
Parallelizing Expliit Formula for Arithmeti in

the Jaobian of Hyperellipti Curves

(Full Version)

Pradeep Kumar Mishra and Palash Sarkar

Cryptology Researh Group,

Applied Statistis Unit,

Indian Statistial Institute, 203 B T Road,

Kolkata-700108, INDIA

Abstrat. One of the reent thrust areas in researh on hyperellipti

urve ryptography has been to obtain expliit formulae for perform-

ing arithmeti in the Jaobian of suh urves. We ontinue this line of

researh by obtaining parallel versions of suh formulae. Our �rst ontri-

bution is to develop a general methodology for obtaining parallel algo-

rithm of any expliit formula. Any parallel algorithm obtained using our

methodology is provably optimal in the number of multipliation rounds.

We next apply this methodology to Lange's expliit formula for arith-

meti in genus 2 hyperellipti urve { both for the aÆne oordinate and

inversion free arithmeti versions. Sine enapsulated add-and-double al-

gorithm is an important ountermeasure against side hannel attaks, we

develop parallel algorithms for enapsulated add-and-double for both of

Lange's versions of expliit formula. For the ase of inversion free arith-

meti, we present parallel algorithms using 4, 8 and 12 multipliers. All

parallel algorithms desribed in this paper are optimal in the number of

parallel rounds. One of the onlusions from our work is the fat that

the parallel version of inversion free arithmeti is more eÆient than the

parallel version of arithmeti using aÆne oordinates.

Keywords : hyperellipti urve ryptography, expliit formula, parallel

algorithm, Jaobian, enapsulated add-and-double.

1 Introdution

Hyperellipti urves present a rih soure of abelian groups over whih the dis-

rete logarithm problem is believed to be diÆult. Hene these objets an be

used for implementation of various publi key primitives.

The main operation in a hyperellipti urve based primitive is salar multi-

pliation, whih is the operation of omputing mX , where m is an integer and X

is a (redued) divisor in the Jaobian of the urve. Any algorithm for salar mul-

tipliation requires an eÆient method of performing arithmeti in the Jaobian.

This arithmeti essentially onsists of two operations { addition and doubling of

divisors.

The basi algorithm for performing arithmeti in the Jaobian of hyperellipti

urves is due to Cantor [1℄. However, this algorithm is not suÆiently fast for

pratial implementation. There has been extensive researh on algorithms for

eÆient arithmeti. The main tehnique is to obtain so alled \expliit formula"

for performing addition and doubling. These expliit formulae are themselves

omposed of addition, multipliation, squaring and inversion operations over

the underlying �nite �eld. Moreover, these formulae are spei� to a partiular

genus. Thus there are separate formulae for genus 2 and genus 3 urves. See

Table 1 in Setion 2 for more details.

In this paper, we onsider the problem of parallel exeution of expliit for-

mula. An expliit formula an ontain quite a few �eld multipliations and squar-

ings. (In ertain ases, this an even be 50 or more.) On the other hand, the

number of inversions is usually at most one or two. An expliit formula usu-

ally also ontains many �eld additions; however, the ost of a �eld addition is

signi�antly less than the ost of a �eld multipliation or inversion. Hene the

dominant operation in an expliit formula is �eld multipliation.

On inspetion of di�erent expliit formulae appearing in the literature there

appear to be groups of multipliation operations that an be exeuted in parallel.

Clearly the ability to perform multipliations in parallel will improve the speed

of exeution of the algorithm. This gives rise to the following question: Given an

expliit formula, what is the best parallel algorithm for omputing the formula?

Our �rst ontribution is to develop a general methodology for obtaining paral-

lel version of any expliit formula. The methodology guarantees that the obtained

parallel version requires the minimum number of rounds. The methodology an

be applied to any expliit formula appearing in the literature. (There ould also

be other possible appliations.)

The most eÆient expliit formula for performing arithmeti in the Jaobian

of genus 2 urve is given in [11, 12℄. In [11℄, the aÆne oordinate representation of

divisors is used and both addition and doubling involve a �eld inversion. On the

other hand, in [12℄ the expliit formula is developed for inversion free arithmeti

in the Jaobian.

Our seond ontribution is to apply our methodology to both [11℄ and [12℄.

For pratial appliations, it is neessary to onsider resistane to side hannel

attaks. One important ountermeasure is to perform a so-alled enapsulated

add-and-double algorithm (see [3, 6, 7℄ for details). We develop parallel versions

of enapsulated add-and-double algorithm for both [11℄ and [12℄. In many sit-

uations, the number of parallel multipliers available may be limited. To deal

with suh situations we present the enapsulated add-and-double algorithm us-

ing inversion free arithmeti using 4, 8 and 12 multipliers. For the aÆne version

we present an algorithm using 8 multipliers. All of our algorithms are optimal

parallel algorithms in the sense that no other parallel algorithm an perform the

omputation in lesser number of rounds.

Some of our results that we obtain are quite striking. For example, using

4 multipliers, we an omplete the inversion free enapsulated add-and-double

algorithm in 27 rounds and using 8 multipliers we an omplete it in 14 rounds.

The algorithm involves 108 multipliations. In the ase of arithmeti using aÆne

oordinates, the 8 multiplier algorithm will omplete the omputation in 11

rounds inluding an inversion round. Usually inversions are a few times ostlier

than multipliations, the atual �gure being dependent upon exat implemen-

tation details. However, from our results it is lear that in general the parallel

version of arithmeti using aÆne oordinates will be ostlier than the parallel

version of inversion free arithmeti.

2 Preliminaries of Hyperellipti Curves

In this setion, we give a brief overview of hyperellipti urves. For details,

readers an refer to [15℄. Let K be a �eld and let K be the algebrai losure

of K. A hyperellipti urve C of genus g over K is an equation of the form

C : v

2

+ h(u)v = f(u) where h(u) in K[u℄ is a polynomial of degree at most

g; f(u) in K[u℄ is a moni polynomial of degree 2g + 1, and there are no singular

points (u; v) in K �K. Let G be the free abelian group generated by the points

of a hyperellipti urve de�ned over a �nite �eld F . The elements of G are alled

divisors. The group G an be partitioned into equivalene lasses of divisors

where eah divisor is represented by a unique speial type of divisor alled redued

divisor. The beauty of the hyperellipti urves is that these redued divisors

have a nie annonial representation by means of two polynomials of smaller

degrees over F. Also, redued divisors or in other words, the divisor lasses

represented by them an be added e�etively by Cantor's algorithm [1℄. These

last two properties present the set of divisor lasses (alled the Jaobian of the

underlying urve) of hyperellipti urves as a rih soure of �nite abelian groups

for possible implementation of various ryptographi primitives.

The algorithms Koblitz [8℄ proposed for divisor addition and doubling are

known as Cantor's algorithms. Spallek [20℄ made the �rst attempt to ompute

divisor addition by expliit formula for genus 2 urves over �elds of odd hara-

teristi. Harley [5℄ improved the running time of the algorithm in [20℄. Gaudry

and Harley [4℄ observed that one an derive di�erent expliit formula for divi-

sor operations depending upon the weight of the divisors. In 2000, Nagao [18℄

proposed two algorithms; one for polynomial division without any inversion and

another for extended gd omputation of polynomials requiring only one inver-

sion. Both these algorithms an be applied to Cantor's algorithm to improve

eÆieny. Lange [10℄ generalised Harley's approah to urves over �elds of even

harateristi. Takahashi [21℄ and Miyamoto, Doi, Matsuo, Chao and Tsujii [16℄

ahieved furthur speed-up using Montgomery's trik to redue the number of

inversions to 1. For genus 2 urves, the fastest version of expliit formula for

inversion free arithmeti is given in [12℄ and the fastest version of expliit for-

mula using aÆne oordinates is given in [11℄. For genus 3 urves, Nagao [18℄

and Pelzl, Wollinger, Guajardo and Paar [19℄ have proposed expliit formula for

performing arithmeti.

We summarise the omplexity of various expliit formulae proposed in lit-

erature in Table 1. Lange has also proposed various o-ordinate systems and

expliite formula for arithmeti of genus 2 urves over them. Interested readers

an refer to [13℄. In the ost olumn, [i℄; [m℄; [s℄ stand for the time taken by an

inversion, a multipliation and a squaring in the underlying �eld respetively.

The notation, [m=s℄ stands for time of a square or multipliation. In the orre-

sponding papers, multipliations and squarings have been treated to be of the

same omplexity.

Table 1. Complexity of Expliit Formulae

Genus Name/Proposed in Field Charateristi Cost(Add) Cost(Double)

Genus 2 Cantor [18℄ All 3[i℄ + 70[m=s℄ 3[i℄ + 76[m=s℄

Nagao [18℄ Odd 1[i℄ + 55[m=s℄ 1[i℄ + 55[m=s℄

Harley [5℄ Odd 2[i℄ + 27[m=s℄ 2[i℄ + 30[m=s℄

Matsuo et al [14℄ Odd 2[i℄ + 25[m=s℄ 2[i℄ + 27[m=s℄

Miyamoto et al [16℄ Odd 1[i℄ + 26[m=s℄ 1[i℄ + 27[m=s℄

Takahashi [21℄ Odd 1[i℄ + 25[m=s℄ 1[i℄ + 29[m=s℄

Lange [11℄ All 1[i℄ + 22[m℄ + 3[s℄ 1[i℄ + 22[m℄ + 5[s℄

Lange [12℄ All 40[m℄ + 6[s℄ 47[m℄ + 4[s℄

Genus 3 Nagao [18℄ Odd 2[i℄ + 154[m=s℄ 2[i℄ + 146[m=s℄

Pelzl et al [19℄ All 1[i℄ + 70[m℄ + 6[s℄ 1[i℄ + 61[m℄ + 10[s℄

3 General Methodology for Parallelizing Expliit Formula

An expliit formula for performing doubling (resp. addition) in the Jaobian of a

hyperellipti urve is an algorithm whih takes one (resp. two) redued divisor(s)

as input and produes a redued divisor as output. Also the parameters of the

urve are available to the algorithm. The algorithm proeeds by a sequene

of elementary operations, where eah operation is either a multipliation or an

addition or an inversion over the underlying �eld. In general the formulae involve

one inversion. If there is one inversion, the inversion operation an be negleted

and the parallel version an be prepared without it. Later, it an be plugged

in as a separate round at an appropriate plae. The same is true if the formula

ontains more than one inversions. Hene, we an assume that the formula is

inversion-free. The ost of a �eld multipliation (or squaring) is signi�antly more

than the ost of a �eld addition and hene the number of �eld multipliations

is the dominant fator determining the ost of the algorithm. On inspetion of

the di�erent expliit formulae available in the literature, it appears that there

are groups of multipliation operations whih an be performed in parallel. The

ability to perform several mulitpliations in parallel an signi�antly improve the

total omputation time. So the key problem that we onsider is the following:

Given an expliit formula, identify the groups of multipliation operations that

an be performed in parallel. In this setion we develop a general methodology

for solving this problem.

Let F be an expliit formula. Then F onsists of mulitipliation and addition

operations. Also several intermediate variables are involved. First we perform the

following preproessing on F .

1. Convert all multipliations to binary operation : Operations whih are ex-

pressed as a produt of three or more variables are rewritten as a seqene

of binary operations. For example, the operation p

5

= p

1

p

2

p

3

is rewritten as

p

4

= p

1

p

2

and p

5

= p

3

p

4

.

2. Redue multipliation depth : Suppose we are required to perform the fol-

lowing sequene of operations: p

3

= p

2

1

p

2

; p

4

= p

3

p

2

: The straightforward

way of onverting to binary results in the following sequene of operations:

t

1

= p

2

1

; p

3

= t

1

p

2

; p

4

= p

3

p

2

: Note that the three operations have to be

done sequentially one after another. On the other hand, suppose we perform

the operations in the following manner: ft

1

= p

2

1

; t

2

= p

2

2

; gfp

3

= t

1

p

2

; p

4

=

t

1

t

2

g: In this ase, the operations within fg an be performed in parallel

and hene the omputation an be ompleted in two parallel rounds. The

total number of operations inreases to 4, but the number of parallel rounds

is less. We do not feel this sort of work an be done through an algorithm.

Therefore we reommend it to be done by inspetion.

3. Eliminate reuse of variable names : Consider the following sequene of op-

erations:

q

1

= p

1

+ p

2

; q

2

= p

3

; : : :; q

1

= p

4

+ p

5

; : : :

In this ase, at di�erent points of the algorithm, the intermediate variable q

1

is used to store the values of both p

1

+ p

2

and p

4

+ p

5

. During the proess of

devising the parallel algorithm we rename the variable q

1

storing the value

of p

4

+ p

5

by a unique new name. In the parallel algorithm we an again

suitably rename it to avoid the overhead ost of initialising a new variable.

4. Labeling proess : We assign unique labels to the addition and mulitpliation

operations and unique names to the intermediate variables.

Given a formula F , we de�ne a direted ayli graph G(F) in the following

fashion.

{ The nodes of G(F) orrespond to the arithmeti operations and variables of

F . Also there are nodes for the parameters of the input divisor(s) as well as

for the parameters of the urve.

{ The ars are de�ned as follows: Suppose id :r = qp is a multipliation op-

eration. The identi�er id is the label assigned to this operation. Then the

following ars are present in G(F) : (q; id); (p; id) and (id; r). Similarly, the

ars for the addition operations are de�ned, with the only di�erene being

the fat that the indegree of an addition node may be greater than two.

Proposition 1. The following are true for the graph G(F).

1. The indegree of variable nodes orresponding to the parameters of the input

divisors and the parameters of the urve is zero.

2. The indegree of any node orresponding to an intermediate variable is one.

3. The outdegree of any node orresponding to an addition or multipliation

operation is one.

Note that the outdegree of nodes orresponding to variables an be greater than

one. This happens when the variable is required as input to more than one arith-

meti operation. Our aim is to identify the groups of multipliation operations

that an be performed in parallel. For this purpose, we prepare another graph

G

�

(F) from G(F) in the following manner:

{ The nodes of G

�

(F) are the nodes of G(F) whih orrespond to multiplia-

tion operation.

{ There is an ar (id

1

; id

2

) from node id

1

to node id

2

in G

�

(F) only if there

is a path from id

1

to id

2

in G(F) whih does not pass through another

multipliation node.

The graph G

�

(F) aptures the ordering relation between the multipliation op-

erations of F . Thus, if there is an ar (id

1

; id

2

) in G

�

(F), then the operation id

1

must be done before the operation id

2

. We now de�ne a sequene of subgraphs

of G

�

(F) and a sequene of subsets of nodes of G

�

(F) in the following manner.

{ G

1

(F) = G

�

(F) and M

1

is the set of nodes of G

1

whose indegree is zero.

{ For i � 2, G

i

is the graph obtained from G

i�1

by deleting the set M

i�1

from

G

i�1

and M

i

is the set of nodes of G

i

whose indegree is zero.

Let r be the least positive integer suh that G

r+1

is the empty graph, i.e., on

removing M

r

from G

r

, the resulting graph beomes empty.

Proposition 2. The following statements hold for the graph G

�

(F).

1. The sequene M

1

; : : : ;M

r

forms a partition of the nodes of G

�

(F).

2. All the multipliations in any M

i

an be performed in parallel.

3. There is a path in G

�

(F) from some vertex in M

1

to some vertex in M

r

.

Consequently, at least r parallel multipliation rounds are required to perform

the omputation of F .

It is easy to obtain the sets M

i

's from the graph G

�

(F) by a modi�ation of the

standard topologial sort algorithm [2℄. The sets M

i

(1 � i � r) represent only

the multipliation operations of F . To obtain a omplete parallel algorithm, we

have to organize the addition operations and take are of the intermediate vari-

ables. There may be some addition operations at the beginning of the formula.

Sine additions are to be performed sequentially, we an ignore these additions

while deriving the parallelised formula, treating the sums they produe as inputs.

Later, they an be plugged in at the beginning of the formula.

For 1 � i � r�1, let A

i

be the set of addition nodes whih lie on a path from

some node in M

i

to some node in M

i+1

. Further, let A

r

be the set of addition

nodes whih lie on a path originating from some node inM

r

. There may be more

than one addition operation in a path from a node in M

i

to a node in M

i+1

.

These additions have to be performed in a sequential manner. (Note that we are

assuming that F starts with a set of multipliation operations and ends with a

set of addition operations. It is easy to generalize to a more general form.)

Eah multipliation and addition operation produes a value whih is stored

in an intermediate variable. We now desribe the method of obtaining the set of

intermediate variables required at eah stage of omputation. Let I

1

; : : : ; I

2r

and

O

1

; : : : ; O

2r

be two sequenes of subsets of nodes of G(F), where eah I

i

and O

j

ontain nodes of G(F) orresponding to variables. The parameters of the urve

and the input divisor(s) are not inluded in any of the I

i

and O

j

's. These are

assumed to be additionally present throughout the algorithm. For 1 � i � r,

these sets are de�ned as follows:

1. I

2i�1

ontains intermediate variables whih are the inputs to the multipliation nodes in M

i

.

2. I

2i

ontains intermediate variables whih are the inputs to the addition nodes in A

i

.

3.O

2i�1

ontains intermediate variables whih are the outputs of the multipliation nodes in M

i

.

4.O

2i

ontains intermediate variables whih are the outputs of the addition nodes in A

i

.

For 1 � j � 2r, de�ne

V

j

= ([

j

i=1

O

i

) \ ([

2r

i=j+1

I

i

): (1)

If a variable x is in V

j

, then it has been produed by some previous operation

and will be required in some subsequent operation. We de�ne the parallel version

par(F) of F as a sequene of rounds

par(F) = (R

1

; : : : ;R

r

): (2)

where R

i

= (M

i

; V

2i�1

; A

i

; V

2i

). In round i, the multipliations in M

i

an be

performed in parallel; the sets V

2i�1

and V

2i

are the sets of intermediate variables

and A

i

is the set of addition operations. Note that the addition operations are

not meant to be performed in parallel. Indeed, in ertain ases the addition

operations in A

i

have to be performed in a sequential manner. We de�ne several

parameters of par(F).

De�nition 1. Let par(F) = (R

1

; : : : ;R

r

), be the r-round parallel version of the

expliit formula F . Then

1. The total number of multipliations (inluding squarings) ouring in par(F)

will be denoted by TM.

2. The multipliation width (MW) of par(F) is de�ned to be MW = max

1�i�r

jM

i

j.

3. The bu�er width (BW) of par(F) is de�ned to be BW = max

1�i�2r

jV

i

j.

4. A path from a node in M

1

to a node in M

r

is alled a ritial path in par(F).

5. The value r is the ritial path length (CPL) of par(F).

The parameter MW denotes the maximum number of multipliers that an oper-

ate in parallel. Using MW parallel multipliers F an be omputed in r parallel

rounds. The bu�er width BW denotes the maximum number of variables that

are required to be stored at any stage in the parallel algorithm.

3.1 Dereasing the Multipliation Width

The method desribed above yeilds a parallel algorithm par(F) for a given ex-

pliit formula F . It also �xes the number of omputational rounds r required to

exeute the algorithm using MW number of proessors. By de�nition, MW is the

maximum number of multipliations taking plae in a round. However, it may

happen that in many rounds the atual number of multipliations is less than

MW. If we use MW multipliers, then some of the multipliers will be idle in suh

rounds. The most ideal senario is MW � dTM=re. However, suh an ideal situa-

tion may not ome about automatially. We next desribe a method for making

the distribution of the number of multipliation operations more uniform among

various rounds.

We �rst prepare a requirement table. It is a table ontaining data about the

intermediate variables reated in the algorithm. For every variable it ontains

the name of the variables used in the expressions omputing it, the latest round

in whih one of suh variables is reated and the earliest round in whih the

variable itself is used. For example, suppose an intermediate variable v

x

= v

y

�v

z

is omputed in the j-th round. Of v

y

and v

z

, let v

z

be the one whih is omputed

later and in the i-th round. Let v

x

be used earliest in the k-th round. Then in

the requirement table we have an entry for v

x

onsisting of v

y

; v

z

; i; k. If both of

v

x

and v

y

are input values then we may take i = 0. Note that we have i < j < k.

Now suppose, there are more than dTM=re multipliations in the j-th round.

Further suppose that for some j

1

(i+1 � j

1

� k� 1), the number of multiplia-

tions in the j

th

1

round is less than dTM=re. Then we transfer the multipliation

produing v

x

to the j

th

1

round and hene redue the multipliation width of

the j-th round. This hange of position of the multipliation operation does not

a�et the orretness of the algorithm.

This proedure is applied as many times as possible to rounds whih ontain

more than dTM=re multipliations. As a result we obtain a parallel algorithm

with a more uniform distribution of number of multipliation operations over

the rounds and onsequently redues the value of MW.

3.2 Managing Bu�er Width

The parameter BW provides the value of the maximum number of intermediate

variables that is required to be stored at any point in the algorithm. This is

an important parameter for appliations where the amount of memory is lim-

ited. We justify that obtaining parallel version of an expliit formula does not

substantially hange the bu�er width. Our argument is as follows.

First note that the total number of multipliations in the parallel version is

roughly the same as the total number of multipliations in the original expliit

formula. The only plae where the number of multipliations inreases is in the

preproessing step of reduing the multipliation depth. Moreover, the inrease

is only a few multipliations. The total number of addition operations remain the

same in both sequential and parallel versions. Sine the total numbers of multi-

pliations and additions are roughly the same, the total number of intermediate

variables also remains roughly the same.

Suppose that after round k in the exeution of the parallel version, i inter-

mediate variables have to be stored. Now onsider a sequential exeution of the

expliit formula. Clearly, in the sequential exeution, all operations upto round

k has to be exeuted before any operation of round greater than k an be exe-

uted. The i intermediate variables that are required to be stored after round k

are required as inputs to operations in round greater than k. Hene these inter-

mediate variables are also required to be stored in the sequential exeution of

the expliit formula.

4 Appliation to Lange's Expliit Formulae

In [11℄ and [12℄, Lange presented expliit formulae for addition and doubling

in the Jaobian of genus 2 hyperellipti urves. In fat, there are many speial

ases involved in these expliite formulae and our methodology an be applied

to all the ases. But to be brief, we restrit our attention to the most general

and frequent ase only. The formulae in [11℄ uses an inversion eah for addition

and doubling while the formulae in [12℄ does not require any inversion.

We apply the methodology desribed in Setion 3 separately to the formulae

in [11℄ and [12℄. In the ase of addition, the inputs are two divisors D

1

and D

2

and in the ase of doubling the input is only one divisor D

1

. We use the following

onventions.

{ We assume that the urve parameters h

2

; h

1

; h

0

; f

4

; f

3

; f

2

; f

1

; f

0

are available

to the algorithm.

{ We do not distinguish between squaring and multipliation.

{ The labels for the arithmeti operations in the expliit formula for addition

start with A and the labels for the arithmeti operations in the expliit

formula for doubling start with D. The seond letter of the label (M or A)

denotes (m)ultipliation or (a)ddition over the underlying �eld. ThusAM23

denotes the 23

rd

multipliation in the expliit formula for addition.

{ The intermediate variables for the expliit formula for addition are of the

form p

i

and the intermediate variables for the expliit formula for doubling

are of the form q

j

.

{ In [11, 12℄, multipliations by urve onstants are presented. However, during

the total multipliation ount, some of these operations are ignored, sine for

most pratial appliations the related urve onstants will be 0 or 1. In this

setion, we inlude the multipliation by the urve parameters. In Setion 5,

we onsider the situation where these are 0 or 1.

{ The set of intermediate variables (V

i

's) required at any stage is alled the

bu�er state.

4.1 Inversion Free Arithmeti

In this setion, we onsider the result of appliation of the method of Setion 3

to the inversion free formula for addition and doubling given in [12℄. Due to lak

of spae we present the details in the Appendix. The details of addition formula

is presented in Setion A.1 and the details of the doubling formula is presented

Table 2. Parameters for parallel versions of expliit formula in [12℄.

MW BW CPL TM

Add 8 20 8 59

Double 11 15 8 65

in Setion A.2. We present a summary of the parameters of the parallel versions

in Table 2. Based on Table 2 table and Proposition 2(3), we obtain the following

result.

Theorem 1. Any parallel algorithm for exeuting either the expliit formula for

addition or the expliit formula for doubling presented in [12℄ will require at least

8 parallel multipliation rounds. Consequently, the parallel algorithms presented

in Setions A.1 and A.2 are optimal algorithms.

4.2 Arithmeti Using AÆne Coordinates

The most eÆient expliit formula for arithmeti using aÆne oordinates has

been presented in [11℄. Here we onsider the result of applying the methodology

of Setion 3 to this formula. Again due to lak of spae we present the details

in the Appendix. The parallel version of the addition formula is presented in

Setion A.3 and the parallel version of the doubling formula is presented in

Setion A.4. A summary of the results is presented in Table 3. We have the

Table 3. Parameters for parallel versions of expliit formula in [11℄.

MW BW CPL TM

Add 6 12 7

�

29

�

Double 5 13 8

�

34

�

�

Inluding one inversion

following result about the parallel versions of the expliit formula in [11℄.

Theorem 2. Any parallel algorithm for exeuting the expliit formula for ad-

dition (resp. doubling) presented in [11℄ will require at least 7 (resp. 8) parallel

multipliation rounds. Consequently, the parallel algorithms presented in Se-

tions A.3 and A.4 are optimal algorithms.

5 Enapsulated Addition and Doubling Algorithm

In this setion, we address several issues required for atual implementation.

{ The algorithms of Setion A inlude multipliations by the parameters of

the urve. However, we an assume that h

2

2 f0; 1g. If h

2

6= 0, then by

substituting y = h

5

2

y

0

and x = h

2

2

x

0

and dividing the resulting equation

by h

10

2

, we an make h

2

= 1. Also, if the underlying �eld is not of har-

ateristi 5, we an assume that f

4

= 0. Otherwise, we an make it so by

substituting x

0

= (x� f

4

=5). In the algorithms presented below, we assume

that h

2

2 f0; 1g and f

4

= 0 and hene the orresponding multipliations are

ignored. These dereases the total number of multipliations and hene also

the number of parallel rounds. In most appliations h

1

; h

0

also are in f0; 1g.

Hene eÆieny in suh situations an go up further. Thus all the operations

in Setion A of Appendix do not our in the algorithms in this setion.

{ The usual add-and-double salar multipliation algorithm is suseptible to

side hannel attaks. One of the main ountermeasures is to perform both

addition and doubling at eah stage of salar multipliation (see [3℄). We all

suh an algorithm an enapsulated add-and-double algorithm. The parallel

algorithms we present in this setion are enapsulated add-and-double algo-

rithms. All of them take as input two divisors D

1

and D

2

and produe as

output D

1

+D

2

and 2D

1

.

5.1 Inversion Free Arithmeti

In this setion, we onsider parallel version of enapsulated add-and-double for-

mula. We obtain the algorithms from the individual algorithms presented in

Setion A.1 and A.2.

First we note that the total number of multipliation operations for enap-

sulated add-and-double under the above mentioned onditions is 108. Sine the

value of MW for addition is 8 and for doubling is 11 and both have CPL = 8,

a total of 19 parallel �nite �eld multipliers an omplete enapsulated addition

and doubling in 8 parallel rounds. However, 19 parallel �nite �eld multipliers

may be too ostly. Hene we desribe algorithms with 4, 8 and 12 parallel multi-

pliers. (Note that an algorithm with two multipliers is easy to obtain { we assign

one multiplier to perform addition and the other to perform doubling.)

Suppose the number of multipliers is m and the total number of operations is

TM. Then at least d(TM=m)e parallel rounds are neessary. Any algorithm whih

performs the omputation in these many rounds will be alled a best algorithm.

Our parallel algorithms with 4 and 8 multipliers are best algorithms. Further,

our algorithm with 12 multipliers is optimal in the sense that no other parallel

algorithm with 12 multipliers an omplete the omputation in less rounds.

The atual algorithms for performing inversion free arithmeti are presented

in Tables 5, 6 and 7. These tables only list the multipliation and addition of

�eld elements. The labels in the tables refer to the labels of operations in the

algorithms in Setion A.1 and A.2. We present a summary of the results in

Table 2.

5.2 AÆne Coordinates

An eight multiplier parallel version of expliit formula for enapsulated add-and-

double is presented in Table 8 (due to lak of spae we present this table in the

Table 4. Summary of algorithms with varying number of proessors for inversion free

arithmeti of [12℄.

No of Multipliers 2 4 8 12

Number of rounds 54 27 14 10

Appendix). This is obtained from the parallel versions of individual formulae for

addition and doubling presented in Setion A.3 and A.4. In this ase the total

number of multipliations is 65. The eight multiplier algorithm requires 11 paral-

lel rounds inluding an inversion round. On the other hand, the eight multiplier

algorithm for inversion free arithmeti (Table 6) requires only 14 multipliation

rounds. Thus, in general the parallel version of inversion free arithmeti will

be more eÆient than the parallel version of arithmeti obtained from aÆne

oordinates.

6 Conlusion

In this work, we have developed a general methodology for deriving parallel ver-

sions of any expliit formula for omputation of divisor addition and doubling.

We have followed the methods to derive the parallel version of the expliit for-

mula given in [12℄ and [11℄. We have onsidered enapsulated add-and-double

algorithms to prevent side hannel attaks. Moreover, we have desribed parallel

algorithms with di�erent number of proessors.

It has been shown that for the inversion free arithmeti of [12℄ and with 4,

8 and 12 �eld multipliers an enapsulated add-and-double an be arried out in

27, 14 and 10 parallel rounds respetively. All these algorithms optimal in the

number of parallel rounds. In the ase of arithmeti using aÆne oordinates [11℄,

an eight multiplier algorithm an perform enapsulated add-and-double using 11

rounds inluding an inversion round. Sine an inversion is usually several times

ostlier than a multipliation, in general the parallel version of inversion free

arithmeti will be more eÆient than the parallel version of arithmeti using

aÆne oordinates.

We have applied our general methodology to expliit formula for genus 2

urves. The same methodology an also be applied to the expliit formula for

genus 3 urves and to other expliit formulae appearing in the literature. Pe-

forming these tasks will be future researh problems.

Table 5. Computation hart using four parallel multipliers for inversion free arithmeti

of [12℄.

Rnd Operation

1 AM01, AM02, AM03, AM04

2 AM05, AM06, AM07, AM08

AA01, AA02, AA03, AA04

3 DM01, DM02, DM04, DM08

DA01, DA02, DA03, DA04

4 DM09, AM09, AM10, AM11

DA05, DA06, DA07, AA07, AA08, AA09

5 AM12, AM13, AM14, AM16

AA05, AA06

6 DM12, DM13, DM14, DM15

DA08

7 DM16, DM17, DM18, DM19

DA09, DA10

8 DM20, DM22, AM17, AM18

AA10, DA11, DA11, DA12, DA13

9 AM19, AM20, AM21, AM22

AA12, AA13, AA14, AA15

10 DM23, DM24, DM25, DM26

DA14, DA15, DA16, DA17, DA18, DA19

11 DM27, DM29, AM23, AM24

12 AM25, AM26, AM27, AM28

13 AM29, AM30, DM30, DM31

AA16, AA17

14 DM32, DM33, DM34, DM35

DA20, DA21

Rnd Operation

15 AM31, AM32, AM33, AM34

AA18, AA19

16 AM35, AM37, AM38, DM36

17 DM37, DM38, DM39, DM41

18 DM43, AM39, AM40, AM41

19 AM42, AM43, AM44, AM46

AA20, AA21, AA22, AA23, AA24, AA25

20 DM44, DM45, DM46, DM47

21 DM48, DM49, DM50, AM47

DA22, DA23, DA24, DA25

22 AM48, AM49, AM50, AM51

23 AM52, AM53, DM51, DM52

AA26, AA27

24 DM53, DM54, DM55, DM56

25 DM57, AM54, AM55, AM56

DA26, DA27, DA28

26 AM57, DM58, DM59, DM60

AA28, AA29, AA30, AA31

27 DM62, DM63, DM65, DM66

DA29, DA30, DA31, DA32, DA33, DA34

Table 6. Computation hart with eight proessors for inversion free arithmeti of [12℄.

Rnd Operation

1 AM01, AM02, AM03, AM04, AM05, AM06, AM07, AM08

AA01, AA02, AA03, AA04

2 DM01, DM02, DM04, DM08, DM09, AM09, AM10, AM11

DA01, DA02, DA03, DA04, DA04, DA05, DA06, DA07

3 AM12, AM13, AM14, AM16, DM12, DM13, DM14, DM15

AA05, AA06, AA07, AA08, DA09

4 DM16, DM17, DM18, DM19, DM20, DM22, AM17, AM18

DA08, DA09, DA10, DA11, DA12, DA13

5 AM19, AM20, AM21, AM22, DM23, DM24, DM25, DM26

AA10, AA11, AA12, AA13, AA14, AA15

6 DM27, DM29, AM23, AM24, AM25, AM26, AM27, AM28

DA14, DA15, DA16, DA17, DA18, DA19

7 AM29, AM30, DM30, DM31, DM32, DM33, DM34, DM35

AA16, AA17, DA20, DA21

8 AM31, AM32, AM33, AM34, AM35, AM37, AM38, DM36

AA18, AA19

9 DM37, DM38, DM39, DM41, DM43, AM39, AM40, AM41

10 AM42, AM43, AM44, AM46, DM44, DM45, DM46, DM47

AA21, AA22, AA23, AA24, AA25

11 DM48, DM49, DM50, AM47, AM48, AM49, AM50, AM51

DA22, DA23, DA24, DA25

12 AM52, AM53, DM51, DM52, DM53, DM54, DM55, DM56

AA26, AA27

13 DM57, AM54, AM55, AM56, AM57

AA28, AA29, AA30, AA31, DA26, DA27, DA28

14 DM58, DM59, DM60, DM62, DM63, DM65, DM66

DA29, DA30, DA31, DA32, DA33, DA34

Table 7. Computation hart with twelve proessors for inversion free arithmeti of [12℄.

Rnd Operation

1 AM01, AM02, AM03, AM04, AM05, AM06, AM07, DM01, DM02, DM04, DM08, DM09

DA1, DA02, DA03, DA04, DA05, DA06, DA07

2 AM08, DM12, DM13, DM14, DM15, DM16, DM17, DM18, DM19, DM20, DM22

AA01, AA02, AA03, AA04, DA8, DA9, DA10, DA11, DA11, DA12, DA13

3 AM09, AM10, AM11, AM12, AM13, AM14, DM23, DM24, DM25, DM26, DM27, DM29

DA14, DA15, DA16, DA17, DA18, DA19

4 AM16, DM30, DM31, DM32, DM33, DM34, DM35

AA05, AA06, AA07, AA08, AA09, DA20, DA21

5 AM17, AM18, AM19, AM20, AM21, AM22, DM36, DM37, DM38, DM39, DM41, DM43

AA10, AA11, AA12, AA13, AA14, AA15

6 AM23, AM24, AM25, AM26, AM27, AM28, AM29, AM30, DM44, DM45, DM 46, DM47

AA16, AA17

7 AM31, AM32, AM33, AM34, AM35, AM37, AM38, DM48, DM49, DM50

AA18, AA19, DA22, DA23, DA24, DA25

8 AM39, AM40, AM41, AM42, AM43, AM44, AM46, DM51, DM52, DM53, DM54, DM55

AA20, AA21, AA22, AA23, AA24, AA25

9 AM47, AM48, AM49, AM50, AM51, AM52, AM53, DM56, DM57

AA26, AA27, DA26, DA27, DA28

10 AM54, AM55, AM56, AM57, DM58, DM59, DM60, DM62, DM63, DM65, DM66

AA28, AA29, AA30, AA31, DA29, DA30, DA31, DA32, DA33, DA34

Referenes

1. D. G. Cantor. Computing in the Jaobian of a Hyperellipti urve. InMathematis

of Computation, volume 48, pages 95-101, 1987.

2. T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introdution to Algorithms, MIT

Press, Cambridge, 1997.

3. J.-S. Coron. Resistane against Di�erential Power Analysis for Ellipti Curve

Cryptosystems. Proeedings of CHES 1999, pp 292-302, 1999.

4. P. Gaudry and R. Harley Counting Points on Hyperellipti Curves over Finite

Fields. In ANTS IV, volume 1838 of LNCS; pp 297-312, Berlin, 2000, Springer-

Verlag.

5. R. Harley. Fast Arithmeti on Genus 2 Curves. Avaiable at

http://ristal.inria.fr/ harley/hyper,2000.

6. T. Izu and T. Takagi. A Fast Parallel Ellipti Curve Multipliation Resistant

against Side-Channel Attaks Tehnial Report CORR 2002-03, University of Wa-

terloo,2002. Available at http://www.ar.math.uwaterloo.a.

7. T. Izu, B. M�oller and T. Takagi. Improved Ellipti Curve Multipliation Methods

Resistant Against Side Channel Attaks. Proeedings of Indorypt 2002, LNCS

2551, pp 296-313.

8. N. Koblitz. Hyperellipti Cryptosystems. In Journal of Cryptology, 1: pages 139{

150, 1989.

9. A. J. Menezes, P. C. van Oorshot and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.

10. T. Lange. EÆient Arithmeti on Hyperellipti Curves. PhD thesis, Universit�at

Gesamthohsshule Essen, 2001.

11. T. Lange. EÆient Arithmeti on Genus 2 Curves over Finite Fields

via Expliit Formulae. Cryptology ePrint Arhive, Report 2002/121, 2002.

http://eprint.iar.org/.

12. T. Lange. Inversion-free Arithmeti on Genus 2 Hyperellipti Curves. Cryptology

ePrint Arhive, Report 2002/147, 2002. http://eprint.iar.org/.

13. T. Lange. Weighted Co-ordinates on Genus 2 Hyperellipti Curves. Cryptology

ePrint Arhive, Report 2002/153, 2002. http://eprint.iar.org/.

14. K. Matsuo, J. Chao and S. Tsujii. Fast Genus Two Hyperellipti Curve Cryptosys-

tems. In ISEC2001, IEICE,2001.

15. A. Menezes, Y. Wu, R. Zuherato. An Elementary Introdution to Hyperellipti

Curves. Tehnial Report CORR 96-19, University of Waterloo(1996), Canada.

Available at http://www.ar.math.uwaterloo.a.

16. Y. Miyamoto, H. Doi, K. Matsuo, J. Chao and S. Tsujii. A fast addition algorithm

for genus 2 hyperellipti urves. In Pro of SCIS2002, IEICE, Japan, pp 497-

502,2002, in Japanese.

17. P. Montgomery. Speeding the Pollard and Ellipti Curve Methods for Fatorisation.

In Math. Comp., vol 48, pp 243-264, 1987.

18. K. Nagao. Improving Group Law Algorithms for Jaobians of Hyperellipti Curves.

ANTS IV, LNCS 1838, Berlin 2000, Springer-Verlag.

19. J. Pelzl, T. Wollinger, J. Guajardo and C. Paar. Hyperellipti Curve Cryptosys-

tems: Closing the Performane Gap to Ellipti Curves. Cryptology ePrint Arhive,

Report 2003/26, 2003. http://eprint.iar.org/.

20. A. M. Spallek. Kurven vom Geshleth 2 und irhe Anwendung in Publi-Key-

Kryptosystemen. PhD Thesis, Universitat Gesamthohshule, Essen, 1994.

21. M. Takahashi. Improving Harley Algorithms for Jaobians of Genus 2 Hyperellipti

Curves. In Pro of SCIS 2002, ICICE, Japan, 2002, in Japanese.

A Details of Parallel Versions of Expliit Formula

The organisation of this setion is as follows.

{ Parallel version of the expliit formula for addition using inversion free arith-

meti of [12℄ is presented in Setion A.1.

{ Parallel version of the expliit formula for doubling using inversion free arith-

meti of [12℄ is presented in Setion A.2.

{ Parallel version of the expliit formula for addition using aÆne oordinates

([11℄) is presented in Setion A.3.

{ Parallel version of the expliit formula for doubling using aÆne oordinates

([11℄) is presented in Setion A.4.

A.1 Addition Using Inversion Free Arithmeti

Algorithm

Input : Divisors D

1

= [U

11

; U

10

; V

11

; V

10

; Z

1

℄ and D

2

= [U

21

; U

20

; V

21

; V

20

; Z

2

℄.

Output : Divisor D

1

+D

2

= [U

0

1

; U

0

0

; V

0

1

; V

0

0

; Z

0

℄

Initial bu�er: U

11

; U

10

; V

11

; V

10

; Z

1

; U

21

; U

20

; V

21

; V

20

; Z

2

.

Round 1

AM01. Z = Z

1

Z

2

; AM02.

e

U

21

= Z

1

U

21

; AM03.

e

U

20

= Z

1

U

20

; AM04.

e

V

21

= Z

1

V

21

;

AM05.

e

V

20

= Z

1

U

20

; AM06. p

1

= U

11

Z

2

; AM07. p

2

= U

10

Z

2

; AM08. p

3

= V

11

Z

2

.

Bu�er: Z;

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; p

1

; p

2

; p

3

.

AA01. p

4

= p

1

�

e

U

21

;AA02. p

5

=

e

U

20

� p

2

;AA03. p

6

= p

3

�

e

V

21

;AA04. p

7

= Z

1

+ U

11

.

Bu�er: Z;

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; p

3

; p

4

; p

5

; p

6

; p

17

; p

7

; Z.

Round 2

AM09. p

8

= U

11

p

4

; AM10. p

9

= Z

1

p

5

; AM11. p

10

= Z

1

p

4

; AM12. p

11

= p

2

4

;

AM13. p

12

= p

4

p

6

; AM14. p

13

= h

1

Z; AM15. p

14

= f

4

Z; AM16. p

15

= V

10

Z

2

Bu�er: Z;

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; p

15

; p

3

; p

4

; p

5

; p

17

; p

7

; p

8

; p

9

; p

10

; p

11

; p

12

; p

13

; p

14

.

AA05. p

16

= p

15

�

e

V

20

;AA06. p

17

= p

16

+ p

6

;AA07. p

18

= p

8

+ p

9

;

AA08. p

19

= p

18

+ p

10

; AA09. p

20

= p

4

+

e

U

21

;

Bu�er: Z;

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; p

15

; p

3

; p

4

; p

17

; p

7

; p

12

; p

13

; p

14

; p

18

; p

19

; p

20

Round 3

AM17. p

21

= p

5

p

18

; AM18. p

22

= p

11

U

10

; AM19. p

23

= p

19

p

17

; AM20. p

24

= p

18

p

16

AM21. p

25

= p

12

p

7

; AM22. p

26

= p

12

U

10

;

Bu�er: Z;

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; p

15

; p

3

; p

4

; p

13

; p

14

; p

20

; p

21

; p

22

; p

23

; p

24

; p

25

; p

26

AA10. r = p

21

+ p

22

; AA11. s

1

= p

23

� p

24

� p

25

; AA12. s

0

= p

24

� p

26

;

AA13. p

27

=

e

U

21

+

e

U

20

; AA14. p

28

= p

13

+ 2

e

V

21

;

AA15. p

29

= p

4

+ 2

e

U

21

� p

14

;

Bu�er:Z;

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; r; s

1

; s

0

; p

15

; p

3

; p

4

; p

20

; p

27

; p

28

; p

29

Round 4

AM23. R = Zr; AM24. s

0

= s

0

Z; AM25. s

3

= s

1

Z; AM26. S = s

0

s

1

;

AM26. p

30

= s

1

p

4

; AM27. p

31

= rp

29

; AM28. p

32

= s

1

p

28

AM29. t = s

1

p

20

Bu�er:

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; r; s

1

; s

0

; R; s

3

; S; t; p

15

; p

3

; p

4

; p

27

; p

30

; p

31

; p

32

; p

27

AA16. p

33

= s

0

� t, AA17. p

34

= t� 2s

0

Bu�er:

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; r; s

1

; s

0

; R; s

3

; S; p

15

; p

3

; p

4

; p

27

; p

30

; p

31

; p

32

; p

33

; p

34

Round 5

AM30. S

3

= s

2

3

; AM31.

e

R = Rs

3

; AM32.

e

S = s

3

s

1

; AM33.

e

e

S = s

0

s

1

;

AM34. l

0

= S

e

U

20

; AM35. p

35

= h

2

p

33

; AM36. p

36

= s

2

0

; AM37. p

37

= R

2

;

Bu�er:

e

U

21

;

e

V

21

;

e

V

20

; l

2

; l

0

; S

3

;

e

R;

e

e

S;

e

S; S; p

15

; p

3

; p

27

; p

30

; p

31

; p

32

; p

34

; p

35

; p

36

; p

37

AA18. p

38

=

e

S + S; AA19. p

39

= p

35

+ p

32

;

Bu�er:

e

U

21

;

e

V

21

;

e

V

20

; l

2

; l

0

; S

3

;

e

R;

e

e

S;

e

S; p

15

; p

3

; p

27

; p

30

; p

31

; p

34

; p

36

; p

38

; p

39

Round 6

AM38.

e

e

R =

e

R

e

S; AM39. l

2

=

e

S

e

U

21

; AM40. p

40

= p

38

p

27

; AM41. p

41

= p

30

p

34

;

AM42. p

42

= p

3

e

S; AM43. p

43

= Rp

39

; AM44. p

44

= h

2

e

R; AM45. p

45

= p

15

e

R;

Bu�er:

e

V

21

;

e

V

20

; l

2

; l

0

; S

3

;

e

R;

e

e

S;

e

e

R; p

31

; p

36

; p

37

; p

40

; p

41

; p

42

; p

43

; p

44

AA20. l

1

= p

40

� l

2

� l

0

; AA21. l

2

= l

2

+

e

e

S;

AA22. U

0

0

= p

36

+ p

41

+ p

42

+ p

43

+ p

31

; AA23. U

0

1

= 2

e

e

S � p

45

+ p

44

� p

37

;

AA24. l

2

= l

2

� U

0

1

; AA25. p

46

= U

0

0

� l

1

;

Bu�er: U

0

0

; U

0

1

;

e

V

21

;

e

V

20

; l

2

; l

0

; S

3

;

e

R;

e

e

S;

e

e

R; p

46

Round 7

AM46. p

47

= U

0

0

l

2

; AM47. p

48

= S

3

l

0

; AM48. p

49

= U

0

1

l

2

; AM49. p

50

= S

3

p

46

;

AM50. Z

0

=

e

RS

3

; AM51. U

0

0

=

e

RU

0

0

; AM52. U

0

1

=

e

RU

0

1

;

Bu�er state: U

0

0

; U

0

1

;

e

V

21

;

e

V

20

;

e

e

R; p

47

; p

48

; p

49

; p

50

; Z

0

AA26. p

51

= p

47

� p

48

; AA27. p

52

= p

49

+ p

50

;

Bu�er: U

0

0

; U

0

1

;

e

V

21

;

e

V

20

;

e

e

R; p

51

; p

52

; Z

0

Round 8

AM53. p

53

=

e

e

R

e

V

20

; AM54. p

54

=

e

e

R

e

V

21

; AM55. p

55

= h

0

Z

0

; AM56. p

56

= h

1

Z

0

;

AM57. p

57

= h

2

U

0

0

; AM58. p

58

= h

2

U

0

1

;

Bu�er state: U

0

0

; U

0

1

; p

51

; p

52

; p

53

; p

54

; p

55

; p

55

; p

56

; p

57

; p

58

; Z

0

AA28. p

59

= p

51

� p

53

� p

55

; AA29. p

60

= p

52

� p

54

� p

56

;

AA30. V

0

0

= p

57

+ p

59

; AA31. V

0

1

= p

58

+ p

60

;

Bu�er state: U

0

0

; U

0

1

; V

0

0

; V

0

1

; Z

0

A.2 Doubling Using Inversion Free Arithmeti

Algorithm

Input : Divisors D

1

= [U

11

; U

10

; V

11

; V

10

; Z

1

℄.

Output : Divisor 2D

1

= [U

00

1

; U

00

0

; V

00

1

; V

00

0

; Z

00

℄.

Initial Bu�er: U

11

; U

10

; V

11

; V

10

; Z

1

.

Round 1

DM01. q

0

= Z

2

1

; DM02. q

1

= h

1

Z

1

; DM03. q

2

= h

2

U

11

; DM04. q

3

= h

0

Z

1

;

DM05. q

4

= h

2

U

10

; DM06. q

5

= f

4

U

11

; DM07. q

6

= h

2

V

11

; DM08. q

7

= f

2

Z

1

;

DM09. q

8

= V

11

h

1

; DM10. q

9

= V

10

h

2

; DM11. q

10

= f

4

U

10

;

Bu�er: q

0

; q

1

; q

2

; q

3

; q

4

; q

5

; q

6

; q

7

; q

8

; q

9

; q

10

DA01.

e

V

1

= q

1

+ 2V

11

� q

2

; DA02.

e

V

0

= q

3

+ 2V

10

� q

4

;

DA03. q

11

= 2U

10

; DA04. inv

1

= �

e

V

1

; DA05. q

12

= q

7

� q

8

� q

9

� 2q

10

;

DA06. q

13

= 2q

11

+ q

10

+ q

6

; DA07. q

14

= q

11

+ 2q

7

+ q

6

;

Bu�er: inv

1

;

e

V

1

;

e

V

0

; q

0

; q

14

; q

11

q

12

; q

13

Round 2

DM12. q

15

= V

2

11

; DM13. q

16

= U

2

11

; DM14. q

17

=

e

V

0

Z

1

; DM15. q

18

= U

11

e

V

1

;

DM16. q

19

=

e

V

2

1

; DM17. q

20

= f

3

q

0

; DM18. q

21

= q

12

Z

1

; DM19. q

22

= q

13

Z

1

;

DM20. q

23

= q

14

Z

1

; DM21. q

24

= h

2

U

11

; DM22. q

25

= h

1

Z

1

;

Bu�er:inv

1

;

e

V

1

;

e

V

0

; q

0

; q

15

; q

16

; q

17

; q

18

; q

19

; q

20

; q

21

; q

22

; q

23

; q

24

; q

25

DA08. q

26

= q

17

q

18

; DA09. q

27

= q

20

+ q

16

; DA10. q

28

= q

22

� q

27

;

DA11. k

1

= 2q

16

+ q

27

� q

23

; DA12. q

29

= q

21

� q

15

;DA13. q

30

= 2V

10

� q

24

+ q

25

;

Bu�er:inv

1

;

e

V

0

; k

1

; q

0

; q

19

; q

26

; q

27

; q

28

; q

29

; q

30

Round 3

DM23. q

31

=

e

V

0

q

26

; DM24. q

32

= q

19

U

10

; DM25. q

33

= U

11

q

28

; DM26. q

34

= Z

1

q

29

;

DM27. q

35

= k

1

inv

1

; DM28. q

36

= f

4

Z

1

; DM29. q

37

= Z

1

U

10

;

Bu�er:inv

1

; k

1

; q

0

; q

26

; q

31

; q

32

; q

37

; q

30

; q

33

; q

34

; q

35

; q

36

DA14. r = q

31

+ q

32

; DA15. k

0

= q

33

+ q

34

;DA16. q

38

= k

0

+ k

1

; DA17. q

39

= inv

1

+ q

26

;

DA18. q

40

= 1 + U

11

;DA19. q

41

= 2U

11

� q

36

;

Bu�er:q

0

; r; k

0

; q

26

; q

37

; q

30

; q

35

; q

36

; q

38

; q

39

; q

40

; q

41

Round 4

DM30. R = q

0

r; DM31. q

42

= q

38

q

39

; DM32. q

43

= q

35

q

40

; DM33. q

44

= q

35

q

37

;

DM34. q

45

= k

0

q

26

; DM35. q

46

= rq

41

;

Bu�er:R; q

30

; q

45

; q

36

; q

42

; q

43

; q

44

; q

46

DA20. s

3

= q

42

� q

45

� q

43

; DA21. s

0

= q

45

� q

44

;

Bu�er: R; s

0

; s

3

; q

30

; q

46

Round 5

DM36. q

47

= R

2

; DM37. q

48

= s

0

s

3

; DM38. s

1

= s

3

Z

1

; DM39. S

0

= s

2

0

;

DM40. t = h

2

s

0

; DM41. q

49

= q

30

s

3

; DM42. q

50

= h

2

R; DM43. q

51

= Z

1

q

46

;

Bu�er: S

0

; t; s

1

; q

47

; q

48

; q

49

; q

51

; q

50

Addition phase

No addition required at this step.

Bu�er: Same as above.

Round 6

DM44.

e

R = Rs

1

; DM45. S

1

= s

2

1

; DM46. q

52

= s

1

s

3

; DM47. S = q

48

Z

1

;

DM48. l

0

= U

10

q

48

; DM49. q

53

= Rq

49

; DM50. q

54

= q

50

s

1

;

Bu�er:

e

R;S

1

; S; S

0

; t; l

0

; q

47

; q

48

; q

52

; q

53

; q

51

; q

54

DA22. q

55

= U

11

+ U

10

; DA23. q

56

= q

48

+ q

52

;

DA24. U

00

0

= S

0

+ q

53

+ t+ q

51

; DA25. U

00

1

= 2S + q

54

� q

47

;

Bu�er:U

00

0

; U

00

1

; l

0

; S

1

;

e

R; q

55

; q

52

; q

56

Round 7

DM51.

e

e

R =

e

Rq

52

; DM52. q

57

= q

56

q

55

; DM53. q

58

= S

1

l

0

; DM54. Z

00

= S

1

e

R ;

DM55. q

59

=

e

RU

00

1

DM56. q

60

=

e

RU

00

0

; DM57. l

2

= U

11

s

1

;

Bu�er: U

00

0

; U

00

1

; Z

00

;

e

e

R;S

1

; l

0

; l

1

; l

2

; q

57

; q

58

; q

59

; q

60

DA26. l

1

= q

57

� l

2

� l

0

; DA27. l

2

= l

2

+ S � U

00

1

;

DA28. q

61

= U

00

0

� l

1

;

Bu�er:U

00

0

; U

00

1

; Z

00

;

e

e

R;S

1

; l

2

; q

58

; q

59

; q

60

; q

61

Round 8

DM58. q

62

= U

00

0

l

2

; DM59. q

63

= U

00

1

l

2

; DM60. q

64

= S

1

q

61

; DM61. q

65

= h

2

q

60

;

DM62. q

66

=

e

e

RV

10

; DM63. q

67

= h

0

Z

00

; DM64. q

68

= h

2

q

59

; DM65. q

69

=

e

e

RV

11

;

DM66. q

70

= h

1

Z

00

;

Bu�er: Z

00

; q

58

; q

59

; q

60

; q

62

; q

63

; q

64

; q

65

; q

66

; q

67

; q

68

; q

69

; q

70

DA29. q

71

= q

62

+ q

58

; DA30. q

72

= q

63

+ q

64

;

DA31. U

00

0

= q

60

; DA32. U

00

1

= q

59

; DA33. V

00

0

= q

71

+ q

65

� q

66

� q

67

;

DA34. V

00

1

= q

72

+ q

68

� q

69

� q

70

;

Bu�er:U

00

0

; U

00

1

; Z

00

; V

00

0

; V

00

1

A.3 Addition Using AÆne Coordinates

Algorithm

Input : Divisors D

1

= [u

11

; u

10

; v

11

; v

10

℄ and D

2

= [u

21

; u

20

; v

21

; v

20

℄.

Output : Divisor D

1

+D

2

= [u

0

1

; u

0

0

; v

0

1

; v

0

0

℄

Initial bu�er: u

11

; u

10

; v

11

; v

10

; u

21

; u

20

; v

21

; v

20

.

Round 1

AA01. inv

1

= u

11

� u

21

; AA02. q

1

= u

20

� u

10

;

AA03. q

2

= v

10

� v

20

; AA04. q

3

= v

11

� v

21

;

Bu�er: inv

1

= inv

1

; q

1

; q

2

; q

3

.

AM01. q

4

= u

11

inv

1

; AM02. q

5

= inv

2

1

; AM03. q

6

= inv

1

q

3

;

Bu�er: inv

1

; q

1

; q

4

; q

5

; q

2

; q

3

; q

6

Round 2

AA05. q

7

= q

1

+ q

4

; AA06. q

8

= q

2

+ q

3

; AA07. q

9

= inv

1

+ q

7

;AA08. q

10

= 1 + u

11

;

Bu�er: inv

1

; q

1

; q

5

; q

7

; q

2

; q

6

; q

8

; q

9

; q

10

.

AM04. q

11

= u

10

q

5

AM05. q

12

= q

1

q

7

; AM06. q

13

= q

8

q

9

; AM07. q

14

= q

10

q

6

;

AM08. q

15

= u

10

q

6

; AM09. q

16

= q

7

q

9

;

Bu�er: inv

1

; q

1

; q

11

; q

12

; q

13

; q

14

; q

15

; q

16

Round 3

AA09. r = q

11

+ q

12

; AA10. s

0

1

= q

13

� q

16

� q

14

; AA11. s

0

0

= q

16

� q

15

;

Bu�er: s

0

0

; s

0

1

; r; inv

1

; q

12

AM10. q

17

= rs

0

1

; AM11. q

18

= s

0

1

2

; AM12. q

19

= r

2

; AM13. q

20

= rs

0

0

;

Bu�er:r; inv

1

; q

12

; q

17

; q

18

; q

19

; q

20

Inversion Round

AM14. q

21

= q

�1

17

;

Bu�er:r; inv

1

; q

12

; q

21

; q

18

; q

19

; q

20

Round 4

AM15. q

22

= rq

21

; AM16. q

23

= q

21

q

18

; AM17. q

24

= q

21

q

19

; AM18. s

00

0

= q

21

q

20

;

Bu�er: s

00

0

; inv

1

; q

12

; q

22

; q

23

; q

24

;

AA12. l

0

2

= u

21

+ s

00

0

, AA13. q

25

= s

00

0

� u

11

AA14. q

26

= s

00

0

� inv

1

+ h

2

q

24

AA15. q

27

= h+ 2v

21

Bu�er:s

00

0

; l

0

2

; inv

1

; q

12

; q

22

; q

23

; q

24

; q

25

; q

26

; q

27

Round 5

AM19. q

28

= q

2

24

; AM20. q

29

= u

21

s

00

0

; AM21. l

0

0

= u

20

s

00

0

; AM22. q

30

= q

25

q

26

;

AM23. q

31

= q

27

q

24

;

Bu�er: s

00

0

; l

0

0

; l

0

2

; inv

1

; q

12

; q

22

; q

23

; q

24

; q

28

; q

29

; q

30

; q

31

AA16. l

0

1

= q

29

+ u

20

;AA17. q

32

= 2u

21

+ p

1

� f

4

;

AA18. u

0

1

= 2s

00

0

� inv

1

+ h

2

q

24

� q

28

AA19. q

33

= l

0

2

� u

0

1

Bu�er: l

0

0

; l

0

1

; u

0

1

; q

12

; q

22

; q

23

; q

28

; q

30

; q

31

; q

32

; q

33

Round 6

AM24. q

34

= q

28

q

32

; AM25. q

35

= u

0

1

q

33

; AM26. q

36

= q

33

q

23

; AM27. q

37

= l

0

0

q

23

;

Bu�er: l

0

0

; l

0

1

; u

0

1

; q

12

; q

22

; q

23

; q

30

; q

31

; q

34

; q

33

; q

35

; q

36

; q

37

AA20. u

0

0

= q

30

� u

10

+ l

0

1

+ q

31

+ q

34

; AA21. q

38

= q

35

+ u

0

0

� l

0

0

;

Bu�er: u

0

1

; u

0

0

; q

12

; q

22

; q

23

; q

34

; q

33

; q

38

; q

36

; q

37

Round 7

AM28. q

39

= q

23

q

38

; AM29. p

41

= u

0

0

q

33

; AM30. q

40

= u

0

0

q

36

;

Bu�er state: u

0

1

; u

0

0

; q

12

; q

22

; q

39

; p

41

; q

37

; q

40

AA22. q

41

= q

40

� q

37

; AA23. v

0

1

= q

39

� v

21

� h

1

+ h

2

u

0

1

;

AA24. v

0

0

= q

41

� v

20

� h

0

+ h

2

u

0

0

;

Bu�er: u

0

0

; u

0

1

; v

0

0

; v

0

1

A.4 Doubling with AÆne Coordinates

Doubling Algorithm with Inversion

Input : Divisors D

1

= [u

11

; u

10

; v

11

; v

10

℄.

Output : Divisor 2D

1

= [U

00

1

; U

00

0

; V

00

1

; V

00

0

℄.

Initial Bu�er: u

11

; u

10

; v

11

; v

10

.

Round 1

DA01. ev

1

= h

1

+ 2v

11

� h

2

u

11

;

DA02. ev

0

= h

0

+ 2v

10

� h

2

u

10

;

DA03. inv

0

1

= ev

1

; DA04. p

1

= 2u

10

;

Bu�er: ev

1

; ev

0

; inv

0

1

; p

1

DM01. p

2

= v

2

11

; DM02. p

3

= u

2

11

; DM03. p

4

= ev

2

1

; DM04. p

5

= u

11

ev

1

;

DM05. p

6

= v

11

h

1

;

Bu�er: ev

1

; ev

0

; inv

0

1

; p

2

; p

3

; p

4

; p

5

; p

1

; p

6

Round 2

DA05. inv

0

0

= ev

1

� p

5

;DA06. p

7

= f

3

+ p

3

; DA07. k

0

1

= 2(p

3

� f

4

u

11

+ p

7

� p

1

� v

11

h

2

;

DA08. p

8

= 2p

1

� p

7

+ f

4

u

11

+ v

11

h

2

;

Bu�er:ev

0

; inv

0

1

; inv

0

0

; k

0

1

; p

2

; p

3

; p

4

; p

6

; p

8

DM06. p

9

= ev

0

inv

0

0

; DM07. p

10

= q

3

u

10

; DM08. p

11

= u

11

p

8

; DM09. p

12

= k

0

1

inv

0

1

;

Bu�er:inv

0

1

; inv

0

0

; k

0

1

; p

4

; p

9

; p

10

; p

6

; p

11

; p

12

Round 3

DA09. R = p

9

+ p

10

; DA10. k

0

0

= p

11

+ f

2

� p

2

� 2f

4

u

10

� p

6

� v

10

h

2

;

DA11. p

13

= k

0

0

+ k

0

1

;DA12. p

14

= inv

0

0

+ inv

0

1

; DA13 p

15

= 1 + u

11

;

Bu�er:inv

0

0

; k

0

0

; R; p

4

; p

12

; p

13

; p

14

; p

15

DM10. p

16

= inv

0

0

k

0

0

; DM11. p

17

= p

13

p

14

; DM12. p

18

= p

12

p

15

; DM13. p

19

= u

10

p

12

;

Bu�er:R; p

4

; p

16

; p

17

; p

18

; p

19

Round 4

DA14. S

0

0

= p

16

� p

19

;DA15. S

0

1

= p

17

� p

16

� p

18

;

Bu�er:R;S

0

1

; S

0

0

; p

4

DM14. p

20

= RS

0

1

; DM15. p

21

= S

0

1

2

; DM16. p

22

= R

2

DM17. p

23

= RS

0

0

Bu�er: S

0

1

; S

0

0

; p

4

; p

20

; p

21

; p

22

; p

23

Inversion Round

DM18. p

24

= p

�1

20

;

Bu�er: S

0

1

; S

0

0

; R; ; p

4

; p

24

; p

21

; p

22

; p

23

Round 5

DM19. p

25

= Rp

24

; DM20. p

26

= p

24

p

21

; DM21. p

27

= p

24

p

22

; DM22. S

00

0

= p

24

p

23

;

Bu�er: S

0

1

; S

0

0

; S

00

0

; p

4

; p

26

; p

27

Addition phase

DA16. l

0

2

= u

11

+ S

00

0

;DA17. p

28

= h

2

(S

00

0

� u

11

) + 2v

11

+ h

1

;

Bu�er: S

0

1

; S

0

0

; S

00

0

; l

0

2

; p

4

; p

26

; p

27

; p

28

.

Round 6

DM23. p

29

= p

2

27

; DM24. p

30

= u

11

S

00

0

; DM25. l

0

0

= u

10

S

00

0

; DM26. p

31

= p

27

p

28

;

Bu�er: S

0

1

; S

0

0

; S

00

0

; l

0

2

; l

0

0

; p

4

; p

26

; p

27

; p

29

; p

30

; p

31

DA18. U

00

1

= 2S

00

0

+ p

27

h

2

� p

29

; DA19. p

32

= l

0

2

� U

00

1

;

Bu�er:S

0

1

; S

0

0

; S

00

0

; l

0

0

; U

00

1

; p

4

; p

26

; p

29

; p

30

; p

31

; p

32

Round 7

DM27. p

33

= p

29

(2u

11

� f

4

); DM28. p

34

= U

00

1

p

32

;

DM29. p

35

= S

00

0

2

DM30. p

36

= p

26

p

32

;

Bu�er: S

0

1

; S

0

0

; l

0

0

; U

00

1

; p

4

; p

26

; p

30

; p

31

; p

32

; p

33

; p

34

; p

35

; p

36

DA20. U

00

0

= p

35

+ p

33

+ p

31

; DA21. q

36

= p

34

+ U

00

0

� l

0

1

;

Bu�er:S

0

1

; S

0

0

; ; l

0

0

; U

00

1

; U

00

0

; p

4

; p

26

; p

30

; p

32

; q

36

; p

36

Round 8

DM31. p

37

= U

00

0

p

32

; DM32. p

38

= p

26

q

36

; DM33. p

39

= l

0

0

p

26

; DM34. p

40

= U

00

0

p

36

;

Bu�er: S

0

1

; S

0

0

; U

00

1

; U

00

0

; p

4

; p

30

; p

38

; p

36

; p

39

; p

40

DA22. V

00

1

= p

38

� v

11

� h

1

+ U

00

1

h

2

; DA23. p

41

= p

40

� p

39

;

DA24. V

00

0

= p

41

� v

10

� h

0

+ h

2

U

00

0

;

Bu�er:U

00

0

; U

00

1

; V

00

0

; V

00

1

B Appliation to Ellipti Curves

Ellipti Curves in aÆne o-ordinates involves only a few multipliations and

squaring. In projetive or Jaobian o-ordinates the number of multipliations

in the enapsulated add and double algorithm involve substantial number of

multipliations where one may use several multipliers to ompute in parallel.

We applied our method to the x-o-ordinate only enapsulated add and double

formula presented in [6℄. The results obtained are presented in Table 9.

Parallel version of x-oordinate only enapsulated add and double formula

for ellipti urves using projetive oordinates is presented below.

B.1 x-oordinate only enapsulated add and double for ECC

Algorithm

Input : x and z o-ordinates of points P

1

= (X

1

; Y

1

; Z

1

) and P

2

= (X

2

; Y

2

; Z

2

).

Output : x and z oordinates of P

1

+ P

2

, X

3

and Z

3

and those of 2P

1

, X

4

and Z

4

z-oordinates of P

1

+ P

2

= Z

3

and of 2P

1

= Z

4

Initial bu�er: X

1

; X

2

; Z

1

; Z

2

;.

Table 8. Computation hart with eight proessors for arithmeti using aÆne oordi-

nates in [11℄.

Rnd Operation

AA01, AA02, AA03, AA04, DA01, DA02, DA03, DA04

1 AM01, AM02, AM03, DM01, DM02, DM03, DM04, DM05

AA05, AA06, AA07, AA08, DA05, DA06, DA07, DA08

2 AM04, AM05, AM06, AM07, DM06, DM07, DM08, DM09

AA09, DA09, DA10, DA11, DA12, DA13

3 AM08, AM09, DM10, DM11, DM12, DM13

AA10, AA11, DA14, DA15

4 AM10, AM11, AM12, AM13, DM14, DM15, DM16, DM17

5 = q

17

p

20

6 Æ =

�1

7 q

20

= Æp

20

; p

24

= Æq

17

8 AM15, AM16, AM17, AM18, DM19, DM20, DM21, DM22

AA12, AA13, AA14, AA15, DA16, DA17

9 AM19, AM20, AM22, AM23, DM23, DM24, DM25, DM26

AA16, AA17, AA18, AA19, DA18, DA19

10 AM21, AM24, AM25, AM26, DM27, DM28, DM29, DM30

AA20, AA21, DA20, DA21

11 AM27, AM28, AM29, DM31, DM32, DM33, DM34

AA22, AA23, AA24, DA22, DA23, DA24

Table 9. Parameters for parallel versions of enapsulated add and double formula

in [6℄.

MW BW CPL TM

5 8 5 19

Round 1

AM01. T

1

= X

1

X

2

; AM02. T

2

= Z

1

Z

2

; AM03. T

3

= X

1

Z

2

; AM04. T

4

= X

2

Z

1

;

Bu�er: T

1

; T

2

; T

3

; T

4

.

AA01. T

5

= T

3

+ T

4

; AA02. T

14

= T

3

� T

4

;

Bu�er: T

1

; T

2

; T

3

; T

5

; T

14

.

Round 2

AM05. T

6

= aT

2

; AM06. T

10

= T

2

2

; AM07. T

15

= T

2

14

; AM08. T

21

= T

2

3

;

Bu�er: T

1

; T

2

; T

3

; T

5

; T

6

; T

10

; T

15

; T

21

.

AA03. T

7

= T

1

+ T

6

;

Bu�er: T

2

; T

3

; T

5

; T

6

; T

7

; T

10

; T

15

; T

21

Round 3

AM09. T

8

= T

5

T

7

; AM10. T

11

= bT

10

; AM11. T

17

= X

0

3

T

15

; AM12. Z

3

= Z

0

3

T

15

AM13. T

22

= T

6

T

2

;

Bu�er: T

2

; T

3

; T

8

; T

21

; T

11

; T

17

; T

22

; Z

3

AA04. T

9

= 2T

8

; AA05. T

12

= 2T

11

; AA06. T

12

= 2T

12

; AA07. T

13

= T

9

+ T

12

;

AA08. T

23

= T

21

� T

22

;AA09. T

28

= T

21

+ T

22

;

Bu�er:T

2

; T

3

; T

17

; Z

3

; T

13

; T

23

; T

28

Round 4

AM14. T

16

= Z

0

3

T

13

; AM15. T

24

= T

2

23

; AM16. T

25

= T

11

T

2

; AM17. T

29

= T

3

T

28

;

Bu�er: T

2

; T

3

; T

17

; Z

3

; T

16

; T

24

; T

25

; T

29

AA10. X

3

= T

16

� T

17

,AA11. T

30

= T

29

+ T

25

Bu�er:T

2

; T

3

; X

3

; Z

3

; T

24

; T

25

; T

30

Round 5

AM18. T

26

= T

25

T

3

; AM19. T

31

= T

2

T

30

;

Bu�er: X

3

; Z

3

; T

24

; T

26

; T

31

AA12. T

27

= 2T

26

; AA13. T

27

= 2T

27

; AA14. T

27

= 2T

27

; AA15. X

4

= T

24

� T

27

;

AA16. Z

4

= 2T

31

;

Bu�er: X

3

; Z

3

; X

4

; Z

4

