with the same none twie. We all the adversary

length-based IV-respeting if it hooses the �rst IV uniformly at random and independently and if

the subsequent IVs are omputed using the enryption sheme's length-based IV-deriving funtion.

We all the adversary random-IV-respeting if it only queries its orale with IVs hosen uniformly

at random and independently. (As noted in the body, we an onsider suh adversaries in our

redutions beause we an ontrol how the enoding algorithms generate the IVs.) We de�ne the

hosen-plaintext (ind-pa) advantage of ind-pa adversary A as

Adv

ind-pa

SE

(A

pa

) = Pr

h

Exp

ind-pa-1

SE

(A

pa

) = 1

i

� Pr

h

Exp

ind-pa-0

SE

(A

pa

) = 1

i

:

Intuitively, we say that the sheme SE preserves privay against none-respeting (resp., length-

based IV-respeting or random-IV-respeting) adversaries if the advantage of all none-respeting

(resp., length-based IV-respeting or random-IV-respeting) adversaries with reasonable resoures

is small.

26



De�nition B.4 (Privay for MACs under distint hosen-plaintexts.) LetMA = (K;T ;

V) be a message-authentiation sheme. Let b 2 f0; 1g. Let A be an adversary with aess to a

left-or-right tagging orale T

K

(�;LR(�; �; b)). Consider the following experiment.

Experiment Exp

ind-dpa-b

MA

(A)

K

R

 K

Run A

T

K

(�;LR(�;�;b))

Reply to T

K

(I;LR(M

0

;M

1

; b)) queries as follows:

C

R

 T

I

K

(M

b

) ; A( C

Until A returns a bit d

Return d

We require that for all queries I;M

0

;M

1

to the tagging orale, jM

0

j = jM

1

j. If I

i

;M

i

0

;M

i

1

is the i-th

orale query, we require that for all indies j; k, j 6= k, (I

j

;M

j

0

) 6= (I

k

;M

k

0

) and (I

j

;M

j

1

) 6= (I

k

;M

k

1

)

(i.e., all left queries are distint and all right queries are distint). We all the adversary A none-

respeting if it never queries its orale with the same none twie. We de�ne the distint-hosen-

plaintext (ind-dpa) advantage of ind-dpa adversary A as

Adv

ind-dpa

MA

(A) = Pr

h

Exp

ind-dpa-1

MA

(A) = 1

i

� Pr

h

Exp

ind-dpa-0

MA

(A) = 1

i

:

Intuitively, we say thatMA preserves distint-hosen-plaintext privay against (none-respeting)

adversaries if the advantage of all (none-respeting) adversaries with reasonable resoures is

small.

Unforgeability and pseudorandomness of MACs. We now speify the notions of unforge-

ability and pseudorandomness for MACs.

De�nition B.5 (Unforgeability of MACs) Let MA = (K;T ;V) be a message-authentiation

sheme. Let F be an adversary with aess to a tagging orale and a veri�ation orale. Consider

the experiment:

Experiment Exp

uf-ma

MA

(F )

K

R

 K ; S  ;

Run F

T

K

(�;�);V

K

(�;�;�)

Reply to T

K

(I;M) queries as follows:

�

R

 T

I

K

(M) ; S  S [ f(I;M; �)g ; F ( �

Reply to V

K

(I;M; �) queries as follows:

v  V

I

K

(M; �)

If v = 1 and (I;M; �) 62 S then return 1

F ( v

Until F halts

Return 0

We de�ne the uf advantage of the forger via

Adv

uf-ma

MA

(F ) = Pr

h

Exp

uf-ma

MA

(F ) = 1

i

:

De�nition B.6 (Pseudorandom funtions) Let F : f0; 1g

k

� M ! f0; 1g

L

be a family of

funtions from some message spae M to f0; 1g

L

, and let Rand

M!L

denote the family of all

funtions from M to f0; 1g

L

. Let D be an adversary with aess to an orale. Consider the

following experiment.
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Experiment Exp

prf-b

F

(D)

If b = 1 then K

R

 f0; 1g

k

; g  F

K

Else g

R

 Rand

M!L

EndIf

Run D

g

Reply to g(M) queries as follows:

D ( g(M)

Until D returns a bit d

Return d

We de�ne the prf advantage of prf adversary D as

Adv

prf

F

(D) = Pr

h

Exp

prf-1

F

(D) = 1

i

� Pr

h

Exp

prf-0

F

(D) = 1

i

:

Relationships between notions. As shown in [3℄, if a MAC is a seure PRF, then it is also

uf-seure. (When we say a MACMA = (K;T ;V) is a seure PRF, we mean that the MAC takes

no IVs (i.e., IVSp

MA

= f"g) and the family of funtions F = f T

K

("; �) : K 2 KeySp

MA

g is a

seure PRF.) We also omment that a number of popular MACs are proven to be seure PRFs.

Furthermore, as shown in [4℄, if a MAC is a seure PRF, then it also ind-dpa-seure. The reader

may ask why we even introdue the ind-dpa notion if most popular MACs are seure PRFs and

the PRF notion implies the ind-dpa notion. The reason is that in our analysis we want to fous

on the minimum properties neessary in order to ahieve our goals.

C Seurity Properties for Enoding Shemes

De�nition C.1 (Seurity of E&M- and MtE-enoding shemes) Consider an E&M or MtE

enoding sheme EC = (Enode;DeodeA;DeodeB;DeodeC). Let A

pa

be an adversary with aess

to an enoding orale Enode(�; �) and for n = 1; : : : ; 5, let A

n

be an adversary with aess to an

enoding orale and deoding orales DeodeA(�), DeodeB(�; �), DeodeC(�) (the adversary may need

aess to all deoding orales sine these may share state). Let (M

i

a

;M

i

s

) denote an adversary's

i-th enoding query and let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) denote the response for that query. Let (m

i

p

;m

i

e

)

denote A

n

's i-th DeodeB(�; �) query and let (m

i

a

;m

i

s

;m

i

n

;m

i

t

) denote the response for that query.

Consider the following experiments. (The experiments Exp

mte-sen

EC

(A

n

) for MtE are idential

to the Exp

e&m-sen

EC

(A

n

) experiments for E&M.)

Experiment Exp

e&m-oll

EC

(A

pa

)

Run A

Enode(�;�)

pa

and if it makes two queries (M

i

a

;M

i

s

) and (M

j

a

;M

j

s

) to Enode(�; �) suh that i 6= j and

(M

i

n

;M

i

t

) = (M

j

n

;M

j

t

)

then return 1 else return 0

Experiment Exp

e&m-se1

EC

(A

1

)

Run A

1

Enode(�;�);DeodeA(�);DeodeB(�;�);DeodeC(�)

and, if the following ours:

| A

1

makes a query (M

i

a

;M

i

s

) to Enode(�; �) and a query (m

j

p

;m

j

e

) to DeodeB(�; �) suh that

(M

i

p

;M

i

e

) 6= (m

j

p

;m

j

e

) and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

then return 1 else return 0

Experiment Exp

e&m-se2

EC

(A

2

)

Run A

2

Enode(�;�);DeodeA(�);DeodeB(�;�);DeodeC(�)

and, if one of the following ours:

| A

2

makes a query (M

i

a

;M

i

s

) to Enode(�; �) and a query (m

j

p

;m

j

e

) to DeodeB(�; �) suh that

(M

i

p

;M

i

e

) 6= (m

j

p

;m

j

e

) and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

| A

2

twie makes a query (m

j

p

;m

j

e

) to DeodeB(�; �), the next Deode[ABC℄ query following the �rst of
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these queries is a all DeodeC(>), and the response for the seond of these queries is not (?;?;?;?)

then return 1 else return 0

Experiment Exp

e&m-se3

EC

(A

3

)

Run A

3

Enode(�;�);DeodeA(�);DeodeB(�;�);DeodeC(�)

and, if one of the following ours:

| A

3

makes a query (M

i

a

;M

i

s

) to Enode(�; �) and a query (m

j

p

;m

j

e

) to DeodeB(�; �) suh that

(M

i

p

;M

i

e

) 6= (m

j

p

;m

j

e

) and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

| A

3

makes queries (m

j

p

;m

j

e

) and (m

j+l

p

;m

j+l

e

), l � 1, to DeodeB(�; �) suh that the next

Deode[ABC℄ query following the �rst of these queries is a all DeodeC(>), the response for the

seond of these queries is not (?;?;?;?), and for some i; k with k � i,(m

j

p

;m

j

e

) = (M

i

p

;M

i

e

) and

(m

j+l

p

;m

j+l

e

) = (M

k

p

;M

k

e

)

then return 1 else return 0

Experiment Exp

e&m-se4

EC

(A

4

)

Run A

4

Enode(�;�);DeodeA(�);DeodeB(�;�);DeodeC(�)

and, if one of the following ours:

| A

4

makes a query (M

i

a

;M

i

s

) to Enode(�; �) and a query (m

j

p

;m

j

e

) to DeodeB(�; �) suh that

i 6= j and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

| A

4

makes a query (M

j

a

;M

j

s

) to Enode(�; �) and a query (m

j

p

;m

j

e

) to DeodeB(�; �) suh that

(M

j

p

;M

j

e

) 6= (m

j

p

;m

j

e

) and (M

j

n

;M

j

t

) = (m

j

n

;m

j

t

)

then return 1 else return 0

Experiment Exp

e&m-se5

EC

(A

5

)

Run A

5

Enode(�;�);DeodeA(�);DeodeB(�;�);DeodeC(�)

and, if one of the following ours:

| A

5

makes a query (M

i

a

;M

i

s

) to Enode(�; �) and a query (m

j

p

;m

j

e

) to DeodeB(�; �) suh that

(M

i

n

;M

i

t

) = (m

j

n

;m

j

t

) and, prior to the j-th DeodeB(�; �) query, A

5

did not make exatly i� 1

DeodeB(�; �) queries that returned messages (i.e., not ?) and that were followed by DeodeC(>) alls

| A

5

makes a query (M

i

a

;M

i

s

) to Enode(�; �) and a query (m

j

p

;m

j

e

) to DeodeB(�; �) suh that

(M

i

p

;M

i

e

) 6= (m

j

p

;m

j

e

) and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

), and, prior to the j-th DeodeB(�; �) query, A

5

made

exatly i� 1 DeodeB(�; �) queries that returned messages (i.e., not ?) and that were followed by

DeodeC(>) alls

then return 1 else return 0

We de�ne the e&m-oll advantage of adversary A

pa

, and, for n = 1; : : : ; 5, the e&m-sen advantage

and the mte-sen advantage of adversary A

n

, respetively, as follows:

Adv

e&m-oll

EC

(A

pa

) = Pr

h

Exp

e&m-oll

EC

(A

pa

) = 1

i

Adv

e&m-sen

EC

(A

n

) = Pr

h

Exp

e&m-sen

EC

(A

n

) = 1

i

Adv

mte-sen

EC

(A

n

) = Pr

h

Exp

mte-sen

EC

(A

n

) = 1

i

:

De�nition C.2 (Seurity of EtM enoding shemes) Consider an EtM enoding sheme

EC = (Enode;DeodeA;DeodeB;DeodeC). For n = 1; : : : ; 5, let A

n

be an adversary with aess

to an enoding orale Enode(�; �) and deoding orales DeodeA(�), DeodeB(�; �), DeodeC(�) (the

adversary may need aess to all deoding orales sine these may share state). Let (M

i

a

;M

i

s

)

denote an adversary's i-th enoding query and let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) denote the response for

that query. Let m

i

p

denote A

n

's i-th DeodeA(�) query and let (m

i

o

;m

i

n

;m

i

t

) denote the response

for that query. Consider the following experiments.

Experiment Exp

etm-se1

EC

(A

1

)

Run A

1

Enode(�;�);DeodeA(�);DeodeB(�;�);DeodeC(�)

and, if the following ours:

| A

1

makes a query (M

i

a

;M

i

s

) to Enode(�; �) and a query m

j

p

to DeodeA(�) suh that

M

i

p

6= m

j

p

and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

then return 1 else return 0
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Experiment Exp

etm-se2

EC

(A

2

)

Run A

2

Enode(�;�);DeodeA(�);DeodeB(�;�);DeodeC(�)

and, if one of the following ours:

| A

2

makes a query (M

i

a

;M

i

s

) to Enode(�; �) and a query m

j

p

to DeodeA(�) suh that

M

i

p

6= m

j

p

and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

| A

2

twie makes a query (m

j

p

;m

j

e

) to DeodeB(�; �), the next Deode[ABC℄ query following the �rst of

these queries is a all DeodeC(>), and the response for the seond of these queries is not (?;?)

then return 1 else return 0

Experiment Exp

etm-se3

EC

(A

3

)

Run A

3

Enode(�;�);DeodeA(�);DeodeB(�;�);DeodeC(�)

and, if one of the following ours:

| A

3

makes a query (M

i

a

;M

i

s

) to Enode(�; �) and a query m

j

p

to DeodeA(�) suh that

M

i

p

6= m

j

p

and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

| A

3

makes queries (m

j

p

;m

j

e

) and (m

j+l

p

;m

j+l

e

), l � 1, to DeodeB(�; �) suh that the next

Deode[ABC℄ query following the �rst of these queries is a all DeodeC(>), the response for the

seond of these queries is not (?;?), and for some i; k with k � i, (m

j

p

;m

j

e

) = (M

i

p

;M

i

e

) and

(m

j+l

p

;m

j+l

e

) = (M

k

p

;M

k

e

)

then return 1 else return 0

Experiment Exp

etm-se4

EC

(A

4

)

Run A

4

Enode(�;�);DeodeA(�);DeodeB(�;�);DeodeC(�)

and, if one of the following ours:

| A

4

makes a query (M

i

a

;M

i

s

) to Enode(�; �) and a query m

j

p

to DeodeA(�) suh that

i 6= j and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

| A

4

makes a query (M

j

a

;M

j

s

) to Enode(�; �) and a query m

j

p

to DeodeA(�) suh that

M

j

p

6= m

j

p

and (M

j

n

;M

j

t

) = (m

j

n

;m

j

t

)

then return 1 else return 0

Experiment Exp

etm-se5

EC

(A

5

)

Run A

5

Enode(�;�);DeodeA(�);DeodeB(�;�);DeodeC(�)

and, if A

5

only invokes Deode[ABC℄ in legitimate EtM

alling sequenes (see Appendix A), and one of the following ours:

| A

5

makes a query (M

i

a

;M

i

s

) to Enode(�; �) and a query m

j

p

to DeodeA(�) suh that

(M

i

n

;M

i

t

) = (m

j

n

;m

j

t

) and, prior to the j-th DeodeA(�) query, A

5

did not make exatly i� 1

Deode[ABC℄ alling sequenes that ended in the all DeodeC(>)

| A

5

makes a query (M

i

a

;M

i

s

) to Enode(�; �) and a query m

j

p

to DeodeA(�) suh that

M

i

p

6= m

j

p

and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

), and, prior to the j-th DeodeA(�) query, A

5

made exatly ; i� 1

Deode[ABC℄ alling sequenes that ended in the all DeodeC(>)

then return 1 else return 0

For n = 1; : : : ; 5, we de�ne the etm-sen advantage of adversary A

n

as

Adv

etm-sen

EC

(A

n

) = Pr

h

Exp

etm-sen

EC

(A

n

) = 1

i

:

D Enode-then-E&M

Privay. The following is our privay result for Enode-then-E&M CTs. This theorem is inter-

preted in Result 5.2.

Theorem D.1 (Privay of Enode-then-E&M) Let SE, MA, and EC be an enryption, a

message authentiation, and an E&M enoding sheme, respetively. Let CT be the ryptographi

transform assoiated to them as per Constrution 5.1. Then, given any t-priv-pa adversary S

against CT, there exist adversaries A, B, D, and C suh that

Adv

t-priv-pa

CT

(S) � Adv

ind-pa

SE

(A) +Adv

ind-dpa

MA

(D) +

2 �Adv

e&m-oll

EC

(C)
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and

Adv

t-priv-pa

CT

(S) � Adv

ind-pa

SE

(A) +Adv

ind-pa

MA

(B) :

Furthermore, A;B;D; and C use the same resoures as S exept that A's, B's, and D's inputs

to their respetive orales may be of di�erent lengths than those of S (due to the enoding). If

EC is none-respeting-for-enryption (resp., length-based IV-respeting-for-enryption or random-

IV-respeting-for-enryption), then A will be none-respeting (resp., length-based IV-respeting

or random-IV-respeting). Similarly, if EC is none-respeting-for-MACing, then B and D will be

none-respeting.

The proof of Theorem D.1 is similar to the proof of Lemma 6.4 in [4℄ and is omitted here. Di�erenes

between Theorem D.1 and Lemma 6.4 in [4℄ inlude the following: we onsider ryptographi

transforms that take assoiated data; we allow SE to take nones, length-based IVs, or random-IVs

as input, andMA to take nones as input; in order for the hybrid argument to work, we use the

fat that we an reover the randomness from the output of EC's enoding funtion.

We remark that if the underlying MAC requires a none, then Adv

e&m-oll

EC

(C) = 0. We also

note that some MACs (e.g., Carter-Wegman MACs) are ind-pa- and ind-dpa-seure.

Integrity. We begin by formalizing a new property for Enode-then-E&M CTs. As with our

use of the ind-dpa notion, we use this seurity notion beause we feel it important to aurately

desribe the spei� properties we require from the CT. In most situations, however, one does not

atually need to manipulate this de�nition but must merely invoke Lemma D.3.

De�nition D.2 Fix n 2 f1; : : : ; 5g. Let SE , MA, and EC, respetively, be an enryption, a

message authentiation, and an E&M enoding sheme. Let CT = (KG;Enap;Deap) be a Type

n ryptographi transform assoiated to them as per Constrution 5.1. Let A be an adversary

with aess to an enapsulation orale Enap

K

(�; �) and a deapsulation orale Deap

K

(�). Let

(M

i

a

;M

i

s

) denote the adversary's i-th enapsulation orale query, (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) denote the

enoding of that query, and hM

i

p

; �

i

; �

i

i denote the returned iphertext. Let hm

i

p

; �

0

i

; �

0

i

i denote the

i-th deapsulation query (assuming it is parseable), and m

i

o

;m

i

n

;m

i

e

;m

i

t

;m

i

a

;m

i

s

denote the internal

values in the deapsulation proess (or ? if an error ours during deapsulation). A \wins" if it

makes a deapsulation query hm

j

p

; �

0

j

; �

0

j

i suh that (m

j

o

;m

j

e

) = (M

i

o

;M

i

e

) for some i 2 f1; : : : ; kg

but �

0

j

6= �

i

(where k is the number of Enap

K

(�; �) orale queries made by A before A's j-th

deapsulation query). We de�ne the e&m-sp advantage of e&m-sp adversary A as

Adv

e&m-sp

CT

(A) = Pr

h

K

R

 KG : A \wins"

i

:

The following lemma shows that if the underlying enryption sheme is length preserving (suh

as random-IV CBC mode as de�ned in the �rst example of a random IVed enryption sheme in

Setion 3), then an adversary annot win the game desribed in the above de�nition.

Lemma D.3 Fix n 2 f1; : : : ; 5g. Let SE , MA, and EC, respetively, be an enryption, a MAC,

and a Type n E&M enoding sheme. Let CT = (KG;Enap;Deap) be a Type n ryptographi

transform assoiated to them as per Constrution 5.1. Let A be an e&m-sp adversary. If SE 's

enryption operation is length-preserving, then

Adv

e&m-sp

CT

(A) = 0 :

Proof: If SE 's enryption operation is length-preserving, then given any IV I, the enryption

operation is bijetive. This means A an never win.

We an now state our integrity result for Enode-then-E&M onstrutions. This theorem is inter-

preted in Result 5.3.
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Theorem D.4 (Integrity of Enode-then-E&M) Fix n 2 f1; : : : ; 5g. Let SE , MA, and EC,

respetively, be an enryption, a MAC, and a Type n E&M enoding sheme. Let CT be a Type n

ryptographi transform assoiated to them as per Constrution 5.1. Then, given any t-int-txtn

adversary I against CT, there exist adversaries F , C, and S suh that

Adv

t-int-txtn

CT

(I) � Adv

uf-ma

MA

(F ) +Adv

e&m-sen

EC

(C) +

Adv

e&m-sp

CT

(S) :

Furthermore, F , C, and S use the same resoures as I exept that F 's messages to its orales

may be of di�erent lengths than I's queries to its orales (due to enoding) and C's messages to

its deoding orale may have slightly di�erent lengths than I's deapsulation queries. If EC is

none-respeting-for-MACing, then F will be none-respeting.

We remark that the proof of the above for Type 4 CTs is similar to the proof of Theorem 6.5 of [4℄

exept that we onsider ryptographi transforms that aept assoiated data. Let us now onsider

the proof for all types n 2 f1; : : : ; 5g.

Proof: Let F , C, and S be adversaries that run I and reply to I's orale queries using their own

orales. In more detail, F presents I with enapsulation and deapsulation-veri�ation orales ex-

atly as in Constrution 5.1 exept that F uses its own orales for handling tagging and veri�ation

portions of Constrution 5.1. Similarly, C runs I exatly as in Constrution 5.1 exept that it runs

all enoding and deoding operations through its own orales. In the ase of S, S simply passes all

of I's enapsulation and deapsulation queries to its (S's) own orales.

Let (M

i

a

;M

i

s

) denote I's i-th orale query, let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) denote the enoding of that

query, and let hM

i

p

; �

i

; �

i

i denote the returned iphertext. Additionally, let hm

i

p

; �

0

i

; �

0

i

i denote the

i-th deapsulation-veri�ation query (assuming it is parseable), m

i

o

;m

i

n

;m

i

e

;m

i

t

;m

i

a

;m

i

s

denote the

internal values in the deapsulation proess (or ? if an error ours during deapsulation). Let j

denote the index of I's (�rst) winning query and let k denote the number of enapsulation orale

queries performed at the time I wins.

Let E be the event that I wins. By partitioning the event E, we see that if I sueeds in forging,

then one of F , C, and S will also win their game.

For a Type 1 CT, let the event E be partitioned as follows:

E : I wins

E

1

: E ours and (m

j

p

;m

j

e

; �

0

j

) 2 f (M

i

p

;M

i

e

; �

i

) : 1 � i � k g // S wins

E

2

: E ours and (m

j

p

;m

j

e

; �

0

j

) 62 f (M

i

p

;M

i

e

; �

i

) : 1 � i � k g

E

2;1

: E

2

ours and (m

j

n

;m

j

t

; �

0

j

) 62 f (M

i

n

;M

i

t

; �

i

) : 1 � i � k g // F wins

E

2;2

: E

2

ours and (m

j

n

;m

j

t

; �

0

j

) 2 f (M

i

n

;M

i

t

; �

i

) : 1 � i � k g // C wins

The above partitioning shows that if the event E ours, then one of E

1

, E

2;1

, or E

2;2

must our.

Note that if E

1

ours then S wins its game. This is beause m

j

p

=M

i

p

(and therefore m

j

o

=M

i

o

by

onsisteny requirements on the enoding sheme) and �

0

j

= �

i

but �

0

j

6= �

i

(otherwise this would not

be a winning forgery for I). Consequently (m

j

o

;m

j

e

) = (M

i

o

;M

i

e

) but �

0

j

6= �

i

. Also, if E

2;1

ours,

then F forges. This is lear from the fat that F never queried its tagging orale with (m

j

n

;m

j

t

)

(or, if it did, the response wasn't �

0

j

). Lastly, if E

2;2

ours, then C wins its game. This is beause

we know that there is some index i suh that (m

j

n

;m

j

t

) = (M

i

n

;M

i

t

) but (m

j

p

;m

j

e

) 6= (M

i

p

;M

i

e

) (the

latter omes from the event E

2

). Together, this means that the probability that I wins is upper

32



bounded by the sum of the probabilities that C, F , and S win their respetive games. The theorem

follows for Type 1 CTs.

Let us now onsider the other types of ryptographi transforms. For Type 2 we partition E as

follows:

E : I wins

E

1

: E ours and (m

j

p

;m

j

e

; �

0

j

) 2 f (M

i

p

;M

i

e

; �

i

) : 1 � i � k g

E

1;1

: E

1

ours and there does not exist i suh that (m

j

p

; �

0

j

; �

0

j

) = (M

i

p

; �

i

; �

i

) // S wins

E

1;2

: E

1

ours and there exists i suh that (m

j

p

; �

0

j

; �

0

j

) = (M

i

p

; �

i

; �

i

) // C wins

E

2

: E ours and (m

j

p

;m

j

e

; �

0

j

) 62 f (M

i

p

;M

i

e

; �

i

) : 1 � i � k g

E

2;1

: E

2

ours and (m

j

n

;m

j

t

; �

0

j

) 62 f (M

i

n

;M

i

t

; �

i

) : 1 � i � k g // F wins

E

2;2

: E

2

ours and (m

j

n

;m

j

t

; �

0

j

) 2 f (M

i

n

;M

i

t

; �

i

) : 1 � i � k g // C wins

Above the partitioning of event E is the same as with Type 1 exept that we further partition

event E

1

. If the event E

1;1

ours then S wins (sine (m

j

o

;m

j

e

) = (M

i

o

;M

i

e

) for some index i but

�

0

j

6= �

i

). In the ase of E

1;2

, in order for I's j-th deapsulation query to be onsidered a forgery, it

must be a replayed paket. The �rst it would have been aepted (by the onsisteny requirements

on ryptographi transforms). This means that the DeodeB failed to return all ?s in response to

its seond query with m

j

p

;m

j

e

, allowing C to win.

For Type 3 we partition E as with Type 2. As with Type 2, when E

1;2

ours C will win its game

(although C's game with Type 3 enoding shemes is di�erent than its game with Type 2 enoding

shemes).

For Type 4 we partition E as follows:

E : I wins

E

1

: E ours and (m

j

n

;m

j

t

) 62 f(M

1

n

;M

1

t

); : : : ; (M

k

n

;M

k

t

)g // F wins

E

2

: E ours and (m

j

n

;m

j

t

) 2 f(M

1

n

;M

1

t

); : : : ; (M

k

n

;M

k

t

)g

E

2;1

: E

2

ours and either k < j or (m

j

p

;m

j

e

) 6= (M

j

p

;M

j

e

) // C wins

E

2;2

: E

2

ours and k � j and (m

j

p

;m

j

e

) = (M

j

p

;M

j

e

)

E

2;2;1

: E

2;2

ours and �

0

j

6= �

j

and (m

j

n

;m

j

t

) 62 f(M

1

n

;M

1

t

); : : : ; (M

j�1

n

;M

j�1

t

);

(M

j+1

n

;M

j+1

t

); : : : ; (M

k

n

;M

k

t

)g // F wins

E

2;2;2

: E

2;2

ours and �

0

j

6= �

j

and (m

j

n

;m

j

t

) 2 f(M

1

n

;M

1

t

); : : : ; (M

j�1

n

;M

j�1

t

);

(M

j+1

n

;M

j+1

t

); : : : ; (M

k

n

;M

k

t

)g // C wins

E

2;2;3

: E

2;2

ours and �

0

j

= �

j

. // S wins

If events E

1

or E

2;2;1

our then F wins its game; if events E

2;1

or E

2;2;2

our, then C wins its

game; if event E

2;2;3

ours, S wins its game. Note that, for E

2;2;3

, we make use of the fat that,

as per Constrution 5.1, one a forgery attempt is deteted, the deapsulation algorithm enters the

state ?. This means that prior to the �rst forgery attempt all the deapsulation-veri�ation queries

were in order and, sine I's j-th deapsulation-veri�ation orale query is a forgery, it must be the

ase that �

0

j

6= �

j

. (Note that, for Type 4 onstrutions, if the onstrution didn't enter a halting

state we ould not guarantee that �

0

j

6= �

j

.) Additionally, by the onsisteny requirements on the

enoding sheme, m

j

o

=M

j

o

.

Let us now onsider Type 5. As before, let j denote the index of I's winning deapsulation-

veri�ation-orale query. Let l be the number of deapsulation-veri�ation orale queries (inluding
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the j-th query) that sueeded in deapsulating (i.e., not returning (?;?)). We now partition E

as follows:

E : I wins

E

1

: E ours and (m

j

n

;m

j

t

) 62 f(M

1

n

;M

1

t

); : : : ; (M

k

n

;M

k

t

)g // F wins

E

2

: E ours and (m

j

n

;m

j

t

) 2 f(M

1

n

;M

1

t

); : : : ; (M

k

n

;M

k

t

)g

E

2;1

: E

2

ours and either k < l or (m

j

p

;m

j

e

) 6= (M

l

p

;M

l

e

) // C wins

E

2;2

: E

2

ours and k � l and (m

j

p

;m

j

e

) = (M

l

p

;M

l

e

)

E

2;2;1

: E

2;2

ours and �

0

j

6= �

l

and (m

j

n

;m

j

t

) 62 f(M

1

n

;M

1

t

); : : : ; (M

l�1

n

;M

l�1

t

);

(M

l+1

n

;M

l+1

t

); : : : ; (M

k

n

;M

k

t

)g // F wins

E

2;2;2

: E

2;2

ours and �

0

j

6= �

l

and (m

j

n

;m

j

t

) 2 f(M

1

n

;M

1

t

); : : : ; (M

l�1

n

;M

l�1

t

);

(M

l+1

n

;M

l+1

t

); : : : ; (M

k

n

;M

k

t

)g // C wins

E

2;2;3

: E

2;2

ours and �

0

j

= �

l

. // S wins

If events E

1

or E

2;2;1

our then F wins its game. Furthermore, if events E

2;1

or E

2;2;2

our, then

C wins its game. And if event E

2;2;3

ours, S wins its game. To see that S wins when E

2;2;3

ours, we use the onsisteny requirement on Type 5 enoding shemes that tell us that m

j

o

=M

l

o

.

Furthermore, it must be the ase that �

0

j

6= �

l

sine otherwise the j-th deapsulation-veri�ation

query would not be a forgery.

E Enode-then-MtE

Privay. We now state out result for Enode-then-MtE onstrutions. This theorem is interpreted

in Result 6.2.

Theorem E.1 (Privay of Enode-then-MtE) Let SE , MA, and EC, respetively, be an en-

ryption, a message authentiation, and an MtE enoding sheme. Let CT be the ryptographi

transform assoiated to them as per Constrution 6.1. Then, given any t-priv-pa adversary S

against CT, there exists an adversary A suh that

Adv

t-priv-pa

CT

(S) � Adv

ind-pa

SE

(A) :

Furthermore, A use the same resoures as S exept that its input to its orale may be of di�erent

lengths than those of S (due to the enoding). If EC is none-respeting-for-enryption (resp.,

length-based IV-respeting-for-enryption or random-IV-respeting-for-enryption), then A will be

none-respeting (resp., length-based IV-respeting or random-IV-respeting).

The proof is similar to that of Theorem 4.5 in [5℄ and is omitted here. We remark that the proof

relies on the fat that M

p

is independent of the ontent of the messages and that, when run with

the same random tape, the M

o

values will also be the same. (These are onsisteny requirements

for MtE enoding shemes spei�ed in Setion 6.)

Integrity. We begin by formalizing a new property for Enode-then-MtE CTs, analogous to the

e&m-sp property for Enode-then-E&M CTs. In most situations, one does not atually need to

manipulate this de�nition but must merely invoke Lemma E.3.

De�nition E.2 Fix n 2 f1; : : : ; 5g. Let SE , MA, and EC, respetively, be an enryption, a

message authentiation, and an MtE enoding sheme. Let CT = (KG;Enap;Deap) be a Type n

ryptographi transform assoiated to them as per Constrution 6.1. Let A be an adversary with

aess to an enapsulation orale Enap

K

(�; �) and a deapsulation orale Deap

K

(�). Let (M

i

a

;M

i

s

)
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denote the adversary's i-th enapsulation orale query, (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) denote the enoding

of that query, �

i

denote the intermediate tag, and hM

i

p

; �

i

i denote the returned iphertext. Let

hm

i

p

; �

0

i

i denote the i-th deapsulation query (assuming it is parseable), �

0

i

denote the intermediate

tag, and m

i

o

;m

i

n

;m

i

e

;m

i

t

;m

i

a

;m

i

s

denote the internal values in the deapsulation proess (or ? if

an error ours during deapsulation). A \wins" if it makes a deapsulation query hm

j

p

; �

0

j

i suh

that (m

j

o

;m

j

e

; �

0

j

) = (M

i

o

;M

i

e

; �

i

) for some i 2 f1; : : : ; kg but �

0

j

6= �

i

(where k is the number of

Enap

K

(�; �) orale queries made by A before A's j-th deapsulation query). We de�ne the mte-sp

advantage of mte-sp adversary A as

Adv

mte-sp

CT

(A) = Pr

h

K

R

 KG : A \wins"

i

:

As in Appendix D, we present a lemma showing that if the underlying enryption sheme is length

preserving, then an adversary annot win the game desribed above.

Lemma E.3 Fix n 2 f1; : : : ; 5g. Let SE , MA, and EC, respetively, be an enryption, a MAC,

and a Type n MtE enoding sheme. Let CT = (KG;Enap;Deap) be a Type n ryptographi

transform assoiated to them as per Constrution 6.1. Let A be an mte-sp adversary. If SE 's

enryption operation is length-preserving, then

Adv

mte-sp

CT

(A) = 0 :

We now state our integrity result for Enode-then-MtE onstrutions, whih is interpreted in

Result 6.3.

Theorem E.4 (Integrity of Enode-then-MtE) Let SE , MA, and EC, respetively, be an

enryption, a message authentiation, and an MtE enoding sheme. Let CT be a Type n ryp-

tographi transform assoiated to them as per Constrution 6.1. Then, given any t-int-txtn

adversary I against CT, there exist adversaries F , C, and S suh that

Adv

t-int-txtn

CT

(I) � Adv

uf-ma

MA

(F ) +Adv

mte-sen

EC

(C) +

Adv

mte-sp

CT

(S) :

Furthermore, F , C, and S use the same resoures as I exept that F 's messages to its orales

may be of di�erent lengths than I's queries to its orales (due to enoding) and C's messages to

its deoding orale may have slightly di�erent lengths than I's deapsulation queries. If EC is

none-respeting-for-MACing, then F will be none-respeting.

Proof: The proof is based on the proof of Theorem D.4 for Enode-then-E&M onstrutions. The

partitioning of event E for Type 2 and Type 3 di�ers slightly from the partitioning we used in the

proof of Theorem D.4. The di�erene is beause in the Enode-then-MtE onstrution the tag is

not sent in the lear. The revised partitioning is as follows:

E : I wins

E

1

: E ours and (m

j

p

;m

j

e

; �

0

j

) 2 f (M

i

p

;M

i

e

; �

i

) : 1 � i � k g

E

1;1

: E

1

ours and there does not exist i suh that (m

j

p

; �

0

j

) = (M

i

p

; �

i

) // S wins

E

1;2

: E

1

ours and there exists i suh that (m

j

p

; �

0

j

) = (M

i

p

; �

i

) // C wins

E

2

: E ours and (m

j

p

;m

j

e

; �

0

j

) 62 f (M

i

p

;M

i

e

; �

i

) : 1 � i � k g

E

2;1

: E

2

ours and (m

j

n

;m

j

t

; �

0

j

) 62 f (M

i

n

;M

i

t

; �

i

) : 1 � i � k g // F wins

E

2;1

: E

2

ours and (m

j

n

;m

j

t

; �

0

j

) 2 f (M

i

n

;M

i

t

; �

i

) : 1 � i � k g // C wins
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The partitioning of E for Type 1, Type 4, and Type 5 is the same as in the proof of Theorem D.4.

F Enode-then-EtM

Privay. We now state our result for Enode-then-EtM onstrutions. This theorem is interpreted

in Result 7.2.

Theorem F.1 (Privay of Enode-then-EtM) Let SE , MA, and EC, respetively, be an en-

ryption, a message authentiation, and an EtM enoding sheme. Let CT be the ryptographi

transform assoiated to them as per Constrution 7.1. Then, given any t-priv-pa adversary S

against CT, there exists an adversary A suh that

Adv

t-priv-pa

CT

(S) � Adv

ind-pa

SE

(A) :

Furthermore, A use the same resoures as S exept that its inputs to its orale may be of di�erent

lengths than those of S (due to the enoding). If EC is none-respeting-for-enryption (resp.,

length-based IV-respeting-for-enryption or random-IV-respeting-for-enryption), then A will be

none-respeting (resp., length-based IV-respeting or random-IV-respeting).

The proof is similar to that of Theorem 4.7 in [5℄. We note that the proof relies on the fat that if the

enoding algorithm is run using the same random tape, on two pairs of messages (M

a

;M

s

); (M

a

; N

s

)

suh that jM

s

j = jN

s

j, then the resulting values for M

p

, M

o

, M

n

and M

t

will be the same. (These

are onsisteny requirements for EtM enoding shemes spei�ed in Setion 7.)

Integrity. Our integrity results for Enode-then-EtM CTs is presented below. This theorem is

interpreted in Result 7.3.

Theorem F.2 (Integrity of Enode-then-EtM) Fix n 2 f1; : : : ; 5g. Let SE , MA, and EC,

respetively, be an enryption, a message authentiation, and an EtM enoding sheme. Let CT

be a Type n ryptographi transform assoiated to them as per Constrution 7.1. Then, given any

t-int-txtn adversary I against CT, there exist adversaries F and C suh that

Adv

t-int-txtn

CT

(I) � Adv

uf-ma

MA

(F ) +Adv

etm-sen

EC

(C):

Furthermore, F and C use the same resoures as I exept that F 's messages to its orales may

be of di�erent lengths than I's queries to its orales (due to enoding) and C's messages to its

deoding orale may have slightly di�erent lengths than I's deapsulation queries. If EC is none-

respeting-for-MACing, then F will be none-respeting.

Proof: The proof is similar to that of Theorem D.4 and Theorem E.4.

Let F and C be adversaries that run I and reply to I's orale queries using their own orales.

Let (M

i

a

;M

i

s

) denote I's i-th enapsulation query, let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) denote the enoding

of that query, and let hM

i

p

; �

i

; �

i

i denote the returned iphertext. Let hm

i

p

; �

0

i

; �

0

i

i denote the i-th

deapsulation-veri�ation query (assuming it an be parsed), and m

i

o

;m

i

n

;m

i

t

;m

i

e

;m

i

a

;m

i

s

denote

the internal values in the deapsulation proess (or ? if an error ours during deapsulation).

Assume that I wins and let j denote the index of its (�rst) winning deapsulation-veri�ation

query and k denote the number of enapsulation queries performed at the time I wins. We will

prove that either F or C also wins its game.

For Type 1, Type 2, Type 3, and Type 5 CTs, we onsider the following events:
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E : I wins

E

1

: E ours and (m

j

n

;m

j

t

; �

0

j

; �

0

j

) 62 f (M

i

n

;M

i

t

; �

i

; �

i

) : 1 � i � k g // F wins

E

2

: E ours and (m

j

n

;m

j

t

; �

0

j

; �

0

j

) 2 f (M

i

n

;M

i

t

; �

i

; �

i

) : 1 � i � k g // C wins

Note that if event E ours then either E

1

or E

2

must our. Event E

1

implies that the query

m

j

n

; hm

j

t

; �

0

j

i; �

0

j

is aepted by the veri�ation orale (otherwise hm

j

p

; �

0

j

; �

0

j

i would not be a winning

query for I) and is suh that �

0

j

was never returned by the tagging orale as an answer to query

m

j

n

; hm

j

t

; �

0

j

i. Therefore, if E

1

ours then F forges.

Assume that event E

2

ours. Then there exists an index i � k suh that (m

j

n

;m

j

t

; �

0

j

; �

0

j

) =

(M

i

n

;M

i

t

; �

i

; �

i

). For Type 1 CTs, it must be the ase that m

j

p

6= M

i

p

(otherwise hm

j

p

; �

0

j

; �

0

j

i would

not be a winning query for I). Sine M

i

p

6= m

j

p

and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

), C wins. For Type 2

and Type 3 CTs, C also wins if m

j

p

6= M

i

p

. If m

j

p

= M

i

p

then for Type 2 CTs, it must be the ase

that hm

j

p

; �

0

j

; �

0

j

i is a replayed paket (otherwise this would not be a winning query for I). The

onsisteny requirements for the enoding sheme and the enryption sheme, imply that (m

j

p

;m

j

e

)

was deoded orretly (i.e., without returning (?;?)) twie. Therefore, C also wins in this ase.

For Type 3 CTs, m

j

p

=M

i

p

implies that hm

j

p

; �

0

j

; �

0

j

i is a replayed or out-of-order paket (otherwise

this would not be a winning query for I). Again, the onsisteny requirements for the enoding

sheme and the enryption sheme, imply that C wins. For Type 4 CTs, it must be the ase that

either i 6= j or m

j

p

6= M

j

p

(if i = j and m

j

p

= M

j

p

, then j � k and hm

j

p

; �

0

j

; �

0

j

i = hM

j

p

; �

j

; �

j

i,

whih ontradits the assumption that hm

j

p

; �

0

j

; �

0

j

i is a winning query for I). In both of these ases

C wins. Finally, for Type 5 CTs, let l be the number of deapsulation-veri�ation orale queries

prior to the j-th one that sueeded in deapsulating (i.e., did not return (?;?)). Then it must

be the ase that either l 6= i � 1 or m

j

p

6= M

i

p

(if l = i � 1 and m

j

p

= M

i

p

, then l + 1 � k and

hm

j

p

; �

0

j

; �

0

j

i = hM

l+1

p

; �

l+1

; �

l+1

i, ontraditing the assumption that hm

j

p

; �

0

j

; �

0

j

i is a winning query

for I). In both of these ases C wins. Hene for all CT types, E

2

implies that C wins.
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