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Abstrat

We onsider the problem of onstruting perfet nonlinear multi-output Boolean funtions satisfying

higher order strit avalanhe riteria (SAC). Our �rst onstrution is an in�nite family of 2-ouput perfet

nonlinear funtions satisfying higher order SAC. This onstrution is ahieved using the theory of bilinear

forms and sympleti matries. Next we build on a known onnetion between 1-fatorization of a

omplete graph and SAC to onstrut more examples of 2 and 3-output perfet nonlinear funtions.

In ertain ases, the onstruted S-boxes have optimal trade-o� between the following parameters:

numbers of input and output variables, nonlinearity and order of SAC. In ase the number of input

variables is odd, we modify the onstrution for perfet nonlinear S-boxes to obtain a onstrution for

maximally nonlinear S-boxes satisfying higher order SAC. Our onstrutions present the �rst examples

of perfet nonlinear and maximally nonlinear multioutput S-boxes satisfying higher order SAC. Lastly,

we present a simple method for improving the degree of the onstruted funtions with a small trade-o�

in nonlinearity and the SAC property. This yields funtions whih have possible appliations in the

design of blok iphers.

Keywords : S-box, SAC, bent funtion, bilinear form, sympleti matrix, nonlinearity, symmetri

iphers.

1 Introdution

A Boolean funtion is a map from f0; 1g

n

to f0; 1g and by a multi-output Boolean funtion we mean a

map from f0; 1g

n

to f0; 1g

m

. Multi-output Boolean funtions are usually alled S-boxes and are used as

basi primitives for designing symmetri iphers. For example, the S-boxes used in DES have n = 6 and

m = 4 and the S-box used in the design of AES has n = m = 8. We next desribe some properties of

S-boxes whih have been studied previously.

Nonlinearity is one of the basi properties of an S-box. The nonlinearity of a Boolean funtion measures

the distane of the funtion to the set of all aÆne funtions. The nonlinearity of an S-box is a natural

generalization of this notion. For even n, funtions ahieving the maximum possible nonlinearity are alled

perfet nonlinear S-boxes [9℄. If m = 1, suh funtions are alled bent funtions [11℄. For odd n and m > 1,

funtions ahieving the maximum possible nonlinearity are alled maximally nonlinear funtions.

The onept of propagation harateristi was introdued in the ryptology literature in [10℄. An S-box

f(x) is said to satisfy propagation harateristi of degree l and order k (PC(l) of order k) if the following
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holds: Let g(y) be a funtion obtained from f(x) by �xing at most k inputs to onstant values and let �

be a non zero vetor of weight at most l. Then g(y)� g(y � �) is a balaned funtion.

If k = 0, then the funtion is simply said to satisfy PC(l). PC(l) of order k funtions have been studied

in [3, 4℄ and onstrutions of Boolean funtions and S-boxes satisfying PC(l) of order k are known [7, 6, 12℄.

S-boxes satisfying PC(1) of order k are said to satisfy strit avalanhe riteria of order k (SAC(k)). If k = 0,

then the S-box is said to satisfy SAC. The notion of SAC was introdued in [13℄. It is known [8℄ that any

bent funtion or any perfet nonlinear S-box satis�es PC(n). It is also possible to onstrut bent funtions

satisfying SAC(n � 2). However, for m > 1, onstrution of perfet nonlinear S-boxes satisfying SAC(k)

for k > 0 has been a open problem.

In this paper, we (partially) solve this problem by providing onstrutions of perfet nonlinear S-boxes

with m = 2; 3 and satisfying SAC(k) for k � 1. Our ontributions are the following.

� Constrution of an in�nite family of 2-output perfet nonlinear S-boxes satisfying higher order SAC.

More preisely, for eah even n � 6, we onstrut a 2-output perfet nonlinear S-box satisfying

SAC((n=2)� 2).

� In an earlier paper [7℄, a 1-fatorization of the omplete graph on n-verties was used to onstrut

S-boxes satisfying higher order SAC. However, the S-boxes onstruted in [7℄ did not satisfy perfet

nonlinearity. We make a more detailed analysis of the onnetion between 1-fatorization and higher

order SAC to onstrut 2 and 3 output perfet nonlinear S-boxes satisfying higher order SAC.

� In ertain ases, the funtions that we onstrut ahieve the best possible trade-o� among the fol-

lowing parameters: number of input variables, number of output variables, nonlinearity and order

of SAC. Hene for suh funtions, it is not possible to improve any one parameter without hanging

some other parameter.

� For small n, our onstrutions provide S-boxes whih annot be obtained from the urrently known

onstrutions [7, 6, 12℄. Some examples of suh funtions are the following.

{ 8-input, 2-output perfet nonlinear S-box satisfying SAC(2).

{ 8-input, 3-output perfet nonlinear S-box satisfying SAC(1).

{ 10-input, 3-output perfet nonlinear S-box satisfying SAC(3).

The last example is also an example of an S-box ahieving the best possible trade-o�.

� Our onstrutions are based on bilinear forms and sympleti matries used in the study of seond

order Reed-Muller ode. We show that if n is odd, then the onstrution for (n+1) an be modi�ed

to obtain maximally nonlinear S-boxes satisfying higher order SAC.

� We provide a simple tehnique for improving the degree of an S-box with a small sari�e in nonlin-

earity and the SAC property. This results in S-boxes whih have possible appliations in the design

of symmetri iphers

2 Preliminaries

Let F

2

= GF (2). We onsider the domain of a Boolean funtion to be the vetor spae (F

n

2

;�) over F

2

,

where � is used to denote the addition operator over both F

2

and the vetor spae F

n

2

. The inner produt

of two vetors u; v 2 F

n

2

will be denoted by hu; vi. The weight of an n-bit vetor u is the number of ones

in u and will be denoted by wt(u). The (Hamming) distane between two vetors x = (x

1

; x

2

; � � � ; x

n

)

and y = (y

1

; y

2

; � � � ; y

n

) is the number of plaes where they di�er and is denoted by d(x; y). The bitwise

omplement of a bit string x will be denoted by x.
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2.1 Boolean Funtions

An n-variable Boolean funtion is a map f : F

n

2

! F

2

. The weight of f , denoted by wt(f) is de�ned as

wt(f) = jfx : f(x) = 1gj. The funtion f is said to be balaned if wt(f) = 2

n�1

. The (Hamming) distane

between two n-variable Boolean funtions f and g is d(f; g) = jfx : f(x) 6= g(x)gj.

A parameter of fundamental importane in ryptography is the nonlinearity of a Boolean funtion.

This quantity measures the distane of a Boolean funtion from the set of all aÆne funtions. An n-

variable aÆne funtion is of the form l

u;b

(x) = hu; xi � b, where u 2 F

n

2

and b 2 F

2

. Let A

n

be the

set of all n-variable aÆne funtions. The nonlinearity nl(f) of an n-variable Boolean funtion is de�ned

as nl(f) = min

l2A

n

d(f; l). The maximum nonlinearity ahievable by an n-variable Boolean funtion is

2

n�1

� 2

(n�2)=2

. Funtions ahieving this value of nonlinearity are alled bent and an exist only when n is

even [11℄. When n is odd, the maximum nonlinearity ahievable by an n-variable Boolean funtion is not

known. However, funtions ahieving a nonlinearity of 2

n�1

� 2

(n�1)=2

are easy to onstrut and are alled

almost optimally nonlinear [4℄.

An n-variable Boolean funtion f satis�es strit avalanhe riteria (SAC) if f(x)�f(x��) is balaned

for any � 2 F

n

2

with wt(�) = 1 [13℄. A funtion f satis�es SAC(k) if every subfuntion obtained from

f(x

1

; � � � ; x

n

) by keeping at most k input bits onstant satis�es SAC.

An n-variable Boolean funtion an be represented as a multivariate polynomial over F

2

. The degree

of this polynomial is alled the degree of the funtion. AÆne funtions have degree one and funtions of

degree two are alled quadrati.

2.2 S-Boxes

An (n;m) S-box (or vetorial funtion) is a map f : f0; 1g

n

! f0; 1g

m

. Let f : f0; 1g

n

! f0; 1g

m

be an

S-box and g : f0; 1g

m

! f0; 1g be an m-variable Boolean funtion. The omposition of g and f , denoted

by g Æ f is an n-variable Boolean funtion de�ned by (g Æ f)(x) = g(f(x)).

Let f be an (n;m) S-box. The nonlinearity of f is de�ned to be nl(f) = minfnl(l Æ f) : l is a non-

onstant m-variable linear funtiong. The maximum ahievable nonlinearity of an n-variable funtion is

2

n�1

� 2

(n�2)=2

and S-boxes ahieving this value of nonlinearity are alled perfet nonlinear S-boxes. Suh

S-boxes exist only if n is even andm � (n=2) [9℄. For odd n andm = n, the maximum possible nonlinearity

ahievable is 2

n�1

� 2

(n�1)=2

and S-boxes ahieving this value of nonlinearity are alled maximal nonlinear

S-boxes. For odd n and 1 < m < n, the maximum possible ahievable nonlinearity is an open problem.

However, for odd n, 1 < m < n, and quadrati funtions the maximum possible ahievable nonlinearity is

2

n�1

� 2

(n�1)=2

. We will also all suh funtions to be maximally nonlinear.

We de�ne the degree of an (n;m) S-box f to be the minimum of the degrees of lÆf , where l ranges over

all non onstant m-variable linear funtions. This de�nition is more meaningful to ryptography than the

de�nition where the degree of an S-box is taken to be the maximum of the degrees of all the omponent

funtions. The later de�nition has been used in [2℄.

An (n;m) S-box f is said to be SAC(k), if l Æ f is SAC(k) for every non-onstant m-variable linear

funtion l. By an (n;m; k) S-box we mean an (n;m) S-box whih is SAC(k). We will be interested in

(n;m; k) S-boxes with maximum possible nonlinearity. More spei�ally, we will be interested in (n;m; k)

perfet nonlinear S-boxes if n is even and in (n;m; k) maximally nonlinear S-boxes if n is odd. Suh S-boxes

have important appliations in the design of seure blok iphers.

2.3 Binary Quadrati Form

An n-variable Boolean funtion g of degree � 2 an be written as (see [8, page 434℄) g(x) = xQx

T

�Lx

T

�b

where Q = (q

ij

) is an upper triangular n�n binary matrix, L = (l

1

; � � � ; l

n

) is a binary vetor and b is 0 or

1. The expression xQx

T

is alled a quadrati form and Lx

T

is alled a linear form. Let B = Q�Q

T

. Then
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B is a binary symmetri matrix with zero diagonal. Suh a matrix is alled a sympleti matrix (see [8,

page 435℄). Thus from a quadrati Boolean funtion we an de�ne a sympleti matrix. Conversely, given

a sympleti matrix B we an onstrut a quadrati Boolean funtion by reversing the above steps. We

denote this Boolean funtion by f

B

.

It is known that the rank of a sympleti matrix is always even [8, page 436℄. The nonlinearity of the

Boolean funtion g is related to the rank of B by the following result [8, page 441℄.

Proposition 1 Let g be a quadrati n-variable Boolean funtion and B be its assoiated sympleti form.

Then the nonlinearity of g is equal to 2

n�1

� 2

n�h�1

, where the rank of B is 2h.

Consequently, a quadrati Boolean funtion is bent if and only if the assoiated sympleti matrix is of

full rank.

3 Basi Results

We will be interested in nonlinear quadrati funtions satisfying higher order SAC. From Proposition 1,

a onvenient way to study the nonlinearity of quadrati funtions is through the rank of the assoiated

sympleti matrix. We now develop the basi relationships between the nonlinearity and SAC property of

a quadrati S-box and the sympleti matries assoiated with the omponent funtions.

Proposition 2 Let f be a quadrati Boolean funtion and B its assoiated sympleti matrix. Then f

satis�es SAC(k) if and only if for all 1 � i � n, we have wt(r

(i)

) � k + 1, where r

(i)

is the i

th

row of B.

(Sine B is symmetri, a similar property holds for the olumns of B.)

Proof : Let f(x) = xQx

T

� Lx

T

� b. Let � be suh that only the ith omponent of � is 1 and all

other omponents are zero. Further, let the ith olumn of Q be a

(i)

and the ith row of Q be b

(i)

. Then

r

(i)

= (a

(i)

)

T

� b

(i)

. We have

f(x)� f(x� �) = xQx

T

� (x� �)Q(x � �)

T

� L�

T

= xQ�

T

� �Qx

T

� L�

T

� �Q�

T

= hb

(i)

� (a

(i)

)

T

; xi � L�

T

� �Q�

T

= hr

(i)

; xi � L�

T

� �Q�

T

Note that L�

T

� �Q�

T

is a onstant. Now suppose wt(r

(i)

) � k + 1. Let g(x) be a funtion obtained by

setting any k bits of f(x) � f(x � �) to onstant values. Then hr

(i)

; xi is a non onstant linear funtion

and hene g(x) is balaned. Conversely, if wt(r

(i)

) � k, then we an set k variables to onstant values in

suh a manner that g(x) is a onstant funtion. This proves the result.

Let f = (f

1

; � � � ; f

m

) be an (n;m) quadrati S-box. Then eah of the omponent funtions f

i

is an

n-variable quadrati Boolean funtion. For 1 � i � m, let B

i

be the sympleti matrix assoiated with the

omponent funtion f

i

. Clearly, any linear ombination of sympleti matries is also a sympleti matrix.

We have the following extension of Proposition 2.

Lemma 3 Let f be an (n;m) S-box with quadrati omponent funtions f

i

and assoiated sympleti forms

B

i

for 1 � i � m. Then f satis�es SAC(k) if and only if the weight of every row in any non zero linear

ombination of the B

i

's is at least k + 1.

A similar result for nonlinearity an be stated by extending Proposition 1.

Lemma 4 Let f be an (n;m) S-box with quadrati omponent funtions f

i

and assoiated sympleti forms

B

i

for 1 � i � m. The nonlinearity of f is 2

n�1

� 2

n�h�1

, where 2h is the minimum of the ranks of any

non zero linear ombination of the B

i

's. Consequently for even n, the S-box f is perfet nonlinear if and

only if every non zero linear ombination of the B

i

's has full rank. Similarly, for odd n, the S-box f is

maximally nonlinear if and only if every non zero linear ombination of the B

i

's has rank (n� 1).
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Lemmas 3 and 4 will be used in proving the orretness of our onstrutions in the next setions.

4 Constrution of (n; 2;

n

2

� 2) S-box

Our onstrution will be via sympleti matries. Given any (n; r) quadrati S-box, it is lear from the

above disussion that the sympleti matries assoiated with the output omponent funtion de�nes the

S-box. Thus to desribe the onstrution, it is suÆient to de�ne these sympleti matries and use

Lemmas 3 and 4 to prove the orretness of the onstrution.

In this setion, we desribe the onstrution of (n; 2) S-boxes. Hene it is suÆient to de�ne two

sympleti matries. We proeed to do this as follows. For eah even n � 6, we de�ne two sequenes of

n�n matries and show that these matries are the sympleti matries required in the onstrution. For

the rest of this paper, we will use the following notation.

� For eah n � 1, de�ne v

n

to be a string of length n whih is the alternating sequene of 0's and 1's

starting with a 0. For example, v

4

= 0101 and v

5

= 01010. De�ne w

n

= 1v

n�1

.

� For eah even n � 2, de�ne u

n

as u

n

= 1 : : : 1

| {z }

(n=2)

0 : : : 0

| {z }

(n=2)

. For odd n � 3, de�ne x

n

= 1u

n�1

.

De�ne M

4

= [0010; 0010; 1101; 0010℄

T

and N

4

= [0101; 1011; 0101; 1110℄

T

. Further, for even n > 4 de�ne

M

n

=

2

6

4

0 v

n�2

0

v

T

n�2

M

n�2

v

T

n�2

0 v

n�2

0

3

7

5

; F

n

=

2

6

4

0 v

n�2

0

v

T

n�2

M

n�2

u

T

n�2

0 u

n�2

0

3

7

5

;

N

n

=

2

6

4

0 v

n�2

1

v

T

n�2

N

n�2

v

T

n�2

1 v

n�2

0

3

7

5

; G

n

=

2

6

4

0 v

n�2

1

v

T

n�2

N

n�2

u

T

n�2

1 u

n�2

0

3

7

5

:

(1)

The following result is easy to prove by indution on even n � 6.

Lemma 5 F

n

, G

n

and F

n

�G

n

are sympleti matries, where F

n

and G

n

are de�ned by equation 1.

The matries F

n

and G

n

are our required sympleti matries whih de�ne the two output omponent

funtions of the required (n; 2) S-box. In partiular, we have the following result.

Theorem 6 Let n � 6 be an even integer. The S-box f : F

n

2

! F

2

2

de�ned by f(x) = (f

F

n

(x); f

G

n

(x)) is

a perfet nonlinear S-box satisfying SAC(

n

2

� 2).

We now turn to the proof of orretness of Theorem 6. The proof is in two parts { in the �rst part we

prove the statement about SAC and in the seond part we prove the statement about nonlinearity.

Lemma 7 The S-box f de�ned in Theorem 6 satisfy SAC(

n

2

� 2).

Proof : Let r

j

denote the j-th row of M

n

. We make the following laim whih an be routinely proved

by indution on even n � 4.

wt(r

j

) �

n

2

� 1 if 1 � j �

n

2

and j is odd;

wt(r

j

) �

n

2

� 2 if 1 � j �

n

2

and j is even;

wt(r

j

) �

n

2

if

n

2

+ 1 � j � n and j is odd;

wt(r

j

) �

n

2

� 1 if

n

2

+ 1 � j � n and j is even.

9

>

>

>

=

>

>

>

;

(2)

We will use the notation r

0

j

for j-th row whih is obtained by dropping �rst and last olumn of M

n

. Let

s

j

denote the jth row of F

n

. We now have several ases.
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Case 1 : 1 � j �

n

2

and j odd: There are two subases.

Subase 1(a) : j = 1. In this ase wt(s

j

) = wt(v

n�2

) =

n�2

2

=

n

2

� 1.

Subase 1(b) : j > 1. In this ase wt(s

j

) = 1 + 1 + wt(r

0

j

) � 2 +

n�2

2

� 2 =

n

2

� 1:

Case 2 : 1 � j �

n

2

and j even: In this ase wt(s

j

) = 1 + wt(r

0

j

) � 1 +

n�2

2

� 1 =

n

2

� 1:

Case 3 :

n

2

+ 1 � j � n and j odd: In this ase wt(s

j

) = 1 + wt(r

0

j

) � 1 +

n�2

2

� 1 =

n

2

� 1.

Case 4 :

n

2

+ 1 � j � n and j even: There are two subases.

Subase 4(a) : j < n. In this ase wt(s

j

) = wt(r

0

j

) �

n�2

2

=

n

2

� 1.

Subase 4(b) : j = n. In this ase wt(s

j

) = wt(u

n�2

) =

n�2

2

=

n

2

� 1.

This proves that the weight of eah row of F

n

is at least (n=2)�1 and hene the orresponding Boolean

funtion satis�es SAC((n=2) � 2). By a similar argument the Boolean funtion assoiated with G

n

also

satis�es SAC((n=2) � 2). Also note

F

n

�G

n

=

2

6

4

0 J

n�2

1

J

T

n�2

M

n�2

�N

n�2

J

T

n�2

1 J

n�2

0

3

7

5

;

where J

n

is all 1 vetor. From this it is simple to verify by indution that F

n

�G

n

satis�es SAC(

n

2

� 2):

Now using Lemma 3 we obtain the required result.

We next turn to the nonlinearity of the S-box de�ned in Theorem 6.

Lemma 8 For even n � 6, the rank of F

n

is n.

Proof : First we prove that the rank of M

n

is n� 2. It is easy to hek that the rank of M

4

is 2. Assume

that the rank of M

n�2

is n� 4. It is lear that 1-st olumn and n-th olumn of M

n

are idential. Likewise

1-st olumn and n� 2-th olumn of M

n�2

are idential. Consider the matrix

M

0

n

=

"

0 v

n�2

v

T

n�2

M

n�2

#

:

From the de�nition of v

n

, we have that the �rst bit of v

n�2

is 0 and (n� 2)-th bit is 1. So v

n�2

is linearly

independent of rows of M

n�2

. So rank of M

0

n

is at least n� 4 + 1 = n� 3: But M

0

n

is sympleti matrix

and hene its rank must be even (see [8, page 436℄). So the rank of M

0

n

(and hene M

n

) is n� 2.

Now we turn to the rank of F

n

. As M

0

n

has rank n� 2, the rank of F

n

is at least n� 2: It is simple to

verify by indution that

n

2

-th olumn and (

n

2

+2)-th olumn of M

n

are idential. From de�nition, the

n

2

-th

bit of 0u

n�2

0 is 1 and the (

n

2

+ 2)-th bit is 0. Hene the last row 0u

n�2

0 of F

n

is linearly independent of

the previous (n� 1) rows. Thus the rank of F

n

is at least n� 2+1 = n� 1. But F

n

is a binary sympleti

matrix and hene its rank must be even. Hene the rank of F

n

is n.

Lemma 9 For even n � 6, the rank of F

n

�G

n

is n.

Proof : Note M

4

�N

4

= [0111; 1001; 1000; 1100℄

T

and hene the rank of M

4

�N

4

is 4. Assume that the

rank of M

n�2

�N

n�2

is n� 2. Note

F

n

�G

n

=M

n

�N

n

=

2

6

4

0 J

n�2

1

J

T

n�2

M

n�2

�N

n�2

J

T

n�2

1 J

n�2

0

3

7

5

;

where J

n

is the all 1 vetor. The row 1J

n�2

0 is linearly independent of rows of matrix J

T

n�2

(M

n�2

�

N

n�2

)J

T

n�2

. So rank of

"

J

T

n�2

M

n�2

�N

n�2

J

T

n�2

1 J

n�2

0

#

6



is at least n � 2 + 1 = n � 1 and hene the rank of F

n

� G

n

is at least n � 1. Again sine F

n

� G

n

is a

sympleti matrix its rank must be even. Hene its rank is n.

We de�ne T

5

= [01010; 10101; 01011; 10101; 01110℄

T

,

T

n

=

2

6

4

0 v

n�2

0

v

T

n�2

T

n�2

w

T

n�2

0 w

n�2

0

3

7

5

for odd n > 5 and H

n

=

"

T

n�1

x

T

n�1

x

n�1

0

#

for even n � 6. (3)

First we prove the following result.

Lemma 10 G

n

= H

n

for all even n � 6.

Proof : We �rst prove the following statement by indution on n.

T

n

=

"

0 v

n�1

v

T

n�1

N

n�1

#

for odd n � 5 and N

n

=

"

T

n�1

w

T

n�1

w

n�1

0

#

for even n � 6. (4)

It is easy to verify that T

5

=

"

0 v

4

v

T

4

N

4

#

and N

6

=

"

T

5

w

T

5

w

5

0

#

: Assume that (4) holds for

(n � 1). By de�nition and using v

n�1

= v

n�2

0 we have that for odd n � 7,

"

0 v

n�1

v

T

n�1

N

n�1

#

=

2

6

4

0 v

n�2

0

v

T

n�2

T

n�2

w

T

n�2

0 w

n�2

0

3

7

5

= T

n

: Similarly, by de�nition and using 1v

n�2

= w

n�1

0 we have that for even

n � 8,

"

T

n�1

w

T

n�1

w

T

n�1

0

#

=

2

6

4

0 v

n�2

1

v

T

n�2

N

n�2

v

T

n�2

1 v

n�2

0

3

7

5

= N

n

: This ompletes the proof of (4). Now to prove

G

n

= H

n

it is suÆient to show T

n�1

=

"

0 v

n�2

v

T

n�2

N

n�2

#

and x

n�1

0 = 1u

n�2

0: The �rst statement follows

from (4) and the seond statement follows from the de�nition of x

n

.

Lemma 11 For odd n � 5, the following statements hold for T

n

.

(1) The �rst olumn of T

n�2

is v

T

n�2

and the seond olumn is v

T

n�2

; (2) The b

n

2

-th olumn and (b

n

2

+2)-th

olumn of T

n

are idential; (3) The rank of T

n

is (n� 1).

Proof : All three statements are proved using indution on odd n � 5. We only desribe the proof for the

third statement. For n = 5 it is easy to verify that the rank of T

5

is 4. Assume that the rank of T

n�2

is

n�3. Consider the matrix A

n

=

"

v

T

n�2

T

n�2

0 w

n�2

#

: By the �rst statement of the lemma, the �rst and third

olumns of the matrix [v

T

n�2

T

n�2

℄ are idential. At the same time the �rst and third bits of the vetor

0w

n�2

are 0 and 1 respetively. So the last row of A

n

is linearly independent of other rows. Hene the

rank of A

n

is n� 3 + 1 = n� 2. Consequently, T

n

has rank at least n� 2. Again sine T

n

is a sympleti

matrix, its rank must be even and hene must be n� 1.

Now we are in a position to prove that G

n

is of full rank.

Lemma 12 The rank of G

n

is n.

Proof : Consider G

n

= H

n

=

"

T

n�1

x

T

n�1

x

n�1

0

#

: Sine the rank of T

n�1

is (n�2) the rank of H

n

is at least

n� 2. Again from Lemma 11, the b

n�1

2

-th olumn and the (b

n�1

2

+ 2)-th olumn of T

n�1

are idential.

7



But the b

n�1

2

-th and the (b

n�1

2

 + 2)-th bits of x

n�1

are 0 and 1 respetively. Hene x

n�1

is linearly

independent of T

n�1

. Thus the rank of G

n

is at least n � 2 + 1 = n � 1. Again sine G

n

is a sympleti

matrix its rank must be even and hene its rank is n.

Thus we have the following result whih ompletes the proof of Theorem 6.

Lemma 13 The S-box f de�ned in Theorem 6 is a perfet nonlinear S-box.

Proof : Using Lemmas 8, 9 and 12, we know that F

n

, G

n

and F

n

�G

n

have full rank. Hene the Boolean

funtions f

F

n

, f

G

n

and f

F

n

�f

G

n

= f

F

n

�G

n

are bent. Thus the funtion f de�ned in Theorem 6 is a perfet

nonlinear funtion.

5 Relation With One Fatorization of a Complete Graph

A one-fator of a graph G is a one-regular spanning subgraph of G. A one-fatorization of G is a partition

of the edges of G into one-fators.

Let K

n

be the omplete graph with n verties. For even n � 2, it is well known that K

n

an be

deomposed into (n � 1) edge disjoint, one-fators [1℄. One suh deomposition of K

n

is desribed as

follows. For even n and 1 � i � n� 1, de�ne

F

n

i

= f(n; i)g [ f((n� 2� j + i) mod (n� 1) + 1; (i + j � 1) mod (n� 1) + 1) : 1 � j �

n

2

� 1g (5)

The olletion T

n

= fF

n

1

; : : : ;F

n

n�1

g is a one fatorization of K

n

where the verties are labeled by the

integers 1; : : : ; n. When n is lear from the ontext we will write F

i

instead of F

n

i

. The elements of T

8

(i.e.

a one fatorization of K

8

) are given below.

F

1

= f(8; 1); (7; 2); (6; 3); (5; 4)g F

2

= f(8; 2); (1; 3); (7; 4); (6; 5)g

F

3

= f(8; 3); (2; 4); (1; 5); (7; 6)g F

4

= f(8; 4); (3; 5); (2; 6); (1; 7)g

F

5

= f(8; 5); (4; 6); (3; 7); (2; 1)g F

6

= f(8; 6); (5; 7); (4; 1); (3; 2)g

F

7

= f(8; 7); (6; 1); (5; 2); (4; 3)g

In [7℄, one fatorization of K

n

was used as a tool for onstrution of S-boxes satisfying SAC. We point

out the onnetion of the onstrution of Setion 4 to the one fatorization of K

n

. This onnetion will

be developed in later setions to obtain other onstrutions of perfet nonlinear S-boxes satisfying higher

order SAC.

Suppose S � T

n

. We use S to de�ne a sympleti matrix B

S

in the following manner: For 1 � k; l � n,

the entry B

S

[k; l℄ = 1 if and only if either (k; l) or (l; k) is in F

n

i

for some F

n

i

2 S.

Theorem 14 Let n � 4 be an even integer, S

1

= fF

2

; : : : ;F

n

2

g and S

2

= T n S

1

. Let B

S

1

and B

S

2

be the

sympleti matries assoiated with S

1

and S

2

respetively. Then

1. F

n

is obtained from B

S

1

by hanging the zeros in positions (

n

2

+ 1;

n

2

) and (

n

2

;

n

2

+ 1) to ones.

2. G

n

is obtained from B

S

2

by hanging the zeros in positions (

n

2

+ 1;

n

2

+ 2) and (

n

2

+ 2;

n

2

+ 1) to ones.

Theorem 14 shows the relationship between one fatorization and two output S-boxes of Setion 4. This

an be generalized to more than two output S-boxes. In fat, the earlier work of [7℄ provides suh a

generalization. However, there is one major diÆulty with the generalization. It beomes very diÆult to

ensure that the resulting S-box is a perfet nonlinear S-box. Thus while the generalization of [7℄ ensures

the SAC property, it results in funtions with quite weak nonlinearity. On the other hand, our motivation

is to obtain perfet nonlinear S-boxes satisfying higher order SAC. The rest of the paper is devoted to

identifying other perfet nonlinear S-boxes satisfying higher order SAC.
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5.1 Improvements for Two Output S-Boxes

We know from [7℄ that for an (n; 2; k)-SAC funtion, k � b

2(n�1)

3

 � 1. Thus the onstrution in Setion 4

is suboptimal with respet to the SAC property. (However, it is optimal with respet to nonlinearity).

Here we provide some examples of two output S-boxes with higher order SAC. All these examples

were obtained using experimental method. The onstrutions are based on the relationship between the

sympleti matries and one fatorization desribed above. These examples are summarized in Table 1.

The interpretation of the entries in Table 1 is as follows. Eah row desribes a onstrution for the partiular

value of n. The seond olumn desribes two subsets S

1

and S

2

of T

n

. Let B

S

1

and B

S

2

be the sympleti

matries assoiated with these two sets. We set B

1

= B

S

1

and B

2

is B

S

2

with the following modi�ation:

If (k; l) is in the third olumn, then B

S

2

[k; l℄ and B

S

2

[l; k℄ are hanged from 0 to 1. The desired S-box

f : F

n

2

! F

2

2

is given by f(x) = (f

B

1

(x); f

B

2

(x)). Eah of these S-boxes is a perfet nonlinear S-box. The

fourth olumn provides the order of SAC that is ahieved by the orresponding S-box. The �fth olumn

provides the maximum order of SAC that an be ahieved by an (n; 2) S-box. In the situation where this

maximum is equal to the ahieved order of SAC, the onstrution provides optimal trade-o� among the

following parameters : nonlinearity, order of SAC, number of input variables, number of output variables.

None of these parameters an be improved without hanging some other parameter.

Table 1: Improved and Optimal Construtions of Two Output S-boxes.

n Desription Modi�ation k max k

8 S

1

= fF

2

;F

3

;F

4

;F

5

;F

7

g { 3 3

S

2

= fF

1

;F

4

;F

5

;F

6

g (5,6)

10 S

1

= fF

1

;F

2

;F

4

;F

7

;F

8

g { 4 5

S

2

= fF

3

;F

5

;F

6

;F

7

;F

8

g (6,9)

12 S

1

= fF

1

;F

3

;F

5

;F

6

;F

7

;F

8

;F

11

g { 6 6

S

2

= fF

1

;F

2

;F

4

;F

7

;F

8

;F

9

;F

10

g (2,7)

14 S

1

= fF

1

;F

2

;F

3

;F

4

;F

9

;F

10

;F

11

;F

12

;F

13

g { 7 7

S

2

= fF

5

;F

6

;F

7

;F

8

;F

9

;F

10

;F

11

;F

12

g (8,9)

16 S

1

= fF

2

;F

3

;F

4

;F

5

;F

6

;F

7

;F

8

;F

9

;F

15

g { 8 9

S

2

= fF

1

;F

7

;F

8

;F

9

;F

10

;F

11

;F

12

;F

13

;F

14

g (3,9)

6 Constrution of (n; 3; k) S-boxes

We desribe onstrutions of (n; 3; k) perfet nonlinear S-boxes. These onstrutions were obtained by

experimental trial and error methods. Some of the onstrutions seem to have a general pattern, though

it has not been possible to prove a general result. There are several ases in the onstrution though the

desription of the onstrutions in all the ases is similar. We �rst identify three subsets S

1

;S

2

and S

3

of T

n

.

These three subsets de�ne three sympleti matries B

S

1

; B

S

2

and B

S

3

. These matries are then modi�ed

by hanging a number of zeros to ones to obtain three other sympleti matries B

1

; B

2

and B

3

. The

positions where the hanges are to be made are given by the third olumn. If (k; l) is in the third olumn,

then B

S

j

[k; l℄ and B

S

j

[k; l℄ (1 � j � 3) are hanged from 0 to 1. The required (n; 3) S-box f : F

n

2

! F

3

2

is obtained from these three matries in the following manner: f(x) = (f

B

1

(x); f

B

2

(x); f

B

3

(x)). There are

three ases.

1. Table 2 desribes several ases of onstrutions for n � 0 mod 8. For n > 8, there is a general heuristi

whih provides the required onstrution. For n = 8, a speial onstrution is required.
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2. Table 3 desribes onstrutions for n � 4 mod 8. These onstrutions have a general pattern.

3. Table 4 desribes several onstrutions for n � 2 mod 4. There does not appear to be any general

pattern for these onstrutions.

The onstrutions for n = 10; 22 provide optimal trade-o� between the following parameters: numbers

of input and output variables, nonlinearity and the order of SAC. Further, for n = 12; 16; 20 and 24 the

ahieved value of k is only one less than the upper bound on k.

Table 2: Construtions for n � 0 mod 8.

n Desription Modi�ation k max k

8 S

1

= fF

2

;F

3

;F

7

g (4,5) 1 2

S

2

= fF

3

;F

4

;F

5

g {

S

3

= fF

1

;F

3

;F

6

g (4,7)

16,24,32 S

1

= fF

2

;F

3

; : : : ;F

n

2

�1

;F

n�1

g (

n

2

;

n

2

+ 1)

n

2

� 2 min(

S

2

= fF

n

4

+1

; : : : ;F
3n

4

�1

g (

n

2

;

n

4

+ 1); (

n

2

;

3n

4

+ 1) b

4(n�1)

7

 � 1,

S

3

= fF

1

;F

n

4

+1

; : : : ;F

n

2

�1

;F
3n

4

; : : : ;F

n�2

g (

n

2

;

3n

4

) 2b

2n

7

 � 1)

Table 3: Construtions for n � 4 mod 8.

n Desription Modi�ation k max k

12,20,28 S

1

= fF

2

;F

3

; : : : ;F

n

2

�2

;F

n�1

g (

n

2

;

n

2

+ 1)

n

2

� 2 min(

S

2

= fF

n

4

+1

; : : : ;F
3n

4

�1

g (

n

2

;

n

4

+ 2) b

4(n�1)

7

 � 1,

S

3

= fF

1

;F

n

4

+1

; : : : ;F

n

2

�1

;F
3n

4

; : : : ;F

n�2

g (

n

2

;

3n

4

+ 1) 2b

2n

7

 � 1)

7 Maximally Nonlinear Funtions

The onstrutions desribed so far hold when the number of input bits n is even. In ase n is odd, there do

not exist any perfet nonlinear S-boxes. The best nonlinearity ahieved by an (n;m) quadrati S-box with

m > 1 is 2

n�1

� 2

(n�1)=2

and S-boxes ahieving this value of nonlinearity are alled maximally nonlinear.

In this setion, we desribe a simple modi�ation of the previously desribed onstrutions whih provide

maximally nonlinear S-boxes.

Theorem 15 Let f be a (2r;m; k) perfet nonlinear quadrati S-box where the sympleti matries assoi-

ated with the omponent funtions are B

1

; : : : ; B

m

. For 1 � i � m, let B

0

i

be obtained from B

i

by deleting

the �rst row and olumn. Then the S-box f

0

: F

2r�1

2

! F

m

2

de�ned by f

0

(x) = (f

B

0

1

(x); : : : ; f

B

0

m

(x)) is a

(2r � 1;m; k � 1) maximally nonlinear quadrati S-box.

Proof : There are two things to be proved { the nonlinearity and the order of SAC. Sine f is a perfet

nonlinear S-box, eah nonzero linear ombination of the B

i

's has full rank (see Lemma 4). Dropping one

row and one olumn dereases the rank by two for sympleti matries. Hene the rank of any nonzero

linear ombination of the B

0

i

's is 2r � 2 and the nonlinearity of the orresponding Boolean funtion is

2

2r�2

� 2

r�1

. Now using Lemma 4 we have that f

0

is a maximally nonlinear S-box.
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Table 4: Construtions for n � 2 mod 4.

n Desription Modi�ation k max k

10 S

1

= fF

3

;F

7

;F

8

;F

9

g (6,9) 3 3

S

2

= fF

1

;F

2

;F

4

;F

7

;F

8

g {

S

3

= fF

5

;F

6

;F

7

;F

8

g (5,6)

14 S

1

= fF

1

;F

3

;F

4

;F

11

;F

12

;F

13

g (1,6) 4 6

S

2

= fF

1

;F

2

;F

6

;F

9

;F

10

;F

11

;F

12

g {

S

3

= fF

1

;F

5

;F

7

;F

8

;F

11

;F

12

g (1,9)

18 S

1

= fF

3

;F

9

;F

10

;F

11

;F

12

;F

13

;F

14

;F

17

g (5,10) 7 8

S

2

= fF

1

;F

2

;F

4

;F

11

;F

12

;F

13

;F

14

;F

15

;F

16

g {

S

3

= fF

5

;F

6

;F

7

;F

8

;F

11

;F

12

;F

13

;F

14

g (9,11)

22 S

1

= fF

1

;F

3

;F

4

;F

5

;F

6

;F

13

;F

14

;F

15

;F

16

;F

17

;F

21

g (1,5) 9 9

S

2

= fF

1

;F

2

;F

8

;F

13

;F

14

;F

15

;F

16

;F

17

;F

18

;F

19

;F

20

g {

S

3

= fF

7

;F

9

;F

10

;F

11

;F

12

;F

13

;F

14

;F

15

;F

16

;F

17

g (1,16)

Further, sine f satis�es SAC(k), the number of ones in any nonzero linear ombination of the B

i

's is

at least k+1. Dropping one row and one olumn dereases the number of ones in any row (or olumn) by

at most one. Again using Lemma 3, it follows that the S-box f

0

satis�es SAC(k � 1).

8 Improving Algebrai degree

The onstrutions desribed in the previous setions provide quadrati funtions. In this setion, we

desribe a method of improving the degree of the onstruted funtions with a small trade-o� in the

nonlinearity and the SAC property. We �rst need to relax the notion of SAC. (See [5℄ for the notion of

almost PC(l) of order k funtions.)

De�nition 16 An n-variable Boolean funtion f is said to be (�; k)-SAC if the following property holds:

Let g be an (n� i)-variable Boolean funtion obtained from f by �xing i � k input variables to onstants.

Then

�

�

�

wt(g(x)�g(x��))

2

n�i

�

1

2

�

�

�

� � for any � of weight 1. An (n;m) S-box is said to be (n;m; �; k)-SAC if every

nonzero linear ombination of the omponent funtions is an (�; k)-SAC funtion.

The next result shows how to onvert an (n;m; k) S-box into an (n;m; �; k) S-box for a small � and with a

small hange in nonlinearity.

Theorem 17 Let f = (f

1

; : : : ; f

m

) be an (n;m; k) S-box where the degree of any f

i

is less than (n � 1).

Then it is possible to onstrut an (n;m; �; k) S-box g with algebrai degree n� 1, � =

m+1

2

n�k�1

and nl(g) �

nl(f)� (m+ 1) if m is odd; nl(g) � nl(f)�m if m is even.

Proof : We onstrut an (n;m) S-box g with omponent funtions g

1

; g

2

; : : : ; g

m

in the following manner.

For 1 � i � m, de�ne g

i

(x

1

; � � � ; x

n

) = f

i

(x

1

; � � � ; x

n

)�x

1

: : : x

i�1

x

i+1

: : : x

n

: By onstrution, the algebrai

degree of any g

i

is n � 1. Further, the degree (n � 1) terms in the g

i

's are distint. Hene any nonzero

linear ombination of the g

i

's also has degree (n� 1). Thus the degree of g is (n� 1).

We now prove the nonlinearity. The term x

1

: : : x

i�1

x

i+1

: : : x

n

whih is XORed to f

i

to obtain g

i

hanges exatly two output values of f

i

. Thus nl(g

i

) = nl(f

i

)�2. Further, the inputs for whih the outputs

are hanged are the all one vetor and the vetor with a zero only in the ith position. Thus if h (resp. h

0

)

is a linear ombination of i of the g

i

's (resp. f

i

's), then h and h

0

di�er in at most (i + 1) positions. Sine

11



1 � i � m, we have nl(g) � nl(f) � (m + 1) whem m is odd. Sine the nonlinearity of a funtion of n

variables and degree < n is always even we have nl(g) � nl(f)�m when m is even.

Now suppose that h

1

(x) (resp. h

0

1

(x)) is obtained from h(x) (resp. h

0

(x)) by �xing at most j (1 � j � k)

input bits to onstant values. Sine h(x) and h

0

(x) di�er in exatly (i+ 1) positions, it follows that h

1

(x)

and h

0

1

(x) di�er in at most (i + 1) positions. Further, sine h

1

(x) and h

0

1

(x) di�er in at most (i + 1)

positions, so does h

1

(x � �) and h

1

0

(x � �). Let �(x) = h(x) � h(x � �) and �

0

= h

0

(x) � h

0

(x � �).

Then it follows that �(x) and �

0

(x) di�er in at most 2(i + 1) positions. Sine f satis�es SAC(k), it

follows that �

0

(x) is balaned and has weight 2

n�j�1

. Also sine 1 � i � m and 1 � j � k, we obtain

�

�

�

wt(�(x))

2

n�j

�

1

2

�

�

�

=

�

�

�

�

wt(�(x))

2

n�j

�

wt(�

0

(x))

2

n�j

�

�

�

�

=

�

�

�

�

wt(�(x)j�wt(�

0

(x))

2

n�j

�

�

�

�

�

2(i+1)

2

n�j

�

m+1

2

n�k�1

: This ompletes the proof.

Table 5 provides some examples to illustrate Theorem 17. The interpretation of Table 5 is as follows.

Table 5: Values of k, � and nonlinearity for 2 and 3 output S-boxes for di�erent values of n (see Theorem 17).

n degree m = 2 m = 3

8 7 (3, 0.1875, 118) (1, 0.0625, 116)

9 8 (3, 0.0938, 238) (2, 0.0625, 236)

10 9 (4, 0.0938, 494) (3, 0.0625, 492)

11 10 (5, 0.0938, 990) (3, 0.0313, 988)

12 11 (6, 0.0938, 2014) (4, 0.0313, 2012)

Eah entry is of the form (k; �; x), where k is the order of SAC, � is de�ned in Theorem 17 and x is the

nonlinearity of the modi�ed funtion. (When m is even, the value of nonlinearity is one more than the

lower bound given in Theorem 17.) Note that in eah ase the algebrai degree is n � 1. The drop in

nonlinearity is very small; for example for n = 8, the lower bound from Theorem 17 is 117 while the

maximum possible nonlinearity is 120. Similarly, in eah of the above ases, the value of � is small. Hene

the deviation from perfet nonlinearity and the (perfet) SAC property is small. On the other hand, the

degree inreases to the maximum possible. Thus suh S-boxes are amply suited for use in the design of

pratial blok ipher algorithms.

9 Conlusion

In this paper, we have onsidered the problem of onstruting perfet nonlinear S-boxes satisfying higher

order SAC. Previous work in this area [7℄ also provided onstrutions of S-boxes satisfying higher order

SAC. However, the nonlinearity obtained was lower. To the best of our knowledge, we provide the �rst

examples of S-boxes satisfying higher order SAC and perfet nonlinearity. Some of the onstruted S-boxes

also ahieve optimal trade-o� between the numbers of input and output variables, nonlinearity and the

order of SAC. Our onstrution uses bilinear forms and sympleti matries and yields quadrati funtions.

We show that the degree an be signi�antly improved by a small sari�e in nonlinearity and the SAC

property. This yields S-boxes whih have possible appliations in the design of blok iphers. Lastly,

we would like to remark that more researh is neessary to generalize our onstrution using sympleti

matries to more than 3 outputs and also to obtain diret onstrutions of higher degree S-boxes whih

satisfy higher order SAC and perfet nonlinearity.

Aknowledgements: We wish to thank the reviewers for reading the paper and providing several sug-

gestions.
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