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Abstra
t. In this paper, we present a modi�
ation of the Augot-Finiasz


ryptosystem presented at EUROCRYPT 2003. Coron managed to de-

sign an atta
k against the original 
ryptosystem enabling an atta
ker

to de
rypt any inter
epted 
iphertext e�
iently. We introdu
e here a

modi�
ation of the s
heme whi
h appears to resist to this atta
k. We

furthermore propose parameters thwarting the state of the art atta
ks.

1 Introdu
tion

At the Euro
rypt 2003 Conferen
e, Augot and Finiasz [1℄ presented a new publi
-

Key 
ryptosystem supposedly based upon the problem of polynomial re
onstru
-

tion (hereafter denoted PR problem) : given n, k, t and (gi, yi)i=1...n n 
ouples

in GF (qu), �nd any polynomial p[X ] of degree less than k su
h that p(gi) = yi

for at least t values of i.
As analysed in [8℄, this problem seems to be hard, and therefore would pro-

vide a solid ground to design publi
 key 
ryptosystems. Basi
ally, the original

s
heme in [1℄ uses as a publi
-key a word of a Reed-Solomon 
ode s
rambled

by the addition of an error-ve
tor of su�
iently large Hamming weight su
h

that the PR problem is intra
table. Note that the 
onditions under whi
h the

problem is tra
table are given by Guruswami and Sudan in [6℄. Additionally to

being an alternative to the existing publi
 key en
ryption s
heme based on the

fa
torization or on dis
rete logarithm problems, the system provided a solution

to the reminis
ent large key-size problem of some en
ryption s
heme su
h as

M
Elie
e system or HFE. Namely, the authors proposed in parti
ular a system

with a key of 3072 bits for a se
urity of 280
binary operations.

This system however was broken by Coron in polynomial-time, exploiting

a linear transformation used in the en
ryption step [3℄. He designed a variant

of the Wel
h-Berlekamp de
oding algorithm for Reed-Solomon 
odes [10℄ whi
h


onstru
ts a univariate polynomial of low degree whose roots 
ontains one se-


urity parameter. Sin
e the number of its roots is upper-bounded by the low

degree of the polynomial, this polynomial is easily fa
tored and the system 
an

be broken in polynomial-time. A further analysis of the system and of Coron's

atta
k was given by Kiayias and Yung in [7℄. They also proposed a modi�
ation

to resist Coron's atta
k, but this modi�
ation is still inse
ure.



All these atta
ks are 
yphertext-only, and re
over the plaintext 
orresponding

to any 
iphertext, without breaking the given instan
e of the PR problem. This

demonstrate that the en
ryption fun
tion is not one-way, and that there is no

redu
tion of an atta
k of the system to an algorithm solving the PR problem

(thus no se
urity proof).

Here, we show that a simple modi�
ation of the s
heme, using properties of

the well-known Tra
e operator over �nite �elds, 
an thwart Coron's atta
k.

In the �rst Se
tion, we re
all how Reed-Solomon 
odes are 
onstru
ted and we

de�ne the Tra
e operator. Then, in Se
tion 2, we re
all the original system and

present qui
kly the prin
iple of Coron's atta
k. Finally, we present in Se
tion 3

the system that is almost the same as the original one ex
ept that the stru
ture

is s
rambled by using properties of the Tra
e operator. We show that this system

resists all known atta
ks in
luding Coron's atta
k. We 
on
lude with a proposal

of a resistant set of parameters for the new system.

2 Reed-Solomon Codes and Tra
e Operator

In this se
tion we present algebrai
 tools used later in the paper for the design

of the system and for its se
urity analysis. Reed-Solomon 
odes are well-known

optimal 
odes and are 
losely related to the rings of univariate polynomials over

�nite �elds.

Consider a �nite �eld GF(qu), where q is the power of a prime number. With

these notations, the �nite �eld GF(q) is a sub�eld of GF(qu). Let us 
onsider a
list

S = (g1, g2, . . . , gn)

of n distin
t elements in GF(qu), denoted hereafter the support. Let evS

denote the evaluation of polynomials on the elements of S, i.e.

evS

{

GF(qu)[X ] −→ GF(qu)n

p(X) 7−→ (p(g1), p(g2), . . . , p(gn)),

where GF(qu)[X ] is the set of univariate polynomials with 
oe�
ients in

GF(qu).

De�nition 1 The Reed-Solomon 
ode of dimension k and of support S is

RSk(S) = {evS(f) | f ∈ GF(qu)[X ] and deg(f) < k}.

The 
ode RSk(S) 
an 
orre
t up to ⌊(n− k)/2⌋ 
orrupted positions in poly-

nomial time by using a Berlekamp-Massey or Welsh-Berlekamp algorithm [10℄.

The �nite �eld GF(qu) 
an be viewed as a u-dimensional ve
tor spa
e over

GF(q). Let γ1, . . . , γu be a basis of GF(qu) over GF(q), then every element

α ∈ GF(qu) 
an be uniquely written α =
∑u

i=1
aiγi, where ai ∈ GF(q).



De�nition 2 The Tra
e operator of GF(qu) into GF(q) is de�ned by

∀x ∈ GF(qu), Tr(x) = x + xq + · · · + xqu−1

The Tra
e operator is a GF(q)-linear (and not GF(qu)) mapping of GF(qu)
into GF(q). It de�nes a s
alar produ
t over GF(qu). For any basis γ1, . . . , γu of

GF(qu), there exists a unique dual basis γ⋆
1 , . . . , γ⋆

u with respe
t to the s
alar

produ
t indu
ed by the Tra
e operator. That is, we have

Tr(γiγi) = 1 and Tr(γiγj) = 0, if i 6= j.

We note also that this dual basis 
an be easily 
omputed. We also ex-

tend the a
tion of the Tra
e operator to ve
tors c = (c1, . . . , cn) as Tr(c) =
(Tr(c1), . . . ,Tr(cn)). The fundamental proposition linking the Tra
e operator

and some Reed-Solomon 
odes is the following:

Proposition 1 Let S = (g1, . . . , gn) where gi ∈ GF(q) for all i = 1, . . . , n (i.e.

the gi's all belong to the sub�eld of GF (qu)) . Then for all c = evS(p) with

p(X) =
∑k−1

i=0
piX

i ∈ GF (qu)[X ] (polynomials with 
oe�
ients in the extension

�eld), we have

Tr(c) = evS(P ),

where P (X) =
∑k−1

i=0
Tr(pi)X

i
.

Furthermore the 
orresponding Reed-Solomon 
ode RSk(S) is stable under

the a
tion of the Tra
e operator.

Proof. Sin
e c = evS(p), for every 
omponent cj of c, we have cj = p(gj) =
∑k−1

i=0
pjg

j
i . Sin
e gj ∈ GF(q) and by GF(q)-linearity of the tra
e operator, for

all j we have Tr(cj) =
∑k−1

i=0
Tr(pi)g

i
j = evS(P )j .

3 Original system

First, we des
ribe the original system as presented in [1℄, then, we des
ribe

Coron's atta
k.

3.1 Des
ription

The original system is the following:

� Known Parameters: GF(qu), integers n, k, W, w, a set S = (g1, . . . , gn) of
n distin
t elements over GF(qu).

� Key generation: Ali
e 
hooses randomly a moni
 polynomial p(X) of degree
k − 1 over GF(qu), and 
omputes c = evS(p). The ve
tor c belongs thus to

RSk(S). Then she generates randomly a ve
tor E = (E1, . . . , En) ∈ GF(qu)n

with exa
tly W non-zero 
oordinates. The publi
-key 
onsists of K = c+E.

Both c and E remain se
ret.



� En
ryption: Bob wants to send a message m0 = (m0,0, . . . , m0,k−2) of length
k − 1 over GF(qu) to Ali
e. First he transforms m0 into the polynomial

m0(X) =
∑k−2

i=0
m0,iX

i
and 
omputes m = evS(m0). Then he pi
ks up ran-

domly α ∈ GF(qu), and a ve
tor e of length n with w non-zero 
oordinates.

The 
iphertext that Bob sends to Ali
e is

y = m + αK + e.

� De
ryption: Ali
e �rst shortens the 
iphertext on the non-zero positions of

E by removing all 
oordinates 
orresponding to the non-zero positions of E.

She obtains y = m+αc+e, where the overlining operation denotes shortening
the ve
tors. Hen
e we obtain K = c. Sin
e a shortened Reed-Solomon 
ode

is still a Reed-Solomon 
ode, with a di�erent support, it is still de
odable.

Therefore by one de
oding step in the shortened Reed-Solomon 
ode, Ali
e

re
overs m+αc. Sin
e m = ev

S
(m0) and αc = ev

S
(αp) and sin
e the degree

of m0 is less than the degree of p, Ali
e �rst re
oversQ(X) = m0(X)+αp(X)
by interpolation. Then, by 
onsidering that the highest 
oe�
ient of Q is α,
she re
overs α, and �nally m0.

The se
urity analysis of the system given in [1℄ shows that the system,

with 
arefully sele
ted parameters, 
an resist all previously known de
oding at-

ta
ks, like error set de
oding and information set de
oding with a publi
 key

relatively small (a few thousand bits). The authors proposed the following pa-

rameters: GF(qu) = GF(284), n = 1024, W = 74, ensuring that the PR problem

is intra
table and w = 25, ensuring a se
urity of at least 280
against de
oding

atta
ks. Now, with su
h parameters, the size of the publi
 key c + E is equal to

84 × 1024 = 84 kbits.

3.2 Coron's Atta
k

Coron designed a very e�
ient 
iphertext only atta
k able to re
over the s
ram-

bling element α ∈ GF(qu) in polynomial time, see [3℄. When α is known, one


an easily re
over the plaintext as stated in [1℄. To a
hieve this, he modi�es the

Welsh-Berlekamp algorithm, and builds a polynomial of low degree vanishing at

the element α.
Suppose Eve inter
epts a 
iphertext y. To re
over the plaintext m0, she has

to solve the equation y = evS(m0)+αK+e. Then, Eve has to solve the following
system in the unknowns m0(X), α, and ei.

yi = m0(gi) + αKi + ei, i = 1, . . . , n,

where m0 is a polynomial of degree less than k − 1, the ei's are equal to

0 ex
ept on w positions, and α ∈ GF(qu). Solving this system is equivalent to

solving the system in the unknowns Z(X), α, and m0(X)

∀i = 1, . . . , n, Z(gi)(yi − αKi) = m0(gi)Z(gi), (1)



where Z(X) is a non-zero polynomial over GF(qu) of degree at most w. If
this system is expanded it leads to a quadrati
 system. Following the prin
iple

of the Berlekamp-Welsh algorithm, Coron linearizes the system by introdu
ing

the following system in the new unknowns Z(X), α, and N(X):

∀i = 1, . . . , n, Z(gi)(yi − αKi) = N(gi), (2)

where N(X) is now a non-zero polynomial over GF(qu) of degree at most

k + w− 2. A solution to system (1) also gives a solution to system (2). Thus, by

getting every solution of system (2) one gets ne
essarily a solution for de
rypting

the inter
epted 
iphertext. These equations still form a quadrati
 system in the


oe�
ients of Z(X), α and the 
oe�
ients of N(X). However, let us 
onsider
the matrix of the system

M(x) =











y1 − xK1, · · · (y1 − xK1)g
w
1 , 1, g1, · · · gk+w−2

1

y2 − xK2, · · · (y2 − xK2)g
w
2 , 1, g2, · · · gk+w−2

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

yn − xKn, · · · (yn − xKn)gw
n , 1, gn, · · · gk+w−2

n











.

This matrix has the known parameters yi's, Ki's and gi's and x as an in-

determinate. The 
ondition to have a solution Z(X), α, B(X) to the system 2

is that M(α) is not of maximal rank. Hen
e α is a root of the determinant of

any square submatrix of M(x). Any su
h determinant is a univariate polyno-

mial over GF(qu) of degree at most w + 1. By 
omputing a few determinants

and 
omputing their greatest 
ommon divisors, Eve �nds α very easily (re
all

that w is small) re
overing thus the plaintext in polynomial time. Eve 
an also


ompute the roots of a parti
ular determinant and try the di�erent roots into

the system to 
he
k whi
h one is the right one. With the originally proposed pa-

rameters n = 1024, k = 900, w = 25, W = 74, and q = 280
, Coron demonstrate

that it takes about 30 minutes of 
omputation on a standard PC to re
over the

plaintext from the 
iphertext [3℄.

For 
ompleteness, Coron proposed a 
ase 2 version whi
h must be used in

parti
ular 
ases. This happens whenever M(0) is not of full rank. By 
hoosing

well the submatri
es Eve 
ould even re
over the elements of the se
ret key.

Kiayias and Yung showed that this 
on�guration is very rare [7℄.

4 The New System

With some simple algebrai
 
onsiderations, we 
an thwart this atta
k without

in
reasing the size of the publi
 key. This modi�
ation produ
es a system that

is somehow better than the original one. Indeed, it in
reases the speed of the

system and de
reases the blo
k size.

The idea itself was 
ontained in the original paper. It 
onsisted in taking the

publi
 key with respe
t to a sub�eld sub
ode of the Reed-Solomon 
ode. Con-

sidering sub
odes of very stru
tured 
odes is usually a good idea for s
rambling



their stru
ture. The best example of it is without 
ontest the M
Elie
e sys-

tem. Whereas it was shown that using the family of Generalized Reed-Solomon


odes was extremely weak, using the family of Goppa 
odes � whi
h are sub-

�eld sub
odes of Generalized Reed-Solomon 
odes � is se
ure against all types of

stru
tural atta
ks. Behind these 
onsiderations we �nd on
e again the Tra
e op-

erator that is intimately linked with the notion of sub�eld sub
ode, see [4℄. This

led us to design a system based on the model of Augot and Finiasz's using an

additional s
rambling by means of this very Tra
e operator. Let it be des
ribed

as follows.

� Known Parameters of the system: a �nite �eld GF(qu), integers n, k, W, w.
a set of S = (g1, . . . , gn) of n distin
t elements of GF(q) ⊂ GF(qu).

� Key generation: Ali
e se
retly generates a polynomial p(X) =
∑k−1

i=0
piX

i

over GF(qu), with the following properties: the u 
oe�
ients pk−1, . . . , pk−u

are su
h that they form a basis of GF(qu) over GF(q). She 
omputes c =
evS(p). The ve
tor c belongs thus to RSk(S). Then she generates a ve
tor

E = (E1, . . . , En) ∈ GF(qu)n
with exa
tly W non-zero 
oordinates. The

publi
-key is the ve
tor K = c + E over GF(qu). Both c and E remain

se
ret.

� En
ryption: Bob wants to send a message m0 = (m0,0, . . . , m0,k−u−1) of

length k−u over GF(q) to Ali
e. First he transforms m0 into the polynomial

m0(X) =
∑k−u−1

i=0
m0,iX

i
and 
omputes m = evS(m0). Then he randomly


hooses an element α ∈ GF(qu) and a ve
tor e over GF(q) of length n with

w non-zero 
oordinates. The 
iphertext Bob sends to Ali
e is

y = m + Tr(αK) + e,

where Tr denotes the tra
e operator of GF(qu) onto GF(q) (see De�nition

2).

� De
ryption: this step is almost identi
al to the de
ryption step of the original

s
heme. Ali
e �rst shortens the 
iphertext on the non-zero positions of E.

She obtains y = m + Tr(αc) + e, where the overlining operation denotes

shortening the ve
tors. Remember that S was 
hosen to de de�ned over

GF(q), thus, by Proposition 1 Tr(αc) ∈ RSk(S), the Reed-Solomon 
ode of

support S, of length n−W and dimension k, whi
h has a de
oding algorithm.

By one de
oding step in RSk(S), Ali
e re
overs m + Tr(αc). We have m =

ev

S
(m0), and Tr(αc) = ev

S
(P ) where P (X) =

∑k−1

i=0
Tr(αpi)X

i
. Thus,

by polynomial interpolation, she re
overs the unique polynomial Q(X) =
∑k−1

i=0
qiX

i
of degree k− 1 over GF(q) su
h that ev

S
(Q) = m +Tr(αc), that

is Q(X) = m0(X)+P (X). Sin
e m0 has degree less than k− u− 1, we have

qi = Tr(αpi), for i = k − u, . . . , k − 1,

by identi�
ation of high degree terms.

By the property of the Tra
e operator, the Tr(αpi) for i = k−u, . . . , k−1 are
exa
tly the u 
oordinates of α in the dual basis of pk−1, . . . , pk−u. This gives



us dire
tly α with no additional 
ost. Knowing α one gets the polynomial P
whose 
oe�
ients are the Tr(αpi) for i = 0, . . . , k − 1. Finally Ali
e gets the

plaintext m0(X) = Q(X) − P (X).

In order to generate the publi
-key, Ali
e has to pi
k up a basis of GF(qu)
over GF(q). Sin
e the number of su
h bases is very high, pi
king up randomly u
elements in GF(qu) and testing if they form a basis is a good way to pro
eed.

Considering that an arithmeti
 operation over GF(qu) 
osts O(u2log2q) bi-
nary operations, the total 
ost of the algorithm is:

� En
ryption: the Tra
e 
an be 
omputed O(u) time. Thus the en
ryption


osts O(nulogq) binary operations per bit of plaintext.

� De
ryption: the operations take pla
e in GF(q), and not in GF(qu). The 
ost
of de
oding in the shortened Reed-Solomon 
ode is thus equal to O((n −
W )2log2q). The polynomial Q 
an be interpolated in O((n − W )2log2q)
operations. To �nd the plaintext m0, one 
omputes the di�eren
e of two

polynomials of over GF(qu), that is k − u − 1 additions over GF(qu). This

an be negle
ted. Finally, sin
e u is small, the 
ost of de
ryption is roughly

O((n − W )2log q/k) binary operations per bit of plaintext.

Note that in the following, we deal with a �eld GF(q) small enough to be

implemented in software or even in hardware. That is, we 
an 
onsider that

the operations in GF(q) have a 
onstant 
ost. This improves 
onsiderably the

e�
ien
y of the system.

5 Se
urity of the New System

The se
urity of the system against the previously known de
oding atta
ks was

investigated at length in Augot and Finiasz's paper, and we 
an reuse the results

here. To ensure a su�
ient se
urity, one has to 
hoose good parameters. We

show how Coron's approa
h 
an be modi�ed into either �nding the roots of a

polynomial of exponential degree or solving an overde�ned multivariate system,

but with very large equations. In the last Se
tion, we propose parameters for the

system to be se
ure.

5.1 Coron-like atta
ks

We study how Coron's approa
h must be modi�ed to be applied to the modi�ed

system. Originally it 
onsisted in �nding the roots of a polynomial of degree

w + 1 over a large �nite �eld. In the new system, we have

y = evS(m0) + Tr(αK) + e, (3)

where m0 is a polynomial of degree k − u − 1, the ei's are equal to 0 ex
ept

for w positions, and α ∈ GF(qu). Solving this system is equivalent to solving the

system in the unknowns Z(X), α, and m0(X)



∀i = 1, . . . , n, Z(gi)(yi − Tr(αKi)) = m0(gi)Z(gi), (4)

where Z(X) is a non-zero polynomial over GF(q) of degree at most w.
There are two di�erent approa
hes to deal with: the univariate approa
h and

the multivariate approa
h. Both derive from the properties of the Tra
e operator.

Univariate approa
h

A solution to system (4) is a solution to the following system in the unknowns

Z(X), α, and N(X),

∀i = 1 . . . n, Z(gi)(yi − Tr(αKi)) = N(gi), (5)

where N(X) is a non-zero polynomial over GF(q) of degree at most k + w −
u − 1. Let

M
Tr

(x) =











y1 − Tr(xK1), · · · (y1 − Tr(xK1))g
w
1 , 1, g1, · · · gk+w−u−1

1

y2 − Tr(xK2), · · · (y2 − Tr(xK2))g
w
2 , 1, g2, · · · gk+w−u−1

2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

yn − Tr(xKn), · · · (yn − Tr(xKn))gw
n , 1, gn, · · · gk+w−u−1

n











,

where Tr(x) =
∑qu−1

i=0
xqi

is a polynomial over GF(q) of degree qu−1
. The

element α is su
h that M
Tr

(α) is not of maximal rank. Thus α is a root of the

determinant of any square submatrix of MTr(x).
Now the 
onstatation is made that the determinants are polynomials over

GF(q) of degree (w+1)qu−1
. Therefore, sin
e 
omputing the roots or the greatest


ommon divisors of polynomials is polynomial in 
omplexity with the degree,

it be
omes rapidly intra
table to �nd the 
ommon root or to fa
tor of these

polynomials.

The se
ond 
ase in Coron's atta
k 
annot happen here. Indeed, the polyno-

mials have a too large degree to be uniquely interpolated from the n 
omponents

of the support S.

Multivariate approa
h

Let γ1, . . . , γu be a basis of GF(qu) over GF(q). Let

α =
u
∑

t=1

atγt,

and let Ki,j = Tr(γiKj). Finding a solution to system (4) is now equivalent

to solve the following system in the unknowns Z(X), a1, . . . , au, and m0(X).

∀i = 1, . . . , n Z(gi)

(

yi −

u
∑

t=1

atKt,i

)

= Z(gi)m0(gi). (6)

We 
onsider the following system in the unknowns Z(X), a1, . . . , au, and

N(X).



∀i = 1, . . . , n Z(gi)

(

yi −

u
∑

t=1

atKt,i

)

= N(gi). (7)

where Z has degree at most w, and N is a non-zero polynomial over GF(q)
of degree at most k + w − u − 1.

A solution to system (6) is also a solution to system (7): if Z, a1, . . . , au, and
m0 are solutions to system (6) then Z, a1, . . . , au, and N = Z ·m0 are solutions

to system (7). By following step by step Coron's approa
h we �rst expand the

polynomials.

Let Z(X) =
∑w

i=0
ziX

i
and let N(X) =

∑k+w−u−1

i=0
tiX

i
. Let us de�ne

M(x1, . . . , xu) =











y1 −
∑u

t=1
xtKt,1, · · · (y1 −

∑u

t=1
xtKt,2)g

w
1 , 1, g1, · · · gk+w−u−1

1 ,

y2 −
∑u

t=1
xtKt,2, · · · (y2 −

∑u

t=1
xtKt,2)g

w
2 , 1, g2, · · · gk+w−u−1

2 ,
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

yn −
∑u

t=1
xtKt,n, · · · (yn −

∑u

t=1
xtKt,n)gw

n , 1, gn, · · · gk+w−u−1
n ,











,

and Y = (z0, . . . , zw, t0, . . . , tk+w−u−1). Solving system (7) is equivalent to

solve the following equation in the unknowns Y, a1, . . . , au.

M(a1, . . . , au) · Y t = 0, (8)

The known existen
e of a non-trivial solution to this equation implies that

M(a1, . . . , au) is not of maximal rank. For any square submatrix M ′(x1, . . . , xu),
we must have Det(M ′(a1, . . . , au)) = 0. Every su
h determinant of the form

Det(M ′(x1, . . . , xu)) is a multivariate polynomial of degree w+1 in u unknowns.

To get a solution, one has to 
ompute the Groebner basis of the system,

sin
e the number of solutions will be relatively small. However 
omputing the

Groebner basis is a very di�
ult problem, and at least the 
omplexity is hard

to evaluate.

6 Proposition of parameters

The authors wish to thank here Jean-Sébastien Coron, for fruitful dis
ussion.

He pointed out a new atta
k on the modi�
ation of the system whi
h enables to

re
over the private-key from the publi
-one if one is not 
areful enough. In the

building of our parameters, we took into a

ount his remarks.

We 
onsider the following parameters:

� The 
hosen �elds are GF(qu) = GF(280), GF(q) = GF(220) (thus u = 4)
� We take n = 2048, the size of the publi
-key is thus equal to 160 kbits, that

is twi
e as large as for the original parameters.

� Then W = 546 is su�
ient to resist all atta
ks against the publi
-key. We

took into a

ount Coron's remarks.

� Finally w = 49.



Compared to the original system, the blo
k size is smaller. Namely a plaintext


onsists of k−u elements in GF(220), that is 27920 bits. The transmission rate is

≈ 68%. These parameters are resistant to the previously known de
oding atta
k

given in [1℄.

Another advantage 
ompared to the original system is that the 
omputations

are done in a small �eld that is to know GF(220). This �eld 
an be implemented

in software or hardware very easily, de
reasing thus the 
omplexity of the s
heme.

Now we 
an study the resistan
e of the s
heme against di�erent approa
hes.

Univariate approa
h

As stated in the previous se
tion, Eve has to 
ompute the roots of a poly-

nomial of degree 49 × 260 ≈ 265
over GF(280), or greatest 
ommon divisors of

at least two of these polynomials, whi
h is intra
table, and 
osts more that 280

even if the polynomials are sparse ones.

Multivariate approa
h

In that 
ase Eve has to �nd the Groebner basis over GF(220) of a set of equa-
tions of degree 49 in 4 unknowns. Experimentally by taking smaller parameters,

ea
h equation has many terms, whi
h gives a system of equations ea
h having

approximately 220
non zero terms. This should be a di�
ult system to solve, but

no 
omplexity estimation 
an be derived yet.

7 Con
lusion

In this paper we have proposed a new version of the Augot-Finiasz 
ryptosystem

based on the polynomial re
onstru
tion problem. It is as simple of use and of

design as the original one and is now se
ure against Coron's atta
k, whi
h breaks

in polynomial time the original 
ryptosystem.

We proposed parameters for the system to be se
ure against state of the art

atta
ks. While the size of the publi
-key has to be in
reased, the system also

gains in e�
ien
y, with a smaller blo
k size.
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