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Abstract. In this paper, we present a modification of the Augot-Finiasz
cryptosystem presented at EUROCRYPT 2003. Coron managed to de-
sign an attack against the original cryptosystem enabling an attacker
to decrypt any intercepted ciphertext efficiently. We introduce here a
modification of the scheme which appears to resist to this attack. We
furthermore propose parameters thwarting the state of the art attacks.

1 Introduction

At the Eurocrypt 2003 Conference, Augot and Finiasz [1] presented a new public-
Key cryptosystem supposedly based upon the problem of polynomial reconstruc-
tion (hereafter denoted PR problem) : given n, k, ¢t and (g;, yi)i=1..n n couples
in GF(g"), find any polynomial p[X] of degree less than k such that p(g;) = y;
for at least t values of i.

As analysed in [8], this problem seems to be hard, and therefore would pro-
vide a solid ground to design public key cryptosystems. Basically, the original
scheme in [1] uses as a public-key a word of a Reed-Solomon code scrambled
by the addition of an error-vector of sufficiently large Hamming weight such
that the PR problem is intractable. Note that the conditions under which the
problem is tractable are given by Guruswami and Sudan in [6]. Additionally to
being an alternative to the existing public key encryption scheme based on the
factorization or on discrete logarithm problems, the system provided a solution
to the reminiscent large key-size problem of some encryption scheme such as
McEliece system or HFE. Namely, the authors proposed in particular a system
with a key of 3072 bits for a security of 280 binary operations.

This system however was broken by Coron in polynomial-time, exploiting
a linear transformation used in the encryption step [3]. He designed a variant
of the Welch-Berlekamp decoding algorithm for Reed-Solomon codes [10] which
constructs a univariate polynomial of low degree whose roots contains one se-
curity parameter. Since the number of its roots is upper-bounded by the low
degree of the polynomial, this polynomial is easily factored and the system can
be broken in polynomial-time. A further analysis of the system and of Coron’s
attack was given by Kiayias and Yung in [7]. They also proposed a modification
to resist Coron’s attack, but this modification is still insecure.



All these attacks are cyphertext-only, and recover the plaintext corresponding
to any ciphertext, without breaking the given instance of the PR problem. This
demonstrate that the encryption function is not one-way, and that there is no
reduction of an attack of the system to an algorithm solving the PR problem
(thus no security proof).

Here, we show that a simple modification of the scheme, using properties of
the well-known Trace operator over finite fields, can thwart Coron’s attack.

In the first Section, we recall how Reed-Solomon codes are constructed and we
define the Trace operator. Then, in Section 2, we recall the original system and
present, quickly the principle of Coron’s attack. Finally, we present in Section 3
the system that is almost the same as the original one except that the structure
is scrambled by using properties of the Trace operator. We show that this system
resists all known attacks including Coron’s attack. We conclude with a proposal
of a resistant set of parameters for the new system.

2 Reed-Solomon Codes and Trace Operator

In this section we present algebraic tools used later in the paper for the design
of the system and for its security analysis. Reed-Solomon codes are well-known
optimal codes and are closely related to the rings of univariate polynomials over
finite fields.

Consider a finite field GF(g*), where ¢ is the power of a prime number. With
these notations, the finite field GF(q) is a subfield of GF(¢"). Let us consider a
list

S = (915925-"7971)

of n distinct elements in GF(¢“), denoted hereafter the support. Let evg
denote the evaluation of polynomials on the elements of .S, i.e.

oy {GF(q“)[X]—>GF(q“)"
S p(X) — (p(g1),p(g2), -, p(gn)),

where GF(¢")[X] is the set of univariate polynomials with coefficients in
GF(q").

Definition 1 The Reed-Solomon code of dimension k and of support S is

RSK(S) = {evs(f) | f € GF(¢")[X] and deg(f) < k}.

The code RSk(S) can correct up to |(n — k)/2] corrupted positions in poly-
nomial time by using a Berlekamp-Massey or Welsh-Berlekamp algorithm [10].

The finite field GF(¢") can be viewed as a u-dimensional vector space over
GF(q). Let v1,...,7, be a basis of GF(¢*) over GF(g), then every element
a € GF(¢") can be uniquely written o = >_" | a;7;, where a; € GF(q).



Definition 2 The Trace operator of GF(q") into GF(q) is defined by
Vr € GF(qu), Tr(x) =4l L xqu71

The Trace operator is a GF(g)-linear (and not GF(¢")) mapping of GF(¢")
into GF(q). It defines a scalar product over GF(¢"). For any basis v1, ..., 7, of
GF(q"), there exists a unique dual basis 77,...,~7* with respect to the scalar
product induced by the Trace operator. That is, we have

Tr(v;v) =1 and Tr(yy;) =0, if ¢ # 4.

We note also that this dual basis can be easily computed. We also ex-
tend the action of the Trace operator to vectors ¢ = (c1,...,¢y) as Tr(c) =
(Tr(e1), ..., Tr(ep)). The fundamental proposition linking the Trace operator
and some Reed-Solomon codes is the following:

Proposition 1 Let S = (g1,...,9,) where g; € GF(q) for alli=1,...,n (i.e.
the g;’s all belong to the subfield of GF(q")) . Then for all ¢ = evs(p) with
p(X) = Zi:ol piXt € GF(q")[X] (polynomials with coefficients in the extension
field), we have

Tr(c) = evg(P),

where P(X) = YKo Tr(p;) X'
Furthermore the corresponding Reed-Solomon code RSy(S) is stable under
the action of the Trace operator.

Proof. Since ¢ = evg(p), for every component ¢; of ¢, we have ¢; = p(g;) =
Zf;ol p;g;. Since g; € GF(q) and by GF(g)-linearity of the trace operator, for
all j we have Tr(c;) = Y120 Tr(pi)g; = evs(P);.

3 Original system

First, we describe the original system as presented in [1]|, then, we describe
Coron’s attack.

3.1 Description
The original system is the following:

— Known Parameters: GF(q"), integers n, k, W, w, a set S = (g1,...,9n) of
n distinct elements over GF(¢").

— Key generation: Alice chooses randomly a monic polynomial p(X) of degree
k —1 over GF(¢"), and computes ¢ = evg(p). The vector ¢ belongs thus to
RSk (S). Then she generates randomly a vector F = (E, ..., E,) € GF(¢“)"
with exactly W non-zero coordinates. The public-key consists of K = ¢+ E.
Both ¢ and E remain secret.



— Encryption: Bob wants to send a message mg = (mo,o, - - - , Mo, k—2) of length
k — 1 over GF(¢*) to Alice. First he transforms mg into the polynomial
mo(X) = Zi:oQ mp;X* and computes m = evg(mg). Then he picks up ran-
domly « € GF(g*), and a vector e of length n with w non-zero coordinates.
The ciphertext that Bob sends to Alice is

y=m+aK +e.

— Decryption: Alice first shortens the ciphertext on the non-zero positions of
E by removing all coordinates corresponding to the non-zero positions of F.
She obtains § = m+ac+e, where the overlining operation denotes shortening
the vectors. Hence we obtain K = . Since a shortened Reed-Solomon code
is still a Reed-Solomon code, with a different support, it is still decodable.
Therefore by one decoding step in the shortened Reed-Solomon code, Alice
recovers m + ac. Since m = evg(mg) and o = evg(ap) and since the degree
of my is less than the degree of p, Alice first recovers Q(X) = mo(X)+ap(X)
by interpolation. Then, by considering that the highest coefficient of @ is «,
she recovers «, and finally my.

The security analysis of the system given in [1] shows that the system,
with carefully selected parameters, can resist all previously known decoding at-
tacks, like error set decoding and information set decoding with a public key
relatively small (a few thousand bits). The authors proposed the following pa-
rameters: GF(q%) = GF(28%), n = 1024, W = 74, ensuring that the PR problem
is intractable and w = 25, ensuring a security of at least 2% against decoding
attacks. Now, with such parameters, the size of the public key ¢ + F is equal to
84 x 1024 = 84 kbits.

3.2 Coron’s Attack

Coron designed a very efficient ciphertext only attack able to recover the scram-
bling element o € GF(g") in polynomial time, see [3]. When « is known, one
can easily recover the plaintext as stated in [1]. To achieve this, he modifies the
Welsh-Berlekamp algorithm, and builds a polynomial of low degree vanishing at
the element «.

Suppose Eve intercepts a ciphertext y. To recover the plaintext mg, she has
to solve the equation y = evg(mg)+aK +e. Then, Eve has to solve the following
system in the unknowns mg(X), a, and e;.

yi =molgi) +aK; +e;, i=1,...,n,

where mg is a polynomial of degree less than k — 1, the e;’s are equal to
0 except on w positions, and a € GF(¢"). Solving this system is equivalent to
solving the system in the unknowns Z(X), «, and mg(X)

Vi=1,...,n, Z(g:)(yi — ak;) = mo(9:)Z(g:), (1)



where Z(X) is a non-zero polynomial over GF(¢") of degree at most w. If
this system is expanded it leads to a quadratic system. Following the principle
of the Berlekamp-Welsh algorithm, Coron linearizes the system by introducing
the following system in the new unknowns Z(X), «, and N(X):

Vi=1,...,n, Z(g:)(yi — aK;) = N(g;), (2)

where N(X) is now a non-zero polynomial over GF(¢") of degree at most
k4w — 2. A solution to system (1) also gives a solution to system (2). Thus, by
getting every solution of system (2) one gets necessarily a solution for decrypting
the intercepted ciphertext. These equations still form a quadratic system in the
coefficients of Z(X), o and the coefficients of N(X). However, let us consider
the matrix of the system

y1 — Ky, - (yr —2K1)g, 1, g1, - gy
y2 —xKa, - (y2 —wK2)gy, 1,92, -+ g
M(z) = e e =R g2

Yn — T80, (Yo — 2Kn) gy, 1, Gny - 95“"2

This matrix has the known parameters y;’s, K;’s and g;’s and = as an in-
determinate. The condition to have a solution Z(X), «, B(X) to the system 2
is that M («) is not of maximal rank. Hence « is a root of the determinant of
any square submatrix of M (z). Any such determinant is a univariate polyno-
mial over GF(¢") of degree at most w + 1. By computing a few determinants
and computing their greatest common divisors, Eve finds a very easily (recall
that w is small) recovering thus the plaintext in polynomial time. Eve can also
compute the roots of a particular determinant and try the different roots into
the system to check which one is the right one. With the originally proposed pa-
rameters n = 1024, k = 900, w = 25, W = 74, and ¢ = 28°, Coron demonstrate
that it takes about 30 minutes of computation on a standard PC to recover the
plaintext from the ciphertext [3].

For completeness, Coron proposed a case 2 version which must be used in
particular cases. This happens whenever M (0) is not of full rank. By choosing
well the submatrices Eve could even recover the elements of the secret key.
Kiayias and Yung showed that this configuration is very rare [7].

4 The New System

With some simple algebraic considerations, we can thwart this attack without
increasing the size of the public key. This modification produces a system that
is somehow better than the original one. Indeed, it increases the speed of the
system and decreases the block size.

The idea itself was contained in the original paper. It consisted in taking the
public key with respect to a subfield subcode of the Reed-Solomon code. Con-
sidering subcodes of very structured codes is usually a good idea for scrambling



their structure. The best example of it is without contest the McEliece sys-
tem. Whereas it was shown that using the family of Generalized Reed-Solomon
codes was extremely weak, using the family of Goppa codes — which are sub-
field subcodes of Generalized Reed-Solomon codes — is secure against all types of
structural attacks. Behind these considerations we find once again the Trace op-
erator that is intimately linked with the notion of subfield subcode, see [4]. This
led us to design a system based on the model of Augot and Finiasz’s using an
additional scrambling by means of this very Trace operator. Let it be described
as follows.

— Known Parameters of the system: a finite field GF(¢"), integers n, k, W, w.
a set of S = (g1,...,9n) of n distinct elements of GF(q) C GF(¢").

— Key generation: Alice secretly generates a polynomial p(X) = Zf:_ol P X?
over GF(g"), with the following properties: the u coefficients px_1,...,pr—u
are such that they form a basis of GF(¢") over GF(g). She computes ¢ =
evg(p). The vector ¢ belongs thus to RSk(S). Then she generates a vector
E = (Ei,...,E,) € GF(¢“)" with exactly W non-zero coordinates. The
public-key is the vector K = ¢ + E over GF(¢*). Both ¢ and F remain
secret.

— Encryption: Bob wants to send a message mo = (mo,...,Mok—u—1) Of
length k —u over GF(q) to Alice. First he transforms mg into the polynomial
mo(X) = Zf:_(f—l mo ;X and computes m = evg(mg). Then he randomly
chooses an element oo € GF(¢") and a vector e over GF(q) of length n with
w non-zero coordinates. The ciphertext Bob sends to Alice is

y=m+ Tr(aK) +e,

where Tr denotes the trace operator of GF(¢*) onto GF(q) (see Definition
2).

— Decryption: this step is almost identical to the decryption step of the original
scheme. Alice first shortens the ciphertext on the non-zero positions of F.
She obtains § = ™ + Tr(ac) + €, where the overlining operation denotes
shortening the vectors. Remember that S was chosen to de defined over
GF(q), thus, by Proposition 1 Tr(ac) € RSk(S), the Reed-Solomon code of
support S, of length n— W and dimension k, which has a decoding algorithm.
By one decoding step in RS(S), Alice recovers m + Tr(ac). We have m =
evg(mo), and Tr(a€) = evg(P) where P(X) = Y. Tr(ap;)X*. Thus,

by polynomial interpolation, she recovers the unique polynomial Q(X) =
Zi:ol ¢: X" of degree k — 1 over GF(q) such that evg(Q) = m + Tr(ac), that
is Q(X) = mo(X)+ P(X). Since mg has degree less than k —u — 1, we have

gi = Tr(ap;), fori=k—wu,....,k—1,
by identification of high degree terms.

By the property of the Trace operator, the Tr(ap;) for ¢ = k—u, ..., k—1 are
exactly the u coordinates of a in the dual basis of px_1, ..., pr—y. This gives



us directly o with no additional cost. Knowing « one gets the polynomial P
whose coefficients are the Tr(ap;) for i =0, ...,k — 1. Finally Alice gets the
plaintext mo(X) = Q(X) — P(X).

In order to generate the public-key, Alice has to pick up a basis of GF(¢*)
over GF(q). Since the number of such bases is very high, picking up randomly u
elements in GF(¢") and testing if they form a basis is a good way to proceed.

Considering that an arithmetic operation over GF(¢*) costs O(u?log®q) bi-
nary operations, the total cost of the algorithm is:

— Encryption: the Trace can be computed O(u) time. Thus the encryption
costs O(nulogg) binary operations per bit of plaintext.

— Decryption: the operations take place in GF(g), and not in GF(¢*). The cost
of decoding in the shortened Reed-Solomon code is thus equal to O((n —
W)?log?q). The polynomial @ can be interpolated in O((n — W)log?q)
operations. To find the plaintext mg, one computes the difference of two
polynomials of over GF(g"), that is k — u — 1 additions over GF(¢"). This
can be neglected. Finally, since u is small, the cost of decryption is roughly
O((n — W)?log q/k) binary operations per bit of plaintext.

Note that in the following, we deal with a field GF(g) small enough to be
implemented in software or even in hardware. That is, we can consider that
the operations in GF(q) have a constant cost. This improves considerably the
efficiency of the system.

5 Security of the New System

The security of the system against the previously known decoding attacks was
investigated at length in Augot and Finiasz’s paper, and we can reuse the results
here. To ensure a sufficient security, one has to choose good parameters. We
show how Coron’s approach can be modified into either finding the roots of a
polynomial of exponential degree or solving an overdefined multivariate system,
but with very large equations. In the last Section, we propose parameters for the
system to be secure.

5.1 Coron-like attacks

We study how Coron’s approach must be modified to be applied to the modified
system. Originally it consisted in finding the roots of a polynomial of degree
w + 1 over a large finite field. In the new system, we have

y =evg(mp) + Tr(aK) + e, (3)

where myg is a polynomial of degree k — u — 1, the ¢;’s are equal to 0 except
for w positions, and « € GF(¢*). Solving this system is equivalent to solving the
system in the unknowns Z(X), a, and mg(X)



Vi=1,...,n, Z(g9:i)(y; — Tr(aK;)) =mo(9:)Z(g:i), (4)

where Z(X) is a non-zero polynomial over GF(gq) of degree at most w.
There are two different approaches to deal with: the univariate approach and
the multivariate approach. Both derive from the properties of the Trace operator.

Univariate approach
A solution to system (4) is a solution to the following system in the unknowns
Z(X), a, and N(X),

Vi=1...n, Z(9:)(yi — Tr(aK;)) = N(g:), (5)

where N(X) is a non-zero polynomial over GF(q) of degree at most k + w —
u — 1. Let

y1 — Tr(zKy), -+ (y1 — Tr(zK1))gY, 1, g1, "'gzﬂj*“*l
y2 — Tr(zKy), -+ (y2 — Te(xK2))gy', 1, ga, - g5 "1
MTT(:C) - : .. : Dol ’

Yn — Tr(zKy,), - (yn — Tr(2K,))gY, 1, gn, - - - ghto—u=1

where Tr(z) = ;.1:01 2% is a polynomial over GF(q) of degree ¢“~'. The
element « is such that Mmy.(a) is not of maximal rank. Thus « is a root of the
determinant of any square submatrix of My, ().

Now the constatation is made that the determinants are polynomials over
GF(q) of degree (w+1)q“~. Therefore, since computing the roots or the greatest
common divisors of polynomials is polynomial in complexity with the degree,
it becomes rapidly intractable to find the common root or to factor of these
polynomials.

The second case in Coron’s attack cannot happen here. Indeed, the polyno-
mials have a too large degree to be uniquely interpolated from the n components
of the support S.

Multivariate approach
Let v1,...,7, be a basis of GF(¢*) over GF(q). Let

u
a = E AVt
t=1

and let K; ; = Tr(y,K;). Finding a solution to system (4) is now equivalent
to solve the following system in the unknowns Z(X), a1, ..., a,, and mo(X).

Vi=1,...,n Z(g) (y - Zath,Z-) = Z(gi)mo(gi)- (6)

We consider the following system in the unknowns Z(X), a1,...,a,, and
N(X).



Vi=1,....n Z(g:) (yizath,z) = N(g:)- (7)

where Z has degree at most w, and N is a non-zero polynomial over GF(q)
of degree at most k +w — u — 1.

A solution to system (6) is also a solution to system (7): if Z,aq, ..., ay, and
mo are solutions to system (6) then Z, aq,..., a,, and N = Z-my are solutions
to system (7). By following step by step Coron’s approach we first expand the
polynomials.

Let Z(X) =Y,z X" and let N(X) = 577", X7, Let us define

Y1 — Yo K, o (g — Y w Ky 2)gts 1, g1, - g’gﬂ“_“_l
—u—1
Yo — Yop weKeg, o (Y2 — Yop i Ki2)gy, 1, g2, oo gy 0T

M(zq,...,24) =

?

Y

Yn — Z?:l xth,m T (yn - Z?:l xth,n)g?z)a 1, gn, - gferwiuila

and Y = (20,..., 2w, L0y - - - s Lhtw—u—1)- Solving system (7) is equivalent to
solve the following equation in the unknowns Y, aq, ..., a,.

M(ay,...,a,)-Y' =0, (8)

The known existence of a non-trivial solution to this equation implies that
M(aq,...,ay) is not of maximal rank. For any square submatrix M'(x1,...,Zy),
we must have Det(M’(aq,...,a,)) = 0. Every such determinant of the form
Det(M'(x1,...,2,)) is a multivariate polynomial of degree w+1 in u unknowns.

To get a solution, one has to compute the Groebner basis of the system,
since the number of solutions will be relatively small. However computing the
Groebner basis is a very difficult problem, and at least the complexity is hard
to evaluate.

6 Proposition of parameters

The authors wish to thank here Jean-Sébastien Coron, for fruitful discussion.
He pointed out a new attack on the modification of the system which enables to
recover the private-key from the public-one if one is not careful enough. In the
building of our parameters, we took into account his remarks.

We consider the following parameters:

— The chosen fields are GF(¢*) = GF(2%°), GF(q) = GF(2?°) (thus u = 4)
We take n = 2048, the size of the public-key is thus equal to 160 kbits, that
is twice as large as for the original parameters.

— Then W = 546 is sufficient to resist all attacks against the public-key. We
took into account Coron’s remarks.

Finally w = 49.



Compared to the original system, the block size is smaller. Namely a plaintext
consists of k—u elements in GF(22°), that is 27920 bits. The transmission rate is
~ 68%. These parameters are resistant to the previously known decoding attack
given in [1].

Another advantage compared to the original system is that the computations
are done in a small field that is to know GF(22%). This field can be implemented
in software or hardware very easily, decreasing thus the complexity of the scheme.

Now we can study the resistance of the scheme against different approaches.

Univariate approach

As stated in the previous section, Eve has to compute the roots of a poly-
nomial of degree 49 x 2°0 ~ 205 ogver GF(2%0), or greatest common divisors of
at least two of these polynomials, which is intractable, and costs more that 28
even if the polynomials are sparse ones.

Multivariate approach

In that case Eve has to find the Groebner basis over GF(22%) of a set of equa-
tions of degree 49 in 4 unknowns. Experimentally by taking smaller parameters,
each equation has many terms, which gives a system of equations each having
approximately 220 non zero terms. This should be a difficult system to solve, but
no complexity estimation can be derived yet.

7 Conclusion

In this paper we have proposed a new version of the Augot-Finiasz cryptosystem
based on the polynomial reconstruction problem. It is as simple of use and of
design as the original one and is now secure against Coron’s attack, which breaks
in polynomial time the original cryptosystem.

We proposed parameters for the system to be secure against state of the art
attacks. While the size of the public-key has to be increased, the system also
gains in efficiency, with a smaller block size.
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