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Abstract: In this paper, we generalize the composition construction of Khoo et al. for highly
nonlinear Boolean functions ([1]). We utilize general quadratic forms instead of the trace map in
the construction. The construction composes an N -variable Boolean function and an m-variable

quadratic form over an to get an nm-variable Boolean function with beautiful spectrum

property and a doubled algebraic degree. Especialy, the method is suitable to construct functions

with 3-valued spectra (bent-like functions) or ones with better spectra (near-bent functions). Our
proof technique is based on classification of quadratic forms over finite fields and enumeration of

solutions of quadratic equations. We also prove the p -ary analogy of these results for odd prime
P.
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1 Introduction

Boolean functions used in cryptosystems are required to have good cryptographic properties,
such as balancedness, high nonlinearity and high algebraic degree, to ensure the systems are
resistant against linear cryptanalysis ([2]). Besides, it is a desirable property that a Boolean
function has 3-valued spectra. This property provides a protection against the soft output joint
attack ([3]).

A framework unifies such cryptographic properties is to introduce the concept of near-bent
function. Except balancedness, such a function behaves like a bent function, that is, it has 3-valued
spectra and high nonlinearity close to the upper bound on nonlinearity, and may have high
algebraic degree. It isimportant to study near-bent functions since bent functions are not balanced
and can't be directly used in a cryptosystem.

There is an intrinsic relation between near-bent functions and bent functions. Bent functions
can be constructed from near-bent functions ([4]), and vice versa. Another important aspect to
study bent and near-bent functions is that the theory is closely related to combinatorics ([5-7]) and
communication ([8-15]) in some useful fields such as difference set, partial spread, and sequences
with low cross correlation.



Recently, Khoo et al. present a new construction for highly nonlinear Boolean functions from
the theory of geometric sequence ([1, 15]). Their functions are cryptographically good and do not
have a weakness shared by Boolean functions constructed by concatenating linear functions ([16]).
They use a composition construction idea originated from GMW-sequences in communication
([17]). Essentidly, they utilize in their construction a special quadratic form, which can be derived
from atrace map between finite fields.

In this paper, we generalize their idea to utilize general quadratic forms. Our generalization
can obtain a larger class of functions than that in Khoo et al.’s method. On the other hand, our
method not only can construct usual binary near-bent functions, but also p -ary functions
([18-22,10]) for any prime P . In addition, our method constructs a larger class of functions than
near-bent functions, called bent-like functions. On the other hand, our proof method is completely
different with that of Khoo et al. It is direct and is based on classification of quadratic forms over
finite fields and enumeration of solutions of quadratic equations. The proof of Khoo et al. is
especially indirect and makes reference to one result of Klapper etc. ([17]), which again makes
reference to another one ([23]) whose proof is complicated and very long.

This paper is arranged as follows. We give some definitions and preliminariesin Section 2. In
Sections 3-4 we construct binary bent-like and near-bent functions, and discuss the basic
construction in Section 3 and extend it to a cascaded construction in Section 4. In section 5, we

first show a quadratic form over Fp must be bent-like, and then give the similar construction of

p -ary bent-like and near-bent functionsfor odd p .

2 Preliminaries

Let p be aprime, q=p", and F, and F,» be the finite fields with ¢ and gq"
elements, respectively. An N -variable function (over F )isamap f from Fpn to F,.ltis
usually called aBoolean functionif p =2 and ageneraized Boolean functionif p> 2.

Taking a basis (o, @,,:-,a,) of F, over F ,an n-tuple (a,a,,---,a,) over F,
uniquely represents an element of F,, a; +a,a, +---+a,¢, . Under this representation and
its induced representation, we always assume in this paper that Fq is the domain of any
n-variable function f , and qu isthedomainsof nNM -variable functions.

Let (B,,05,,---,f,) be the dua basis of (¢;,2,, - ,), ie, Tr(e;f)=1 and
Tr(e; ;) =0 for i# ], where Tr is the trace map from F, to F,. Then the usua dot

product of two Nn-tuples (a,,a,,--,a,) and (b,b,,---,b,) over F  is Tr(ap), where



a=aa, +a,0,+-+aa, and f=bp +b,S,+---+b,p,. As a consequence, the dot
product of two nm -tuples (a,,,8,,,,@,,) and (b,,b,,--,b,,) over F, s
Tr(Wy, +---+UpVy), where Uy =@, 0 +8, ,0, +++8 ,a, and V, =B 8 +--+Db . B,

In this paper, we will study the nm-variable functions over Fp with good Walsh spectra, and

we aways make such a convention that the input variables of the functions are written as

(X, %, X,)  where each X eF, coresponds to an n -dimensiona vector
(X1, % 00703 %,) over Fooby X =X, +X,a,+ - +X%,a, under the representation
derived from the basis (al,az,---,an) , Whilst the input variables of the Walsh spectra of the
functions are written as (4, 4,,---,4,) where each A4 €F corresponds to an
n-dimensional vector (41,4 ,,--,4,) over F by A =4 B ++4,B, under the
representation derived from the basis (S, £,,--+, 5,) -

An n-variable function f over Fp has a unique polynomia expression of the form

-1
f(x):Zans ( xa,eF, ) and a unique agebraic expresson of the form
s=0

p-1  p-1 ) )
f(X, - X,) =Z"‘Zci1,...,inx1'1 X (X, %,,C ;. €F,). The algebraic degree of
=0 i,=0

f is defined as deg(f)=max{i,+---+i,:c , #0 , and it is equa to

Ty
max{Wh  (s):a, = 0 ([24]), where Wh ,(s) is the sum of the coefficients of the p-adic
expression of S.

Let 0 =€%'? pea primitive complex p -th root of unity. The Walsh transform of an
n-variable function f:F, — F_ is a complex function W, defined over F, and defined

by W, (2)= D> 0™ ™ for 1eF,, or equivaently, defined over F," and defined by

Xe Fq

W (A) = D 0" for 2eF,", where X is avector of F,". The values of W, are

n
Xer

called the spectraof f .



Definition 1: f:F, — F_ is caled a bent-like function if W, (4)| is 0 or p" for any

"2 for any

A eF,, where 2u isafixed integer. f iscalled abent functionif [W; (1) p
A € F,. A bent-like function is called a near-bent function if u=(n+1)/2 when p>2,and
u=(n+1)/2 forodd N and u=(N+2)/2 foreven N when p=2.
. . 2 2n .
Remark 1: (i) Parseval’s equation Z’Wf (/1)‘ = p~" telsusthatif |W, (1)]| takesonly one
AeFy
nonzero value 6 for 1 eF,, then 0* is arational number. However, 8% =|W, (1) | is an

algebraic integer ([25]), so 67 is an integer ([25,26]), and hence divides p*" by Parseval’s

equation again. So, & = p" forsome U with 2U being an integer.
(i) Parseval’s equation also says that u>n/2 for a bent-like function, and that if

u=n/2 then |W, (1)| isaways nonzero.
(iii) When p = 2, the above defined bent-like functions are also called plateaued functions

([27,28,1]) or ones with 3-value spectra ([29-34,1]) since W, (1) takesone of three values 0, 2",

and —2", andfor odd N, the near-bent functions are also called Gold-like ([12,14,15]).

(iv) For p=2, W, (1) isawaysaninteger. So, U isan integer for a bent-like function,

and a bent function exists only when n iseven. Thisisawell known fact. For p>2, U may

be a half integer. See [15] and the example in Section 5 (Theorem 3). For results on existence of
generalized bent functions, see [20-22].

Definition 2: Let f bean n-variable function over F . If the outputs of f at exact 1/ p

of itsall possibleinputsare a for any element a of Fp,then f iscaled to be balanced.

Lemma 1: Let f be an n-variable function over F, . f is baanced if and only if

W, (0) =0.



1
Proof. It is clear by the fact that Zaia)' =0 ifandonly if a,=a, =---=a

i=0

b1 where

8y, ey 8y are integers.

Bent functions are ones with optimal nonlinearity ([35]), but they are not balanced by
Lemma 1 (also awell known fact), so they can’t be directly used in the design of cryptosystems.
Patterson and Wiedemann show that for odd n>15, it is possible to construct functions whose
nonlinearity is greater than that obtained by concatenating two bent functions ([36]). Maitra and
Sarkar give methods to heuristically modify the Patterson-Wiedemann and bent functions to
achieve balanced and still retain nonlinearity higher than the bent concatenation vaue ([37]).
However, the spectra of these modified functions are not considered and maybe they are
vulnerable under the soft output joint attack ([3]). One of our purposes is also to obtain balanced
Boolean functions with good nonlinearity and we concentrate our attention on studying near-bent
functions. Different from their methods, our idea is composing an N -variable near-bent function

and a quadratic form over Fpn . See [38] for knowledge of quadratic form over afinitefield.

Definition 3: An m-variable quadratic form over Fq is a polynomial over Fq of the form

QX+, X)) = Z:a,.j)<ixj +Zblxi +C,a;,b,ceF,. It needs not to be homogeneous, i.e.,
ij=1 i1

b and ¢ may be nonzero. If forany S € F,, theoutputsof Q(X,, -+, X,) a exact 1/q of

its al possible inputs are S, then Q s called to be balanced. Q(X,,-:-,X.,) is called to be

non-degenerate if it is not transformed to a quadratic form of fewer variables under any invertible

affine transformation over F, on (X, X;) .

3 Bent-like functions from quadratic forms

In this section, we assume P = 2, and present a construction of bent-like functions, which

composes balanced quadratic forms.

Let f be an n-variable Boolean function, and Q(X,---,X,) be an m -variable

quadratic formover F_.Definean nm-varigblefunction g as f(Q(x, -+, X;)).

Theorem 1: Assume f and Q(X,---,X.) are balanced. Then @ is balanced, and the



spectraof g takesuchvalues Oand +Q°W, (1), Ae Fq* ,where d isaninteger depending

onlyon Q(X,"*,X,,) -

Proof. Let A = (A4, 4,)€F,". Then

W,(A)= 3 ()T e Q0

(le"'vxm)Equ

By applying an invertible affine transformation on (X, X,,--+,X.,) ([38]), A, X +---+ 4. X,
and Q(X, -+, X,) can be transformed into d;x +---+d X,+d, and Q'(X,---,X,)+Cy,

respectively, where Q'(X,,--+,X.,) isof one of the following (pairwisely affinely non-equivalent)

forms:
i) X Xy 4+ XX,y 400 Xy 1 %, (121);
i) XX + XgXy oo X 1 X + Koy (t= 1);
iii) KXo+ XXy oot Ko 1 Xy +X22t+1 (tZO);
iv) X Xp + KXy + oot Xy 3 X o + X22t—l +%y (t21);
v) XXy + KoKy H oo Xy g Xy X22t+1 + Xy (£20);
vi) (X1X2 T XXy oot X2t—1X2t) + axzzt—l + axzzt (t=1);

vii) (6% + XXy 4+ Xy 1 X)) + ax;t—l + axgt + Xy (121),
where a € F, satisfies Tr(a) =1. Since Q isbalanced, sois Q'. By Lemma3in Appendix,

Q'(X,,-*+,X,,) should be one of Casesii), iii), iv), and vii).

We have
W, (A) = (-1 Y (—pTridrdmm) HQ T mn)t60)

(le"'vxm)Equ

If A=(4,,4,)=(0,---,0),then (d,---,d)=(0,---,0), and

Wg (A) — (_1)Tr(do) Z (_1) F(Q' (%, *+Xm)+Co)

(le"'vxm)Equ

— (_1)Tr(d0) qm—l Z (_1) f(z+cy) — O

Ze Fq

since f and Q' are baanced. By Lemma 1, ¢ is balanced. Below we assume that



A=A, Ay) #(0,--,0) and (d;,--,d,)#(0,---,0). For y,zeF,, let 5,, be the
number of (X, X,)€F," satisfying both that dx +---+d X, =y and

Q'(Xy,++, %) = Z. Then
Wg (A) — (_1)Tr(do) Zé‘y,z(_l)ﬂ(w (_1) f(z+co) .
y,zeF,

Now we need the following lemma.

Lemma 2: For afixed A =0,

(@ If &,, isindependenton Yy, then W, (A)=0.

(b) Assumethereexistintegers N;, N, ,d,d", independenton y and z, such that

5 = N,+N, ify=dz+d
2N, if y=dz+d'

Then W, (A) =N, W, (d).
(c) Assumethereexistintegers N,,N,,d,d", independenton y and z, such that
5, :{Nﬁ N, i.f y=dyz+d'
N, if y=dyz+d'
Then W, (A) = =N, W, (d?).

(d) Forany constant N,
Wg (A) = (_1)Tr(do) Z(é‘y,z _ N)(_l)Tr(y) (_1)f(z+co) .

y,zeFq
Proof. We usethe fact that Y (~1)™"* = 0. So, (d) istrivial.
yeFy
(a) We have
W, (A) = (D" 326, (-1) " ¥ (=)™ =0.
zeF, yeFq
(b) We have

Wg (A) = (_1)Tr(do) Z NZ(_l)Tr(y) (_1)f(z+co)
z;zgzliqd'

— (_l)Tr(do) Z NZ(_l)Tr(dZer') (_1) f(2+C,)

Ze Fq

— (_1)Tr(do) Z NZ(_l)Tr(dZ—dC0+d') (_1) f(2)

Ze Fq

— (_1)Tr(do—dco+d') NZWf (d)



(c) Similarly as (b), we have

Wg (A) = (_1)Tr(d0—dco+d') Z Nz(_l)Tr(dfz) (-1) f(2)

zeF,

— (_1)Tr(d0—dco+d') Z NZ(_l)Tr(dzz) (_1) f(2)

Ze Fq

— (_1)Tr(d0—dco+d')Wf (d 2).

Continue the proof of Theorem 1. Note that oO,, is the number of the solutions

(X, %) € R, of the system of equations

{dl)(1+"'+dmxm:y (1)
QX %) =2 (2

Let X,---,X, be the al variables which appear in the expression of Q'(X;,--,X.), that is,

u=2t foriv),and u=2t+1 for ii), iii), and vii). If there exists a subscript i >U such that

d =0, then by taking values of X;,---,X, saisfying (2), arbitrarily teking values for
Xor Xpvzr s X g X1y Xiugye*y X, @d then taking a uniquely determined value for X to

1 and the number

make (1) holds, we are easy to know that 5%2 is equal to the product of ™"
of solutions (X, X,,**+,X,) of Equation (2), and J,, isindependent on Y. Thus, by Lemma
2(a), W,(A)=0.

Below we assume that d,., =---=d_ =0. Then the system of equations (1) and (2) is
degenerately on the variables X, X,,--+,X, . Let J',, be the number of the solutions
(X, %,) € F," of this degenerated system of equations, then &, , =q™ 5" ,.

If d, =0, then by taking values of X;,X,,---,X,, satisfying (1) and taking a uniquely
determined value of X, satisfying (2), wehave &',,=0"” and &,,=q™”, then by Lemma
2 (a) again, W,(A)=0.

Assume d, # 0. Then

Xu zclxl+'“+cu—lxu—l+y/du’



where ¢ =d,/d,. Replacing X, in (2) by ¢X +---+C, X, ,+Y/d,, the degenerated

system of equations becomes a single equation on variables X, X,,--, X, ;, which has a form of

one of the following:

t t
Z Xy Xy =2+yld, + z Cyi1Cyi (€)
i=1 i=1
. 2. 2 2. 2 2
Z(XZi—l)(Zi +Cyq Xy +Cy %y ) =2z+(y/d,) (4)
i1
11 , 11
X X + X1 +Cy 1 X g =2+ Y/, + ZCZi—lczi ©)
i=1 i=1
: 2 2 2 2 N\
Z Xyiq Xy +0X5  +aX'5 =2+ Yyl d, +aCy , +aC, + ZCZi—chi (6)
i=1 i=1

corresponding to Cases ii), iii), iv), and vii), respectively, where X', ;=X ,+C, and

X, =Xy +Cy, (1<i<t)in(3), (5), and (6).

For Caseii), by Lemma 3 in Appendix,
t
q**-q?+q" if z+y/d, =) c,0,
i=1

t
21 _gt if z+y/d, # Zczi—chi

i=1
and by Lemma 2 (b), W, (A) =+q™*7q'W, (d,) =+q™" "W, (d,) .

For Caseiii), by Lemma 4 in Appendix,

s g *+g7Fq  if z+(y/d,)?=0
gt egt if z+(y/d,)?#0

and by Lemma 2(c), W, (A) =+q™*q'W, (d"") =+g™ "W, (d").

For Case iv), if C,; =0 then &',,=0* and W,(A)=0 by Lemma 2(a). Suppose

Cy 4, # 0. Replacing X, by C, X", (1<i<2t—2)andreplacing X', ; by Cy X'y 4, (5)

become

11 11
1 1 1 1 2
X5 X' + X g+ X g =(z+ y/d, + zczi—lczi)/c 2t-1.
i=1 i=1

By Lemma 3, we have



5- :th—2+qt—1(_1)Tr(a) , 5 :qm—z_'_qm—t—l(_l)Tr(a) ,

Y,z y,z
t-1
where a=(z+y/d, + z Cyi 1Ci )/ CP2t1. By Lemma 2(d),

i=1

W, (A) = +qm 't Z (=D T () f(zr0)

y,zeF,

0 if d,c?xa1=1
] £q™W, (c, ) if d,c%21=1

For Case vii), by Lemma 3,

t
2t-1 t-1 t H 2 2
5 q* -7 +q  if z+y/d, =ach  +acy + ) C, Gy
= i=1

Y,z

q**t-qg otherwise

and by Lemma 2(b) again, W, (A) =+q™*"q'W, (d,) =+g™ "W, (d,) . This completes the

proof.

Remark 2: (1) As noted in Introduction, our proof technique is direct and is based on enumeration
of solutions of quadratic forms over a finite field. Khoo et a. prove their conclusion by using a
result on crosscorrelation of sequences.

(2) Our result is different with that of Khoo et al. in three aspects: a) The quadratic form used

in [1] is Trqm/q(qu”), where Trqm/q is the trace map from qu to F,. The form is

homogeneous, and is specia among homogeneous forms, while the form in our construction is
any (balanced) and may be not homogeneous; b) Theindex m in[1] isassumed to be odd, while
inours M can be even; c) The quadratic form used in [1,17] is non-degenerate and is equivalent
to only one case, Caseiii) in Theorem 1, while ours can be any balanced form.

Corollary 1: Assume f and Q(X,---,X,,) ae baanced and Q is non-degenerate. Then

the spectrum set of  f (Q(%;,++, X)) is {xq™?W, (1): A e F}.

Corollary 2: Assume f is balanced and the spectra of f are 3-valued: 0 and +2™"/%,
where | is an integer satisfying 1>1 and | =n(mod2), and assume Q(X;,---,X,) is
balanced and non-degenerate. Then the spectraof f (Q(X,,--+,X,,)) are aso 3-valued: 0 and

+ 22D/ Eyrthermore, if M is odd, then the nonzero spectrum values of

f(Q(x,-,%,)) are £2"'? and consequently, f(Q(X,,---,X,)) is near-bent if and

10



only if dsois f ;whileif m iseven, the nonzero spectrum valuesare + 2("™"/2

Remark 3: When m is even, f(Q(x,---,X,)) can't be a near-bent function. It is an

interesting phenomenon that in study of bent-like functions, we usually obtain better conclusion in
thecaseof M being odd than that of M being even.

Theorem 2: Assume Mm>2.Then deg f (Q(x,,---,X,,)) = 2deg(f).

-1
Proof. Let {y,,"-*,,,} be a basis of the field Fn over Fy. Let f(x):Z:anS be

s=0
the polynomial expressionof f.Set X =Xy, +---+ X, 7,,,- Since Q(X, -+, X,,) isquadratic,

it can bewrittenas Q(X,,++,X,,) = Z:CIXt , where

teS

S={0,9",9"+q"™":0<u<mO0<v<v+w<m},
and there existsasubscript t of theform " +q""™" suchthat ¢, # 0.

Let S=2%+---+2% bethe binary expresson of s, 1<s<2", 0<s <---<§, <n.

Then

[(QOt ) = 32, (L 6 X

=ao+qia Zz C, 2 --C, 2% )(2§1t1+~-+25utu
S 3 .

s=1 teS  t,eS
It is easy to show that if 2%t +---+2%t, =2%t'+---+2%t,', then S=S, u=v, and

(t,-t)=(t',--,t,") , where S'=2%+...42% s the binary expresson of S,
1<s<2" 0<s'<--<sg'<n and aso to show that
Wh, (2%, +---+2%1,) =Wh, (t,) +---+Wh, (t,) , where Wh,(0)=0, Wh,(q")=1, and
Wh, (9" +9"") =2. So,

deg f(Q) = max{Wh, (t,) +---+Wh, (t,) :1<u=Wh,(s) <deg f ,t,,---,t, € S
=2degf.

11



4 Recursively composed bent-like functions

Similar as the construction of cascaded GMW sequences ([17]), we recursively compose
bent-like functionsin this section.

Set g, =q=2", g =q7, 1<i<Il. Let gy:F, > F, be an n-variable Boolean
function, and Q (X,---, X ):Fqi - Fqii1 be an m -variable quadratic form over FqH.

Define recursively the functions
gi (X) = gi,l(Qi (Xl,"',X )A<i<lI.

By Theorems 1-2 and Corollary 2 we have

Corollary 3: Assume f and Q (X, -, X, ) with m >2 arebalanced.

(i) g, isbalanced, and degg, =2 degf .

(i) The spectra of @, take the values 0 and £q;'Q;* ---q W, (1), A€ Fq*, where
& >[m /2] isaninteger depending only on Q, (X, -+, X, ).

(iii) Assume al Q. are non-degenerate. Then the spectra of (@, take the values 0 and

+om/Agm/2 ... iAW, (1), where A e Fq*. In particular, when all m (1<i<I) areodd,

mymy---m -1
the spectra of ¢, take values 0 and £q 2 W, (1),AeF, . Furthermore, if f is

near-bent, thenalsois g, .

5A generalization to p-ary bent-like functions

In this section we assume P is odd and generalize the above results to p -ary bent-like

functions. First, we show that any quadratic polynomial h(x;,---,X,) over F, is bent-like.

The similar result iswell known for p = 2. Further, we characterizewhen h(X,---,X,) isbent

or near-bent. Second, we show that a composition of a bent-like function and a quadratic form is
also bent-like, and as a consequence, there is also a GMW-like construction of bent-like functions
for odd p. These are a generalization of the results in Sections 3-4. The proof is similar as

Theorem 1. Some proof details will be omitted.

12



Theorem 3: Let p beoddand h(X,,---,X,) bean n-variable quadratic formover F,. Then
(i) h(x,---,x,) isaways bent-like.

(i) Assume h(x;,---,X,) is affinely equivalent to a I -variable non-degenerate quadratic

(2n-r)/2 (2n-r+1)/2

form. Then the nonzero value of |W, (1) | iseither p o p

n-1
(i) h(x,-+,x,) is bent if and only if it is equivalent to D X +CX: +C,, where

i=1

*

cek,, ceF

»
(iv) If h(x,---,x,) is homogeneous, then the nonzero value of |W,(A)| is p®*"’?,
and h(x;,---,X,) isbentand near-bentif andonlyif r=n and n-1, respectively.

Proof. Let Xz(xl,---,xn) denote arow vector. Therearean NxnN matrix A, acolumn

vector B and a ceF, such that h(x,---,X,) = XAX' +xB+C, where X' denotes the

transpose of X. Thenfor A=(4;,---,4,)eF,",

|Wh (/1) |2: Za)/l-x—h(x)a)h(y)—/l-y

x,yern

Z a)l-x—h(x)+h(x+z)—l-(x+z)

n
X,Zer

— th(z)—ﬂ.-z Za)h(XJrz)—h(x)—h(z)

n n
zeF, xeF,

Tyt
— za)h(z)—/1~z—c za)z(A+A )X

n n
Zer Xer

Let V={zeF,":z(A+A)=0 and dim. V =s. Since Z:a)zxt =0 for 0= zeF.",

n
xeFy

we have

|Wh (ﬂ,) |2 — pnza)h(z)—l-z—c .

zeV
h(x) —c isalinear functionon V since h(x+ z)—h(x)-h(z)-c=z(A+ A')z' =0, and

s0, D o"?** T =p° or 0. Thus, [W,(2) | p™9'2 or 0, and h(x,%,,--, %) is

zeV

bent-like.

13



By applying an invertible affine transformation over F, on (X, X;) ([38]),

h(x, -+, X,) is transformed into h'(x;,---,X ) +C,, where h'(x;,---,X,) is of one of the

following (pairwisely affinely non-equivalent) forms:

i) i)gz (1<r<n);
i=1

r-1
i) in2+zoxr2 (r beingevenand 2<r <n);

i=1

r-1
i)y Y x*+x (2<r<n);

i=1

r-2
iv) D x*+2zx2, +X (r beingoddand 3<r <n),
i=1
where Z, isanon-square elementin Fc; .
Itisclear that S=n—r for Casesi) andii) and S=n—r+1 for Casesiii) and iv). So,

(2n-r)/2 (2n-r+1)/2

the nonzero value of |W, (1) | is p for Casesi) and ii) andis p for Casesiii)

and iv). In the last two cases, h(X;,X,,---,X,) isnot bent. If h(X;,---,X,) is homogeneous,

then we can easily show that h'(X;,---,X,) can't be of the formiii) or iv), and thus, it is one of

the former two cases.

Remark 4: Given an n-variable quadratic form h(x,---,X,) over F,, we can transform

h(x.,---,X,) to one of the standard forms in i)-iv) in Theorem 3 by a series of concrete

elementary transformations ([38]), and so, it is easy to judge whether h(X,---,X,) is bent or

near-bent by Theorem 3. Conversely, from a proper standard form we can obtain a quadratic form
with known 1 by using an affine transformation, especially, obtain a bent or near-bent quadratic
form.

Theorem 4: Assume p isodd, f and Q(X;,:--,X,) arebaanced. Suppose Q(X,-+,X.,)

is affinely equivalent to a non-degenerate quadratic form with odd number of variables. Then the

absolute values of the spectra of f(Q(X,---,X,)) take the values 0 and q° |W, (1)],

14



ﬂqu*,where d isaninteger depending only on Q(X;,---,X,,) -

Proof. Suppose Q(X,---,X,) is affinely equivaent to Q'(X,---,X )+C, and
Q'(X,,--,X.) is of one of the forms i)-iv) in Theorem 3. (Note that: Here X,---, X, ae
variables taking their values in Fpn ) Since Q(X;, -+, X,) and Q'(X,--+,X ) are balanced,

by Lemma 5 in Appendix, Q'(X;,--+,X,) should be one of Casesiii) (r being odd) and iv).

The remaining proof is highly similar as that of Theorem 1 and should use the enumeration results
listed in Lemma 6 in Appendix. We omit the details of the proof.

Remark 5. Unlike in the case p=2, the number r of variables of the non-degenerate
quadratic form equivalent to Q(X;,---,X,,) should be assumed to be odd in Theorem 4. If r is
even, the analogy result doesn't hold.

Corollary 4: Assume f and Q(X,---,X,) are baanced, m is odd, and Q is
non-degenerate. Then the absolute values of the spectraof f (Q(X, X,, -+, X)) take the values

q™A W, (1) (1eF,).

Corollary 5. Let p>2, q,=q=p", ¢ =09, M be odd, 1<i<| . Assume
0o :Fy = F, isbaanced, and Q (%, -+, X, ):F, — F, isabaanced and non-degenerate

quadratic formover F, . For 1<i<I,recursively definean nm,---m -variable function

0 (X) = gi—l(Qi (Xv'"’X )),lS i<l

Then g, is baanced, and |W, (A)| (Ae€F, ) is 0 or takes a value of the form

mm,--m-1
qg 2 (W, (1) |, 1€ Fq . Furthermore, if g, is bent-like (or near-bent, respectively),

thenalsois g, .

The p-ary analogy of Theorem 2 doesn’'t hold in general. However, we can similarly prove
the following

15



gq-1
Theorem 5: Assume M2 2 and assume in the polynomial expression Z:asxS of f thereis
s=0

an S suchthat Wh (s)=degf and s=p*+---+p*, 1<s<2", 0<s <<, <N,

then deg f (Q(,,+.%,)) = 2deg( ).
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Appendix: Number of solutions of quadratic forms

Define a function v on F, as v(0)=q-1 and v(a)=-1 for any Oz aeF,. For

p=2,wehave

Lemma 3 ([38]): Let Q'(X,, -+, X,) isaquadratic form of one of the formsi)-vii) in Theorem 1,
u=2t for i), iv), and vi); and u=2t+1 for other 4 cases. Then as an equation of

X, X,,+++, X, , then numbers p, of solutions of Q'(X,*--,%X,)=2 is §**+q"v(2), g%,

q2t’ q2t—1, q2t +q (_1)Tr(2)1 q2t—1_qt‘1\/(z) ,and th , respectively.

Proof. This lemma is proved in [38] for z=0. It holds trivially for Casesii), iii), iv), and
vii). For Cases i) and vi), it is easy to check the validation of the lemma by the fact that

Q'(X., -+, X,) ishomogeneous. For Case V), the number is

> (e, (€)1 (6 )L+ (-1 T D)

CLGrefy

since the number of solutions of the univariable equation X°2t.1 + Xpq =C +--+C+2Z is
1+ (=DT@ D where n(c)=q+V(c) is the number of solutions of the equation

X, 1%, =C, of two variables. So,

> ()N, (C,) -+ Ny (€ )L+ (~ ey

= 2n(EN(C) (@) + 2 m(@)n,(C) (6D
¢ G eFy ity

:( 2 nl(cl)] + (—1)”2)( an(cl)(—l)“(‘"ﬂ)J
e ceFy

— th + (_1)Tr(z) qt
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wherewe usethefactsthat > ny () =q* and > n(c)(-)"* =q.

ceF ceF
Lemma 4: Let C,C,, :-,Cy,Z€ F,. Then the number of solutions of 2t -variables equations
t
Z (Ko X +Co X5 4 +CX5) = Z is G774 Q7 y(Z)(-D) e el

i=1

Proof: If the lemmais proved for z =0, then it is easy to check the vaidation of the lemma
for nonzero z by the fact that the left side of the equation is homogeneous. Assume z=0.
First we provethecaseof t=1.

If ¢.c, =0, then by an appropriate invertible linear transformation on X, and X,, the
equation XX, +C,X° +C,X> =0 is transformed to X,'X,'=0, which has 2q—1=q+ v(0)
solutions. If CC, #0, then the equation XX, +CX +C,X; =0 aways has a full-zero
solution. For its nonzero solution, replacing X, by C,X, then the equation can be written as
CC, + X,/ X +(X,/%)*=0, which has solutions (two different solutions) if and only if
Tr(cc,) =0, that is, it has 1+ (=1)"®) solutions for the variable X,/ X,. So, the equation
XX, +C X +C,X; =0 has

1+(a-DA+ ()" ) =g+ (-D"“?v(0)

solutions.
For general t, we prove the lemma by induction. Assume the lemmain all cases for less than

t
t. Let Ny(2) and n(z) be number of solutions of D (X, Xy +Cy i X5 4 +CyX5) =Z
i=1

and X, X, +C, Xo, +C, X5 =2 , respectively. Then the number of solutions of

t
2 2 .
Z (X1 %y +Cyy X5 1 +C,;X5) =0 isequal to
i=1

N, ,(O)n,(0) + z N, ,(a)n (a)

O=acF,

=N, (On,(0)+(q-)N,, D), D

— (q2t—3 + qt—2 (_1)Tr(q02+0304+~~+sz,3sz,z) (q _1)) . (q + (_1)Tr(%,1021) (q _1))
+ (q _1)(q2t—3 _ (_1)Tf (C1C+C3Ca++Cop_5Co1_2) qt—2) . (q _ (_1)Tf (Czt—chI))

— q2t—l + qt—l(q _1)(_1)Tr(Q%*%%*"'*szflcm)
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The lemmais proved.

For the case of p>2, define a function ¢ on F, as ¢(0)=0, ¢(a@)=1 for any

OxaeF,” and s(@)=-1 forany agF,”.

Lemma 5 ([38]): Let Q'(x,,---,X ) be aquadratic form over F, = Fpn of one of the forms
i)-iv) in Theorem 3. Let F.* denote the set of square elements of F, . Denote numbers of

solutionsof Q'(X,,---,X.)=2Z by p,.If r isodd, then

r-1

(1) Q' isof theformi). If—1¢ Fq*2 and n=1(mod4), then p, is qr"l—q7g(—z).

r-1

If n=3(mod4) or —1e Fq*z,then p, is g +q2e(-2).

r-1

(2 Q' isof theformiii)oriv), p, is q
If r iseventhen

(1) Q' isof theformi). If (=1)2 e Fo2o p, is g7+ q?lV(Z)- If (-1)2 ¢ F* P,

T

is 07 -0” v(2).
(2 Q isoftheformii). 1t (-1)2 € F.2, p, is ¢ = V(2).If (-D2eF.2, p,

Ty
is 9 +02 v(2).
r-1

(3 Q' isof theformiii), p, is Q

Using Lemma 5 and a result in [39] we can prove the following Lemma 6. The details are
omitted.

Lemma 6: Let Q'(X, -+,X) be a in Lemma 5, r<m. Let J,, be the number of

(X, %) € " satisfying both that d;x, +---+d, X, =y and Q'(X,--,X)=2z.If r

is odd then
r
1) Q is of the form i). L&t f=>.d* y=y*—zf then 5, is q"°,
j=1

r+3 r+3 r-1 r+l r-1

Q" te(-2q 2, Q"0 +d 2VO)e(D 7 B)or 47+ 2 e((-D) 7 2).

@ Q is of te fom i), Then &, is q"° o
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r+3

m-r+s r-1
q"?+q 2v(z-yl/d, - d?/4d?).
=1

® Q is of te fom iv). Then &, is q"° o
m_E r—2
qm?+q 2v(z-yld, —->.d?/4d?-zd?, /4d?).

j=1

If r iseventhen
r

1) Q is of the form i). L&t f=D.d* y=y’-zf then 5, is q"°,
j=1

r

A2 Ev()q" 2, g g 2 e((<)2p),or g7 g 2 W(De((-D)?).

r-1 2
(2) Q' is of the form ii). Let ﬁ:de+d—f y=Yy°—2zB, Then &, is 9",
a 7

A" +q" 2 e((-1)22p) . or g7+ 2 W(De((-1)?).

® Q is of the foom i), Then &, is q"* o

m—L— r-1
q™?+q" 2 e(yld, +Y d?/4d>~ 7).
=1
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