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Abstract. In PODC 2003, Park et al. [32] first introduce a connection
between fair exchange and sequential two-party multi-signature scheme
and provide a novel method of constructing fair exchange protocol by
distributing the computation of RSA signature. This approach avoids
the design of verifiable encryption scheme at the expense of having co-
signer store a piece of prime signer’s secret key. Dodis and Reyzin [20]
showed that the protocol in [32] is totally breakable in the registration
phase, then presented a remedy scheme which is provably secure in the
random oracle model, by utilizing Boldyreva non-interactive two-party
multi-signature scheme [8]. Security in the random oracle model does
not imply security in the real world. In this paper, we provide the first
two efficient committed signatures which are provably secure in the stan-
dard complexity model from strong RSA assumption. Then we construct
efficient optimistic fair exchange protocols from those new primitives.
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1 Introduction

An important issue in electronic commerce is how to exchange electronic data
between two potentially distributed parties in an efficient and fair manner. In-
tuitively, fairness allows two parties to exchange items in a fair way, so that
either each party gets other’s item, or neither party does. Examples of such ex-
changes include signing of electronic contracts, certificated e-mail delivery and
fair purchase of electronic goods over communication network. In such instances,
ensuring fairness is crucial if the participants are to be protected from fraud. The
problem of fair exchange has a rich history due to its fundamental importance.
In the following, we only briefly mention the body of research most relevant to
our results, and refer the reader to [4], [24] and [32] for further references.

Related works Early work on fair exchange of secrets/signatures, focused
on the gradual release of secrets to obtain simultaneity and fairness [11], [21], [25]
and [18]. The idea is that if each party alternately release a small portion of the
secret, then neither party has a considerable advantage over the other. Unfor-
tunately, such a solution has several drawbacks. Apart from being expensive in



terms of computation and communication, it has the problem in real situations
of uncertain termination.

An alternative approach to achieve fairness makes use of a trusted third party
(TTP). A TTP is essentially a judge that can be called in to handle disputes
between the participants. The TTP can be on-line in the sense of mediating after
every exchange as in [17] and [23], or off-line, meaning that it only gets involved
when something goes wrong (e.g., a participant attempts to cheat, or simply
crashes, or the communication delays between the participants are intolerably
high, etc.). The latter approach has been called optimistic [2].

Fair exchange protocols using verifiable encryption was proposed by Atenies
[1] and Bao et al. [7] independently. These protocols apply ad-hoc techniques
to crate the fairness primitive via a specific encryption scheme that confirms to
a given signature type. Unfortunately, the schemes proposed in [1] and [6] lack
any formal security analysis, and consequently, one of the schemes proposed in
[7] was shown to be insecure in [9] and [1]. In [3] and [4], Asokan et al. propose
an optimistic that uses a cryptographic primitive denoted as verifiable escrow to
produce the fairness. This is the first protocol immune to off-line attack.

In PODC 2003, Park et al. [32] first introduce a connection between fair
exchange and sequential two-party multi-signature scheme and provide a novel
method of constructing fair exchange protocol by distributing the computation of
RSA signature. This approach avoids the design of verifiable encryption scheme
at the expense of having co-signer store a piece of prime signer’s secret key.
Dodis and Reyzin [20] showed that the protocol in [32] is totally breakable in
the registration phase, then presented a remedy scheme which is provably secure
in the random oracle model, by utilizing Boldyreva non-interactive two-party
multi-signature scheme [8].

Our Results Security in the random oracle model does not imply security
in the real world. In this paper, we provide the first two efficient committed
signatures, which are provably secure in the standard complexity model from
strong RSA assumption. Then we construct efficient optimistic fair exchange
protocols from those new primitives.

The rest of paper is organized as follows: in section 2, we formalize the
security definition of committed signatures, and two committed signatures are
presented in the section 3. The optimistic fair exchange protocols derived from
these committed signatures are described in section 4.

2 Committed signatures

Dodis and Reyzin [20] introduce a unified model for non-interactive fair exchange
protocols, which results in a new primitive called committed signatures. Com-
mitted signatures generalize non-interactive verifiably encrypted signatures and
multi-signature schemes, both of which are sufficient for fair exchange.



2.1 Notions and definitions

Definition 1 A committed signature involves a primary singer Alice, a verifier
Bob and a co-singer (or arbitrator) Charlie, and is given by the following efficient
procedures:

Key generator: This is interactive protocol between a primary signer and a
co-signer, by the end of the which either one of the parties aborts, or the
primary signer learns her secret signing key Sk, the co-signer learns his secret
key ASK, and both parties agree on the primary signer’s public key PK and
partial verification key APK;

Fully signing algorithm Sig and its correspondent verification algorithm V er:
These are conventional signing and verification algorithms. Sig(m,SK) run
by the primary signer, outputs a signature σ on m, while V er(m,σ, PK) run
by any verifier, outputs 1 (accept) or 0 (reject);

Partially signing algorPSig and its correspondent verification algorithm PV er:
These are partial signing and verification algorithms, which are just like
ordinary signing and verification algorithms, except they can depend on the
public arbitration key APK. PSig(m,SK, PK,APK), run by the primary
signer, outputs a partial signature σ′, while PV er(m,σ′PK, APK), run by
any verifier, outputs 1 (accept) or 0 (reject);

Resolution algorithm Res: This is a resolution algorithm run by the co-singer
in case the primary singer refuses to open her signature σ to the verifier, who
in turn possesses a valid partial signature σ′ on m and a proof that he ful-
filled his obligation to the primary signer. In this case, Res(m,σ′, ASK, PK)
should output a valid full signature of m.

Correctness of committed signatures states that:

– V er(m,Sig(m,SK), PK) = 1;
– PV er(m,PSig(m,SK, PK,APK), PK,APK) = 1;
– and V er(m,Res(PSig(m,SK, PK,APK), ASK, APK,PK), PK) = 1.

2.2 Security of committed signatures

The security of committed signature scheme consists of ensuring three aspects:
security against a primary signer Alice, security against a verifier Bob, and se-
curity against a co-singer/abitrator Charlie.

Security against a primary signer Intuitively, a primary signer Alice
should not provide a partial signature which is valid both form the point views
of a verifier and a co-signer but which will not be opened into the primary
signer’s full signature by the honest co-signer. More formally:

Let P be an oracle simulating the partial signing procedure PSig, and R
be an oracle simulating the resolution procedure Res. Let k be system security
parameter. We require that any probabilistic polynomial time Adv succeeds with
at most negligible probability in the following experiment.



Experiment 1 (security against primary signer):

1.1: Key generation: (SK∗, PK,ASK,APK) ← Setup∗(1k), where Setup∗

denotes the run of Setup with the dishonest primary signer by the adversary,
and SK∗ denotes the adversary’s states.

1.2: R oracle query: In this phase, for each adaptively chosen message mj ,
the adversary computes its partial signature σj

′ for mj . Finally the adversary
forward σj

′ to the oracle R to obtain the full signature σj of message mj , where
1 ≤ j ≤ p(k), and p(·) is a polynomial. At the end, the adversary produces a
message-full signature pair (m,σ), i.e., (m,σ′) ← AdvR(SK∗, PK,APK), σ ←
Adv(m,σ′, ASK, APK,PK), where m 6= mj , 1 ≤ j ≤ p(k).

1.3. Success of Adv : = [PV er(m,σ′, APK,PK) = 1 ∧ V er(m,σ, PK) = 0].

Definition 2 A committed signature scheme is secure against primary signer
attack, if for any probabilistic polynomial time adversary Adv associated with
Resolution oracle, succeeds with at most negligible probability, where the prob-
ability takes over coin tosses in Setup(·), PSig(·) and R(·).

Security against verifier We consider the following scenario: suppose a
primary signer Alice and a verifier Bob are trying to exchange signature in a
fair way. Alice wants to commit to the transaction by providing her partial
signature. Of course, it should be computational infeasible for Bob to compute
the full signature from the partial signature. More formally, we require that any
probabilistic polynomial time adversary Adv succeeds with at most negligible
probability in the following experiment:

Experiment 2 (security against verifier):

2.1 Key generation: (SK,PK,ASK,APK)← Setup(1k), where Setup is run
by the honest primary signer and honest co-signer. Adversary Adv are admitted
to make queries to the two orales P and R.

2.2 P and R oracle query: For each adaptively chosen message mj , the ad-
versary obtains the partial signature σj

′ for mj from the oracle P . Then the
adversary forward σj

′ to the oracle R to obtain the full signature σj of message
mj , where 1 ≤ j ≤ p(k), and p(·) is a polynomial. At the end, the adversary
produces a message-full signature pair (m,σ) ← AdvP,R(PK, APK).

2.3 Success of adversary Adv : = [V er(m,σ, PK) = 1∧m /∈ Query(Adv,R)],
where Query(Adv,R) is the set of valid queries Adv asked to the resolution
oracle R, i.e., (m,σ′) such that PV er(m,σ′) = 1.

Definition 3 A committed signature scheme is secure against verifier attack,
if for any probabilistic polynomial time adversary Adv associated with partial
signing oracle P and the resolution oracle R, succeeds with at most negligible
probability, where the probability takes over coin tosses in Setup(·), P (·) and
R(·).

Security against co-signer/arbitrator This property is crucial. Even
though the co-signer (arbitrator) is semi-trusted, the primary signer does not
want this co-signer to produce a valid signature which the primary signer did



not intend on producing. To achieve this goal, we require that any probabilistic
polynomial time adversary Adv associated with partial signing oracle P , succeeds
with at most negligible probability in the following experiment:

Experiment 3 (security against co-signer/arbitrator):

3.1 Key generation: (SK,PK,ASK∗, APK)← Setup∗(1k), where Setup∗(1k)
is run by the dishonest co-signer. Adversary Adv are admitted to make queries
to the partial signing orale P .

3.2 P oracle query: For each adaptively chosen message mj , the adversary
obtains the partial signature σj

′ for mj from the oracle P , where 1 ≤ j ≤ p(k),
and p(·) is a polynomial. At the end, the adversary produces a message-full
signature pair (m,σ), i.e., (m,σ)← AdvP (ASK∗, PK,APK).

3.3 Success of adversary Adv : = [V er(m,σ, PK) = 1∧m /∈ Query(Adv, P )],
where Query(Adv, P ) is the set of valid queries Adv asked to the partial oracle
P , i.e., (m,σ′) such that PV er(m,σ′) = 1.

Definition 4 A committed signature scheme is secure against co-signer at-
tack, if for any probabilistic polynomial time adversary Adv associated with
partial signing oracle P , succeeds with at most negligible probability, where the
probability takes over coin tosses in Setup(·), P (·).

Definition 5 A committed signature scheme is secure if it is secure against
primary signer attack, verifier attack and co-signer attack.

3 Committed signatures based on strong RSA
assumption

The existence of committed signature is obvious since two arbitrary signature
schemes with keys (pk1, sk1), (pk2, sk2), and let PK = (pk1, pk2), SK = (sk1, sk2)
and σ = (σ1, σ2) is sufficient to build a secure committed signature even in the
standard complexity model. The rest works are to construct efficient yet secure
committed signatures. In this section, In this section, we are able to provide
two types of committed signatures: one is from a pair of independent ordinary
signatures and the other is from single signature.

3.1 Constructing committed signature from a pair of independent
signatures

We utilize Zhu’s signature as primary building block to construct committed
signature scheme. We remark that the use of Zhu’s signature is not essential in
the first scheme. The original Cramer-Shoup’s signature including trapdoor hash
signature [16], Camenisch and Lysyanskaya [13] and Fischlin’s signature scheme
[22] are all suitable for our purpose. However, among the signatures listed above,
Zhu’s signature is the most efficient (see the appendix 1 for more details).

Zhu’s signature scheme [33] Zhu’s signature scheme is defined as follows
(see appendix for more details):



– Key generation algorithm: Let p, q be two large primes such that p−1 = 2p′

and q − 1 = 2q′, where p′, q′ are two (l′ + 1)-bit strings. Let n = pq and
QRn be the quadratic residue of Z∗

n. Let g, h be two generators of QRn. The
public key is (n, g, h,X,H), where X ∈ QRn and H is a collision free hash
function with output length l. The private key is (p, q).

– Signature algorithm: To sign a message m, a (l +1)-bit prime e and a string
t ∈ {0, 1}l are chosen at random. The equation ye = XgthH(m)modn is
solved for y. The corresponding signature of the message m is (e, t, y).

– Verification algorithm: Given a putative triple (e, t, y), the verifier first checks
that e is an odd (l + 1)-bit number. Second it checks the validation that
X = yeg−th−H(m)modn. If the equation is valid, then the verifier accepts,
otherwise, it rejects.

Committed signature from independent signatures We are now ready
for describing the first committed signature scheme:

Key generation algorithm: (N1, N2, X1, X2, g1, h1, g2, h2,H)← Setup(1k), where
Ni = piqi and pi = 2p′i + 1, qi = 2q′i + 1, i = 1, 2. Let Gi be the quadratic
residue of Z∗

Ni
. Let g1, h1 be two generators of group G1 and g2, h2 be two

generators of G2. Let X1 ∈ QRN1 and X2 ∈ QRN2 are two random chosen
elements. Let H be a collision free hash function with output length l, eg,
l= 160. The public key PK = (N1, N2, X1, X2, g1, h1, g2, h2,H), APK =
(N2, X2, g2, h2,H). The secret key SK = (p1, q1, p2, q2) and ASK = (p2, q2).

Partial signing algorithm PSig and correspondent verification algorithm PV er:
To partially sign a message m, a (l + 1)-bit prime e and a l-bit string t are
chosen uniformly at random. The equation ye

1 = X1g
t
1h

H(m)
1 modN1 is solved

for y1. The partial signature of message m is σ′ = (e, y1, t). The partial
verification algorithm outputs 1, i.e., PV er(m,σ′) = 1 if σ′(m) satisfies the
equation: ye

1 = X1g
t
1h

H(m)
1 modN1.

Full signing algorithm Sig and correspondent verification algorithm V er: To
fully sign a message m, the primary signer solves the equation ye

2 = X2g
t
2h

H(m)
2 modN2

is solved for y2. The corresponding full signature of the message m is σ =
(e, t, y1, y2). To verify the correctness of signature scheme, it tests whether
the equations ye

1 = X1g
t
1h

H(m)
1 modN1 and ye

2 = X2g
t
2h

H(m)
2 modN2. If both

equations are valid, then the verification function outputs V er(m,σ) = 1,
otherwise, it outputs 0;

Resolution algorithm Res: Given a partial signature σ′ = (e, y1, t) of message
m, the co-signer computes y2 from the equation ye

2 = X2g
t
2h

H(m)
2 modN2.

The output of Res(m,σ′) =σ(m) := (e, t, y1, y2).

-We remark that the modulus N1 and N2 are chosen independently except for
the same bit-length (|N1| = |N2| = 2k, k is the system security parameter). The
safe primes (p1, q1) are chosen by the primary signer while (p2, q2) are jointly
chosen by the primary signer and the co-singer, e.g., the co-signer chooses (p2, q2)
uniformly at random for a prime number set, signs-then-encrypts the prime
numbers, and sends the cipher-text to the primary signer.



-We remark that at the registration stage in a fair exchange system, a pri-
mary signer Alice has to prove the certificate authority (CA) that N1, N2 is a
product of safe primes without revealing (p1, q1) and (p2, q2). This can be done
using zero-knowledge protocol of Camenisch and Michels [14]. After verifying
the construction of N1, N2, the CA issues a certificate CertN1,N2 .

-We also remark that if e is a (l+1)-bit prime chosen uniformly at random for
partially sign a message m, which is co-prime with φ(N1) then we can assume
that gcd(e, φ(N2)=1 also duo to the fact that Ni = piqi and pi = 2p′i + 1,
qi = 2q′i +1, pi, qi, and p′i and q′i are primes with the same bit length for i = 1, 2.

-There are two independent signatures used in our committed signature
scheme nevertheless the protocol is efficient and is nontrivial as we can reuse
the random string t and prime number e.

The proof of security We prove the security against primary signer Alice,
verifier Bob and co-signer/arbitrator Charlie respectively below under the strong
RSA assumption and the assumption that H is a collision resistant.

Security against the primary signer Alice is trivial since the co-signer holds
ASK in the protocol.

Security against the verifier Bob: Suppose Alice has committed to the trans-
action by providing her partial signature σ′, then it should be computational
infeasible for Bob to compute the signature σ from the partial signature σ′. Sup-
pose the malicious verifier Bob was given a valid partial signature σ′ = (e, t, y1)
of the message m generated by the honest primary signer Alice. If Bob can
forge a valid full signature (e, t, y1, y2) from σ′ = (e, t, y1) with non-negligible
probability, then we make use of Bob as a subroutine to break strong RSA as-
sumption. The simulation is the same as that in Zhu’s proof, therefore omitted
(see appendix 2 for more details).

Security against the co-signer/arbitrator Charlie: Even though the co-signer
(arbitrator) is semi trusted, the primary signer does not want this co-signer to
produce valid signature which the primary signer did not intend on producing. In
other words, if co-signer is able to forgery a partial signature of a message m, then
we make use of Charlie as a subroutine to break the strong RSA assumption.
Since Bob holds the correspondent ASK, therefore we can assume that Bob
succeeds in forging a valid partial signature with non-negligible probability. The
simulation is the same as that in Zhu’s proof, therefore omitted (see appendix 2
for more details).

3.2 Committed signature from single signature scheme

For the purpose of consistency, we prefer to design committed signature scheme
from single signature scheme. The existence of secure and efficient committed
signatures in the random oracle model are already known [20]. The challenge
problem is to construct a committed signatures from one signature in the stan-
dard complexity model. In this setting, we define a Cramer-Shoup like (CS-like )



trapdoor hash scheme in a quadratic residue as the trapdoor information allows
the co-signer to control the full signature.

CS-like trapdoor hash scheme defined over quadratic residue The
extended signature is defined as follows:

– Key generation algorithm: (N1, N2, X1, X2, h, g1, g2,H)← Setup(1k), where
Ni = piqi and pi = 2p′i + 1, qi = 2q′i + 1, i = 1, 2. Let p1, p2, q1, q2 be four
large primes such that pi − 1 = 2p′i and qi − 1 = 2q′i, where p′i, q

′
i are two

l′-bit strings, i = 1, 2. Let Ni = piqi and QRNi
be the quadratic residue of

Z∗
Ni

. Let X1, h be two generators of QRN1 . Let X2, g1, g2 be three generators
of QRN2 . The public key is (N1, N2, X1, X2, h, g1, g2,H). The private key is
(p1, q1, p2, q2).

– Signature algorithm: To sign a message m, a (l +1)-bit prime e and a string
t ∈ {0, 1}l is chosen uniformly at random. The equation:

ye = X1h
H(X2gt

1g
H(m)
2 modN2)modN1

is solved for y. The corresponding signature of the message m is (e, t, y).
– Verification algorithm: Given a putative triple (e, t, y), the verifier first checks

that e is an odd (l + 1)-bit number. Second it checks the validity of the
equation:

X1 = yeh−H(X2gt
1g

H(m)
2 modN2)modN1.

If the equation is valid, then the verifier accepts, otherwise, it rejects.

The proof of security is very similar with that of Zhu’s signature scheme that
is presented in the appendix, therefore omitted.

Committed signature from single signature We are now ready for de-
scribing the second committed signature scheme:

Key generation algorithm: (N1, N2, X1, X2, h, g1, g2,H) ← Setup(1k), where
Ni = piqi and pi = 2p′i + 1, qi = 2q′i + 1, i = 1, 2. Let p1, p2, q1, q2 be four
large primes such that pi−1 = 2p′i and qi−1 = 2q′i, where p′i, q

′
i are two l′-bit

strings, i = 1, 2. Let Ni = piqi and QRNi
be the quadratic residue of Z∗

Ni
. Let

X1, h be two generators of QRN1 . Let X2, g1, g2 be three generators of QRN2 .
The primary signer’s public key PK is (N1, N2, X1, X2, h, g1, g2,H), the pri-
vate key SK is (p1, q1, p2, q2). The APK of the co-signer is (N2, X2, g1, g2,H),
and the secret key ASK is (p2, q2).

Partial signing algorithm PSig and correspondent verification algorithm PV er:
To partially sign a message m, a (l + 1)-bit prime e and a l-bit string t are
chosen at random. The equation:

ye
1 = X1h

H(X2gt
1g

H(m)
2 modN2)modN1

is solved for y1. The partial signature of message m is σ′ = (e, t, y1). The par-
tial verification algorithm outputs 1, i.e., PV er(m,σ′) = 1 if σ′(m) satisfies
the equation:

ye
1 = X1h

H(X2gt
1g

H(m)
2 modN2)modN1



Full signing algorithm Sig and correspondent verification algorithm V er: The
equation

ye
2 = X2g

t
1g

H(m)
2 modN2

is solved for y2. The corresponding full signature of the message m is σ =
(e, t, y1, y2). To verify the correctness of full signature scheme, it tests whether
the equations

ye
1 = X1h

H(X2gt
1g

H(m)
2 modN2)modN1

and
ye
2 = X2g

t
1g

H(m)
2 modN2.

If both equations are valid, then the verification function outputs V er(m,σ) =
1, otherwise, it outputs 0;

Resolution algorithm Res: Given a partial signature σ′ = (e, t, y1) of message
m, the co-signer computes y2 from the equation

ye
2 = X2g

t
1g

H(m)
2 modN2.

The output of Res(m,σ′) =σ(m) := (e, t, y1, y2).

The remarks on the the first committed signature scheme is also suitable for
this scheme. And the proof of security of the second scheme is very similar with
that of the first one, therefore omitted.

4 Optimistic fair exchange protocol from committed
signature scheme

An optimistic fair exchange protocol consists of three sub-protocols: registra-
tion protocol, exchange protocol and dispute resolution protocol. Furthermore it
should be assumed that, although not explicitly stated in the protocol, sensitive
data being exchanged are encrypted to assure confidentiality. Using the following
optimistic fair exchange protocol, the primary signer Alice is trying to purchase
electronic goods from the verifier Bob, and co-signer Charlie is the TTP.

1. Registration protocol:
(1.1) Alice using KG, generates two safe primes p1, q1, and two random

generators g1, h1 ∈ QRN1 and a collision free hash function H with output
length l, where N1 = p1q1, p1 = 2p′1 + 1 and q1 = 2q′1 + 1, p1, q1, p

′
1, q

′
1 are

primes;
(1.2) Alice co-operated with her co-signer Charlie, using KG, generates two

safe primes p2, q2 and two random generators g2, h2 ∈ QRN2 , and a collision
free hash function H with output length l, where N2 = p2q2, p2 = 2p′2 + 1 and
q2 = 2q′2 + 1, p2, q2, p

′
2, q

′
2 are primes. In this phase, we emphasize that both

Alice and Bob know the explicit values p2, q2, p
′
2, q

′
2 at the end the interactive

protocol. Finally co-signer Charlie sings the agreed secret key and public key,
denoted by Certcosig.



(1.3) ASK=(p2, q2), APK=(N2, g2, h2,H); PK=(N1, N2, g1, h1, g2, h2,H),
SK=p1, p2, p2, q2.

(1.4) Alice sends APK=(N2, g2, h2,H) and its certificates Certcosig as well
as PK=(N1, N2, g1, h1, g2, h2,H) to the certificate authority (CA), and proves
that N1, N2 is a product of two safe primes without revealing (p1, q1) and (p2, q2).
This can be done using zero-knowledge protocol of Camenisch and Michels [14].
After verifying the construction of N1, N2, the CA issues a certificate CertN1,N2 .

2. Exchange protocol:
(2.1) The primary signer Alice computes her partial signature σ′, and sends

the verifier Bob CertN1,N2 , and σ′;
(2.2) Bob using CertN1,N2 verifies the certificate. Then Bob verifies the par-

tial signature σ′. If everything is in order, Bob sends his requirement to Alice;
(2.3) After verifying the requirement, Alice computes the full signature σ.

Then sends it to Bob.
(2.4) Bob verifies the full signature σ, and it ends the protocol if it is correct.

3. Dispute resolution protocol: If the verifier Bob does not receive the full
signature or the full signature is invalid, he initiates a dispute resolution protocol
by contracting the co-signer/arbitrator Charlie:

(3.1) Bob sends CertN1,N2 , σ′ and his obligation to Charlie;
(3.2) Charlie checks the validity of the items received. If everything is in

order, Charlie creates the full signature σ.
(3.3) The full signature is given to Bob, and the obligation is forward to

Alice.

The security of the fair exchange protocol follows from the security of the
underlying committed signature scheme. Similarly, we can define another fair
exchange protocol based on the committed signature scheme from the single
signature scheme. We observe that our framework does not address a subtle
issue of timely termination address by [3] and [4]. We remark that however
the technique of [3] and [4] can be easily added to our solution to resolve this
problem.

5 Conclusions

Two efficient committed signatures have been presented in this report. Both are
provably secure in the standard complexity model from strong RSA assumption.
Finally two efficient optimistic fair exchange protocols are derived from two new
primitives.

Acknowledgement Great thanks to Dr. Yevgeniy Dodis for discussions and
comments.
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Appendix: A formal proof of Zhu’s signature scheme

Appendix 1: Related works

Cramer-Shoup’s trapdoor hash scheme Cramer and Shoup presented
an elegant signature scheme called trapdoor hash function defined below (see
[16] for more details):

– Key generation algorithm: Let p, q be two large primes such that p−1 = 2p′

and q−1 = 2q′, where p′, q′ are two l′-bit strings. Let n = pq and QRn be the
quadratic residue of Z∗

n. Let x, h be two generators of QRn. Also chosen are
a group G of order s, where s is (l+1)-bit prime, and two random generators
g1, g2 of G. The public key is (n, h, x, g1, g2,H) along with an appropriate
description of G including s. The private key is (p, q).

– Signature algorithm: To sign a message m, a (l + 1)-bit prime e and a
string t ∈ Zs is chosen. The are chosen at random. The equation ye =
xhH(gt

1g
H(m)
2 )modn is solved for y. The corresponding signature of the mes-

sage m is (e, t, y).
– Verification algorithm: Given a putative triple (e, t, y), the verifier first checks

that e is an odd (l + 1)-bit number. Second it checks the validation that
x = yeh−H(gt

1g
H(m)
2 )modn. If the equation is valid, then the verifier accepts,

otherwise, it rejects.

Zhu’s signature scheme In their scheme, another extra group G is defined.
From the point views of computational complexity it is non-trivial work therefore
if one can reduce the computational and communication complexity while its
provability and efficiency can be maintained. Based on this observation, Zhu
provides a variation scheme below [33]:

– Key generation algorithm: Let p, q be two large primes such that p−1 = 2p′

and q − 1 = 2q′, where p′, q′ are two (l′ + 1)-bit strings. Let n = pq and
QRn be the quadratic residue of Z∗

n. Let g, h be two generators of QRn. The
public key is (n, g, h,X,H), where X ∈ QRn and H is a collision free hash
function with output length l. The private key is (p, q).

– Signature algorithm: To sign a message m, a (l +1)-bit prime e and a string
t ∈ {0, 1}l are chosen at random. The equation ye = XgthH(m)modn is
solved for y. The corresponding signature of the message m is (e, t, y).

– Verification algorithm: Given a putative triple (e, t, y), the verifier first checks
that e is an odd (l + 1)-bit number. Second it checks the validation that
X = yeg−th−H(m)modn. If the equation is valid, then the verifier accepts,
otherwise, it rejects.

Camenisch-Lysyanskaya’s signature scheme In SCN’02, Camenisch and
Lysyanskaya [13] presented alternative signature scheme. The Camenisch and
Lysyanskaya signature is described as follows (see [13] for more details).



– Key generation algorithm: On input 1k, choose a special RSA modulus n =
pq, p = 2p′ + 1, q = 2q′ + 1 of length ln = 2k. Choose, uniformly at random,
a, b, c ∈ QRn. Output PK = (n, a, b, c), and SK = p.

– Message space. Let lm be a parameter. The message space consist of all
binary string of length lm. Equivalently, it can be thought of as consisting
of integers in the range [0, 2lm).

– Signing algorithm: On input m, choose a random prime number e > 2lm+1

of length le = lm + 2, and a random number s of length ls = ln + lm + l,
where l is a security parameter. Compute the value v such that

v = cambsmodn

– Verification algorithm: To verify that the tuple (e, s, v) is a signature on
message m in the message space, check that v = cambsmodn and check that
2le > e > 2l2−1.

Fischlin’s signature scheme Later a similar modification is presented in
PKC’03 by Marc Fischlin. Fischlin’s signature scheme is defined as follows [22]:

– Key generation: Generating n = pq, where p = 2p′ + 1 and q = 2q′ + 1
for primes p, q, p′, q′. Also pick three quadratic residue h1, h2, x ∈ QRn. The
public key verification key is (n, h1, h2, x) and the private key is (p, q).

– Signing: To sign a message m calculate the l-bit hash value H(m) with a
collision-intractable hash function H(·). Pick a random (l + 1)-bit prime
e, and a random l-bit string α and compute a representation (−α,−(α ⊕
H(m)), y) of x with respect to h1, h2, e, n, i.e.,

ye = xh1
αh2

α⊕H(m)modn.

Computing this e-th root y from xh1
αh2

α⊕H(m) is easy given the factoriza-
tion of n. The signature is (e, α, y).

– Check that e is an odd (l + 1)-bit integer, that α is l bits long, and that
ye = xh1

αh2
α⊕H(m)modn.

The relationship between Zhu’s signature and Camenisch-Lysyanskaya’s sig-
nature scheme is obvious. Here we remark the relationship between Zhu’s signa-
ture schemes and Fischlins’s scheme therefore.

– It is clear that the algebraic structures of Zhu’s and Fischlin’s signature are
same;

– If there is no collision hash function involved in the above two schemes, then
it is not hard to show that the above two signature schemes are equivalent
in the same security level. More precisely, if Zhu’s scheme can be broken by
an adversary A with non-negligible probability then there exists an adver-
sary BA so that Fischlin’s signature scheme can be broken with the same
probability. The statement is also true by means of vis-a-vis argument.



– In case of a collision free hash function involved in both schemes, suppose
Zhu’s signature scheme can be broken with non-negligible probability, i.e.,
there is an adversary A is able to forge a faking message m in Zhu’s signature
scheme, denoted by σ(m) = (e, y, t) with non-negligible probability. Then
there exists an adversary BA in Fischlin’s signature scheme so that it is able
to produce a valid signature σ(m′) = (e, y, t) for any message in the set
S := {m′|H(m) ⊕ H(m′) = t}, where t is a component of faking signature
σ(m) correspondent to Zhu’s signature scheme. The statement is also true
by means of vis-a-vis argument.

Appendix 2: Formal proof of Zhu’s signature scheme

Main result: Zhu’s signature scheme is immune to adaptive chosen-message
attack under the strong RSA assumption and the assumption that H is a collision
resistant.

Proof: Assume that the signature scheme is NOT secure against adaptive
chosen message attack. That is, there is an adversary, who is able to forge the
signature (e, t, y) of a message m(m 6= mi, 1 ≤ i ≤ f) with non-negligible prob-
ability after it has queried correspondent signature of each message m1, · · · ,mf ,
which is chosen adaptively by the adversary. Let (e1, t1, y1), · · · , (ef , tf , yf ) be
signatures provided by the signing oracle corresponding to a set of messages
m1, · · · ,mf . We consider three types of forgeries: 1) for some 1 ≤ j ≤ f , e = ej

and t = tj ; 2) for some 1 ≤ j ≤ f , e = ej and t 6= tj ; 3) for all 1 ≤ j ≤ f ,
e 6= ej . We should show that any forgery scheme of the two types will lead to
a contradiction to the assumptions of the theorem. This renders any forgery
impossible.

Type 1-Forger

We consider an adversary who chooses a forgery signature such that e = ej

for a fixed j: 1 ≤ j ≤ f , where f is the total number of the queries to the
signing oracle. If the adversary succeeds in a signature forgery as type1 with
non-negligible probability then given n, we are able to compute z1/r with non-
negligible probability, where r is a (l + 1)-bit prime. This contradicts to the
assumed hardness of the standard RSA problem. We state the attack in de-
tails as follows: given z ∈ Z∗

n and r, we choose a set of total f − 1 primes
with length (l + 1)-bit e1, ...ej−1, ej+1, ..., ef uniformly at random. We then cre-
ate the correspondent public key (X, g, h) of the simulator as follows: given
z ∈ Z∗

n and r, we choose a set of total f − 1 primes with length (l + 1)-bit
e1, ...ej−1, ej+1, ..., ef uniformly at random. We choose w, v ∈ Zn uniformly at
random, and compute h = z2e1...ej−1ej+1...ef , g = v2e1···ef z2e1...ej−1ej+1...ef and
X = w2βe1···ef z2e1...ej−1ej+1...ef (−α), where α ∈ {0, 1}l+1 and β ∈ Zn are chosen
uniformly at random.

Since the simulator knows each ei, therefore it is easy to compute the i-th
signing query. What we need to show is how to simulate the j-th signing query.



This can be done as follows:

y
ej

j = Xgtj hH(mj) = (wβvtj )2e1···ef z2e1...ej−1ej+1...ef (−α+tj+H(mj))

Now we set −α + tj + H(mj) = 0, i.e, tj = α−H(mj).
To show the simulation above is non-trivial, we should show ti is uniformly

distributed over {0, 1}l with non-negligible amount. Since α ∈ {0, 1}l+1 is chosen
uniformly at random, i.e., 0 ≤ α ≤ 2l+1 − 1, the probability tj belongs to the
correct interval and it does so with the correct uniform distribution can be
computed as follows:

(2l+1 − 1−H(mj)− 2l + 1) + H(mj)
(2l+1 − 1−H(mj))− (−H(mj)) + 1

= 1/2

Suppose the adversary is able to forge a faking signature of message m,
denoted by (e, y, t), such that ej = e(= r), tj = t. Notice that one can not
assume that ej = e, tj = t and yj = y, since H is a collision free hash function.
Now we have two equations: ye

j = XgthH(mj) and ye = XgthH(m). Consequently,
we obtain the equation:

(
yj

y
)e = hH(mj)−H(m) = z2e1,...ej−1,ej+1,...,ef (H(mj)−H(m))

It follows that one can extract the e-th root of z with non-negligible probabil-
ity. Therefore, we arrive at the contradiction of the standard hardness of RSA
assumption.

Type 2-Forger

We consider an adversary who succeed in forging a valid signature such that
e = ej , t 6= ej for a fixed j: 1 ≤ j ≤ f , where f is the total number of the
queries to the signing oracle. If the adversary succeeds in a signature forgery
as type1 with non-negligible probability then given n, we are able to compute
z1/r with non-negligible probability for a given z and r, where r is a (l + 1)-bit
prime. This contradicts to the assumed hardness of the standard RSA problem.
We state the attack in details as follows: given z ∈ Z∗

n and r, we choose a set
of total f − 1 primes with length (l + 1)-bit e1, ...ej−1, ej+1, ..., ef at random.
We then create the correspondent public key (X, g, h) of the simulated signature
scheme as follows: g = z2e1...ej−1ej+1...ef , h = v2e1...ef and X = g−αw2e1...ef ,
where w, v ∈ Zn and α is a l-bit random string. Since QRn is a cyclic group,
we can assume that g, h are generators of QRn with overwhelming probability.
To sign the i-th message mi(i 6= j), the signing oracle selects a random string
ti ∈ {0, 1}l, and computes:

yi
ei = ((wvH(mi))2e1...ei−1ei+1...ef z2(ti−α)Πs 6=i,s 6=jes)ei

The output of the signing oracle is a signature of message mi, denoted by
σ(mi) = (ei, yi, ti).



To sign the j-th message mj , the signing oracle, sets tj ← α and computes:

yj
ej = ((wvH(mj))2Πs 6=jes)ej

The output of the signing oracle is a signature of message mj , denoted by
σ(mj) = (ej , yj , tj).

Let σ(m) = (e, y, t) be a valid signature forged by the adversary of message
m. By assumption, we know that ye = XgthH(m). Consequently, we have the
following equation:

gtj hH(mj)yj
ej = gthH(m)ye

Equivalently
z2(α−t)Πi6=jei = (v2(H(m)−H(mj))Πi6=jei

y

yj
)ej

Since tj = α and t 6= ti by assumption, it follows that t 6= α. We then apply
Guillou-Quisquater lemma to extract the r-th root of z, where r = ej .

Type 3-Forger

We consider the second type of the attack: the adversary forgery is that for
all 1 ≤ j ≤ f , e 6= ej . If the adversary succeeds in forgery with non-negligible
probability, then given n, a random z ∈ Z∗

n, we are able to compute z1/d (d > 1
) with non-negligible probability, which contradicts to the assumed hardness of
strong RSA assumption. We state our attack in details as follows: we generate g
and h with the help of z. We define g = z2e1...ef and h = ga, where a ∈ (1, n2), is a
random element. We can assume that g is a generator of QRn with overwhelming
probability. Finally, we define X = gb, where b ∈ (1, n2). Since the simulator
knows the all ej , the signature oracle can be perfectly simulated. Let (e, t, y) be
a forgery signature of message m. It yields the equation ye = XgthH(m) = zE ,
where E = (b + t + aH(m))2e1...ef .

Since we are able to compute (e/E)-th root of z provided e is a not a divisor
of E according to the lemma of Guillou and Qusiquater, it is sufficient to show
that e is not a divisor of E with non-negligible probability. Due to the the
fact that gcd(e, e1e2 · · · ef ) = 1, it is sufficient to show that e is not a divisor of
b+t+aH(m) with non-negligible probability. Since b ∈ (1, n2), it follows that one
can write b = b′p′q′+ b′′. Therefore, the probability that b+ t+aH(m) ≡ 0mode
is about 1/e.

Remark on Type 3- Forger: To show that e|(b + t + aH(m) with negligible
probability, one may make use of randomness of a ∈ (1, n2). That is one can
write a as a = a′p′q′ +a′′. It follows a′ is a random element from the adversary’s
view. Hence the probability that b + t + aH(m) ≡ 0mode is about 1/e. Thus,
with non-negligible probability, e is not a divisor of b + t + aH(m). We point
out that since the adversary may find H(m) = 0, the term aH(m) may be
cancelled in the formula in the equation. Thus the random argument must be
done in term b instead of aH(m) since collision-resistance does not imply zero-
finder intractability in general. This remark also suitable for Cramer-Shoup’s
argument.


