
Revisiting Fully Distributed

Proxy Signature Schemes

Javier Herranz and Germ�an S�aez

Dept. Matem�atica Aplicada IV, Universitat Polit�ecnica de Catalunya

C. Jordi Girona, 1-3, M�odul C3, Campus Nord, 08034 Barcelona, Spain

e-mail: fjherranz,germang@mat.upc.es

Abstract

In a proxy signature scheme, a potential signer delegates his capabilities to

a proxy signer, who can sign documents on behalf of him. The recipient of the

signature veri�es both identities: that of the delegator and that of the proxy signer.

There are many proposals of proxy signature schemes, but security of them has

not been considered in a formal way until the appearance of [2].

If the entities which take part in a proxy signature scheme are formed by sets

of participants, then we refer to it as a fully distributed proxy signature scheme

[6].

In this work, we extend the security de�nitions introduced in [2] to the scenario

of fully distributed proxy signature schemes, and we propose a speci�c scheme

which is secure in this new model.

1 Introduction

Digital signature schemes provide authenticity, integrity and non-repudiation to digital

communications. Sometimes, however, a user must sign messages during a certain

period of time in which he is not able to do it. For example, if this user is in holidays

or has technical problems with its computer.

Proxy signature schemes were introduced in [11] and give a solution to this problem.

An original user delegates his signing capabilities into a di�erent user, the proxy signer.

In this delegation, some aspects such as the dates of validity or the kind of messages

that the proxy will be able to sign on behalf of the original signer should be stated.

Later, the proxy signer can sign messages which conform to the delegation, on behalf

of the original user. The recipient of the signature must verify at the same time the

delegation of the original signer and the authenticity of the proxy signer.

If the participants of the system are not individual users, but distributed entities,

then we must consider fully distributed proxy signature schemes (introduced in [6]).

The original entity is formed by a set of members, and if an authorized subset of them

cooperate, then they can delegate the signing power of the whole entity into the proxy

entity. Later, if some authorized subset of members of the proxy entity cooperate, then

1

they can compute a proxy signature of a message on behalf of the original entity. Such

schemes can be useful, for example, when the participants in the system are important

companies, or a central o�ce of a bank and the branch o�ces, etc.

Almost all the proxy signature schemes (either individual or distributed) that have

been proposed until now lack a formal proof of security. This fact has led to many

attacks on some of these schemes. Furthermore, this lack of formalism is not in com-

pliance with the current techniques of public key cryptography, where the security of

the protocols is formally proved (this is known as provable security). That is, both the

capabilities and the goals of an adversary who tries to attack the cryptographic scheme

must be clearly stated. Then, the security of the scheme should be proved by showing

that a successful attack against it could be used as a part of another attack which would

solve a computationally hard problem (discrete logarithm, integer factorization, etc.).

The �rst step in order to formalize individual proxy signature schemes has been

taken in [2]. There, a formal model of security for this kind of schemes is given, along

with some schemes which can be proved secure according to this model.

In this work, we extend the above-mentioned work, by giving a formal model of

security for fully distributed proxy signature schemes. Then, we explain a distributed

version of one of the schemes which are proposed and proved secure in [2]. We prove

that this new scheme is secure in the security model for fully distributed proxy signature

schemes.

Organization of the paper. In Section 2, we review some aspects of proxy signa-

ture schemes, including a speci�c scheme proposed in [2], as well as some distributed

protocols that we will use later. In Section 3, we formally de�ne what a fully dis-

tributed signature scheme is, and we give the natural security model for these schemes,

derived from the model given in [2]. In Section 4, we propose a new fully distributed

proxy signature scheme and prove its security. The work ends with some comments

and conclusions in Section 5.

2 Preliminaries

The mathematical framework of the speci�c protocols that we are going to explain

is the following. There are two large prime numbers p and q such that qjp � 1. We

consider an element g 2 Z

�

p

whose order is exactly q. We additionally need two hash

functions H

1

and H

2

which map arbitrarily long strings of bits into Z

q

.

2.1 Proxy Signatures

Since its introduction by Mambo et al. [11], proxy signature schemes have been de-

veloped in many papers (for example [8, 10, 16, 9]). Most of the proposed schemes

are based on discrete-logarithm type signature schemes, such as Schnorr's [14]. In this

signature scheme, each signer has a secret key x 2 Z

�

q

and the corresponding public key

y = g

x

mod p. To sign a message M , this signer chooses a random value k 2 Z

�

q

and

then he computes the values r = g

k

mod p and s = k+xH

1

(M; r)mod q. The signature

of the message M is the pair (r; s), and its correctness can be veri�ed by checking the

2

equation g

s

= ry

H

1

(M;r)

mod p. We use the notation (r; s) = Sch Sig(M; sk;H

1

) to

refer to an execution of this signature scheme for message M , with secret key sk and

hash function H

1

.

Schnorr's signature scheme has been shown [13] to achieve the highest level of

security for signature schemes, which is existential unforgeability under chosen message

attacks [5]. However, all the proposals of proxy signature schemes have lacked a formal

security analysis. These schemes have been considered secure just until some attack

against them has appeared (see [9, 18]).

The situation has changed since the appearance of a paper by Boldyreva et al. [2].

There, formal de�nitions on proxy signature schemes and their security are given, along

with some speci�c schemes which are proved to be secure according to these de�nitions.

We will brie
y explain in Section 2.1 one of these schemes. We follow the notation of

[2].

Let Sig = (G;K;S;V) be a standard signature scheme. That is, G is the parameter-

generator, which takes as input a security parameter and outputs some global parame-

ters of the scheme (in our scenario, the prime numbers p and q, etc.). The key-generator

K takes as input the global parameters and outputs a secret-public key pair (sk; pk).

The signing algorithm S takes as input a message and the secret key, and outputs a

signature �. And the veri�cation algorithm V takes as input a message, a signature

and a public key, and returns 1 (if the signature is valid) or 0 (if not).

A proxy signature scheme Pro Sig = (G;K;S;V; (D;P);PS;PV; ID) requires the

presence of at least two users (user i delegates its signing capability into user j). The

algorithms G, K, S and V are the same as explained above. The rest of protocols work

as follows:

� (D;P) is a pair of (possibly interactive) algorithms, where user i delegates his

signing capabilities into user j (proxy). The algorithm D takes as input the public keys

pk

i

and pk

j

and the secret key sk

i

of the delegator. The algorithm P takes as input

the public keys pk

i

and pk

j

and the secret key sk

j

of the proxy signer. As a result of

this interaction, the proxy signer (user j) obtains a proxy secret key skp

ij

that he will

use to sign messages on behalf of user i.

� The protocol PS is the proxy signing algorithm, which takes as input a proxy

secret key skp and a message M , and outputs a proxy signature p�. This proxy

signature includes the public key of user j, the proxy signer.

� The protocol PV veri�es the correctness of a proxy signature. It takes as input a

message, a proxy signature and the public key of the original signer, and outputs 1 or

0.

� The proxy identi�cation algorithm ID takes as input a valid proxy signature and

outputs the identity of the proxy signer.

The �rst formal security model for proxy signatures was proposed in [2]. Roughly

speaking, such an scheme must be secure against the most powerful attack: �rst, an

adversary who corrupts all the users in a system except one (say user 1); then, the

adversary can request this user 1 to execute the di�erent protocols of the scheme as

many times as he wants, interacting with the corrupted users; �nally, the adversary

tries to forge a new valid proxy signature computed by user 1 on behalf of a corrupted

3

user, or by a corrupted user j on behalf of user 1 (provided user 1 was not requested

to delegate into user j, during the attack). A proxy signature scheme is secure if the

probability of success of such an attack is negligible.

Triple Schnorr Proxy Signature Scheme

Now we explain the triple Schnorr proxy signature scheme which is proposed in [2]. We

will refer to this scheme as T Sch Pro Sig = (G

TS

;K

TS

;S

TS

;V

TS

; (D

TS

;P

TS

);PS

TS

;

PV

TS

;ID

TS

).

� The algorithms (G

TS

;K

TS

;S

TS

;V

TS

) are those of the standard Schnorr's signature

scheme: G

TS

generates the primes p and q, the element g and the hash functions H

1

and H

2

. The algorithm K

TS

generates secret key x and public key y = g

x

mod p. The

standard signing algorithm S

TS

outputs a signature (r; s) on a message M . And V

TS

veri�es the correctness of the signatures. The main di�erence is that in order to sign

a message M in a standard way, a user U

i

must prepend a 1 to the message, and so

apply (r; s) = Sch Sig(1jjM ; x

i

; H

1

).

� The algorithms (D

TS

;P

TS

) are as follows. If a user U

i

(with keys x

i

and y

i

) wants

to delegate into a user U

j

(with keys x

j

and y

j

), he creates a message ! which contains

the information related to the delegation (identities of the original and proxy signers,

dates of validity, which messages are allowed to be signed, etc.). Then user U

i

computes

the Schnorr signature (r

i

; s

i

) = Sch Sig(0jjy

i

jjy

j

jj! ; x

i

; H

1

). User U

j

veri�es this

signature and then computes his proxy secret key as skp

ij

= (y

i

jjy

j

jj! ; r

i

; d

ij

), where

d

ij

= s

i

+ x

j

H

1

(0jjy

i

jjy

j

jj! ; r

i

)mod q. Note that the public key related to this secret

key d

ij

is g

d

ij

= r

i

(y

i

y

j

)

H

1

(0jjy

i

jjy

j

jj! ; r

i

)

mod p.

� To compute a proxy signature on a message M , on behalf of user U

i

, user U

j

employs his proxy secret key d

ij

and hash functionH

2

to compute the Schnorr signature

(r; s) = Sch Sig(0jjM jjy

i

jjy

j

jj!jjr

i

; d

ij

; H

2

). The �nal proxy signature is p� =

(!; r

i

; y

j

; (r; s)).

� To verify the correctness of a proxy signature p� = (!; r

i

; y

j

; (r; s)) on a message

M , where the original signer has public key y

i

, the recipient must check the following

equation (Schnorr veri�cation with public key g

d

ij

and hash function H

2

):

g

s

= r

h

r

i

(y

i

y

j

)

H

1

(0jjy

i

jjy

j

jj! ; r

i

)

i

H

2

(0jjM jjy

i

jjy

j

jj!jjr

i

; r)

mod p :

� The proxy identi�cation algorithm takes as input a proxy signature p� = (!; r

i

; y

j

; (r; s))

and returns the identity which corresponds to the public key y

j

.

Theorem 1. If the discrete logarithm problem is hard, then the proxy signature scheme

T Sch Pro Sig is secure in the random oracle model.

See [2] for the security model and the proof of this theorem.

2.2 Joint Generation of Discrete Logarithm Keys

In distributed public key cryptography, the secret tasks (decrypting or signing) are

not performed by single users, but by entities formed by many users. Let E =

4

fP

(1)

; P

(2)

; : : : ; P

(n)

g be a distributed entity formed by n participants. There is an

access structure � � 2

E

, which is formed by those subsets of participants which are

authorized to perform the secret task. The access structure must be monotone increas-

ing; that is, if A

1

2 � is authorized, and A

1

� A

2

� E, then A

2

must be authorized,

too.

The most usual strategy in distributed cryptography is to use secret sharing schemes

(introduced in [1, 15]) to share the secret keys among the members of the entity. Some

of these schemes do not need the presence of any trusted party (or dealer), and all the

protocol can be performed by the members themselves. Linear secret sharing schemes,

where the secret can be recovered as a linear combination of the shares from an au-

thorized subset, are the most appropriate for being used as a component of distributed

cryptographic protocols.

These distributed protocols must be secure in front of an attack of an adversary

who corrupts a non-authorized subset of members of the entity. By corruption we mean

that the adversary can see all the secret information of these users, and can control

their behavior. The protocols are said to be robust if the dishonest members are always

detected, and this fact does not avoid that the protocols �nish in the correct way. In

order to achieve robustness, veri�able secret sharing schemes [3, 12] are used.

A particular case of this kind of protocols is the joint generation of discrete log-

arithm keys. Each participant P

(`)

2 E obtains a secret value x

(`)

2 Z

q

. These

values fx

(`)

g

P

(`)

2E

form a sharing of the secret key x 2 Z

q

, according to some linear

secret sharing scheme realizing the access structure �. The corresponding public key

y = g

x

mod p is made public, along with other values (commitments) which ensure the

robustness of the protocol. We refer to an execution of this protocol as

(y; fx

(`)

g

P

(`)

2E

) = Jo DL KG(E;�) :

The details of this protocol can be found in [4] for the threshold case (that is, the access

structure is � = fA � E : jAj � tg, for some threshold t) and in [6] for the case of

general access structures.

Fact 1. The protocol Jo DL KG is simulatable.

This means that, given an adversary who corrupts a non-authorized subset B of

members, there exists an algorithm SIM

1

which takes as input a public key y 2 hgi

and outputs values which are indistinguishable from those that the adversary would

see in a real execution of the protocol Jo DL KG which would give y as the resulting

public key. Mainly, the algorithm SIM

1

must simulate all the information which is

made public in the protocol, and the secret information of the dishonest members in

B.

2.3 Distributed Schnorr Signature Protocol

In a distributed signature scheme, a set E of users share the secret key of a standard

signature scheme. If an authorized subset of members collaborate, they can produce a

valid signature on a message. The recipient can verify the correctness of this signature,

but cannot know if it has been generated in a standard or a distributed way.

5

These schemes are said to be unforgeable if an adversary who corrupts a non-

authorized subset of members is not able to obtain a valid message-signature pair,

even if the protocol is previously executed for other messages that the adversary adap-

tively chooses. The signing protocol is robust if the dishonest participants are detected

and furthermore the output of the protocol is always a valid signature.

In the case of Schnorr's signature scheme, the threshold version was proposed in

[17], and the version for general access structures was proposed in [6]. We consider the

more general case with any access structure �. The scheme starts with the joint key

generation, that is, an execution of (y; fx

(`)

g

P

(`)

2E

) = Jo DL KG(E;�), and then a

protocol to jointly sign a message. We refer to an execution of this last protocol as:

(r; s) = Dist Sch Sig(E;�;M; fx

(`)

g

P

(`)

2E

;H

1

) ;

meaning that participants of entity E use their secret shares fx

(`)

g

P

(`)

2E

of the secret

key x (which have been distributed using a linear secret sharing scheme which real-

izes the access structure �), to jointly compute a standard Schnorr signature (r; s) of

message M with hash function H

1

. This implies that g

s

= ry

H

1

(M;r)

mod p.

Fact 2. The protocol Dist Sch Sig is simulatable.

This fact means that, given an adversary who corrupts a non-authorized subset

B =2 � of participants, there is an algorithm SIM

2

which runs as follows: it takes as

input (M; r; s), where (r; s) is a valid Schnorr signature for message M , along with

all the information obtained by the adversary in the execution of the corresponding

(y; fx

(`)

g

P

(`)

2E

) = Jo DL KG(E;�). The output values are indistinguishable from

those (public and secret information of the corrupted members) that the adversary

would see in a real execution of the protocol Dist Sch Sig(E;�;M; fx

(`)

g

P

(`)

2E

;H).

3 Fully Distributed Proxy Signature Schemes

In addition to individual proxy signature schemes, some distributed (usually threshold)

proxy signature schemes have been proposed in the last years [19, 8, 7]. In such schemes,

a original signer delegates his capabilities into a proxy distributed entity. Members of an

authorized subset of this entity can then jointly sign a message on behalf of the original

signer. If the original signer is a distributed entity, too, then the proxy signature scheme

is fully distributed [6].

As it has happened in the case of individual proxy signature schemes, no formal

treatment of the security of distributed (and fully distributed) proxy signature schemes

has been given until now. Some of the attacks which have been found against individual

schemes are also applicable in the distributed versions of these schemes. For example,

the attack explained in [9] against the individual proxy signature scheme in [10] can be

also extended to an attack against the fully distributed proxy signature scheme in [6].

In this section, we formally de�ne a fully distributed proxy signature scheme and

the security requirements that such a scheme must satisfy. In some way, we extend

the work done in [2] to the distributed scenario. Now there will be distributed entities

E

i

= fP

(1)

i

; : : : ; P

(n

i

)

i

g and E

j

= fP

(1)

j

; : : : ; P

(n

j

)

j

g with their corresponding (monotone

6

increasing) access structures �

i

� 2

E

i

and �

j

� 2

E

j

. An authorized subset in �

i

can

delegate the signing capabilities of entity E

i

into entity E

j

. Then, an authorized subset

in �

j

can compute a proxy signature of entity E

j

on behalf of entity E

i

. Let us formalize

the de�nition of all these protocols.

Let Dist Sig = (G;JKG;DS;V) be a distributed signature scheme. That is:

� The parameter-generator G takes as input a security parameter k and outputs

some global (and public) parameters of the scheme (prime numbers, generators of the

mathematical groups, etc.).

� The joint key generation protocol JKG is interactively performed by the members

of each distributed entity E

i

. It takes as input the global parameters and outputs a

public key pk

i

. Furthermore, each participant P

(`)

i

2 E

i

obtains a secret share sk

(`)

i

of

the secret key sk

i

which matches with pk

i

.

� The distributed signing algorithm DS takes as input a message and the secret

shares of an authorized subset of members of the entity, and outputs a standard signa-

ture �.

� The veri�cation algorithm V takes as input a message, a signature and a public

key, and returns 1 if the signature is valid, or 0 otherwise.

But a fully distributed proxy signature scheme Dist Pro Sig = (G;JKG;DS;

V; (DD;DP);DPS;PV;ID) requires also the following extra algorithms:

� (DD;DP) is a pair of (possibly interactive) algorithms. Entity E

i

delegates its

signing capabilities into entity E

j

(proxy entity). The algorithm DD takes as input

the public keys pk

i

and pk

j

and the shares of the secret key sk

i

corresponding to some

authorized subset of entity E

i

. The algorithm DP takes as input the public keys pk

i

and pk

j

and the shares fsk

(`)

j

g

P

(`)

j

2E

j

of the secret key of the proxy entity. As a result,

each member P

(`)

j

2 E

j

of the proxy entity obtains a share skp

(`)

ij

of the new proxy

secret key skp

ij

.

� The protocol DPS is the distributed proxy signing algorithm, which takes as input

a message M and the shares of the proxy secret key skp

ij

from some authorized subset

of E

j

, and outputs a proxy signature p�. This proxy signature includes the public key

pk

j

of the proxy entity E

j

.

� The protocol PV veri�es the correctness of a proxy signature. It takes as input

a message, a proxy signature and the public key of the delegator entity, and outputs 1

or 0.

� The proxy identi�cation algorithm ID takes as input a valid proxy signature and

outputs the identity of the proxy entity which has computed the signature.

3.1 Security Requirements

Intuitively, we want an adversary not to be able to forge a proxy or standard signature,

even if he corrupts a non-authorized subset of each distributed entity which takes part

in the system. In order to formally model this situation, we must consider a distributed

entity E

1

and an adversary DA who corrupts a non-authorized subset B

1

� E

1

, B

1

=2

�

1

. The goal of the adversary is to forge a new proxy or standard signature realized by

entity E

1

or on behalf of E

1

.

7

LetDist Pro Sig = (G;JKG;DS;V; (DD;DP);DPS;PV;ID) be a fully distributed

proxy signature scheme. We are going to consider an attack (or experiment)D Exp

DA

Dist Pro Sig

(k)

performed by the adversary DA against the scheme Dist Pro Sig under security pa-

rameter k.

The experiment starts with the generation of the global parameters. Adversary

DA chooses the subset B

1

� E

1

, such that B

1

=2 �

1

, that he corrupts. Then the joint

key generation protocol JKG is executed by the members of E

1

(here DA obtains the

public key pk

1

, all the information made public during the execution of the protocol,

and the secret key shares fsk

(b)

1

g

P

(b)

1

2B

1

of the corrupted participants).

The adversary initializes a counter m = 1, an empty set Prox = ; and an empty

array Array

(1)

skp

.

What can DA do?

During the experiment, the adversary DA is allowed to execute or ask for execution of

the following actions:

1. DA registers E

i

. DA can create and register a new distributed entity E

i

, for

i = m+1. The adversary controls the behavior of all the members of this entity.

These members run the protocol JKG which produces a public key pk

i

and shares

of the corresponding secret key sk

i

. A new empty array Array

(i)

skp

is created. The

counter is incremented, m := m+ 1.

2. E

1

delegates in E

i

. DA can interact with the whole entity E

1

runningDD(pk

1

; pk

i

; fsk

(`)

1

g

P

(`)

1

2E

1

),

and himself playing the role of entity E

i

, for some i 2 f2; 3; : : : ;mg, running the

protocol DP(pk

1

; pk

i

; fsk

(`)

i

g

P

(`)

i

2E

i

). The set Prox increases to Prox [fpk

i

g

(this set contains the public keys of the entities in which entity E

1

delegates

during the experiment).

3. E

i

delegates in E

1

. DA can interact with entity E

1

runningDP(pk

i

; pk

1

; fsk

(`)

1

g

P

(`)

1

2E

1

),

and himself playing the role of entity E

i

, for some i 2 f2; 3; : : : ;mg, running the

protocol DD(pk

i

; pk

1

; fsk

(`)

i

g

P

(`)

i

2E

i

). As a result, each participant P

(`)

1

of entity

E

1

will obtain a share skp

(`)

i1

of the new proxy secret key. Note that the adver-

sary knows the shares of the corrupted players in B

1

. The whole set of shares

SKP

i1

= fskp

(`)

i1

g

P

(`)

i

2E

i

is stored in the �rst available position of Array

(i)

skp

. This

array will therefore contain all the secret proxy keys corresponding to delegations

of entity E

i

into entity E

1

. Obviously, the adversary has not full access to these

arrays (he only knows the shares of the corrupted players in B

1

).

4. E

1

delegates in E

1

. DA can request that entity E

1

run the delegation protocol

with itself. The adversary will see all the public information and the private

information held by the corrupted players. As in Action 3, the shares of the

resulting secret proxy key, SKP

11

, are stored in the �rst available position of

Array

(1)

skp

.

8

5. Standard distributed signature by E

1

. DA can ask the members of E

1

for

executing the protocol DS for signing the messageM that he chooses. He obtains

all public information and private information of the dishonest players (in B

1

).

6. Distributed proxy signature by E

1

on behalf of E

i

. DA can request that

members of E

1

use the shares of some of the proxy secret keys obtained from a del-

egation of entity E

i

(Action 3), and which are stored in some position of Array

(i)

skp

,

to execute the protocol DPS with a message M that he chooses. Again, he ob-

tains the signature, all the broadcast information and the private information of

the corrupted players.

When is DA successful?

Once the adversary has done these actions as many times as he wants, he eventually

outputs a forgery of a standard signature (M;�) or of a proxy signature (M;p�; pk).

� If (M;�) satis�es V(M;�; pk

1

) = 1, and M was not queried by DA to be signed

as a standard distributed signature by entity E

1

(action 5), then the output of the

experiment is 1 (successful forgery of a standard signature by entity E

1

).

� If (M;p�; pk) satis�es pk = pk

i

for some i 2 f1; 2; : : : ;mg, and PV(M;p�; pk

i

) = 1,

and ID(p�) = pk

1

, and message M was not queried to be signed by E

1

on behalf of

E

i

(action 6), then the output of the experiment is 1 (successful forgery of a proxy

signature by entity E

1

on behalf of some entity E

i

).

� If (M;p�; pk) satis�es pk = pk

1

, and PV(M;p�; pk

1

) = 1, and ID(p�) =2 Prox [

fpk

1

g, then the output of the experiment is 1 (successful forgery of a proxy signature

by some entity E

i

6= E

1

, which was not designated by entity E

1

during the experiment,

on behalf of entity E

1

).

Otherwise, the output of the experiment D Exp

DA

Dist Pro Sig

(k) is 0. We de�ne the

probability of success of the adversary DA as the probability that the output of the

experiment is 1. That is:

Succ

DA

Dist Pro Sig

(k) = Pr

�

D Exp

DA

Dist Pro Sig

(k) = 1

�

:

De�nition 1. We say that a fully distributed proxy signature scheme Dist Pro Sig is

secure if, for all polynomial time adversary DA, we have that Succ

DA

Dist Pro Sig

(k) is

negligible in the security parameter k.

We recall that a function f(k) is negligible in k if for all polynomial p(), there exists

k

p

2 N such that f(k) �

1

p(k)

, for all k � k

p

.

This security model for fully distributed proxy signature schemes is the natural

extension of the security model de�ned in [2] for individual proxy signature schemes

(there, the adversary attacks a user; here, the adversary attacks an entity where he has

corrupted some of its members).

4 A New Scheme

We now explain the natural way of fully distributing the triple Schnorr proxy signa-

ture scheme given in [2]. We follow the notation introduced in Section 3. We denote

9

the fully distributed triple Schnorr proxy signature scheme by T Sch Dist Pro Sig =

(G

TS

;JKG

TS

;DS

TS

;V

TS

; (DD

TS

;DP

TS

);DPS

TS

;PV

TS

;ID

TS

). The di�erent proto-

cols work as follows:

� The parameter generator G

TS

takes as input a security parameter k and outputs

the prime numbers p and q such that qjp� 1, an element g with order q in Z

�

p

, and two

hash functions H

1

; H

2

: f0; 1g

�

! Z

q

.

� The key generator K

TS

for an entity E

i

with access structure �

i

consists of running

the protocol (y

i

; fx

(`)

i

g

P

(`)

i

2E

i

) = Jo DL KG(E

i

;�

i

) for joint generating a public key

and shares of the matching secret key (see Section 2.2).

� The distributed signature protocol DS

TS

applied to a message M consists of

prepending a 1 to the message and executing the protocol of joint computation of a

Schnorr signature (r; s) = Dist Sch Sig(E

i

;�

i

; 1jjM ; fx

(`)

i

g

P

(`)

i

2E

i

;H

1

) (see Section

2.3).

� The veri�cation protocol V

TS

veri�es that (r; s) is a valid Schnorr signature for

message 1jjM .

� The protocols (DD

TS

;DP

TS

) are as follows. If an entity E

i

(with keys x

i

and y

i

,

where x

i

is shared) wants to delegate into an entity E

j

(with keys x

j

and y

j

, where

x

j

is shared), members of entity E

i

create a message ! which contains the information

related to the delegation. Then members of E

i

jointly compute the Schnorr signature

(r

i

; s

i

) = Dist Sch Sig(E

i

;�

i

; 0jjy

i

jjy

j

jj! ; fx

(`)

i

g

P

(`)

i

2E

i

;H

1

) :

Each member P

(`)

j

of entity E

j

veri�es this signature and then computes his share of

the proxy secret key as skp

(`)

ij

= (y

i

jjy

j

jj! ; r

i

; d

(`)

ij

), where

d

(`)

ij

= s

i

+ x

(`)

j

H

1

(0jjy

i

jjy

j

jj! ; r

i

)mod q :

Note that it results in a sharing of the proxy secret key d

ij

= s

i

+x

j

H

1

(0jjy

i

jjy

j

jj! ; r

i

)mod q,

and that the public key related to this secret key d

ij

is g

d

ij

= r

i

(y

i

y

j

)

H

1

(0jjy

i

jjy

j

jj! ; r

i

)

mod p.

� The protocol DPS

TS

work as follows: to jointly compute a proxy signature on

a message M , on behalf of entity E

i

, members of the entity E

j

employ their shares of

the proxy secret key d

ij

and the hash function H

2

to compute the Schnorr signature

(r; s) = Dist Sch Sig(E

j

;�

j

; 0jjM jjy

i

jjy

j

jj!jjr

i

; fd

(`)

ij

g

P

(`)

j

2E

j

;H

2

) :

The �nal proxy signature is p� = (!; r

i

; y

j

; (r; s)).

� To verify (protocol PV

TS

) the correctness of a proxy signature p� = (!; r

i

; y

j

; (r; s))

on a message M , where the original signer entity has public key y

i

, the recipient must

check the following equation (Schnorr veri�cation with public key g

d

ij

and hash function

H

2

):

g

s

= r

h

r

i

(y

i

y

j

)

H

1

(0jjy

i

jjy

j

jj! ; r

i

)

i

H

2

(0jjM jjy

i

jjy

j

jj!jjr

i

; r)

mod p :

� The proxy identi�cation algorithm ID

TS

takes as input a proxy signature p� =

(!; r

i

; y

j

; (r; s)) and returns the entity whose public key is y

j

.

10

4.1 Security Analysis

The following theorem asserts that this fully distributed proxy signature scheme is

secure in the model introduced in Section 3.1. We prove this fact by reduction to the

security of the individual triple Schnorr scheme in the security model for individual

proxy signatures (see Section 2.1). The details of the proof are given in the Appendix.

Theorem 2. If the discrete logarithm problem is hard, then the fully distributed proxy

signature scheme T Sch Dist Pro Sig is secure in the random oracle model.

5 Conclusion

In this work we have taken one more step in the formalization of proxy signature

schemes, by giving a security model for fully distributed proxy signature schemes. This

new model is the natural extension of the security model introduced in [2] for individual

proxy signature schemes.

Furthermore, we present a fully distributed proxy signature scheme which is proved

to be secure in the new model. The scheme is the distributed version of a individual

scheme proposed in [2]. They are based on Schnorr's signature scheme, and their

security relies on the hardness of the discrete logarithm problem.

There are a lot of proxy signature schemes (individual or distributed) in the liter-

ature whose security has not been formally proved yet. We think that the two above-

mentioned models, the one in [2] for individual proxy signature schemes and the one in

this work for distributed schemes, should be considered from now on, in order to prove

the security of both existing and future schemes.

References

[1] G.R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS'79, pp. 313{

317 (1979).

[2] A. Boldyreva, A. Palacio and B. Warinschi. Secure proxy signa-

ture schemes for delegation of signing rights. Preprint available at

http://eprint.iacr.org/2003/096/

[3] P. Feldman. A practical scheme for non-interactive veri�able secret sharing. Pro-

ceedings of FOCS'87, IEEE Press, pp. 427{437 (1987).

[4] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Secure distributed key gen-

eration for discrete-log based cryptosystems. Proceedings of Eurocrypt'99, LNCS

1592, pp. 295{310 (1999).

[5] S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against

adaptative chosen-message attacks. SIAM Journal of Computing, 17 (2), pp. 281{

308 (1988).

11

[6] J. Herranz and G. S�aez. Veri�able secret sharing for general access structures,

with application to fully distributed proxy signatures. Proceedings of Financial

Cryptography Conference 2003, LNCS 2742, pp. 286{302 (2003).

[7] M. Hwang, I. Lin and E.J. Lu. A secure nonrepudiable threshold proxy signature

scheme with known signers. International Journal of Informatica, vol. 11, no. 2,

pp. 1{8, (2000).

[8] S. Kim, S. Park and D. Won. Proxy signatures, revisited. Proceedings of ICISC'97,

pp. 223{232 (1997).

[9] J.-Y. Lee, J. H. Cheon and S. Kim. An analysis of proxy signatures: is a secure

channel necessary? Proceedings of CT-RSA Conference 2003, LNCS 2612, pp.

68{79 (2003).

[10] B. Lee, H. Kim and K. Kim. Strong proxy signature and its applications. Proceed-

ings of SCIS'01, Vol. 2/2, pp. 603{608 (2001).

[11] M. Mambo, K. Usuda and E. Okamoto. Proxy signatures: delegation of the power

to sign messages. IEICE Transactions Fundamentals, Vol. E79-A, No. 9, pp. 1338{

1353 (1996).

[12] T.P. Pedersen. Non-interactive and information-theoretic secure veri�able secret

sharing. Proceedings of Crypto'91, LNCS 576, pp. 129{140 (1991).

[13] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind

signatures. Journal of Cryptology, Vol. 13, Num. 3, pp. 361{396 (2000).

[14] C.P. Schnorr. E�cient signature generation by smart cards. Journal of Cryptology,

Vol. 4, pp. 161{174 (1991).

[15] A. Shamir. How to share a secret. Communications of the ACM, No. 22, pp.

612{613 (1979).

[16] Z. Shao. Proxy signature schemes based on factoring. Information Processing Let-

ters, No. 85, pp. 137{143 (2003).

[17] D.R. Stinson and R. Strobl. Provably secure distributed Schnorr signatures and a

(t; n) threshold scheme for implicit certi�cates. Proceedings of ACISP'01, LNCS

2119, Springer-Verlag, pp. 417{434, (2001).

[18] H.-M. Sun and B.-T. Hsieh. On the security of some proxy signature schemes.

Preprint available at http://eprint.iacr.org/2003/068/ (2003).

[19] K. Zhang. Threshold proxy signature scheme. Proceedings of the 1997 Information

Security Workshop, Japan, pp. 191{197 (1997).

12

Appendix: Proof of Theorem 2

Let us assume there exists an adversary DA against this fully distributed proxy signa-

ture scheme such that its success probability Succ

DA

T Sch Dist Pro Sig

(k) is non-negligible.

We can then construct an adversary A and an experiment Exp

A

T Sch Pro Sig

(k) against

the individual scheme T Sch Pro Sig, following the de�nition and notation of [2], as

follows:

The public parameters (p; q; g;H

1

;H

2

) are generated, along with a public and secret

key pair (x

1

; y

1

) for user U

1

, where y

1

= g

x

1

mod p. A counter m is initialized to 1, an

empty set Prox and an empty array Array

(1)

skp

are created. The value y

1

is given to the

adversary A.

Now A executes SIM

1

(see Fact 1) with input y

1

and the information related to the

adversary DA (entity E

1

, access structure �

1

, set B

1

of corrupted players...). Therefore

A obtains values which are indistinguishable from those that DA would have seen in

a real execution of K

TS

= Jo DL KG which would have produced y

1

as the resulting

public key.

Then, A requests DA to run the experiment D Exp

DA

T Sch Dist Pro Sig

(k). For

that, A must provide DA with the information obtained from SIM

1

in the pre-

vious step, and also simulate the real environment of DA during the experiment

D Exp

DA

T Sch Dist Pro Sig

(k), replying all its queries and actions:

1. If DA wants to register a new entity E

i

, where i = m+1, then A registers a new

user U

i

(he is allowed to do so, see the security model in [2]), obtaining a pair

(x

i

; y

i

). Then A executes SIM

1

with input y

i

and gives the outputs to DA. The

counter is incremented, m := m+ 1, and an empty array Array

(i)

skp

is created.

2. When DA requires entity E

1

to delegate into entity E

i

(with delegation message

!), then A requires user U

1

to delegate into user U

i

. Therefore, A obtains a valid

Schnorr signature, under public key y

1

and hash function H

1

, of the message

0jjy

1

jjy

i

jj!. Then A executes SIM

2

(see Fact 2) with input this pair message-

signature and the information obtained in the �rst execution (with input y

1

) of

SIM

1

. The output of SIM

2

perfectly simulates the view of DA during these

queries. The set Prox increases to Prox [fpk

i

g.

3. When DA requires some entity E

i

to delegate into entity E

1

, then A requires

user U

i

to delegate into user U

1

. If the delegation message is !, then A obtains a

valid Schnorr signature (r

i

; s

i

), under public key y

i

and hash function H

1

, of the

message 0jjy

i

jjy

1

jj!. Now A executes SIM

2

for this pair message-signature. Fur-

thermore, for all corrupted player P

(b)

1

2 B

1

� E

1

, A computes the corresponding

share

d

(b)

i1

= s

i

+ x

(b)

1

H

1

(0jjy

i

jjy

1

jj! ; r

i

)mod q

of the new proxy secret key, where x

(b)

1

are the shares of the secret key of entity

E

1

, obtained in the �rst execution of SIM

1

. In this way, A simulates in a perfect

way the view of DA for these queries. The �rst available position of Array

(i)

skp

is �lled with these shares d

(b)

i1

and other random shares for the non-corrupted

13

players (since DA has not full access to these arrays, it is not important what is

put in the places corresponding to the non-corrupted players).

4. WhenDA requires entity E

1

to delegate into itself, A requires user U

1

to designate

himself. If the delegation message is !, then A obtains a valid Schnorr signature

(r

1

; s

1

), under public key y

1

and hash function H

1

, of message 0jjy

1

jjy

1

jj!. Then

A executes SIM

2

for this pair message-signature. Again, for all corrupted players

P

(b)

1

2 B

1

� E

1

, A computes the corresponding share

d

(b)

11

= s

1

+ x

(b)

1

H

1

(0jjy

1

jjy

1

jj! ; r

1

)mod q

of the new proxy secret key. These values and the output of SIM

2

perfectly

simulate the view of DA during these queries. The next available position of

Array

(1)

skp

is �lled with the computed shares for the corrupted players in B

1

and

with random numbers for the non-corrupted players.

5. When DA requires E

1

to compute a distributed Schnorr signature on a message

M , A queries user U

1

to compute a Schnorr signature on message M (the same

message and the same public key). The resulting signature and the message

are given as inputs to SIM

2

. The outputs simulate the view of DA during the

execution of the distributed Schnorr signature protocol.

6. If DA requires entity E

1

to compute a proxy signature of message M on behalf of

entity E

i

(which has previously delegated into E

i

by publishing a signature (r

i

; s

i

)

on a delegation message !), then A requires user U

1

to compute a proxy signature

of message M on behalf of user U

i

(who, of course, has previously delegated into

U

1

by publishing exactly the signature (r

i

; s

i

) on the delegation message !). The

result is a valid Schnorr signature (r; s), of message 0jjM jjy

i

jjy

1

jj!jjr

i

, under hash

function H

2

and public key

r

i

(y

i

y

1

)

H

1

(0jjy

i

jjy

1

jj! ; r

i

)

:

Then A can execute SIM

2

with input this message-signature pair, along with

other information which A had obtained when E

i

performed the considered dele-

gation on E

1

(for example, the shares d

(`)

i1

of the corresponding secret proxy key).

The output of SIM

2

simulates the view of DA in this phase of the experiment.

By assumption, and since A perfectly simulates the environment of DA, one of the

following facts happens with non-negligible probability:

� DA outputs (M; (r; s)) satisfying V

TS

(M; (r; s); y

1

) = 1, such that M was not

queried by DA to be signed as a standard distributed signature by entity E

1

(action

5). Therefore, A did not query user U

1

to sign message M in the standard way, either,

and so the output of the experiment Exp

A

T Sch Pro Sig

(k), performed by A, would be

1 (successful forgery of a standard signature).

� DA outputs a forgery of a proxy signature by entity E

1

, on behalf of entity E

i

,

of a message that was not queried by DA to be signed by E

1

on behalf of E

i

during

the experiment. Therefore, A obtains a forgery of a proxy signature by U

1

, on behalf

14

of U

i

, of a message that A did not query user U

1

to sign on behalf of U

i

. That is, the

output of Exp

A

T Sch Pro Sig

(k) would be again 1.

� DA outputs a forgery of a proxy signature by some entity E

i

6= E

1

(which was

not designated by entity E

1

at any time during the experiment) on behalf of entity E

1

.

Analogously, user U

i

was never designated by user U

1

during the experiment performed

by A, but A obtains a valid proxy signature by user U

i

6= U

1

on behalf of user U

1

. Thus,

the output of Exp

A

T Sch Pro Sig

(k) would be 1.

Summing up, we have that

Succ

A

T Sch Pro Sig

(k) � Succ

DA

T Sch Dist Pro Sig

(k) :

But we are assuming that Succ

DA

T Sch Dist Pro Sig

(k) is non-negligible. So we could con-

clude that Succ

A

T Sch Pro Sig

(k) is also non-negligible, which contradicts Theorem 1.

Therefore, we prove that there can not exist an adversary DA with non-negligible prob-

ability of successfully attacking the scheme T Sch Dist Pro Sig, and so this scheme

is provably secure (in the random oracle model, as it is the individual triple Schnorr

scheme). This completes the proof.

15

