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Abstra
t

We 
onsider the problem of 
onstru
ting perfe
t nonlinear multi-output Boolean fun
tions satisfying

higher order stri
t avalan
he 
riteria (SAC). Our �rst 
onstru
tion is an in�nite family of 2-ouput perfe
t

nonlinear fun
tions satisfying higher order SAC. This 
onstru
tion is a
hieved using the theory of bilinear

forms and symple
ti
 matri
es. Next we build on a known 
onne
tion between 1-fa
torization of a


omplete graph and SAC to 
onstru
t more examples of 2 and 3-output perfe
t nonlinear fun
tions.

In 
ertain 
ases, the 
onstru
ted S-boxes have optimal trade-o� between the following parameters:

numbers of input and output variables, nonlinearity and order of SAC. In 
ase the number of input

variables is odd, we modify the 
onstru
tion for perfe
t nonlinear S-boxes to obtain a 
onstru
tion for

maximally nonlinear S-boxes satisfying higher order SAC. Our 
onstru
tions present the �rst examples

of perfe
t nonlinear and maximally nonlinear multioutput S-boxes satisfying higher order SAC. Lastly,

we present a simple method for improving the degree of the 
onstru
ted fun
tions with a small trade-o�

in nonlinearity and the SAC property. This yields fun
tions whi
h have possible appli
ations in the

design of blo
k 
iphers.

Keywords : S-box, SAC, bent fun
tion, bilinear form, symple
ti
 matrix, nonlinearity, symmetri



iphers.

1 Introdu
tion

A Boolean fun
tion is a map from f0; 1g

n

to f0; 1g and by a multi-output Boolean fun
tion we mean a

map from f0; 1g

n

to f0; 1g

m

. Multi-output Boolean fun
tions are usually 
alled S-boxes and are used as

basi
 primitives for designing symmetri
 
iphers. For example, the S-boxes used in DES have n = 6 and

m = 4 and the S-box used in the design of AES has n = m = 8. We next des
ribe some properties of

S-boxes whi
h have been studied previously.

Nonlinearity is one of the basi
 properties of an S-box. The nonlinearity of a Boolean fun
tion measures

the distan
e of the fun
tion to the set of all aÆne fun
tions. The nonlinearity of an S-box is a natural

generalization of this notion. For even n, fun
tions a
hieving the maximum possible nonlinearity are 
alled

perfe
t nonlinear S-boxes [9℄. If m = 1, su
h fun
tions are 
alled bent fun
tions [11℄. For odd n and m > 1,

fun
tions a
hieving the maximum possible nonlinearity are 
alled maximally nonlinear fun
tions.

The 
on
ept of propagation 
hara
teristi
 was introdu
ed in the 
ryptology literature in [10℄. An S-box

f(x) is said to satisfy propagation 
hara
teristi
 of degree l and order k (PC(l) of order k) if the following
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holds: Let g(y) be a fun
tion obtained from f(x) by �xing at most k inputs to 
onstant values and let �

be a non zero ve
tor of weight at most l. Then g(y)� g(y � �) is a balan
ed fun
tion.

If k = 0, then the fun
tion is simply said to satisfy PC(l). PC(l) of order k fun
tions have been studied

in [3, 4℄ and 
onstru
tions of Boolean fun
tions and S-boxes satisfying PC(l) of order k are known [7, 6, 12℄.

S-boxes satisfying PC(1) of order k are said to satisfy stri
t avalan
he 
riteria of order k (SAC(k)). If k = 0,

then the S-box is said to satisfy SAC. The notion of SAC was introdu
ed in [13℄. It is known [8℄ that any

bent fun
tion or any perfe
t nonlinear S-box satis�es PC(n). It is also possible to 
onstru
t bent fun
tions

satisfying SAC(n � 2). However, for m > 1, 
onstru
tion of perfe
t nonlinear S-boxes satisfying SAC(k)

for k > 0 has been a open problem.

In this paper, we (partially) solve this problem by providing 
onstru
tions of perfe
t nonlinear S-boxes

with m = 2; 3 and satisfying SAC(k) for k � 1. Our 
ontributions are the following.

� Constru
tion of an in�nite family of 2-output perfe
t nonlinear S-boxes satisfying higher order SAC.

More pre
isely, for ea
h even n � 6, we 
onstru
t a 2-output perfe
t nonlinear S-box satisfying

SAC((n=2)� 2).

� In an earlier paper [7℄, a 1-fa
torization of the 
omplete graph on n-verti
es was used to 
onstru
t

S-boxes satisfying higher order SAC. However, the S-boxes 
onstru
ted in [7℄ did not satisfy perfe
t

nonlinearity. We make a more detailed analysis of the 
onne
tion between 1-fa
torization and higher

order SAC to 
onstru
t 2 and 3 output perfe
t nonlinear S-boxes satisfying higher order SAC.

� In 
ertain 
ases, the fun
tions that we 
onstru
t a
hieve the best possible trade-o� among the fol-

lowing parameters: number of input variables, number of output variables, nonlinearity and order

of SAC. Hen
e for su
h fun
tions, it is not possible to improve any one parameter without 
hanging

some other parameter.

� For small n, our 
onstru
tions provide S-boxes whi
h 
annot be obtained from the 
urrently known


onstru
tions [7, 6, 12℄. Some examples of su
h fun
tions are the following.

{ 8-input, 2-output perfe
t nonlinear S-box satisfying SAC(2).

{ 8-input, 3-output perfe
t nonlinear S-box satisfying SAC(1).

{ 10-input, 3-output perfe
t nonlinear S-box satisfying SAC(3).

The last example is also an example of an S-box a
hieving the best possible trade-o�.

� Our 
onstru
tions are based on bilinear forms and symple
ti
 matri
es used in the study of se
ond

order Reed-Muller 
ode. We show that if n is odd, then the 
onstru
tion for (n+1) 
an be modi�ed

to obtain maximally nonlinear S-boxes satisfying higher order SAC.

� We provide a simple te
hnique for improving the degree of an S-box with a small sa
ri�
e in nonlin-

earity and the SAC property. This results in S-boxes whi
h have possible appli
ations in the design

of symmetri
 
iphers

2 Preliminaries

Let F

2

= GF (2). We 
onsider the domain of a Boolean fun
tion to be the ve
tor spa
e (F

n

2

;�) over F

2

,

where � is used to denote the addition operator over both F

2

and the ve
tor spa
e F

n

2

. The inner produ
t

of two ve
tors u; v 2 F

n

2

will be denoted by hu; vi. The weight of an n-bit ve
tor u is the number of ones

in u and will be denoted by wt(u). The (Hamming) distan
e between two ve
tors x = (x

1

; x

2

; � � � ; x

n

)

and y = (y

1

; y

2

; � � � ; y

n

) is the number of pla
es where they di�er and is denoted by d(x; y). The bitwise


omplement of a bit string x will be denoted by x.

2



2.1 Boolean Fun
tions

An n-variable Boolean fun
tion is a map f : F

n

2

! F

2

. The weight of f , denoted by wt(f) is de�ned as

wt(f) = jfx : f(x) = 1gj. The fun
tion f is said to be balan
ed if wt(f) = 2

n�1

. The (Hamming) distan
e

between two n-variable Boolean fun
tions f and g is d(f; g) = jfx : f(x) 6= g(x)gj.

A parameter of fundamental importan
e in 
ryptography is the nonlinearity of a Boolean fun
tion.

This quantity measures the distan
e of a Boolean fun
tion from the set of all aÆne fun
tions. An n-

variable aÆne fun
tion is of the form l

u;b

(x) = hu; xi � b, where u 2 F

n

2

and b 2 F

2

. Let A

n

be the

set of all n-variable aÆne fun
tions. The nonlinearity nl(f) of an n-variable Boolean fun
tion is de�ned

as nl(f) = min

l2A

n

d(f; l). The maximum nonlinearity a
hievable by an n-variable Boolean fun
tion is

2

n�1

� 2

(n�2)=2

. Fun
tions a
hieving this value of nonlinearity are 
alled bent and 
an exist only when n is

even [11℄. When n is odd, the maximum nonlinearity a
hievable by an n-variable Boolean fun
tion is not

known. However, fun
tions a
hieving a nonlinearity of 2

n�1

� 2

(n�1)=2

are easy to 
onstru
t and are 
alled

almost optimally nonlinear [4℄.

An n-variable Boolean fun
tion f satis�es stri
t avalan
he 
riteria (SAC) if f(x)�f(x��) is balan
ed

for any � 2 F

n

2

with wt(�) = 1 [13℄. A fun
tion f satis�es SAC(k) if every subfun
tion obtained from

f(x

1

; � � � ; x

n

) by keeping at most k input bits 
onstant satis�es SAC.

An n-variable Boolean fun
tion 
an be represented as a multivariate polynomial over F

2

. The degree

of this polynomial is 
alled the degree of the fun
tion. AÆne fun
tions have degree one and fun
tions of

degree two are 
alled quadrati
.

2.2 S-Boxes

An (n;m) S-box (or ve
torial fun
tion) is a map f : f0; 1g

n

! f0; 1g

m

. Let f : f0; 1g

n

! f0; 1g

m

be an

S-box and g : f0; 1g

m

! f0; 1g be an m-variable Boolean fun
tion. The 
omposition of g and f , denoted

by g Æ f is an n-variable Boolean fun
tion de�ned by (g Æ f)(x) = g(f(x)).

Let f be an (n;m) S-box. The nonlinearity of f is de�ned to be nl(f) = minfnl(l Æ f) : l is a non-


onstant m-variable linear fun
tiong. The maximum a
hievable nonlinearity of an n-variable fun
tion is

2

n�1

� 2

(n�2)=2

and S-boxes a
hieving this value of nonlinearity are 
alled perfe
t nonlinear S-boxes. Su
h

S-boxes exist only if n is even andm � (n=2) [9℄. For odd n andm = n, the maximum possible nonlinearity

a
hievable is 2

n�1

� 2

(n�1)=2

and S-boxes a
hieving this value of nonlinearity are 
alled maximal nonlinear

S-boxes. For odd n and 1 < m < n, the maximum possible a
hievable nonlinearity is an open problem.

However, for odd n, 1 < m < n, and quadrati
 fun
tions the maximum possible a
hievable nonlinearity is

2

n�1

� 2

(n�1)=2

. We will also 
all su
h fun
tions to be maximally nonlinear.

We de�ne the degree of an (n;m) S-box f to be the minimum of the degrees of lÆf , where l ranges over

all non 
onstant m-variable linear fun
tions. This de�nition is more meaningful to 
ryptography than the

de�nition where the degree of an S-box is taken to be the maximum of the degrees of all the 
omponent

fun
tions. The later de�nition has been used in [2℄.

An (n;m) S-box f is said to be SAC(k), if l Æ f is SAC(k) for every non-
onstant m-variable linear

fun
tion l. By an (n;m; k) S-box we mean an (n;m) S-box whi
h is SAC(k). We will be interested in

(n;m; k) S-boxes with maximum possible nonlinearity. More spe
i�
ally, we will be interested in (n;m; k)

perfe
t nonlinear S-boxes if n is even and in (n;m; k) maximally nonlinear S-boxes if n is odd. Su
h S-boxes

have important appli
ations in the design of se
ure blo
k 
iphers.

2.3 Binary Quadrati
 Form

An n-variable Boolean fun
tion g of degree � 2 
an be written as (see [8, page 434℄) g(x) = xQx

T

�Lx

T

�b

where Q = (q

ij

) is an upper triangular n�n binary matrix, L = (l

1

; � � � ; l

n

) is a binary ve
tor and b is 0 or

1. The expression xQx

T

is 
alled a quadrati
 form and Lx

T

is 
alled a linear form. Let B = Q�Q

T

. Then
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B is a binary symmetri
 matrix with zero diagonal. Su
h a matrix is 
alled a symple
ti
 matrix (see [8,

page 435℄). Thus from a quadrati
 Boolean fun
tion we 
an de�ne a symple
ti
 matrix. Conversely, given

a symple
ti
 matrix B we 
an 
onstru
t a quadrati
 Boolean fun
tion by reversing the above steps. We

denote this Boolean fun
tion by f

B

.

It is known that the rank of a symple
ti
 matrix is always even [8, page 436℄. The nonlinearity of the

Boolean fun
tion g is related to the rank of B by the following result [8, page 441℄.

Proposition 1 Let g be a quadrati
 n-variable Boolean fun
tion and B be its asso
iated symple
ti
 form.

Then the nonlinearity of g is equal to 2

n�1

� 2

n�h�1

, where the rank of B is 2h.

Consequently, a quadrati
 Boolean fun
tion is bent if and only if the asso
iated symple
ti
 matrix is of

full rank.

3 Basi
 Results

We will be interested in nonlinear quadrati
 fun
tions satisfying higher order SAC. From Proposition 1,

a 
onvenient way to study the nonlinearity of quadrati
 fun
tions is through the rank of the asso
iated

symple
ti
 matrix. We now develop the basi
 relationships between the nonlinearity and SAC property of

a quadrati
 S-box and the symple
ti
 matri
es asso
iated with the 
omponent fun
tions.

Proposition 2 Let f be a quadrati
 Boolean fun
tion and B its asso
iated symple
ti
 matrix. Then f

satis�es SAC(k) if and only if for all 1 � i � n, we have wt(r

(i)

) � k + 1, where r

(i)

is the i

th

row of B.

(Sin
e B is symmetri
, a similar property holds for the 
olumns of B.)

Proof : Let f(x) = xQx

T

� Lx

T

� b. Let � be su
h that only the ith 
omponent of � is 1 and all

other 
omponents are zero. Further, let the ith 
olumn of Q be a

(i)

and the ith row of Q be b

(i)

. Then

r

(i)

= (a

(i)

)

T

� b

(i)

. We have

f(x)� f(x� �) = xQx

T

� (x� �)Q(x � �)

T

� L�

T

= xQ�

T

� �Qx

T

� L�

T

� �Q�

T

= hb

(i)

� (a

(i)

)

T

; xi � L�

T

� �Q�

T

= hr

(i)

; xi � L�

T

� �Q�

T

Note that L�

T

� �Q�

T

is a 
onstant. Now suppose wt(r

(i)

) � k + 1. Let g(x) be a fun
tion obtained by

setting any k bits of f(x) � f(x � �) to 
onstant values. Then hr

(i)

; xi is a non 
onstant linear fun
tion

and hen
e g(x) is balan
ed. Conversely, if wt(r

(i)

) � k, then we 
an set k variables to 
onstant values in

su
h a manner that g(x) is a 
onstant fun
tion. This proves the result.

Let f = (f

1

; � � � ; f

m

) be an (n;m) quadrati
 S-box. Then ea
h of the 
omponent fun
tions f

i

is an

n-variable quadrati
 Boolean fun
tion. For 1 � i � m, let B

i

be the symple
ti
 matrix asso
iated with the


omponent fun
tion f

i

. Clearly, any linear 
ombination of symple
ti
 matri
es is also a symple
ti
 matrix.

We have the following extension of Proposition 2.

Lemma 3 Let f be an (n;m) S-box with quadrati
 
omponent fun
tions f

i

and asso
iated symple
ti
 forms

B

i

for 1 � i � m. Then f satis�es SAC(k) if and only if the weight of every row in any non zero linear


ombination of the B

i

's is at least k + 1.

A similar result for nonlinearity 
an be stated by extending Proposition 1.

Lemma 4 Let f be an (n;m) S-box with quadrati
 
omponent fun
tions f

i

and asso
iated symple
ti
 forms

B

i

for 1 � i � m. The nonlinearity of f is 2

n�1

� 2

n�h�1

, where 2h is the minimum of the ranks of any

non zero linear 
ombination of the B

i

's. Consequently for even n, the S-box f is perfe
t nonlinear if and

only if every non zero linear 
ombination of the B

i

's has full rank. Similarly, for odd n, the S-box f is

maximally nonlinear if and only if every non zero linear 
ombination of the B

i

's has rank (n� 1).
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Lemmas 3 and 4 will be used in proving the 
orre
tness of our 
onstru
tions in the next se
tions.

4 Constru
tion of (n; 2;

n

2

� 2) S-box

Our 
onstru
tion will be via symple
ti
 matri
es. Given any (n; r) quadrati
 S-box, it is 
lear from the

above dis
ussion that the symple
ti
 matri
es asso
iated with the output 
omponent fun
tion de�nes the

S-box. Thus to des
ribe the 
onstru
tion, it is suÆ
ient to de�ne these symple
ti
 matri
es and use

Lemmas 3 and 4 to prove the 
orre
tness of the 
onstru
tion.

In this se
tion, we des
ribe the 
onstru
tion of (n; 2) S-boxes. Hen
e it is suÆ
ient to de�ne two

symple
ti
 matri
es. We pro
eed to do this as follows. For ea
h even n � 6, we de�ne two sequen
es of

n�n matri
es and show that these matri
es are the symple
ti
 matri
es required in the 
onstru
tion. For

the rest of this paper, we will use the following notation.

� For ea
h n � 1, de�ne v

n

to be a string of length n whi
h is the alternating sequen
e of 0's and 1's

starting with a 0. For example, v

4

= 0101 and v

5

= 01010. De�ne w

n

= 1v

n�1

.

� For ea
h even n � 2, de�ne u

n

as u

n

= 1 : : : 1

| {z }

(n=2)

0 : : : 0

| {z }

(n=2)

. For odd n � 3, de�ne x

n

= 1u

n�1

.

De�ne M

4

= [0010; 0010; 1101; 0010℄

T

and N

4

= [0101; 1011; 0101; 1110℄

T

. Further, for even n > 4 de�ne

M

n

=

2

6

4

0 v

n�2

0

v

T

n�2

M

n�2

v

T

n�2

0 v

n�2

0

3

7

5

; F

n

=

2

6

4

0 v

n�2

0

v

T

n�2

M

n�2

u

T

n�2

0 u

n�2

0

3

7

5

;

N

n

=

2

6

4

0 v

n�2

1

v

T

n�2

N

n�2

v

T

n�2

1 v

n�2

0

3

7

5

; G

n

=

2

6

4

0 v

n�2

1

v

T

n�2

N

n�2

u

T

n�2

1 u

n�2

0

3

7

5

:

(1)

The following result is easy to prove by indu
tion on even n � 6.

Lemma 5 F

n

, G

n

and F

n

�G

n

are symple
ti
 matri
es, where F

n

and G

n

are de�ned by equation 1.

The matri
es F

n

and G

n

are our required symple
ti
 matri
es whi
h de�ne the two output 
omponent

fun
tions of the required (n; 2) S-box. In parti
ular, we have the following result.

Theorem 6 Let n � 6 be an even integer. The S-box f : F

n

2

! F

2

2

de�ned by f(x) = (f

F

n

(x); f

G

n

(x)) is

a perfe
t nonlinear S-box satisfying SAC(

n

2

� 2).

We now turn to the proof of 
orre
tness of Theorem 6. The proof is in two parts { in the �rst part we

prove the statement about SAC and in the se
ond part we prove the statement about nonlinearity.

Lemma 7 The S-box f de�ned in Theorem 6 satisfy SAC(

n

2

� 2).

Proof : Let r

j

denote the j-th row of M

n

. We make the following 
laim whi
h 
an be routinely proved

by indu
tion on even n � 4.

wt(r

j

) �

n

2

� 1 if 1 � j �

n

2

and j is odd;

wt(r

j

) �

n

2

� 2 if 1 � j �

n

2

and j is even;

wt(r

j

) �

n

2

if

n

2

+ 1 � j � n and j is odd;

wt(r

j

) �

n

2

� 1 if

n

2

+ 1 � j � n and j is even.

9

>

>

>

=

>

>

>

;

(2)

We will use the notation r

0

j

for j-th row whi
h is obtained by dropping �rst and last 
olumn of M

n

. Let

s

j

denote the jth row of F

n

. We now have several 
ases.

5



Case 1 : 1 � j �

n

2

and j odd: There are two sub
ases.

Sub
ase 1(a) : j = 1. In this 
ase wt(s

j

) = wt(v

n�2

) =

n�2

2

=

n

2

� 1.

Sub
ase 1(b) : j > 1. In this 
ase wt(s

j

) = 1 + 1 + wt(r

0

j

) � 2 +

n�2

2

� 2 =

n

2

� 1:

Case 2 : 1 � j �

n

2

and j even: In this 
ase wt(s

j

) = 1 + wt(r

0

j

) � 1 +

n�2

2

� 1 =

n

2

� 1:

Case 3 :

n

2

+ 1 � j � n and j odd: In this 
ase wt(s

j

) = 1 + wt(r

0

j

) � 1 +

n�2

2

� 1 =

n

2

� 1.

Case 4 :

n

2

+ 1 � j � n and j even: There are two sub
ases.

Sub
ase 4(a) : j < n. In this 
ase wt(s

j

) = wt(r

0

j

) �

n�2

2

=

n

2

� 1.

Sub
ase 4(b) : j = n. In this 
ase wt(s

j

) = wt(u

n�2

) =

n�2

2

=

n

2

� 1.

This proves that the weight of ea
h row of F

n

is at least (n=2)�1 and hen
e the 
orresponding Boolean

fun
tion satis�es SAC((n=2) � 2). By a similar argument the Boolean fun
tion asso
iated with G

n

also

satis�es SAC((n=2) � 2). Also note

F

n

�G

n

=

2

6

4

0 J

n�2

1

J

T

n�2

M

n�2

�N

n�2

J

T

n�2

1 J

n�2

0

3

7

5

;

where J

n

is all 1 ve
tor. From this it is simple to verify by indu
tion that F

n

�G

n

satis�es SAC(

n

2

� 2):

Now using Lemma 3 we obtain the required result.

We next turn to the nonlinearity of the S-box de�ned in Theorem 6.

Lemma 8 For even n � 6, the rank of F

n

is n.

Proof : First we prove that the rank of M

n

is n� 2. It is easy to 
he
k that the rank of M

4

is 2. Assume

that the rank of M

n�2

is n� 4. It is 
lear that 1-st 
olumn and n-th 
olumn of M

n

are identi
al. Likewise

1-st 
olumn and n� 2-th 
olumn of M

n�2

are identi
al. Consider the matrix

M

0

n

=

"

0 v

n�2

v

T

n�2

M

n�2

#

:

From the de�nition of v

n

, we have that the �rst bit of v

n�2

is 0 and (n� 2)-th bit is 1. So v

n�2

is linearly

independent of rows of M

n�2

. So rank of M

0

n

is at least n� 4 + 1 = n� 3: But M

0

n

is symple
ti
 matrix

and hen
e its rank must be even (see [8, page 436℄). So the rank of M

0

n

(and hen
e M

n

) is n� 2.

Now we turn to the rank of F

n

. As M

0

n

has rank n� 2, the rank of F

n

is at least n� 2: It is simple to

verify by indu
tion that

n

2

-th 
olumn and (

n

2

+2)-th 
olumn of M

n

are identi
al. From de�nition, the

n

2

-th

bit of 0u

n�2

0 is 1 and the (

n

2

+ 2)-th bit is 0. Hen
e the last row 0u

n�2

0 of F

n

is linearly independent of

the previous (n� 1) rows. Thus the rank of F

n

is at least n� 2+1 = n� 1. But F

n

is a binary symple
ti


matrix and hen
e its rank must be even. Hen
e the rank of F

n

is n.

Lemma 9 For even n � 6, the rank of F

n

�G

n

is n.

Proof : Note M

4

�N

4

= [0111; 1001; 1000; 1100℄

T

and hen
e the rank of M

4

�N

4

is 4. Assume that the

rank of M

n�2

�N

n�2

is n� 2. Note

F

n

�G

n

=M

n

�N

n

=

2

6

4

0 J

n�2

1

J

T

n�2

M

n�2

�N

n�2

J

T

n�2

1 J

n�2

0

3

7

5

;

where J

n

is the all 1 ve
tor. The row 1J

n�2

0 is linearly independent of rows of matrix J

T

n�2

(M

n�2

�

N

n�2

)J

T

n�2

. So rank of

"

J

T

n�2

M

n�2

�N

n�2

J

T

n�2

1 J

n�2

0

#

6



is at least n � 2 + 1 = n � 1 and hen
e the rank of F

n

� G

n

is at least n � 1. Again sin
e F

n

� G

n

is a

symple
ti
 matrix its rank must be even. Hen
e its rank is n.

We de�ne T

5

= [01010; 10101; 01011; 10101; 01110℄

T

,

T

n

=

2

6

4

0 v

n�2

0

v

T

n�2

T

n�2

w

T

n�2

0 w

n�2

0

3

7

5

for odd n > 5 and H

n

=

"

T

n�1

x

T

n�1

x

n�1

0

#

for even n � 6. (3)

First we prove the following result.

Lemma 10 G

n

= H

n

for all even n � 6.

Proof : We �rst prove the following statement by indu
tion on n.

T

n

=

"

0 v

n�1

v

T

n�1

N

n�1

#

for odd n � 5 and N

n

=

"

T

n�1

w

T

n�1

w

n�1

0

#

for even n � 6. (4)

It is easy to verify that T

5

=

"

0 v

4

v

T

4

N

4

#

and N

6

=

"

T

5

w

T

5

w

5

0

#

: Assume that (4) holds for

(n � 1). By de�nition and using v

n�1

= v

n�2

0 we have that for odd n � 7,

"

0 v

n�1

v

T

n�1

N

n�1

#

=

2

6

4

0 v

n�2

0

v

T

n�2

T

n�2

w

T

n�2

0 w

n�2

0

3

7

5

= T

n

: Similarly, by de�nition and using 1v

n�2

= w

n�1

0 we have that for even

n � 8,

"

T

n�1

w

T

n�1

w

T

n�1

0

#

=

2

6

4

0 v

n�2

1

v

T

n�2

N

n�2

v

T

n�2

1 v

n�2

0

3

7

5

= N

n

: This 
ompletes the proof of (4). Now to prove

G

n

= H

n

it is suÆ
ient to show T

n�1

=

"

0 v

n�2

v

T

n�2

N

n�2

#

and x

n�1

0 = 1u

n�2

0: The �rst statement follows

from (4) and the se
ond statement follows from the de�nition of x

n

.

Lemma 11 For odd n � 5, the following statements hold for T

n

.

(1) The �rst 
olumn of T

n�2

is v

T

n�2

and the se
ond 
olumn is v

T

n�2

; (2) The b

n

2


-th 
olumn and (b

n

2


+2)-th


olumn of T

n

are identi
al; (3) The rank of T

n

is (n� 1).

Proof : All three statements are proved using indu
tion on odd n � 5. We only des
ribe the proof for the

third statement. For n = 5 it is easy to verify that the rank of T

5

is 4. Assume that the rank of T

n�2

is

n�3. Consider the matrix A

n

=

"

v

T

n�2

T

n�2

0 w

n�2

#

: By the �rst statement of the lemma, the �rst and third


olumns of the matrix [v

T

n�2

T

n�2

℄ are identi
al. At the same time the �rst and third bits of the ve
tor

0w

n�2

are 0 and 1 respe
tively. So the last row of A

n

is linearly independent of other rows. Hen
e the

rank of A

n

is n� 3 + 1 = n� 2. Consequently, T

n

has rank at least n� 2. Again sin
e T

n

is a symple
ti


matrix, its rank must be even and hen
e must be n� 1.

Now we are in a position to prove that G

n

is of full rank.

Lemma 12 The rank of G

n

is n.

Proof : Consider G

n

= H

n

=

"

T

n�1

x

T

n�1

x

n�1

0

#

: Sin
e the rank of T

n�1

is (n�2) the rank of H

n

is at least

n� 2. Again from Lemma 11, the b

n�1

2


-th 
olumn and the (b

n�1

2


+ 2)-th 
olumn of T

n�1

are identi
al.
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But the b

n�1

2


-th and the (b

n�1

2


 + 2)-th bits of x

n�1

are 0 and 1 respe
tively. Hen
e x

n�1

is linearly

independent of T

n�1

. Thus the rank of G

n

is at least n � 2 + 1 = n � 1. Again sin
e G

n

is a symple
ti


matrix its rank must be even and hen
e its rank is n.

Thus we have the following result whi
h 
ompletes the proof of Theorem 6.

Lemma 13 The S-box f de�ned in Theorem 6 is a perfe
t nonlinear S-box.

Proof : Using Lemmas 8, 9 and 12, we know that F

n

, G

n

and F

n

�G

n

have full rank. Hen
e the Boolean

fun
tions f

F

n

, f

G

n

and f

F

n

�f

G

n

= f

F

n

�G

n

are bent. Thus the fun
tion f de�ned in Theorem 6 is a perfe
t

nonlinear fun
tion.

5 Relation With One Fa
torization of a Complete Graph

A one-fa
tor of a graph G is a one-regular spanning subgraph of G. A one-fa
torization of G is a partition

of the edges of G into one-fa
tors.

Let K

n

be the 
omplete graph with n verti
es. For even n � 2, it is well known that K

n


an be

de
omposed into (n � 1) edge disjoint, one-fa
tors [1℄. One su
h de
omposition of K

n

is des
ribed as

follows. For even n and 1 � i � n� 1, de�ne

F

n

i

= f(n; i)g [ f((n� 2� j + i) mod (n� 1) + 1; (i + j � 1) mod (n� 1) + 1) : 1 � j �

n

2

� 1g (5)

The 
olle
tion T

n

= fF

n

1

; : : : ;F

n

n�1

g is a one fa
torization of K

n

where the verti
es are labeled by the

integers 1; : : : ; n. When n is 
lear from the 
ontext we will write F

i

instead of F

n

i

. The elements of T

8

(i.e.

a one fa
torization of K

8

) are given below.

F

1

= f(8; 1); (7; 2); (6; 3); (5; 4)g F

2

= f(8; 2); (1; 3); (7; 4); (6; 5)g

F

3

= f(8; 3); (2; 4); (1; 5); (7; 6)g F

4

= f(8; 4); (3; 5); (2; 6); (1; 7)g

F

5

= f(8; 5); (4; 6); (3; 7); (2; 1)g F

6

= f(8; 6); (5; 7); (4; 1); (3; 2)g

F

7

= f(8; 7); (6; 1); (5; 2); (4; 3)g

In [7℄, one fa
torization of K

n

was used as a tool for 
onstru
tion of S-boxes satisfying SAC. We point

out the 
onne
tion of the 
onstru
tion of Se
tion 4 to the one fa
torization of K

n

. This 
onne
tion will

be developed in later se
tions to obtain other 
onstru
tions of perfe
t nonlinear S-boxes satisfying higher

order SAC.

Suppose S � T

n

. We use S to de�ne a symple
ti
 matrix B

S

in the following manner: For 1 � k; l � n,

the entry B

S

[k; l℄ = 1 if and only if either (k; l) or (l; k) is in F

n

i

for some F

n

i

2 S.

Theorem 14 Let n � 4 be an even integer, S

1

= fF

2

; : : : ;F

n

2

g and S

2

= T n S

1

. Let B

S

1

and B

S

2

be the

symple
ti
 matri
es asso
iated with S

1

and S

2

respe
tively. Then

1. F

n

is obtained from B

S

1

by 
hanging the zeros in positions (

n

2

+ 1;

n

2

) and (

n

2

;

n

2

+ 1) to ones.

2. G

n

is obtained from B

S

2

by 
hanging the zeros in positions (

n

2

+ 1;

n

2

+ 2) and (

n

2

+ 2;

n

2

+ 1) to ones.

Theorem 14 shows the relationship between one fa
torization and two output S-boxes of Se
tion 4. This


an be generalized to more than two output S-boxes. In fa
t, the earlier work of [7℄ provides su
h a

generalization. However, there is one major diÆ
ulty with the generalization. It be
omes very diÆ
ult to

ensure that the resulting S-box is a perfe
t nonlinear S-box. Thus while the generalization of [7℄ ensures

the SAC property, it results in fun
tions with quite weak nonlinearity. On the other hand, our motivation

is to obtain perfe
t nonlinear S-boxes satisfying higher order SAC. The rest of the paper is devoted to

identifying other perfe
t nonlinear S-boxes satisfying higher order SAC.
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5.1 Improvements for Two Output S-Boxes

We know from [7℄ that for an (n; 2; k)-SAC fun
tion, k � b

2(n�1)

3


 � 1. Thus the 
onstru
tion in Se
tion 4

is suboptimal with respe
t to the SAC property. (However, it is optimal with respe
t to nonlinearity).

Here we provide some examples of two output S-boxes with higher order SAC. All these examples

were obtained using experimental method. The 
onstru
tions are based on the relationship between the

symple
ti
 matri
es and one fa
torization des
ribed above. These examples are summarized in Table 1.

The interpretation of the entries in Table 1 is as follows. Ea
h row des
ribes a 
onstru
tion for the parti
ular

value of n. The se
ond 
olumn des
ribes two subsets S

1

and S

2

of T

n

. Let B

S

1

and B

S

2

be the symple
ti


matri
es asso
iated with these two sets. We set B

1

= B

S

1

and B

2

is B

S

2

with the following modi�
ation:

If (k; l) is in the third 
olumn, then B

S

2

[k; l℄ and B

S

2

[l; k℄ are 
hanged from 0 to 1. The desired S-box

f : F

n

2

! F

2

2

is given by f(x) = (f

B

1

(x); f

B

2

(x)). Ea
h of these S-boxes is a perfe
t nonlinear S-box. The

fourth 
olumn provides the order of SAC that is a
hieved by the 
orresponding S-box. The �fth 
olumn

provides the maximum order of SAC that 
an be a
hieved by an (n; 2) S-box. In the situation where this

maximum is equal to the a
hieved order of SAC, the 
onstru
tion provides optimal trade-o� among the

following parameters : nonlinearity, order of SAC, number of input variables, number of output variables.

None of these parameters 
an be improved without 
hanging some other parameter.

Table 1: Improved and Optimal Constru
tions of Two Output S-boxes.

n Des
ription Modi�
ation k max k

8 S

1

= fF

2

;F

3

;F

4

;F

5

;F

7

g { 3 3

S

2

= fF

1

;F

4

;F

5

;F

6

g (5,6)

10 S

1

= fF

1

;F

2

;F

4

;F

7

;F

8

g { 4 5

S

2

= fF

3

;F

5

;F

6

;F

7

;F

8

g (6,9)

12 S

1

= fF

1

;F

3

;F

5

;F

6

;F

7

;F

8

;F

11

g { 6 6

S

2

= fF

1

;F

2

;F

4

;F

7

;F

8

;F

9

;F

10

g (2,7)

14 S

1

= fF

1

;F

2

;F

3

;F

4

;F

9

;F

10

;F

11

;F

12

;F

13

g { 7 7

S

2

= fF

5

;F

6

;F

7

;F

8

;F

9

;F

10

;F

11

;F

12

g (8,9)

16 S

1

= fF

2

;F

3

;F

4

;F

5

;F

6

;F

7

;F

8

;F

9

;F

15

g { 8 9

S

2

= fF

1

;F

7

;F

8

;F

9

;F

10

;F

11

;F

12

;F

13

;F

14

g (3,9)

6 Constru
tion of (n; 3; k) S-boxes

We des
ribe 
onstru
tions of (n; 3; k) perfe
t nonlinear S-boxes. These 
onstru
tions were obtained by

experimental trial and error methods. Some of the 
onstru
tions seem to have a general pattern, though

it has not been possible to prove a general result. There are several 
ases in the 
onstru
tion though the

des
ription of the 
onstru
tions in all the 
ases is similar. We �rst identify three subsets S

1

;S

2

and S

3

of T

n

.

These three subsets de�ne three symple
ti
 matri
es B

S

1

; B

S

2

and B

S

3

. These matri
es are then modi�ed

by 
hanging a number of zeros to ones to obtain three other symple
ti
 matri
es B

1

; B

2

and B

3

. The

positions where the 
hanges are to be made are given by the third 
olumn. If (k; l) is in the third 
olumn,

then B

S

j

[k; l℄ and B

S

j

[k; l℄ (1 � j � 3) are 
hanged from 0 to 1. The required (n; 3) S-box f : F

n

2

! F

3

2

is obtained from these three matri
es in the following manner: f(x) = (f

B

1

(x); f

B

2

(x); f

B

3

(x)). There are

three 
ases.

1. Table 2 des
ribes several 
ases of 
onstru
tions for n � 0 mod 8. For n > 8, there is a general heuristi


whi
h provides the required 
onstru
tion. For n = 8, a spe
ial 
onstru
tion is required.
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2. Table 3 des
ribes 
onstru
tions for n � 4 mod 8. These 
onstru
tions have a general pattern.

3. Table 4 des
ribes several 
onstru
tions for n � 2 mod 4. There does not appear to be any general

pattern for these 
onstru
tions.

The 
onstru
tions for n = 10; 22 provide optimal trade-o� between the following parameters: numbers

of input and output variables, nonlinearity and the order of SAC. Further, for n = 12; 16; 20 and 24 the

a
hieved value of k is only one less than the upper bound on k.

Table 2: Constru
tions for n � 0 mod 8.

n Des
ription Modi�
ation k max k

8 S

1

= fF

2

;F

3

;F

7

g (4,5) 1 2

S

2

= fF

3

;F

4

;F

5

g {

S

3

= fF

1

;F

3

;F

6

g (4,7)

16,24,32 S

1

= fF

2

;F

3

; : : : ;F

n

2

�1

;F

n�1

g (

n

2

;

n

2

+ 1)

n

2

� 2 min(

S

2

= fF

n

4

+1

; : : : ;F
3n

4

�1

g (

n

2

;

n

4

+ 1); (

n

2

;

3n

4

+ 1) b

4(n�1)
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 � 1,

S

3

= fF

1

;F

n

4

+1

; : : : ;F

n

2

�1

;F
3n

4

; : : : ;F

n�2

g (

n

2

;

3n

4

) 2b

2n

7


 � 1)

Table 3: Constru
tions for n � 4 mod 8.

n Des
ription Modi�
ation k max k

12,20,28 S

1

= fF

2

;F

3

; : : : ;F

n

2

�2

;F

n�1

g (

n

2

;

n

2

+ 1)

n

2

� 2 min(

S

2

= fF

n

4

+1

; : : : ;F
3n

4

�1

g (

n

2

;

n

4

+ 2) b

4(n�1)
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 � 1,

S

3

= fF

1

;F

n

4

+1

; : : : ;F

n

2

�1

;F
3n

4

; : : : ;F

n�2

g (

n

2

;

3n

4

+ 1) 2b

2n

7


 � 1)

7 Maximally Nonlinear Fun
tions

The 
onstru
tions des
ribed so far hold when the number of input bits n is even. In 
ase n is odd, there do

not exist any perfe
t nonlinear S-boxes. The best nonlinearity a
hieved by an (n;m) quadrati
 S-box with

m > 1 is 2

n�1

� 2

(n�1)=2

and S-boxes a
hieving this value of nonlinearity are 
alled maximally nonlinear.

In this se
tion, we des
ribe a simple modi�
ation of the previously des
ribed 
onstru
tions whi
h provide

maximally nonlinear S-boxes.

Theorem 15 Let f be a (2r;m; k) perfe
t nonlinear quadrati
 S-box where the symple
ti
 matri
es asso
i-

ated with the 
omponent fun
tions are B

1

; : : : ; B

m

. For 1 � i � m, let B

0

i

be obtained from B

i

by deleting

the �rst row and 
olumn. Then the S-box f

0

: F

2r�1

2

! F

m

2

de�ned by f

0

(x) = (f

B

0

1

(x); : : : ; f

B

0

m

(x)) is a

(2r � 1;m; k � 1) maximally nonlinear quadrati
 S-box.

Proof : There are two things to be proved { the nonlinearity and the order of SAC. Sin
e f is a perfe
t

nonlinear S-box, ea
h nonzero linear 
ombination of the B

i

's has full rank (see Lemma 4). Dropping one

row and one 
olumn de
reases the rank by two for symple
ti
 matri
es. Hen
e the rank of any nonzero

linear 
ombination of the B

0

i

's is 2r � 2 and the nonlinearity of the 
orresponding Boolean fun
tion is

2

2r�2

� 2

r�1

. Now using Lemma 4 we have that f

0

is a maximally nonlinear S-box.
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Table 4: Constru
tions for n � 2 mod 4.

n Des
ription Modi�
ation k max k

10 S

1

= fF

3

;F

7

;F

8

;F

9

g (6,9) 3 3

S

2

= fF

1

;F

2

;F

4

;F

7

;F

8

g {

S

3

= fF

5

;F

6

;F

7

;F

8

g (5,6)

14 S

1

= fF

1

;F

3

;F

4

;F

11

;F

12

;F

13

g (1,6) 4 6

S

2

= fF

1

;F

2

;F

6

;F

9

;F

10

;F

11

;F

12

g {

S

3

= fF

1

;F

5

;F

7

;F

8

;F

11

;F

12

g (1,9)

18 S

1

= fF

3

;F

9

;F

10

;F

11

;F

12

;F

13

;F

14

;F

17

g (5,10) 7 8

S

2

= fF

1

;F

2

;F

4

;F

11

;F

12

;F

13

;F

14

;F

15

;F

16

g {

S

3

= fF

5

;F

6

;F

7

;F

8

;F

11

;F

12

;F

13

;F

14

g (9,11)

22 S

1

= fF

1

;F

3

;F

4

;F

5

;F

6

;F

13

;F

14

;F

15

;F

16

;F

17

;F

21

g (1,5) 9 9

S

2

= fF

1

;F

2

;F

8

;F

13

;F

14

;F

15

;F

16

;F

17

;F

18

;F

19

;F

20

g {

S

3

= fF

7

;F

9

;F

10

;F

11

;F

12

;F

13

;F

14

;F

15

;F

16

;F

17

g (1,16)

Further, sin
e f satis�es SAC(k), the number of ones in any nonzero linear 
ombination of the B

i

's is

at least k+1. Dropping one row and one 
olumn de
reases the number of ones in any row (or 
olumn) by

at most one. Again using Lemma 3, it follows that the S-box f

0

satis�es SAC(k � 1).

8 Improving Algebrai
 degree

The 
onstru
tions des
ribed in the previous se
tions provide quadrati
 fun
tions. In this se
tion, we

des
ribe a method of improving the degree of the 
onstru
ted fun
tions with a small trade-o� in the

nonlinearity and the SAC property. We �rst need to relax the notion of SAC. (See [5℄ for the notion of

almost PC(l) of order k fun
tions.)

De�nition 16 An n-variable Boolean fun
tion f is said to be (�; k)-SAC if the following property holds:

Let g be an (n� i)-variable Boolean fun
tion obtained from f by �xing i � k input variables to 
onstants.

Then

�

�

�

wt(g(x)�g(x��))

2

n�i

�

1

2

�

�

�

� � for any � of weight 1. An (n;m) S-box is said to be (n;m; �; k)-SAC if every

nonzero linear 
ombination of the 
omponent fun
tions is an (�; k)-SAC fun
tion.

The next result shows how to 
onvert an (n;m; k) S-box into an (n;m; �; k) S-box for a small � and with a

small 
hange in nonlinearity.

Theorem 17 Let f = (f

1

; : : : ; f

m

) be an (n;m; k) S-box where the degree of any f

i

is less than (n � 1).

Then it is possible to 
onstru
t an (n;m; �; k) S-box g with algebrai
 degree n� 1, � =

m+1

2

n�k�1

and nl(g) �

nl(f)� (m+ 1) if m is odd; nl(g) � nl(f)�m if m is even.

Proof : We 
onstru
t an (n;m) S-box g with 
omponent fun
tions g

1

; g

2

; : : : ; g

m

in the following manner.

For 1 � i � m, de�ne g

i

(x

1

; � � � ; x

n

) = f

i

(x

1

; � � � ; x

n

)�x

1

: : : x

i�1

x

i+1

: : : x

n

: By 
onstru
tion, the algebrai


degree of any g

i

is n � 1. Further, the degree (n � 1) terms in the g

i

's are distin
t. Hen
e any nonzero

linear 
ombination of the g

i

's also has degree (n� 1). Thus the degree of g is (n� 1).

We now prove the nonlinearity. The term x

1

: : : x

i�1

x

i+1

: : : x

n

whi
h is XORed to f

i

to obtain g

i


hanges exa
tly two output values of f

i

. Thus nl(g

i

) = nl(f

i

)�2. Further, the inputs for whi
h the outputs

are 
hanged are the all one ve
tor and the ve
tor with a zero only in the ith position. Thus if h (resp. h

0

)

is a linear 
ombination of i of the g

i

's (resp. f

i

's), then h and h

0

di�er in at most (i + 1) positions. Sin
e

11



1 � i � m, we have nl(g) � nl(f) � (m + 1) whem m is odd. Sin
e the nonlinearity of a fun
tion of n

variables and degree < n is always even we have nl(g) � nl(f)�m when m is even.

Now suppose that h

1

(x) (resp. h

0

1

(x)) is obtained from h(x) (resp. h

0

(x)) by �xing at most j (1 � j � k)

input bits to 
onstant values. Sin
e h(x) and h

0

(x) di�er in exa
tly (i+ 1) positions, it follows that h

1

(x)

and h

0

1

(x) di�er in at most (i + 1) positions. Further, sin
e h

1

(x) and h

0

1

(x) di�er in at most (i + 1)

positions, so does h

1

(x � �) and h

1

0

(x � �). Let �(x) = h(x) � h(x � �) and �

0

= h

0

(x) � h

0

(x � �).

Then it follows that �(x) and �

0

(x) di�er in at most 2(i + 1) positions. Sin
e f satis�es SAC(k), it

follows that �

0

(x) is balan
ed and has weight 2

n�j�1

. Also sin
e 1 � i � m and 1 � j � k, we obtain

�

�

�

wt(�(x))

2

n�j

�

1

2

�

�

�

=

�

�

�

�

wt(�(x))

2

n�j

�

wt(�

0

(x))

2

n�j

�

�

�

�

=

�

�

�

�

wt(�(x)j�wt(�

0

(x))

2

n�j

�

�

�

�

�

2(i+1)

2

n�j

�

m+1

2

n�k�1

: This 
ompletes the proof.

Table 5 provides some examples to illustrate Theorem 17. The interpretation of Table 5 is as follows.

Table 5: Values of k, � and nonlinearity for 2 and 3 output S-boxes for di�erent values of n (see Theorem 17).

n degree m = 2 m = 3

8 7 (3, 0.1875, 118) (1, 0.0625, 116)

9 8 (3, 0.0938, 238) (2, 0.0625, 236)

10 9 (4, 0.0938, 494) (3, 0.0625, 492)

11 10 (5, 0.0938, 990) (3, 0.0313, 988)

12 11 (6, 0.0938, 2014) (4, 0.0313, 2012)

Ea
h entry is of the form (k; �; x), where k is the order of SAC, � is de�ned in Theorem 17 and x is the

nonlinearity of the modi�ed fun
tion. (When m is even, the value of nonlinearity is one more than the

lower bound given in Theorem 17.) Note that in ea
h 
ase the algebrai
 degree is n � 1. The drop in

nonlinearity is very small; for example for n = 8, the lower bound from Theorem 17 is 117 while the

maximum possible nonlinearity is 120. Similarly, in ea
h of the above 
ases, the value of � is small. Hen
e

the deviation from perfe
t nonlinearity and the (perfe
t) SAC property is small. On the other hand, the

degree in
reases to the maximum possible. Thus su
h S-boxes are amply suited for use in the design of

pra
ti
al blo
k 
ipher algorithms.

9 Con
lusion

In this paper, we have 
onsidered the problem of 
onstru
ting perfe
t nonlinear S-boxes satisfying higher

order SAC. Previous work in this area [7℄ also provided 
onstru
tions of S-boxes satisfying higher order

SAC. However, the nonlinearity obtained was lower. To the best of our knowledge, we provide the �rst

examples of S-boxes satisfying higher order SAC and perfe
t nonlinearity. Some of the 
onstru
ted S-boxes

also a
hieve optimal trade-o� between the numbers of input and output variables, nonlinearity and the

order of SAC. Our 
onstru
tion uses bilinear forms and symple
ti
 matri
es and yields quadrati
 fun
tions.

We show that the degree 
an be signi�
antly improved by a small sa
ri�
e in nonlinearity and the SAC

property. This yields S-boxes whi
h have possible appli
ations in the design of blo
k 
iphers. Lastly,

we would like to remark that more resear
h is ne
essary to generalize our 
onstru
tion using symple
ti


matri
es to more than 3 outputs and also to obtain dire
t 
onstru
tions of higher degree S-boxes whi
h

satisfy higher order SAC and perfe
t nonlinearity.

A
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