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Abstrat

In a pratial system, a message is often enrypted more than one by di�erent enryptions, here

alled multiple enryption, to enhane its seurity. Additionally, new features may be ahieved by mul-

tiple enrypting a message for a sheme, suh as the key-insulated ryptosystems [13℄ and anonymous

hannels [8℄. Intuitively, a multiple enryption should remain �seure�, whenever there is one ompo-

nent ipher unbreakable in it. In NESSIE's latest Portfolio of reommended ryptographi primitives

(Feb. 2003), it is suggested to use multiple enryption with omponent iphers based on di�erent as-

sumptions to aquire long term seurity. However, in this paper we show this needs areful disussion.

Espeially, this may not be true aording to (adaptive) hosen iphertext attak (CCA), even with

all omponent iphers CCA seure. We de�ne an extended version of CCA alled hosen iphertext

attak for multiple enryption (ME-CCA) to emulate real world partial breaking of assumptions, and

give onstrutions of multiple enryption satisfying ME-CCA seurity. Sine CCA seurity seems so

stringent, we further relax it by introduing weak ME-CCA (ME-wCCA), and prove IND-ME-wCCA

seure multiple enryption an be aquired from IND-gCCA seure omponent iphers. We also study

the relation of various seurity notions for multiple enryption. We then apply these results to key-

insulated ryptosystem. It is only previously known in [13℄ that a generi onstrution exists provably

seure against CPA attak, however, we prove that this generi onstrution is in fat seure against

ME-wCCA by hoosing all omponents IND-CCA seure. We also give an e�ient generi onstrution

of key-insulated ryptosystem, whih is so far the �rst generi onstrution provably seure against

CCA (in the random orale model).

key words: multiple enryption, CCA seurity, key-insulated ryptosystem

1 Introdution

A pratial ryptosystem often enrypts a message several times under enryption shemes with inde-

pendent seret keys or even distint iphers based on di�erent assumptions to enhane the plaintext

on�dentiality. We all suh ryptosystems multiple enryption, spei�ally double enryption and triple

enryption for two times and three times multiple enryptions. In this paper, we investigate the seurity

notion of multiple enryption against partial breaking of underlying assumptions.

Why Multiple Enryption. It is widely believed that multiple enryption provides better seurity

beause even if underlying assumptions of some omponent iphers are broken or some of the seret keys

are ompromised, the on�dentiality an still be maintained by the remaining enryptions. Historially,

sudden emergene of e�ient attaks against the ellipti urve ryptosystem on supersingular urves

[27, 16℄ and on prime-�eld anomalous urves [33, 38, 32℄ have already reminded us the neessity to do
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this. Espeially, for example, it is suggested by NESSIE ([30℄, pp. 5, line 7-11) on asymmetri enryption

sheme to �use double enryption using ACE-KEM and RSA-KEM with di�erent DEMs gives a good range

of seurity, based on various di�erent assumptions�, �if very long term seurity is important �. Further-

more, �Triple enryption that also uses a publi-key sheme not based on number-theoretial assumptions

might inrease the seurity against future breakthrough�. However, it seems that this needs more areful

onsiderations.

On the other hand, multiple enryption an bring additional favorable features to a sheme. Combina-

tion of ordinary threshold enryptions may yield new threshold enryption with various aess strutures.

Implementations ahieving sender anonymity suh as Mix-net [8℄, onion routing [8, 23℄, and the key-

insulated ryptosystems [13℄ are all pratial examples of multiple enryptions.

Contradition to the Intuition. In this paper, we show that even if it onsists of only independently

seleted IND-CCA seure omponents, a multiple enryption is not neessarily seure at all in the sense

of CCA with partial omponent iphers broken. This ontradits our intuition at the �rst sight, but

many natural onstrutions of multiple enryption from ombinations of IND-CCA seure omponents an

be shown easily to lose the CCA seurity. Meanwhile, this result may imply CCA-seurity is too strong

beause pratial shemes with �pretty good� seurity ould be overkilled. Then we propose a generi

onstrution of multiple enryption sheme ahieving CCA seurity exatly. In emphasizing �natural�

onstrutions' pratial usability, we relax the CCA seurity. We then investigate the relations among

seurity notions for multiple enryption. Finally as a byprodut, we give the �rst generi onstrution of

CCA seure key-insulated ryptosystem.

1.1 Related work

In this setion we review some previous work on multiple enryption and related primitives. Rather

than simple ombination of ordinary publi key enryption shemes, we regard multiple enryption as a

separate primitive, as this gives muh onveniene.

Multiple Enryption and Related Primitives. Multiple enryption has been used in many pra-

tial shemes, for instane Triple DES. Reently, NESSIE [30℄ has also announed its reommendation

to use (publi key) multiple enryption under diverse assumptions to ensure long term seurity. Another

example is the key-insulated ryptosystem, proposed by Dodis, Katz, Xu and Yung [13℄. In suh systems,

with multiple enryption of messages under a number of keys from over free family [25℄ and separate

physially seure devie, it is guaranteed that seret key of period i annot be ompromised even if user

seret keys are exposed to the adversary up to a number of t other periods.
Another important ategory of appliations using multiple enryption are those pratial implemen-

tations of anonymous hannels in open network, suh as Mix-net [23℄ and onion routing [8℄. In these

settings, several agents are appointed to transmit data from the sender to the reeiver without revealing

identity of the sender. Typial design of suh protools is to enrypt data under multiple publi keys of

these agents, whih derypt the data one layer after another until eventually reah the destination. It is

essential to perform these deryption orretly, e.g., [1℄ has shown some pratial attaks against some

Mix-net protools [24, 21℄, whih if translated in our language, have used inseure multiple enryption.

A similar notion to multiple enryption is the threshold ryptosystem [9, 10, 37℄, whih maintains

serey of the unique deryption key even if some shares of the seret key are ompromised. However, all

known onstrutions are based on partiular number theoreti assumption and an be employed to only

a restritive range of appliations.

Seurity Notions. Standard seurity de�nition of a publi key enryption sheme is founded gradually

in literature, e.g. [20, 29, 14, 31, 4, 15℄ and the strongest seurity notion turns to be indistinguishability

against (adaptive) hosen-iphertext attak (IND-CCA). Semanti seurity, �rst de�ned by Goldwasser
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and Miali [20℄, later re�ned by Goldreih [18, 19℄ and Watanabe, Shikata and Imai [39℄, aptures the

omputational approximation of Shannon's information-theoreti seurity [34℄, regulating that it should be

infeasible for any PPT (Probabilisti Polynomial Time) adversary to obtain any partial information about

the plaintext of a given iphertext. A similar de�nition, indistinguishability, de�nes that given a iphertext

an adversary annot distinguish whih plaintext is enrypted from two plaintexts. Indistinguishability

is proven to be equivalent to semanti seurity in several attak models, namely hosen plaintext attak

(CPA), (non-adaptive) hosen-iphertext attak (CCA1) [29℄ and adaptive hosen-iphertext attak (CCA2)

[20, 18, 39, 19℄. Another intriate notion, non-malleability, �rst de�ned by Dolev, Dwork and Naor

[14, 15℄ and later re�ned by Bellare and Sahai [4, 5℄, formulates that the adversary should not be able

to reate a iphertext of a di�erent message that is meaningfully related to the original iphertext. Non-

malleability implies indistinguishability in all above three attak models. Independently in [4℄ and [15℄,

indistinguishability and non-malleability are proven to be equivalent under (adaptive) hosen-iphertext

attak (hereafter CCA).

CCA seurity is ruial in analyzing seurity of protools in the universal omposability framework

[6, 22, 7℄. Mainly it allows the adversary an aess the deryption orale even after reeiving a hallenge

iphertext. However, Shoup �rst argues CCA seurity is too stringent for pratial shemes and suggests

�benign malleability� as a relaxation for CCA in the proposal for ISO publi key enryption standard [36℄.

An, Dodis and Rabin [3℄ give similar disussion under the name �generalized-CCA� (gCCA). In these two

relaxed de�nitions, a relation funtion heks and rejets �obvious� deryption queries derypted to the

target message. Canetti, Krawzyk and Nielsen [7℄ also propose another relaxation, namely �Replayable

CCA�, whih is weaker than gCCA in most of ases.

Previous Work on Multiple Enryptions and Relations. Multiple enryption was addressed

by Shannon as early as [34℄ under the name �produt ipher�, and in [11, 28, 2℄ in ontext of symmetri key

ryptosystems. Massay and Maurer [26℄ have also studied the problem under the name �asade ipher�.

However, all above work laks onsiderations for CCA seurity and is not adequate for applying their

underlying notions to publi key setting straightforwardly, even only to the sequential ase (see below).

In upoming work of [12℄, Dodis and Katz, independently of our work, propose another generi on-

strution of CCA seure multiple enryption. The seurity of their sheme an be proven in the standard

model and they generate their sheme to various appliations, suh as key-insulated ryptosystem, thresh-

old enryption and et..

1

1.2 Our ontributions

Our ontributions lie in following aspets:

Model and Seurity Definition of Multiple Enryption. We give the �rst formal model re-

garding publi key multiple enryption. To the best of our knowledge, no previous work has strit formal-

ization inluding CCA seurity, and atually our model an be extended to both publi key and symmetri

key based ryptosystems. Our model onsorts the modular design: ombining �seure� omponent iphers

to have a �seure� multiple enryption. As a theoretial extension of traditional seurity de�nitions, we

give the orresponding seurity de�nition formulated by indistinguishability and non-malleability, espe-

ially against hosen iphertext attak for multiple enryption (ME-CCA). We introdue a Key Exposure

Orale to emulate seurity of multiple enryption in the real world even when underlying assumptions

are partially broken. Without loss of generality, breaking underlying assumptions of omponent iphers

an be esuriently modelled as the seret key is leaked to the adversary. Note that there should be at least

one seret key hidden from the adversary, while underlying ryptosystems an be seleted independently

1

So far they only present their sheme in Rump Session in Crypto'03, Aug. 2003, while an earlier version of our work

was publily announed in [40℄, Jan. 2003.
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(the keys an be independent). We note this seurity de�nition onsiders more than the key exposure

problem. Choosing multiple enryption on di�erent assumptions is the most generalized form of multi-

ple enryption with more favorable on�dentiality protetion, guaranteeing maximum damage in ase of

partial breaking. Some analyses here an be applied to symmetri key shemes also.

Vulnerability of Natural Multiple Enryption. We demonstrate generi attaks against some

natural onstrution of multiple enryption shemes with eah omponent IND-CCA seure, by an adver-

sary that breaks the indistinguishability of the sheme with only aesses to the Deryption Orale and

the Key Exposure Orale. In fat, suh adversary even breaks the onewayness of the sheme. This also

explains that multiple enryption should be treated as a separate primitive from single-layered enryption.

Seure Constrution of Multiple Enryption. We exhibit a generi onstrution of seure mul-

tiple enryption from omponent iphers satisfying only �weak� seurity, e.g., CPA. Though this an be

ahieved using general zero-knowledge proof tehniques, onsidering e�ieny and pratiality, we adopt

a sheme that is provably seure in the random orale model.

Re-defining Seurity of Multiple Enryption. IND-CCA seurity has been treated as standard

de�nition for enryption shemes, as this is onvenient to have modular design on ryptographial protools

in the universal omposability framework [6℄. However, our analysis shows CCA seurity may be too

stringent as even ombining all IND-CCA seure omponent iphers, it might result in a CCA inseure

multiple enryption. As a reasonable relaxation, we give a new seurity de�nition named weak hosen

iphertext attak for multiple enryption (ME-wCCA) that is su�ient in most of interesting ases.

Seurity Notions of Multiple Enryption. We also study the relations between di�erent seurity

de�nitions for multiple enryption. We formulate the seurity de�nitions, namely indistinguishability and

non-malleability, under di�erent attak models. We show indistinguishability and non-malleability are still

equivalent under ME-CCA and ME-wCCA, whih orresponds to previous results (A multiple enryption

degenerates to an ordinary publi key ryptosystem, if there is only one omponent ipher in it.). We

believe a good analysis of these relations will help protool designer more than simply give a spei�

onstrution based on onrete mathematial assumptions.

Appliation to Key Insulated Enryption. As an appliation, we reonsider the hosen iphertext

seurity for generi onstrution of key-insulated enryption proposed by Dodis, Katz, Xu and Yung

[13℄. It is only previously known in [13℄ that a generi onstrution exists provably seure against CPA

attak. In this paper, we show that their sheme is in fat provably seure in the relaxed wCCA model,

if eah omponent ipher is seleted IND-CCA seure. This result reasonably supports the orretness

and pratial usability of the sheme in [13℄. We further give a generi onstrution meeting exat CCA

seurity (in the random orale model). We point out this is the �rst generi onstrution of CCA seure

key-insulated ryptosystem so far.

2 The model

In this setion, we give the model of a multiple enryption, basi onstrution methods and relative

seurity de�nitions. Multiple enryption is a generalized form of publi key enryption. De�nitions for

negligible funtion, publi key enryption sheme, All-or-Nothing Transform and Cover-free family are

given in Appendix A.

2.1 Multiple enryption sheme

Informally a multiple enryption is to enrypt a message by multiple ryptosystems. A multiple enryption

sheme ME is generated by omponent iphers. Naturally we have two basi ombinations of these

ryptosystems: parallel and sequential onnetion among di�erent omponents.
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2.1.1 De�nition

Multiple enryption is a ryptosystem omposed by distint omponent iphers. Suppose {Ei}1≤i≤n is a

set of ompatible omponent iphers, where for Ei,

En-Geni a probabilisti key-generation algorithm, with the input (1k) and the internal oin

�ipping produes a publi-seret key pair (pki, ski);
Enci an enryption algorithm, with an input message mi ∈ Mi and the publi key pki,

with the internal oin �ipping, outputs a iphertext ci ∈ Ci;
Deci a deryption algorithm, whih is a deterministi algorithm, with the input iphertext

ci and the seret key ski, outputs a message mi or �⊥�.

A multiple enryption is a 3-tuple algorithm (MEn-Gen,MEn,MDe), where eah algorithm may be

ombined from a number of publi key ryptosystems with a uni�lar onneting order. MEn-Gen invokes

every En-Geni, and writes their outputs to a key list with publi keys PK = (pk1, ..., pkn) and seret

keys SK = (sk1, ..., skn). MEn with an input message M from message spae M and PK, performs

enryption MEnc on M by invoking a list of omponent enryption algorithms, also inluding AONT

T if neessary, eventually outputs a iphertext C ∈ C. The deryption algorithm MDec takes (C,SK)
as input and outputs M , or �⊥� if C is invalid. We also denote in brief the enryption algorithm as

MEnc(M ; COIN) (or MEnc(M)), and the deryption algorithm as MDec(C) in lear ontext, where COIN

stands for the randomness used the multiple enryption. Essentially, we have two basi onstrutions:

parallel and sequential.

Parallel Constrution. A parallel multiple enryption is an operation that messages are enrypted

in parallel by ryptosystems E1, . . . , En. If a message m is hosen from the message spaeM and is diretly

proessed by E1, . . . , En, the merit of multiple enryption will lose immediately - if the adversary breaks

one omponent ipher, it sueeds. The right way is to pre-proess the plaintext before enrypting it.

Suh pre-proession an be an All-Or-Nothing Transform (AONT) (Certainly a (n − 1, n) seret sharing
also su�es.), whih maps the desired message into several sub-messages so that only after all the sub-

messages are derypted and the plaintext an be reovered. Figure 1 depits the onstrution in Appendix

B.

To derypt the iphertext C = (c1, . . . , cn), one uses every ski in the underlying Ei to derypt every ci

and gets mi (1 ≤ i ≤ n). The plaintext m an then be reonstruted from m1, . . . ,mn. For an adversary

attaking AONT, it an never obtain any information of the plaintext unless it gets all mi's. The generi

onstrution of the key-insulated ryptosystem [13℄ is an example of multiple parallel enryption.

Sequential Constrution. Sequential multiple enryption is more straightforward, with the stru-

ture idential to asade ipher mentioned in [26℄. It should be lari�ed that there exists signi�ant

di�erene between multiple sequential enryption and the produt ipher [34℄: for multiple enryption,

eah omponent ipher sheme an be hosen independently. Initially the plaintext is enrypted by the

innermost omponent ipher. Eah output (iphertext) of an omponent ipher will be passed on as the

input of the next omponent ipher. Finally the output of the last omponent ipher is taken as the output

of this multiple enryption. Figure 2 in Appendix B depits it. Sine the operation is done sequentially,

by observing C = cn, the deryption algorithm takes cn and ski, i = 1, . . . , n as input and eventually

outputs m. The onstrution of onion routing [8℄ is an example of multiple sequential enryption.

Hybrid Constrution. If a multiple enryption ontains both parallel enryption blok and sequential

enryption blok, we all it a hybrid multiple enryption. We give another desription that may help

understand the struture. Consider a ipher ryptosystem with a tree struture. Fixing the root node

as the �rst layer ipher, adding a parallel multiple enryption to a node just inreases the sub-nodes of

a node into e, where e is the number of omponent iphers in this parallel blok. Adding a sequential

ipher ryptosystem to a node will inrease the tree depth with a fator of f from that node, where f is
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the number of omponent iphers in this sequential multiple enryption blok. Then the output of the

whole multiple enryption is the output of all nodes that don't have sub-nodes. We all the set of a node

of a ertain level and its sub-nodes a branh. If there is more than one end node in the branh, we say the

branh ends with parallel blok. Otherwise, ends with sequential blok. Then a multiple enryption ends

with a parallel branh if there is one parallel enryption blok in any branh, and ends with sequential

branh if there is only one branh, with its all omponent iphers forming a sequential enryption blok.

2.1.2 Parallel onstrution vs. sequential onstrution

Parallel multiple enryption may serve as a seure data storage where a doument is split into n piees

with (t, n) threshold seret sharing other than AONT and stored in several not neessarily seure servers.

As long as no more than t seret keys are not ompromised, the seret is still seure. Compared to parallel

multiple enryption, sequential multiple enryption has gain in the data size.

2.2 Chosen iphertext seurity for multiple enryption

Partially breaking of underlying assumptions (key exposure) is usually not onsidered in the seurity of

a normal publi key enryption sheme, suh as IND-CCA, whereas a multiple enryption should remain

seure even when most of the underlying assumptions are broken. Sine this gap annot merge sometimes,

modi�ations should be performed to the standard CCA seurity de�nition in order to ath this at. We

here introdue an additional orale into standard CCA game to emulate this senario: a Key Exposure

Orale that upon the adaptive request of the adversary, leaks seret keys of the omponent iphers to the

adversary. Note that more has been onsidered in our model than mere key exposure and the situations

are more ompliated.

Orale Aess Rules. There are three orales in our model: An Enryption Orale EO, whih upon

alling with input (M0,M1), returns Cb, the enryption of Mb, where b ∈ {0, 1} deided by internal

oin �ipping. A Deryption Orale DE , upon deryption query C, outputs M = MDec(C), if C 6= Cb;

otherwise, �⊥�. A Key Exposure Orale, upon alling with i as one index of entire n omponent iphers,

1 ≤ i ≤ n, returns the orresponding seret key ski. The adversary an aess three orales in any order

at any time of its hoie, but it an only query EO one and KE at most n− 1 times.

De�nition 1 (IND-ME-CCA) Assume any PPT adversary play the following game with a multiple en-

ryption ME. Key generation algorithm MEn-Gen is run. The publi key PK = {pki | i = 1, . . . , n}
is then given to an Enryption Orale EO and the adversary. The seret key SK = {ski|i = 1, . . . , n}
is given to a Deryption Orale DO and a Key Exposure Orale KE. The adversary hooses to aess

the three orales in any order and at any time. Aording to the timing of aess to EO, the adversary's

strategy is divided into two algorithms (Afind,Aguess), where Afind tries to �nd (M0,M1) to submit to EO
whih returns Cb, and Aguess tries to output a guess on b. If the di�erene of the suess probability of the

adversary A ompared to random guess in the IND-ME-CCA game is negligible:

Pr

[

b = b̃
(PK,SK)← MEn-Gen(1k), (M0,M1, α)← AKE,DO

find (PK),

b
R
← {0, 1}, Cb ← MEnc(Mb), b̃← A

KE,DO
guess (Cb, α)

]

≤
1

2
+ neg(k)

then we all thisME IND-ME-CCA seure.

Non-malleability of multiple enryption against CCA (NM-ME-CCA) is similar to IND-ME-CCA exept

that the adversary sueeds by outputting a new iphertext with is �meaningfully� related to the hallenge

iphertext. That is, suppose R is a presribed relation, then the adversary wins, if the adversary ould

output a di�erent iphertext C ′
from the hallenge iphertext Cb, with two plaintexts derypted from C ′

and Cb satisfying R (R outputs TRUE).
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De�nition 2 (NM-ME-CCA) Denote M, C as sets of plaintexts and iphertexts being empty initially,

respetively. Aording to the above aess rules for the three orales, if any probabilisti polynomial

time adversary in the following game has suess probability negligibly lose to 1/2, we all the multiple

enryption sheme NM-ME-CCA seure.

Pr

[

b = 1
(PK,SK)← MEn-Gen(1k), (M0,M1, α)← AKE,DO

1 (PK), Cb ← MEnc(M1),

(R, C)← AKE,DO
2 (Cb, α), M← MDec(C), (Cb /∈ C) ∧ (⊥ /∈M) ∧R(Mb, M)

]

≤
1

2
+ neg(k)

These de�nitions are also appliable to hosen plaintext attak CPA by letting DO always output

an empty string on any deryption query, whih results in the de�nition of hosen plaintext attak for

multiple enryption ME-CPA. Analogously, we an de�ne IND-ME-CPA, NM-ME-CPA. By �xing the number

of omponent iphers n = 1 in the dedition of IND-ME-CCA (or NM-ME-CCA), we obtain de�nition of the

standard IND-CCA (or NM-CCA).

3 Inseurity of natural onstrutions

Given eah omponent IND-CCA seure, let's onsider the following problem: Is the above �natural�

onstrution IND-ME-CCA seure? Rather disappointing, the answer is negative. There does exit inseure

onstrutions.

Basi Idea. At the �rst glane, one may think all multiple enryption shemes from suh onstrution

should be seure, sine eah omponent is hosen independently from eah other and satis�es strong

seurity notion IND-CCA, then all outputs will be indistinguishable from random sequene. However, this

reasoning is fallaious. The �aw is in that this does not onsider the ase that the adversary an make

use of DO. In this ase DO an be very helpful beause every iphertext di�erent from the original an

be derypted and returned aording to the de�nition of CCA attak. Then all the adversary needs to do

is to modify the hallenge iphertext to a �new� one but derypt to the same message, and submit it to

the Deryption Orale DO. In the CCA setting, the adversary annot do this easily beause the seret key

is kept privately. However, in ME-CCA setting, partial key an be exposed by the Key Exposure Orale

KE , moreover, sine every omponent is semantially seure, as it must be probabilisti, where there exist

at least two valid iphertexts C0, C1 ∈ C with MDec(C0) = MDec(C1) = M , where M ∈ M is any valid

plaintext. Furthermore, we have the following theorem.

Theorem 1 There exists inseure multiple enryption in the sense of IND-ME-CCA, even if it is ombined

from independently hosen IND-CCA seure omponent iphers and seure AONT.

Proof. Given a multiple enryption shemeME onstruted in the following way: independently selet

IND-CCA seure omponent iphers ME = {Enci}, i = 1, ..., n, ombine them aording to the three

onstrutions and generate publi key PK = (pk1, ..., pkn) and seret key SK = (sk1, ..., skn) (see setion
2.1.1). We have two laims:

Claim 1 If a multiple enryption has a branh that ends with a parallel blok, we are then able to onstrut

an adversary A that breaks it with only one key exposure query and one deryption query.

Suppose A = (Afind,Aguess) that hooses i, 1 ≤ i ≤ n, and submits Ei to KE . Denote (mi, ci) as the

input and output of i-th omponent ipher. Let EO's hallenge be Cb = MEnc(Mb) (b
R
← {0, 1}). We an

onstrut the following adversary:
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Adversary AKE,DO
find Adversary ADO

guess(M0,M1, α,Cb)

(M0,M1, ski)← A
KE,DO
find (PK, i) mi ← Deci,ski

(ci) where Cb = (c1, ..., ci, ..., cn)
α← ski For c′i = ci do c′i = Enci(mi)
return (M0,M1, α) C ′

b = (c1, ..., c
′
i, ..., cn)

Mb = MDec(C ′
b) where C ′

b 6= Cb

return Mb

Claim 2 If a multiple enryption has a branh that ends with a sequential blok, we may then be able to

onstrut an adversary A that breaks it with only one key exposure query on the last omponent and one

deryption query.

Observing that Decn(cn) = cn−1 and C = cn, we an build the adversary as follows:

Adversary AKE,DO
find Adversary ADO

guess(M0,M1, α,Cb)

(M0,M1, skn)← AKE,DO
find (PK,n) cn−1 ← Deci,skn

(cn) where Cb = (c1, ..., cn)
α← skn For c′n = cn do c′i = Encn(cn−1)
return (M0,M1, α) C ′

b = c′n
Mb = MDec(C ′

b) where C ′
b 6= Cb

return Mb

where EO's hallenge is Cb = MEnc(Mb) (b
R
← {0, 1}).

We an see in both ase, Mb an be derypted by querying DO with C ′
b, whih enables the adversary

to obtain b easily. Espeially for some hybrid onstrutions, these two attaks an happen at the same

time.

Disussion. The proof to this theorem shows only the ase of indistinguishability under ME-CCA at-

tak. We brie�y explain the ase of onewayness against hosen iphertext attak for multiple enryption,

denoted as OW-ME-CCA. Onewayness an be informally desribed as: given iphertext C, output the

plaintext M . It is a stritly weaker notion than indistinguishability. However, the proof of Theorem

1 tells us that not only IND-ME-CCA, but also onewayness may not be maintained in ME-CCA model,

even if all the omponents are CCA seure. On the other hand, we an see suh natural shemes are

malleable beause the adversary an easily produe a �new� iphertext with a proper key exposure query

and simulates the Enryption Orale. NM-ME-CCA seurity better explains why the adversary an launh

that attak: it atually has produed a iphertext with relation that it ontains the same plaintext to the

hallenge iphertext. NM-ME-CCA seurity is not trivially obtainable in suh situations, either.

4 A generi onstrution for seure multiple enryption

We have shown that the simple modular design without further treatment of multiple enryption is not

su�ient to yield ME-CCA seurity. Then it is natural to onsider the following questions: First, how

to onstrut a ME-CCA seure multiple enryption. Seond, whether a generi onstrution satisfying

ME-CCA seurity an be ahieved by omponent iphers with weaker seurity, e.g., onewayness against

hosen plaintext attak (OW-CPA) seurity. We answer both questions by giving a generi onstrution

ahieving ME-CCA seurity with omponent iphers with weaker seurity.

For the �natural� onstrutions, ME-CCA seurity is hard to ahieve with simple onnetions of om-

ponent iphers beause partial exposure of the seret keys will always ause malleability of iphertexts.

This prompts us the neessity to hek the randomness used in enryption to ensure the validity of all

parts of a iphertext before outputting the plaintext. Suppose all randomness used in the enryption

an be veri�ed during deryption, then the Deryption Orale in fat does not help the adversary: If the

adversary an pass the randomness veri�ation, with overwhelming probability, it has already known all
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the randomness used. This an be ahieved by embedding all randomness into the plaintext. Consistene

of all randomness an be veri�ed in the deryption phase, i.e., to pass the test, the adversary must be

fored to have known the orresponding plaintext when it submits a iphertext query. Then a multiple

enryption will be seure if an adversary annot break all underlying omponent iphers. Then what

remains to be solved is how to ombine a set of OW-CPA enryption shemes to have IND-ME-CCA seure

multiple enryption.

Reall Ei is the i-th omponent ipher of the multiple enryption, Enci(mi, pki; COINi) and Deci(ci, ski)
are the enryption algorithm and deryption algorithm for Ei (in short Enci(mi; COINi) and Deci(ci),
respetively), where pki is the publi key and ski is the seret key of Ei (see setion 2.1.1).

4.1 Seure parallel onstrution of multiple enryption

We an build onstrutions based on any publi key enryption omponents with OW-CPA seurity. Most

of the pratial publi key enryption shemes satisfy this. Denote Hi : {0, 1}∗ → {0, 1}ki
(ki is the length

of neessary random oin for Ei) and Gi : {0, 1}∗ → {0, 1}li (li is the length of ci2) as random funtions.

Key-Generation MGen-En(1k): (pki, ski)←Gen-Enci, for 1 ≤ i ≤ n; PK = (pk1, ..., pkn), SK =
(sk1, ..., skn).

Enryption MEnc(M,PK): (m1, ...,mn)
AONT
←− T (M). ri ∈R {0, 1}

∗
, for 1 ≤ i ≤ n. For i-th omponent

ipher: ci1 ← Enci(ri;Hi(M, r1, ..., rn)), ci2 ← Gi(ri) ⊕ mi, ci = (ci1, ci2), 1 ≤ i ≤ n. Outputs

C = (c1, ..., cn) as iphertext.

Deryption MDec(C,SK): ri ← Deci(c̄i1), m̄i = G(r̄i) ⊕ c̄i2, 1 ≤ i ≤ n. Outputs M̄ ← I(m̄1, ..., m̄n)
as plaintext if c̄i1 = Enci(r̄i;Hi(M̄ , r̄1, ..., r̄n)), otherwise �⊥�.

4.2 Seure sequential onstrution of multiple enryption

Sequential onstrution an be based on the same idea. In the following onstrutions, Hi : {0, 1}∗ →
{0, 1}ki

(ki is the length of neessary randomness for Ei) and Gi : {0, 1}∗ → {0, 1}li (li is the length of

ci2) are random funtions.

Key-Generation MGen-En(1k): (pki, ski)←Gen-Enci, for 1 ≤ i ≤ n; PK = (pk1, ..., pkn), SK =
(sk1, ..., skn).

Enryption MEnc(M,PK): Let c0 = M , ri ∈R {0, 1}
∗
, for 1 ≤ i ≤ n. For i-th omponent:

ci1 ← Enci(ri;Hi(ci−1, r1, ..., rn)), ci2 = G1(ri)⊕ c0, ci = (ci1, ci2), for 1 ≤ i ≤ n. Output C = cn.

Deryption MDec(C,SK): Let c̄n = C, for 1 ≤ i ≤ n, c̄n−1 ← Deci(c̄n). Outputs M̄ = c̄0 as output, if

c̄i1 = Enc(r̄i;Hi(M̄ , r̄1, ..., r̄n)) for 1 ≤ i ≤ n. Otherwise �⊥�.

4.3 Seurity proof

The following theorem holds for our onstrution:

Theorem 2 Multiple enryption onsists of only parallel or sequential blok from above onstrution is

seure IND-ME-CCA seure in the random orale model.

The rest of this setion will be dediated to the proof of this theorem. We shall divide the proof into

two parts: �rst part namely Lemma 1 proves the ase of parallel onstrution and the seond part namely

Lemma 2 proves the ase of sequential onstrution.

Assume eah omponent ipher is hosen independently. We laim the following lemmas:
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Lemma 1 If there exists an adversary B that breaks a parallel multiple enryptionME with the onstru-

tion given the setion 4.1, then there is a probabilisti polynomial time adversary A breaks onewayness of

any omponent ipher Ei with non-negligible advantage.

Lemma 2 If there exists an adversary that B breaks a sequential multiple enryption ME with the on-

strution given the setion 4.2, then there is an adversary A breaks onewayness of any omponent ipher

Ei with non-negligible advantage.

C.2.1: Proof of Lemma 1

Constrution of Adversary. Suppose B breaks ME with probability SuccB(k) = 1/2 + ε with

adaptive queries on the Key Exposure orale that leaves at most n− 1 keys to B. Construt A as follows:

A piks arbitrary enryption sheme Ei and a seure (L, l, n)-AONT see setion 7.3 and onstruts ME
as setion 4.1. The adaptive key exposure is simulated as A hooses arbitrary Ej for j 6= i and hand

the seret keys to B. This time sine B knows all the seret keys, then there is no barrier for B to make

deryption on cj 's. A an simulate all this by itself.

When B asks enryption queries on a message M , A �rst transforms M with (m1, ...,mn) ← T (M)
with AONT, speially A will take mi as input for Ei. A simulates random orale Hi and Gi as two tables

THi
, TGi

by itself: if when B has a query σcount on Hi, if it has not been entered as an entry in THi
it

�ips oins to get a random number inreases the ounter count (initially set 0) by 1, put the query and

answer (σi,count, hi,count) in the table and proeeds. It does the same for Gi where it instead puts the

query σi,count,mi,count and the answer is gi,count in TGi
. Then A simulates other random orale Hj and

Gj and gets output of Ej as cj = (cj1, cj2).
When B makes deryption query on C = (c1, ..., cn), A derypts cj suh that j 6= i to get X−i =

(m1, ...,mi−1,mi+1, ...,mn). Espeially it runs the following program to get mi and inverses X =
(m0, ...,mn) to get M ← I(M) and hand M to B. Here, the program K(THi

,TGi
, ci, pki) for Ei, where

on random orale queries THi
,TGi

, input iphertext ci = (ci1, ci2) and publi key pki outputs the plain-

text mi if there is an entry in THi
satisfying ci1 ← (Enci(ri;Hi(M, ri)), and an entry in TGi

satisfying

ci2 ← Gi(ri)⊕mi.

First A runs B in the �nd model. When B makes enryption or deryption queries, A answers as

desribed above. Finally, B halts automatially, outputs (M0,M1, s). Otherwise, if B annot �nish within

couter = qHi
+ qHi

queries on Hi and Gi stop B.
Let b ←R {0, 1}, an hallenge iphertext ci−b is generated by an Enryption Orale EOi outside A.

Using the same b, Ei also generates X−i = (m1, ...,mi−1,mi+1, ...,mn). Now A runs B in the guess

mode taking (mi−0,mi−1, s,X−i) as input. If B asks enryption or deryption queries, follow above

spei�ations. At last, B outputs a guess bit b̃ on Mb. A also outputs b as its guess.

Claim 3 If there exists an IND-ME-CPA adversary B that breaks parallel ME with advantage ε, there is

A that breaks the indistinguishability of i-th omponent ipher with probability ǫ1 or indistinguishability of

(L, l, n)-AONT with advantage with advantage ǫ2, suh that ε ≤ ǫ1 + 2ǫ2.

Proof. Denote Pr[·] as the probability of events and de�ne some events as:

SucB: B gains advantage in the IND-ME-CPA game.

E1: B breaks the indistinguishability of AONT, that is, B guesses b with (X−i,M0,M1);
E2: B outputs mi−b from (mi−0,mi−1) and Cb.
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Sine E1 and E2 are independent, and Pr[SucB|¬E1∧¬E2] must be 0 from the assumption, let the

advantage of B inverting ci−b to get mi−b be ǫ1 and breaks AONT as ǫ2, we have:

ε = Pr[SucB|E1 ∧ E2] · Pr[E1 ∧ E2] + Pr[SucB|¬E1 ∧E2] · Pr[¬E1 ∧ E2]

Pr[SucB|E1 ∧ ¬E2] · Pr[E1 ∧ ¬E2] + Pr[SucB|¬E1 ∧ ¬E2] · Pr[¬E1 ∧ ¬E2]

≤ Pr[E1 ∧E2] + Pr[E1 ∧ ¬E2] + Pr[¬E1 ∧ E2]

≤ ǫ1 + 2ǫ2

Completed.

Following setion 4.1 and setion 4.2, denote ki is the length of neessary oin for Ei and li be the

length of ci2.

Claim 4 Suppose Ei is γ-uniform (detailed disussion in [17℄). If there is an IND-ME-CCA adversary

B that breaks i-th omponent ipher ci1 ← (Enci(ri;Hi(M, ri)), ci2 ← Gi(ri) ⊕ mi, ci = (ci1, ci2) with

(qHi
, qGi

, qdi
) of Hi, Gi and deryption queries of advantage ǫ1, then A breaks onewayness of Ei with

advantage at least ε(1 − 2−ki)qHi (1− γ − 2−li)qd
.

Proof. Denote the event AskHi is true if there is an entry in THi
satisfying Enci(ri;Hi(M, r1, ..., rn), and

AskGi is there is an entry in TGi
satisfying Gi(M, r1, ..., rn)⊕mi. SucA1 is true if A simulates at most

qd deryption queries orretly. SucA2 is true if on input unknown plaintext mi, A outputs a orret

iphertext ci. fail1 is true if A fails to simulate a spei� B's deryption query.

From above spei�ation, we know that A an simulate deryption queries for B, for ci2 part is in fat

one-time pad, the probability of A fails to simulate one deryption query of B, sine AskHi and AskGi

is independent,

Pr[fail1] = Pr[fail1|AskHi ∧AskGi] · Pr[AskHi ∧AskGi]

+Pr[fail1|¬AskHi ∧AskGi] · Pr[¬AskHi ∧AskGi]

+Pr[fail1|AskHi ∧ ¬AskGi] · Pr[AskHi ∧ ¬AskGi]

+Pr[fail1|¬AskHi ∧ ¬AskGi] · Pr[¬AskHi ∧ ¬AskGi]

Sine Pr[fail1|AskHi∧AskGi] must be 0, Pr[fail1|¬AskHi∧¬AskGi] must be 1, we have Pr[fail1] ≤
Pr[fail1|¬AskA0] · Pr[¬AskA0] ≤ γ + 2−li

. So Pr[SucA1] = (1 − Pr[fail1])qd ≥ (1 − γ − 2−li)qd
. On

the other hand, SucA2 fails when B make exatly query on ri, denote the length of ri to be ki = |ri|,

Pr[SucA2] = (1− 2−ki)qHi

Finally, from above spei�ation of A we know SucB, SucA1 and SucA2 are independent events. So

the advantage AdvA of A breaking onewayness of Ei using B as orale is

AdvAB = Pr[SucB ∧ SucA1 ∧ SucA2] = Pr[SucB] · Pr[SucA1] · Pr[SucA2]

= ǫ1(1− 2−ki)qHi (1− γ − 2−li)qd

Proof ompletes.

Combining above two laims, we have A breaks onewayness of Ei with advantage at least:

AdvA ≥ min
1≤i≤n

{(ε− 2ǫ2)(1− 2−ki)qHi (1− γ − 2−li)qd}

Apparently both A and B an �nish in polynomial time. By requirement of seure AONT, ǫ2 is

negligible. A an then break onewayness of Ei with non-negligible advantage. Lemma 1 is thus proven.

Following setion 4.1 and setion 4.2, denote ki is the length of neessary oin for Ei and li be the

length of ci2. Based on similar analysis of proof of Lemma 1, we an formulate the following:
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Claim 5 A an use B attaking ME-CCA with advantage ε to break the onewayness of a ertain omponent

ipher Ei with advantage at least min1≤i≤n{ε(1 − qHi
· 2−ki)(1 − γ − 2−li)qd}.

The proof is quite similar to that of Claim 4, and is omitted here. Combine Lemma 1 and Lemma 2,

theorem 2 is then proven.

Disussion. One omplementary remark should be addressed on the uniformity of underlying primitives

[17℄. What we have onsidered so far is mainly non-deterministi omponent iphers. For deterministi

primitive publi key enryption, e.g., RSA, above onstrution is not su�ient, however, it an be modi�ed

to �t this transform. Furthermore, if all the omponent iphers are deterministi, the task is easier: just

onnet them together and set proper padding shemes as pre-proession of the message, like OAEP+

[35℄, and form the whole multiple enryption with parallel onstrution with ompatible input domain,

or sequential onneting one after another. AONT an be even replaed by OAEP+. This onstrution

should also be seure beause if the enryption primitive is deterministi, an adversary annot re-enrypt

the orresponding parts of a iphertext into valid new part to produe another iphertext even if it seizes

orresponding seret keys. We shall give formal analysis regarding the deterministi enryption primitive

in the forthoming work.

5 New de�nition regarding multiple enryption

It seems ontraditive to our intuition that though omponent iphers are independent, even onewayness

may lose with just simple onnetion of independently hosen iphers. However, if we follow the CCA

seurity, it is doomed to appear ompletely inseure. From another aspet, it suggests that CCA seurity

may be somehow exessively strong. In the real world, it is rare that DO helps even in suh obvious

attaks. For example a new ipher S′
is onstruted from a CCA-seure ipher S, where a harmless bit is

appended to the iphertext of S, and is disarded during deryption, then S′
is no longer seure in the

sense of CCA. It seems suh attak to S′
should be easily judged and have �no signi�ant di�erene� in

most of ases. In fat, when DO enounters suh queries, it should easily determine whether this is really

a �new� iphertext, by just looking at the iphertext.

5.1 Relaxing de�nition of CCA seurity

CCA seurity might be too strong and is not always neessary, as pointed out in [36, 3, 7℄, among whih,

Shoup's �benign malleability� [36℄ and An, Dodis and Rabin's �gCCA� [3℄ are basially equivalent: a

relation funtionRF helps the Deryption Orale against obvious attaks. In gCCA de�nition, the relation

funtion performs as follows: if RF(c, c′) = TRUE⇒ Dec(c) = Dec(c′). The opposite diretion does not

hold, otherwise, the relation funtion an be used as an orale breaking the indistinguishability. There

must be ∃ (c, c′), suh that RF(c, c′) = FALSE, with Dec(c) = Dec(c′) (refer [3℄ for more details). Canetti,

Krawzyk and Nielsen [7℄ reently propose another relaxation, alled �replayable hosen iphertext attak�

(RCCA), with most of ases stritly weaker than gCCA.

To rule out the de�nitional limitation of CCA seurity in multiple enryption setting, we also intro-

due a relaxed de�nition alled �weak hosen iphertext attak for multiple enryption� (ME-wCCA). In

the de�nition of wCCA, there is a relation funtion RF∗
is omputed by invoking RF i (1 ≤ i ≤ n)

during the deryption proess inside DO, with initial value of eah RF i set to FALSE, where RF i is the

relation funtion de�ned aording to gCCA seurity for i-th omponent ipher Ei. RF i(ci, c
′
i) = TRUE⇒

Dec(ci) = Dec(c′i). Whenever RF i = TRUE for some i, RF∗
halts and returns TRUE to DO immediately.

One reeiving TRUE, DO outputs �⊥� to the adversary. Informally, if RF∗
�nds a part (may be the

intermediate deryption result) of the query iphertext looks �the same� as the orresponding part of the

hallenge iphertext, it tells the Deryption Orale to rejet this deryption query. Sine the rules for

12



orale aess is the same, the de�nition of IND-ME-CCA only needs to be modi�ed a little to adapt to

IND-ME-wCCA.

We stress that ME-wCCA seurity is a reasonable relaxation for CCA seurity. This notion is basially

an extension of gCCA seurity. By restriting a multiple enryption to only one omponent ipher, IND-

ME-wCCA beomes IND-gCCA.

De�nition 3 (IND-ME-wCCA) In the beginning, the key generation algorithm MEn-Gen is run, and with

the input {1k}, generating every underlying enryption sheme's publi-seret key pair (pki, ski), n pairs

in total. PK = (pk1, . . . , pkn) is the publi key and SK = (sk1, . . . , skn) is the seret key. Then MEn-Gen

gives the publi key PK to EO and the adversary, the seret key SK to an Key Exposure Orale KE and

Deryption Orale DO with a Relation Funtion RF∗
inside, whih is omputable in polynomial time. The

adversary aesses at most n− 1 time to KE. The adversary aess the EO with two messages {M0,M1}

as input. EO hooses b
R
← {0, 1} and enrypts Mb into Cb and returns Cb to the adversary. The adversary

is allowed to aess DO for arbitrary polynomial times, and DO responses with the orresponding plaintext

as long as RF∗(C,Cb) does not output TRUE. The adversary may query the orales adaptively, in any

order it likes. The adversary sueeds by guessing the value b, and a sheme is seure if any probabilisti

polynomial time adversary has suess negligibly lose to 1/2.

Pr

[

b = b̃
(PK,SK)← MEn-Gen(1k), (M0,M1, α)← AKE,DO¬RF∗

find (PK),

b
R
← {0, 1}, Cb ← Enc(Mb), b̃← A

KE,DO¬RF∗

guess (Cb, α)

]

≤
1

2
+ neg(k)

The following lemma shows that IND-ME-wCCA seure multiple enryption an be easily aquired

from IND-gCCA seure omponent iphers.

Lemma 3 A multiple enryption sheme ME is IND-ME-wCCA seure w.r.t. RF∗
by any of three basi

onstrutions, if eah omponent ipher Ei is IND-gCCA seure w.r.t relation funtion RF i, 1 ≤ i ≤ n.
RF∗

is de�ned as RF∗(C,C ′) = TRUE, suh that RF i(ci, c
′
i) = TRUE for some i, 1 ≤ i ≤ n, where ci,

c′i are two iphertexts of Ei, and C, C ′
are the orresponding iphertexts forME.

Proof. For simpliity, we assume AONT is seure aording to the de�nition in Appendix A (It is easy to

modify the proof to the ase in whih seurity of AONT is also stritly onsidered). Within our de�nition

of relation funtion, RF∗
and RF i are omputable in polynomial time. If a ME sheme onstruted

from IND-gCCA omponents by above three onstrution methods is not IND-ME-wCCA seure, then we

an use the IND-ME-wCCA adversary as an orale to break the underlying IND-gCCA seure enryption

shemes. For multiple enryption sheme, we denote �RF i� as equivalene relation w.r.t. any internal

IND-gCCA seure omponent ipher Ei. Now assume that ME is not IND-ME-wCCA seure w.r.t. RF∗
,

we show that the same holds for Ei is not seure w.r.t. RF i, either. To do this, we take any adversary D
forME whih ontains Ei as internal omponent ipher and onstrut adversary Di for Ei.

When Di views the publi key pki of Ei, it generates some key pairs (pkj , skj)← En-Genj(1
k) (j 6= i)

by itself, so that the inputs and outs are ompatible. Without loss of generality, we denote the resulting

ryptosystem as ME with Ei as one omponent ipher. The publi key of ME is (pk1, ..., pki, ..., pkn),
and the seret key is (sk1, ..., ski, ..., skn). Only ski is unknown to D. To simulate the deryption query

Qi made by Di, D ompletes Qi for Ei into Q for ME by those seret keys in hand, heks that the

respetive Q is a valid query (otherwise it will outputs ⊥) if relation funtion outputs FALSE, then make

query Q to its Deryption Orale to derypt Q. Next D outputs a pair (M0,M1) and also generate the

orresponding pair (mi0 ,mi1) for Ei. Then when EOi generates a random hallenge cib = Enci(mib) for

b ∈R {0, 1}, Di hands cib to D, who by itself omplete a iphertext Cb orresponding to the publi key

(pk1, ..., pkn). By de�nition of the RF i we know that Ei is forbidden to derypt any RF i(ci, c
′
i) = TRUE,

13



i.e., RF∗(C1, C2) = TRUE, but this is the only limit that Di is forbidden to ask its Deryption Orale.

D an still feed the Deryption Orale every single legal query. Finally, Di outputs the same guess as D
outputs, whih enables Di to sueed exatly with the same advantage as D.

Sine IND-CCA implies IND-gCCA, we further have the following theorem:

Theorem 3 If all omponent iphers are IND-CCA seure and hosen independently aording to above

three onstrutions, then the resulting multiple enryption is IND-ME-wCCA seure.

In fat, eah attak per theorem 1 an onstrut a new iphertext with the same plaintext. Sine

non-malleability is an arduous goal for multiple enryption, we de�ne relaxed gNM-ME-CCA similar to

IND-ME-wCCA. Informally, the de�nition says that the adversary does not win as long as it outputs with

a new iphertext with the same relation regulated by the relation funtion to the hallenge iphertext,

where the relation funtion is de�ned analogously to that of IND-ME-wCCA.

De�nition 4 (gNM-ME-CCA) A multiple enryption sheme is generalized-non-malleable against ME-

CCA attak if for any PPT adversary, whih is assisted by Deryption Orale DO, and a Key Exposure

Orale KE, it annot produe a new iphertext with relation other than what the Relation Funtion RF∗

spei�es with non-negligible probability, where RF∗
is de�ned idential to ME-wCCA. Denote M, C as sets

of plaintexts and iphertexts being empty initially, respetively.

Pr



b = 1
(PK,SK)← MEn-Gen(1k), (M0,M1, α)← AKE,DO

1 (PK),

Cb ← MEnc(M1), (R, C)← AKE,DO
2 (Cb, α,M0,M1),

M← MDec(C), (Cb /∈ C) ∧ (⊥ /∈M) ∧R(Mb, M) ∧ (R 6= RF∗)



 ≤
1

2
+ neg(k)

gNM-ME-CCA is a relaxed notion to NM-ME-CCA seurity (f. IND-ME-wCCA to IND-ME-CCA). We

shall ontinue to disuss the relation between these seurity notions in next setion.

6 Relations among seurity de�nitions for multiple enryption

In this setion, we disuss the relation among seurity de�nitions of multiple enryptions. The good news

is that in multiple enryption senario indistinguishability and non-malleability are still equivalent in most

of the interesting ases, namely under ME-CCA attaks (IND-ME-wCCA is equivalent to gNM-ME-CCA).

Theorem 4 IND-ME-CCA⇔ NM-ME-CCA

Proof Idea. The idea is that one an onstrut an IND-ME-CCA adversary A who upon a hallenge

iphertext C hosen randomly from two possible messages by using a NM-ME-CCA adversary B as an

orale to output another iphertext C ′
and a relation of plaintexts of C ′

and C. Sine A is exeuted in

a CCA mode, then the new iphertext an be submitted to the Deryption Orale, who will return to A
the orresponding plaintext M ′

, with whih and the relation A an reover the plaintext, and get orret

guess on b. Denote x̄ as bit-wise omplement of x. On the other hand, if an IND-ME-CCA adversary an

distinguish two hosen messages (M0,M1) with M1 = M̄1, then we an always have the NM-ME-CCA

adversary outputs a new iphertext C ′
b given Cb = MEnc(Mb) where b

R
← {0, 1}, then it an output with

Mb̄ = M̄b = MDec(C ′
b) satisfying relation omplement R.

Proof. Without loss of generality, we assume the two hallenge messages M0 6= M1.

Lemma 4 NM-ME-CCA⇒ IND-ME-CCA.
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A NM-ME-CCA adversary A = (A1,A2) utilizes another IND-ME-CCA adversary B = (Bfind,Bguess)
to break the non-malleability of the sheme, by letting Bfind hooses a pair of messages M0,M1 where

M0 = M̄1 and passes on to Bguess that orretly guesses b:

Adversary AKE,DO
1 Adversary ADO

2 (Mb, s
′) where s′ = (M0,M1, PK, s)

(M0,M1, s)← B
KE,DO
find (PK) Cb ← B

DO
guess(Mb, s)

b
R
← {0, 1} (C ′

b, R)← MEnc(M̄b)
s′ ← (M0,M1, PK, s) return C ′

b, R
return Mb, s

′

It is obvious suh adversary A sueeds in attaking IND-ME-CCA shemes at least the probability of

an adversary B attaking NM-ME-CCA shemes.

Lemma 5 IND-ME-CCA⇒ NM-ME-CCA.

Consider a NM-ME-CCA adversary A and an IND-ME-CCA adversary B:

Adversary AKE,DO
find Adversary ADO

guess(M,s′) where s′ = (M0,M1, PK, s)

(M0,M1, s)← B
KE,DO
1 (PK) C ′

b ← B
DO
2 (M0,M1, s)

M
R
← {0, 1} (M ′

b, R)← MDec(C ′
b)

s′ ← (M0,M1, PK, s) if R(M ′
b,M0) = TRUE then d← 0

return M,s′ else d← 1
return d

Then A sueeds with exatly the probability of B, whih states any sheme meeting NM-ME-CCA

seurity must also meet IND-ME-CCA seurity. Combining above two lemmas, we omplete the proof.

Theorem 5 IND-ME-wCCA⇔ gNM-ME-CCA

Proof Idea. Sine we have already proven IND-ME-CCA ⇔ NM-ME-CCA, with the fat that the

relation funtion in de�ning these two notions are the same, it is su�ient to show that a sheme meeting

IND-ME-wCCA also meets gNM-ME-CCA while a sheme meet gNM-ME-CCA also meets IND-ME-wCCA

seurity.

Proof. Denote two Relation Funtion in IND-ME-wCCA de�nition and gNM-ME-CCA de�nition as

RF∗
gIND and RF∗

gNM respetively. SIND and SNM are the sets of shemes satisfy IND-ME-CCA and

NM-ME-CCA respetively. Then if any sheme si ∈ SIND then si ∈ SNM. Denote SgIND and SgNM as

the sets of shemes satisfying IND-ME-wCCA and gNM-ME-CCA seurity respetively. Then it su�es

sj ∈ SgNM \SNM, if ∀sj ∈ SgIND \SIND, and at the same time, s′j ∈ SgIND \SIND, if ∀s
′
j ∈ SgNM \SNM.

We laim in these onditions, the adversary's power doesn't inrease, that is, ∀ sj and s′j , we have an

adversary that sueeds in attaking sj will always sueeds in attaking s′j and vie versa. Then denote

adversary's query iphertexts cj and c′j in gIND and gNM attaks respetively. Let ci be the hallenge

iphertext. RF∗
gIND(ci, cj) = FALSE ⇒ RF∗

gNM(ci, c
′
j) = FALSE and vie versa. All left is then the same

as proving equivalene of this pair of notions in ME-CCA model, we an easily have: if ∃ sj ∈ SgIND\SIND,

there is always sj ∈ SgIND\SIND and if ∃ s′j ∈ SgNM\SNM there is always s′j ∈ SgIND\SIND.

Let's make the proof more easier to understand. Suppose an adversary B attaking sheme sj in the

sense of IND-ME-wCCA sueed with non-negligible advantage, then we an reate an adversary A using

B as orale to attak the sj with non-negligible advantage. De�ning the generalized relation R is the

same as the relation funtion RF∗
in the ME-wCCA model. Now, let A run B in the �rst stage. If B

asks for any deryption query, A passes it on to its Deryption Orale. If there is any key exposure query
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questioned by B, A also passes it to its Key Exposure Orale. Speially, A an simulate the Enryption

Orale when B asks for enryption queries. After some steps B ends with side information and a pair

of message. A outputs the same pair. Then outsides A a random bit b is hosen from {0, 1} and Mb

is enrypted by the Enryption Orale. At the seond stage, A runs B to get a new iphertext C ′
b with

relation other than the relation spei�ed in RF∗
whih is sj's relation funtion. B may ontinue to ask

enryption, deryption or key exposure queries aording to the basi rule of a gNM-ME-CCA game. At

last B outputs C ′
b, A submit it to its Deryption Orale, at the same advantage as B, the Deryption

Orale will return it the plaintext. Thus it an get to know Mb.

From analogous disussion, we an also onstrut a gNM-ME-CCA adversary with exatly the same

advantage as an IND-ME-wCCA adversary. This ompletes the proof.

Theorem 6 IND-ME-wCCA⇒ IND-ME-CPA, however, IND-ME-CPA ; IND-ME-wCCA.

Proof Idea. It is trivial of the former part, for a ME-wCCA adversary is stritly stronger. On proof

of the latter part, we just need to onstrut a ounterexample. Suppose we have a multiple enryption

sheme from a IND-ME-CCA seure multiple enryption shemes. If we append a speial string to the

publi key. If speial string is queried, the Deryption Orale returns the the seret key. However, this

sheme still remains ME-CPA seure.

Proof. It is trivial to have: IND-ME-wCCA⇒ IND-ME-CPA. What left is to prove the following lemma:

Lemma 6 IND-ME-CPA ; IND-ME-wCCA.

Suppose ME ′ = (MEn-Gen

′,MEnc′,MDec′) is a IND-ME-CCA enryption sheme, we an modify it and

build an new multiple enryptionME as follows:

MGen-En MEnc(M) MDec(C)
(pk′

i, sk
′
i)←MGen-Enc′, for 1 ≤ i ≤ n; c′ ← MEnc′(M) v||c̄′ ← C

PK ′ ← (pk′
1, ..., pk′

n), SK ′ ← (sk′
1, ..., sk

′
n) C = 0||c′ if v = 0

u← {0, 1}k Return C Return MDec′SK ′(c̄′)
PK = u||PK ′

, SK = SK ′
else if c̄′ = u

Return (PK,SK) Return SK

We an seeME is not ME-wCCA seure. For a hallenge iphertext C, the adversary an query the

Deryption Orale at 1||u to get SK then it an derypt the hallenge iphertext by itself. Note that

the relation funtion will fail to hek this maliious query for RF∗(c′, u) = FALSE with overwhelming

probability.

Claim 6 Above enryption sheme ME is seure in the sense of IND-ME-CPA.

Let Cb be the hallenge iphertext generated outside the adversary by an Enryption Orale from one of a

pair of messages (M0,M1), the adversary outputs its guess on b. Then denote the probability of following

events as:

1 := [v = 0, (PK,SK) ← MGen− Gen, b← {0, 1},MEnc(Mb)←MEnc(Mb) : b = b̄];
2 := [v = 1, (PK,SK) ← MGen− Gen, b← {0, 1},MEnc(Mb)←MEnc(Mb), c

′
b 6= u : b = b̄];

3 := [v = 1, (PK,SK) ← MGen− Gen, b← {0, 1},MEnc(Mb)←MEnc(Mb), c
′
b = u : b = b̄]

Denote SucB as the even that B outputs a suessful guess on b with larger probability than 1/2. Let
the advantage of an adversary B attaking ME ′ be p0, denote k = |c′| as the length of c′, the following

holds:

AdvB = Pr[SucB|1] · Pr[1] + Pr[SucB|2] · Pr[2] + Pr[SucB|3] · Pr[3]

≤ Pr[SucB|1] + Pr[SucB|2] + Pr[SucB|3]

≤ p0 + p0 + 2−k
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It is easy to see AdvB is negligible. Proof ompletes.

7 Appliations to key-insulated ryptosystem

7.1 Key-insulated ryptosystem

The key-insulated ryptosystem is proposed by [13℄ to protet ryptosystems against partial key exposure.

In suh system, omputation is done in an inseure user devie. Additionally, there is a physially seure

server that stores a master key. With the help of this server, user keys are updated periodially so that

ompromise of user keys in some periods does not a�et the system in other periods. In [13℄, a generi

onstrution is proposed based on arbitrary semantially seure publi key enryption against hosen

plaintext attak and over-free family.

Generi Constrution of [13℄. First the key generation algorithm is run and u publi key/seret

key pairs of underlying semantially seure ryptosystems are generated, where S1, ..., SN ⊂ [u]
def
={1, ..., u}

is {t, 1/2}-over-free family of n element sets. Any t subsets of seret keys do not ontain other subsets.

The underlying enryption sheme is semanti seure. The lifetime of the whole system is divided into

N periods. Then the publi key is PK = (pk1, ..., pku), and seret key of period i is ski = {skr :
r ∈ Si}, where Si = {r1, ..., rn}. Speially the master key stored in a physially seure devie will be

SK∗ = {sk1, ..., sku}. We de�ne the enryption of M ∈ {0, 1}L at time period i as C = EPK(i,M) =
(i,Encpkr1

(m1), ...,Encpkrn
(mn)) where, (m1, ...,mn)← T (M) is generated from the real message M by a

AONT T . Deryption is done as: derypt all the sub-messages (m1, ...,mn) by skr1
, ..., skrn and synthesize

the messages: M = I(m1, ...,mn).
Suh system has key-insulated seurity with assumption of physially seure devie holding SK∗

and

an adversary an at most obtain seret keys of t distint periods. The seurity of the system is de�ned

as: If no PPT adversary an break the indistinguishability of the any period i that is not ompromised if

it annot obtain user seret keys for no more than t other periods even with the help of an Key Exposure

Orale and a Deryption Orale. In the proof to this generi onstrution, it is shown that the whole

system has indistinguishability of messages in any period that is not ompromised with at most t other
periods ompromised under hosen plaintext attak.

2

7.2 Chosen iphertext seurity of generi onstrution in [13℄

One may naturally think the generi onstrution in [13℄ is seure against hosen iphertext attaks if the

underlying ryptosystems are IND-CCA seure. However, it an be demonstrated that atually this generi

onstrution is inseure against hosen iphertext attak, although it is indeed an desirable property of a

key-insulated ryptosystem. Reall that the authors of [13℄ do not laim their generi onstrution CCA

seure.

At the �rst look, beause of the property of over-free family even if the seret keys are ompromised

in t periods, at most t−1 seret keys of a period other than these t are known to the adversary. Sine the

message is split into shares by AONT, we know it is still omputationally infeasible to break the indistin-

guishability even after viewing part of the sub-messages generated by AONT. However, an adversary in

fat an bypass the hard task and just needs to try to modify the hallenge iphertext using known seret

keys in order to get help from the Deryption Orale. In fat, it an obtain any seret key skj by sending

adaptive query to the Key Exposure Orale KE for skj in some period i with j ∈ Si. Then it an derypt

cj = Encj(mj), and re-enrypt it. It an always sueed to produe c′j = Encj(mj) with c′j 6= cj , sine

aording to the system settings, sine all omponent iphers are semantially seure. Now the adversary

2

Also in [13℄, a onrete sheme is given based on DDH assumption, whih is CCA seure.
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an replae cj with c′j and submit this �new� iphertext C ′
to the Deryption Orale, whih will return

the orresponding message M . This attak works for any period i.
Though the original generi onstrution does not satisfy hosen iphertext attak seurity, atually

if every omponent ipher is hosen IND-CCA seure, this generi onstrution is atually IND-ME-wCCA

seure (Theorem 3). It should be assessed that this sheme still provides very pratial seurity.

7.3 A generi onstrution of the key-insulated ryptosystem with CCA seurity

In fat, the feasibility of onstruting a CCA seure key-insulated ryptosystem (parallel multiple enryp-

tion) has already been shown in setion 4. We are only fasinated at whether given IND-CCA seure

iphers and seure AONT as building bloks, a parallel onstrution an be transformed to a CCA seure

key-insulated ryptosystem with minimum modi�ation.

Observing the �natural� parallel onstrution (setion 2.1.1) with IND-CCA seure omponents is al-

ready IND-ME-wCCA seure aording to Theorem 3, we an further have more e�ient onstrution by

a simple modi�ation to the sheme. As the gap between IND-ME-CCA and IND-ME-wCCA is just that

for the former sometimes the adversary an lay a trap when asking the tailored deryption queries, this

gap an be immediately merged one suh attak is ruled out. For a seure multiple enryption must

be probabilisti, there must be auxiliary randomness used in the enryption. If the Deryption Orale

an extrat all the randomness and verify it before outputting the plaintext, then the Deryption Ora-

le should be able to immune itself from suh partial re-enryption attaks. If a iphertext passes suh

randomness hek, then with overwhelming probability, the Deryption Orale an make sure that the

sender of this iphertext knows the orresponding plaintext.

We add suh transforms to the basi parallel onstrution: reall the notation coini is the auxiliary

randomness input for enryption omponent Ei. Let coini = h(r||Indexi), where r is a random num-

ber, Indexi is the desription of i-th omponent and h is a random funtion. The Enryption is C =
MEnc(M ||r; (coin1, ..., coinn)), espeially for IND-CCA omponent Ei, Enci(mi; coini) where mi is gener-

ated from AONT with input M ||r. Deryption proess beomes: for a iphertext C ′
, M ′||r′ = MDec(C ′),

output M ′
only if c′i = Enci(mi;h(r′||Indexi)) is well formed, for every 1 ≤ i ≤ n. Whenever it is deteted

that a iphertext has used invalid randomness, the Deryption Orale rejets this query immediately.

It is easy to see this sheme satis�es the seurity de�nition of [13℄ under CCA attak. The proof

is easy and will be omitted here. We point out this is atually the �rst generi onstrution of key-

insulated ryptosystem enjoying CCA seurity (Another generi onstrution for CCA seure key insulated

ryptosystem will be given by Dodis and Katz in their upoming work, whose seurity an be proven in the

standard model.). In fat, this transform states the transform of turning IND-ME-CPA into IND-ME-CCA.
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Appendix A: Some de�nitions

A.1: Publi key enryption sheme

A publi key enryption sheme E is a 3-tuple algorithm: E = (En-Gen,Enc,Dec). En-Gen(1k) is a

probabilisti algorithm, where k is the seurity parameter, with internal random oin �ipping outputs a

pair of keys (pk, sk). pk is the enryption key whih is made publi, and sk is the deryption whih is kept

seret. En may be a probabilisti algorithm that takes as input a key pk and a message m from assoiated

message spaeM, and internally �ips some oins and outputs a iphertext c, denoted by c← Encpk(m),
in short c← Enc(m). De is a deterministi algorithm takes as input the iphertext c and the seret key

sk, and outputs some message m ∈ M, or �⊥� in ase c is �invalid�. We denote it by m ← Decsk(c), in
short m← Dec(c).

A funtion f : D → R is alled negligible if for every onstant l ≥ 0 there exists an integer k suh

that f(k) ≤ k−l
c for all k ≥ kc, denoted by neg(k). Indistinguishability (semanti seurity) under hosen-

iphertext attak (IND-CCA), is de�ned as: if no PPT adversary A an distinguish enryptions of any

two messages (M0,M1) of equal length hosen by it with negligible advantage than random guess. We

require that A runs in two stages Afind and Aguess, in whih Afind gets side information α from the queries

and output a pair of hallenge messages, and Aguess outputs a guess b̃ on b aording to the iphertext

Cb enrypted by the Enryption Orale with randomly hosen b ∈ {0, 1}. Aording to the ability of
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the adversary, Afind and Aguess an be assisted by an Deryption Orale DO that for a deryption query

other than the target iphertext, returns the plaintext. Note that aording to the adversary's ability,

sometimes DO is unavailable,(this an be equivalently denoted by DO outputting an empty string ǫ). In
our analysis, it is su�ient to onsider the ase where DO is available. We denote this as:

Pr

[

b = b̃
(pk, sk)← En-Gen(1k), (M0,M1, α)← ADO

find(pk),

b
R
← {0, 1}, Cb ← Enc(Mb), b̃← A

KE,DO
guess (Cb, α)

]

≤
1

2
+ neg(k)

If no suh PPT adversary exists against E , then we all E IND-CCA seure.

A.2: All-or-Nothing Transform

An AONT is a randomized transform T alled an (L, l, n)-AONT if (1): on input M ∈ {0, 1}L, T outputs

X
def
=(m1, ...,mn), where mj ∈ {0, 1}

l
; (2) here exists an e�ient inverse funtion I suh that I(X) = M ;

(3) I satis�es indistinguishability. Let X−j = (m1, ...,mj−1,mj+1, ...,mn) and T−j(M)=X−j , where

X←T (M). Let left-or-right orale LRb(j,M0,M1)
def
=T−j(Mb), for any PPT adversary A attaking AONT,

de�ne its advantage as AdvA,T
def
=Pr[b← {0, 1}; b′ ← ALRb(·,·,·) : b′ = b]− 1/2. Then Adv is negligible.

A.3: Cover-free family

A family of subsets S1, ..., SN over some universe U is said to be t-over-free if no t subsets Si1, ..., Sit

ontain a (di�erent) subset Si0 , that is, for all {i0, ..., it} with i0 /∈ {i0, ..., it}, we have Si0 * ∪t
t=1Sij . A

family is said to be (t, β)-over-free, where 0 < β < 1, if for all {i0, ..., it} with i0 /∈ {i1, ..., it}, we have

|Si0\∪
t
j=1Sij | ≥ β|Si0 |.

Appendix B: Figures

M

ւ ↓ ց } AONT

m1 . . . . . . . . . mn

⇓
m1 . . . . . . . . . mn

↓ ↓ ↓

E1 ← pk1 En ← pkn

↓ ↓ ↓
c1 . . . . . . . . . cn

Figure 1: Parallel onstrution of multiple enryption

pk1 pkn

↓ ↓

M → E1 → c1 → . . . → cn−1 → En → cn

Figure 2: Sequential onstrution of multiple enryption
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