
On the Se
urity of Multiple En
ryption or

CCA-se
urity+CCA-se
urity=CCA-se
urity?

Rui Zhang

∗
Goi
hiro Hanaoka

∗
Junji Shikata

†
Hideki Imai

∗

September 20, 2003

Abstra
t

In a pra
ti
al system, a message is often en
rypted more than on
e by di�erent en
ryptions, here


alled multiple en
ryption, to enhan
e its se
urity. Additionally, new features may be a
hieved by mul-

tiple en
rypting a message for a s
heme, su
h as the key-insulated 
ryptosystems [13℄ and anonymous


hannels [8℄. Intuitively, a multiple en
ryption should remain �se
ure�, whenever there is one 
ompo-

nent 
ipher unbreakable in it. In NESSIE's latest Portfolio of re
ommended 
ryptographi
 primitives

(Feb. 2003), it is suggested to use multiple en
ryption with 
omponent 
iphers based on di�erent as-

sumptions to a
quire long term se
urity. However, in this paper we show this needs 
areful dis
ussion.

Espe
ially, this may not be true a

ording to (adaptive) 
hosen 
iphertext atta
k (CCA), even with

all 
omponent 
iphers CCA se
ure. We de�ne an extended version of CCA 
alled 
hosen 
iphertext

atta
k for multiple en
ryption (ME-CCA) to emulate real world partial breaking of assumptions, and

give 
onstru
tions of multiple en
ryption satisfying ME-CCA se
urity. Sin
e CCA se
urity seems so

stringent, we further relax it by introdu
ing weak ME-CCA (ME-wCCA), and prove IND-ME-wCCA

se
ure multiple en
ryption 
an be a
quired from IND-gCCA se
ure 
omponent 
iphers. We also study

the relation of various se
urity notions for multiple en
ryption. We then apply these results to key-

insulated 
ryptosystem. It is only previously known in [13℄ that a generi
 
onstru
tion exists provably

se
ure against CPA atta
k, however, we prove that this generi
 
onstru
tion is in fa
t se
ure against

ME-wCCA by 
hoosing all 
omponents IND-CCA se
ure. We also give an e�
ient generi
 
onstru
tion

of key-insulated 
ryptosystem, whi
h is so far the �rst generi
 
onstru
tion provably se
ure against

CCA (in the random ora
le model).

key words: multiple en
ryption, CCA se
urity, key-insulated 
ryptosystem

1 Introdu
tion

A pra
ti
al 
ryptosystem often en
rypts a message several times under en
ryption s
hemes with inde-

pendent se
ret keys or even distin
t 
iphers based on di�erent assumptions to enhan
e the plaintext


on�dentiality. We 
all su
h 
ryptosystems multiple en
ryption, spe
i�
ally double en
ryption and triple

en
ryption for two times and three times multiple en
ryptions. In this paper, we investigate the se
urity

notion of multiple en
ryption against partial breaking of underlying assumptions.

Why Multiple En
ryption. It is widely believed that multiple en
ryption provides better se
urity

be
ause even if underlying assumptions of some 
omponent 
iphers are broken or some of the se
ret keys

are 
ompromised, the 
on�dentiality 
an still be maintained by the remaining en
ryptions. Histori
ally,

sudden emergen
e of e�
ient atta
ks against the ellipti
 
urve 
ryptosystem on supersingular 
urves

[27, 16℄ and on prime-�eld anomalous 
urves [33, 38, 32℄ have already reminded us the ne
essity to do
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this. Espe
ially, for example, it is suggested by NESSIE ([30℄, pp. 5, line 7-11) on asymmetri
 en
ryption

s
heme to �use double en
ryption using ACE-KEM and RSA-KEM with di�erent DEMs gives a good range

of se
urity, based on various di�erent assumptions�, �if very long term se
urity is important �. Further-

more, �Triple en
ryption that also uses a publi
-key s
heme not based on number-theoreti
al assumptions

might in
rease the se
urity against future breakthrough�. However, it seems that this needs more 
areful


onsiderations.

On the other hand, multiple en
ryption 
an bring additional favorable features to a s
heme. Combina-

tion of ordinary threshold en
ryptions may yield new threshold en
ryption with various a

ess stru
tures.

Implementations a
hieving sender anonymity su
h as Mix-net [8℄, onion routing [8, 23℄, and the key-

insulated 
ryptosystems [13℄ are all pra
ti
al examples of multiple en
ryptions.

Contradi
tion to the Intuition. In this paper, we show that even if it 
onsists of only independently

sele
ted IND-CCA se
ure 
omponents, a multiple en
ryption is not ne
essarily se
ure at all in the sense

of CCA with partial 
omponent 
iphers broken. This 
ontradi
ts our intuition at the �rst sight, but

many natural 
onstru
tions of multiple en
ryption from 
ombinations of IND-CCA se
ure 
omponents 
an

be shown easily to lose the CCA se
urity. Meanwhile, this result may imply CCA-se
urity is too strong

be
ause pra
ti
al s
hemes with �pretty good� se
urity 
ould be overkilled. Then we propose a generi



onstru
tion of multiple en
ryption s
heme a
hieving CCA se
urity exa
tly. In emphasizing �natural�


onstru
tions' pra
ti
al usability, we relax the CCA se
urity. We then investigate the relations among

se
urity notions for multiple en
ryption. Finally as a byprodu
t, we give the �rst generi
 
onstru
tion of

CCA se
ure key-insulated 
ryptosystem.

1.1 Related work

In this se
tion we review some previous work on multiple en
ryption and related primitives. Rather

than simple 
ombination of ordinary publi
 key en
ryption s
hemes, we regard multiple en
ryption as a

separate primitive, as this gives mu
h 
onvenien
e.

Multiple En
ryption and Related Primitives. Multiple en
ryption has been used in many pra
-

ti
al s
hemes, for instan
e Triple DES. Re
ently, NESSIE [30℄ has also announ
ed its re
ommendation

to use (publi
 key) multiple en
ryption under diverse assumptions to ensure long term se
urity. Another

example is the key-insulated 
ryptosystem, proposed by Dodis, Katz, Xu and Yung [13℄. In su
h systems,

with multiple en
ryption of messages under a number of keys from 
over free family [25℄ and separate

physi
ally se
ure devi
e, it is guaranteed that se
ret key of period i 
annot be 
ompromised even if user

se
ret keys are exposed to the adversary up to a number of t other periods.
Another important 
ategory of appli
ations using multiple en
ryption are those pra
ti
al implemen-

tations of anonymous 
hannels in open network, su
h as Mix-net [23℄ and onion routing [8℄. In these

settings, several agents are appointed to transmit data from the sender to the re
eiver without revealing

identity of the sender. Typi
al design of su
h proto
ols is to en
rypt data under multiple publi
 keys of

these agents, whi
h de
rypt the data one layer after another until eventually rea
h the destination. It is

essential to perform these de
ryption 
orre
tly, e.g., [1℄ has shown some pra
ti
al atta
ks against some

Mix-net proto
ols [24, 21℄, whi
h if translated in our language, have used inse
ure multiple en
ryption.

A similar notion to multiple en
ryption is the threshold 
ryptosystem [9, 10, 37℄, whi
h maintains

se
re
y of the unique de
ryption key even if some shares of the se
ret key are 
ompromised. However, all

known 
onstru
tions are based on parti
ular number theoreti
 assumption and 
an be employed to only

a restri
tive range of appli
ations.

Se
urity Notions. Standard se
urity de�nition of a publi
 key en
ryption s
heme is founded gradually

in literature, e.g. [20, 29, 14, 31, 4, 15℄ and the strongest se
urity notion turns to be indistinguishability

against (adaptive) 
hosen-
iphertext atta
k (IND-CCA). Semanti
 se
urity, �rst de�ned by Goldwasser
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and Mi
ali [20℄, later re�ned by Goldrei
h [18, 19℄ and Watanabe, Shikata and Imai [39℄, 
aptures the


omputational approximation of Shannon's information-theoreti
 se
urity [34℄, regulating that it should be

infeasible for any PPT (Probabilisti
 Polynomial Time) adversary to obtain any partial information about

the plaintext of a given 
iphertext. A similar de�nition, indistinguishability, de�nes that given a 
iphertext

an adversary 
annot distinguish whi
h plaintext is en
rypted from two plaintexts. Indistinguishability

is proven to be equivalent to semanti
 se
urity in several atta
k models, namely 
hosen plaintext atta
k

(CPA), (non-adaptive) 
hosen-
iphertext atta
k (CCA1) [29℄ and adaptive 
hosen-
iphertext atta
k (CCA2)

[20, 18, 39, 19℄. Another intri
ate notion, non-malleability, �rst de�ned by Dolev, Dwork and Naor

[14, 15℄ and later re�ned by Bellare and Sahai [4, 5℄, formulates that the adversary should not be able

to 
reate a 
iphertext of a di�erent message that is meaningfully related to the original 
iphertext. Non-

malleability implies indistinguishability in all above three atta
k models. Independently in [4℄ and [15℄,

indistinguishability and non-malleability are proven to be equivalent under (adaptive) 
hosen-
iphertext

atta
k (hereafter CCA).

CCA se
urity is 
ru
ial in analyzing se
urity of proto
ols in the universal 
omposability framework

[6, 22, 7℄. Mainly it allows the adversary 
an a

ess the de
ryption ora
le even after re
eiving a 
hallenge


iphertext. However, Shoup �rst argues CCA se
urity is too stringent for pra
ti
al s
hemes and suggests

�benign malleability� as a relaxation for CCA in the proposal for ISO publi
 key en
ryption standard [36℄.

An, Dodis and Rabin [3℄ give similar dis
ussion under the name �generalized-CCA� (gCCA). In these two

relaxed de�nitions, a relation fun
tion 
he
ks and reje
ts �obvious� de
ryption queries de
rypted to the

target message. Canetti, Kraw
zyk and Nielsen [7℄ also propose another relaxation, namely �Replayable

CCA�, whi
h is weaker than gCCA in most of 
ases.

Previous Work on Multiple En
ryptions and Relations. Multiple en
ryption was addressed

by Shannon as early as [34℄ under the name �produ
t 
ipher�, and in [11, 28, 2℄ in 
ontext of symmetri
 key


ryptosystems. Massay and Maurer [26℄ have also studied the problem under the name �
as
ade 
ipher�.

However, all above work la
ks 
onsiderations for CCA se
urity and is not adequate for applying their

underlying notions to publi
 key setting straightforwardly, even only to the sequential 
ase (see below).

In up
oming work of [12℄, Dodis and Katz, independently of our work, propose another generi
 
on-

stru
tion of CCA se
ure multiple en
ryption. The se
urity of their s
heme 
an be proven in the standard

model and they generate their s
heme to various appli
ations, su
h as key-insulated 
ryptosystem, thresh-

old en
ryption and et
..

1

1.2 Our 
ontributions

Our 
ontributions lie in following aspe
ts:

Model and Se
urity Definition of Multiple En
ryption. We give the �rst formal model re-

garding publi
 key multiple en
ryption. To the best of our knowledge, no previous work has stri
t formal-

ization in
luding CCA se
urity, and a
tually our model 
an be extended to both publi
 key and symmetri


key based 
ryptosystems. Our model 
onsorts the modular design: 
ombining �se
ure� 
omponent 
iphers

to have a �se
ure� multiple en
ryption. As a theoreti
al extension of traditional se
urity de�nitions, we

give the 
orresponding se
urity de�nition formulated by indistinguishability and non-malleability, espe-


ially against 
hosen 
iphertext atta
k for multiple en
ryption (ME-CCA). We introdu
e a Key Exposure

Ora
le to emulate se
urity of multiple en
ryption in the real world even when underlying assumptions

are partially broken. Without loss of generality, breaking underlying assumptions of 
omponent 
iphers


an be esuriently modelled as the se
ret key is leaked to the adversary. Note that there should be at least

one se
ret key hidden from the adversary, while underlying 
ryptosystems 
an be sele
ted independently

1

So far they only present their s
heme in Rump Session in Crypto'03, Aug. 2003, while an earlier version of our work

was publi
ly announ
ed in [40℄, Jan. 2003.
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(the keys 
an be independent). We note this se
urity de�nition 
onsiders more than the key exposure

problem. Choosing multiple en
ryption on di�erent assumptions is the most generalized form of multi-

ple en
ryption with more favorable 
on�dentiality prote
tion, guaranteeing maximum damage in 
ase of

partial breaking. Some analyses here 
an be applied to symmetri
 key s
hemes also.

Vulnerability of Natural Multiple En
ryption. We demonstrate generi
 atta
ks against some

natural 
onstru
tion of multiple en
ryption s
hemes with ea
h 
omponent IND-CCA se
ure, by an adver-

sary that breaks the indistinguishability of the s
heme with only a

esses to the De
ryption Ora
le and

the Key Exposure Ora
le. In fa
t, su
h adversary even breaks the onewayness of the s
heme. This also

explains that multiple en
ryption should be treated as a separate primitive from single-layered en
ryption.

Se
ure Constru
tion of Multiple En
ryption. We exhibit a generi
 
onstru
tion of se
ure mul-

tiple en
ryption from 
omponent 
iphers satisfying only �weak� se
urity, e.g., CPA. Though this 
an be

a
hieved using general zero-knowledge proof te
hniques, 
onsidering e�
ien
y and pra
ti
ality, we adopt

a s
heme that is provably se
ure in the random ora
le model.

Re-defining Se
urity of Multiple En
ryption. IND-CCA se
urity has been treated as standard

de�nition for en
ryption s
hemes, as this is 
onvenient to have modular design on 
ryptographi
al proto
ols

in the universal 
omposability framework [6℄. However, our analysis shows CCA se
urity may be too

stringent as even 
ombining all IND-CCA se
ure 
omponent 
iphers, it might result in a CCA inse
ure

multiple en
ryption. As a reasonable relaxation, we give a new se
urity de�nition named weak 
hosen


iphertext atta
k for multiple en
ryption (ME-wCCA) that is su�
ient in most of interesting 
ases.

Se
urity Notions of Multiple En
ryption. We also study the relations between di�erent se
urity

de�nitions for multiple en
ryption. We formulate the se
urity de�nitions, namely indistinguishability and

non-malleability, under di�erent atta
k models. We show indistinguishability and non-malleability are still

equivalent under ME-CCA and ME-wCCA, whi
h 
orresponds to previous results (A multiple en
ryption

degenerates to an ordinary publi
 key 
ryptosystem, if there is only one 
omponent 
ipher in it.). We

believe a good analysis of these relations will help proto
ol designer more than simply give a spe
i�



onstru
tion based on 
on
rete mathemati
al assumptions.

Appli
ation to Key Insulated En
ryption. As an appli
ation, we re
onsider the 
hosen 
iphertext

se
urity for generi
 
onstru
tion of key-insulated en
ryption proposed by Dodis, Katz, Xu and Yung

[13℄. It is only previously known in [13℄ that a generi
 
onstru
tion exists provably se
ure against CPA

atta
k. In this paper, we show that their s
heme is in fa
t provably se
ure in the relaxed wCCA model,

if ea
h 
omponent 
ipher is sele
ted IND-CCA se
ure. This result reasonably supports the 
orre
tness

and pra
ti
al usability of the s
heme in [13℄. We further give a generi
 
onstru
tion meeting exa
t CCA

se
urity (in the random ora
le model). We point out this is the �rst generi
 
onstru
tion of CCA se
ure

key-insulated 
ryptosystem so far.

2 The model

In this se
tion, we give the model of a multiple en
ryption, basi
 
onstru
tion methods and relative

se
urity de�nitions. Multiple en
ryption is a generalized form of publi
 key en
ryption. De�nitions for

negligible fun
tion, publi
 key en
ryption s
heme, All-or-Nothing Transform and Cover-free family are

given in Appendix A.

2.1 Multiple en
ryption s
heme

Informally a multiple en
ryption is to en
rypt a message by multiple 
ryptosystems. A multiple en
ryption

s
heme ME is generated by 
omponent 
iphers. Naturally we have two basi
 
ombinations of these


ryptosystems: parallel and sequential 
onne
tion among di�erent 
omponents.
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2.1.1 De�nition

Multiple en
ryption is a 
ryptosystem 
omposed by distin
t 
omponent 
iphers. Suppose {Ei}1≤i≤n is a

set of 
ompatible 
omponent 
iphers, where for Ei,

En
-Geni a probabilisti
 key-generation algorithm, with the input (1k) and the internal 
oin

�ipping produ
es a publi
-se
ret key pair (pki, ski);
Enci an en
ryption algorithm, with an input message mi ∈ Mi and the publi
 key pki,

with the internal 
oin �ipping, outputs a 
iphertext ci ∈ Ci;
Deci a de
ryption algorithm, whi
h is a deterministi
 algorithm, with the input 
iphertext

ci and the se
ret key ski, outputs a message mi or �⊥�.

A multiple en
ryption is a 3-tuple algorithm (MEn
-Gen,MEn
,MDe
), where ea
h algorithm may be


ombined from a number of publi
 key 
ryptosystems with a uni�lar 
onne
ting order. MEn
-Gen invokes

every En
-Geni, and writes their outputs to a key list with publi
 keys PK = (pk1, ..., pkn) and se
ret

keys SK = (sk1, ..., skn). MEn
 with an input message M from message spa
e M and PK, performs

en
ryption MEnc on M by invoking a list of 
omponent en
ryption algorithms, also in
luding AONT

T if ne
essary, eventually outputs a 
iphertext C ∈ C. The de
ryption algorithm MDec takes (C,SK)
as input and outputs M , or �⊥� if C is invalid. We also denote in brief the en
ryption algorithm as

MEnc(M ; COIN) (or MEnc(M)), and the de
ryption algorithm as MDec(C) in 
lear 
ontext, where COIN

stands for the randomness used the multiple en
ryption. Essentially, we have two basi
 
onstru
tions:

parallel and sequential.

Parallel Constru
tion. A parallel multiple en
ryption is an operation that messages are en
rypted

in parallel by 
ryptosystems E1, . . . , En. If a message m is 
hosen from the message spa
eM and is dire
tly

pro
essed by E1, . . . , En, the merit of multiple en
ryption will lose immediately - if the adversary breaks

one 
omponent 
ipher, it su

eeds. The right way is to pre-pro
ess the plaintext before en
rypting it.

Su
h pre-pro
ession 
an be an All-Or-Nothing Transform (AONT) (Certainly a (n − 1, n) se
ret sharing
also su�
es.), whi
h maps the desired message into several sub-messages so that only after all the sub-

messages are de
rypted and the plaintext 
an be re
overed. Figure 1 depi
ts the 
onstru
tion in Appendix

B.

To de
rypt the 
iphertext C = (c1, . . . , cn), one uses every ski in the underlying Ei to de
rypt every ci

and gets mi (1 ≤ i ≤ n). The plaintext m 
an then be re
onstru
ted from m1, . . . ,mn. For an adversary

atta
king AONT, it 
an never obtain any information of the plaintext unless it gets all mi's. The generi



onstru
tion of the key-insulated 
ryptosystem [13℄ is an example of multiple parallel en
ryption.

Sequential Constru
tion. Sequential multiple en
ryption is more straightforward, with the stru
-

ture identi
al to 
as
ade 
ipher mentioned in [26℄. It should be 
lari�ed that there exists signi�
ant

di�eren
e between multiple sequential en
ryption and the produ
t 
ipher [34℄: for multiple en
ryption,

ea
h 
omponent 
ipher s
heme 
an be 
hosen independently. Initially the plaintext is en
rypted by the

innermost 
omponent 
ipher. Ea
h output (
iphertext) of an 
omponent 
ipher will be passed on as the

input of the next 
omponent 
ipher. Finally the output of the last 
omponent 
ipher is taken as the output

of this multiple en
ryption. Figure 2 in Appendix B depi
ts it. Sin
e the operation is done sequentially,

by observing C = cn, the de
ryption algorithm takes cn and ski, i = 1, . . . , n as input and eventually

outputs m. The 
onstru
tion of onion routing [8℄ is an example of multiple sequential en
ryption.

Hybrid Constru
tion. If a multiple en
ryption 
ontains both parallel en
ryption blo
k and sequential

en
ryption blo
k, we 
all it a hybrid multiple en
ryption. We give another des
ription that may help

understand the stru
ture. Consider a 
ipher 
ryptosystem with a tree stru
ture. Fixing the root node

as the �rst layer 
ipher, adding a parallel multiple en
ryption to a node just in
reases the sub-nodes of

a node into e, where e is the number of 
omponent 
iphers in this parallel blo
k. Adding a sequential


ipher 
ryptosystem to a node will in
rease the tree depth with a fa
tor of f from that node, where f is

5



the number of 
omponent 
iphers in this sequential multiple en
ryption blo
k. Then the output of the

whole multiple en
ryption is the output of all nodes that don't have sub-nodes. We 
all the set of a node

of a 
ertain level and its sub-nodes a bran
h. If there is more than one end node in the bran
h, we say the

bran
h ends with parallel blo
k. Otherwise, ends with sequential blo
k. Then a multiple en
ryption ends

with a parallel bran
h if there is one parallel en
ryption blo
k in any bran
h, and ends with sequential

bran
h if there is only one bran
h, with its all 
omponent 
iphers forming a sequential en
ryption blo
k.

2.1.2 Parallel 
onstru
tion vs. sequential 
onstru
tion

Parallel multiple en
ryption may serve as a se
ure data storage where a do
ument is split into n pie
es

with (t, n) threshold se
ret sharing other than AONT and stored in several not ne
essarily se
ure servers.

As long as no more than t se
ret keys are not 
ompromised, the se
ret is still se
ure. Compared to parallel

multiple en
ryption, sequential multiple en
ryption has gain in the data size.

2.2 Chosen 
iphertext se
urity for multiple en
ryption

Partially breaking of underlying assumptions (key exposure) is usually not 
onsidered in the se
urity of

a normal publi
 key en
ryption s
heme, su
h as IND-CCA, whereas a multiple en
ryption should remain

se
ure even when most of the underlying assumptions are broken. Sin
e this gap 
annot merge sometimes,

modi�
ations should be performed to the standard CCA se
urity de�nition in order to 
at
h this a
t. We

here introdu
e an additional ora
le into standard CCA game to emulate this s
enario: a Key Exposure

Ora
le that upon the adaptive request of the adversary, leaks se
ret keys of the 
omponent 
iphers to the

adversary. Note that more has been 
onsidered in our model than mere key exposure and the situations

are more 
ompli
ated.

Ora
le A

ess Rules. There are three ora
les in our model: An En
ryption Ora
le EO, whi
h upon


alling with input (M0,M1), returns Cb, the en
ryption of Mb, where b ∈ {0, 1} de
ided by internal


oin �ipping. A De
ryption Ora
le DE , upon de
ryption query C, outputs M = MDec(C), if C 6= Cb;

otherwise, �⊥�. A Key Exposure Ora
le, upon 
alling with i as one index of entire n 
omponent 
iphers,

1 ≤ i ≤ n, returns the 
orresponding se
ret key ski. The adversary 
an a

ess three ora
les in any order

at any time of its 
hoi
e, but it 
an only query EO on
e and KE at most n− 1 times.

De�nition 1 (IND-ME-CCA) Assume any PPT adversary play the following game with a multiple en-


ryption ME. Key generation algorithm MEn
-Gen is run. The publi
 key PK = {pki | i = 1, . . . , n}
is then given to an En
ryption Ora
le EO and the adversary. The se
ret key SK = {ski|i = 1, . . . , n}
is given to a De
ryption Ora
le DO and a Key Exposure Ora
le KE. The adversary 
hooses to a

ess

the three ora
les in any order and at any time. A

ording to the timing of a

ess to EO, the adversary's

strategy is divided into two algorithms (Afind,Aguess), where Afind tries to �nd (M0,M1) to submit to EO
whi
h returns Cb, and Aguess tries to output a guess on b. If the di�eren
e of the su

ess probability of the

adversary A 
ompared to random guess in the IND-ME-CCA game is negligible:

Pr

[

b = b̃
(PK,SK)← MEn
-Gen(1k), (M0,M1, α)← AKE,DO

find (PK),

b
R
← {0, 1}, Cb ← MEnc(Mb), b̃← A

KE,DO
guess (Cb, α)

]

≤
1

2
+ neg(k)

then we 
all thisME IND-ME-CCA se
ure.

Non-malleability of multiple en
ryption against CCA (NM-ME-CCA) is similar to IND-ME-CCA ex
ept

that the adversary su

eeds by outputting a new 
iphertext with is �meaningfully� related to the 
hallenge


iphertext. That is, suppose R is a pres
ribed relation, then the adversary wins, if the adversary 
ould

output a di�erent 
iphertext C ′
from the 
hallenge 
iphertext Cb, with two plaintexts de
rypted from C ′

and Cb satisfying R (R outputs TRUE).
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De�nition 2 (NM-ME-CCA) Denote M, C as sets of plaintexts and 
iphertexts being empty initially,

respe
tively. A

ording to the above a

ess rules for the three ora
les, if any probabilisti
 polynomial

time adversary in the following game has su

ess probability negligibly 
lose to 1/2, we 
all the multiple

en
ryption s
heme NM-ME-CCA se
ure.

Pr

[

b = 1
(PK,SK)← MEn
-Gen(1k), (M0,M1, α)← AKE,DO

1 (PK), Cb ← MEnc(M1),

(R, C)← AKE,DO
2 (Cb, α), M← MDec(C), (Cb /∈ C) ∧ (⊥ /∈M) ∧R(Mb, M)

]

≤
1

2
+ neg(k)

These de�nitions are also appli
able to 
hosen plaintext atta
k CPA by letting DO always output

an empty string on any de
ryption query, whi
h results in the de�nition of 
hosen plaintext atta
k for

multiple en
ryption ME-CPA. Analogously, we 
an de�ne IND-ME-CPA, NM-ME-CPA. By �xing the number

of 
omponent 
iphers n = 1 in the dedition of IND-ME-CCA (or NM-ME-CCA), we obtain de�nition of the

standard IND-CCA (or NM-CCA).

3 Inse
urity of natural 
onstru
tions

Given ea
h 
omponent IND-CCA se
ure, let's 
onsider the following problem: Is the above �natural�


onstru
tion IND-ME-CCA se
ure? Rather disappointing, the answer is negative. There does exit inse
ure


onstru
tions.

Basi
 Idea. At the �rst glan
e, one may think all multiple en
ryption s
hemes from su
h 
onstru
tion

should be se
ure, sin
e ea
h 
omponent is 
hosen independently from ea
h other and satis�es strong

se
urity notion IND-CCA, then all outputs will be indistinguishable from random sequen
e. However, this

reasoning is falla
ious. The �aw is in that this does not 
onsider the 
ase that the adversary 
an make

use of DO. In this 
ase DO 
an be very helpful be
ause every 
iphertext di�erent from the original 
an

be de
rypted and returned a

ording to the de�nition of CCA atta
k. Then all the adversary needs to do

is to modify the 
hallenge 
iphertext to a �new� one but de
rypt to the same message, and submit it to

the De
ryption Ora
le DO. In the CCA setting, the adversary 
annot do this easily be
ause the se
ret key

is kept privately. However, in ME-CCA setting, partial key 
an be exposed by the Key Exposure Ora
le

KE , moreover, sin
e every 
omponent is semanti
ally se
ure, as it must be probabilisti
, where there exist

at least two valid 
iphertexts C0, C1 ∈ C with MDec(C0) = MDec(C1) = M , where M ∈ M is any valid

plaintext. Furthermore, we have the following theorem.

Theorem 1 There exists inse
ure multiple en
ryption in the sense of IND-ME-CCA, even if it is 
ombined

from independently 
hosen IND-CCA se
ure 
omponent 
iphers and se
ure AONT.

Proof. Given a multiple en
ryption s
hemeME 
onstru
ted in the following way: independently sele
t

IND-CCA se
ure 
omponent 
iphers ME = {Enci}, i = 1, ..., n, 
ombine them a

ording to the three


onstru
tions and generate publi
 key PK = (pk1, ..., pkn) and se
ret key SK = (sk1, ..., skn) (see se
tion
2.1.1). We have two 
laims:

Claim 1 If a multiple en
ryption has a bran
h that ends with a parallel blo
k, we are then able to 
onstru
t

an adversary A that breaks it with only one key exposure query and one de
ryption query.

Suppose A = (Afind,Aguess) that 
hooses i, 1 ≤ i ≤ n, and submits Ei to KE . Denote (mi, ci) as the

input and output of i-th 
omponent 
ipher. Let EO's 
hallenge be Cb = MEnc(Mb) (b
R
← {0, 1}). We 
an


onstru
t the following adversary:
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Adversary AKE,DO
find Adversary ADO

guess(M0,M1, α,Cb)

(M0,M1, ski)← A
KE,DO
find (PK, i) mi ← Deci,ski

(ci) where Cb = (c1, ..., ci, ..., cn)
α← ski For c′i = ci do c′i = Enci(mi)
return (M0,M1, α) C ′

b = (c1, ..., c
′
i, ..., cn)

Mb = MDec(C ′
b) where C ′

b 6= Cb

return Mb

Claim 2 If a multiple en
ryption has a bran
h that ends with a sequential blo
k, we may then be able to


onstru
t an adversary A that breaks it with only one key exposure query on the last 
omponent and one

de
ryption query.

Observing that Decn(cn) = cn−1 and C = cn, we 
an build the adversary as follows:

Adversary AKE,DO
find Adversary ADO

guess(M0,M1, α,Cb)

(M0,M1, skn)← AKE,DO
find (PK,n) cn−1 ← Deci,skn

(cn) where Cb = (c1, ..., cn)
α← skn For c′n = cn do c′i = Encn(cn−1)
return (M0,M1, α) C ′

b = c′n
Mb = MDec(C ′

b) where C ′
b 6= Cb

return Mb

where EO's 
hallenge is Cb = MEnc(Mb) (b
R
← {0, 1}).

We 
an see in both 
ase, Mb 
an be de
rypted by querying DO with C ′
b, whi
h enables the adversary

to obtain b easily. Espe
ially for some hybrid 
onstru
tions, these two atta
ks 
an happen at the same

time.

Dis
ussion. The proof to this theorem shows only the 
ase of indistinguishability under ME-CCA at-

ta
k. We brie�y explain the 
ase of onewayness against 
hosen 
iphertext atta
k for multiple en
ryption,

denoted as OW-ME-CCA. Onewayness 
an be informally des
ribed as: given 
iphertext C, output the

plaintext M . It is a stri
tly weaker notion than indistinguishability. However, the proof of Theorem

1 tells us that not only IND-ME-CCA, but also onewayness may not be maintained in ME-CCA model,

even if all the 
omponents are CCA se
ure. On the other hand, we 
an see su
h natural s
hemes are

malleable be
ause the adversary 
an easily produ
e a �new� 
iphertext with a proper key exposure query

and simulates the En
ryption Ora
le. NM-ME-CCA se
urity better explains why the adversary 
an laun
h

that atta
k: it a
tually has produ
ed a 
iphertext with relation that it 
ontains the same plaintext to the


hallenge 
iphertext. NM-ME-CCA se
urity is not trivially obtainable in su
h situations, either.

4 A generi
 
onstru
tion for se
ure multiple en
ryption

We have shown that the simple modular design without further treatment of multiple en
ryption is not

su�
ient to yield ME-CCA se
urity. Then it is natural to 
onsider the following questions: First, how

to 
onstru
t a ME-CCA se
ure multiple en
ryption. Se
ond, whether a generi
 
onstru
tion satisfying

ME-CCA se
urity 
an be a
hieved by 
omponent 
iphers with weaker se
urity, e.g., onewayness against


hosen plaintext atta
k (OW-CPA) se
urity. We answer both questions by giving a generi
 
onstru
tion

a
hieving ME-CCA se
urity with 
omponent 
iphers with weaker se
urity.

For the �natural� 
onstru
tions, ME-CCA se
urity is hard to a
hieve with simple 
onne
tions of 
om-

ponent 
iphers be
ause partial exposure of the se
ret keys will always 
ause malleability of 
iphertexts.

This prompts us the ne
essity to 
he
k the randomness used in en
ryption to ensure the validity of all

parts of a 
iphertext before outputting the plaintext. Suppose all randomness used in the en
ryption


an be veri�ed during de
ryption, then the De
ryption Ora
le in fa
t does not help the adversary: If the

adversary 
an pass the randomness veri�
ation, with overwhelming probability, it has already known all
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the randomness used. This 
an be a
hieved by embedding all randomness into the plaintext. Consisten
e

of all randomness 
an be veri�ed in the de
ryption phase, i.e., to pass the test, the adversary must be

for
ed to have known the 
orresponding plaintext when it submits a 
iphertext query. Then a multiple

en
ryption will be se
ure if an adversary 
annot break all underlying 
omponent 
iphers. Then what

remains to be solved is how to 
ombine a set of OW-CPA en
ryption s
hemes to have IND-ME-CCA se
ure

multiple en
ryption.

Re
all Ei is the i-th 
omponent 
ipher of the multiple en
ryption, Enci(mi, pki; COINi) and Deci(ci, ski)
are the en
ryption algorithm and de
ryption algorithm for Ei (in short Enci(mi; COINi) and Deci(ci),
respe
tively), where pki is the publi
 key and ski is the se
ret key of Ei (see se
tion 2.1.1).

4.1 Se
ure parallel 
onstru
tion of multiple en
ryption

We 
an build 
onstru
tions based on any publi
 key en
ryption 
omponents with OW-CPA se
urity. Most

of the pra
ti
al publi
 key en
ryption s
hemes satisfy this. Denote Hi : {0, 1}∗ → {0, 1}ki
(ki is the length

of ne
essary random 
oin for Ei) and Gi : {0, 1}∗ → {0, 1}li (li is the length of ci2) as random fun
tions.

Key-Generation MGen-En
(1k): (pki, ski)←Gen-Enci, for 1 ≤ i ≤ n; PK = (pk1, ..., pkn), SK =
(sk1, ..., skn).

En
ryption MEnc(M,PK): (m1, ...,mn)
AONT
←− T (M). ri ∈R {0, 1}

∗
, for 1 ≤ i ≤ n. For i-th 
omponent


ipher: ci1 ← Enci(ri;Hi(M, r1, ..., rn)), ci2 ← Gi(ri) ⊕ mi, ci = (ci1, ci2), 1 ≤ i ≤ n. Outputs

C = (c1, ..., cn) as 
iphertext.

De
ryption MDec(C,SK): ri ← Deci(c̄i1), m̄i = G(r̄i) ⊕ c̄i2, 1 ≤ i ≤ n. Outputs M̄ ← I(m̄1, ..., m̄n)
as plaintext if c̄i1 = Enci(r̄i;Hi(M̄ , r̄1, ..., r̄n)), otherwise �⊥�.

4.2 Se
ure sequential 
onstru
tion of multiple en
ryption

Sequential 
onstru
tion 
an be based on the same idea. In the following 
onstru
tions, Hi : {0, 1}∗ →
{0, 1}ki

(ki is the length of ne
essary randomness for Ei) and Gi : {0, 1}∗ → {0, 1}li (li is the length of

ci2) are random fun
tions.

Key-Generation MGen-En
(1k): (pki, ski)←Gen-Enci, for 1 ≤ i ≤ n; PK = (pk1, ..., pkn), SK =
(sk1, ..., skn).

En
ryption MEnc(M,PK): Let c0 = M , ri ∈R {0, 1}
∗
, for 1 ≤ i ≤ n. For i-th 
omponent:

ci1 ← Enci(ri;Hi(ci−1, r1, ..., rn)), ci2 = G1(ri)⊕ c0, ci = (ci1, ci2), for 1 ≤ i ≤ n. Output C = cn.

De
ryption MDec(C,SK): Let c̄n = C, for 1 ≤ i ≤ n, c̄n−1 ← Deci(c̄n). Outputs M̄ = c̄0 as output, if

c̄i1 = Enc(r̄i;Hi(M̄ , r̄1, ..., r̄n)) for 1 ≤ i ≤ n. Otherwise �⊥�.

4.3 Se
urity proof

The following theorem holds for our 
onstru
tion:

Theorem 2 Multiple en
ryption 
onsists of only parallel or sequential blo
k from above 
onstru
tion is

se
ure IND-ME-CCA se
ure in the random ora
le model.

The rest of this se
tion will be dedi
ated to the proof of this theorem. We shall divide the proof into

two parts: �rst part namely Lemma 1 proves the 
ase of parallel 
onstru
tion and the se
ond part namely

Lemma 2 proves the 
ase of sequential 
onstru
tion.

Assume ea
h 
omponent 
ipher is 
hosen independently. We 
laim the following lemmas:
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Lemma 1 If there exists an adversary B that breaks a parallel multiple en
ryptionME with the 
onstru
-

tion given the se
tion 4.1, then there is a probabilisti
 polynomial time adversary A breaks onewayness of

any 
omponent 
ipher Ei with non-negligible advantage.

Lemma 2 If there exists an adversary that B breaks a sequential multiple en
ryption ME with the 
on-

stru
tion given the se
tion 4.2, then there is an adversary A breaks onewayness of any 
omponent 
ipher

Ei with non-negligible advantage.

C.2.1: Proof of Lemma 1

Constru
tion of Adversary. Suppose B breaks ME with probability SuccB(k) = 1/2 + ε with

adaptive queries on the Key Exposure ora
le that leaves at most n− 1 keys to B. Constru
t A as follows:

A pi
ks arbitrary en
ryption s
heme Ei and a se
ure (L, l, n)-AONT see se
tion 7.3 and 
onstru
ts ME
as se
tion 4.1. The adaptive key exposure is simulated as A 
hooses arbitrary Ej for j 6= i and hand

the se
ret keys to B. This time sin
e B knows all the se
ret keys, then there is no barrier for B to make

de
ryption on cj 's. A 
an simulate all this by itself.

When B asks en
ryption queries on a message M , A �rst transforms M with (m1, ...,mn) ← T (M)
with AONT, spe
ially A will take mi as input for Ei. A simulates random ora
le Hi and Gi as two tables

THi
, TGi

by itself: if when B has a query σcount on Hi, if it has not been entered as an entry in THi
it

�ips 
oins to get a random number in
reases the 
ounter count (initially set 0) by 1, put the query and

answer (σi,count, hi,count) in the table and pro
eeds. It does the same for Gi where it instead puts the

query σi,count,mi,count and the answer is gi,count in TGi
. Then A simulates other random ora
le Hj and

Gj and gets output of Ej as cj = (cj1, cj2).
When B makes de
ryption query on C = (c1, ..., cn), A de
rypts cj su
h that j 6= i to get X−i =

(m1, ...,mi−1,mi+1, ...,mn). Espe
ially it runs the following program to get mi and inverses X =
(m0, ...,mn) to get M ← I(M) and hand M to B. Here, the program K(THi

,TGi
, ci, pki) for Ei, where

on random ora
le queries THi
,TGi

, input 
iphertext ci = (ci1, ci2) and publi
 key pki outputs the plain-

text mi if there is an entry in THi
satisfying ci1 ← (Enci(ri;Hi(M, ri)), and an entry in TGi

satisfying

ci2 ← Gi(ri)⊕mi.

First A runs B in the �nd model. When B makes en
ryption or de
ryption queries, A answers as

des
ribed above. Finally, B halts automati
ally, outputs (M0,M1, s). Otherwise, if B 
annot �nish within

couter = qHi
+ qHi

queries on Hi and Gi stop B.
Let b ←R {0, 1}, an 
hallenge 
iphertext ci−b is generated by an En
ryption Ora
le EOi outside A.

Using the same b, Ei also generates X−i = (m1, ...,mi−1,mi+1, ...,mn). Now A runs B in the guess

mode taking (mi−0,mi−1, s,X−i) as input. If B asks en
ryption or de
ryption queries, follow above

spe
i�
ations. At last, B outputs a guess bit b̃ on Mb. A also outputs b as its guess.

Claim 3 If there exists an IND-ME-CPA adversary B that breaks parallel ME with advantage ε, there is

A that breaks the indistinguishability of i-th 
omponent 
ipher with probability ǫ1 or indistinguishability of

(L, l, n)-AONT with advantage with advantage ǫ2, su
h that ε ≤ ǫ1 + 2ǫ2.

Proof. Denote Pr[·] as the probability of events and de�ne some events as:

SucB: B gains advantage in the IND-ME-CPA game.

E1: B breaks the indistinguishability of AONT, that is, B guesses b with (X−i,M0,M1);
E2: B outputs mi−b from (mi−0,mi−1) and Cb.
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Sin
e E1 and E2 are independent, and Pr[SucB|¬E1∧¬E2] must be 0 from the assumption, let the

advantage of B inverting ci−b to get mi−b be ǫ1 and breaks AONT as ǫ2, we have:

ε = Pr[SucB|E1 ∧ E2] · Pr[E1 ∧ E2] + Pr[SucB|¬E1 ∧E2] · Pr[¬E1 ∧ E2]

Pr[SucB|E1 ∧ ¬E2] · Pr[E1 ∧ ¬E2] + Pr[SucB|¬E1 ∧ ¬E2] · Pr[¬E1 ∧ ¬E2]

≤ Pr[E1 ∧E2] + Pr[E1 ∧ ¬E2] + Pr[¬E1 ∧ E2]

≤ ǫ1 + 2ǫ2

Completed.

Following se
tion 4.1 and se
tion 4.2, denote ki is the length of ne
essary 
oin for Ei and li be the

length of ci2.

Claim 4 Suppose Ei is γ-uniform (detailed dis
ussion in [17℄). If there is an IND-ME-CCA adversary

B that breaks i-th 
omponent 
ipher ci1 ← (Enci(ri;Hi(M, ri)), ci2 ← Gi(ri) ⊕ mi, ci = (ci1, ci2) with

(qHi
, qGi

, qdi
) of Hi, Gi and de
ryption queries of advantage ǫ1, then A breaks onewayness of Ei with

advantage at least ε(1 − 2−ki)qHi (1− γ − 2−li)qd
.

Proof. Denote the event AskHi is true if there is an entry in THi
satisfying Enci(ri;Hi(M, r1, ..., rn), and

AskGi is there is an entry in TGi
satisfying Gi(M, r1, ..., rn)⊕mi. SucA1 is true if A simulates at most

qd de
ryption queries 
orre
tly. SucA2 is true if on input unknown plaintext mi, A outputs a 
orre
t


iphertext ci. fail1 is true if A fails to simulate a spe
i�
 B's de
ryption query.

From above spe
i�
ation, we know that A 
an simulate de
ryption queries for B, for ci2 part is in fa
t

one-time pad, the probability of A fails to simulate one de
ryption query of B, sin
e AskHi and AskGi

is independent,

Pr[fail1] = Pr[fail1|AskHi ∧AskGi] · Pr[AskHi ∧AskGi]

+Pr[fail1|¬AskHi ∧AskGi] · Pr[¬AskHi ∧AskGi]

+Pr[fail1|AskHi ∧ ¬AskGi] · Pr[AskHi ∧ ¬AskGi]

+Pr[fail1|¬AskHi ∧ ¬AskGi] · Pr[¬AskHi ∧ ¬AskGi]

Sin
e Pr[fail1|AskHi∧AskGi] must be 0, Pr[fail1|¬AskHi∧¬AskGi] must be 1, we have Pr[fail1] ≤
Pr[fail1|¬AskA0] · Pr[¬AskA0] ≤ γ + 2−li

. So Pr[SucA1] = (1 − Pr[fail1])qd ≥ (1 − γ − 2−li)qd
. On

the other hand, SucA2 fails when B make exa
tly query on ri, denote the length of ri to be ki = |ri|,

Pr[SucA2] = (1− 2−ki)qHi

Finally, from above spe
i�
ation of A we know SucB, SucA1 and SucA2 are independent events. So

the advantage AdvA of A breaking onewayness of Ei using B as ora
le is

AdvAB = Pr[SucB ∧ SucA1 ∧ SucA2] = Pr[SucB] · Pr[SucA1] · Pr[SucA2]

= ǫ1(1− 2−ki)qHi (1− γ − 2−li)qd

Proof 
ompletes.

Combining above two 
laims, we have A breaks onewayness of Ei with advantage at least:

AdvA ≥ min
1≤i≤n

{(ε− 2ǫ2)(1− 2−ki)qHi (1− γ − 2−li)qd}

Apparently both A and B 
an �nish in polynomial time. By requirement of se
ure AONT, ǫ2 is

negligible. A 
an then break onewayness of Ei with non-negligible advantage. Lemma 1 is thus proven.

Following se
tion 4.1 and se
tion 4.2, denote ki is the length of ne
essary 
oin for Ei and li be the

length of ci2. Based on similar analysis of proof of Lemma 1, we 
an formulate the following:
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Claim 5 A 
an use B atta
king ME-CCA with advantage ε to break the onewayness of a 
ertain 
omponent


ipher Ei with advantage at least min1≤i≤n{ε(1 − qHi
· 2−ki)(1 − γ − 2−li)qd}.

The proof is quite similar to that of Claim 4, and is omitted here. Combine Lemma 1 and Lemma 2,

theorem 2 is then proven.

Dis
ussion. One 
omplementary remark should be addressed on the uniformity of underlying primitives

[17℄. What we have 
onsidered so far is mainly non-deterministi
 
omponent 
iphers. For deterministi


primitive publi
 key en
ryption, e.g., RSA, above 
onstru
tion is not su�
ient, however, it 
an be modi�ed

to �t this transform. Furthermore, if all the 
omponent 
iphers are deterministi
, the task is easier: just


onne
t them together and set proper padding s
hemes as pre-pro
ession of the message, like OAEP+

[35℄, and form the whole multiple en
ryption with parallel 
onstru
tion with 
ompatible input domain,

or sequential 
onne
ting one after another. AONT 
an be even repla
ed by OAEP+. This 
onstru
tion

should also be se
ure be
ause if the en
ryption primitive is deterministi
, an adversary 
annot re-en
rypt

the 
orresponding parts of a 
iphertext into valid new part to produ
e another 
iphertext even if it seizes


orresponding se
ret keys. We shall give formal analysis regarding the deterministi
 en
ryption primitive

in the forth
oming work.

5 New de�nition regarding multiple en
ryption

It seems 
ontradi
tive to our intuition that though 
omponent 
iphers are independent, even onewayness

may lose with just simple 
onne
tion of independently 
hosen 
iphers. However, if we follow the CCA

se
urity, it is doomed to appear 
ompletely inse
ure. From another aspe
t, it suggests that CCA se
urity

may be somehow ex
essively strong. In the real world, it is rare that DO helps even in su
h obvious

atta
ks. For example a new 
ipher S′
is 
onstru
ted from a CCA-se
ure 
ipher S, where a harmless bit is

appended to the 
iphertext of S, and is dis
arded during de
ryption, then S′
is no longer se
ure in the

sense of CCA. It seems su
h atta
k to S′
should be easily judged and have �no signi�
ant di�eren
e� in

most of 
ases. In fa
t, when DO en
ounters su
h queries, it should easily determine whether this is really

a �new� 
iphertext, by just looking at the 
iphertext.

5.1 Relaxing de�nition of CCA se
urity

CCA se
urity might be too strong and is not always ne
essary, as pointed out in [36, 3, 7℄, among whi
h,

Shoup's �benign malleability� [36℄ and An, Dodis and Rabin's �gCCA� [3℄ are basi
ally equivalent: a

relation fun
tionRF helps the De
ryption Ora
le against obvious atta
ks. In gCCA de�nition, the relation

fun
tion performs as follows: if RF(c, c′) = TRUE⇒ Dec(c) = Dec(c′). The opposite dire
tion does not

hold, otherwise, the relation fun
tion 
an be used as an ora
le breaking the indistinguishability. There

must be ∃ (c, c′), su
h that RF(c, c′) = FALSE, with Dec(c) = Dec(c′) (refer [3℄ for more details). Canetti,

Kraw
zyk and Nielsen [7℄ re
ently propose another relaxation, 
alled �replayable 
hosen 
iphertext atta
k�

(RCCA), with most of 
ases stri
tly weaker than gCCA.

To rule out the de�nitional limitation of CCA se
urity in multiple en
ryption setting, we also intro-

du
e a relaxed de�nition 
alled �weak 
hosen 
iphertext atta
k for multiple en
ryption� (ME-wCCA). In

the de�nition of wCCA, there is a relation fun
tion RF∗
is 
omputed by invoking RF i (1 ≤ i ≤ n)

during the de
ryption pro
ess inside DO, with initial value of ea
h RF i set to FALSE, where RF i is the

relation fun
tion de�ned a

ording to gCCA se
urity for i-th 
omponent 
ipher Ei. RF i(ci, c
′
i) = TRUE⇒

Dec(ci) = Dec(c′i). Whenever RF i = TRUE for some i, RF∗
halts and returns TRUE to DO immediately.

On
e re
eiving TRUE, DO outputs �⊥� to the adversary. Informally, if RF∗
�nds a part (may be the

intermediate de
ryption result) of the query 
iphertext looks �the same� as the 
orresponding part of the


hallenge 
iphertext, it tells the De
ryption Ora
le to reje
t this de
ryption query. Sin
e the rules for
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ora
le a

ess is the same, the de�nition of IND-ME-CCA only needs to be modi�ed a little to adapt to

IND-ME-wCCA.

We stress that ME-wCCA se
urity is a reasonable relaxation for CCA se
urity. This notion is basi
ally

an extension of gCCA se
urity. By restri
ting a multiple en
ryption to only one 
omponent 
ipher, IND-

ME-wCCA be
omes IND-gCCA.

De�nition 3 (IND-ME-wCCA) In the beginning, the key generation algorithm MEn
-Gen is run, and with

the input {1k}, generating every underlying en
ryption s
heme's publi
-se
ret key pair (pki, ski), n pairs

in total. PK = (pk1, . . . , pkn) is the publi
 key and SK = (sk1, . . . , skn) is the se
ret key. Then MEn
-Gen

gives the publi
 key PK to EO and the adversary, the se
ret key SK to an Key Exposure Ora
le KE and

De
ryption Ora
le DO with a Relation Fun
tion RF∗
inside, whi
h is 
omputable in polynomial time. The

adversary a

esses at most n− 1 time to KE. The adversary a

ess the EO with two messages {M0,M1}

as input. EO 
hooses b
R
← {0, 1} and en
rypts Mb into Cb and returns Cb to the adversary. The adversary

is allowed to a

ess DO for arbitrary polynomial times, and DO responses with the 
orresponding plaintext

as long as RF∗(C,Cb) does not output TRUE. The adversary may query the ora
les adaptively, in any

order it likes. The adversary su

eeds by guessing the value b, and a s
heme is se
ure if any probabilisti


polynomial time adversary has su

ess negligibly 
lose to 1/2.

Pr

[

b = b̃
(PK,SK)← MEn
-Gen(1k), (M0,M1, α)← AKE,DO¬RF∗

find (PK),

b
R
← {0, 1}, Cb ← Enc(Mb), b̃← A

KE,DO¬RF∗

guess (Cb, α)

]

≤
1

2
+ neg(k)

The following lemma shows that IND-ME-wCCA se
ure multiple en
ryption 
an be easily a
quired

from IND-gCCA se
ure 
omponent 
iphers.

Lemma 3 A multiple en
ryption s
heme ME is IND-ME-wCCA se
ure w.r.t. RF∗
by any of three basi



onstru
tions, if ea
h 
omponent 
ipher Ei is IND-gCCA se
ure w.r.t relation fun
tion RF i, 1 ≤ i ≤ n.
RF∗

is de�ned as RF∗(C,C ′) = TRUE, su
h that RF i(ci, c
′
i) = TRUE for some i, 1 ≤ i ≤ n, where ci,

c′i are two 
iphertexts of Ei, and C, C ′
are the 
orresponding 
iphertexts forME.

Proof. For simpli
ity, we assume AONT is se
ure a

ording to the de�nition in Appendix A (It is easy to

modify the proof to the 
ase in whi
h se
urity of AONT is also stri
tly 
onsidered). Within our de�nition

of relation fun
tion, RF∗
and RF i are 
omputable in polynomial time. If a ME s
heme 
onstru
ted

from IND-gCCA 
omponents by above three 
onstru
tion methods is not IND-ME-wCCA se
ure, then we


an use the IND-ME-wCCA adversary as an ora
le to break the underlying IND-gCCA se
ure en
ryption

s
hemes. For multiple en
ryption s
heme, we denote �RF i� as equivalen
e relation w.r.t. any internal

IND-gCCA se
ure 
omponent 
ipher Ei. Now assume that ME is not IND-ME-wCCA se
ure w.r.t. RF∗
,

we show that the same holds for Ei is not se
ure w.r.t. RF i, either. To do this, we take any adversary D
forME whi
h 
ontains Ei as internal 
omponent 
ipher and 
onstru
t adversary Di for Ei.

When Di views the publi
 key pki of Ei, it generates some key pairs (pkj , skj)← En
-Genj(1
k) (j 6= i)

by itself, so that the inputs and outs are 
ompatible. Without loss of generality, we denote the resulting


ryptosystem as ME with Ei as one 
omponent 
ipher. The publi
 key of ME is (pk1, ..., pki, ..., pkn),
and the se
ret key is (sk1, ..., ski, ..., skn). Only ski is unknown to D. To simulate the de
ryption query

Qi made by Di, D 
ompletes Qi for Ei into Q for ME by those se
ret keys in hand, 
he
ks that the

respe
tive Q is a valid query (otherwise it will outputs ⊥) if relation fun
tion outputs FALSE, then make

query Q to its De
ryption Ora
le to de
rypt Q. Next D outputs a pair (M0,M1) and also generate the


orresponding pair (mi0 ,mi1) for Ei. Then when EOi generates a random 
hallenge cib = Enci(mib) for

b ∈R {0, 1}, Di hands cib to D, who by itself 
omplete a 
iphertext Cb 
orresponding to the publi
 key

(pk1, ..., pkn). By de�nition of the RF i we know that Ei is forbidden to de
rypt any RF i(ci, c
′
i) = TRUE,

13



i.e., RF∗(C1, C2) = TRUE, but this is the only limit that Di is forbidden to ask its De
ryption Ora
le.

D 
an still feed the De
ryption Ora
le every single legal query. Finally, Di outputs the same guess as D
outputs, whi
h enables Di to su

eed exa
tly with the same advantage as D.

Sin
e IND-CCA implies IND-gCCA, we further have the following theorem:

Theorem 3 If all 
omponent 
iphers are IND-CCA se
ure and 
hosen independently a

ording to above

three 
onstru
tions, then the resulting multiple en
ryption is IND-ME-wCCA se
ure.

In fa
t, ea
h atta
k per theorem 1 
an 
onstru
t a new 
iphertext with the same plaintext. Sin
e

non-malleability is an arduous goal for multiple en
ryption, we de�ne relaxed gNM-ME-CCA similar to

IND-ME-wCCA. Informally, the de�nition says that the adversary does not win as long as it outputs with

a new 
iphertext with the same relation regulated by the relation fun
tion to the 
hallenge 
iphertext,

where the relation fun
tion is de�ned analogously to that of IND-ME-wCCA.

De�nition 4 (gNM-ME-CCA) A multiple en
ryption s
heme is generalized-non-malleable against ME-

CCA atta
k if for any PPT adversary, whi
h is assisted by De
ryption Ora
le DO, and a Key Exposure

Ora
le KE, it 
annot produ
e a new 
iphertext with relation other than what the Relation Fun
tion RF∗

spe
i�es with non-negligible probability, where RF∗
is de�ned identi
al to ME-wCCA. Denote M, C as sets

of plaintexts and 
iphertexts being empty initially, respe
tively.

Pr



b = 1
(PK,SK)← MEn
-Gen(1k), (M0,M1, α)← AKE,DO

1 (PK),

Cb ← MEnc(M1), (R, C)← AKE,DO
2 (Cb, α,M0,M1),

M← MDec(C), (Cb /∈ C) ∧ (⊥ /∈M) ∧R(Mb, M) ∧ (R 6= RF∗)



 ≤
1

2
+ neg(k)

gNM-ME-CCA is a relaxed notion to NM-ME-CCA se
urity (
f. IND-ME-wCCA to IND-ME-CCA). We

shall 
ontinue to dis
uss the relation between these se
urity notions in next se
tion.

6 Relations among se
urity de�nitions for multiple en
ryption

In this se
tion, we dis
uss the relation among se
urity de�nitions of multiple en
ryptions. The good news

is that in multiple en
ryption s
enario indistinguishability and non-malleability are still equivalent in most

of the interesting 
ases, namely under ME-CCA atta
ks (IND-ME-wCCA is equivalent to gNM-ME-CCA).

Theorem 4 IND-ME-CCA⇔ NM-ME-CCA

Proof Idea. The idea is that one 
an 
onstru
t an IND-ME-CCA adversary A who upon a 
hallenge


iphertext C 
hosen randomly from two possible messages by using a NM-ME-CCA adversary B as an

ora
le to output another 
iphertext C ′
and a relation of plaintexts of C ′

and C. Sin
e A is exe
uted in

a CCA mode, then the new 
iphertext 
an be submitted to the De
ryption Ora
le, who will return to A
the 
orresponding plaintext M ′

, with whi
h and the relation A 
an re
over the plaintext, and get 
orre
t

guess on b. Denote x̄ as bit-wise 
omplement of x. On the other hand, if an IND-ME-CCA adversary 
an

distinguish two 
hosen messages (M0,M1) with M1 = M̄1, then we 
an always have the NM-ME-CCA

adversary outputs a new 
iphertext C ′
b given Cb = MEnc(Mb) where b

R
← {0, 1}, then it 
an output with

Mb̄ = M̄b = MDec(C ′
b) satisfying relation 
omplement R.

Proof. Without loss of generality, we assume the two 
hallenge messages M0 6= M1.

Lemma 4 NM-ME-CCA⇒ IND-ME-CCA.
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A NM-ME-CCA adversary A = (A1,A2) utilizes another IND-ME-CCA adversary B = (Bfind,Bguess)
to break the non-malleability of the s
heme, by letting Bfind 
hooses a pair of messages M0,M1 where

M0 = M̄1 and passes on to Bguess that 
orre
tly guesses b:

Adversary AKE,DO
1 Adversary ADO

2 (Mb, s
′) where s′ = (M0,M1, PK, s)

(M0,M1, s)← B
KE,DO
find (PK) Cb ← B

DO
guess(Mb, s)

b
R
← {0, 1} (C ′

b, R)← MEnc(M̄b)
s′ ← (M0,M1, PK, s) return C ′

b, R
return Mb, s

′

It is obvious su
h adversary A su

eeds in atta
king IND-ME-CCA s
hemes at least the probability of

an adversary B atta
king NM-ME-CCA s
hemes.

Lemma 5 IND-ME-CCA⇒ NM-ME-CCA.

Consider a NM-ME-CCA adversary A and an IND-ME-CCA adversary B:

Adversary AKE,DO
find Adversary ADO

guess(M,s′) where s′ = (M0,M1, PK, s)

(M0,M1, s)← B
KE,DO
1 (PK) C ′

b ← B
DO
2 (M0,M1, s)

M
R
← {0, 1} (M ′

b, R)← MDec(C ′
b)

s′ ← (M0,M1, PK, s) if R(M ′
b,M0) = TRUE then d← 0

return M,s′ else d← 1
return d

Then A su

eeds with exa
tly the probability of B, whi
h states any s
heme meeting NM-ME-CCA

se
urity must also meet IND-ME-CCA se
urity. Combining above two lemmas, we 
omplete the proof.

Theorem 5 IND-ME-wCCA⇔ gNM-ME-CCA

Proof Idea. Sin
e we have already proven IND-ME-CCA ⇔ NM-ME-CCA, with the fa
t that the

relation fun
tion in de�ning these two notions are the same, it is su�
ient to show that a s
heme meeting

IND-ME-wCCA also meets gNM-ME-CCA while a s
heme meet gNM-ME-CCA also meets IND-ME-wCCA

se
urity.

Proof. Denote two Relation Fun
tion in IND-ME-wCCA de�nition and gNM-ME-CCA de�nition as

RF∗
gIND and RF∗

gNM respe
tively. SIND and SNM are the sets of s
hemes satisfy IND-ME-CCA and

NM-ME-CCA respe
tively. Then if any s
heme si ∈ SIND then si ∈ SNM. Denote SgIND and SgNM as

the sets of s
hemes satisfying IND-ME-wCCA and gNM-ME-CCA se
urity respe
tively. Then it su�
es

sj ∈ SgNM \SNM, if ∀sj ∈ SgIND \SIND, and at the same time, s′j ∈ SgIND \SIND, if ∀s
′
j ∈ SgNM \SNM.

We 
laim in these 
onditions, the adversary's power doesn't in
rease, that is, ∀ sj and s′j , we have an

adversary that su

eeds in atta
king sj will always su

eeds in atta
king s′j and vi
e versa. Then denote

adversary's query 
iphertexts cj and c′j in gIND and gNM atta
ks respe
tively. Let ci be the 
hallenge


iphertext. RF∗
gIND(ci, cj) = FALSE ⇒ RF∗

gNM(ci, c
′
j) = FALSE and vi
e versa. All left is then the same

as proving equivalen
e of this pair of notions in ME-CCA model, we 
an easily have: if ∃ sj ∈ SgIND\SIND,

there is always sj ∈ SgIND\SIND and if ∃ s′j ∈ SgNM\SNM there is always s′j ∈ SgIND\SIND.

Let's make the proof more easier to understand. Suppose an adversary B atta
king s
heme sj in the

sense of IND-ME-wCCA su

eed with non-negligible advantage, then we 
an 
reate an adversary A using

B as ora
le to atta
k the sj with non-negligible advantage. De�ning the generalized relation R is the

same as the relation fun
tion RF∗
in the ME-wCCA model. Now, let A run B in the �rst stage. If B

asks for any de
ryption query, A passes it on to its De
ryption Ora
le. If there is any key exposure query
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questioned by B, A also passes it to its Key Exposure Ora
le. Spe
ially, A 
an simulate the En
ryption

Ora
le when B asks for en
ryption queries. After some steps B ends with side information and a pair

of message. A outputs the same pair. Then outsides A a random bit b is 
hosen from {0, 1} and Mb

is en
rypted by the En
ryption Ora
le. At the se
ond stage, A runs B to get a new 
iphertext C ′
b with

relation other than the relation spe
i�ed in RF∗
whi
h is sj's relation fun
tion. B may 
ontinue to ask

en
ryption, de
ryption or key exposure queries a

ording to the basi
 rule of a gNM-ME-CCA game. At

last B outputs C ′
b, A submit it to its De
ryption Ora
le, at the same advantage as B, the De
ryption

Ora
le will return it the plaintext. Thus it 
an get to know Mb.

From analogous dis
ussion, we 
an also 
onstru
t a gNM-ME-CCA adversary with exa
tly the same

advantage as an IND-ME-wCCA adversary. This 
ompletes the proof.

Theorem 6 IND-ME-wCCA⇒ IND-ME-CPA, however, IND-ME-CPA ; IND-ME-wCCA.

Proof Idea. It is trivial of the former part, for a ME-wCCA adversary is stri
tly stronger. On proof

of the latter part, we just need to 
onstru
t a 
ounterexample. Suppose we have a multiple en
ryption

s
heme from a IND-ME-CCA se
ure multiple en
ryption s
hemes. If we append a spe
ial string to the

publi
 key. If spe
ial string is queried, the De
ryption Ora
le returns the the se
ret key. However, this

s
heme still remains ME-CPA se
ure.

Proof. It is trivial to have: IND-ME-wCCA⇒ IND-ME-CPA. What left is to prove the following lemma:

Lemma 6 IND-ME-CPA ; IND-ME-wCCA.

Suppose ME ′ = (MEn
-Gen

′,MEnc′,MDec′) is a IND-ME-CCA en
ryption s
heme, we 
an modify it and

build an new multiple en
ryptionME as follows:

MGen-En
 MEnc(M) MDec(C)
(pk′

i, sk
′
i)←MGen-Enc′, for 1 ≤ i ≤ n; c′ ← MEnc′(M) v||c̄′ ← C

PK ′ ← (pk′
1, ..., pk′

n), SK ′ ← (sk′
1, ..., sk

′
n) C = 0||c′ if v = 0

u← {0, 1}k Return C Return MDec′SK ′(c̄′)
PK = u||PK ′

, SK = SK ′
else if c̄′ = u

Return (PK,SK) Return SK

We 
an seeME is not ME-wCCA se
ure. For a 
hallenge 
iphertext C, the adversary 
an query the

De
ryption Ora
le at 1||u to get SK then it 
an de
rypt the 
hallenge 
iphertext by itself. Note that

the relation fun
tion will fail to 
he
k this mali
ious query for RF∗(c′, u) = FALSE with overwhelming

probability.

Claim 6 Above en
ryption s
heme ME is se
ure in the sense of IND-ME-CPA.

Let Cb be the 
hallenge 
iphertext generated outside the adversary by an En
ryption Ora
le from one of a

pair of messages (M0,M1), the adversary outputs its guess on b. Then denote the probability of following

events as:

1 := [v = 0, (PK,SK) ← MGen− Gen, b← {0, 1},MEnc(Mb)←MEnc(Mb) : b = b̄];
2 := [v = 1, (PK,SK) ← MGen− Gen, b← {0, 1},MEnc(Mb)←MEnc(Mb), c

′
b 6= u : b = b̄];

3 := [v = 1, (PK,SK) ← MGen− Gen, b← {0, 1},MEnc(Mb)←MEnc(Mb), c
′
b = u : b = b̄]

Denote SucB as the even that B outputs a su

essful guess on b with larger probability than 1/2. Let
the advantage of an adversary B atta
king ME ′ be p0, denote k = |c′| as the length of c′, the following

holds:

AdvB = Pr[SucB|1] · Pr[1] + Pr[SucB|2] · Pr[2] + Pr[SucB|3] · Pr[3]

≤ Pr[SucB|1] + Pr[SucB|2] + Pr[SucB|3]

≤ p0 + p0 + 2−k
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It is easy to see AdvB is negligible. Proof 
ompletes.

7 Appli
ations to key-insulated 
ryptosystem

7.1 Key-insulated 
ryptosystem

The key-insulated 
ryptosystem is proposed by [13℄ to prote
t 
ryptosystems against partial key exposure.

In su
h system, 
omputation is done in an inse
ure user devi
e. Additionally, there is a physi
ally se
ure

server that stores a master key. With the help of this server, user keys are updated periodi
ally so that


ompromise of user keys in some periods does not a�e
t the system in other periods. In [13℄, a generi



onstru
tion is proposed based on arbitrary semanti
ally se
ure publi
 key en
ryption against 
hosen

plaintext atta
k and 
over-free family.

Generi
 Constru
tion of [13℄. First the key generation algorithm is run and u publi
 key/se
ret

key pairs of underlying semanti
ally se
ure 
ryptosystems are generated, where S1, ..., SN ⊂ [u]
def
={1, ..., u}

is {t, 1/2}-
over-free family of n element sets. Any t subsets of se
ret keys do not 
ontain other subsets.

The underlying en
ryption s
heme is semanti
 se
ure. The lifetime of the whole system is divided into

N periods. Then the publi
 key is PK = (pk1, ..., pku), and se
ret key of period i is ski = {skr :
r ∈ Si}, where Si = {r1, ..., rn}. Spe
ially the master key stored in a physi
ally se
ure devi
e will be

SK∗ = {sk1, ..., sku}. We de�ne the en
ryption of M ∈ {0, 1}L at time period i as C = EPK(i,M) =
(i,Encpkr1

(m1), ...,Encpkrn
(mn)) where, (m1, ...,mn)← T (M) is generated from the real message M by a

AONT T . De
ryption is done as: de
rypt all the sub-messages (m1, ...,mn) by skr1
, ..., skrn and synthesize

the messages: M = I(m1, ...,mn).
Su
h system has key-insulated se
urity with assumption of physi
ally se
ure devi
e holding SK∗

and

an adversary 
an at most obtain se
ret keys of t distin
t periods. The se
urity of the system is de�ned

as: If no PPT adversary 
an break the indistinguishability of the any period i that is not 
ompromised if

it 
annot obtain user se
ret keys for no more than t other periods even with the help of an Key Exposure

Ora
le and a De
ryption Ora
le. In the proof to this generi
 
onstru
tion, it is shown that the whole

system has indistinguishability of messages in any period that is not 
ompromised with at most t other
periods 
ompromised under 
hosen plaintext atta
k.

2

7.2 Chosen 
iphertext se
urity of generi
 
onstru
tion in [13℄

One may naturally think the generi
 
onstru
tion in [13℄ is se
ure against 
hosen 
iphertext atta
ks if the

underlying 
ryptosystems are IND-CCA se
ure. However, it 
an be demonstrated that a
tually this generi



onstru
tion is inse
ure against 
hosen 
iphertext atta
k, although it is indeed an desirable property of a

key-insulated 
ryptosystem. Re
all that the authors of [13℄ do not 
laim their generi
 
onstru
tion CCA

se
ure.

At the �rst look, be
ause of the property of 
over-free family even if the se
ret keys are 
ompromised

in t periods, at most t−1 se
ret keys of a period other than these t are known to the adversary. Sin
e the

message is split into shares by AONT, we know it is still 
omputationally infeasible to break the indistin-

guishability even after viewing part of the sub-messages generated by AONT. However, an adversary in

fa
t 
an bypass the hard task and just needs to try to modify the 
hallenge 
iphertext using known se
ret

keys in order to get help from the De
ryption Ora
le. In fa
t, it 
an obtain any se
ret key skj by sending

adaptive query to the Key Exposure Ora
le KE for skj in some period i with j ∈ Si. Then it 
an de
rypt

cj = Encj(mj), and re-en
rypt it. It 
an always su

eed to produ
e c′j = Encj(mj) with c′j 6= cj , sin
e

a

ording to the system settings, sin
e all 
omponent 
iphers are semanti
ally se
ure. Now the adversary

2

Also in [13℄, a 
on
rete s
heme is given based on DDH assumption, whi
h is CCA se
ure.
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an repla
e cj with c′j and submit this �new� 
iphertext C ′
to the De
ryption Ora
le, whi
h will return

the 
orresponding message M . This atta
k works for any period i.
Though the original generi
 
onstru
tion does not satisfy 
hosen 
iphertext atta
k se
urity, a
tually

if every 
omponent 
ipher is 
hosen IND-CCA se
ure, this generi
 
onstru
tion is a
tually IND-ME-wCCA

se
ure (Theorem 3). It should be assessed that this s
heme still provides very pra
ti
al se
urity.

7.3 A generi
 
onstru
tion of the key-insulated 
ryptosystem with CCA se
urity

In fa
t, the feasibility of 
onstru
ting a CCA se
ure key-insulated 
ryptosystem (parallel multiple en
ryp-

tion) has already been shown in se
tion 4. We are only fas
inated at whether given IND-CCA se
ure


iphers and se
ure AONT as building blo
ks, a parallel 
onstru
tion 
an be transformed to a CCA se
ure

key-insulated 
ryptosystem with minimum modi�
ation.

Observing the �natural� parallel 
onstru
tion (se
tion 2.1.1) with IND-CCA se
ure 
omponents is al-

ready IND-ME-wCCA se
ure a

ording to Theorem 3, we 
an further have more e�
ient 
onstru
tion by

a simple modi�
ation to the s
heme. As the gap between IND-ME-CCA and IND-ME-wCCA is just that

for the former sometimes the adversary 
an lay a trap when asking the tailored de
ryption queries, this

gap 
an be immediately merged on
e su
h atta
k is ruled out. For a se
ure multiple en
ryption must

be probabilisti
, there must be auxiliary randomness used in the en
ryption. If the De
ryption Ora
le


an extra
t all the randomness and verify it before outputting the plaintext, then the De
ryption Ora-


le should be able to immune itself from su
h partial re-en
ryption atta
ks. If a 
iphertext passes su
h

randomness 
he
k, then with overwhelming probability, the De
ryption Ora
le 
an make sure that the

sender of this 
iphertext knows the 
orresponding plaintext.

We add su
h transforms to the basi
 parallel 
onstru
tion: re
all the notation coini is the auxiliary

randomness input for en
ryption 
omponent Ei. Let coini = h(r||Indexi), where r is a random num-

ber, Indexi is the des
ription of i-th 
omponent and h is a random fun
tion. The En
ryption is C =
MEnc(M ||r; (coin1, ..., coinn)), espe
ially for IND-CCA 
omponent Ei, Enci(mi; coini) where mi is gener-

ated from AONT with input M ||r. De
ryption pro
ess be
omes: for a 
iphertext C ′
, M ′||r′ = MDec(C ′),

output M ′
only if c′i = Enci(mi;h(r′||Indexi)) is well formed, for every 1 ≤ i ≤ n. Whenever it is dete
ted

that a 
iphertext has used invalid randomness, the De
ryption Ora
le reje
ts this query immediately.

It is easy to see this s
heme satis�es the se
urity de�nition of [13℄ under CCA atta
k. The proof

is easy and will be omitted here. We point out this is a
tually the �rst generi
 
onstru
tion of key-

insulated 
ryptosystem enjoying CCA se
urity (Another generi
 
onstru
tion for CCA se
ure key insulated


ryptosystem will be given by Dodis and Katz in their up
oming work, whose se
urity 
an be proven in the

standard model.). In fa
t, this transform states the transform of turning IND-ME-CPA into IND-ME-CCA.
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Appendix A: Some de�nitions

A.1: Publi
 key en
ryption s
heme

A publi
 key en
ryption s
heme E is a 3-tuple algorithm: E = (En
-Gen,Enc,Dec). En
-Gen(1k) is a

probabilisti
 algorithm, where k is the se
urity parameter, with internal random 
oin �ipping outputs a

pair of keys (pk, sk). pk is the en
ryption key whi
h is made publi
, and sk is the de
ryption whi
h is kept

se
ret. En
 may be a probabilisti
 algorithm that takes as input a key pk and a message m from asso
iated

message spa
eM, and internally �ips some 
oins and outputs a 
iphertext c, denoted by c← Encpk(m),
in short c← Enc(m). De
 is a deterministi
 algorithm takes as input the 
iphertext c and the se
ret key

sk, and outputs some message m ∈ M, or �⊥� in 
ase c is �invalid�. We denote it by m ← Decsk(c), in
short m← Dec(c).

A fun
tion f : D → R is 
alled negligible if for every 
onstant l ≥ 0 there exists an integer k su
h

that f(k) ≤ k−l
c for all k ≥ kc, denoted by neg(k). Indistinguishability (semanti
 se
urity) under 
hosen-


iphertext atta
k (IND-CCA), is de�ned as: if no PPT adversary A 
an distinguish en
ryptions of any

two messages (M0,M1) of equal length 
hosen by it with negligible advantage than random guess. We

require that A runs in two stages Afind and Aguess, in whi
h Afind gets side information α from the queries

and output a pair of 
hallenge messages, and Aguess outputs a guess b̃ on b a

ording to the 
iphertext

Cb en
rypted by the En
ryption Ora
le with randomly 
hosen b ∈ {0, 1}. A

ording to the ability of

20



the adversary, Afind and Aguess 
an be assisted by an De
ryption Ora
le DO that for a de
ryption query

other than the target 
iphertext, returns the plaintext. Note that a

ording to the adversary's ability,

sometimes DO is unavailable,(this 
an be equivalently denoted by DO outputting an empty string ǫ). In
our analysis, it is su�
ient to 
onsider the 
ase where DO is available. We denote this as:

Pr

[

b = b̃
(pk, sk)← En
-Gen(1k), (M0,M1, α)← ADO

find(pk),

b
R
← {0, 1}, Cb ← Enc(Mb), b̃← A

KE,DO
guess (Cb, α)

]

≤
1

2
+ neg(k)

If no su
h PPT adversary exists against E , then we 
all E IND-CCA se
ure.

A.2: All-or-Nothing Transform

An AONT is a randomized transform T 
alled an (L, l, n)-AONT if (1): on input M ∈ {0, 1}L, T outputs

X
def
=(m1, ...,mn), where mj ∈ {0, 1}

l
; (2) here exists an e�
ient inverse fun
tion I su
h that I(X) = M ;

(3) I satis�es indistinguishability. Let X−j = (m1, ...,mj−1,mj+1, ...,mn) and T−j(M)=X−j , where

X←T (M). Let left-or-right ora
le LRb(j,M0,M1)
def
=T−j(Mb), for any PPT adversary A atta
king AONT,

de�ne its advantage as AdvA,T
def
=Pr[b← {0, 1}; b′ ← ALRb(·,·,·) : b′ = b]− 1/2. Then Adv is negligible.

A.3: Cover-free family

A family of subsets S1, ..., SN over some universe U is said to be t-
over-free if no t subsets Si1, ..., Sit


ontain a (di�erent) subset Si0 , that is, for all {i0, ..., it} with i0 /∈ {i0, ..., it}, we have Si0 * ∪t
t=1Sij . A

family is said to be (t, β)-
over-free, where 0 < β < 1, if for all {i0, ..., it} with i0 /∈ {i1, ..., it}, we have

|Si0\∪
t
j=1Sij | ≥ β|Si0 |.

Appendix B: Figures

M

ւ ↓ ց } AONT

m1 . . . . . . . . . mn

⇓
m1 . . . . . . . . . mn

↓ ↓ ↓

E1 ← pk1 En ← pkn

↓ ↓ ↓
c1 . . . . . . . . . cn

Figure 1: Parallel 
onstru
tion of multiple en
ryption

pk1 pkn

↓ ↓

M → E1 → c1 → . . . → cn−1 → En → cn

Figure 2: Sequential 
onstru
tion of multiple en
ryption
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