
Parallelizing Expli
it Formula for Arithmeti
 in

the Ja
obian of Hyperellipti
 Curves

(Full Version)

Pradeep Kumar Mishra and Palash Sarkar

Cryptology Resear
h Group,

Applied Statisti
s Unit,

Indian Statisti
al Institute, 203 B T Road,

Kolkata-700108, INDIA

Abstra
t. One of the re
ent thrust areas in resear
h on hyperellipti

urve
ryptography has been to obtain expli
it formulae for perform-

ing arithmeti
 in the Ja
obian of su
h
urves. We
ontinue this line of

resear
h by obtaining parallel versions of su
h formulae. Our �rst
ontri-

bution is to develop a general methodology for obtaining parallel algo-

rithm of any expli
it formula. Any parallel algorithm obtained using our

methodology is provably optimal in the number of multipli
ation rounds.

We next apply this methodology to Lange's expli
it formula for arith-

meti
 in genus 2 hyperellipti

urve { both for the aÆne
oordinate and

inversion free arithmeti
 versions. Sin
e en
apsulated add-and-double al-

gorithm is an important
ountermeasure against side
hannel atta
ks, we

develop parallel algorithms for en
apsulated add-and-double for both of

Lange's versions of expli
it formula. For the
ase of inversion free arith-

meti
, we present parallel algorithms using 4, 8 and 12 multipliers. All

parallel algorithms des
ribed in this paper are optimal in the number of

parallel rounds. One of the
on
lusions from our work is the fa
t that

the parallel version of inversion free arithmeti
 is more eÆ
ient than the

parallel version of arithmeti
 using aÆne
oordinates.

Keywords : hyperellipti

urve
ryptography, expli
it formula, parallel

algorithm, Ja
obian, en
apsulated add-and-double.

1 Introdu
tion

Hyperellipti

urves present a ri
h sour
e of abelian groups over whi
h the dis-

rete logarithm problem is believed to be diÆ
ult. Hen
e these obje
ts
an be

used for implementation of various publi
 key primitives.

The main operation in a hyperellipti

urve based primitive is s
alar multi-

pli
ation, whi
h is the operation of
omputing mX , where m is an integer and X

is a (redu
ed) divisor in the Ja
obian of the
urve. Any algorithm for s
alar mul-

tipli
ation requires an eÆ
ient method of performing arithmeti
 in the Ja
obian.

This arithmeti
 essentially
onsists of two operations { addition and doubling of

divisors.

The basi
 algorithm for performing arithmeti
 in the Ja
obian of hyperellipti

urves is due to Cantor [1℄. However, this algorithm is not suÆ
iently fast for

pra
ti
al implementation. There has been extensive resear
h on algorithms for

eÆ
ient arithmeti
. The main te
hnique is to obtain so
alled \expli
it formula"

for performing addition and doubling. These expli
it formulae are themselves

omposed of addition, multipli
ation, squaring and inversion operations over

the underlying �nite �eld. Moreover, these formulae are spe
i�
 to a parti
ular

genus. Thus there are separate formulae for genus 2 and genus 3
urves. See

Table 1 in Se
tion 2 for more details.

In this paper, we
onsider the problem of parallel exe
ution of expli
it for-

mula. An expli
it formula
an
ontain quite a few �eld multipli
ations and squar-

ings. (In
ertain
ases, this
an even be 50 or more.) On the other hand, the

number of inversions is usually at most one or two. An expli
it formula usu-

ally also
ontains many �eld additions; however, the
ost of a �eld addition is

signi�
antly less than the
ost of a �eld multipli
ation or inversion. Hen
e the

dominant operation in an expli
it formula is �eld multipli
ation.

On inspe
tion of di�erent expli
it formulae appearing in the literature there

appear to be groups of multipli
ation operations that
an be exe
uted in parallel.

Clearly the ability to perform multipli
ations in parallel will improve the speed

of exe
ution of the algorithm. This gives rise to the following question: Given an

expli
it formula, what is the best parallel algorithm for
omputing the formula?

Our �rst
ontribution is to develop a general methodology for obtaining paral-

lel version of any expli
it formula. The methodology guarantees that the obtained

parallel version requires the minimum number of rounds. The methodology
an

be applied to any expli
it formula appearing in the literature. (There
ould also

be other possible appli
ations.)

The most eÆ
ient expli
it formula for performing arithmeti
 in the Ja
obian

of genus 2
urve is given in [11, 12℄. In [11℄, the aÆne
oordinate representation of

divisors is used and both addition and doubling involve a �eld inversion. On the

other hand, in [12℄ the expli
it formula is developed for inversion free arithmeti

in the Ja
obian.

Our se
ond
ontribution is to apply our methodology to both [11℄ and [12℄.

For pra
ti
al appli
ations, it is ne
essary to
onsider resistan
e to side
hannel

atta
ks. One important
ountermeasure is to perform a so-
alled en
apsulated

add-and-double algorithm (see [3, 6, 7℄ for details). We develop parallel versions

of en
apsulated add-and-double algorithm for both [11℄ and [12℄. In many sit-

uations, the number of parallel multipliers available may be limited. To deal

with su
h situations we present the en
apsulated add-and-double algorithm us-

ing inversion free arithmeti
 using 4, 8 and 12 multipliers. For the aÆne version

we present an algorithm using 8 multipliers. All of our algorithms are optimal

parallel algorithms in the sense that no other parallel algorithm
an perform the

omputation in lesser number of rounds.

Some of our results that we obtain are quite striking. For example, using

4 multipliers, we
an
omplete the inversion free en
apsulated add-and-double

algorithm in 27 rounds and using 8 multipliers we
an
omplete it in 14 rounds.

The algorithm involves 108 multipli
ations. In the
ase of arithmeti
 using aÆne

oordinates, the 8 multiplier algorithm will
omplete the
omputation in 11

rounds in
luding an inversion round. Usually inversions are a few times
ostlier

than multipli
ations, the a
tual �gure being dependent upon exa
t implemen-

tation details. However, from our results it is
lear that in general the parallel

version of arithmeti
 using aÆne
oordinates will be
ostlier than the parallel

version of inversion free arithmeti
.

2 Preliminaries of Hyperellipti
 Curves

In this se
tion, we give a brief overview of hyperellipti

urves. For details,

readers
an refer to [15℄. Let K be a �eld and let K be the algebrai

losure

of K. A hyperellipti

urve C of genus g over K is an equation of the form

C : v

2

+ h(u)v = f(u) where h(u) in K[u℄ is a polynomial of degree at most

g; f(u) in K[u℄ is a moni
 polynomial of degree 2g + 1, and there are no singular

points (u; v) in K �K. Let G be the free abelian group generated by the points

of a hyperellipti

urve de�ned over a �nite �eld F . The elements of G are
alled

divisors. The group G
an be partitioned into equivalen
e
lasses of divisors

where ea
h divisor is represented by a unique spe
ial type of divisor
alled redu
ed

divisor. The beauty of the hyperellipti

urves is that these redu
ed divisors

have a ni
e
annoni
al representation by means of two polynomials of smaller

degrees over F. Also, redu
ed divisors or in other words, the divisor
lasses

represented by them
an be added e�e
tively by Cantor's algorithm [1℄. These

last two properties present the set of divisor
lasses (
alled the Ja
obian of the

underlying
urve) of hyperellipti

urves as a ri
h sour
e of �nite abelian groups

for possible implementation of various
ryptographi
 primitives.

The algorithms Koblitz [8℄ proposed for divisor addition and doubling are

known as Cantor's algorithms. Spallek [20℄ made the �rst attempt to
ompute

divisor addition by expli
it formula for genus 2
urves over �elds of odd
hara
-

teristi
. Harley [5℄ improved the running time of the algorithm in [20℄. Gaudry

and Harley [4℄ observed that one
an derive di�erent expli
it formula for divi-

sor operations depending upon the weight of the divisors. In 2000, Nagao [18℄

proposed two algorithms; one for polynomial division without any inversion and

another for extended g
d
omputation of polynomials requiring only one inver-

sion. Both these algorithms
an be applied to Cantor's algorithm to improve

eÆ
ien
y. Lange [10℄ generalised Harley's approa
h to
urves over �elds of even

hara
teristi
. Takahashi [21℄ and Miyamoto, Doi, Matsuo, Chao and Tsujii [16℄

a
hieved furthur speed-up using Montgomery's tri
k to redu
e the number of

inversions to 1. For genus 2
urves, the fastest version of expli
it formula for

inversion free arithmeti
 is given in [12℄ and the fastest version of expli
it for-

mula using aÆne
oordinates is given in [11℄. For genus 3
urves, Nagao [18℄

and Pelzl, Wollinger, Guajardo and Paar [19℄ have proposed expli
it formula for

performing arithmeti
.

We summarise the
omplexity of various expli
it formulae proposed in lit-

erature in Table 1. Lange has also proposed various
o-ordinate systems and

expli
ite formula for arithmeti
 of genus 2
urves over them. Interested readers

an refer to [13℄. In the
ost
olumn, [i℄; [m℄; [s℄ stand for the time taken by an

inversion, a multipli
ation and a squaring in the underlying �eld respe
tively.

The notation, [m=s℄ stands for time of a square or multipli
ation. In the
orre-

sponding papers, multipli
ations and squarings have been treated to be of the

same
omplexity.

Table 1. Complexity of Expli
it Formulae

Genus Name/Proposed in Field Chara
teristi
 Cost(Add) Cost(Double)

Genus 2 Cantor [18℄ All 3[i℄ + 70[m=s℄ 3[i℄ + 76[m=s℄

Nagao [18℄ Odd 1[i℄ + 55[m=s℄ 1[i℄ + 55[m=s℄

Harley [5℄ Odd 2[i℄ + 27[m=s℄ 2[i℄ + 30[m=s℄

Matsuo et al [14℄ Odd 2[i℄ + 25[m=s℄ 2[i℄ + 27[m=s℄

Miyamoto et al [16℄ Odd 1[i℄ + 26[m=s℄ 1[i℄ + 27[m=s℄

Takahashi [21℄ Odd 1[i℄ + 25[m=s℄ 1[i℄ + 29[m=s℄

Lange [11℄ All 1[i℄ + 22[m℄ + 3[s℄ 1[i℄ + 22[m℄ + 5[s℄

Lange [12℄ All 40[m℄ + 6[s℄ 47[m℄ + 4[s℄

Genus 3 Nagao [18℄ Odd 2[i℄ + 154[m=s℄ 2[i℄ + 146[m=s℄

Pelzl et al [19℄ All 1[i℄ + 70[m℄ + 6[s℄ 1[i℄ + 61[m℄ + 10[s℄

3 General Methodology for Parallelizing Expli
it Formula

An expli
it formula for performing doubling (resp. addition) in the Ja
obian of a

hyperellipti

urve is an algorithm whi
h takes one (resp. two) redu
ed divisor(s)

as input and produ
es a redu
ed divisor as output. Also the parameters of the

urve are available to the algorithm. The algorithm pro
eeds by a sequen
e

of elementary operations, where ea
h operation is either a multipli
ation or an

addition or an inversion over the underlying �eld. In general the formulae involve

one inversion. If there is one inversion, the inversion operation
an be negle
ted

and the parallel version
an be prepared without it. Later, it
an be plugged

in as a separate round at an appropriate pla
e. The same is true if the formula

ontains more than one inversions. Hen
e, we
an assume that the formula is

inversion-free. The
ost of a �eld multipli
ation (or squaring) is signi�
antly more

than the
ost of a �eld addition and hen
e the number of �eld multipli
ations

is the dominant fa
tor determining the
ost of the algorithm. On inspe
tion of

the di�erent expli
it formulae available in the literature, it appears that there

are groups of multipli
ation operations whi
h
an be performed in parallel. The

ability to perform several mulitpli
ations in parallel
an signi�
antly improve the

total
omputation time. So the key problem that we
onsider is the following:

Given an expli
it formula, identify the groups of multipli
ation operations that

an be performed in parallel. In this se
tion we develop a general methodology

for solving this problem.

Let F be an expli
it formula. Then F
onsists of mulitipli
ation and addition

operations. Also several intermediate variables are involved. First we perform the

following prepro
essing on F .

1. Convert all multipli
ations to binary operation : Operations whi
h are ex-

pressed as a produ
t of three or more variables are rewritten as a seqen
e

of binary operations. For example, the operation p

5

= p

1

p

2

p

3

is rewritten as

p

4

= p

1

p

2

and p

5

= p

3

p

4

.

2. Redu
e multipli
ation depth : Suppose we are required to perform the fol-

lowing sequen
e of operations: p

3

= p

2

1

p

2

; p

4

= p

3

p

2

: The straightforward

way of
onverting to binary results in the following sequen
e of operations:

t

1

= p

2

1

; p

3

= t

1

p

2

; p

4

= p

3

p

2

: Note that the three operations have to be

done sequentially one after another. On the other hand, suppose we perform

the operations in the following manner: ft

1

= p

2

1

; t

2

= p

2

2

; gfp

3

= t

1

p

2

; p

4

=

t

1

t

2

g: In this
ase, the operations within fg
an be performed in parallel

and hen
e the
omputation
an be
ompleted in two parallel rounds. The

total number of operations in
reases to 4, but the number of parallel rounds

is less. We do not feel this sort of work
an be done through an algorithm.

Therefore we re
ommend it to be done by inspe
tion.

3. Eliminate reuse of variable names : Consider the following sequen
e of op-

erations:

q

1

= p

1

+ p

2

; q

2

= p

3

; : : :; q

1

= p

4

+ p

5

; : : :

In this
ase, at di�erent points of the algorithm, the intermediate variable q

1

is used to store the values of both p

1

+ p

2

and p

4

+ p

5

. During the pro
ess of

devising the parallel algorithm we rename the variable q

1

storing the value

of p

4

+ p

5

by a unique new name. In the parallel algorithm we
an again

suitably rename it to avoid the overhead
ost of initialising a new variable.

4. Labeling pro
ess : We assign unique labels to the addition and mulitpli
ation

operations and unique names to the intermediate variables.

Given a formula F , we de�ne a dire
ted a
y
li
 graph G(F) in the following

fashion.

{ The nodes of G(F)
orrespond to the arithmeti
 operations and variables of

F . Also there are nodes for the parameters of the input divisor(s) as well as

for the parameters of the
urve.

{ The ar
s are de�ned as follows: Suppose id :r = qp is a multipli
ation op-

eration. The identi�er id is the label assigned to this operation. Then the

following ar
s are present in G(F) : (q; id); (p; id) and (id; r). Similarly, the

ar
s for the addition operations are de�ned, with the only di�eren
e being

the fa
t that the indegree of an addition node may be greater than two.

Proposition 1. The following are true for the graph G(F).

1. The indegree of variable nodes
orresponding to the parameters of the input

divisors and the parameters of the
urve is zero.

2. The indegree of any node
orresponding to an intermediate variable is one.

3. The outdegree of any node
orresponding to an addition or multipli
ation

operation is one.

Note that the outdegree of nodes
orresponding to variables
an be greater than

one. This happens when the variable is required as input to more than one arith-

meti
 operation. Our aim is to identify the groups of multipli
ation operations

that
an be performed in parallel. For this purpose, we prepare another graph

G

�

(F) from G(F) in the following manner:

{ The nodes of G

�

(F) are the nodes of G(F) whi
h
orrespond to multipli
a-

tion operation.

{ There is an ar
 (id

1

; id

2

) from node id

1

to node id

2

in G

�

(F) only if there

is a path from id

1

to id

2

in G(F) whi
h does not pass through another

multipli
ation node.

The graph G

�

(F)
aptures the ordering relation between the multipli
ation op-

erations of F . Thus, if there is an ar
 (id

1

; id

2

) in G

�

(F), then the operation id

1

must be done before the operation id

2

. We now de�ne a sequen
e of subgraphs

of G

�

(F) and a sequen
e of subsets of nodes of G

�

(F) in the following manner.

{ G

1

(F) = G

�

(F) and M

1

is the set of nodes of G

1

whose indegree is zero.

{ For i � 2, G

i

is the graph obtained from G

i�1

by deleting the set M

i�1

from

G

i�1

and M

i

is the set of nodes of G

i

whose indegree is zero.

Let r be the least positive integer su
h that G

r+1

is the empty graph, i.e., on

removing M

r

from G

r

, the resulting graph be
omes empty.

Proposition 2. The following statements hold for the graph G

�

(F).

1. The sequen
e M

1

; : : : ;M

r

forms a partition of the nodes of G

�

(F).

2. All the multipli
ations in any M

i

an be performed in parallel.

3. There is a path in G

�

(F) from some vertex in M

1

to some vertex in M

r

.

Consequently, at least r parallel multipli
ation rounds are required to perform

the
omputation of F .

It is easy to obtain the sets M

i

's from the graph G

�

(F) by a modi�
ation of the

standard topologi
al sort algorithm [2℄. The sets M

i

(1 � i � r) represent only

the multipli
ation operations of F . To obtain a
omplete parallel algorithm, we

have to organize the addition operations and take
are of the intermediate vari-

ables. There may be some addition operations at the beginning of the formula.

Sin
e additions are to be performed sequentially, we
an ignore these additions

while deriving the parallelised formula, treating the sums they produ
e as inputs.

Later, they
an be plugged in at the beginning of the formula.

For 1 � i � r�1, let A

i

be the set of addition nodes whi
h lie on a path from

some node in M

i

to some node in M

i+1

. Further, let A

r

be the set of addition

nodes whi
h lie on a path originating from some node inM

r

. There may be more

than one addition operation in a path from a node in M

i

to a node in M

i+1

.

These additions have to be performed in a sequential manner. (Note that we are

assuming that F starts with a set of multipli
ation operations and ends with a

set of addition operations. It is easy to generalize to a more general form.)

Ea
h multipli
ation and addition operation produ
es a value whi
h is stored

in an intermediate variable. We now des
ribe the method of obtaining the set of

intermediate variables required at ea
h stage of
omputation. Let I

1

; : : : ; I

2r

and

O

1

; : : : ; O

2r

be two sequen
es of subsets of nodes of G(F), where ea
h I

i

and O

j

ontain nodes of G(F)
orresponding to variables. The parameters of the
urve

and the input divisor(s) are not in
luded in any of the I

i

and O

j

's. These are

assumed to be additionally present throughout the algorithm. For 1 � i � r,

these sets are de�ned as follows:

1. I

2i�1

ontains intermediate variables whi
h are the inputs to the multipli
ation nodes in M

i

.

2. I

2i

ontains intermediate variables whi
h are the inputs to the addition nodes in A

i

.

3.O

2i�1

ontains intermediate variables whi
h are the outputs of the multipli
ation nodes in M

i

.

4.O

2i

ontains intermediate variables whi
h are the outputs of the addition nodes in A

i

.

For 1 � j � 2r, de�ne

V

j

= ([

j

i=1

O

i

) \ ([

2r

i=j+1

I

i

): (1)

If a variable x is in V

j

, then it has been produ
ed by some previous operation

and will be required in some subsequent operation. We de�ne the parallel version

par(F) of F as a sequen
e of rounds

par(F) = (R

1

; : : : ;R

r

): (2)

where R

i

= (M

i

; V

2i�1

; A

i

; V

2i

). In round i, the multipli
ations in M

i

an be

performed in parallel; the sets V

2i�1

and V

2i

are the sets of intermediate variables

and A

i

is the set of addition operations. Note that the addition operations are

not meant to be performed in parallel. Indeed, in
ertain
ases the addition

operations in A

i

have to be performed in a sequential manner. We de�ne several

parameters of par(F).

De�nition 1. Let par(F) = (R

1

; : : : ;R

r

), be the r-round parallel version of the

expli
it formula F . Then

1. The total number of multipli
ations (in
luding squarings) o

uring in par(F)

will be denoted by TM.

2. The multipli
ation width (MW) of par(F) is de�ned to be MW = max

1�i�r

jM

i

j.

3. The bu�er width (BW) of par(F) is de�ned to be BW = max

1�i�2r

jV

i

j.

4. A path from a node in M

1

to a node in M

r

is
alled a
riti
al path in par(F).

5. The value r is the
riti
al path length (CPL) of par(F).

The parameter MW denotes the maximum number of multipliers that
an oper-

ate in parallel. Using MW parallel multipliers F
an be
omputed in r parallel

rounds. The bu�er width BW denotes the maximum number of variables that

are required to be stored at any stage in the parallel algorithm.

3.1 De
reasing the Multipli
ation Width

The method des
ribed above yeilds a parallel algorithm par(F) for a given ex-

pli
it formula F . It also �xes the number of
omputational rounds r required to

exe
ute the algorithm using MW number of proessors. By de�nition, MW is the

maximum number of multipli
ations taking pla
e in a round. However, it may

happen that in many rounds the a
tual number of multipli
ations is less than

MW. If we use MW multipliers, then some of the multipliers will be idle in su
h

rounds. The most ideal s
enario is MW � dTM=re. However, su
h an ideal situa-

tion may not
ome about automati
ally. We next des
ribe a method for making

the distribution of the number of multipli
ation operations more uniform among

various rounds.

We �rst prepare a requirement table. It is a table
ontaining data about the

intermediate variables
reated in the algorithm. For every variable it
ontains

the name of the variables used in the expressions
omputing it, the latest round

in whi
h one of su
h variables is
reated and the earliest round in whi
h the

variable itself is used. For example, suppose an intermediate variable v

x

= v

y

�v

z

is
omputed in the j-th round. Of v

y

and v

z

, let v

z

be the one whi
h is
omputed

later and in the i-th round. Let v

x

be used earliest in the k-th round. Then in

the requirement table we have an entry for v

x

onsisting of v

y

; v

z

; i; k. If both of

v

x

and v

y

are input values then we may take i = 0. Note that we have i < j < k.

Now suppose, there are more than dTM=re multipli
ations in the j-th round.

Further suppose that for some j

1

(i+1 � j

1

� k� 1), the number of multipli
a-

tions in the j

th

1

round is less than dTM=re. Then we transfer the multipli
ation

produ
ing v

x

to the j

th

1

round and hen
e redu
e the multipli
ation width of

the j-th round. This
hange of position of the multipli
ation operation does not

a�e
t the
orre
tness of the algorithm.

This pro
edure is applied as many times as possible to rounds whi
h
ontain

more than dTM=re multipli
ations. As a result we obtain a parallel algorithm

with a more uniform distribution of number of multipli
ation operations over

the rounds and
onsequently redu
es the value of MW.

3.2 Managing Bu�er Width

The parameter BW provides the value of the maximum number of intermediate

variables that is required to be stored at any point in the algorithm. This is

an important parameter for appli
ations where the amount of memory is lim-

ited. We justify that obtaining parallel version of an expli
it formula does not

substantially
hange the bu�er width. Our argument is as follows.

First note that the total number of multipli
ations in the parallel version is

roughly the same as the total number of multipli
ations in the original expli
it

formula. The only pla
e where the number of multipli
ations in
reases is in the

prepro
essing step of redu
ing the multipli
ation depth. Moreover, the in
rease

is only a few multipli
ations. The total number of addition operations remain the

same in both sequential and parallel versions. Sin
e the total numbers of multi-

pli
ations and additions are roughly the same, the total number of intermediate

variables also remains roughly the same.

Suppose that after round k in the exe
ution of the parallel version, i inter-

mediate variables have to be stored. Now
onsider a sequential exe
ution of the

expli
it formula. Clearly, in the sequential exe
ution, all operations upto round

k has to be exe
uted before any operation of round greater than k
an be exe-

uted. The i intermediate variables that are required to be stored after round k

are required as inputs to operations in round greater than k. Hen
e these inter-

mediate variables are also required to be stored in the sequential exe
ution of

the expli
it formula.

4 Appli
ation to Lange's Expli
it Formulae

In [11℄ and [12℄, Lange presented expli
it formulae for addition and doubling

in the Ja
obian of genus 2 hyperellipti

urves. In fa
t, there are many spe
ial

ases involved in these expli
ite formulae and our methodology
an be applied

to all the
ases. But to be brief, we restri
t our attention to the most general

and frequent
ase only. The formulae in [11℄ uses an inversion ea
h for addition

and doubling while the formulae in [12℄ does not require any inversion.

We apply the methodology des
ribed in Se
tion 3 separately to the formulae

in [11℄ and [12℄. In the
ase of addition, the inputs are two divisors D

1

and D

2

and in the
ase of doubling the input is only one divisor D

1

. We use the following

onventions.

{ We assume that the
urve parameters h

2

; h

1

; h

0

; f

4

; f

3

; f

2

; f

1

; f

0

are available

to the algorithm.

{ We do not distinguish between squaring and multipli
ation.

{ The labels for the arithmeti
 operations in the expli
it formula for addition

start with A and the labels for the arithmeti
 operations in the expli
it

formula for doubling start with D. The se
ond letter of the label (M or A)

denotes (m)ultipli
ation or (a)ddition over the underlying �eld. ThusAM23

denotes the 23

rd

multipli
ation in the expli
it formula for addition.

{ The intermediate variables for the expli
it formula for addition are of the

form p

i

and the intermediate variables for the expli
it formula for doubling

are of the form q

j

.

{ In [11, 12℄, multipli
ations by
urve
onstants are presented. However, during

the total multipli
ation
ount, some of these operations are ignored, sin
e for

most pra
ti
al appli
ations the related
urve
onstants will be 0 or 1. In this

se
tion, we in
lude the multipli
ation by the
urve parameters. In Se
tion 5,

we
onsider the situation where these are 0 or 1.

{ The set of intermediate variables (V

i

's) required at any stage is
alled the

bu�er state.

4.1 Inversion Free Arithmeti

In this se
tion, we
onsider the result of appli
ation of the method of Se
tion 3

to the inversion free formula for addition and doubling given in [12℄. Due to la
k

of spa
e we present the details in the Appendix. The details of addition formula

is presented in Se
tion A.1 and the details of the doubling formula is presented

Table 2. Parameters for parallel versions of expli
it formula in [12℄.

MW BW CPL TM

Add 8 20 8 59

Double 11 15 8 65

in Se
tion A.2. We present a summary of the parameters of the parallel versions

in Table 2. Based on Table 2 table and Proposition 2(3), we obtain the following

result.

Theorem 1. Any parallel algorithm for exe
uting either the expli
it formula for

addition or the expli
it formula for doubling presented in [12℄ will require at least

8 parallel multipli
ation rounds. Consequently, the parallel algorithms presented

in Se
tions A.1 and A.2 are optimal algorithms.

4.2 Arithmeti
 Using AÆne Coordinates

The most eÆ
ient expli
it formula for arithmeti
 using aÆne
oordinates has

been presented in [11℄. Here we
onsider the result of applying the methodology

of Se
tion 3 to this formula. Again due to la
k of spa
e we present the details

in the Appendix. The parallel version of the addition formula is presented in

Se
tion A.3 and the parallel version of the doubling formula is presented in

Se
tion A.4. A summary of the results is presented in Table 3. We have the

Table 3. Parameters for parallel versions of expli
it formula in [11℄.

MW BW CPL TM

Add 6 12 7

�

29

�

Double 5 13 8

�

34

�

�

In
luding one inversion

following result about the parallel versions of the expli
it formula in [11℄.

Theorem 2. Any parallel algorithm for exe
uting the expli
it formula for ad-

dition (resp. doubling) presented in [11℄ will require at least 7 (resp. 8) parallel

multipli
ation rounds. Consequently, the parallel algorithms presented in Se
-

tions A.3 and A.4 are optimal algorithms.

5 En
apsulated Addition and Doubling Algorithm

In this se
tion, we address several issues required for a
tual implementation.

{ The algorithms of Se
tion A in
lude multipli
ations by the parameters of

the
urve. However, we
an assume that h

2

2 f0; 1g. If h

2

6= 0, then by

substituting y = h

5

2

y

0

and x = h

2

2

x

0

and dividing the resulting equation

by h

10

2

, we
an make h

2

= 1. Also, if the underlying �eld is not of
har-

a
teristi
 5, we
an assume that f

4

= 0. Otherwise, we
an make it so by

substituting x

0

= (x� f

4

=5). In the algorithms presented below, we assume

that h

2

2 f0; 1g and f

4

= 0 and hen
e the
orresponding multipli
ations are

ignored. These de
reases the total number of multipli
ations and hen
e also

the number of parallel rounds. In most appli
ations h

1

; h

0

also are in f0; 1g.

Hen
e eÆ
ien
y in su
h situations
an go up further. Thus all the operations

in Se
tion A of Appendix do not o

ur in the algorithms in this se
tion.

{ The usual add-and-double s
alar multipli
ation algorithm is sus
eptible to

side
hannel atta
ks. One of the main
ountermeasures is to perform both

addition and doubling at ea
h stage of s
alar multipli
ation (see [3℄). We
all

su
h an algorithm an en
apsulated add-and-double algorithm. The parallel

algorithms we present in this se
tion are en
apsulated add-and-double algo-

rithms. All of them take as input two divisors D

1

and D

2

and produ
e as

output D

1

+D

2

and 2D

1

.

5.1 Inversion Free Arithmeti

In this se
tion, we
onsider parallel version of en
apsulated add-and-double for-

mula. We obtain the algorithms from the individual algorithms presented in

Se
tion A.1 and A.2.

First we note that the total number of multipli
ation operations for en
ap-

sulated add-and-double under the above mentioned
onditions is 108. Sin
e the

value of MW for addition is 8 and for doubling is 11 and both have CPL = 8,

a total of 19 parallel �nite �eld multipliers
an
omplete en
apsulated addition

and doubling in 8 parallel rounds. However, 19 parallel �nite �eld multipliers

may be too
ostly. Hen
e we des
ribe algorithms with 4, 8 and 12 parallel multi-

pliers. (Note that an algorithm with two multipliers is easy to obtain { we assign

one multiplier to perform addition and the other to perform doubling.)

Suppose the number of multipliers is m and the total number of operations is

TM. Then at least d(TM=m)e parallel rounds are ne
essary. Any algorithm whi
h

performs the
omputation in these many rounds will be
alled a best algorithm.

Our parallel algorithms with 4 and 8 multipliers are best algorithms. Further,

our algorithm with 12 multipliers is optimal in the sense that no other parallel

algorithm with 12 multipliers
an
omplete the
omputation in less rounds.

The a
tual algorithms for performing inversion free arithmeti
 are presented

in Tables 5, 6 and 7. These tables only list the multipli
ation and addition of

�eld elements. The labels in the tables refer to the labels of operations in the

algorithms in Se
tion A.1 and A.2. We present a summary of the results in

Table 2.

5.2 AÆne Coordinates

An eight multiplier parallel version of expli
it formula for en
apsulated add-and-

double is presented in Table 8 (due to la
k of spa
e we present this table in the

Table 4. Summary of algorithms with varying number of pro
essors for inversion free

arithmeti
 of [12℄.

No of Multipliers 2 4 8 12

Number of rounds 54 27 14 10

Appendix). This is obtained from the parallel versions of individual formulae for

addition and doubling presented in Se
tion A.3 and A.4. In this
ase the total

number of multipli
ations is 65. The eight multiplier algorithm requires 11 paral-

lel rounds in
luding an inversion round. On the other hand, the eight multiplier

algorithm for inversion free arithmeti
 (Table 6) requires only 14 multipli
ation

rounds. Thus, in general the parallel version of inversion free arithmeti
 will

be more eÆ
ient than the parallel version of arithmeti
 obtained from aÆne

oordinates.

6 Con
lusion

In this work, we have developed a general methodology for deriving parallel ver-

sions of any expli
it formula for
omputation of divisor addition and doubling.

We have followed the methods to derive the parallel version of the expli
it for-

mula given in [12℄ and [11℄. We have
onsidered en
apsulated add-and-double

algorithms to prevent side
hannel atta
ks. Moreover, we have des
ribed parallel

algorithms with di�erent number of pro
essors.

It has been shown that for the inversion free arithmeti
 of [12℄ and with 4,

8 and 12 �eld multipliers an en
apsulated add-and-double
an be
arried out in

27, 14 and 10 parallel rounds respe
tively. All these algorithms optimal in the

number of parallel rounds. In the
ase of arithmeti
 using aÆne
oordinates [11℄,

an eight multiplier algorithm
an perform en
apsulated add-and-double using 11

rounds in
luding an inversion round. Sin
e an inversion is usually several times

ostlier than a multipli
ation, in general the parallel version of inversion free

arithmeti
 will be more eÆ
ient than the parallel version of arithmeti
 using

aÆne
oordinates.

We have applied our general methodology to expli
it formula for genus 2

urves. The same methodology
an also be applied to the expli
it formula for

genus 3
urves and to other expli
it formulae appearing in the literature. Pe-

forming these tasks will be future resear
h problems.

Table 5. Computation
hart using four parallel multipliers for inversion free arithmeti

of [12℄.

Rnd Operation

1 AM01, AM02, AM03, AM04

2 AM05, AM06, AM07, AM08

AA01, AA02, AA03, AA04

3 DM01, DM02, DM04, DM08

DA01, DA02, DA03, DA04

4 DM09, AM09, AM10, AM11

DA05, DA06, DA07, AA07, AA08, AA09

5 AM12, AM13, AM14, AM16

AA05, AA06

6 DM12, DM13, DM14, DM15

DA08

7 DM16, DM17, DM18, DM19

DA09, DA10

8 DM20, DM22, AM17, AM18

AA10, DA11, DA11, DA12, DA13

9 AM19, AM20, AM21, AM22

AA12, AA13, AA14, AA15

10 DM23, DM24, DM25, DM26

DA14, DA15, DA16, DA17, DA18, DA19

11 DM27, DM29, AM23, AM24

12 AM25, AM26, AM27, AM28

13 AM29, AM30, DM30, DM31

AA16, AA17

14 DM32, DM33, DM34, DM35

DA20, DA21

Rnd Operation

15 AM31, AM32, AM33, AM34

AA18, AA19

16 AM35, AM37, AM38, DM36

17 DM37, DM38, DM39, DM41

18 DM43, AM39, AM40, AM41

19 AM42, AM43, AM44, AM46

AA20, AA21, AA22, AA23, AA24, AA25

20 DM44, DM45, DM46, DM47

21 DM48, DM49, DM50, AM47

DA22, DA23, DA24, DA25

22 AM48, AM49, AM50, AM51

23 AM52, AM53, DM51, DM52

AA26, AA27

24 DM53, DM54, DM55, DM56

25 DM57, AM54, AM55, AM56

DA26, DA27, DA28

26 AM57, DM58, DM59, DM60

AA28, AA29, AA30, AA31

27 DM62, DM63, DM65, DM66

DA29, DA30, DA31, DA32, DA33, DA34

Table 6. Computation
hart with eight pro
essors for inversion free arithmeti
 of [12℄.

Rnd Operation

1 AM01, AM02, AM03, AM04, AM05, AM06, AM07, AM08

AA01, AA02, AA03, AA04

2 DM01, DM02, DM04, DM08, DM09, AM09, AM10, AM11

DA01, DA02, DA03, DA04, DA04, DA05, DA06, DA07

3 AM12, AM13, AM14, AM16, DM12, DM13, DM14, DM15

AA05, AA06, AA07, AA08, DA09

4 DM16, DM17, DM18, DM19, DM20, DM22, AM17, AM18

DA08, DA09, DA10, DA11, DA12, DA13

5 AM19, AM20, AM21, AM22, DM23, DM24, DM25, DM26

AA10, AA11, AA12, AA13, AA14, AA15

6 DM27, DM29, AM23, AM24, AM25, AM26, AM27, AM28

DA14, DA15, DA16, DA17, DA18, DA19

7 AM29, AM30, DM30, DM31, DM32, DM33, DM34, DM35

AA16, AA17, DA20, DA21

8 AM31, AM32, AM33, AM34, AM35, AM37, AM38, DM36

AA18, AA19

9 DM37, DM38, DM39, DM41, DM43, AM39, AM40, AM41

10 AM42, AM43, AM44, AM46, DM44, DM45, DM46, DM47

AA21, AA22, AA23, AA24, AA25

11 DM48, DM49, DM50, AM47, AM48, AM49, AM50, AM51

DA22, DA23, DA24, DA25

12 AM52, AM53, DM51, DM52, DM53, DM54, DM55, DM56

AA26, AA27

13 DM57, AM54, AM55, AM56, AM57

AA28, AA29, AA30, AA31, DA26, DA27, DA28

14 DM58, DM59, DM60, DM62, DM63, DM65, DM66

DA29, DA30, DA31, DA32, DA33, DA34

Table 7. Computation
hart with twelve pro
essors for inversion free arithmeti
 of [12℄.

Rnd Operation

1 AM01, AM02, AM03, AM04, AM05, AM06, AM07, DM01, DM02, DM04, DM08, DM09

DA1, DA02, DA03, DA04, DA05, DA06, DA07

2 AM08, DM12, DM13, DM14, DM15, DM16, DM17, DM18, DM19, DM20, DM22

AA01, AA02, AA03, AA04, DA8, DA9, DA10, DA11, DA11, DA12, DA13

3 AM09, AM10, AM11, AM12, AM13, AM14, DM23, DM24, DM25, DM26, DM27, DM29

DA14, DA15, DA16, DA17, DA18, DA19

4 AM16, DM30, DM31, DM32, DM33, DM34, DM35

AA05, AA06, AA07, AA08, AA09, DA20, DA21

5 AM17, AM18, AM19, AM20, AM21, AM22, DM36, DM37, DM38, DM39, DM41, DM43

AA10, AA11, AA12, AA13, AA14, AA15

6 AM23, AM24, AM25, AM26, AM27, AM28, AM29, AM30, DM44, DM45, DM 46, DM47

AA16, AA17

7 AM31, AM32, AM33, AM34, AM35, AM37, AM38, DM48, DM49, DM50

AA18, AA19, DA22, DA23, DA24, DA25

8 AM39, AM40, AM41, AM42, AM43, AM44, AM46, DM51, DM52, DM53, DM54, DM55

AA20, AA21, AA22, AA23, AA24, AA25

9 AM47, AM48, AM49, AM50, AM51, AM52, AM53, DM56, DM57

AA26, AA27, DA26, DA27, DA28

10 AM54, AM55, AM56, AM57, DM58, DM59, DM60, DM62, DM63, DM65, DM66

AA28, AA29, AA30, AA31, DA29, DA30, DA31, DA32, DA33, DA34

Referen
es

1. D. G. Cantor. Computing in the Ja
obian of a Hyperellipti

urve. InMathemati
s

of Computation, volume 48, pages 95-101, 1987.

2. T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introdu
tion to Algorithms, MIT

Press, Cambridge, 1997.

3. J.-S. Coron. Resistan
e against Di�erential Power Analysis for Ellipti
 Curve

Cryptosystems. Pro
eedings of CHES 1999, pp 292-302, 1999.

4. P. Gaudry and R. Harley Counting Points on Hyperellipti
 Curves over Finite

Fields. In ANTS IV, volume 1838 of LNCS; pp 297-312, Berlin, 2000, Springer-

Verlag.

5. R. Harley. Fast Arithmeti
 on Genus 2 Curves. Avaiable at

http://
ristal.inria.fr/ harley/hyper,2000.

6. T. Izu and T. Takagi. A Fast Parallel Ellipti
 Curve Multipli
ation Resistant

against Side-Channel Atta
ks Te
hni
al Report CORR 2002-03, University of Wa-

terloo,2002. Available at http://www.
a
r.math.uwaterloo.
a.

7. T. Izu, B. M�oller and T. Takagi. Improved Ellipti
 Curve Multipli
ation Methods

Resistant Against Side Channel Atta
ks. Pro
eedings of Indo
rypt 2002, LNCS

2551, pp 296-313.

8. N. Koblitz. Hyperellipti
 Cryptosystems. In Journal of Cryptology, 1: pages 139{

150, 1989.

9. A. J. Menezes, P. C. van Oors
hot and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.

10. T. Lange. EÆ
ient Arithmeti
 on Hyperellipti
 Curves. PhD thesis, Universit�at

Gesamtho
hss
hule Essen, 2001.

11. T. Lange. EÆ
ient Arithmeti
 on Genus 2 Curves over Finite Fields

via Expli
it Formulae. Cryptology ePrint Ar
hive, Report 2002/121, 2002.

http://eprint.ia
r.org/.

12. T. Lange. Inversion-free Arithmeti
 on Genus 2 Hyperellipti
 Curves. Cryptology

ePrint Ar
hive, Report 2002/147, 2002. http://eprint.ia
r.org/.

13. T. Lange. Weighted Co-ordinates on Genus 2 Hyperellipti
 Curves. Cryptology

ePrint Ar
hive, Report 2002/153, 2002. http://eprint.ia
r.org/.

14. K. Matsuo, J. Chao and S. Tsujii. Fast Genus Two Hyperellipti
 Curve Cryptosys-

tems. In ISEC2001, IEICE,2001.

15. A. Menezes, Y. Wu, R. Zu

herato. An Elementary Introdu
tion to Hyperellipti

Curves. Te
hni
al Report CORR 96-19, University of Waterloo(1996), Canada.

Available at http://www.
a
r.math.uwaterloo.
a.

16. Y. Miyamoto, H. Doi, K. Matsuo, J. Chao and S. Tsujii. A fast addition algorithm

for genus 2 hyperellipti

urves. In Pro
 of SCIS2002, IEICE, Japan, pp 497-

502,2002, in Japanese.

17. P. Montgomery. Speeding the Pollard and Ellipti
 Curve Methods for Fa
torisation.

In Math. Comp., vol 48, pp 243-264, 1987.

18. K. Nagao. Improving Group Law Algorithms for Ja
obians of Hyperellipti
 Curves.

ANTS IV, LNCS 1838, Berlin 2000, Springer-Verlag.

19. J. Pelzl, T. Wollinger, J. Guajardo and C. Paar. Hyperellipti
 Curve Cryptosys-

tems: Closing the Performan
e Gap to Ellipti
 Curves. Cryptology ePrint Ar
hive,

Report 2003/26, 2003. http://eprint.ia
r.org/.

20. A. M. Spallek. Kurven vom Ges
hlet
h 2 und irhe Anwendung in Publi
-Key-

Kryptosystemen. PhD Thesis, Universitat Gesamtho
hs
hule, Essen, 1994.

21. M. Takahashi. Improving Harley Algorithms for Ja
obians of Genus 2 Hyperellipti

Curves. In Pro
 of SCIS 2002, ICICE, Japan, 2002, in Japanese.

A Details of Parallel Versions of Expli
it Formula

The organisation of this se
tion is as follows.

{ Parallel version of the expli
it formula for addition using inversion free arith-

meti
 of [12℄ is presented in Se
tion A.1.

{ Parallel version of the expli
it formula for doubling using inversion free arith-

meti
 of [12℄ is presented in Se
tion A.2.

{ Parallel version of the expli
it formula for addition using aÆne
oordinates

([11℄) is presented in Se
tion A.3.

{ Parallel version of the expli
it formula for doubling using aÆne
oordinates

([11℄) is presented in Se
tion A.4.

A.1 Addition Using Inversion Free Arithmeti

Algorithm

Input : Divisors D

1

= [U

11

; U

10

; V

11

; V

10

; Z

1

℄ and D

2

= [U

21

; U

20

; V

21

; V

20

; Z

2

℄.

Output : Divisor D

1

+D

2

= [U

0

1

; U

0

0

; V

0

1

; V

0

0

; Z

0

℄

Initial bu�er: U

11

; U

10

; V

11

; V

10

; Z

1

; U

21

; U

20

; V

21

; V

20

; Z

2

.

Round 1

AM01. Z = Z

1

Z

2

; AM02.

e

U

21

= Z

1

U

21

; AM03.

e

U

20

= Z

1

U

20

; AM04.

e

V

21

= Z

1

V

21

;

AM05.

e

V

20

= Z

1

U

20

; AM06. p

1

= U

11

Z

2

; AM07. p

2

= U

10

Z

2

; AM08. p

3

= V

11

Z

2

.

Bu�er: Z;

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; p

1

; p

2

; p

3

.

AA01. p

4

= p

1

�

e

U

21

;AA02. p

5

=

e

U

20

� p

2

;AA03. p

6

= p

3

�

e

V

21

;AA04. p

7

= Z

1

+ U

11

.

Bu�er: Z;

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; p

3

; p

4

; p

5

; p

6

; p

17

; p

7

; Z.

Round 2

AM09. p

8

= U

11

p

4

; AM10. p

9

= Z

1

p

5

; AM11. p

10

= Z

1

p

4

; AM12. p

11

= p

2

4

;

AM13. p

12

= p

4

p

6

; AM14. p

13

= h

1

Z; AM15. p

14

= f

4

Z; AM16. p

15

= V

10

Z

2

Bu�er: Z;

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; p

15

; p

3

; p

4

; p

5

; p

17

; p

7

; p

8

; p

9

; p

10

; p

11

; p

12

; p

13

; p

14

.

AA05. p

16

= p

15

�

e

V

20

;AA06. p

17

= p

16

+ p

6

;AA07. p

18

= p

8

+ p

9

;

AA08. p

19

= p

18

+ p

10

; AA09. p

20

= p

4

+

e

U

21

;

Bu�er: Z;

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; p

15

; p

3

; p

4

; p

17

; p

7

; p

12

; p

13

; p

14

; p

18

; p

19

; p

20

Round 3

AM17. p

21

= p

5

p

18

; AM18. p

22

= p

11

U

10

; AM19. p

23

= p

19

p

17

; AM20. p

24

= p

18

p

16

AM21. p

25

= p

12

p

7

; AM22. p

26

= p

12

U

10

;

Bu�er: Z;

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; p

15

; p

3

; p

4

; p

13

; p

14

; p

20

; p

21

; p

22

; p

23

; p

24

; p

25

; p

26

AA10. r = p

21

+ p

22

; AA11. s

1

= p

23

� p

24

� p

25

; AA12. s

0

= p

24

� p

26

;

AA13. p

27

=

e

U

21

+

e

U

20

; AA14. p

28

= p

13

+ 2

e

V

21

;

AA15. p

29

= p

4

+ 2

e

U

21

� p

14

;

Bu�er:Z;

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; r; s

1

; s

0

; p

15

; p

3

; p

4

; p

20

; p

27

; p

28

; p

29

Round 4

AM23. R = Zr; AM24. s

0

= s

0

Z; AM25. s

3

= s

1

Z; AM26. S = s

0

s

1

;

AM26. p

30

= s

1

p

4

; AM27. p

31

= rp

29

; AM28. p

32

= s

1

p

28

AM29. t = s

1

p

20

Bu�er:

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; r; s

1

; s

0

; R; s

3

; S; t; p

15

; p

3

; p

4

; p

27

; p

30

; p

31

; p

32

; p

27

AA16. p

33

= s

0

� t, AA17. p

34

= t� 2s

0

Bu�er:

e

U

21

;

e

U

20

;

e

V

21

;

e

V

20

; r; s

1

; s

0

; R; s

3

; S; p

15

; p

3

; p

4

; p

27

; p

30

; p

31

; p

32

; p

33

; p

34

Round 5

AM30. S

3

= s

2

3

; AM31.

e

R = Rs

3

; AM32.

e

S = s

3

s

1

; AM33.

e

e

S = s

0

s

1

;

AM34. l

0

= S

e

U

20

; AM35. p

35

= h

2

p

33

; AM36. p

36

= s

2

0

; AM37. p

37

= R

2

;

Bu�er:

e

U

21

;

e

V

21

;

e

V

20

; l

2

; l

0

; S

3

;

e

R;

e

e

S;

e

S; S; p

15

; p

3

; p

27

; p

30

; p

31

; p

32

; p

34

; p

35

; p

36

; p

37

AA18. p

38

=

e

S + S; AA19. p

39

= p

35

+ p

32

;

Bu�er:

e

U

21

;

e

V

21

;

e

V

20

; l

2

; l

0

; S

3

;

e

R;

e

e

S;

e

S; p

15

; p

3

; p

27

; p

30

; p

31

; p

34

; p

36

; p

38

; p

39

Round 6

AM38.

e

e

R =

e

R

e

S; AM39. l

2

=

e

S

e

U

21

; AM40. p

40

= p

38

p

27

; AM41. p

41

= p

30

p

34

;

AM42. p

42

= p

3

e

S; AM43. p

43

= Rp

39

; AM44. p

44

= h

2

e

R; AM45. p

45

= p

15

e

R;

Bu�er:

e

V

21

;

e

V

20

; l

2

; l

0

; S

3

;

e

R;

e

e

S;

e

e

R; p

31

; p

36

; p

37

; p

40

; p

41

; p

42

; p

43

; p

44

AA20. l

1

= p

40

� l

2

� l

0

; AA21. l

2

= l

2

+

e

e

S;

AA22. U

0

0

= p

36

+ p

41

+ p

42

+ p

43

+ p

31

; AA23. U

0

1

= 2

e

e

S � p

45

+ p

44

� p

37

;

AA24. l

2

= l

2

� U

0

1

; AA25. p

46

= U

0

0

� l

1

;

Bu�er: U

0

0

; U

0

1

;

e

V

21

;

e

V

20

; l

2

; l

0

; S

3

;

e

R;

e

e

S;

e

e

R; p

46

Round 7

AM46. p

47

= U

0

0

l

2

; AM47. p

48

= S

3

l

0

; AM48. p

49

= U

0

1

l

2

; AM49. p

50

= S

3

p

46

;

AM50. Z

0

=

e

RS

3

; AM51. U

0

0

=

e

RU

0

0

; AM52. U

0

1

=

e

RU

0

1

;

Bu�er state: U

0

0

; U

0

1

;

e

V

21

;

e

V

20

;

e

e

R; p

47

; p

48

; p

49

; p

50

; Z

0

AA26. p

51

= p

47

� p

48

; AA27. p

52

= p

49

+ p

50

;

Bu�er: U

0

0

; U

0

1

;

e

V

21

;

e

V

20

;

e

e

R; p

51

; p

52

; Z

0

Round 8

AM53. p

53

=

e

e

R

e

V

20

; AM54. p

54

=

e

e

R

e

V

21

; AM55. p

55

= h

0

Z

0

; AM56. p

56

= h

1

Z

0

;

AM57. p

57

= h

2

U

0

0

; AM58. p

58

= h

2

U

0

1

;

Bu�er state: U

0

0

; U

0

1

; p

51

; p

52

; p

53

; p

54

; p

55

; p

55

; p

56

; p

57

; p

58

; Z

0

AA28. p

59

= p

51

� p

53

� p

55

; AA29. p

60

= p

52

� p

54

� p

56

;

AA30. V

0

0

= p

57

+ p

59

; AA31. V

0

1

= p

58

+ p

60

;

Bu�er state: U

0

0

; U

0

1

; V

0

0

; V

0

1

; Z

0

A.2 Doubling Using Inversion Free Arithmeti

Algorithm

Input : Divisors D

1

= [U

11

; U

10

; V

11

; V

10

; Z

1

℄.

Output : Divisor 2D

1

= [U

00

1

; U

00

0

; V

00

1

; V

00

0

; Z

00

℄.

Initial Bu�er: U

11

; U

10

; V

11

; V

10

; Z

1

.

Round 1

DM01. q

0

= Z

2

1

; DM02. q

1

= h

1

Z

1

; DM03. q

2

= h

2

U

11

; DM04. q

3

= h

0

Z

1

;

DM05. q

4

= h

2

U

10

; DM06. q

5

= f

4

U

11

; DM07. q

6

= h

2

V

11

; DM08. q

7

= f

2

Z

1

;

DM09. q

8

= V

11

h

1

; DM10. q

9

= V

10

h

2

; DM11. q

10

= f

4

U

10

;

Bu�er: q

0

; q

1

; q

2

; q

3

; q

4

; q

5

; q

6

; q

7

; q

8

; q

9

; q

10

DA01.

e

V

1

= q

1

+ 2V

11

� q

2

; DA02.

e

V

0

= q

3

+ 2V

10

� q

4

;

DA03. q

11

= 2U

10

; DA04. inv

1

= �

e

V

1

; DA05. q

12

= q

7

� q

8

� q

9

� 2q

10

;

DA06. q

13

= 2q

11

+ q

10

+ q

6

; DA07. q

14

= q

11

+ 2q

7

+ q

6

;

Bu�er: inv

1

;

e

V

1

;

e

V

0

; q

0

; q

14

; q

11

q

12

; q

13

Round 2

DM12. q

15

= V

2

11

; DM13. q

16

= U

2

11

; DM14. q

17

=

e

V

0

Z

1

; DM15. q

18

= U

11

e

V

1

;

DM16. q

19

=

e

V

2

1

; DM17. q

20

= f

3

q

0

; DM18. q

21

= q

12

Z

1

; DM19. q

22

= q

13

Z

1

;

DM20. q

23

= q

14

Z

1

; DM21. q

24

= h

2

U

11

; DM22. q

25

= h

1

Z

1

;

Bu�er:inv

1

;

e

V

1

;

e

V

0

; q

0

; q

15

; q

16

; q

17

; q

18

; q

19

; q

20

; q

21

; q

22

; q

23

; q

24

; q

25

DA08. q

26

= q

17

q

18

; DA09. q

27

= q

20

+ q

16

; DA10. q

28

= q

22

� q

27

;

DA11. k

1

= 2q

16

+ q

27

� q

23

; DA12. q

29

= q

21

� q

15

;DA13. q

30

= 2V

10

� q

24

+ q

25

;

Bu�er:inv

1

;

e

V

0

; k

1

; q

0

; q

19

; q

26

; q

27

; q

28

; q

29

; q

30

Round 3

DM23. q

31

=

e

V

0

q

26

; DM24. q

32

= q

19

U

10

; DM25. q

33

= U

11

q

28

; DM26. q

34

= Z

1

q

29

;

DM27. q

35

= k

1

inv

1

; DM28. q

36

= f

4

Z

1

; DM29. q

37

= Z

1

U

10

;

Bu�er:inv

1

; k

1

; q

0

; q

26

; q

31

; q

32

; q

37

; q

30

; q

33

; q

34

; q

35

; q

36

DA14. r = q

31

+ q

32

; DA15. k

0

= q

33

+ q

34

;DA16. q

38

= k

0

+ k

1

; DA17. q

39

= inv

1

+ q

26

;

DA18. q

40

= 1 + U

11

;DA19. q

41

= 2U

11

� q

36

;

Bu�er:q

0

; r; k

0

; q

26

; q

37

; q

30

; q

35

; q

36

; q

38

; q

39

; q

40

; q

41

Round 4

DM30. R = q

0

r; DM31. q

42

= q

38

q

39

; DM32. q

43

= q

35

q

40

; DM33. q

44

= q

35

q

37

;

DM34. q

45

= k

0

q

26

; DM35. q

46

= rq

41

;

Bu�er:R; q

30

; q

45

; q

36

; q

42

; q

43

; q

44

; q

46

DA20. s

3

= q

42

� q

45

� q

43

; DA21. s

0

= q

45

� q

44

;

Bu�er: R; s

0

; s

3

; q

30

; q

46

Round 5

DM36. q

47

= R

2

; DM37. q

48

= s

0

s

3

; DM38. s

1

= s

3

Z

1

; DM39. S

0

= s

2

0

;

DM40. t = h

2

s

0

; DM41. q

49

= q

30

s

3

; DM42. q

50

= h

2

R; DM43. q

51

= Z

1

q

46

;

Bu�er: S

0

; t; s

1

; q

47

; q

48

; q

49

; q

51

; q

50

Addition phase

No addition required at this step.

Bu�er: Same as above.

Round 6

DM44.

e

R = Rs

1

; DM45. S

1

= s

2

1

; DM46. q

52

= s

1

s

3

; DM47. S = q

48

Z

1

;

DM48. l

0

= U

10

q

48

; DM49. q

53

= Rq

49

; DM50. q

54

= q

50

s

1

;

Bu�er:

e

R;S

1

; S; S

0

; t; l

0

; q

47

; q

48

; q

52

; q

53

; q

51

; q

54

DA22. q

55

= U

11

+ U

10

; DA23. q

56

= q

48

+ q

52

;

DA24. U

00

0

= S

0

+ q

53

+ t+ q

51

; DA25. U

00

1

= 2S + q

54

� q

47

;

Bu�er:U

00

0

; U

00

1

; l

0

; S

1

;

e

R; q

55

; q

52

; q

56

Round 7

DM51.

e

e

R =

e

Rq

52

; DM52. q

57

= q

56

q

55

; DM53. q

58

= S

1

l

0

; DM54. Z

00

= S

1

e

R ;

DM55. q

59

=

e

RU

00

1

DM56. q

60

=

e

RU

00

0

; DM57. l

2

= U

11

s

1

;

Bu�er: U

00

0

; U

00

1

; Z

00

;

e

e

R;S

1

; l

0

; l

1

; l

2

; q

57

; q

58

; q

59

; q

60

DA26. l

1

= q

57

� l

2

� l

0

; DA27. l

2

= l

2

+ S � U

00

1

;

DA28. q

61

= U

00

0

� l

1

;

Bu�er:U

00

0

; U

00

1

; Z

00

;

e

e

R;S

1

; l

2

; q

58

; q

59

; q

60

; q

61

Round 8

DM58. q

62

= U

00

0

l

2

; DM59. q

63

= U

00

1

l

2

; DM60. q

64

= S

1

q

61

; DM61. q

65

= h

2

q

60

;

DM62. q

66

=

e

e

RV

10

; DM63. q

67

= h

0

Z

00

; DM64. q

68

= h

2

q

59

; DM65. q

69

=

e

e

RV

11

;

DM66. q

70

= h

1

Z

00

;

Bu�er: Z

00

; q

58

; q

59

; q

60

; q

62

; q

63

; q

64

; q

65

; q

66

; q

67

; q

68

; q

69

; q

70

DA29. q

71

= q

62

+ q

58

; DA30. q

72

= q

63

+ q

64

;

DA31. U

00

0

= q

60

; DA32. U

00

1

= q

59

; DA33. V

00

0

= q

71

+ q

65

� q

66

� q

67

;

DA34. V

00

1

= q

72

+ q

68

� q

69

� q

70

;

Bu�er:U

00

0

; U

00

1

; Z

00

; V

00

0

; V

00

1

A.3 Addition Using AÆne Coordinates

Algorithm

Input : Divisors D

1

= [u

11

; u

10

; v

11

; v

10

℄ and D

2

= [u

21

; u

20

; v

21

; v

20

℄.

Output : Divisor D

1

+D

2

= [u

0

1

; u

0

0

; v

0

1

; v

0

0

℄

Initial bu�er: u

11

; u

10

; v

11

; v

10

; u

21

; u

20

; v

21

; v

20

.

Round 1

AA01. inv

1

= u

11

� u

21

; AA02. q

1

= u

20

� u

10

;

AA03. q

2

= v

10

� v

20

; AA04. q

3

= v

11

� v

21

;

Bu�er: inv

1

= inv

1

; q

1

; q

2

; q

3

.

AM01. q

4

= u

11

inv

1

; AM02. q

5

= inv

2

1

; AM03. q

6

= inv

1

q

3

;

Bu�er: inv

1

; q

1

; q

4

; q

5

; q

2

; q

3

; q

6

Round 2

AA05. q

7

= q

1

+ q

4

; AA06. q

8

= q

2

+ q

3

; AA07. q

9

= inv

1

+ q

7

;AA08. q

10

= 1 + u

11

;

Bu�er: inv

1

; q

1

; q

5

; q

7

; q

2

; q

6

; q

8

; q

9

; q

10

.

AM04. q

11

= u

10

q

5

AM05. q

12

= q

1

q

7

; AM06. q

13

= q

8

q

9

; AM07. q

14

= q

10

q

6

;

AM08. q

15

= u

10

q

6

; AM09. q

16

= q

7

q

9

;

Bu�er: inv

1

; q

1

; q

11

; q

12

; q

13

; q

14

; q

15

; q

16

Round 3

AA09. r = q

11

+ q

12

; AA10. s

0

1

= q

13

� q

16

� q

14

; AA11. s

0

0

= q

16

� q

15

;

Bu�er: s

0

0

; s

0

1

; r; inv

1

; q

12

AM10. q

17

= rs

0

1

; AM11. q

18

= s

0

1

2

; AM12. q

19

= r

2

; AM13. q

20

= rs

0

0

;

Bu�er:r; inv

1

; q

12

; q

17

; q

18

; q

19

; q

20

Inversion Round

AM14. q

21

= q

�1

17

;

Bu�er:r; inv

1

; q

12

; q

21

; q

18

; q

19

; q

20

Round 4

AM15. q

22

= rq

21

; AM16. q

23

= q

21

q

18

; AM17. q

24

= q

21

q

19

; AM18. s

00

0

= q

21

q

20

;

Bu�er: s

00

0

; inv

1

; q

12

; q

22

; q

23

; q

24

;

AA12. l

0

2

= u

21

+ s

00

0

, AA13. q

25

= s

00

0

� u

11

AA14. q

26

= s

00

0

� inv

1

+ h

2

q

24

AA15. q

27

= h+ 2v

21

Bu�er:s

00

0

; l

0

2

; inv

1

; q

12

; q

22

; q

23

; q

24

; q

25

; q

26

; q

27

Round 5

AM19. q

28

= q

2

24

; AM20. q

29

= u

21

s

00

0

; AM21. l

0

0

= u

20

s

00

0

; AM22. q

30

= q

25

q

26

;

AM23. q

31

= q

27

q

24

;

Bu�er: s

00

0

; l

0

0

; l

0

2

; inv

1

; q

12

; q

22

; q

23

; q

24

; q

28

; q

29

; q

30

; q

31

AA16. l

0

1

= q

29

+ u

20

;AA17. q

32

= 2u

21

+ p

1

� f

4

;

AA18. u

0

1

= 2s

00

0

� inv

1

+ h

2

q

24

� q

28

AA19. q

33

= l

0

2

� u

0

1

Bu�er: l

0

0

; l

0

1

; u

0

1

; q

12

; q

22

; q

23

; q

28

; q

30

; q

31

; q

32

; q

33

Round 6

AM24. q

34

= q

28

q

32

; AM25. q

35

= u

0

1

q

33

; AM26. q

36

= q

33

q

23

; AM27. q

37

= l

0

0

q

23

;

Bu�er: l

0

0

; l

0

1

; u

0

1

; q

12

; q

22

; q

23

; q

30

; q

31

; q

34

; q

33

; q

35

; q

36

; q

37

AA20. u

0

0

= q

30

� u

10

+ l

0

1

+ q

31

+ q

34

; AA21. q

38

= q

35

+ u

0

0

� l

0

0

;

Bu�er: u

0

1

; u

0

0

; q

12

; q

22

; q

23

; q

34

; q

33

; q

38

; q

36

; q

37

Round 7

AM28. q

39

= q

23

q

38

; AM29. p

41

= u

0

0

q

33

; AM30. q

40

= u

0

0

q

36

;

Bu�er state: u

0

1

; u

0

0

; q

12

; q

22

; q

39

; p

41

; q

37

; q

40

AA22. q

41

= q

40

� q

37

; AA23. v

0

1

= q

39

� v

21

� h

1

+ h

2

u

0

1

;

AA24. v

0

0

= q

41

� v

20

� h

0

+ h

2

u

0

0

;

Bu�er: u

0

0

; u

0

1

; v

0

0

; v

0

1

A.4 Doubling with AÆne Coordinates

Doubling Algorithm with Inversion

Input : Divisors D

1

= [u

11

; u

10

; v

11

; v

10

℄.

Output : Divisor 2D

1

= [U

00

1

; U

00

0

; V

00

1

; V

00

0

℄.

Initial Bu�er: u

11

; u

10

; v

11

; v

10

.

Round 1

DA01. ev

1

= h

1

+ 2v

11

� h

2

u

11

;

DA02. ev

0

= h

0

+ 2v

10

� h

2

u

10

;

DA03. inv

0

1

= ev

1

; DA04. p

1

= 2u

10

;

Bu�er: ev

1

; ev

0

; inv

0

1

; p

1

DM01. p

2

= v

2

11

; DM02. p

3

= u

2

11

; DM03. p

4

= ev

2

1

; DM04. p

5

= u

11

ev

1

;

DM05. p

6

= v

11

h

1

;

Bu�er: ev

1

; ev

0

; inv

0

1

; p

2

; p

3

; p

4

; p

5

; p

1

; p

6

Round 2

DA05. inv

0

0

= ev

1

� p

5

;DA06. p

7

= f

3

+ p

3

; DA07. k

0

1

= 2(p

3

� f

4

u

11

+ p

7

� p

1

� v

11

h

2

;

DA08. p

8

= 2p

1

� p

7

+ f

4

u

11

+ v

11

h

2

;

Bu�er:ev

0

; inv

0

1

; inv

0

0

; k

0

1

; p

2

; p

3

; p

4

; p

6

; p

8

DM06. p

9

= ev

0

inv

0

0

; DM07. p

10

= q

3

u

10

; DM08. p

11

= u

11

p

8

; DM09. p

12

= k

0

1

inv

0

1

;

Bu�er:inv

0

1

; inv

0

0

; k

0

1

; p

4

; p

9

; p

10

; p

6

; p

11

; p

12

Round 3

DA09. R = p

9

+ p

10

; DA10. k

0

0

= p

11

+ f

2

� p

2

� 2f

4

u

10

� p

6

� v

10

h

2

;

DA11. p

13

= k

0

0

+ k

0

1

;DA12. p

14

= inv

0

0

+ inv

0

1

; DA13 p

15

= 1 + u

11

;

Bu�er:inv

0

0

; k

0

0

; R; p

4

; p

12

; p

13

; p

14

; p

15

DM10. p

16

= inv

0

0

k

0

0

; DM11. p

17

= p

13

p

14

; DM12. p

18

= p

12

p

15

; DM13. p

19

= u

10

p

12

;

Bu�er:R; p

4

; p

16

; p

17

; p

18

; p

19

Round 4

DA14. S

0

0

= p

16

� p

19

;DA15. S

0

1

= p

17

� p

16

� p

18

;

Bu�er:R;S

0

1

; S

0

0

; p

4

DM14. p

20

= RS

0

1

; DM15. p

21

= S

0

1

2

; DM16. p

22

= R

2

DM17. p

23

= RS

0

0

Bu�er: S

0

1

; S

0

0

; p

4

; p

20

; p

21

; p

22

; p

23

Inversion Round

DM18. p

24

= p

�1

20

;

Bu�er: S

0

1

; S

0

0

; R; ; p

4

; p

24

; p

21

; p

22

; p

23

Round 5

DM19. p

25

= Rp

24

; DM20. p

26

= p

24

p

21

; DM21. p

27

= p

24

p

22

; DM22. S

00

0

= p

24

p

23

;

Bu�er: S

0

1

; S

0

0

; S

00

0

; p

4

; p

26

; p

27

Addition phase

DA16. l

0

2

= u

11

+ S

00

0

;DA17. p

28

= h

2

(S

00

0

� u

11

) + 2v

11

+ h

1

;

Bu�er: S

0

1

; S

0

0

; S

00

0

; l

0

2

; p

4

; p

26

; p

27

; p

28

.

Round 6

DM23. p

29

= p

2

27

; DM24. p

30

= u

11

S

00

0

; DM25. l

0

0

= u

10

S

00

0

; DM26. p

31

= p

27

p

28

;

Bu�er: S

0

1

; S

0

0

; S

00

0

; l

0

2

; l

0

0

; p

4

; p

26

; p

27

; p

29

; p

30

; p

31

DA18. U

00

1

= 2S

00

0

+ p

27

h

2

� p

29

; DA19. p

32

= l

0

2

� U

00

1

;

Bu�er:S

0

1

; S

0

0

; S

00

0

; l

0

0

; U

00

1

; p

4

; p

26

; p

29

; p

30

; p

31

; p

32

Round 7

DM27. p

33

= p

29

(2u

11

� f

4

); DM28. p

34

= U

00

1

p

32

;

DM29. p

35

= S

00

0

2

DM30. p

36

= p

26

p

32

;

Bu�er: S

0

1

; S

0

0

; l

0

0

; U

00

1

; p

4

; p

26

; p

30

; p

31

; p

32

; p

33

; p

34

; p

35

; p

36

DA20. U

00

0

= p

35

+ p

33

+ p

31

; DA21. q

36

= p

34

+ U

00

0

� l

0

1

;

Bu�er:S

0

1

; S

0

0

; ; l

0

0

; U

00

1

; U

00

0

; p

4

; p

26

; p

30

; p

32

; q

36

; p

36

Round 8

DM31. p

37

= U

00

0

p

32

; DM32. p

38

= p

26

q

36

; DM33. p

39

= l

0

0

p

26

; DM34. p

40

= U

00

0

p

36

;

Bu�er: S

0

1

; S

0

0

; U

00

1

; U

00

0

; p

4

; p

30

; p

38

; p

36

; p

39

; p

40

DA22. V

00

1

= p

38

� v

11

� h

1

+ U

00

1

h

2

; DA23. p

41

= p

40

� p

39

;

DA24. V

00

0

= p

41

� v

10

� h

0

+ h

2

U

00

0

;

Bu�er:U

00

0

; U

00

1

; V

00

0

; V

00

1

B Appli
ation to Ellipti
 Curves

Ellipti
 Curves in aÆne
o-ordinates involves only a few multipli
ations and

squaring. In proje
tive or Ja
obian
o-ordinates the number of multipli
ations

in the en
apsulated add and double algorithm involve substantial number of

multipli
ations where one may use several multipliers to
ompute in parallel.

We applied our method to the x-
o-ordinate only en
apsulated add and double

formula presented in [6℄. The results obtained are presented in Table 9.

Parallel version of x-
oordinate only en
apsulated add and double formula

for ellipti

urves using proje
tive
oordinates is presented below.

B.1 x-
oordinate only en
apsulated add and double for ECC

Algorithm

Input : x and z
o-ordinates of points P

1

= (X

1

; Y

1

; Z

1

) and P

2

= (X

2

; Y

2

; Z

2

).

Output : x and z
oordinates of P

1

+ P

2

, X

3

and Z

3

and those of 2P

1

, X

4

and Z

4

z-
oordinates of P

1

+ P

2

= Z

3

and of 2P

1

= Z

4

Initial bu�er: X

1

; X

2

; Z

1

; Z

2

;.

Table 8. Computation
hart with eight pro
essors for arithmeti
 using aÆne
oordi-

nates in [11℄.

Rnd Operation

AA01, AA02, AA03, AA04, DA01, DA02, DA03, DA04

1 AM01, AM02, AM03, DM01, DM02, DM03, DM04, DM05

AA05, AA06, AA07, AA08, DA05, DA06, DA07, DA08

2 AM04, AM05, AM06, AM07, DM06, DM07, DM08, DM09

AA09, DA09, DA10, DA11, DA12, DA13

3 AM08, AM09, DM10, DM11, DM12, DM13

AA10, AA11, DA14, DA15

4 AM10, AM11, AM12, AM13, DM14, DM15, DM16, DM17

5
 = q

17

p

20

6 Æ =

�1

7 q

20

= Æp

20

; p

24

= Æq

17

8 AM15, AM16, AM17, AM18, DM19, DM20, DM21, DM22

AA12, AA13, AA14, AA15, DA16, DA17

9 AM19, AM20, AM22, AM23, DM23, DM24, DM25, DM26

AA16, AA17, AA18, AA19, DA18, DA19

10 AM21, AM24, AM25, AM26, DM27, DM28, DM29, DM30

AA20, AA21, DA20, DA21

11 AM27, AM28, AM29, DM31, DM32, DM33, DM34

AA22, AA23, AA24, DA22, DA23, DA24

Table 9. Parameters for parallel versions of en
apsulated add and double formula

in [6℄.

MW BW CPL TM

5 8 5 19

Round 1

AM01. T

1

= X

1

X

2

; AM02. T

2

= Z

1

Z

2

; AM03. T

3

= X

1

Z

2

; AM04. T

4

= X

2

Z

1

;

Bu�er: T

1

; T

2

; T

3

; T

4

.

AA01. T

5

= T

3

+ T

4

; AA02. T

14

= T

3

� T

4

;

Bu�er: T

1

; T

2

; T

3

; T

5

; T

14

.

Round 2

AM05. T

6

= aT

2

; AM06. T

10

= T

2

2

; AM07. T

15

= T

2

14

; AM08. T

21

= T

2

3

;

Bu�er: T

1

; T

2

; T

3

; T

5

; T

6

; T

10

; T

15

; T

21

.

AA03. T

7

= T

1

+ T

6

;

Bu�er: T

2

; T

3

; T

5

; T

6

; T

7

; T

10

; T

15

; T

21

Round 3

AM09. T

8

= T

5

T

7

; AM10. T

11

= bT

10

; AM11. T

17

= X

0

3

T

15

; AM12. Z

3

= Z

0

3

T

15

AM13. T

22

= T

6

T

2

;

Bu�er: T

2

; T

3

; T

8

; T

21

; T

11

; T

17

; T

22

; Z

3

AA04. T

9

= 2T

8

; AA05. T

12

= 2T

11

; AA06. T

12

= 2T

12

; AA07. T

13

= T

9

+ T

12

;

AA08. T

23

= T

21

� T

22

;AA09. T

28

= T

21

+ T

22

;

Bu�er:T

2

; T

3

; T

17

; Z

3

; T

13

; T

23

; T

28

Round 4

AM14. T

16

= Z

0

3

T

13

; AM15. T

24

= T

2

23

; AM16. T

25

= T

11

T

2

; AM17. T

29

= T

3

T

28

;

Bu�er: T

2

; T

3

; T

17

; Z

3

; T

16

; T

24

; T

25

; T

29

AA10. X

3

= T

16

� T

17

,AA11. T

30

= T

29

+ T

25

Bu�er:T

2

; T

3

; X

3

; Z

3

; T

24

; T

25

; T

30

Round 5

AM18. T

26

= T

25

T

3

; AM19. T

31

= T

2

T

30

;

Bu�er: X

3

; Z

3

; T

24

; T

26

; T

31

AA12. T

27

= 2T

26

; AA13. T

27

= 2T

27

; AA14. T

27

= 2T

27

; AA15. X

4

= T

24

� T

27

;

AA16. Z

4

= 2T

31

;

Bu�er: X

3

; Z

3

; X

4

; Z

4

