
Building Se
ure Cryptographi
 Transforms, or How to

En
rypt and MAC

Tadayoshi Kohno

�

Adriana Pala
io

y

John Bla
k

z

August 28, 2003

Abstra
t

We des
ribe several notions of \
ryptographi
 transforms," symmetri
 s
hemes designed to

meet a variety of priva
y and authenti
ity goals. We
onsider goals, su
h as replay-avoidan
e

and in-order pa
ket delivery, that have not been fully addressed in previous works in this area.

We then provide an analysis of possible ways to
ombine standard en
ryption and message

authenti
ation s
hemes in order to provably meet these goals. Our results further narrow the

gap between the provable-se
urity results from the theoreti
al
ommunity and the needs of

developers who implement real systems.

Keywords: Applied
ryptography,
ryptographi
 transforms, authenti
ated en
ryption, priva
y,

authenti
ity, se
urity proofs.

�

Dept. of Computer S
ien
e & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,

California 92093, USA. E-mail: tkohno�
s.u
sd.edu. URL: http://www-
se.u
sd.edu/users/tkohno. Supported

by a National Defense S
ien
e and Engineering Graduate Fellowship.

y

Dept. of Computer S
ien
e & Engineering, University of California at San Diego, 9500 Gilman Drive, La

Jolla, California 92093, USA. E-mail: apala
io�
s.u
sd.edu. URL: http://www-
se.u
sd.edu/users/apala
io.

Supported by a National S
ien
e Foundation Graduate Resear
h Fellowship.

z

Computer S
ien
e 430 UCB, University of Colorado at Boulder, Boulder, Colorado 80309-0430, USA. E-mail:

jrbla
k�
s.
olorado.edu. URL: http://www.
s.
olorado.edu/~jrbla
k. Supported by NSF CAREER award

CCR-0133985 and start-up funds from the University of Colorado at Boulder.

1

1 Introdu
tion

Symmetri

ryptosystems are generally designed to prote
t both the priva
y and the authenti
ity

of transmitted data. The traditional approa
h for
onstru
ting su
h
ryptosystems has been ad

ho
, meaning without formal justi�
ation or proofs of se
urity. Unfortunately, su
h ad ho
 analyses

are highly error-prone, as eviden
ed by the fa
t that some natural ways of
ombining standard

(priva
y-only) en
ryption s
hemes with standard message authenti
ation s
hemes (MACs) are a
-

tually inse
ure (e.g., see [5, 18℄). This raises the question: how
an one
onstru
t symmetri

ryptosystems that provably provide some form of priva
y and authenti
ity?

Katz and Yung [16℄, Bellare and Namprempre [5℄, and Kraw
zyk [18℄ were the �rst to
onsider

this question. They introdu
ed formal notions of se
urity for priva
y- and authenti
ity-providing

symmetri

onstru
ts (aka unforgeable en
ryption or authenti
ated en
ryption s
hemes). They then

onsidered ways of
onstru
ting authenti
ated en
ryption s
hemes that provably met their notions

of se
urity.

While these and subsequent works took important steps to address the needs of those imple-

menting
ryptographi
 appli
ations, there still remains a gap between what the theory
ommunity

has proven and what implementors need. For example, the formal notions of se
urity
onsidered

in these works do not
apture se
urity requirements that many developers have for the symmetri

ryptographi
 portions of their appli
ations, in
luding resistan
e to replay or out-of-order deliv-

ery atta
ks. Also, in the
ase of the works that
onsider ways of
ombining standard en
ryption

s
hemes with standard MACs [5, 18, 4, 20℄, there are a number of natural
onstru
tions that fall

outside of the proposed models. These observations suggest that developers wishing to design new

priva
y- and authenti
ity-providing symmetri

ryptosystems have to fall ba
k on ad ho
 analyses,

prove the se
urity of their
onstru
tions themselves, or design within the
onstraints of previous

results.

We address these
on
erns as follows. First, we introdu
e new formal notions of se
urity
aptur-

ing
ommon implementation goals. Then we perform an analysis of many natural ways to
ombine

standard en
ryption s
hemes and MACs. Be
ause of the generality of our results, we believe that

they will be useful to many developers, who will no longer have to argue the se
urity of their

onstru
tions themselves or work within the
on�nes of previous provable-se
urity results.

Modeling symmetri

ryptosystems. We use the term
ryptographi
 transform (CT) to refer

to the portion of a
ryptographi
 appli
ation that takes appli
ation data and turns it into an

outgoing pa
ket with the intent of prote
ting the priva
y of a designated portion of the data, and

the authenti
ity of all of the data. The di�eren
e between a CT and a more traditional authenti
ated

en
ryption s
heme is that the latter is essentially a low-level, appli
ation-independent
ryptographi

primitive, whereas a CT
an be appli
ation-dependent. For example, an appli
ation's CT might

prepro
ess data in some data- or appli
ation-dependent way. And a CT might try to enfor
e some

se
urity poli
ies (e.g., replay dete
tion) that are beyond the s
ope of authenti
ated en
ryption

s
hemes.

Fo
using on
ommon design goals, we identify �ve
lasses of CTs. For four of them, we formalize

new notions of se
urity. The �rst type of CT is essentially an authenti
ated en
ryption s
heme

designed to authenti
ate more data than it en
rypts; for this type we adopt a variant of the se
urity

notions in [20℄. The se
ond type is designed to prote
t against replay atta
ks. The third type is

designed to prote
t against replay and re-ordering atta
ks. For these three types, pa
kets are

allowed to be dropped. The fourth and �fth types are designed to ensure that pa
kets are a

epted

in exa
tly the order in whi
h they were generated. For the fourth type, no pa
ket should be a

epted

after dete
ting a forgery attempt. For the �fth type, a

eptan
e of legitimate pa
kets should not

be a�e
ted by forgery attempts. A variant of the fourth type was
onsidered in [4℄. We use the

2

labels Type 1{Type 5 to refer to these di�erent types of CTs. Sin
e we believe that the �rst four

types will be the most useful in appli
ations, we defer dis
ussion of Type 5 CTs to the appendi
es.

Building
ryptographi
 transforms. After de�ning the �ve types of CTs, we
onsider the

problem of designing CTs that provably satisfy the
orresponding notions of se
urity. We fo
us

on
onstru
ting CTs that use as their underlying building blo
ks standard en
ryption s
hemes and

standard MACs.

1

There are essentially three approa
hes (or paradigms) for
onstru
ting CTs from en
ryption

s
hemes and MACs. Ea
h approa
h begins by prepro
essing the input in some possibly appli
ation-

dependent way. Then the approa
h either (1) runs the en
ryption and MAC algorithms in parallel

on the prepro
essed data, (2) runs the MAC algorithm on the prepro
essed data, and then runs the

en
ryption algorithm on the prepro
essed data and the output of the MAC, or (3) runs the en
ryp-

tion algorithm on the prepro
essed data, and then runs the MAC algorithm on the prepro
essed

data and the output of the en
ryption algorithm.

The se
urity of the CT depends in part on the initial prepro
essing step. In order to be as

general as possible, we adopt the approa
h of [6, 4℄ and view the prepro
essing step as an en
oding

s
heme. We spe
ify se
urity properties for these en
oding s
hemes that, if met, guarantee that a

transform built using them, in
ombination with se
ure en
ryption and MAC s
hemes, will provably

meet one of our notions of a se
ure CT. By presenting our results in terms of the se
urity properties

of en
oding s
hemes, and not for spe
i�
 prepro
essing algorithms, we give developers the freedom

to implement the prepro
essing step any way they want, as long as the properties we spe
ify are

satis�ed.

Sin
e we
onsider three approa
hes and �ve CT types, for a total of 15
ombinations, it is

impra
ti
al to summarize all our results here. Instead, we informally dis
uss an example that

illustrates the generality of our provable-se
urity results. Consider a CT that uses CBC mode as

its underlying en
ryption s
heme and UMAC as its underlying MAC. LetM be the payload message

for the CT and let H be some �xed-length header or
ontrol information. The CT is designed to

prote
t the priva
y of M and the integrity of both M and H. It �rst generates a random CBC

mode IV I and a UMAC non
e N . It MACs the message IkHkM , where k denotes
on
atenation,

using the non
e N , to get some tag � . Then it en
rypts Mk� in CBC mode, using the IV I, to

get some intermediate value � (we assume that Mk� is a multiple of the underlying blo
k
ipher's

blo
k length). Finally, the CT outputs NkIkHk�. This message is sent to the re
eiver, who
an

re
over M and H the natural way. The re
eiver reje
ts pa
kets with MAC veri�
ation failures or

with repeated non
e values. Assuming that the blo
k
ipher used in CBC mode is se
ure and that

UMAC is se
ure, this CT will provably be a se
ure Type 2 CT. We remark that the provable-se
urity

of this CT does not follow from previous results.

Helping developers. Sin
e we address requirements and goals of real-world systems, and our

analyses are performed in a very general way, we believe that our results will be parti
ularly valuable

to developers who want to design new (or analyze existing) CTs.

Related work. Katz and Yung [16℄ and Bellare and Namprempre [5℄ formalized the notion of an

authenti
ated en
ryption s
heme. The latter and Kraw
zyk [18℄ explored the three basi
 paradigms

for
reating su
h s
hemes: En
rypt-and-MAC (E&M), MAC-then-En
rypt (MtE), and En
rypt-

then-MAC (EtM). The paradigms we
onsider,
alled En
ode-then-fE&M, MtE, EtMg, are natural

1

We note that it is also possible to design a CT that uses as its underlying
omponent an authenti
ated en
ryption

s
heme. The main reason we do not
onsider CTs that are built this way is that, sin
e
urrently all dedi
ated

authenti
ated en
ryption modes are either
overed by patents or have
omparable software speeds to the
ombination

of standard en
ryption s
hemes and standard MACs, and be
ause of the
exibility gained with using standard

en
ryption s
hemes and MACs as bla
k boxes, a signi�
ant population of developers will likely use su
h CTs in their

appli
ations.

3

extensions of these paradigms, appropriately modi�ed to use en
oding s
hemes. Unfortunately, the

resear
h results in [5, 18℄ do not apply to many real-world CTs sin
e many su
h CTs are not basi

E&M, MtE, or EtM
onstru
tions.

Bellare, Kohno and Namprempre [4℄, noting that the SSH proto
ol was not one of the basi

E&M, MtE, or EtM
onstru
tions, analyzed that proto
ol dire
tly. They formalized a notion similar

to, but slightly less general than, our notion of a Type 4 CT. The main di�eren
e is that our Type 4

notion spe
i�
ally addresses the \asso
iated-data problem" (see the next paragraph). The authors

also analyzed a variant (again less general) of our En
ode-then-E&M paradigm with respe
t to

meeting this Type 4-like notion.

Rogaway [20℄ introdu
ed the notion of authenti
ated-en
ryption with asso
iated-data (AEAD)

to address the problem that symmetri

ryptosystems must often authenti
ate more data than they

en
rypt. Our notion of a Type 1
ryptographi
 transform essentially
orresponds to the AEAD

notion. Rogaway
onsidered methods in whi
h one
an
ombine some priva
y
omponent with

some MAC
omponent to
reate an AEAD s
heme. However, he dis
ussed only two of the three

basi
 approa
hes for
ombining these
omponents, and only in the
ontext of a
hieving the AEAD

goal. Furthermore, he made more restri
tive requirements on the underlying
omponents than we

do. For example, standard en
ryption s
hemes, whi
h do not take non
es as input,
annot be used

as Rogaway's underlying priva
y
omponent, and in some
ases we (unlike Rogaway) allow the use

of MACs that are not pseudorandom fun
tions (e.g., traditional Carter-Wegman MACs).

The idea of using en
odings to
apture and model the important properties of some sub-

omponent of a larger s
heme
omes from [6℄ and was also used in [4℄.

In [10℄ Dodis and An
onsider methods of
onstru
ting authenti
ated en
ryption s
hemes
apa-

ble of en
apsulating long messages from authenti
ated en
ryption s
hemes
apable only of en
ap-

sulating short messages.

There is a parallel resear
h program exploring the
onstru
tion of authenti
ated en
ryption

s
hemes dire
tly from blo
k
iphers, rather than from existing en
ryption s
hemes and MACs

(e.g., [16, 12, 15, 21, 7, 17℄). Another resear
h program investigates the
onstru
tion of authenti-

ated en
ryption primitives (e.g., [11, 13, 1℄).

Overview. Our models of
ryptographi
 transforms are presented in Se
tion 2. We dis
uss the

underlying building blo
ks (en
ryption s
hemes and MACs) with whi
h se
ure CTs
an be built in

Se
tion 3. Se
tion 4 des
ribes our approa
h for generalizing the three basi
 methods for
reating

ryptographi
 transforms and, in parti
ular, our use of en
oding s
hemes. The three paradigms

(En
ode-then-fE&M, MtE, EtMg) and our results for ea
h of them are dis
ussed in Se
tions 5, 6,

and 7, respe
tively. We present
on
lusions and dis
ussion of future work in Se
tion 8.

In order to
onserve spa
e, we defer some of our formal de�nitions and theorem statements to

the appendi
es. The details we defer are not
riti
al to the understanding of the body of this paper.

2 Cryptographi
 Transforms

A
ryptographi
 transform (CT) takes a user's or appli
ation's (priva
y-
riti
al) payload data and

some (non-private) asso
iated data and transforms the input in su
h a way as to ensure the priva
y

of the payload data and the integrity

2

of both the payload data and the asso
iated data. An

example
ryptographi
 transform is shown in Figure 1. Note that the CT itself may load payload

data into pa
kets, add sequen
e numbers, et
.

In order to ensure the
orre
t interpretation of our results, we must �rst de�ne what we mean

(from an API perspe
tive) by a
ryptographi
 transform. Then we des
ribe our se
urity notions.

2

We use the terms integrity and authenti
ity inter
hangeably.

4

payloadpayloadpld len

ad len

pdl padding

tr

asso
iated data

payload

asso
iated data

PREPROCESS

iphertext �

tag �

ENCRYPT MAC

asso
iated dataad len

en
apsulated pa
ket

Figure 1: An example
ryptographi
 transform (similar to the SSH CT but with asso
iated data). Note the

additional data added by the prepro
essing step, the fa
t that the
ounter is not in
luded in the en
apsulated

pa
ket, and the fa
t that some data is MACed but not en
rypted.

Preliminaries. If x and y are strings, then jxj denotes the length of x in bits and xky denotes their

on
atenation. The empty string is denoted ". If a

1

; : : : ; a

m

are strings, then ha

1

; : : : ; a

m

i denotes

an inje
tive en
oding from those strings into another string su
h that a

1

; : : : ; a

m

are re
overable.

When we say an algorithm is stateful, we mean that it uses and updates its state and that the

entity exe
uting it maintains the state between invo
ations. Let the initial state of any (stateful

or stateless) algorithm be ". If f is a randomized (resp., deterministi
) algorithm, then x

R

 f(y)

(resp., x f(y)) denotes the pro
ess of running f on input y and assigning the result to x.

Cryptographi
 transforms. A
ryptographi
 transform CT = (KG;En
ap;De
ap)
onsists of

three algorithms and is de�ned for some key spa
e KeySp

CT

, asso
iated-data spa
e AdSp

CT

, and

message spa
e MsgSp

CT

. The randomized key-generation algorithm KG returns a key K 2 KeySp

CT

(for example, KG might return a random 128- or 256-bit string); we write this as K

R

 KG. The

possibly randomized and possibly stateful en
apsulation algorithm En
ap takes a key K 2 KeySp

CT

,

asso
iated dataM

a

2 AdSp

CT

, and a messageM

s

2 MsgSp

CT

, and outputs an en
apsulated message

C 2 f0; 1g

�

; we write this as C

R

 En
ap

K

(M

a

;M

s

). We often refer to C as an en
apsulated pa
ket or

a
iphertext. The deterministi
 and possibly stateful de
apsulation algorithm De
ap takes a keyK 2

KeySp

CT

and a message C 2 f0; 1g

�

, and outputs a pair of messages (M

a

;M

s

) 2 AdSp

CT

�MsgSp

CT

or the pair (?;?) on error; we write this as (M

a

;M

s

) De
ap

K

(C). We require that if one of M

a

or M

s

is ?, then both are ?. We say that De
ap

K

a

epts C if De
ap

K

(C) 6= (?;?); otherwise

De
ap

K

reje
ts C. (We return (?;?) on error instead of a single element ? be
ause it makes our

de�nitions easier to manipulate.)

We
onsider �ve
lasses of CTs. These types of CTs are designed to provide and run on top of

di�erent types of
ommuni
ation
hannels (e.g., reliable transport, unreliable transport). We shall

des
ribe four of them in detail shortly. Type 5 is dis
ussed in the appendi
es.

Separating fun
tionality and se
urity properties. As is tradition in modern
ryptogra-

phy, we distinguish between the fun
tionality/
onsisten
y requirements for CTs and their se
urity

goals. In parti
ular, we
all any obje
t CT = (KG;En
ap;De
ap) that satis�es our
onsisten
y

requirements a
ryptographi
 transform. But we only
all it a se
ure CT if it also satis�es our

se
urity requirements. We state the se
urity goals �rst sin
e in some
ases the
onsisten
y require-

ments need only be met if an adversary has not already su

eeded in brea
hing the se
urity of the

5

s
heme.

3

The �ve types of CTs have di�erent integrity goals (and
onsisten
y requirements), but they

all share the same priva
y goal.

4

We �rst des
ribe the notion of priva
y for CTs. Then we make

some general
omments about our integrity notions for the �ve CT types. We then brie
y dis
uss

rea
tion and side-
hannel atta
ks. In the subse
tions that follow, we des
ribe the �rst four types

of CTs and de�ne their integrity properties and
onsisten
y requirements. The relevant formal

se
urity de�nitions appear in Appendix B. Here we provide brief des
riptions of the notions.

Chosen-plaintext priva
y. Our notion of priva
y for CTs is based on the notion of left-or-

right-indistinguishability under
hosen-plaintext atta
ks [2℄. Consider an adversary with a

ess

to an en
apsulation ora
le that on input asso
iated data M

a

and messages M

0

, M

1

returns the

en
apsulation of M

a

;M

b

, where b is a hidden, randomly
hosen bit. The adversary \wins" if it

guesses bit b, i.e., if it guesses whi
h sequen
e of messages was en
apsulated. A CT is
t-priv-
pa-

se
ure if the probability that an adversary with reasonable resour
es wins is
lose to 1/2 (i.e., if

su
h an adversary
annot do mu
h better than randomly guess bit b).

Integrity of
iphertexts and
hosen-
ipher-text priva
y. The integrity notion for a

Type n CT is
alled
t-int-
txtn. These notions address the integrity of the
iphertexts generated

by the en
apsulation algorithm. This is di�erent from prote
ting the integrity of the original inputs

to the en
apsulation method (
f. [5℄). Indeed, the latter, in
ombination with the
t-priv-
pa notion,

is insuÆ
ient to guarantee priva
y under
hosen-
iphertext atta
ks, whereas
t-int-
txtn-se
urity

together with
t-priv-
pa-se
urity imply a strong notion of priva
y under
hosen-
iphertext atta
ks

that we
all
t-priv-

an-se
urity. (These results are straightforward extensions of results in [5℄ for

authenti
ated en
ryption s
hemes.) Sin
e
t-priv-
pa and
t-int-
txtn imply
t-priv-

an, we fo
us

all our dis
ussions on the former two notions.

Rea
tion and side-
hannel atta
ks. Vaudenay [22℄ identi�ed a
lass of atta
ks against
ryp-

tosystems whose de
apsulation algorithms return di�erent error
odes, depending on how the de-

apsulation fails (e.g., the error
ode returned for bad padding is di�erent than the error
ode

returned for a failed MAC veri�
ation). To avoid these atta
ks, a
ryptographi
 transform should

always return the same error
ode upon failure, regardless of the reason for failure. Our
onstru
-

tions are se
ure against this type of atta
k be
ause they always return the same error message,

(?;?).

Furthermore, to avoid Canvel's [9℄ timing-atta
k derivatives of [22℄, one should ensure that the

length of time taken by the de
apsulation routine does not depend on whether the de
apsulation

algorithm aborts prematurely. I.e., an adversary should not be able to learn the reason for a

de
apsulation algorithm's failure by observing the timing
hara
teristi
s of the de
apsulator.

2.1 Type 1 Cryptographi
 Transforms

For Type 1 CTs, a re
eiver (or de
apsulator) will a

ept any en
apsulated pa
ket sent by the sender

(or en
apsulator), in any order, and possibly multiple times. A Type 1 CT is essentially an AEAD

s
heme [20℄.

Integrity. The integrity notion for Type 1 CTs
onsiders an adversary with
hosen-plaintext

a

ess to an en
apsulator and
hosen-
iphertext a

ess to the
orresponding de
apsulator. The

adversary \wins" or \forges" if it
an make the de
apsulator a

ept a
iphertext not returned

3

If an adversary forges a message, it may pla
e the de
apsulator in a state that it
annot re
over from. Therefore,

onsisten
y
an only be guaranteed in the absen
e of a su

essful adversary.

4

We
omment that this is natural sin
e the di�eren
es between the various types of CTs be
ome apparent only

when one
onsiders the de
apsulation algorithm.

6

by the en
apsulator. Informally, a Type 1 CT is
t-int-
txt1-se
ure if the probability that any

adversary with reasonable resour
es wins is small.

Consisten
y requirements. For a Type 1 CT, CT = (KG;En
ap;De
ap), we require that

De
ap

K

(En
ap

K

(M

a

;M

s

)) = (M

a

;M

s

) for all messages M

a

, M

s

in CT's message spa
es, all keys in

the key spa
e, and all internal states of the en
apsulator and de
apsulator.

2.2 Type 2 Cryptographi
 Transforms

Type 2 CTs are designed to prote
t against replay atta
ks.

Integrity. Consider an adversary with
hosen-plain-text a

ess to an en
apsulator and
hosen-

iphertext a

ess to the
orresponding de
apsulator. The adversary \wins" or \forges" if it
an

make the de
apsulator a

ept a
iphertext that the en
apsulator did not generate, or make it a

ept

the same
iphertext twi
e. Informally, a Type 2 CT is
t-int-
txt2-se
ure if the probability that

any adversary with reasonable resour
es wins is small.

Consisten
y requirements. For a Type 2 CT, CT = (KG;En
ap;De
ap), we require that, for all

messages M

a

, M

s

in CT's message spa
es and all keys K in the key spa
e, if C = En
ap

K

(M

a

;M

s

)

for any internal state of the en
apsulator, C has not already been submitted to De
ap

K

, and an

adversary has not already su

eeded in breaking the integrity of CT, then De
ap

K

(C) = (M

a

;M

s

).

We also make the following requirement: for any two message pairs (M

1

a

;M

1

s

), (M

2

a

;M

2

s

), if the

en
apsulator
omputes C

1

R

 En
ap

K

(M

1

a

;M

1

s

) at some point in time and C

2

R

 En
ap

K

(M

2

a

;M

2

s

)

at some other time, it is the
ase that C

1

6= C

2

(even if (M

1

a

;M

1

s

) = (M

2

a

;M

2

s

)). Otherwise, a

legitimately en
apsulated message might in
orre
tly be reje
ted by the re
eiver.

2.3 Type 3 Cryptographi
 Transforms

Type 3 CTs are designed to prote
t against replay atta
ks and re-ordering atta
ks, but are not

intended to prote
t against pa
ket loss.

Integrity. Consider an adversary with
hosen-plain-text a

ess to an en
apsulator and
hosen-

iphertext a

ess to the
orresponding de
apsulator. The adversary \wins" or \forges" if it
an

make the de
apsulator a

ept a
iphertext that the en
apsulator did not generate, a

ept the same

iphertext twi
e, or a

ept a
iphertext that was generated before the last a

epted
iphertext. For

example, if C

i

denotes the i-th
iphertext returned by the en
apsulator, the adversary will win if

it queries the de
apsulator with C

5

followed by C

1

and the de
apsulator a

epts C

1

. Informally,

a Type 3 CT is
t-int-
txt3-se
ure if the probability that any adversary with reasonable resour
es

wins is small.

Consisten
y requirements. For a Type 3 CT, CT = (KG;En
ap;De
ap), we require that, for all

messages M

a

, M

s

in CT's message spa
es and all keys K, if C = En
ap

K

(M

a

;M

s

) for any internal

state of the en
apsulator, C or a
iphertext generated after C has not already been submitted to

De
ap

K

, and an adversary has not already su

eeded in forging, then De
ap

K

(C) = (M

a

;M

s

).

We also make the following requirement: for any two message pairs (M

1

a

;M

1

s

), (M

2

a

;M

2

s

), if the

en
apsulator
omputes C

1

R

 En
ap

K

(M

1

a

;M

1

s

) at some point in time and C

2

R

 En
ap

K

(M

2

a

;M

2

s

)

at some other point in time, it is the
ase that C

1

6= C

2

(even if (M

1

a

;M

1

s

) = (M

2

a

;M

2

s

)).

2.4 Type 4 Cryptographi
 Transforms

Type 4 CTs are designed to ensure the in-order delivery of pa
kets. If an adversary tries to forge,

the forgery attempt should be dete
ted and all future pa
kets (even if generated by the legitimate

7

en
apsulator) should be reje
ted. Thus a Type 4 CT only has to work if all pa
kets are delivered

in order (i.e., no bad pa
ket is inje
ted into the
ommuni
ations stream).

5

This type of CT is

designed to run on top of a reliable transport proto
ol like TCP. The notion of a Type 4 CT is

losely related to the notion used in [4℄ to analyze the SSH
ryptographi
 transform; the di�eren
e

is that a Type 4 CT's en
apsulation algorithm
an take asso
iated data as input.

Integrity. Consider an adversary with
hosen-plain-text a

ess to an en
apsulator and
hosen-

iphertext a

ess to the
orresponding de
apsulator. The integrity game for Type 4 CTs begins

with a
ag phase set to 0. If at any point the sequen
e of queries to the de
apsulation ora
le fails to

be a pre�x of the responses from the en
apsulation ora
le, phase is set to 1. An adversary wins if it

an for
e the de
apsulation ora
le to a

ept a message after phase be
omes 1. Informally, a Type

4 CT is
t-int-
txt4-se
ure if the probability that any adversary with reasonable resour
es wins is

small.

Consisten
y requirements. Consider some sequen
e of message pairs (M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : :

and, for i = 1; 2; : : :, let C

i

= En
ap

K

(M

i

a

;M

i

s

), starting with En
ap

K

in its initial state. Then if

De
ap

K

is run on the sequen
e C

1

; C

2

; : : : in order and without the inje
tion of additional pa
kets,

we require that De
ap

K

(C

i

) = (M

i

a

;M

i

s

).

3 Building Blo
ks

Composition-based
ryptographi
 transforms are built using two base
ryptographi

omponents:

en
ryption s
hemes and MACs. We
onsider ea
h of these
omponents in turn.

3.1 Base en
ryption s
hemes

A symmetri
 en
ryption s
heme SE = (K; E ;D)
onsists of three algorithms and is de�ned for some

key spa
e KeySp

SE

, IV-spa
e IVSp

SE

, and message spa
e MsgSp

SE

. The randomized key-generation

algorithm K returns a key K 2 KeySp

SE

; we write this as K

R

 K. The possibly randomized and

stateful en
ryption algorithm E takes a key K 2 KeySp

SE

, an IV I 2 IVSp

SE

, and a message

M 2 MsgSp

SE

, and returns a
iphertext C 2 f0; 1g

�

; we write this as C

R

 E

I

K

(M). Example values

for IVSp

SE

are f"g (when SE takes no IV) and f0; 1g

i

for some positive integer i. The stateless and

deterministi
 de
ryption algorithm D takes a key K 2 KeySp

SE

, an IV I 2 IVSp

SE

, and a
iphertext

C 2 f0; 1g

�

, and returns a message M 2 f0; 1g

�

; we write this as M D

I

K

(C). Note that the

de
rypted message M may be a string not in MsgSp

SE

. The following
onsisten
y requirement

must be met. D

I

K

(E

I

K

(M)) =M for all M 2 MsgSp

SE

, I 2 IVSp

SE

, K 2 KeySp

SE

, and any internal

state of E

K

.

Deviating from tradition, we
onsider three types of base en
ryption s
hemes: non
ed en
ryption

s
hemes, length-based IV en
ryption s
hemes, and random IVed en
ryption s
hemes. For a non
ed

en
ryption s
heme we require that the en
ryption algorithm is always invoked with a new and

distin
t IV in IVSp

SE

. For a length-based IV en
ryption s
heme, we require that the �rst IV is

randomly sele
ted from IVSp

SE

, and ea
h subsequent IV is a deterministi
 fun
tion of the initial

IV and the lengths of all previous plaintexts. We
all this deterministi
 fun
tion the length-based

IV-deriving fun
tion for the en
ryption s
heme. (Our results
ould easily be extended for use with

length-based en
ryption s
hemes where the �rst IV is some �xed
onstant, like the all zero blo
k.)

5

We remark that a Type 4 CT may be vulnerable to a DoS atta
k in whi
h an adversary simply modi�es one

of the en
apsulated pa
kets. Type 5 CTs are similar to Type 4 CTs but are not vulnerable to su
h a DoS atta
k.

Despite the DoS atta
k against Type 4 CTs, these CTs more
losely mat
h the design goals of a CT for use with a

reliable transport proto
ol (as eviden
ed, for example, by the SSH proto
ol's use of a Type 4 CT).

8

For a random IVed en
ryption s
heme we require that the en
ryption algorithm is always invoked

with a randomly sele
ted IV in IVSp

SE

. If IVSp

SE

= f"g, then the random IV is always ", and this

is how we model standard en
ryption s
hemes, whi
h do not take IVs as input.

Looking ahead, we note that we
an enfor
e these requirements on the IVs through our use

of en
odings. The main reason we do not simply have the underlying en
ryption s
heme in a CT

generate its own IVs is that we want to be able to manipulate the IVs before invoking the en
ryption

s
heme (e.g., we want to be able to MAC the IV in a MAC-then-En
rypt-style CT).

Priva
y. Our notion of priva
y for symmetri
 en
ryption s
hemes is based on the notion of left-or-

right-indistinguishability from [2℄ and is
losely related to the
t-priv-
pa notion for CTs. Consider

an adversary with a

ess to an en
ryption ora
le that on input an IV and a pair of messages, returns

the en
ryption of either the �rst message or the se
ond message, depending on a hidden random

bit. The adversary \wins" if it guesses this bit, i.e., if it guesses whi
h sequen
e of messages was

en
rypted. Informally, an en
ryption s
heme is ind-
pa-se
ure if the probability that an adversary,

using reasonable resour
es and respe
ting the IV properties of the s
heme, wins is not mu
h greater

than 1/2. The formalization of this notion appears in Appendix B.

Example s
hemes. There are numerous examples of ind-
pa-se
ure en
ryption s
hemes. An

example of a non
ed en
ryption s
heme is a CTR mode s
heme whi
h allo
ates part of the blo
k

ipher input to a non
e and the remainder to a blo
k
ounter. An example of a length-based IV

en
ryption s
heme is a CTR mode variant that uses a random b-bit unsigned integer C as its initial

ounter (where b is the underlying blo
k
ipher's blo
k size) and, after en
rypting l blo
ks, uses

the integer C + l mod 2

b

as the IV for the next message. An example of a random IVed en
ryption

s
heme is a CBC mode s
heme that re
eives a random b-bit IV. Of
ourse, a more traditional

en
ryption s
heme is a CBC mode instan
e that generates its own random b-bit IV (a

ording to

our notation, su
h a s
heme would have IV spa
e f"g).

3.2 Message-authenti
ation s
hemes

A message-authenti
ation s
heme or MAC MA = (K;T ;V)
onsists of three algorithms and is

de�ned for some key spa
e KeySp

MA

, IV-spa
e IVSp

MA

, message spa
e MsgSp

MA

, and tag spa
e

TagSp

MA

. The randomized key-generation algorithm returns a key K 2 KeySp

MA

; we write

this as K

R

 K. The tagging algorithm, whi
h may be randomized and stateful, takes a key

K 2 KeySp

MA

, an IV I 2 IVSp

MA

, and a messageM 2 MsgSp

MA

, and returns a tag � 2 TagSp

MA

;

we write this as �

R

 T

I

K

(M). The deterministi
 and stateless veri�
ation algorithm takes a key

K 2 KeySp

MA

, an IV I 2 IVSp

MA

, a message M 2 MsgSp

MA

, and a
andidate tag � 2 f0; 1g

�

,

and returns a bit; we write this as b V

I

K

(M; �). The following
onsisten
y requirement must be

met. V

I

K

(M; T

I

K

(M)) = 1 for all M 2 MsgSp

MA

, I 2 IVSp

MA

, K 2 KeySp

MA

, and any internal

state of T

K

.

As with base en
ryption s
hemes, we
onsider di�erent types of MACs: non
ed MACs and
on-

ventional MACs (i.e., MACs that do not take non
es as input). For a non
ed MAC we require that

the tagging algorithm is always invoked with a new and distin
t IV in IVSp

MA

. For a
onventional

MAC, IVSp

MA

= f"g. Expli
itly taking a non
e as input is ni
e be
ause it allows one to share

the non
e between, for example, a Carter-Wegman MAC and CTR mode en
ryption. (Although

we
ould also
onsider random IV or length-based IV MACs, we do not do so be
ause, unlike with

en
ryption s
hemes, we have no reason to manipulate su
h MAC IVs separately, and therefore

allowing the
aller to supply the random IV or length-based IV provides no
lear advantage; the

MAC
an generate su
h IVs itself.)

Unforgeability of MACs. The main notion of se
urity for MACs that we
onsider is strong

9

unforgeability under
hosen-message atta
ks [5℄. This notion is des
ribed formally in Appendix B.

Intuitively, we say that a MAC is uf-se
ure (or unforgeable) if the probability is small that any

adversary using reasonable resour
es and respe
ting the IV properties of the MAC makes the

veri�
ation algorithm a

ept some 3-tuple (I;M; �) su
h that the tagging algorithm was never run

on (I;M) or, if run on (I;M), never generated � as the tag.

Pseudorandomness of MACs. Another notion of se
urity for MACs is pseudorandomness.

This notion only applies when IVSp

MA

= f"g (or, phrased more appropriately, when the tagging

algorithm is a fun
tion from KeySp

MA

� MsgSp

MA

to TagSp

MA

). Essentially, a MAC is a se-

ure pseudorandom fun
tion (PRF) if an adversary with
hosen-plaintext a

ess to a fun
tion f ,

mapping MsgSp

MA

to TagSp

MA

,
annot tell whether the fun
tion is an instan
e of the MAC de-

termined by a randomly sele
ted key, or a randomly sele
ted fun
tion from MsgSp

MA

to TagSp

MA

.

See Appendix B. As shown in [3℄, if a MAC is a se
ure PRF, then it is also uf-se
ure.

Priva
y of MACs. The ind-
pa notion of priva
y for symmetri
 en
ryption s
hemes
an also be

applied to MACs (see Appendix B). Although most popular MACs are not ind-
pa-se
ure, some

are (the notable example is Carter-Wegman MACs).

Example s
hemes. Popular examples of MACs in
lude HMAC [19℄, OMAC [14℄, and UMAC [8℄.

The �rst two have IV-spa
e f"g and the third takes a non
e as input. All these examples are uf-

se
ure assuming the IV properties are respe
ted. OMAC (and a number of other MACs) are also

provably-se
ure PRFs, assuming that the underlying blo
k
ipher is se
ure. UMAC is ind-
pa-se
ure

against non
e-respe
ting adversaries.

4 The Three Paradigms

We re
all the three basi
 methods to
ombine en
ryption s
hemes with MACs [5, 18℄: En
rypt-and-

MAC (E&M), MAC-then-En
rypt (MtE), and En
rypt-then-MAC (EtM). Let E

K

e

be an en
ryption

algorithm with key K

e

, and T

K

t

a MAC tagging algorithm with key K

t

. The E&M en
ryption

algorithm is de�ned as E

hK

e

;K

t

i

(M)

def

= E

K

e

(M)kT

K

t

(M). The MtE en
ryption algorithm is de�ned

as E

hK

e

;K

t

i

(M)

def

= E

K

e

(MkT

K

t

(M)). The EtM en
ryption algorithm is de�ned as E

hK

e

;K

t

i

(M)

def

=

�kT

K

t

(�), where � = E

K

e

(M).

In this work we
onsider generalizations of the three paradigms, whi
h we
all En
ode-then-

E&M, En
ode-then-MtE, and En
ode-then-EtM. For ea
h of these paradigms, we
onsider the �ve

types of
ryptographi
 transforms. The en
odings play a
riti
al role in the En
ode-then-fE&M,

MtE, EtMg
onstru
tions. In parti
ular, en
odings allow us to formally model CTs that prepro
ess

payload data without having to spe
ify exa
tly how appli
ations should do the prepro
essing. Also,

the en
oding s
hemes are what provide the logi
 to, for example, dete
t replay atta
ks.

4.1 En
odings

An en
oding s
heme EC is an un-keyed publi
 transformation that
onsists of four algorithms:

En
ode, De
odeA, De
odeB, and De
odeC. All algorithms may be stateful and En
ode may be

randomized. The de
oding algorithms De
odeA, De
odeB, and De
odeC may all share the same

state. The spe
i�
 properties of the algorithms depend on the paradigm in question and the type

of CT that is being
onstru
ted. We des
ribe them in detail in the following se
tions. Here we

dis
uss some
ommonalities between the algorithms of en
oding s
hemes for di�erent paradigms

and CT types.

10

En
oding and en
apsulating. Algorithm En
ode pre-pro
esses a CT en
apsulation algorithm's

input messages M

a

, M

s

. Spe
i�
ally, on inputM

a

;M

s

, En
ode outputs a 5-tuple (M

p

;M

o

;M

n

;M

e

;

M

t

). Intuitively, M

p

is
leartext data
ommuni
ated with the
iphertext, M

o

is the IV/non
e for

use with the base en
ryption s
heme, M

e

is the input for the base en
ryption s
heme, M

n

is the

IV/non
e for use with the base MAC, and M

t

is the input for the base MAC.

The di�erent paradigms then use these �ve strings in slightly di�erent ways and slightly di�erent

orders. For En
ode-then-E&M CTs, the en
apsulation algorithm en
rypts M

e

with IV M

o

to get a

string �, MACs M

t

with IV M

n

to get a tag � , and outputs hM

p

; �; �i. For En
ode-then-MtE CTs,

the en
apsulation algorithm MACs M

t

with IV M

n

to get a tag � , en
rypts hM

e

; �i with IV M

o

to get a string �, and outputs hM

p

; �i. For En
ode-then-EtM CTs, the en
apsulation algorithm

en
rypts M

e

with IV M

o

to get a string �, MACs hM

t

; �i with IV M

n

to get a tag � , and outputs

hM

p

; �; �i.

De
oding and de
apsulating. The de
oding algorithms De
odeA, De
odeB, and De
odeC are

used in reversing the pro
ess. The de
apsulation pro
ess typi
ally involves �rst invoking De
odeA

on M

p

to get ba
k (at least) M

o

, the IV used with the underlying en
ryption s
heme. In the
ase

of En
ode-then-EtM
onstru
tions, De
odeA returns the MAC IV M

n

and M

t

in order to allow for

tag veri�
ation before de
ryption. After the underlying en
ryption s
heme re
overs the message

M

e

, the transforms invoke De
odeB(M

p

;M

e

) to re
over (at least) M

a

and M

s

. If all goes well, then

the transform's de
apsulation algorithm returnsM

a

and M

s

to the user or higher-level appli
ation.

However, all may not go well in the de
apsulation pro
ess. For example, De
odeA or De
odeB

may return the symbol ?, indi
ating that there was a de
oding failure. This
an happen, for

instan
e, in Type 2 de
oding algorithms if the de
oding algorithms dete
t a replayed message.

When De
odeA or De
odeB return ?, the de
apsulation algorithm does not a

ept the pa
ket.

It may also be the
ase that De
odeA and De
odeB do not dete
t any problems (and return

strings instead of ?) but the MAC tag veri�
ation fails. When this o

urs, the de
apsulation al-

gorithm invokes De
odeC(?). If the tag veri�
ation su

eeds, the de
apsulation algorithm invokes

De
odeC(>). By
alling De
odeC in this way, the de
apsulation algorithm tells the de
oding al-

gorithms whether the pa
ket was a

epted. The de
oding algorithms
an then update their state.

For example, for CTs designed to prote
t against out-of-order delivery atta
ks, it is prudent to

in
rement the number of pa
kets re
eived only if the pa
ket a
tually de
apsulated
orre
tly and

passed the tag veri�
ation pro
ess.

Respe
ting the IV properties of SE and MA. Consider the underlying en
ryption s
heme

SE and the underlying MAC MA that the En
ode algorithm is
ombined with in an En
ode-

then-fE&M,MtE,EtMg
onstru
tion. Note that these underlying s
hemes may have
ertain IV

requirements in order for them to be se
ure. For example, SE might require that the IV is a non
e;

i.e., that the IV never repeats, or that the IVs be random (or always the empty string "). Consider

any sequen
e of messages (M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : :, let En
ode begin in its initial state, and for

i = 1; 2; : : : let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) = En
ode(M

i

a

;M

i

s

). We
all an en
oding s
heme non
e-

respe
ting for en
ryption if it is the
ase that M

i

o

6= M

j

o

for all distin
t i; j. We
all an en
oding

s
heme non
e-respe
ting for MACing ifM

i

n

6=M

j

n

for all distin
t i; j. An en
oding s
heme is length-

based IV-respe
ting for en
ryption with respe
t to some length-based IV-deriving fun
tion if the

�rst M

o

value the en
oding s
heme generates is
hosen uniformly at random from IVSp

SE

, and all

subsequent M

o

values are generated a

ording to the length-based IV-deriving fun
tion, the initial

M

o

value, and the lengths of all previous M

e

values. An en
oding s
heme is random-IV-respe
ting

for en
ryption if the en
oding algorithm always pi
ks the value M

o

uniformly at random from

IVSp

SE

.

Note that if the IV spa
es are �nite, then it is impossible to run a non
e-respe
ting en
oding

11

payload M

s

payload M

s

asso
iated data M

a

ENCODE

iphertext �

tag �

ENCRYPT MAC

M

p

M

o

M

e

M

n

M

t

M

p

en
apsulated pa
ket

Figure 2: The En
ode-then-E&M en
apsulation method.

s
heme on an in�nite number of inputs. Therefore, we asso
iate to any en
oding s
heme EC a pa-

rameter MaxNum

EC

, and we assume that the en
oding s
heme is not invoked more than MaxNum

EC

times per appli
ation (i.e., beginning in its initial state, the en
oding algorithm will not be asked

to en
ode more than MaxNum

EC

pairs of messages). In the above dis
ussion and in the following

se
tions, whenever we write \for i = 1; 2; : : :, run En
ode," we assume that the iterations stop before

i gets larger than MaxNum

EC

. (We use the same
onvention when dis
ussing CTs built from EC.)

5 En
ode-then-E&M

We �rst fo
us on En
ode-then-E&M
ryptographi
 transforms. The en
apsulation algorithm of

su
h a CT works as shown in Figure 2. An E&M en
oding s
heme is used to \glue" together

the en
ryption and MAC
omponents of an En
ode-then-E&M CT. For an E&M en
oding s
h-

eme EC

E&M

= (En
ode;De
odeA;De
odeB;De
odeC), En
ode behaves as des
ribed in Se
tion 4.1.

De
odeA, on input a string M

p

, outputs a string M

o

, or ? on error. De
odeB, on input two mes-

sages M

p

;M

e

, returns a 4-tuple of messages (M

a

;M

s

;M

n

;M

t

), or (?;?;?;?) on error (if any one

of M

a

, M

s

, M

n

, or M

t

is ?, then all of them are ?). De
odeC takes as input the symbol > or the

symbol ? and returns nothing.

An en
ryption s
heme, a MAC, and an appropriate E&M en
oding s
heme
an be
ombined to

obtain an En
ode-then-E&M CT as follows.

Constru
tion 5.1 (En
ode-then-E&M) Let EC

E&M

= (En
ode;De
odeA;De
odeB;De
odeC),

SE = (K

e

; E ;D), andMA = (K

t

;T ;V) be E&M en
oding, en
ryption, and message-authenti
ation

s
hemes, respe
tively, with
ompatible message spa
es (e.g., the outputs from En
ode are suitable

inputs to E and T). Let all states initially be ". We asso
iate to these s
hemes an En
ode-then-

E&M
ryptographi
 transform CT = (KG;En
ap;De
ap) whose
onstituent algorithms are de�ned

as follows:

12

Algorithm KG

K

e

R

 K

e

; K

t

R

 K

t

Return hK

e

;K

t

i

Algorithm En
ap

hK

e

;K

t

i

(M

a

;M

s

)

(M

p

;M

o

;M

n

;M

e

;M

t

)

R

 En
ode(M

a

;M

s

)

�

R

 E

M

o

K

e

(M

e

) ; �

R

 T

M

n

K

t

(M

t

)

Return hM

p

; �; �i

Algorithm De
ap

hK

e

;K

t

i

(C)

If st =? then return (?;?)

If there does not exist M

p

; �; � s.t. C = hM

p

; �; �i then

st Box ; return (?;?)

Parse C as hM

p

; �; �i ; M

o

 De
odeA(M

p

)

If M

o

= ? then st Box ; return (?;?)

M

e

 D

M

o

K

e

(�)

(M

a

;M

s

;M

n

;M

t

) De
odeB(M

p

;M

e

)

If M

s

= ? then st Box ; return (?;?)

v V

M

n

K

t

(M

t

; �)

If v = 0 then st Box ; De
odeC(?) ; return (?;?)

De
odeC(>)

Return (M

a

;M

s

)

For a Type 4 CT, ea
h boxed portion of the de
apsulator should be ?. For all other types, the

boxed portion should be st. Re
all that ha

1

; : : : ; a

m

i denotes an en
oding of the strings a

1

; : : : ; a

m

su
h that a

1

; : : : ; a

m

are re
overable. For the
all to De
odeB(M

p

;M

e

), re
all that if any one of M

a

;

M

s

;M

n

;M

t

is ?, then they are all ?. Although only De
ap expli
itly maintains state in the above

pseudo
ode, the underlying en
oding, en
ryption, and MAC s
hemes may also maintain state. E.g.,

the underlying en
oding and de
oding algorithms may maintain state in order to prote
t against

replay atta
ks.

Consisten
y requirements for E&M en
oding s
hemes. Consider any two pairs of messages

(M

a

;M

s

), (M

a

;M

0

s

) with jM

s

j = jM

0

s

j. Let (M

p

;M

o

;M

n

;M

e

;M

t

)

R

 En
ode(M

a

;M

s

) for En
ode in

some state, and (M

0

p

;M

0

o

;M

0

n

;M

0

e

;M

0

t

)

R

 En
ode(M

a

;M

0

s

) for En
ode in some (possibly di�erent)

state. We require that jM

e

j = jM

0

e

j and jM

t

j = jM

0

t

j. If this were not the
ase, Constru
tion 5.1

might not preserve priva
y.

Consider also any two sequen
es of message pairs (M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : : and (N

1

a

; N

1

s

); (N

2

a

;

N

2

s

); : : :. Let En
ode begin in its initial state and for i = 1; 2; : : : let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) =

En
ode(M

i

a

;M

i

s

). Similarly, let En
ode begin in its initial state and for i = 1; 2; : : : let (N

i

p

; N

i

o

; N

i

n

;

N

i

e

; N

i

t

) = En
ode(N

i

a

; N

i

s

). If En
ode is randomized, assume that both sequen
es are generated

using the same random tape. Further assume that the randomness used in ea
h invo
ation is

re
overable from the output and that the amount of randomness used per invo
ation depends only

on the lengths of the inputs. Consider any index i. If jM

j

s

j = jN

j

s

j and M

j

a

= N

j

a

for all j � i, then

we require that M

i

p

= N

i

p

, M

i

o

= N

i

o

, and M

i

n

= N

i

n

.

Let (M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : : be a sequen
e of message pairs and, beginning with En
ode in its

initial state, let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) = En
ode(M

i

a

;M

i

s

) for i = 1; 2; : : : up to MaxNum

EC

E&M

. We

make the following additional
onsisten
y requirements on EC

E&M

, depending on the type of CT

in question. In what follows we use the notation De
ode[ABC℄ to denote any one of the de
oding

algorithms.

Type 1. For any i and for any state of the de
oder, we require that De
odeA(M

i

p

) = M

i

o

and

De
odeB(M

i

p

;M

i

e

) = (M

i

a

;M

i

s

;M

i

n

;M

i

t

).

Type 2. For any distin
t indi
es i; j, we require that (M

i

p

;M

i

e

) 6= (M

j

p

;M

j

e

).

For any i, we require that for any state of the de
oder, De
odeA(M

i

p

) = M

i

o

. Furthermore, if

De
odeB has not been invoked with (M

i

p

;M

i

e

) or if De
odeB has been invoked with (M

i

p

;M

i

e

) but

for ea
h su
h invo
ation the next
all to De
ode[ABC℄ was De
odeC(?), then it must be the
ase

that De
odeB(M

i

p

;M

i

e

) = (M

i

a

;M

i

s

;M

i

n

;M

i

t

).

Type 3. For any distin
t indi
es i; j, we require that (M

i

p

;M

i

e

) 6= (M

j

p

;M

j

e

).

13

For any i, we require that for any state of the de
oder, De
odeA(M

i

p

) = M

i

o

. Furthermore,

if De
odeB has not been invoked with (M

j

p

;M

j

e

) for any j � i, or if De
odeB has been invoked

with (M

j

p

;M

j

e

), for some j � i, but for ea
h su
h invo
ation the next
all to De
ode[ABC℄ was

De
odeC(?), then De
odeB(M

i

p

;M

i

e

) = (M

i

a

;M

i

s

;M

i

n

;M

i

t

).

Type 4. For i = 1; 2; : : : and the de
oder beginning in its initial state, let m

i

o

= De
odeA(M

i

p

) and

(m

i

a

;m

i

s

;m

i

n

;m

i

t

) = De
odeB(M

i

p

;M

i

e

). We require that M

i

a

= m

i

a

, M

i

s

= m

i

s

, M

i

o

= m

i

o

, M

i

n

= m

i

n

,

and M

i

t

= m

i

t

for all i.

Se
urity requirements for E&M en
oding s
hemes. The se
urity requirements for E&M

en
oding s
hemes are formalized in Appendix C. For all types of CTs we de�ne a property,
alled

e&m-
oll-se
urity, that measures the probability of a
ollision in theM

n

;M

t

outputs of the en
oding

s
heme. Consider a sequen
e of inputs (M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : : to En
ode and, beginning with

En
ode in its initial state, for i = 1; 2; : : : let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) = En
ode(M

i

a

;M

i

s

). Intuitively,

we say that the en
oding s
heme is e&m-
oll-se
ure if the probability that (M

i

n

;M

i

t

) = (M

j

n

;M

j

t

)

for distin
t indi
es i; j is small. We note that it is very easy to design an E&M en
oding s
heme

that is e&m-
oll-se
ure: simply in
lude a
ounter or some random string in one or both of M

n

or

M

t

.

For Type n E&M en
oding s
hemes (i.e., E&M en
oding s
hemes used to
onstru
t Type n CTs)

we also de�ne a se
urity property
alled e&m-se
n. We distill the important aspe
ts of these se
urity

properties here. Essentially, in order for Type 1{Type 3 E&M en
oding s
hemes to be e&m-se
1{

e&m-se
3-se
ure, it should be the
ase that if (M

p

;M

e

) and (M

0

p

;M

0

e

) are distin
t pairs of strings,

then they do not de
ode (via De
odeB) to identi
al M

n

;M

t

strings. For Type 2 E&M en
oding

s
hemes it should also be the
ase that if De
odeB(M

p

;M

e

) is
alled followed by a
all De
odeC(>),

then the next time De
odeB(M

p

;M

e

) is
alled, De
odeB returns (?;?;?;?). For Type 3 E&M

en
oding s
hemes it should also be the
ase that if M

p

;M

e

were in the output of one invo
ation

of En
ode, M

0

p

;M

0

e

were in the output of some later En
ode invo
ation, and De
odeB(M

0

p

;M

0

e

) is

alled followed by a
all De
odeC(>), then a later
all De
odeB(M

p

;M

e

) returns (?;?;?;?).

Consider some intera
tion with the en
oding and de
oding algorithms. Let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;

M

i

t

) denote the 5-tuple returned by En
ode after its i-th invo
ation. Let (m

j

p

;m

j

e

) denote the

parameters to the j-th
all to De
odeB and let (m

j

a

;m

j

s

;m

j

n

;m

j

t

) denote the response. Then for

Type 4 en
oding s
hemes it should be the
ase that (M

i

n

;M

i

t

) 6= (m

j

n

;m

j

t

) for all i 6= j. And, if

(M

j

p

;M

j

e

) 6= (m

j

p

;m

j

e

), then it should be the
ase that (M

j

n

;M

j

t

) 6= (m

j

n

;m

j

t

).

5.1 Summary of results

Chosen-plaintext priva
y. We are now in a position to des
ribe how to
ombine a standard

en
ryption s
heme with a MAC in an En
rypt-and-MAC fashion in order to yield a CT that

preserves priva
y under
hosen-plaintext atta
ks. The following summary distills the important

properties from Theorem D.1.

Result 5.2 (Priva
y of En
ode-then-E&M) To
onstru
t a Type n En
ode-then-E&M s
heme

CT from an en
ryption s
heme SE and a MAC MA, one should use a Type n E&M en
oding

s
heme EC that is e&m-
oll-se
ure and that respe
ts the IV requirements of SE andMA. If SE is

a se
ure en
ryption s
heme (ind-
pa-se
ure), MA is a se
ure PRF or priva
y preserving (ind-
pa-

se
ure), and all the
omponents satisfy their respe
tive
onsisten
y requirements, then CT will be

a
ryptographi
 transform that provably provides priva
y under
hosen-plaintext atta
ks (i.e., CT

will be
t-priv-
pa-se
ure).

14

The statement in Theorem D.1 is a
tually more general than Result 5.2. In parti
ular, the theorem

implies that ifMA is ind-
pa-se
ure, then the en
oding s
heme need not be e&m-
oll-se
ure. We

have
hosen to formulate the result as we did be
ause most popular MACs are not ind-
pa-se
ure,

and those that are require a non
e and hen
e any en
oding s
heme that respe
ts the IV requirements

of the MAC is trivially e&m-
oll-se
ure.

We point out that developers should have no trouble �nding se
ure building blo
ks. For example,

many popular MACs are either proven to be or believed to be se
ure PRFs. And there are well-

known en
ryption s
hemes that are provably ind-
pa-se
ure. (For further dis
ussions of the building

blo
ks, see Se
tion 3.)

As noted above, it is very easy to
reate en
oding s
hemes that are e&m-
oll-se
ure (for example,

the en
oding s
heme
an simply append a
ounter to the input to the MAC). Looking ahead, we

omment that in order to a
hieve some of our other goals (like resistan
e to replay atta
ks), we

will have to in
lude
ounters in the input to the MAC anyway, so requiring su
h
ounters for the

e&m-
oll property does not introdu
e additional overhead or
osts for the CT.

Integrity. We now
onsider how to design En
ode-then-E&M CTs that provably meet the CT

integrity goals. The following interprets the results in Theorem D.4.

Result 5.3 (Integrity of En
ode-then-E&M) To
onstru
t a Type n En
ode-then-E&M s
h-

eme CT from an en
ryption s
heme SE and a MACMA, one should use a Type n E&M en
oding

s
heme EC that is e&m-se
n-se
ure and that respe
ts the IV requirements of MA. If the SE en-

ryption algorithm is length-preserving, MA is unforgeable (uf-se
ure), and all the
omponents

satisfy their respe
tive
onsisten
y requirements, then CT will be a
ryptographi
 transform that

provably meets the
t-int-
txtn integrity notion.

It is not hard to �nd underlying
omponents that satisfy the properties des
ribed in Result 5.3.

As with Result 5.2, we
omment that the results in Theorem D.4 are more general than Result

5.3. In parti
ular, it is possible for a Type n CT to be
t-int-
txtn-se
ure even if the underlying

en
ryption algorithm is not length-preserving (see Appendix D for details). However, unless one

formally veri�es that it is safe to use a spe
i�
 non-length preserving base en
ryption s
heme,

one should
losely follow the re
ommendation for using length-preserving en
ryption s
hemes. To

see the importan
e of this, we note that [4℄ shows that, in the
ontext of SSH, if the underlying

en
ryption s
heme is standard CBC mode (whi
h generates the random IV itself and is therefore not

length-preserving), then there is an atta
k on the integrity of the transform. Also, if the underlying

en
ryption s
heme is a CTR mode variant that maintains the
ounter itself (i.e., that doesn't take

an IV as input) and in
ludes that
ounter in the
iphertext, then an atta
ker with known-plaintext

a

ess to the en
apsulator
an learn the keystream value generated by ea
h initial
ounter and,

sin
e the
ounter is not in
luded in the input to the MAC, atta
k the integrity of the
iphertexts.

We believe that our length-preserving restri
tion on the en
ryption algorithm will not be a major

on
ern for many developers sin
e many of them will want to avoid the extra pa
ket expansion that

omes with using non-length-preserving en
ryption s
hemes anyway.

6 En
ode-then-MtE

We now turn our attention to the En
ode-then-MtE paradigm for CTs. The algorithms that

onstitute an MtE en
oding s
heme EC

MtE

= (En
ode;De
odeA;De
odeB;De
odeC), have the same

APIs as those in an E&M en
oding s
heme.

An en
ryption s
heme, a MAC, and an appropriate MtE en
oding s
heme
an be
ombined to

obtain an En
ode-then-MtE CT as follows (see also Figure 3).

15

payload M

s

payload M

s

asso
iated data M

a

ENCODE

iphertext �

ENCRYPT MAC

M

p

�

M

o

M

e

M

n

M

t

M

p

en
apsulated pa
ket

Figure 3: The En
ode-then-MtE en
apsulation method.

Constru
tion 6.1 (En
ode-then-MtE) Let EC

MtE

= (En
ode;De
odeA;De
odeB;De
odeC), let

SE = (K

e

; E ;D), and letMA = (K

t

;T ;V) respe
tively be MtE en
oding, en
ryption, and message-

authenti
ation s
hemes with
ompatible message spa
es (e.g., the outputs from En
ode are suitable

inputs to E and T). Assume that T always produ
es tags of the same length. Let all states initially

be ". We asso
iate to these s
hemes an En
ode-then-MtE
ryptographi
 transform CT = (KG;

En
ap;De
ap) whose
onstituent algorithms are de�ned as follows:

Algorithm KG

K

e

R

 K

e

; K

t

R

 K

t

Return hK

e

;K

t

i

Algorithm En
ap

hK

e

;K

t

i

(M

a

;M

s

)

(M

p

;M

o

;M

n

;M

e

;M

t

)

R

 En
ode(M

a

;M

s

)

�

R

 T

M

n

K

t

(M

t

) ; �

R

 E

M

o

K

e

(hM

e

; �i)

Return hM

p

; �i

Algorithm De
ap

hK

e

;K

t

i

(C)

If st =? then return (?;?)

If there does not exist M

p

; � s.t. C = hM

p

; �i then

st Box ; return (?;?)

Parse C as hM

p

; �i ; M

o

 De
odeA(M

p

)

If M

o

= ? then st Box ; return (?;?)

M D

M

o

K

e

(�)

If there does not exist M

e

; � s.t. M = hM

e

; �i then

st Box ; De
odeC(?) ; return (?;?)

Parse M as hM

e

; �i

(M

a

;M

s

;M

n

;M

t

) De
odeB(M

p

;M

e

)

If M

s

= ? then st Box ; return (?;?)

v V

M

n

K

t

(M

t

; �)

If v = 0 then st Box ; De
odeC(?) ; return (?;?)

De
odeC(>)

Return (M

a

;M

s

)

For a Type 4 CT, ea
h boxed portion of the de
apsulator should be ?. For all other types, the

boxed portion should be st. For the
all to De
odeB(M

p

;M

e

), re
all that if any one of M

a

;M

s

;

M

n

;M

t

is ?, then they are all ?. Although only De
ap expli
itly maintains state in the above

pseudo
ode, the underlying en
oding, en
ryption, and MAC s
hemes may also maintain state. We

require that the length of the
ombined string hM

e

; �i depend only on the lengths of M

e

and � .

Consisten
y requirements for MtE en
oding s
hemes. Consider any two pairs of mes-

sages (M

a

;M

s

), (M

a

;M

0

s

), where jM

s

j = jM

0

s

j. Let (M

p

;M

o

;M

n

;M

e

;M

t

)

R

 En
ode(M

a

;M

s

) for

En
ode in some state, and (M

0

p

;M

0

o

;M

0

n

;M

0

e

;M

0

t

)

R

 En
ode(M

a

;M

0

s

) for En
ode is in some (possibly

di�erent) state. We require that jM

e

j = jM

0

e

j. Consider also any two sequen
es of message pairs

(M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : : and (N

1

a

; N

1

s

); (N

2

a

; N

2

s

); : : :. Let En
ode begin in its initial state and for

16

i = 1; 2; : : : let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) = En
ode(M

i

a

;M

i

s

). Similarly, let En
ode begin in its initial

state and for i = 1; 2; : : : let (N

i

p

; N

i

o

; N

i

n

; N

i

e

; N

i

t

) = En
ode(N

i

a

; N

i

s

). If En
ode is randomized, as-

sume that both sequen
es are generated using the same random tape. Unlike with E&M en
oding

s
hemes, we do not require that the randomness used in ea
h invo
ation be re
overable from the

output. Consider any index i. If jM

j

s

j = jN

j

s

j and M

j

a

= N

j

a

for all j � i, then we require that

M

i

p

= N

i

p

and M

i

o

= N

i

o

.

The remainder of the
onsisten
y requirements for Type 1{Type 4 MtE en
oding s
hemes are

the same as those for the
orresponding E&M en
oding s
hemes.

Se
urity requirements for MtE en
oding s
hemes. For Type n MtE en
oding s
hemes

we
onsider a se
urity notion,
alled mte-se
n, that is identi
al to the e&m-se
n notion de�ned for

Type n E&M en
oding s
hemes. The formal des
riptions are in Appendix C.

6.1 Summary of results

Chosen-plaintext priva
y. The following shows how to ensure that an En
ode-then-MtE

CT will provably preserve priva
y under
hosen-plaintext atta
ks. It interprets the result in

Theorem E.1. This result essentially says that an En
ode-then-MtE CT should use an under-

lying en
ryption s
heme that preserves priva
y under
hosen-plaintext atta
ks. As dis
ussed in

Se
tion 3, many su
h en
ryption s
hemes exist.

Result 6.2 (Priva
y of En
ode-then-MtE) To
onstru
t a Type n En
ode-then-E&M s
heme

CT from an en
ryption s
heme SE and a MACMA (that always produ
es tags of the same length),

one should use an MtE en
oding s
heme EC that respe
ts the IV properties of SE . If SE is ind-
pa-

se
ure and all the
omponents satisfy their respe
tive
onsisten
y requirements, then CT will be

a
ryptographi
 transform that provably provides priva
y under
hosen-plaintext atta
ks (i.e., CT

will be
t-priv-
pa-se
ure).

Integrity. The following distills the integrity results from Theorem E.4.

Result 6.3 (Integrity of En
ode-then-MtE) To
onstru
t a Type n En
ode-then-E&M s
heme

CT from an en
ryption s
heme SE and a MACMA, one should use a Type nMtE en
oding s
heme

EC that is mte-se
n-se
ure and that respe
ts the IV requirements of MA. If the SE en
ryption

algorithm is length-preserving,MA is unforgeable (uf-se
ure) and always outputs tags of the same

length, and all the
omponents satisfy their respe
tive
onsisten
y requirements, then CT will be a

ryptographi
 transform that provably meets the
t-int-
txtn integrity notion.

We again
omment that it is not hard to �nd base
omponents that satisfy the requirements in

Result 6.3.

As with our En
ode-then-E&M dis
ussions, we note that the length-preserving requirements on

the base en
ryption s
heme are not overly restri
tive sin
e developers will likely try to avoid the

extra pa
ket expansion asso
iated with non-length-preserving en
ryption algorithms anyway. In

some situations, it seems possible to prove that the use of some non-length-preserving en
ryption

s
hemes is safe (su
h proofs will likely make use of the fa
t that if the MAC is a se
ure PRF, then

part of the plaintext for the base en
ryption s
heme will not be known to an atta
ker). Exploring

this spe
i�
 s
enario would take us a�eld from our
urrent goal of modeling generi

omposition-

based CTs, and (if there is suitable interest from developers) may be a topi
 of future work.

7 En
ode-then-EtM

We now
onsider the En
ode-then-EtM paradigm. See Figure 4. For an EtM en
oding s
heme

EC

EtM

= (En
ode;De
odeA;De
odeB;De
odeC), the en
oding algorithm En
ode, whi
h may be

17

payload M

s

payload M

s

asso
iated data M

a

ENCODE

iphertext �

tag �

ENCRYPT MAC

M

p

�

�

M

o

M

e

M

n

M

t

M

p

en
apsulated pa
ket

Figure 4: The En
ode-then-EtM en
apsulation method.

both randomized and stateful, takes as input two messages M

a

;M

s

and returns a 5-tuple of mes-

sages (M

p

;M

o

;M

n

;M

e

;M

t

). These messages have essentially the same roles as in E&M and MtE

en
oding s
hemes. An important di�eren
e is that M

t

is
ombined with the output of the en
ryp-

tion algorithm before MACing. The de
oding algorithms may also be stateful, but not randomized.

They may share state. De
odeA, on input a string M

p

, outputs a 3-tuple (M

o

;M

n

;M

t

), or (?;?;

?) on error (if one is ? then all are ?). De
odeB, on input two messages M

p

;M

e

, returns a pair

(M

a

;M

s

), or (?;?) on error (if either M

a

or M

s

is ?, then both are ?). The signature of De
odeC

is as before.

An en
ryption s
heme, a MAC, and an appropriate EtM en
oding s
heme
an be
ombined to

obtain an En
ode-then-EtM CT as follows.

Constru
tion 7.1 (En
ode-then-EtM) Let EC

EtM

= (En
ode;De
odeA;De
odeB;De
odeC), let

SE = (K

e

; E ;D), and letMA = (K

t

;T ;V) respe
tively be EtM en
oding, en
ryption, and message-

authenti
ation s
hemes with
ompatible message spa
es (e.g., the outputs from En
ode are suitable

inputs to E and T). Let all states initially be ". We asso
iate to these s
hemes an En
ode-then-

EtM
ryptographi
 transform CT = (KG;En
ap;De
ap) whose
onstituent algorithms are de�ned

as follows:

Algorithm KG

K

e

R

 K

e

; K

t

R

 K

t

Return hK

e

;K

t

i

Algorithm En
ap

hK

e

;K

t

i

(M

a

;M

s

)

(M

p

;M

o

;M

n

;M

e

;M

t

)

R

 En
ode(M

a

;M

s

)

�

R

 E

M

o

K

e

(M

e

) ; �

R

 T

M

n

K

t

(hM

t

; �i)

C hM

p

; �; �i

Return C

Algorithm De
ap

hK

e

;K

t

i

(C)

If st =? then return (?;?)

If there does not exist M

p

; �; � s.t. C = hM

p

; �; �i then

st Box ; return (?;?)

Parse C as hM

p

; �; �i ; (M

o

;M

n

;M

t

) De
odeA(M

p

)

If M

o

= ? then st Box ; return (?;?)

v V

M

n

K

t

(hM

t

; �i; �)

If v = 0 then st Box ; De
odeC(?) ;

return (?;?)

M

e

 D

M

o

K

e

(�)

If M

e

= ? then st Box ; De
odeC(?) ;

return (?;?)

(M

a

;M

s

) De
odeB(M

p

;M

e

)

If M

s

= ? then st Box ; return (?;?)

De
odeC(>)

Return (M

a

;M

s

)

18

For a Type 4 CT, ea
h boxed portion of the de
apsulator should be ?. For all other types, the

boxed portion should be st. For the
all to De
odeA(M

p

), re
all that if any one of M

o

;M

n

;M

t

is

?, then they are all ?. For the
all to De
odeB(M

p

;M

e

), re
all that if any one of M

a

;M

s

is ?,

then they are both ?. Although only De
ap expli
itly maintains state in the above pseudo
ode,

the underlying en
oding, en
ryption, and MAC s
hemes may also maintain state.

Consisten
y requirements for EtM en
oding s
hemes. Consider any two pairs of mes-

sages (M

a

;M

s

); (M

a

;M

0

s

) with jM

s

j = jM

0

s

j. Let (M

p

;M

o

;M

n

;M

e

;M

t

)

R

 En
ode(M

a

;M

s

) for

En
ode in some state, and (M

0

p

;M

0

o

;M

0

n

;M

0

e

;M

0

t

)

R

 En
ode(M

a

;M

0

s

) for En
ode in some (possibly

di�erent) state. We require that jM

e

j = jM

0

e

j. Consider also any two sequen
es of message pairs

(M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : : and (N

1

a

; N

1

s

); (N

2

a

; N

2

s

); : : :. For i = 1; 2; : : : let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) =

En
ode(M

i

a

;M

i

s

) and (N

i

p

; N

i

o

; N

i

n

; N

i

e

; N

i

t

) = En
ode(N

i

a

; N

i

s

). Assume that ea
h sequen
e is gener-

ated with En
ode starting in its initial state. If En
ode is randomized, assume that both sequen
es

are generated using the same random tape. Consider any index i. If jM

j

s

j = jN

j

s

j and M

j

a

= N

j

a

for all j � i, then we require that M

i

p

= N

i

p

, M

i

o

= N

i

o

, M

i

n

= N

i

n

, and M

i

t

= N

i

t

.

We make the following additional
onsisten
y requirements on EC

EtM

, depending on the type of

CT in question. Let (M

1

a

;M

1

s

); (M

2

a

;M

2

s

); : : : be a sequen
e of messages and, beginning with En
ode

in its initial state, let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) = En
ode(M

i

a

;M

i

s

) for i = 1; 2; : : : up to MaxNum

EC

EtM

.

In what follows we use the notation De
ode[ABC℄ to denote any one of the de
oding algorithms.

Type 1. For any i and for any state of the de
oder, we require that De
odeA(M

i

p

) = (M

i

o

;M

i

n

;M

i

t

)

and De
odeB(M

i

p

;M

i

e

) = (M

i

a

;M

i

s

).

Type 2. For any distin
t indi
es i; j, we require that (M

i

p

;M

i

e

) 6= (M

j

p

;M

j

e

).

For any i, we require that for any state of the de
oder, De
odeA(M

i

p

) = (M

i

o

;M

i

n

;M

i

t

). If

De
odeB has not been invoked with (M

i

p

;M

i

e

) or if De
odeB has been invoked with (M

i

p

;M

i

e

) but

for ea
h su
h invo
ation the next
all to De
ode[ABC℄ was De
odeC(?), then De
odeB(M

i

p

;M

i

e

) =

(M

i

a

;M

i

s

).

Type 3. For any distin
t indi
es i; j, we require that (M

i

p

;M

i

e

) 6= (M

j

p

;M

j

e

).

For any i, we require that for any state of the de
oder, De
odeA(M

i

p

) = (M

i

o

;M

i

n

;M

i

t

). Fur-

thermore, if De
odeB has not been invoked with (M

j

p

;M

j

e

) for any j � i, or if De
odeB has been

invoked with (M

j

p

;M

j

e

), for some j � i, but for ea
h su
h invo
ation the next
all to De
ode[ABC℄

was De
odeC(?), then De
odeB(M

i

p

;M

i

e

) = (M

i

a

;M

i

s

).

Type 4. For i = 1; 2; : : : and the de
oder beginning in its initial state, let (m

i

o

;m

i

n

;m

i

t

) =

De
odeA(M

i

p

) and (m

i

a

;m

i

s

) = De
odeB(M

i

p

;M

i

e

). We require that M

i

a

= m

i

a

, M

i

s

= m

i

s

, M

i

o

= m

i

o

,

M

i

n

= m

i

n

, and M

i

t

= m

i

t

for all i.

Se
urity requirements for EtM en
oding s
hemes. The se
urity requirements for EtM

en
oding s
hemes are formalized in Appendix C. For Type n EtM en
oding s
hemes (i.e., EtM

en
oding s
hemes used to
onstru
t Type n CTs) we de�ne a se
urity property
alled etm-se
n. In

order for Type 1{Type 3 EtM en
oding s
hemes to be etm-se
1{etm-se
3-se
ure, it must be the
ase

that if M

p

and M

0

p

are distin
t strings, then they do not de
ode (via De
odeA) to identi
al M

n

;M

t

strings. For Type 2 EtM en
oding s
hemes it should also be the
ase that if De
odeB(M

p

;M

e

) is

alled followed by a
all De
odeC(>), then the next time De
odeB(M

p

;M

e

) is invoked, the response

is (?;?). For Type 3 EtM en
oding s
hemes it should also be the
ase that if M

p

;M

e

were in the

output of one invo
ation of En
ode, M

0

p

;M

0

e

were in the output of some later En
ode invo
ation,

and De
odeB(M

0

p

;M

0

e

) is
alled followed by a
all De
odeC(>), then a later
all De
odeB(M

p

;M

e

)

returns (?;?).

Consider some intera
tion with the en
oding and de
oding algorithms. Let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;

19

M

i

t

) denote the 5-tuple returned by En
ode after its i-th invo
ation. Let m

j

p

denote the parameter

to the j-th
all to De
odeA and let (m

j

o

;m

j

n

;m

j

t

) denote the response. Then for Type 4 en
oding

s
hemes it should be the
ase that (M

i

n

;M

i

t

) 6= (m

j

n

;m

j

t

) for all i 6= j. And, if M

j

p

6= m

j

p

, then it

should be the
ase that (M

j

n

;M

j

t

) 6= (m

j

n

;m

j

t

).

7.1 Summary of results

Chosen-plaintext priva
y. The following result, whi
h interprets Theorem F.1, shows how to

design an En
ode-then-EtM CT that preserves priva
y under
hosen-plaintexts atta
ks.

Result 7.2 (Priva
y of En
ode-then-EtM) To
onstru
t a Type n En
ode-then-EtM s
heme

CT from an en
ryption s
heme SE and a MAC, one should use a Type n EtM en
oding s
heme

that respe
ts the IV properties of SE. If all the
omponents satisfy their respe
tive
onsisten
y

requirements and SE is ind-
pa-se
ure, then CT will be a
ryptographi
 transform that provably

provides priva
y under
hosen-plaintext atta
ks (i.e., CT will be
t-priv-
pa-se
ure).

Integrity. We now show how to
onstru
t En
ode-then-EtM
ryptographi
 transforms meeting

the CT integrity goals. The following distills the results from Theorem F.2.

Result 7.3 (Integrity of En
ode-then-EtM) To
onstru
t a Type n En
ode-then-EtM s
heme

CT from an en
ryption s
heme SE and a MAC MA, one should use a Type n etm-se
n-se
ure

EtM en
oding s
heme that respe
ts the IV requirements of MA. If all the
omponents satisfy

their respe
tive
onsisten
y requirements and MA is unforgeable (uf-se
ure), then CT will be a

ryptographi
 transform that provably meets the
t-int-
txtn integrity notion.

Observe that for an En
ode-then-EtM CT, the base en
ryption s
heme is not required to be length

preserving. As for the previous paradigms, it is not hard to �nd base
omponents that satisfy the

requirements in the above guidelines.

8 Con
lusions and Future Work

In this paper we formalize what it means for di�erent types of
ryptographi
 transforms to be

se
ure, and we present guidelines for developers on how to build su
h
ryptographi
 transforms.

The analyses and re
ommendations are done in a general way, thereby allowing developers to
ontrol

the spe
i�
s of how to instantiate the re
ommendations.

Although our results en
ompass many of the ways developers might naturally
onstru
t
ryp-

tographi
 transforms, we do note that there are some ways of
onstru
ting CTs that
annot be

modeled with any of the three paradigms En
ode-then-fE&M, MtE, EtMg. Consider, for example,

a
ryptographi
 transform that �rst MACs some string and then uses the MAC tag as the IV for

the underlying en
ryption s
heme. Su
h a
onstru
tion falls outside of the three paradigms be
ause

it introdu
es additional inter
onne
tions between the en
ryption and authenti
ation
omponents.

We also do not
onsider en
ryption s
hemes with
hained initialization ve
tors sin
e doing so would

require feedba
k from the the en
ryption
omponent to the en
oding
omponent. Considering these

and other more advan
ed
omposition methods is the topi
 of future resear
h.

A
knowledgments

We thank David M
Grew and Chanathip Namprempre for
omments.

20

Referen
es

[1℄ C. Beaver, T. Draelos, R. S
hroeppel, and M. Torgerson. ManTiCore: En
ryption with joint

ipher-state authenti
ation, 2003. Cryptology ePrint Ar
hive 2003/154, available at http:

//eprint.ia
r.org/.

[2℄ M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
on
rete se
urity treatment of symmet-

ri
 en
ryption. In Pro
eedings of the 38th Annual Symposium on Foundations of Computer

S
ien
e, pages 394{403. IEEE Computer So
iety Press, 1997.

[3℄ M. Bellare, J. Kilian, and P. Rogaway. The se
urity of the
ipher blo
k
haining message

authenti
ation
ode. In Y. Desmedt, editor, Advan
es in Cryptology { CRYPTO '94, volume

839 of Le
ture Notes in Computer S
ien
e, pages 341{358. Springer-Verlag, Berlin Germany,

Aug. 1994.

[4℄ M. Bellare, T. Kohno, and C. Namprempre. Authenti
ated en
ryption in SSH: Provably

�xing the SSH binary pa
ket proto
ol. In Pro
eedings of the 9th Conferen
e on Computer and

Communi
ations Se
urity, Nov. 2002.

[5℄ M. Bellare and C. Namprempre. Authenti
ated en
ryption: Relations among notions and

analysis of the generi

omposition paradigm. In T. Okamoto, editor, Advan
es in Cryptology

{ ASIACRYPT 2000, volume 1976 of Le
ture Notes in Computer S
ien
e, pages 531{545.

Springer-Verlag, Berlin Germany, De
. 2000.

[6℄ M. Bellare and P. Rogaway. En
ode-then-en
ipher en
ryption: How to exploit non
es or redun-

dan
y in plaintexts for eÆ
ient
ryptography. In T. Okamoto, editor, Advan
es in Cryptology

{ ASIACRYPT 2000, volume 1976 of Le
ture Notes in Computer S
ien
e, pages 317{330.

Springer-Verlag, Berlin Germany, De
. 2000.

[7℄ M. Bellare, P. Rogaway, and D. Wagner. A
onventional authenti
ated-en
ryption mode, 2003.

Cryptology ePrint Ar
hive 2003/069, available at http://eprint.ia
r.org/.

[8℄ J. Bla
k, S. Halevi, H. Kraw
zyk, T. Krovetz, and P. Rogaway. UMAC: Fast and se
ure message

authenti
ation. In M. Wiener, editor, Advan
es in Cryptology { CRYPTO '99, volume 1666

of Le
ture Notes in Computer S
ien
e, pages 216{233. Springer-Verlag, Berlin Germany, Aug.

1999.

[9℄ B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password inter
eption in a SSL/TLS

hannel. In D. Boneh, editor, Advan
es in Cryptology { CRYPTO 2003, volume 2729 of Le
ture

Notes in Computer S
ien
e. Springer-Verlag, Berlin Germany, 2003.

[10℄ Y. Dodis and J. H. An. Con
ealment and its appli
ations to authenti
ated en
ryption. In

E. Biham, editor, Advan
es in Cryptology { EUROCRYPT 2003, volume 2656 of Le
ture

Notes in Computer S
ien
e, pages 312{329. Springer-Verlag, Berlin Germany, 2003.

[11℄ N. Ferguson, D. Whiting, B. S
hneier, J. Kelsey, S. Lu
ks, and T. Kohno. Helix: Fast en-

ryption and authenti
ation in a single
ryptographi
 primitive. In T. Johansson, editor,

Fast Software En
ryption 2003, Le
ture Notes in Computer S
ien
e. Springer-Verlag, Berlin

Germany, 2003.

[12℄ V. Gligor and P. Dones
u. Fast en
ryption and authenti
ation: XCBC en
ryption and XECB

authenti
ation modes. In Fast Software En
ryption 2001, Le
ture Notes in Computer S
ien
e.

Springer-Verlag, Berlin Germany, 2001.

21

[13℄ P. Hawkes and G. Rose. Primitive spe
i�
ation for SOBER-128, 2003. Cryptology ePrint

Ar
hive 2003/081, available at http://eprint.ia
r.org/.

[14℄ T. Iwata and K. Kurosawa. OMAC: One-key CBCMAC. In T. Johansson, editor, Fast Software

En
ryption 2003, Le
ture Notes in Computer S
ien
e. Springer-Verlag, Berlin Germany, 2003.

[15℄ C. Jutla. En
ryption modes with almost free message integrity. In B. P�tzmann, editor,

Advan
es in Cryptology { EUROCRYPT 2001, volume 2045 of Le
ture Notes in Computer

S
ien
e, pages 529{544. Springer-Verlag, Berlin Germany, May 2001.

[16℄ J. Katz and M. Yung. Unforgeable en
ryption and
hosen
iphertext se
ure modes of opera-

tion. In B. S
hneier, editor, Fast Software En
ryption 2000, volume 1978 of Le
ture Notes in

Computer S
ien
e, pages 284{299. Springer-Verlag, Berlin Germany, Apr. 2000.

[17℄ T. Kohno, J. Viega, and D. Whiting. The CWC authenti
ated en
ryption (asso
iated data)

mode, 2003. Cryptology ePrint Ar
hive 2003/106, available at http://eprint.ia
r.org/.

[18℄ H. Kraw
zyk. The order of en
ryption and authenti
ation for prote
ting
ommuni
ations (or:

How se
ure is SSL?). In J. Kilian, editor, Advan
es in Cryptology { CRYPTO 2001, volume

2139 of Le
ture Notes in Computer S
ien
e, pages 310{331. Springer-Verlag, Berlin Germany,

Aug. 2001.

[19℄ H. Kraw
zyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authenti
ationa.

IETF Internet Request for Comments 2104, Feb. 1997.

[20℄ P. Rogaway. Authenti
ated-en
ryption with asso
iated-data. In Pro
eedings of the 9th Con-

feren
e on Computer and Communi
ations Se
urity, Nov. 2002.

[21℄ P. Rogaway, M. Bellare, J. Bla
k, and T. Krovetz. OCB: A blo
k-
ipher mode of operation

for eÆ
ient authenti
ated en
ryption. In Pro
eedings of the 8th Conferen
e on Computer and

Communi
ations Se
urity, pages 196{205. ACM Press, 2001.

[22℄ S. Vaudenay. Se
urity
aws indu
ed by CBC padding { appli
ations to SSL, IPSEC, WTLS

. . . . In L. Knudsen, editor, Advan
es in Cryptology { EUROCRYPT 2002, volume 2332 of

Le
ture Notes in Computer S
ien
e, pages 534{545. Springer-Verlag, Berlin Germany, 2002.

A Type 5 Cryptographi
 Transforms

Type 5 CTs are designed to ensure the in-order delivery of pa
kets. Unlike Type 4 CTs, bogus

pa
kets should be reje
ted, but should not
ause the CT de
apsulation algorithm to reje
t all future

(possibly legitimate) pa
kets.

In what follows we present the
onsisten
y requirements for Type 5
ryptographi
 transforms,

as well as the
onsisten
y requirements for Type 5 E&M, MtE, and EtM en
oding s
hemes. The

notions of priva
y and integrity for Type 5 CTs are de�ned in Appendix B. The notions of se
urity

for Type 5 en
oding s
hemes are de�ned in Appendix C.

Consisten
y requirements. For a Type 5 CT, CT = (KG;En
ap;De
ap), let (M

1

a

;M

1

s

); (M

2

a

;

M

2

s

); : : : denote a sequen
e of message pairs and C

1

; C

2

; : : : denote their en
apsulation under En
ap

and any key K. We require that if De
ap

K

has not yet a

epted any message (i.e., De
ap

K

is in

its initial state or has always returned (?;?)), then De
ap

K

(C

1

) = (M

1

a

;M

1

s

). For i � 1, if the

only pa
kets a

epted by De
ap

K

are C

1

; C

2

; : : : ; C

i

, in that order but with possibly some bad (and

reje
ted) pa
kets in the sequen
e of messages given to De
ap

K

, then De
ap

K

(C

i+1

) = (M

i+1

a

;M

i+1

s

).

22

Consisten
y requirements for Type 5 E&M en
oding s
hemes. We use the term
alling

sequen
e to denote some sequen
e of
alls to De
ode[ABC℄ as they might appear in Constru
tion 5.1.

I.e., a
alling sequen
e
onsists of a
all De
odeA(M

p

) for some M

p

and, if the response is not ?,

a
all De
odeB(M

p

;M

e

) for some M

e

, and, if the response is not (?;?;?;?), a
all to De
odeC.

We say that (M

p

;M

e

) is su

essfully de
oded if, in a
alling sequen
e, the responses of the �rst two

de
oding algorithms are not ? or (?;?;?;?), respe
tively, and De
odeC(>) is
alled.

Assume that the de
oding algorithms are always
alled as per the
alling sequen
e (e.g., a

De
odeB
all is always followed by a De
odeC
all unless De
odeB returns (?;?;?;?)). Fix i � 0

and assume that the only messages that have been su

essfully de
oded are (M

1

p

;M

1

e

); : : : ; (M

i

p

;M

i

e

),

and that they were de
oded in order. We require that after invoking De
odeA(M

i+1

p

) followed by

De
odeB(M

i+1

p

;M

i+1

e

) and then De
odeC(>), the response to the �rst
all isM

i+1

o

and the response

to the se
ond
all is (M

i+1

a

;M

i+1

s

;M

i+1

n

;M

i+1

t

).

Consisten
y requirements for Type 5 MtE en
oding s
hemes. We use the term
alling

sequen
e to refer to some sequen
e of
alls to De
ode[ABC℄ as they might appear in Constru
tion 6.1.

I.e., a
alling sequen
e
onsists of a
all De
odeA(M

p

) and, if the response is not ?, either a
all

De
odeC(?) �nalizing the
alling sequen
e, or a
all De
odeB(M

p

;M

e

) for some M

e

and, if the

response is not (?;?;?;?), a
all to De
odeC. We say that (M

p

;M

e

) is su

essfully de
oded if,

in a
alling sequen
e, the responses of de
oding algorithms De
odeA and De
odeB are not ? or

(?;?;?;?), respe
tively, and De
odeC(?) is never
alled.

Assume that the de
oding algorithms are always
alled in su

essive
alling sequen
es. Fix i � 0

and assume that the only messages that have been su

essfully de
oded are (M

1

p

;M

1

e

); : : : ; (M

i

p

;M

i

e

),

and that they were de
oded in order. We require that after invoking De
odeA(M

i+1

p

) followed by

De
odeB(M

i+1

p

;M

i+1

e

) and then De
odeC(>), the response to the �rst
all isM

i+1

o

and the response

to the se
ond
all is (M

i+1

a

;M

i+1

s

;M

i+1

n

;M

i+1

t

).

Consisten
y requirements for Type 5 EtM en
oding s
hemes. We use the term
alling

sequen
e to refer to some sequen
e of
alls to De
ode[ABC℄ as they might appear in Constru
tion 7.1.

Note that they have exa
tly the same form as
alling sequen
es for Type 5 MtE en
oding s
hemes.

We say that (M

p

;M

e

) is su

essfully de
oded if, in a
alling sequen
e, the responses of de
oding

algorithms De
odeA and De
odeB are not (?;?;?) or (?;?), respe
tively, and De
odeC(?) is

never
alled.

Assume that the de
oding algorithms are always
alled in su

essive
alling sequen
es. Fix i � 0

and assume that the only messages that have been su

essfully de
oded are (M

1

p

;M

1

e

); : : : ; (M

i

p

;M

i

e

),

and that they were de
oded in order. We require that after invoking De
odeA(M

i+1

p

) followed by

De
odeB(M

i+1

p

;M

i+1

e

) and then De
odeC(>), the response to the �rst
all is (M

i+1

o

;M

i+1

n

;M

i+1

t

)

and the response to the se
ond
all is (M

i+1

a

;M

i+1

s

).

B Formal Notions of Se
urity

We use a
on
rete se
urity treatment in order to model s
hemes based on �nite obje
ts su
h as

blo
k
iphers and
ryptographi
 hash fun
tions. To an adversary atta
king a given s
heme we

asso
iate a number,
alled the advantage, that measures its su

ess in breaking the s
heme with

respe
t to a parti
ular notion of se
urity. Intuitively, the smaller the adversary's advantage against

a s
heme, the stronger the s
heme is with respe
t to that adversary. For ea
h of the se
urity notions

we
onsider here and in Appendix C, take \se
ure" to mean that the advantage (with respe
t to

that se
urity notion) of any adversary with \reasonable" resour
es is \small".

23

Cryptographi
 transforms. In what follows we present
hosen-plaintext priva
y and integrity

notions for
ryptographi
 transforms. As noted in the body of this paper, if a Type n CT meets

the
t-int-
txtn integrity notion and the
t-priv-
pa notion, then it will also provably meet a very

strong notion of priva
y under
hosen-
iphertext atta
ks (the proof of this fa
t follows the proof of

a similar result for authenti
ated en
ryption s
hemes in [5℄). This means that it suÆ
es to
onsider

the notions
t-priv-
pa and
t-int-
txtn. We do not dis
uss
hosen-
iphertext priva
y notions further.

Let CT = (KG;En
ap;De
ap) be a
ryptographi
 transform with key spa
e KeySp

CT

, asso
iated

data spa
e AdSp

CT

, and message spa
e MsgSp

CT

. For K 2 KeySp

CT

and b 2 f0; 1g, we denote

by En
ap

K

(�;LR(�; �; b)) an ora
le that takes input M

a

2 AdSp

CT

and M

0

;M

1

2 MsgSp

CT

, and

returns En
ap

K

(M

a

;M

b

) (i.e., the en
apsulation of the asso
iated data and either the left message

(b = 0) or the right message (b = 1)). In the tradition of [2℄, we
all this ora
le a left-or-right (LR)

en
apsulation ora
le. To de�ne priva
y of a
ryptographi
 transform we
onsider adversaries that

have a

ess to an LR en
apsulation ora
le En
ap

K

(�;LR(�; �; b)), for K returned by KG.

De�nition B.1 (Priva
y for
ryptographi
 transforms) Let CT = (KG;En
ap;De
ap) be a

ryptographi
 transform and let b 2 f0; 1g. Let A be an adversary with a

ess to an LR en
apsu-

lation ora
le En
ap

K

(�;LR(�; �; b)). Assume A returns a bit. Consider the following experiment.

Experiment Exp

t-priv-
pa-b

CT

(A)

K

R

 KG

Run A

En
ap

K

(�;LR(�;�;b))

Reply to En
ap

K

(M

a

;LR(M

0

;M

1

; b)) queries as follows:

C

R

 En
ap

K

(M

a

;M

b

) ; A(C

Until A returns a bit d

Return d

We require that for all queries M

a

;M

0

;M

1

to En
ap

K

(�;LR(�; �; b)), jM

0

j = jM

1

j. We de�ne the

t-priv-
pa advantage of
t-priv-
pa adversary A as

Adv

t-priv-
pa

CT

(A) = Pr

h

Exp

t-priv-
pa-1

CT

(A) = 1

i

� Pr

h

Exp

t-priv-
pa-0

CT

(A) = 1

i

:

De�nition B.2 (Integrity for
ryptographi
 transforms) Let CT = (KG;En
ap;De
ap) be a

ryptographi
 transform. Let A

1

, A

2

, A

3

, A

4

, and A

5

be adversaries ea
h with a

ess to an en
ap-

sulation ora
le En
ap

K

(�; �) and a de
apsulation-veri�
ation ora
le De
ap

�

K

(�). The de
apsulation-

veri�
ation ora
le, on input C, invokes De
ap

K

(C) and returns 1 if De
ap

K

(C) 6= (?;?) and 0

otherwise. Consider the experiments de�ned below. Ea
h experiment returns 1 if the adversary

\wins" and 0 otherwise.

Experiment Exp

t-int-
txt1

CT

(A

1

)

K

R

 KG ; S ;

Run A

En
ap

K

(�;�);De
ap

�

K

(�)

1

Reply to En
ap

K

(M

a

;M

s

) queries as follows:

C

R

 En
ap

K

(M

a

;M

s

) ; S S [fCg ; A

1

(C

Reply to De
ap

�

K

(C) queries as follows:

(M

a

;M

s

) De
ap

K

(C)

If (M

a

;M

s

) 6= (?;?) and C 62 S then return 1 EndIf

If (M

a

;M

s

) 6= (?;?) then A

1

(1

Else A

1

(0 EndIf

Until A

1

halts

24

Return 0

Experiment Exp

t-int-
txt2

CT

(A

2

)

K

R

 KG ; S ; ; S

0

 ;

Run A

En
ap

K

(�;�);De
ap

�

K

(�)

2

Reply to En
ap

K

(M

a

;M

s

) queries as follows:

C

R

 En
ap

K

(M

a

;M

s

) ; S S [fCg ; A

2

(C

Reply to De
ap

�

K

(C) queries as follows:

(M

a

;M

s

) De
ap

K

(C)

If (M

a

;M

s

) 6= (?;?) and (C =2 S or C 2 S

0

) then return 1 EndIf

If (M

a

;M

s

) 6= (?;?) then S

0

 S

0

[fCg ; A

2

(1

Else A

2

(0 EndIf

Until A

2

halts

Return 0

Experiment Exp

t-int-
txt3

CT

(A

3

)

K

R

 KG ; i 0 ; j 0

Run A

En
ap

K

(�;�);De
ap

�

K

(�)

3

Reply to En
ap

K

(M

a

;M

s

) queries as follows:

i i+ 1 ; C

i

R

 En
ap

K

(M

a

;M

s

) ; A

3

(C

i

Reply to De
ap

�

K

(C) queries as follows:

(M

a

;M

s

) De
ap

K

(C)

If (M

a

;M

s

) 6= (?;?) and C =2 fC

j+1

; : : : ; C

i

gthen return 1 EndIf

If (M

a

;M

s

) 6= (?;?) then j index of C in fC

j+1

; : : : ; C

i

g ; A

3

(1

Else A

3

(0 EndIf

Until A

3

halts

Return 0

Experiment Exp

t-int-
txt4

CT

(A

4

)

K

R

 KG ; i 0 ; j 0 ; phase 0

Run A

En
ap

K

(�;�);De
ap

�

K

(�)

4

Reply to En
ap

K

(M

a

;M

s

) queries as follows:

i i+ 1 ; C

i

R

 En
ap

K

(M

a

;M

s

) ; A

4

(C

i

Reply to De
ap

�

K

(C) queries as follows:

j j + 1 ; (M

a

;M

s

) De
ap

K

(C)

If j > i or C 6= C

j

then phase 1 EndIf

If (M

a

;M

s

) 6= (?;?) and phase = 1 then return 1 EndIf

If (M

a

;M

s

) 6= (?;?) then A

4

(1

Else A

4

(0 EndIf

Until A

4

halts

Return 0

Experiment Exp

t-int-
txt5

CT

(A

5

)

K

R

 KG ; i 0 ; j 0

Run A

En
ap

K

(�;�);De
ap

�

K

(�)

5

Reply to En
ap

K

(M

a

;M

s

) queries as follows:

i i+ 1 ; C

i

R

 En
ap

K

(M

a

;M

s

) ; A

5

(C

i

Reply to De
ap

�

K

(C) queries as follows:

(M

a

;M

s

) De
ap

K

(C)

25

If (M

a

;M

s

) 6= (?;?) and (j + 1 > i or C 6= C

j+1

) then return 1 EndIf

If (M

a

;M

s

) 6= (?;?) then j j + 1 ; A

5

(1

Else A

5

(0 EndIf

Until A

5

halts

Return 0

For n = 1; : : : ; 5, we de�ne the
t-int-
txtn advantage of
t-int-
txtn adversary A

n

as

Adv

t-int-
txtn

CT

(A

n

) = Pr

�

Exp

t-int-
txtn

CT

(A

n

) = 1

�

:

Priva
y for symmetri
 en
ryption s
hemes and MACs. We now des
ribe a notion of

hosen-plaintext priva
y for en
ryption s
hemes and MACs. Although the notion is most intuitive

when applied to en
ryption s
hemes, there are some situations where having a priva
y-preserving

MAC is useful.

To de�ne the priva
y of a symmetri
 en
ryption s
heme or MAC SE = (K; E ;D), we give

an adversary a

ess to a left-or-right (LR) en
ryption (or tagging) ora
le E

K

(�;LR(�; �; b)), for

some unknown key K returned by K and a bit b. On input I;M

0

;M

1

, where I 2 IVSp

SE

and

M

0

;M

1

2 MsgSp

SE

, the ora
le returns E

I

K

(M

b

). The following notion of se
urity extends the notion

of left-or-right-indistinguishability from [2℄ to en
ryption s
hemes that expli
itly take a non
e or

IV as input.

De�nition B.3 (Priva
y for symmetri
 en
ryption and MAC s
hemes) Let SE = (K; E ;

D) be a symmetri
 en
ryption s
heme or a message-authenti
ation s
heme, and let b 2 f0; 1g. Let

A

pa

be an adversary with a

ess to a left-or-right en
ryption (or tagging) ora
le E

K

(�;LR(�; �; b)).

Assume A

pa

returns a bit. Consider the following experiment.

Experiment Exp

ind-
pa-b

SE

(A

pa

)

K

R

 K

Run A

E

K

(�;LR(�;�;b))

pa

Reply to E

K

(I;LR(M

0

;M

1

; b)) queries as follows:

C

R

 E

I

K

(M

b

) ; A

pa

(C

Until A

pa

returns a bit d

Return d

We require that for all queries I;M

0

;M

1

to E

K

(�;LR(�; �; b)), jM

0

j = jM

1

j. We
all the adversary

A

pa

non
e-respe
ting if it never queries its ora
le with the same non
e twi
e. We
all the adversary

length-based IV-respe
ting if it
hooses the �rst IV uniformly at random and independently and if

the subsequent IVs are
omputed using the en
ryption s
heme's length-based IV-deriving fun
tion.

We
all the adversary random-IV-respe
ting if it only queries its ora
le with IVs
hosen uniformly

at random and independently. (As noted in the body, we
an
onsider su
h adversaries in our

redu
tions be
ause we
an
ontrol how the en
oding algorithms generate the IVs.) We de�ne the

hosen-plaintext (ind-
pa) advantage of ind-
pa adversary A as

Adv

ind-
pa

SE

(A

pa

) = Pr

h

Exp

ind-
pa-1

SE

(A

pa

) = 1

i

� Pr

h

Exp

ind-
pa-0

SE

(A

pa

) = 1

i

:

Intuitively, we say that the s
heme SE preserves priva
y against non
e-respe
ting (resp., length-

based IV-respe
ting or random-IV-respe
ting) adversaries if the advantage of all non
e-respe
ting

(resp., length-based IV-respe
ting or random-IV-respe
ting) adversaries with reasonable resour
es

is small.

26

De�nition B.4 (Priva
y for MACs under distin
t
hosen-plaintexts.) LetMA = (K;T ;

V) be a message-authenti
ation s
heme. Let b 2 f0; 1g. Let A be an adversary with a

ess to a

left-or-right tagging ora
le T

K

(�;LR(�; �; b)). Consider the following experiment.

Experiment Exp

ind-d
pa-b

MA

(A)

K

R

 K

Run A

T

K

(�;LR(�;�;b))

Reply to T

K

(I;LR(M

0

;M

1

; b)) queries as follows:

C

R

 T

I

K

(M

b

) ; A(C

Until A returns a bit d

Return d

We require that for all queries I;M

0

;M

1

to the tagging ora
le, jM

0

j = jM

1

j. If I

i

;M

i

0

;M

i

1

is the i-th

ora
le query, we require that for all indi
es j; k, j 6= k, (I

j

;M

j

0

) 6= (I

k

;M

k

0

) and (I

j

;M

j

1

) 6= (I

k

;M

k

1

)

(i.e., all left queries are distin
t and all right queries are distin
t). We
all the adversary A non
e-

respe
ting if it never queries its ora
le with the same non
e twi
e. We de�ne the distin
t-
hosen-

plaintext (ind-d
pa) advantage of ind-d
pa adversary A as

Adv

ind-d
pa

MA

(A) = Pr

h

Exp

ind-d
pa-1

MA

(A) = 1

i

� Pr

h

Exp

ind-d
pa-0

MA

(A) = 1

i

:

Intuitively, we say thatMA preserves distin
t-
hosen-plaintext priva
y against (non
e-respe
ting)

adversaries if the advantage of all (non
e-respe
ting) adversaries with reasonable resour
es is

small.

Unforgeability and pseudorandomness of MACs. We now spe
ify the notions of unforge-

ability and pseudorandomness for MACs.

De�nition B.5 (Unforgeability of MACs) Let MA = (K;T ;V) be a message-authenti
ation

s
heme. Let F be an adversary with a

ess to a tagging ora
le and a veri�
ation ora
le. Consider

the experiment:

Experiment Exp

uf-
ma

MA

(F)

K

R

 K ; S ;

Run F

T

K

(�;�);V

K

(�;�;�)

Reply to T

K

(I;M) queries as follows:

�

R

 T

I

K

(M) ; S S [f(I;M; �)g ; F (�

Reply to V

K

(I;M; �) queries as follows:

v V

I

K

(M; �)

If v = 1 and (I;M; �) 62 S then return 1

F (v

Until F halts

Return 0

We de�ne the uf advantage of the forger via

Adv

uf-
ma

MA

(F) = Pr

h

Exp

uf-
ma

MA

(F) = 1

i

:

De�nition B.6 (Pseudorandom fun
tions) Let F : f0; 1g

k

� M ! f0; 1g

L

be a family of

fun
tions from some message spa
e M to f0; 1g

L

, and let Rand

M!L

denote the family of all

fun
tions from M to f0; 1g

L

. Let D be an adversary with a

ess to an ora
le. Consider the

following experiment.

27

Experiment Exp

prf-b

F

(D)

If b = 1 then K

R

 f0; 1g

k

; g F

K

Else g

R

 Rand

M!L

EndIf

Run D

g

Reply to g(M) queries as follows:

D (g(M)

Until D returns a bit d

Return d

We de�ne the prf advantage of prf adversary D as

Adv

prf

F

(D) = Pr

h

Exp

prf-1

F

(D) = 1

i

� Pr

h

Exp

prf-0

F

(D) = 1

i

:

Relationships between notions. As shown in [3℄, if a MAC is a se
ure PRF, then it is also

uf-se
ure. (When we say a MACMA = (K;T ;V) is a se
ure PRF, we mean that the MAC takes

no IVs (i.e., IVSp

MA

= f"g) and the family of fun
tions F = f T

K

("; �) : K 2 KeySp

MA

g is a

se
ure PRF.) We also
omment that a number of popular MACs are proven to be se
ure PRFs.

Furthermore, as shown in [4℄, if a MAC is a se
ure PRF, then it also ind-d
pa-se
ure. The reader

may ask why we even introdu
e the ind-d
pa notion if most popular MACs are se
ure PRFs and

the PRF notion implies the ind-d
pa notion. The reason is that in our analysis we want to fo
us

on the minimum properties ne
essary in order to a
hieve our goals.

C Se
urity Properties for En
oding S
hemes

De�nition C.1 (Se
urity of E&M- and MtE-en
oding s
hemes) Consider an E&M or MtE

en
oding s
heme EC = (En
ode;De
odeA;De
odeB;De
odeC). Let A

pa

be an adversary with a

ess

to an en
oding ora
le En
ode(�; �) and for n = 1; : : : ; 5, let A

n

be an adversary with a

ess to an

en
oding ora
le and de
oding ora
les De
odeA(�), De
odeB(�; �), De
odeC(�) (the adversary may need

a

ess to all de
oding ora
les sin
e these may share state). Let (M

i

a

;M

i

s

) denote an adversary's

i-th en
oding query and let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) denote the response for that query. Let (m

i

p

;m

i

e

)

denote A

n

's i-th De
odeB(�; �) query and let (m

i

a

;m

i

s

;m

i

n

;m

i

t

) denote the response for that query.

Consider the following experiments. (The experiments Exp

mte-se
n

EC

(A

n

) for MtE are identi
al

to the Exp

e&m-se
n

EC

(A

n

) experiments for E&M.)

Experiment Exp

e&m-
oll

EC

(A

pa

)

Run A

En
ode(�;�)

pa

and if it makes two queries (M

i

a

;M

i

s

) and (M

j

a

;M

j

s

) to En
ode(�; �) su
h that i 6= j and

(M

i

n

;M

i

t

) = (M

j

n

;M

j

t

)

then return 1 else return 0

Experiment Exp

e&m-se
1

EC

(A

1

)

Run A

1

En
ode(�;�);De
odeA(�);De
odeB(�;�);De
odeC(�)

and, if the following o

urs:

| A

1

makes a query (M

i

a

;M

i

s

) to En
ode(�; �) and a query (m

j

p

;m

j

e

) to De
odeB(�; �) su
h that

(M

i

p

;M

i

e

) 6= (m

j

p

;m

j

e

) and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

then return 1 else return 0

Experiment Exp

e&m-se
2

EC

(A

2

)

Run A

2

En
ode(�;�);De
odeA(�);De
odeB(�;�);De
odeC(�)

and, if one of the following o

urs:

| A

2

makes a query (M

i

a

;M

i

s

) to En
ode(�; �) and a query (m

j

p

;m

j

e

) to De
odeB(�; �) su
h that

(M

i

p

;M

i

e

) 6= (m

j

p

;m

j

e

) and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

| A

2

twi
e makes a query (m

j

p

;m

j

e

) to De
odeB(�; �), the next De
ode[ABC℄ query following the �rst of

28

these queries is a
all De
odeC(>), and the response for the se
ond of these queries is not (?;?;?;?)

then return 1 else return 0

Experiment Exp

e&m-se
3

EC

(A

3

)

Run A

3

En
ode(�;�);De
odeA(�);De
odeB(�;�);De
odeC(�)

and, if one of the following o

urs:

| A

3

makes a query (M

i

a

;M

i

s

) to En
ode(�; �) and a query (m

j

p

;m

j

e

) to De
odeB(�; �) su
h that

(M

i

p

;M

i

e

) 6= (m

j

p

;m

j

e

) and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

| A

3

makes queries (m

j

p

;m

j

e

) and (m

j+l

p

;m

j+l

e

), l � 1, to De
odeB(�; �) su
h that the next

De
ode[ABC℄ query following the �rst of these queries is a
all De
odeC(>), the response for the

se
ond of these queries is not (?;?;?;?), and for some i; k with k � i,(m

j

p

;m

j

e

) = (M

i

p

;M

i

e

) and

(m

j+l

p

;m

j+l

e

) = (M

k

p

;M

k

e

)

then return 1 else return 0

Experiment Exp

e&m-se
4

EC

(A

4

)

Run A

4

En
ode(�;�);De
odeA(�);De
odeB(�;�);De
odeC(�)

and, if one of the following o

urs:

| A

4

makes a query (M

i

a

;M

i

s

) to En
ode(�; �) and a query (m

j

p

;m

j

e

) to De
odeB(�; �) su
h that

i 6= j and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

| A

4

makes a query (M

j

a

;M

j

s

) to En
ode(�; �) and a query (m

j

p

;m

j

e

) to De
odeB(�; �) su
h that

(M

j

p

;M

j

e

) 6= (m

j

p

;m

j

e

) and (M

j

n

;M

j

t

) = (m

j

n

;m

j

t

)

then return 1 else return 0

Experiment Exp

e&m-se
5

EC

(A

5

)

Run A

5

En
ode(�;�);De
odeA(�);De
odeB(�;�);De
odeC(�)

and, if one of the following o

urs:

| A

5

makes a query (M

i

a

;M

i

s

) to En
ode(�; �) and a query (m

j

p

;m

j

e

) to De
odeB(�; �) su
h that

(M

i

n

;M

i

t

) = (m

j

n

;m

j

t

) and, prior to the j-th De
odeB(�; �) query, A

5

did not make exa
tly i� 1

De
odeB(�; �) queries that returned messages (i.e., not ?) and that were followed by De
odeC(>)
alls

| A

5

makes a query (M

i

a

;M

i

s

) to En
ode(�; �) and a query (m

j

p

;m

j

e

) to De
odeB(�; �) su
h that

(M

i

p

;M

i

e

) 6= (m

j

p

;m

j

e

) and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

), and, prior to the j-th De
odeB(�; �) query, A

5

made

exa
tly i� 1 De
odeB(�; �) queries that returned messages (i.e., not ?) and that were followed by

De
odeC(>)
alls

then return 1 else return 0

We de�ne the e&m-
oll advantage of adversary A

pa

, and, for n = 1; : : : ; 5, the e&m-se
n advantage

and the mte-se
n advantage of adversary A

n

, respe
tively, as follows:

Adv

e&m-
oll

EC

(A

pa

) = Pr

h

Exp

e&m-
oll

EC

(A

pa

) = 1

i

Adv

e&m-se
n

EC

(A

n

) = Pr

h

Exp

e&m-se
n

EC

(A

n

) = 1

i

Adv

mte-se
n

EC

(A

n

) = Pr

h

Exp

mte-se
n

EC

(A

n

) = 1

i

:

De�nition C.2 (Se
urity of EtM en
oding s
hemes) Consider an EtM en
oding s
heme

EC = (En
ode;De
odeA;De
odeB;De
odeC). For n = 1; : : : ; 5, let A

n

be an adversary with a

ess

to an en
oding ora
le En
ode(�; �) and de
oding ora
les De
odeA(�), De
odeB(�; �), De
odeC(�) (the

adversary may need a

ess to all de
oding ora
les sin
e these may share state). Let (M

i

a

;M

i

s

)

denote an adversary's i-th en
oding query and let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) denote the response for

that query. Let m

i

p

denote A

n

's i-th De
odeA(�) query and let (m

i

o

;m

i

n

;m

i

t

) denote the response

for that query. Consider the following experiments.

Experiment Exp

etm-se
1

EC

(A

1

)

Run A

1

En
ode(�;�);De
odeA(�);De
odeB(�;�);De
odeC(�)

and, if the following o

urs:

| A

1

makes a query (M

i

a

;M

i

s

) to En
ode(�; �) and a query m

j

p

to De
odeA(�) su
h that

M

i

p

6= m

j

p

and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

then return 1 else return 0

29

Experiment Exp

etm-se
2

EC

(A

2

)

Run A

2

En
ode(�;�);De
odeA(�);De
odeB(�;�);De
odeC(�)

and, if one of the following o

urs:

| A

2

makes a query (M

i

a

;M

i

s

) to En
ode(�; �) and a query m

j

p

to De
odeA(�) su
h that

M

i

p

6= m

j

p

and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

| A

2

twi
e makes a query (m

j

p

;m

j

e

) to De
odeB(�; �), the next De
ode[ABC℄ query following the �rst of

these queries is a
all De
odeC(>), and the response for the se
ond of these queries is not (?;?)

then return 1 else return 0

Experiment Exp

etm-se
3

EC

(A

3

)

Run A

3

En
ode(�;�);De
odeA(�);De
odeB(�;�);De
odeC(�)

and, if one of the following o

urs:

| A

3

makes a query (M

i

a

;M

i

s

) to En
ode(�; �) and a query m

j

p

to De
odeA(�) su
h that

M

i

p

6= m

j

p

and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

| A

3

makes queries (m

j

p

;m

j

e

) and (m

j+l

p

;m

j+l

e

), l � 1, to De
odeB(�; �) su
h that the next

De
ode[ABC℄ query following the �rst of these queries is a
all De
odeC(>), the response for the

se
ond of these queries is not (?;?), and for some i; k with k � i, (m

j

p

;m

j

e

) = (M

i

p

;M

i

e

) and

(m

j+l

p

;m

j+l

e

) = (M

k

p

;M

k

e

)

then return 1 else return 0

Experiment Exp

etm-se
4

EC

(A

4

)

Run A

4

En
ode(�;�);De
odeA(�);De
odeB(�;�);De
odeC(�)

and, if one of the following o

urs:

| A

4

makes a query (M

i

a

;M

i

s

) to En
ode(�; �) and a query m

j

p

to De
odeA(�) su
h that

i 6= j and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

)

| A

4

makes a query (M

j

a

;M

j

s

) to En
ode(�; �) and a query m

j

p

to De
odeA(�) su
h that

M

j

p

6= m

j

p

and (M

j

n

;M

j

t

) = (m

j

n

;m

j

t

)

then return 1 else return 0

Experiment Exp

etm-se
5

EC

(A

5

)

Run A

5

En
ode(�;�);De
odeA(�);De
odeB(�;�);De
odeC(�)

and, if A

5

only invokes De
ode[ABC℄ in legitimate EtM

alling sequen
es (see Appendix A), and one of the following o

urs:

| A

5

makes a query (M

i

a

;M

i

s

) to En
ode(�; �) and a query m

j

p

to De
odeA(�) su
h that

(M

i

n

;M

i

t

) = (m

j

n

;m

j

t

) and, prior to the j-th De
odeA(�) query, A

5

did not make exa
tly i� 1

De
ode[ABC℄
alling sequen
es that ended in the
all De
odeC(>)

| A

5

makes a query (M

i

a

;M

i

s

) to En
ode(�; �) and a query m

j

p

to De
odeA(�) su
h that

M

i

p

6= m

j

p

and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

), and, prior to the j-th De
odeA(�) query, A

5

made exa
tly ; i� 1

De
ode[ABC℄
alling sequen
es that ended in the
all De
odeC(>)

then return 1 else return 0

For n = 1; : : : ; 5, we de�ne the etm-se
n advantage of adversary A

n

as

Adv

etm-se
n

EC

(A

n

) = Pr

h

Exp

etm-se
n

EC

(A

n

) = 1

i

:

D En
ode-then-E&M

Priva
y. The following is our priva
y result for En
ode-then-E&M CTs. This theorem is inter-

preted in Result 5.2.

Theorem D.1 (Priva
y of En
ode-then-E&M) Let SE, MA, and EC be an en
ryption, a

message authenti
ation, and an E&M en
oding s
heme, respe
tively. Let CT be the
ryptographi

transform asso
iated to them as per Constru
tion 5.1. Then, given any
t-priv-
pa adversary S

against CT, there exist adversaries A, B, D, and C su
h that

Adv

t-priv-
pa

CT

(S) � Adv

ind-
pa

SE

(A) +Adv

ind-d
pa

MA

(D) +

2 �Adv

e&m-
oll

EC

(C)

30

and

Adv

t-priv-
pa

CT

(S) � Adv

ind-
pa

SE

(A) +Adv

ind-
pa

MA

(B) :

Furthermore, A;B;D; and C use the same resour
es as S ex
ept that A's, B's, and D's inputs

to their respe
tive ora
les may be of di�erent lengths than those of S (due to the en
oding). If

EC is non
e-respe
ting-for-en
ryption (resp., length-based IV-respe
ting-for-en
ryption or random-

IV-respe
ting-for-en
ryption), then A will be non
e-respe
ting (resp., length-based IV-respe
ting

or random-IV-respe
ting). Similarly, if EC is non
e-respe
ting-for-MACing, then B and D will be

non
e-respe
ting.

The proof of Theorem D.1 is similar to the proof of Lemma 6.4 in [4℄ and is omitted here. Di�eren
es

between Theorem D.1 and Lemma 6.4 in [4℄ in
lude the following: we
onsider
ryptographi

transforms that take asso
iated data; we allow SE to take non
es, length-based IVs, or random-IVs

as input, andMA to take non
es as input; in order for the hybrid argument to work, we use the

fa
t that we
an re
over the randomness from the output of EC's en
oding fun
tion.

We remark that if the underlying MAC requires a non
e, then Adv

e&m-
oll

EC

(C) = 0. We also

note that some MACs (e.g., Carter-Wegman MACs) are ind-
pa- and ind-d
pa-se
ure.

Integrity. We begin by formalizing a new property for En
ode-then-E&M CTs. As with our

use of the ind-d
pa notion, we use this se
urity notion be
ause we feel it important to a

urately

des
ribe the spe
i�
 properties we require from the CT. In most situations, however, one does not

a
tually need to manipulate this de�nition but must merely invoke Lemma D.3.

De�nition D.2 Fix n 2 f1; : : : ; 5g. Let SE , MA, and EC, respe
tively, be an en
ryption, a

message authenti
ation, and an E&M en
oding s
heme. Let CT = (KG;En
ap;De
ap) be a Type

n
ryptographi
 transform asso
iated to them as per Constru
tion 5.1. Let A be an adversary

with a

ess to an en
apsulation ora
le En
ap

K

(�; �) and a de
apsulation ora
le De
ap

K

(�). Let

(M

i

a

;M

i

s

) denote the adversary's i-th en
apsulation ora
le query, (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) denote the

en
oding of that query, and hM

i

p

; �

i

; �

i

i denote the returned
iphertext. Let hm

i

p

; �

0

i

; �

0

i

i denote the

i-th de
apsulation query (assuming it is parseable), and m

i

o

;m

i

n

;m

i

e

;m

i

t

;m

i

a

;m

i

s

denote the internal

values in the de
apsulation pro
ess (or ? if an error o

urs during de
apsulation). A \wins" if it

makes a de
apsulation query hm

j

p

; �

0

j

; �

0

j

i su
h that (m

j

o

;m

j

e

) = (M

i

o

;M

i

e

) for some i 2 f1; : : : ; kg

but �

0

j

6= �

i

(where k is the number of En
ap

K

(�; �) ora
le queries made by A before A's j-th

de
apsulation query). We de�ne the e&m-sp advantage of e&m-sp adversary A as

Adv

e&m-sp

CT

(A) = Pr

h

K

R

 KG : A \wins"

i

:

The following lemma shows that if the underlying en
ryption s
heme is length preserving (su
h

as random-IV CBC mode as de�ned in the �rst example of a random IVed en
ryption s
heme in

Se
tion 3), then an adversary
annot win the game des
ribed in the above de�nition.

Lemma D.3 Fix n 2 f1; : : : ; 5g. Let SE , MA, and EC, respe
tively, be an en
ryption, a MAC,

and a Type n E&M en
oding s
heme. Let CT = (KG;En
ap;De
ap) be a Type n
ryptographi

transform asso
iated to them as per Constru
tion 5.1. Let A be an e&m-sp adversary. If SE 's

en
ryption operation is length-preserving, then

Adv

e&m-sp

CT

(A) = 0 :

Proof: If SE 's en
ryption operation is length-preserving, then given any IV I, the en
ryption

operation is bije
tive. This means A
an never win.

We
an now state our integrity result for En
ode-then-E&M
onstru
tions. This theorem is inter-

preted in Result 5.3.

31

Theorem D.4 (Integrity of En
ode-then-E&M) Fix n 2 f1; : : : ; 5g. Let SE , MA, and EC,

respe
tively, be an en
ryption, a MAC, and a Type n E&M en
oding s
heme. Let CT be a Type n

ryptographi
 transform asso
iated to them as per Constru
tion 5.1. Then, given any
t-int-
txtn

adversary I against CT, there exist adversaries F , C, and S su
h that

Adv

t-int-
txtn

CT

(I) � Adv

uf-
ma

MA

(F) +Adv

e&m-se
n

EC

(C) +

Adv

e&m-sp

CT

(S) :

Furthermore, F , C, and S use the same resour
es as I ex
ept that F 's messages to its ora
les

may be of di�erent lengths than I's queries to its ora
les (due to en
oding) and C's messages to

its de
oding ora
le may have slightly di�erent lengths than I's de
apsulation queries. If EC is

non
e-respe
ting-for-MACing, then F will be non
e-respe
ting.

We remark that the proof of the above for Type 4 CTs is similar to the proof of Theorem 6.5 of [4℄

ex
ept that we
onsider
ryptographi
 transforms that a

ept asso
iated data. Let us now
onsider

the proof for all types n 2 f1; : : : ; 5g.

Proof: Let F , C, and S be adversaries that run I and reply to I's ora
le queries using their own

ora
les. In more detail, F presents I with en
apsulation and de
apsulation-veri�
ation ora
les ex-

a
tly as in Constru
tion 5.1 ex
ept that F uses its own ora
les for handling tagging and veri�
ation

portions of Constru
tion 5.1. Similarly, C runs I exa
tly as in Constru
tion 5.1 ex
ept that it runs

all en
oding and de
oding operations through its own ora
les. In the
ase of S, S simply passes all

of I's en
apsulation and de
apsulation queries to its (S's) own ora
les.

Let (M

i

a

;M

i

s

) denote I's i-th ora
le query, let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) denote the en
oding of that

query, and let hM

i

p

; �

i

; �

i

i denote the returned
iphertext. Additionally, let hm

i

p

; �

0

i

; �

0

i

i denote the

i-th de
apsulation-veri�
ation query (assuming it is parseable), m

i

o

;m

i

n

;m

i

e

;m

i

t

;m

i

a

;m

i

s

denote the

internal values in the de
apsulation pro
ess (or ? if an error o

urs during de
apsulation). Let j

denote the index of I's (�rst) winning query and let k denote the number of en
apsulation ora
le

queries performed at the time I wins.

Let E be the event that I wins. By partitioning the event E, we see that if I su

eeds in forging,

then one of F , C, and S will also win their game.

For a Type 1 CT, let the event E be partitioned as follows:

E : I wins

E

1

: E o

urs and (m

j

p

;m

j

e

; �

0

j

) 2 f (M

i

p

;M

i

e

; �

i

) : 1 � i � k g // S wins

E

2

: E o

urs and (m

j

p

;m

j

e

; �

0

j

) 62 f (M

i

p

;M

i

e

; �

i

) : 1 � i � k g

E

2;1

: E

2

o

urs and (m

j

n

;m

j

t

; �

0

j

) 62 f (M

i

n

;M

i

t

; �

i

) : 1 � i � k g // F wins

E

2;2

: E

2

o

urs and (m

j

n

;m

j

t

; �

0

j

) 2 f (M

i

n

;M

i

t

; �

i

) : 1 � i � k g // C wins

The above partitioning shows that if the event E o

urs, then one of E

1

, E

2;1

, or E

2;2

must o

ur.

Note that if E

1

o

urs then S wins its game. This is be
ause m

j

p

=M

i

p

(and therefore m

j

o

=M

i

o

by

onsisten
y requirements on the en
oding s
heme) and �

0

j

= �

i

but �

0

j

6= �

i

(otherwise this would not

be a winning forgery for I). Consequently (m

j

o

;m

j

e

) = (M

i

o

;M

i

e

) but �

0

j

6= �

i

. Also, if E

2;1

o

urs,

then F forges. This is
lear from the fa
t that F never queried its tagging ora
le with (m

j

n

;m

j

t

)

(or, if it did, the response wasn't �

0

j

). Lastly, if E

2;2

o

urs, then C wins its game. This is be
ause

we know that there is some index i su
h that (m

j

n

;m

j

t

) = (M

i

n

;M

i

t

) but (m

j

p

;m

j

e

) 6= (M

i

p

;M

i

e

) (the

latter
omes from the event E

2

). Together, this means that the probability that I wins is upper

32

bounded by the sum of the probabilities that C, F , and S win their respe
tive games. The theorem

follows for Type 1 CTs.

Let us now
onsider the other types of
ryptographi
 transforms. For Type 2 we partition E as

follows:

E : I wins

E

1

: E o

urs and (m

j

p

;m

j

e

; �

0

j

) 2 f (M

i

p

;M

i

e

; �

i

) : 1 � i � k g

E

1;1

: E

1

o

urs and there does not exist i su
h that (m

j

p

; �

0

j

; �

0

j

) = (M

i

p

; �

i

; �

i

) // S wins

E

1;2

: E

1

o

urs and there exists i su
h that (m

j

p

; �

0

j

; �

0

j

) = (M

i

p

; �

i

; �

i

) // C wins

E

2

: E o

urs and (m

j

p

;m

j

e

; �

0

j

) 62 f (M

i

p

;M

i

e

; �

i

) : 1 � i � k g

E

2;1

: E

2

o

urs and (m

j

n

;m

j

t

; �

0

j

) 62 f (M

i

n

;M

i

t

; �

i

) : 1 � i � k g // F wins

E

2;2

: E

2

o

urs and (m

j

n

;m

j

t

; �

0

j

) 2 f (M

i

n

;M

i

t

; �

i

) : 1 � i � k g // C wins

Above the partitioning of event E is the same as with Type 1 ex
ept that we further partition

event E

1

. If the event E

1;1

o

urs then S wins (sin
e (m

j

o

;m

j

e

) = (M

i

o

;M

i

e

) for some index i but

�

0

j

6= �

i

). In the
ase of E

1;2

, in order for I's j-th de
apsulation query to be
onsidered a forgery, it

must be a replayed pa
ket. The �rst it would have been a

epted (by the
onsisten
y requirements

on
ryptographi
 transforms). This means that the De
odeB failed to return all ?s in response to

its se
ond query with m

j

p

;m

j

e

, allowing C to win.

For Type 3 we partition E as with Type 2. As with Type 2, when E

1;2

o

urs C will win its game

(although C's game with Type 3 en
oding s
hemes is di�erent than its game with Type 2 en
oding

s
hemes).

For Type 4 we partition E as follows:

E : I wins

E

1

: E o

urs and (m

j

n

;m

j

t

) 62 f(M

1

n

;M

1

t

); : : : ; (M

k

n

;M

k

t

)g // F wins

E

2

: E o

urs and (m

j

n

;m

j

t

) 2 f(M

1

n

;M

1

t

); : : : ; (M

k

n

;M

k

t

)g

E

2;1

: E

2

o

urs and either k < j or (m

j

p

;m

j

e

) 6= (M

j

p

;M

j

e

) // C wins

E

2;2

: E

2

o

urs and k � j and (m

j

p

;m

j

e

) = (M

j

p

;M

j

e

)

E

2;2;1

: E

2;2

o

urs and �

0

j

6= �

j

and (m

j

n

;m

j

t

) 62 f(M

1

n

;M

1

t

); : : : ; (M

j�1

n

;M

j�1

t

);

(M

j+1

n

;M

j+1

t

); : : : ; (M

k

n

;M

k

t

)g // F wins

E

2;2;2

: E

2;2

o

urs and �

0

j

6= �

j

and (m

j

n

;m

j

t

) 2 f(M

1

n

;M

1

t

); : : : ; (M

j�1

n

;M

j�1

t

);

(M

j+1

n

;M

j+1

t

); : : : ; (M

k

n

;M

k

t

)g // C wins

E

2;2;3

: E

2;2

o

urs and �

0

j

= �

j

. // S wins

If events E

1

or E

2;2;1

o

ur then F wins its game; if events E

2;1

or E

2;2;2

o

ur, then C wins its

game; if event E

2;2;3

o

urs, S wins its game. Note that, for E

2;2;3

, we make use of the fa
t that,

as per Constru
tion 5.1, on
e a forgery attempt is dete
ted, the de
apsulation algorithm enters the

state ?. This means that prior to the �rst forgery attempt all the de
apsulation-veri�
ation queries

were in order and, sin
e I's j-th de
apsulation-veri�
ation ora
le query is a forgery, it must be the

ase that �

0

j

6= �

j

. (Note that, for Type 4
onstru
tions, if the
onstru
tion didn't enter a halting

state we
ould not guarantee that �

0

j

6= �

j

.) Additionally, by the
onsisten
y requirements on the

en
oding s
heme, m

j

o

=M

j

o

.

Let us now
onsider Type 5. As before, let j denote the index of I's winning de
apsulation-

veri�
ation-ora
le query. Let l be the number of de
apsulation-veri�
ation ora
le queries (in
luding

33

the j-th query) that su

eeded in de
apsulating (i.e., not returning (?;?)). We now partition E

as follows:

E : I wins

E

1

: E o

urs and (m

j

n

;m

j

t

) 62 f(M

1

n

;M

1

t

); : : : ; (M

k

n

;M

k

t

)g // F wins

E

2

: E o

urs and (m

j

n

;m

j

t

) 2 f(M

1

n

;M

1

t

); : : : ; (M

k

n

;M

k

t

)g

E

2;1

: E

2

o

urs and either k < l or (m

j

p

;m

j

e

) 6= (M

l

p

;M

l

e

) // C wins

E

2;2

: E

2

o

urs and k � l and (m

j

p

;m

j

e

) = (M

l

p

;M

l

e

)

E

2;2;1

: E

2;2

o

urs and �

0

j

6= �

l

and (m

j

n

;m

j

t

) 62 f(M

1

n

;M

1

t

); : : : ; (M

l�1

n

;M

l�1

t

);

(M

l+1

n

;M

l+1

t

); : : : ; (M

k

n

;M

k

t

)g // F wins

E

2;2;2

: E

2;2

o

urs and �

0

j

6= �

l

and (m

j

n

;m

j

t

) 2 f(M

1

n

;M

1

t

); : : : ; (M

l�1

n

;M

l�1

t

);

(M

l+1

n

;M

l+1

t

); : : : ; (M

k

n

;M

k

t

)g // C wins

E

2;2;3

: E

2;2

o

urs and �

0

j

= �

l

. // S wins

If events E

1

or E

2;2;1

o

ur then F wins its game. Furthermore, if events E

2;1

or E

2;2;2

o

ur, then

C wins its game. And if event E

2;2;3

o

urs, S wins its game. To see that S wins when E

2;2;3

o

urs, we use the
onsisten
y requirement on Type 5 en
oding s
hemes that tell us that m

j

o

=M

l

o

.

Furthermore, it must be the
ase that �

0

j

6= �

l

sin
e otherwise the j-th de
apsulation-veri�
ation

query would not be a forgery.

E En
ode-then-MtE

Priva
y. We now state out result for En
ode-then-MtE
onstru
tions. This theorem is interpreted

in Result 6.2.

Theorem E.1 (Priva
y of En
ode-then-MtE) Let SE , MA, and EC, respe
tively, be an en-

ryption, a message authenti
ation, and an MtE en
oding s
heme. Let CT be the
ryptographi

transform asso
iated to them as per Constru
tion 6.1. Then, given any
t-priv-
pa adversary S

against CT, there exists an adversary A su
h that

Adv

t-priv-
pa

CT

(S) � Adv

ind-
pa

SE

(A) :

Furthermore, A use the same resour
es as S ex
ept that its input to its ora
le may be of di�erent

lengths than those of S (due to the en
oding). If EC is non
e-respe
ting-for-en
ryption (resp.,

length-based IV-respe
ting-for-en
ryption or random-IV-respe
ting-for-en
ryption), then A will be

non
e-respe
ting (resp., length-based IV-respe
ting or random-IV-respe
ting).

The proof is similar to that of Theorem 4.5 in [5℄ and is omitted here. We remark that the proof

relies on the fa
t that M

p

is independent of the
ontent of the messages and that, when run with

the same random tape, the M

o

values will also be the same. (These are
onsisten
y requirements

for MtE en
oding s
hemes spe
i�ed in Se
tion 6.)

Integrity. We begin by formalizing a new property for En
ode-then-MtE CTs, analogous to the

e&m-sp property for En
ode-then-E&M CTs. In most situations, one does not a
tually need to

manipulate this de�nition but must merely invoke Lemma E.3.

De�nition E.2 Fix n 2 f1; : : : ; 5g. Let SE , MA, and EC, respe
tively, be an en
ryption, a

message authenti
ation, and an MtE en
oding s
heme. Let CT = (KG;En
ap;De
ap) be a Type n

ryptographi
 transform asso
iated to them as per Constru
tion 6.1. Let A be an adversary with

a

ess to an en
apsulation ora
le En
ap

K

(�; �) and a de
apsulation ora
le De
ap

K

(�). Let (M

i

a

;M

i

s

)

34

denote the adversary's i-th en
apsulation ora
le query, (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) denote the en
oding

of that query, �

i

denote the intermediate tag, and hM

i

p

; �

i

i denote the returned
iphertext. Let

hm

i

p

; �

0

i

i denote the i-th de
apsulation query (assuming it is parseable), �

0

i

denote the intermediate

tag, and m

i

o

;m

i

n

;m

i

e

;m

i

t

;m

i

a

;m

i

s

denote the internal values in the de
apsulation pro
ess (or ? if

an error o

urs during de
apsulation). A \wins" if it makes a de
apsulation query hm

j

p

; �

0

j

i su
h

that (m

j

o

;m

j

e

; �

0

j

) = (M

i

o

;M

i

e

; �

i

) for some i 2 f1; : : : ; kg but �

0

j

6= �

i

(where k is the number of

En
ap

K

(�; �) ora
le queries made by A before A's j-th de
apsulation query). We de�ne the mte-sp

advantage of mte-sp adversary A as

Adv

mte-sp

CT

(A) = Pr

h

K

R

 KG : A \wins"

i

:

As in Appendix D, we present a lemma showing that if the underlying en
ryption s
heme is length

preserving, then an adversary
annot win the game des
ribed above.

Lemma E.3 Fix n 2 f1; : : : ; 5g. Let SE , MA, and EC, respe
tively, be an en
ryption, a MAC,

and a Type n MtE en
oding s
heme. Let CT = (KG;En
ap;De
ap) be a Type n
ryptographi

transform asso
iated to them as per Constru
tion 6.1. Let A be an mte-sp adversary. If SE 's

en
ryption operation is length-preserving, then

Adv

mte-sp

CT

(A) = 0 :

We now state our integrity result for En
ode-then-MtE
onstru
tions, whi
h is interpreted in

Result 6.3.

Theorem E.4 (Integrity of En
ode-then-MtE) Let SE , MA, and EC, respe
tively, be an

en
ryption, a message authenti
ation, and an MtE en
oding s
heme. Let CT be a Type n
ryp-

tographi
 transform asso
iated to them as per Constru
tion 6.1. Then, given any
t-int-
txtn

adversary I against CT, there exist adversaries F , C, and S su
h that

Adv

t-int-
txtn

CT

(I) � Adv

uf-
ma

MA

(F) +Adv

mte-se
n

EC

(C) +

Adv

mte-sp

CT

(S) :

Furthermore, F , C, and S use the same resour
es as I ex
ept that F 's messages to its ora
les

may be of di�erent lengths than I's queries to its ora
les (due to en
oding) and C's messages to

its de
oding ora
le may have slightly di�erent lengths than I's de
apsulation queries. If EC is

non
e-respe
ting-for-MACing, then F will be non
e-respe
ting.

Proof: The proof is based on the proof of Theorem D.4 for En
ode-then-E&M
onstru
tions. The

partitioning of event E for Type 2 and Type 3 di�ers slightly from the partitioning we used in the

proof of Theorem D.4. The di�eren
e is be
ause in the En
ode-then-MtE
onstru
tion the tag is

not sent in the
lear. The revised partitioning is as follows:

E : I wins

E

1

: E o

urs and (m

j

p

;m

j

e

; �

0

j

) 2 f (M

i

p

;M

i

e

; �

i

) : 1 � i � k g

E

1;1

: E

1

o

urs and there does not exist i su
h that (m

j

p

; �

0

j

) = (M

i

p

; �

i

) // S wins

E

1;2

: E

1

o

urs and there exists i su
h that (m

j

p

; �

0

j

) = (M

i

p

; �

i

) // C wins

E

2

: E o

urs and (m

j

p

;m

j

e

; �

0

j

) 62 f (M

i

p

;M

i

e

; �

i

) : 1 � i � k g

E

2;1

: E

2

o

urs and (m

j

n

;m

j

t

; �

0

j

) 62 f (M

i

n

;M

i

t

; �

i

) : 1 � i � k g // F wins

E

2;1

: E

2

o

urs and (m

j

n

;m

j

t

; �

0

j

) 2 f (M

i

n

;M

i

t

; �

i

) : 1 � i � k g // C wins

35

The partitioning of E for Type 1, Type 4, and Type 5 is the same as in the proof of Theorem D.4.

F En
ode-then-EtM

Priva
y. We now state our result for En
ode-then-EtM
onstru
tions. This theorem is interpreted

in Result 7.2.

Theorem F.1 (Priva
y of En
ode-then-EtM) Let SE , MA, and EC, respe
tively, be an en-

ryption, a message authenti
ation, and an EtM en
oding s
heme. Let CT be the
ryptographi

transform asso
iated to them as per Constru
tion 7.1. Then, given any
t-priv-
pa adversary S

against CT, there exists an adversary A su
h that

Adv

t-priv-
pa

CT

(S) � Adv

ind-
pa

SE

(A) :

Furthermore, A use the same resour
es as S ex
ept that its inputs to its ora
le may be of di�erent

lengths than those of S (due to the en
oding). If EC is non
e-respe
ting-for-en
ryption (resp.,

length-based IV-respe
ting-for-en
ryption or random-IV-respe
ting-for-en
ryption), then A will be

non
e-respe
ting (resp., length-based IV-respe
ting or random-IV-respe
ting).

The proof is similar to that of Theorem 4.7 in [5℄. We note that the proof relies on the fa
t that if the

en
oding algorithm is run using the same random tape, on two pairs of messages (M

a

;M

s

); (M

a

; N

s

)

su
h that jM

s

j = jN

s

j, then the resulting values for M

p

, M

o

, M

n

and M

t

will be the same. (These

are
onsisten
y requirements for EtM en
oding s
hemes spe
i�ed in Se
tion 7.)

Integrity. Our integrity results for En
ode-then-EtM CTs is presented below. This theorem is

interpreted in Result 7.3.

Theorem F.2 (Integrity of En
ode-then-EtM) Fix n 2 f1; : : : ; 5g. Let SE , MA, and EC,

respe
tively, be an en
ryption, a message authenti
ation, and an EtM en
oding s
heme. Let CT

be a Type n
ryptographi
 transform asso
iated to them as per Constru
tion 7.1. Then, given any

t-int-
txtn adversary I against CT, there exist adversaries F and C su
h that

Adv

t-int-
txtn

CT

(I) � Adv

uf-
ma

MA

(F) +Adv

etm-se
n

EC

(C):

Furthermore, F and C use the same resour
es as I ex
ept that F 's messages to its ora
les may

be of di�erent lengths than I's queries to its ora
les (due to en
oding) and C's messages to its

de
oding ora
le may have slightly di�erent lengths than I's de
apsulation queries. If EC is non
e-

respe
ting-for-MACing, then F will be non
e-respe
ting.

Proof: The proof is similar to that of Theorem D.4 and Theorem E.4.

Let F and C be adversaries that run I and reply to I's ora
le queries using their own ora
les.

Let (M

i

a

;M

i

s

) denote I's i-th en
apsulation query, let (M

i

p

;M

i

o

;M

i

n

;M

i

e

;M

i

t

) denote the en
oding

of that query, and let hM

i

p

; �

i

; �

i

i denote the returned
iphertext. Let hm

i

p

; �

0

i

; �

0

i

i denote the i-th

de
apsulation-veri�
ation query (assuming it
an be parsed), and m

i

o

;m

i

n

;m

i

t

;m

i

e

;m

i

a

;m

i

s

denote

the internal values in the de
apsulation pro
ess (or ? if an error o

urs during de
apsulation).

Assume that I wins and let j denote the index of its (�rst) winning de
apsulation-veri�
ation

query and k denote the number of en
apsulation queries performed at the time I wins. We will

prove that either F or C also wins its game.

For Type 1, Type 2, Type 3, and Type 5 CTs, we
onsider the following events:

36

E : I wins

E

1

: E o

urs and (m

j

n

;m

j

t

; �

0

j

; �

0

j

) 62 f (M

i

n

;M

i

t

; �

i

; �

i

) : 1 � i � k g // F wins

E

2

: E o

urs and (m

j

n

;m

j

t

; �

0

j

; �

0

j

) 2 f (M

i

n

;M

i

t

; �

i

; �

i

) : 1 � i � k g // C wins

Note that if event E o

urs then either E

1

or E

2

must o

ur. Event E

1

implies that the query

m

j

n

; hm

j

t

; �

0

j

i; �

0

j

is a

epted by the veri�
ation ora
le (otherwise hm

j

p

; �

0

j

; �

0

j

i would not be a winning

query for I) and is su
h that �

0

j

was never returned by the tagging ora
le as an answer to query

m

j

n

; hm

j

t

; �

0

j

i. Therefore, if E

1

o

urs then F forges.

Assume that event E

2

o

urs. Then there exists an index i � k su
h that (m

j

n

;m

j

t

; �

0

j

; �

0

j

) =

(M

i

n

;M

i

t

; �

i

; �

i

). For Type 1 CTs, it must be the
ase that m

j

p

6= M

i

p

(otherwise hm

j

p

; �

0

j

; �

0

j

i would

not be a winning query for I). Sin
e M

i

p

6= m

j

p

and (M

i

n

;M

i

t

) = (m

j

n

;m

j

t

), C wins. For Type 2

and Type 3 CTs, C also wins if m

j

p

6= M

i

p

. If m

j

p

= M

i

p

then for Type 2 CTs, it must be the
ase

that hm

j

p

; �

0

j

; �

0

j

i is a replayed pa
ket (otherwise this would not be a winning query for I). The

onsisten
y requirements for the en
oding s
heme and the en
ryption s
heme, imply that (m

j

p

;m

j

e

)

was de
oded
orre
tly (i.e., without returning (?;?)) twi
e. Therefore, C also wins in this
ase.

For Type 3 CTs, m

j

p

=M

i

p

implies that hm

j

p

; �

0

j

; �

0

j

i is a replayed or out-of-order pa
ket (otherwise

this would not be a winning query for I). Again, the
onsisten
y requirements for the en
oding

s
heme and the en
ryption s
heme, imply that C wins. For Type 4 CTs, it must be the
ase that

either i 6= j or m

j

p

6= M

j

p

(if i = j and m

j

p

= M

j

p

, then j � k and hm

j

p

; �

0

j

; �

0

j

i = hM

j

p

; �

j

; �

j

i,

whi
h
ontradi
ts the assumption that hm

j

p

; �

0

j

; �

0

j

i is a winning query for I). In both of these
ases

C wins. Finally, for Type 5 CTs, let l be the number of de
apsulation-veri�
ation ora
le queries

prior to the j-th one that su

eeded in de
apsulating (i.e., did not return (?;?)). Then it must

be the
ase that either l 6= i � 1 or m

j

p

6= M

i

p

(if l = i � 1 and m

j

p

= M

i

p

, then l + 1 � k and

hm

j

p

; �

0

j

; �

0

j

i = hM

l+1

p

; �

l+1

; �

l+1

i,
ontradi
ting the assumption that hm

j

p

; �

0

j

; �

0

j

i is a winning query

for I). In both of these
ases C wins. Hen
e for all CT types, E

2

implies that C wins.

37

