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Abstrat. In this paper, we present a modi�ation of the Augot-Finiasz

ryptosystem presented at EUROCRYPT 2003. Coron managed to de-

sign an attak against the original ryptosystem enabling an attaker

to derypt any interepted iphertext e�iently. We introdue here a

modi�ation of the sheme whih appears to resist to this attak. We

furthermore propose parameters thwarting the state of the art attaks.

1 Introdution

At the Eurorypt 2003 Conferene, Augot and Finiasz [1℄ presented a new publi-

Key ryptosystem supposedly based upon the problem of polynomial reonstru-

tion (hereafter denoted PR problem) : given n, k, t and (gi, yi)i=1...n n ouples

in GF (qu), �nd any polynomial p[X ] of degree less than k suh that p(gi) = yi

for at least t values of i.
As analysed in [8℄, this problem seems to be hard, and therefore would pro-

vide a solid ground to design publi key ryptosystems. Basially, the original

sheme in [1℄ uses as a publi-key a word of a Reed-Solomon ode srambled

by the addition of an error-vetor of su�iently large Hamming weight suh

that the PR problem is intratable. Note that the onditions under whih the

problem is tratable are given by Guruswami and Sudan in [6℄. Additionally to

being an alternative to the existing publi key enryption sheme based on the

fatorization or on disrete logarithm problems, the system provided a solution

to the reminisent large key-size problem of some enryption sheme suh as

MEliee system or HFE. Namely, the authors proposed in partiular a system

with a key of 3072 bits for a seurity of 280
binary operations.

This system however was broken by Coron in polynomial-time, exploiting

a linear transformation used in the enryption step [3℄. He designed a variant

of the Welh-Berlekamp deoding algorithm for Reed-Solomon odes [10℄ whih

onstruts a univariate polynomial of low degree whose roots ontains one se-

urity parameter. Sine the number of its roots is upper-bounded by the low

degree of the polynomial, this polynomial is easily fatored and the system an

be broken in polynomial-time. A further analysis of the system and of Coron's

attak was given by Kiayias and Yung in [7℄. They also proposed a modi�ation

to resist Coron's attak, but this modi�ation is still inseure.



All these attaks are yphertext-only, and reover the plaintext orresponding

to any iphertext, without breaking the given instane of the PR problem. This

demonstrate that the enryption funtion is not one-way, and that there is no

redution of an attak of the system to an algorithm solving the PR problem

(thus no seurity proof).

Here, we show that a simple modi�ation of the sheme, using properties of

the well-known Trae operator over �nite �elds, an thwart Coron's attak.

In the �rst Setion, we reall how Reed-Solomon odes are onstruted and we

de�ne the Trae operator. Then, in Setion 2, we reall the original system and

present quikly the priniple of Coron's attak. Finally, we present in Setion 3

the system that is almost the same as the original one exept that the struture

is srambled by using properties of the Trae operator. We show that this system

resists all known attaks inluding Coron's attak. We onlude with a proposal

of a resistant set of parameters for the new system.

2 Reed-Solomon Codes and Trae Operator

In this setion we present algebrai tools used later in the paper for the design

of the system and for its seurity analysis. Reed-Solomon odes are well-known

optimal odes and are losely related to the rings of univariate polynomials over

�nite �elds.

Consider a �nite �eld GF(qu), where q is the power of a prime number. With

these notations, the �nite �eld GF(q) is a sub�eld of GF(qu). Let us onsider a
list

S = (g1, g2, . . . , gn)

of n distint elements in GF(qu), denoted hereafter the support. Let evS

denote the evaluation of polynomials on the elements of S, i.e.

evS

{

GF(qu)[X ] −→ GF(qu)n

p(X) 7−→ (p(g1), p(g2), . . . , p(gn)),

where GF(qu)[X ] is the set of univariate polynomials with oe�ients in

GF(qu).

De�nition 1 The Reed-Solomon ode of dimension k and of support S is

RSk(S) = {evS(f) | f ∈ GF(qu)[X ] and deg(f) < k}.

The ode RSk(S) an orret up to ⌊(n− k)/2⌋ orrupted positions in poly-

nomial time by using a Berlekamp-Massey or Welsh-Berlekamp algorithm [10℄.

The �nite �eld GF(qu) an be viewed as a u-dimensional vetor spae over

GF(q). Let γ1, . . . , γu be a basis of GF(qu) over GF(q), then every element

α ∈ GF(qu) an be uniquely written α =
∑u

i=1
aiγi, where ai ∈ GF(q).



De�nition 2 The Trae operator of GF(qu) into GF(q) is de�ned by

∀x ∈ GF(qu), Tr(x) = x + xq + · · · + xqu−1

The Trae operator is a GF(q)-linear (and not GF(qu)) mapping of GF(qu)
into GF(q). It de�nes a salar produt over GF(qu). For any basis γ1, . . . , γu of

GF(qu), there exists a unique dual basis γ⋆
1 , . . . , γ⋆

u with respet to the salar

produt indued by the Trae operator. That is, we have

Tr(γiγi) = 1 and Tr(γiγj) = 0, if i 6= j.

We note also that this dual basis an be easily omputed. We also ex-

tend the ation of the Trae operator to vetors c = (c1, . . . , cn) as Tr(c) =
(Tr(c1), . . . ,Tr(cn)). The fundamental proposition linking the Trae operator

and some Reed-Solomon odes is the following:

Proposition 1 Let S = (g1, . . . , gn) where gi ∈ GF(q) for all i = 1, . . . , n (i.e.

the gi's all belong to the sub�eld of GF (qu)) . Then for all c = evS(p) with

p(X) =
∑k−1

i=0
piX

i ∈ GF (qu)[X ] (polynomials with oe�ients in the extension

�eld), we have

Tr(c) = evS(P ),

where P (X) =
∑k−1

i=0
Tr(pi)X

i
.

Furthermore the orresponding Reed-Solomon ode RSk(S) is stable under

the ation of the Trae operator.

Proof. Sine c = evS(p), for every omponent cj of c, we have cj = p(gj) =
∑k−1

i=0
pjg

j
i . Sine gj ∈ GF(q) and by GF(q)-linearity of the trae operator, for

all j we have Tr(cj) =
∑k−1

i=0
Tr(pi)g

i
j = evS(P )j .

3 Original system

First, we desribe the original system as presented in [1℄, then, we desribe

Coron's attak.

3.1 Desription

The original system is the following:

� Known Parameters: GF(qu), integers n, k, W, w, a set S = (g1, . . . , gn) of
n distint elements over GF(qu).

� Key generation: Alie hooses randomly a moni polynomial p(X) of degree
k − 1 over GF(qu), and omputes c = evS(p). The vetor c belongs thus to

RSk(S). Then she generates randomly a vetor E = (E1, . . . , En) ∈ GF(qu)n

with exatly W non-zero oordinates. The publi-key onsists of K = c+E.

Both c and E remain seret.



� Enryption: Bob wants to send a message m0 = (m0,0, . . . , m0,k−2) of length
k − 1 over GF(qu) to Alie. First he transforms m0 into the polynomial

m0(X) =
∑k−2

i=0
m0,iX

i
and omputes m = evS(m0). Then he piks up ran-

domly α ∈ GF(qu), and a vetor e of length n with w non-zero oordinates.

The iphertext that Bob sends to Alie is

y = m + αK + e.

� Deryption: Alie �rst shortens the iphertext on the non-zero positions of

E by removing all oordinates orresponding to the non-zero positions of E.

She obtains y = m+αc+e, where the overlining operation denotes shortening
the vetors. Hene we obtain K = c. Sine a shortened Reed-Solomon ode

is still a Reed-Solomon ode, with a di�erent support, it is still deodable.

Therefore by one deoding step in the shortened Reed-Solomon ode, Alie

reovers m+αc. Sine m = ev

S
(m0) and αc = ev

S
(αp) and sine the degree

of m0 is less than the degree of p, Alie �rst reoversQ(X) = m0(X)+αp(X)
by interpolation. Then, by onsidering that the highest oe�ient of Q is α,
she reovers α, and �nally m0.

The seurity analysis of the system given in [1℄ shows that the system,

with arefully seleted parameters, an resist all previously known deoding at-

taks, like error set deoding and information set deoding with a publi key

relatively small (a few thousand bits). The authors proposed the following pa-

rameters: GF(qu) = GF(284), n = 1024, W = 74, ensuring that the PR problem

is intratable and w = 25, ensuring a seurity of at least 280
against deoding

attaks. Now, with suh parameters, the size of the publi key c + E is equal to

84 × 1024 = 84 kbits.

3.2 Coron's Attak

Coron designed a very e�ient iphertext only attak able to reover the sram-

bling element α ∈ GF(qu) in polynomial time, see [3℄. When α is known, one

an easily reover the plaintext as stated in [1℄. To ahieve this, he modi�es the

Welsh-Berlekamp algorithm, and builds a polynomial of low degree vanishing at

the element α.
Suppose Eve interepts a iphertext y. To reover the plaintext m0, she has

to solve the equation y = evS(m0)+αK+e. Then, Eve has to solve the following
system in the unknowns m0(X), α, and ei.

yi = m0(gi) + αKi + ei, i = 1, . . . , n,

where m0 is a polynomial of degree less than k − 1, the ei's are equal to

0 exept on w positions, and α ∈ GF(qu). Solving this system is equivalent to

solving the system in the unknowns Z(X), α, and m0(X)

∀i = 1, . . . , n, Z(gi)(yi − αKi) = m0(gi)Z(gi), (1)



where Z(X) is a non-zero polynomial over GF(qu) of degree at most w. If
this system is expanded it leads to a quadrati system. Following the priniple

of the Berlekamp-Welsh algorithm, Coron linearizes the system by introduing

the following system in the new unknowns Z(X), α, and N(X):

∀i = 1, . . . , n, Z(gi)(yi − αKi) = N(gi), (2)

where N(X) is now a non-zero polynomial over GF(qu) of degree at most

k + w− 2. A solution to system (1) also gives a solution to system (2). Thus, by

getting every solution of system (2) one gets neessarily a solution for derypting

the interepted iphertext. These equations still form a quadrati system in the

oe�ients of Z(X), α and the oe�ients of N(X). However, let us onsider
the matrix of the system

M(x) =











y1 − xK1, · · · (y1 − xK1)g
w
1 , 1, g1, · · · gk+w−2

1

y2 − xK2, · · · (y2 − xK2)g
w
2 , 1, g2, · · · gk+w−2
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yn − xKn, · · · (yn − xKn)gw
n , 1, gn, · · · gk+w−2

n











.

This matrix has the known parameters yi's, Ki's and gi's and x as an in-

determinate. The ondition to have a solution Z(X), α, B(X) to the system 2

is that M(α) is not of maximal rank. Hene α is a root of the determinant of

any square submatrix of M(x). Any suh determinant is a univariate polyno-

mial over GF(qu) of degree at most w + 1. By omputing a few determinants

and omputing their greatest ommon divisors, Eve �nds α very easily (reall

that w is small) reovering thus the plaintext in polynomial time. Eve an also

ompute the roots of a partiular determinant and try the di�erent roots into

the system to hek whih one is the right one. With the originally proposed pa-

rameters n = 1024, k = 900, w = 25, W = 74, and q = 280
, Coron demonstrate

that it takes about 30 minutes of omputation on a standard PC to reover the

plaintext from the iphertext [3℄.

For ompleteness, Coron proposed a ase 2 version whih must be used in

partiular ases. This happens whenever M(0) is not of full rank. By hoosing

well the submatries Eve ould even reover the elements of the seret key.

Kiayias and Yung showed that this on�guration is very rare [7℄.

4 The New System

With some simple algebrai onsiderations, we an thwart this attak without

inreasing the size of the publi key. This modi�ation produes a system that

is somehow better than the original one. Indeed, it inreases the speed of the

system and dereases the blok size.

The idea itself was ontained in the original paper. It onsisted in taking the

publi key with respet to a sub�eld subode of the Reed-Solomon ode. Con-

sidering subodes of very strutured odes is usually a good idea for srambling



their struture. The best example of it is without ontest the MEliee sys-

tem. Whereas it was shown that using the family of Generalized Reed-Solomon

odes was extremely weak, using the family of Goppa odes � whih are sub-

�eld subodes of Generalized Reed-Solomon odes � is seure against all types of

strutural attaks. Behind these onsiderations we �nd one again the Trae op-

erator that is intimately linked with the notion of sub�eld subode, see [4℄. This

led us to design a system based on the model of Augot and Finiasz's using an

additional srambling by means of this very Trae operator. Let it be desribed

as follows.

� Known Parameters of the system: a �nite �eld GF(qu), integers n, k, W, w.
a set of S = (g1, . . . , gn) of n distint elements of GF(q) ⊂ GF(qu).

� Key generation: Alie seretly generates a polynomial p(X) =
∑k−1

i=0
piX

i

over GF(qu), with the following properties: the u oe�ients pk−1, . . . , pk−u

are suh that they form a basis of GF(qu) over GF(q). She omputes c =
evS(p). The vetor c belongs thus to RSk(S). Then she generates a vetor

E = (E1, . . . , En) ∈ GF(qu)n
with exatly W non-zero oordinates. The

publi-key is the vetor K = c + E over GF(qu). Both c and E remain

seret.

� Enryption: Bob wants to send a message m0 = (m0,0, . . . , m0,k−u−1) of

length k−u over GF(q) to Alie. First he transforms m0 into the polynomial

m0(X) =
∑k−u−1

i=0
m0,iX

i
and omputes m = evS(m0). Then he randomly

hooses an element α ∈ GF(qu) and a vetor e over GF(q) of length n with

w non-zero oordinates. The iphertext Bob sends to Alie is

y = m + Tr(αK) + e,

where Tr denotes the trae operator of GF(qu) onto GF(q) (see De�nition

2).

� Deryption: this step is almost idential to the deryption step of the original

sheme. Alie �rst shortens the iphertext on the non-zero positions of E.

She obtains y = m + Tr(αc) + e, where the overlining operation denotes

shortening the vetors. Remember that S was hosen to de de�ned over

GF(q), thus, by Proposition 1 Tr(αc) ∈ RSk(S), the Reed-Solomon ode of

support S, of length n−W and dimension k, whih has a deoding algorithm.

By one deoding step in RSk(S), Alie reovers m + Tr(αc). We have m =

ev

S
(m0), and Tr(αc) = ev

S
(P ) where P (X) =

∑k−1

i=0
Tr(αpi)X

i
. Thus,

by polynomial interpolation, she reovers the unique polynomial Q(X) =
∑k−1

i=0
qiX

i
of degree k− 1 over GF(q) suh that ev

S
(Q) = m +Tr(αc), that

is Q(X) = m0(X)+P (X). Sine m0 has degree less than k− u− 1, we have

qi = Tr(αpi), for i = k − u, . . . , k − 1,

by identi�ation of high degree terms.

By the property of the Trae operator, the Tr(αpi) for i = k−u, . . . , k−1 are
exatly the u oordinates of α in the dual basis of pk−1, . . . , pk−u. This gives



us diretly α with no additional ost. Knowing α one gets the polynomial P
whose oe�ients are the Tr(αpi) for i = 0, . . . , k − 1. Finally Alie gets the

plaintext m0(X) = Q(X) − P (X).

In order to generate the publi-key, Alie has to pik up a basis of GF(qu)
over GF(q). Sine the number of suh bases is very high, piking up randomly u
elements in GF(qu) and testing if they form a basis is a good way to proeed.

Considering that an arithmeti operation over GF(qu) osts O(u2log2q) bi-
nary operations, the total ost of the algorithm is:

� Enryption: the Trae an be omputed O(u) time. Thus the enryption

osts O(nulogq) binary operations per bit of plaintext.

� Deryption: the operations take plae in GF(q), and not in GF(qu). The ost
of deoding in the shortened Reed-Solomon ode is thus equal to O((n −
W )2log2q). The polynomial Q an be interpolated in O((n − W )2log2q)
operations. To �nd the plaintext m0, one omputes the di�erene of two

polynomials of over GF(qu), that is k − u − 1 additions over GF(qu). This
an be negleted. Finally, sine u is small, the ost of deryption is roughly

O((n − W )2log q/k) binary operations per bit of plaintext.

Note that in the following, we deal with a �eld GF(q) small enough to be

implemented in software or even in hardware. That is, we an onsider that

the operations in GF(q) have a onstant ost. This improves onsiderably the

e�ieny of the system.

5 Seurity of the New System

The seurity of the system against the previously known deoding attaks was

investigated at length in Augot and Finiasz's paper, and we an reuse the results

here. To ensure a su�ient seurity, one has to hoose good parameters. We

show how Coron's approah an be modi�ed into either �nding the roots of a

polynomial of exponential degree or solving an overde�ned multivariate system,

but with very large equations. In the last Setion, we propose parameters for the

system to be seure.

5.1 Coron-like attaks

We study how Coron's approah must be modi�ed to be applied to the modi�ed

system. Originally it onsisted in �nding the roots of a polynomial of degree

w + 1 over a large �nite �eld. In the new system, we have

y = evS(m0) + Tr(αK) + e, (3)

where m0 is a polynomial of degree k − u − 1, the ei's are equal to 0 exept

for w positions, and α ∈ GF(qu). Solving this system is equivalent to solving the

system in the unknowns Z(X), α, and m0(X)



∀i = 1, . . . , n, Z(gi)(yi − Tr(αKi)) = m0(gi)Z(gi), (4)

where Z(X) is a non-zero polynomial over GF(q) of degree at most w.
There are two di�erent approahes to deal with: the univariate approah and

the multivariate approah. Both derive from the properties of the Trae operator.

Univariate approah

A solution to system (4) is a solution to the following system in the unknowns

Z(X), α, and N(X),

∀i = 1 . . . n, Z(gi)(yi − Tr(αKi)) = N(gi), (5)

where N(X) is a non-zero polynomial over GF(q) of degree at most k + w −
u − 1. Let

M
Tr

(x) =











y1 − Tr(xK1), · · · (y1 − Tr(xK1))g
w
1 , 1, g1, · · · gk+w−u−1

1

y2 − Tr(xK2), · · · (y2 − Tr(xK2))g
w
2 , 1, g2, · · · gk+w−u−1

2
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.

yn − Tr(xKn), · · · (yn − Tr(xKn))gw
n , 1, gn, · · · gk+w−u−1

n











,

where Tr(x) =
∑qu−1

i=0
xqi

is a polynomial over GF(q) of degree qu−1
. The

element α is suh that M
Tr

(α) is not of maximal rank. Thus α is a root of the

determinant of any square submatrix of MTr(x).
Now the onstatation is made that the determinants are polynomials over

GF(q) of degree (w+1)qu−1
. Therefore, sine omputing the roots or the greatest

ommon divisors of polynomials is polynomial in omplexity with the degree,

it beomes rapidly intratable to �nd the ommon root or to fator of these

polynomials.

The seond ase in Coron's attak annot happen here. Indeed, the polyno-

mials have a too large degree to be uniquely interpolated from the n omponents

of the support S.

Multivariate approah

Let γ1, . . . , γu be a basis of GF(qu) over GF(q). Let

α =
u
∑

t=1

atγt,

and let Ki,j = Tr(γiKj). Finding a solution to system (4) is now equivalent

to solve the following system in the unknowns Z(X), a1, . . . , au, and m0(X).

∀i = 1, . . . , n Z(gi)

(

yi −

u
∑

t=1

atKt,i

)

= Z(gi)m0(gi). (6)

We onsider the following system in the unknowns Z(X), a1, . . . , au, and

N(X).



∀i = 1, . . . , n Z(gi)

(

yi −

u
∑

t=1

atKt,i

)

= N(gi). (7)

where Z has degree at most w, and N is a non-zero polynomial over GF(q)
of degree at most k + w − u − 1.

A solution to system (6) is also a solution to system (7): if Z, a1, . . . , au, and
m0 are solutions to system (6) then Z, a1, . . . , au, and N = Z ·m0 are solutions

to system (7). By following step by step Coron's approah we �rst expand the

polynomials.

Let Z(X) =
∑w

i=0
ziX

i
and let N(X) =

∑k+w−u−1

i=0
tiX

i
. Let us de�ne

M(x1, . . . , xu) =











y1 −
∑u

t=1
xtKt,1, · · · (y1 −

∑u

t=1
xtKt,2)g

w
1 , 1, g1, · · · gk+w−u−1

1 ,

y2 −
∑u

t=1
xtKt,2, · · · (y2 −

∑u

t=1
xtKt,2)g

w
2 , 1, g2, · · · gk+w−u−1
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yn −
∑u

t=1
xtKt,n, · · · (yn −

∑u

t=1
xtKt,n)gw

n , 1, gn, · · · gk+w−u−1
n ,











,

and Y = (z0, . . . , zw, t0, . . . , tk+w−u−1). Solving system (7) is equivalent to

solve the following equation in the unknowns Y, a1, . . . , au.

M(a1, . . . , au) · Y t = 0, (8)

The known existene of a non-trivial solution to this equation implies that

M(a1, . . . , au) is not of maximal rank. For any square submatrix M ′(x1, . . . , xu),
we must have Det(M ′(a1, . . . , au)) = 0. Every suh determinant of the form

Det(M ′(x1, . . . , xu)) is a multivariate polynomial of degree w+1 in u unknowns.

To get a solution, one has to ompute the Groebner basis of the system,

sine the number of solutions will be relatively small. However omputing the

Groebner basis is a very di�ult problem, and at least the omplexity is hard

to evaluate.

6 Proposition of parameters

The authors wish to thank here Jean-Sébastien Coron, for fruitful disussion.

He pointed out a new attak on the modi�ation of the system whih enables to

reover the private-key from the publi-one if one is not areful enough. In the

building of our parameters, we took into aount his remarks.

We onsider the following parameters:

� The hosen �elds are GF(qu) = GF(280), GF(q) = GF(220) (thus u = 4)
� We take n = 2048, the size of the publi-key is thus equal to 160 kbits, that

is twie as large as for the original parameters.

� Then W = 546 is su�ient to resist all attaks against the publi-key. We

took into aount Coron's remarks.

� Finally w = 49.



Compared to the original system, the blok size is smaller. Namely a plaintext

onsists of k−u elements in GF(220), that is 27920 bits. The transmission rate is

≈ 68%. These parameters are resistant to the previously known deoding attak

given in [1℄.

Another advantage ompared to the original system is that the omputations

are done in a small �eld that is to know GF(220). This �eld an be implemented

in software or hardware very easily, dereasing thus the omplexity of the sheme.

Now we an study the resistane of the sheme against di�erent approahes.

Univariate approah

As stated in the previous setion, Eve has to ompute the roots of a poly-

nomial of degree 49 × 260 ≈ 265
over GF(280), or greatest ommon divisors of

at least two of these polynomials, whih is intratable, and osts more that 280

even if the polynomials are sparse ones.

Multivariate approah

In that ase Eve has to �nd the Groebner basis over GF(220) of a set of equa-
tions of degree 49 in 4 unknowns. Experimentally by taking smaller parameters,

eah equation has many terms, whih gives a system of equations eah having

approximately 220
non zero terms. This should be a di�ult system to solve, but

no omplexity estimation an be derived yet.

7 Conlusion

In this paper we have proposed a new version of the Augot-Finiasz ryptosystem

based on the polynomial reonstrution problem. It is as simple of use and of

design as the original one and is now seure against Coron's attak, whih breaks

in polynomial time the original ryptosystem.

We proposed parameters for the system to be seure against state of the art

attaks. While the size of the publi-key has to be inreased, the system also

gains in e�ieny, with a smaller blok size.

Referenes

1. D. Augot and M. Finiasz. A publi key enryption sheme bases on the polynomial

reonstrution problem. In EUROCRYPT 2003, pages 222�233, 2003.

2. Anne Canteaut and Florent Chabaud. A new algorithm for �nding minimum-

weight words in a linear ode: Appliation to MEliee's ryptosystem and to

narrow-sense bh odes of length 511. IEEE Transations on Information Theory,

44(1):367�378, January 1998.

3. J.-S. Coron. Cryptanalysis of a publi-key enryption sheme based on the polyno-

mial reonstrution problem. Cryptology ePrint Arhive, Report 2003/036, 2003.

http://eprint.iar.org/.

4. P. Delsarte. On sub�eld subodes of modi�ed Reed�Solomon odes. IEEE Trans-

ations on Information Theory, 20:575�576, 1975.



5. E. M. Gabidulin. Publi-key ryptosystems based on linear odes over large alpha-

bets: e�ieny and weakness. In P. G. Farrell, editor, Codes and Cyphers, pages

17�31. Formara Limited, Southend-on-sea, Essex, 1995.

6. V. Guruswami and M. Sudan. Improved deoding of Reed�Solomon and algebrai

geometri odes. IEEE Transations on Information Theory, 45:1757�1767, 1999.

7. A. Kiayias and M. Yung. Cryptanalysis of the the polynomial reonstrution

based publi-key ryptosystem of eurorypt'03 in the optimal parameter setting.

Available on http://www.se.uonn.edu/�akiayias/, 2003.

8. A. Kiayias and M. Yung. Cryptographi hardness based on the deoding of Reed�

Solomon odes. In Proeedings of ICALP 2002, volume 2380 of LNCS, pages

232�243, 2003.

9. V. S. Pless and W. C. Hu�man, editors. Handbook of Coding Theory. Elsevier

Siene B.V., 1998.

10. L. R. Welsh and E. R. Berlekamp. Error orretion for algebrai blok odes, 1986.

US Patent 4 633 470.


