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Abstract 
We present a cryptographic architecture optimization 

technique called divide-and-concatenate based on two 
observations: (i) the area of a multiplier and associated data 
path decreases exponentially and their speeds increase 
linearly as their operand size is reduced. (ii) in hash 
functions, message authentication codes and related 
cryptographic algorithms, two functions are equivalent if 
they have the same collision probability property. In the 
proposed approach we divide a 2w-bit data path (with 
collision probability 2-2w) into two w-bit data paths (each 
with collision probability 2-w) and concatenate their results 
to construct an equivalent 2w-bit data path (with a collision 
probability 2-2w). 

We applied this technique on NH hash, a universal 
hash function that uses multiplications and additions. When 
compared to the 100% overhead associated with duplicating 
a straightforward 32-bit pipelined NH hash data path, the 
divide-and-concatenate approach yields a 94% increase in 
throughput with only 40% hardware overhead. The NH 
hash associated message authentication code UMAC 
architecture with collision probability 2-32 that uses four 
equivalent 8-bit divide-and-concatenate NH hash data paths 
yields a throughput of 79.2 Gbps with only 3840 FPGA 
slices when implemented on a Xilinx XC2VP7-7 Field 
Programmable Gate Array (FPGA). 

 
1. Motivation 

In the past, most cryptographic algorithms have been 
developed to run fast on general-purpose processors. More 
recently, dedicated cryptographic hardware is being 
developed and deployed to match the >10 Gbps wire speed 
requirements. In this paper we will investigate scalable 
hardware architectures for cryptographic algorithms.  

Cryptographic algorithms such as block encryption 
and message authentication are iterative, data-driven 
algorithms. These algorithms take an input message and a 
user key and generate a result after several iterations. Since 
these cryptographic algorithms are data-dominated, their 
hardware implementations are data path dominated with 
only a small amount of control logic. Arithmetic operations 
such as add, multiply and shift/rotate are at the core of these 

cryptographic algorithms. One straightforward approach to 
speeding up cryptographic hardware is to use fast 
implementations of adders, multipliers and other 
components [13]. Orthogonal to the circuit level and logic 
level approaches are architectural level speed-up 
techniques such as pipelining and loop unrolling [11]. 
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Figure 1:  32-bit data path for the NH hash function 
 
Consider the NH hash data path shown in Figure 1 

that is the core building block of the UMAC (Universal 
Message Authentication Code). This data path can be 
implemented as a three-stage pipeline. In the first stage, 
two 32-bit adders are used to add two adjacent message 
words to their corresponding sub keys. In the second stage, 
these two 32-bit intermediate results are multiplied. In the 
final stage the 64-bit result from a multiplier is 
accumulated into an output register using a 64-bit adder. 
We implemented this three-stage pipeline on a Xilinx 
Virtex II FPGA device using a single cycle adder and a 
single cycle multiplier. Since the clock rate of a 64-bit 
combinational adder is 193MHz and the clock rate of a 
32-bit combinational multiplier is 83MHz, the throughput 
of this design is limited by the throughput of the multiplier 
and equals 5.3Gbps (=64bits×83MHz). Replacing the 
single cycle multiplier by a 5-stage 32-bit pipelined Xilinx 
multiplier core doubles the clock rate of the multiplier 
stage and that of the design to 160MHz. This in turn 
doubles the throughput of the design to 10.2Gbps (=64 
bits×160 MHz). Finally, we can replicate this pipelined  
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Figure 2: Area and throughput of adders, multipliers and NH hash data path as a function of operand size. Since (a) the area of a 
multiplier and NH hash data path grow exponentially and (b) their clock rates decrease linearly with operand size, (c) the throughput/area 
ratio of multiplier and NH hash data path decrease exponentially with operand size.  
 
data path, with each copy operating on an independent 
input stream to get an additional improvement in 
throughput. However, this approach is expensive. 
 
1.1. Can we do any better? 

Cryptographic algorithms use large bit-width 
operations to improve security. For example, UMAC uses 
32-bit and 64-bit additions and 32-bit multiplications. 
128-bit Advanced Encryption Standard uses 32-bit 
additions and multiplications. Let us now analyze 
bottlenecks in speeding up wide operand data paths. 
• The hardware-complexity of a multiplier and NH data 

path increase exponentially with operand size, while the 
hardware-complexity of an adder increases linearly with 
operand size. This is summarized in Figure 2(a). For 
example, while an 8-bit multiplier consumes 44 Virtex II 
slices, a 16-bit multiplier consumes 161 Virtex II slices 
and a 32-bit multiplier consumes 588 Virtex II slices. 
Furthermore, the area of an adder is much smaller than 
that of a multiplier for operand sizes ≥ 8-bits. 

• From Figure 2 (b), it can be seen that a 2-bit adder and a 
2-bit multiplier have identical speeds of 420MHz, the 
speed limit of the target FPGA device. This is because 
each output bit of 2-bit adder and multiplier is a 4-to-1 
function and can be implemented exactly in one FPGA 
Look Up Table (LUT). Furthermore, the clock rates of 
adders and multipliers decrease almost linearly with the 
size of the operand. For example, the clock rates of 4-bit, 
8-bit, 16-bit and 32-bit multipliers are 353MHz, 310MHz, 
237MHz and 160MHz respectively. Since the clock rate 
of an adder is ≥ that of a multiplier with same operand 
size, multiplier delay determines the critical path of NH 
hash data path. 

• Figure 2(c) shows that the normalized throughput/area 
ratio (using the ratio for a 2-bit unit as 1) for multipliers 
and the NH hash decreases exponentially with operand 

size. The case for adders is less dramatic. 
In a nutshell, (1) crypto implementations that do not 

use multiplications are superior to those that do. (2) For a 
given operand size, adders yield more throughput (in Gbps) 
per unit area (per FPGA slice) than a multiplier. (3) 
Implementations that use small sized operands are superior 
to those that use large operands. 

In this paper we propose to divide a 2w-bit data path 
into two w-bit data paths and concatenate their results to 
construct an equivalent 2w-bit data path. The concept of 
equivalence is crucial. Obviously, a straightforward data 
path and the corresponding divide-and-concatenate data 
path cannot be equivalent in terms of the results that they 
output. We define two data paths to be equivalent if the 
results that they output satisfy a pre-defined property. For 
cryptographic algorithms such as hash functions and 
message authentication codes the actual result is not 
important. Rather, it is the collision probability of the 
result that is important. Hence, we propose that two data 
paths implementing a hash function be considered 
equivalent if they have the same collision probability.  

In the rest of this paper we will describe the 
divide-and-concatenate architecture optimization technique. 
Specifically, we will introduce universal hash functions, 
NH hash a universal hash function and the UMAC 
message authentication code based on NH hash in section 
2. We will apply the divide-and-concatenate technique to 
NH hash in section 3. In section 4 we will present the 
architecture for the UMAC based on the NH hash 
architectures from section 3. We will then compare our 
work with related work in section 5 and finally summarize 
our contributions in section 6.  

 
2. Universal Message Authentication Code 

UMAC is a NESSIE (New European Schemes for 
Signatures, Integrity, and Encryption) message 



authentication code standard [16]. The core of UMAC is the 
universal hash function NH hash. In this section we will 
describe universal hash functions in general and the NH 
hash in particular. 

 
2.1. Universal Hash Function 

Carter and Wegman [4] defined a universal hash 
function as follows: Let A and B be two sets, and let H be a 
family of functions from A to B. H is a universal family of 
hash functions if for every pair x1, x2 ∈ A with x1≠x2, and 
h(x1), h(x2) ∈ B, the collision probability of h(x1) = h(x2) 
equals to 1/|B| and h in H. |B| is size of set B and 1/|B| is the 
smallest possible value of the probability. When B is small, 
the collision probability is large. 

A MAC that uses a universal hash function as a 
building block hashes the input message M down to a 
small-size hash value using the universal hash function and 
then applies a cryptographic primitive to this hash value [5]. 
Since universal hash functions can compress the message 
M efficiently, the associated MACs are fast. Several 
universal hash functions and associated MACs have been 
proposed including MMH [6], Square Hash [7], 
bucket-hash [8], TMMH [9] and NH hash [3]. MACs are 
used by a receiver to verify whether the data received from 
the sender is not modified by a third party during 
transmission by computing the MAC of the received 
message using the secret key shared with the sender and 
matching it with the received MAC.  

 
2.2. NH Hash 

NH hash is a universal hash function that uses 
additions and multiplications; the operations correspond to 
machine instructions on modern processors. When NH hash 
is implemented on a modern processor, it can calculate the 
hash value for a 1024 word (a word is 32-bit wide) message 
using 1024 32-bit word sub keys as follows: 
(M1 +32 K1) × (M2 +32 K2) +64�+64 (Mk-1 +32 Kk-1) × (Mk +32 Kk) 
Mi and Ki are 32-bit message words and corresponding sub 
key words. +32 and +64 are addition mod 232 and addition 
mod 264 respectively. The fastest implementation will 
require (i) 1024 32-bit adders to add each message word 
with its corresponding sub key word in the first step; (ii) 
512 32-bit multipliers to multiply adjacent pairs of results 
from the addition step and (iii) a 9-level balanced addition 
tree composed of 511 64-bit adders to generate the hash 
value. This is expensive and in normal applications data 
paths are much smaller. 

A 32-bit NH hash data path that operates on 32-bit 
input message words and 32-bit sub key words has a 
collision probability of 2-32. Generally, A w-bit NH hash 
data path that operates on w-bit input message words and 
w-bit sub key words has a collision probability of 2-w [3].  

 

2.3. Reducing Collision Probability of NH hash 
Since the bit-width w of the NH hash function is 

determined by the architecture of the underlying processor, 
increasing w is not always a feasible solution to reduce the 
collision probability. However, since NH is a universal 
hash function, its collision probability of 2-w can be 
reduced to 2-nw by hashing the same message n times using 
n independent keys and concatenating the results [5]. For 
example, if we hash a message twice using the w-bit NH 
hash function, each time with a different set of sub keys 
and concatenating the two hash values, the collision 
probability will drop from 2-w to 2-2w.  

However this solution requires 2× key material. The 
Toeplitz-extension described in [3] reduces the amount of 
sub key material making this approach practical. As shown 
in Figure 3, when we use two 16-bit data paths to construct 
a 32-bit NH hash using Toeplitz-extension, the sub keys 
for the second data path are obtained by shifting the 
corresponding sub keys of the of the first data path using 
component S. When Toeplitz-extension is used a single 
1024 w-bit-word sub key RAM is sufficient independent 
of the number of data paths. 

 
3. Divide and Concatenate: An Architecture 

Level Optimization Technique 
The straightforward 32-bit NH hash data path shown 

in Figure 1 takes two 32-bit message words every cycle 
and generates a 64-bit hash value after the entire message 
is processed. 

Using the divide-and-concatenate technique a 32-bit 
NH hash data path with a collision probability of 2-32 can 
be constructed using two 16-bit NH hash data paths, each 
with collision probability of 2-16, and concatenating their 
32-bit results to generate a 64-bit hash value. This 
corresponds to the two data paths at the top of Figure 3.  

Using the data from Figure 2, the throughput of the 
straightforward 32-bit NH hash data path is 10.24 Gbps 
(=160MHz×64bits), while the throughput of the equivalent 
16-bit divide-and concatenate data path is 7.58 Gbps 
(=237MHz×32bits). The equivalent 16-bit divide-and- 
concatenate data path consumes 408 FPGA slices (=204 
slices per 16-bit NH hash data path×2) compared to 684 
slices by the straightforward 32-bit data path. Overall, the 
throughput/area ratio of 0.0186 Gbps/slice (=7.58 Gbps ÷ 
408 slices) for the divide-and-concatenate architecture is 
25% more efficient than 0.0149 Gbps/slice (=10.24 Gbps ÷ 
684 slices) for the straightforward architecture. 

The duplicated divide-and-concatenate architecture 
shown in Figure 3 uses four 16-bit NH hash data paths and 
processes a 64-bit input every cycle (same as the 
straightforward 32-bit NH data path) yielding a throughput 
of 15.17 Gbps (=237MHz×64bits) with an area of 816 
slices (=204slices×4units). The fixed shift operation S and 



the concatenation operation || in Figure 3 do not contribute 
to the area overhead in hardware. Compared to the 
straightforward 32-bit NH data path, this data path yields a 
48% (=15.17Gbps÷10.24Gbps) improvement in throughput 
with an associated area overhead of 19% 
(=816slices÷684slices).  

Let us apply this divide-and-concatenate technique 
once more and construct each 16-bit NH hash data path 
using four 8-bit NH hash data paths. This translates into 
sixteen 8-bit NH hash data paths to construct an equivalent 
32-bit NH hash data path. From Figure 2, the area of an 
8-bit NH hash data path is 60 slices and the clock rate is 
310 MHz, yielding a throughput of 19.84 Gbps (=310 
MHz×64 bits). The area for this equivalent 8-bit NH hash 
data path is 960 slices (=60 slices ×16 units). Compared to 
the straightforward 32-bit NH hash data path, this 8-bit 
equivalent data path yields a 94% improvement in 
throughput (=19.84Gbps÷10.24Gbps) with an area 
overhead of 40% (=960slices÷684slices). The 
throughput/area ratio of this 8-bit data path is 0.021 
Gbps/slice (19.84Gpbs÷960slices), greater than 0.0186 
Gbps/slice of the 16-bit data path based architecture. 
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Figure 3: This NH data path composed of four 16-bit NH hash 
data paths has a collision probability of 2-32. It processes two 
32-bit messages per clock cycle in parallel and generates two 
64-bit hash values.  
 

Does this mean that the more components that the 
basic data path is divided into, the better the resulting 
divide-and-concatenate data path? Let us construct a 32-bit 
NH hash data path using 64 4-bit data paths. The 
throughput of this data path is 22.6Gbps (=353MHz×64bits) 
and area is 1280 slices (=20slices×64units) yielding a 

throughput/area ratio of 0.0177 Gbps/slices (22.6 
Gpbs÷1280slices, which is less than that for the 8-bit 
equivalent NH hash data path. 

Figure 4 summarizes the area, throughput and 
throughput/area ratio for five equivalent 32-bit NH hash 
data paths (i.e., all these data paths have a collision 
probability of 2-32 and process 64 input bits every clock 
cycle). The 8-bit data path has the best throughput/area 
ratio. It achieves 90% throughput improvement with only 
40% area overhead. Compare this with the 100% area 
overhead when the straightforward 32-bit data path is 
duplicated achieve a 100% improvement in throughput. 

4-bit and 2-bit data path based designs are not as 
efficient as an 8-bit data path based design. In the 
divide-and-concatenate approach, the number of adders 
increases exponentially while their area decreases linearly. 
In 8-bit and larger designs the NH hash area is dominated 
by large multipliers. On the other hand, in 4-bit and 2-bit 
data path based designs the NH area is dominated by 
adders. This is because the area of an adder is comparable 
to that of a multiplier and the number of adders grows 
exponentially. 
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Figure 4: Normalized area, throughput and throughput/area ratio 
of five equivalent divided-and-concatenated data paths for a NH 
hash with collision probability of 2-32. 
 

 A drawback of the divide-and-concatenate technique 
is that the length of the output hash doubles as you go from 
the straightforward 32-bit data path to an equivalent 16-bit 
data path to an equivalent 8-bit data path and so on. In fact, 
the length of hash value of an equivalent 2-bit data path is 
16 times longer than that for the straightforward data path. 
We will discuss how this increase in output length impacts 
the overall performance of UMAC in next section. 

 
4. Putting It All Together: The UMAC 

Architecture 
The Universal Message Authentication Code has 

three steps: 
• Step 1: sub key generation: 



In this step, the user key is expanded into (i) 1024 
w-bit-word sub keys that are used by NH hash in step 2 and 
(ii) 512-bit key A for the HMAC-SHA1 cryptographic 
primitive used in step 3. Since sub keys are generated just 
once at the beginning of a session, this step does not impact 
the overall throughput of UMAC. 
• Step2: Hashing the input message using NH hash: 

If the message is larger than 1024 w-bit word, it will 
be partitioned into 1024 w-bit word blocks. Each block is 
compressed independently according to the method 
explained in section 2.2 and the final hash value is obtained 
as the concatenation of the hash values of each block and 
the message length encoded in binary: 
HM = NH(Msg blk 1)||NH(Msg blk 2)�||NH (Msg blk t)|| 
Message Length 
• Step 3: Computing the MAC: 

HMAC-SHA1, a cryptographic MAC, is applied to the 
concatenated hash HM from step 2 to obtain fixed length 
MAC. 

MAC = HMAC-SHA1A (HM ||Nonce) 
Typically the nonce is a counter which the sender 

increments with each transmitted message. 
HMAC-SHA1 operates on 512-bit block and generates 

a 160-bit result after 80 cycles. This 160-bit result is used 
by HMAC-SHA1 when it processes the next 512-bit 
message block. When all message blocks are consumed, 
this 160-bit result is the MAC. The fastest implementation 
of HMAC-SHA1 on an FPGA yields a throughput of 652 
Mbps and consumes 569 slices [10].  

When the UMAC architecture processes a single 
message stream, multiple NH data paths hash different parts 
of the message and concatenate them into HM as described 
in step 2. HM is then hashed into a MAC using 
HMAC-SHA1. The divide-and-concatenate approach 
cannot be applied to HMAC-SHA1 as it is not a universal 
hash function. 

In general, the throughput of HMAC-SHA1 is not a 
bottleneck for the overall UMAC architecture. The 
straightforward 32-bit NH hash data path compresses each 
1024×32-bit message block input into a 64-bit 
intermediate value or hash value output yielding a 
compression ratio of 512. The throughput of this 
straightforward NH hash data path is 10.24 Gbps at its input 
and 20 Mbps (=10.24 Gbps÷512) at its output (which is 
also the input to HMAC-SHA1). This is 32 times smaller 
than the 652 Mbps throughput of HMAC-SHA1. The 2-bit 
equivalent NH hash data path generates an output of 1024 
bits translating into a compression ratio of only 32 
(=1024×32-bit input ÷1024-bit output). The resulting 
throughput of 840Mbps (=26.9 Gbps÷32) at the input to the 
HMAC-SHA1 is > 652 Mbps throughput of HMAC-SHA1. 
Now, HMAC-SHA1 is the bottleneck. Table 1 summarizes 
the throughput, compression ratio and output data rate of 
the equivalent data paths for the 32-bit NH hash.  

Table 1:  Input throughput, compression ratio, output data rate 
for equivalent architectures of a 32-bit NH hash.  

Size 2bit 4bit 8bit 16bit 32bit 

Thro�put (Gbps) 26.9 22.6 19.8 15.2 10.2 

Comp. ratio 32 64 128 256 512 

O/p data rate (Mbps) 840 353 155 60 20 

 
To effectively utilize HMAC-SHA1 data path, the 

UMAC architecture can be designed such that 
HMAC-SHA1 works with multiple message streams and 
associated NH hash data paths. For example, since the data 
rate at the output of straightforward 32-bit NH hash 
architecture is 20Mbps and the throughput of 
HMAC-SHA1 is 654 Mbps, one HMAC-SHA1 data path 
can work with thirty two 32-bit NH hash data paths and 
associated message streams. This translates into an 
effective UMAC throughput of 326.4 Gbps. Table 2 
summarizes the maximum throughput, maximum number 
of independent message streams that can be supported, 
area (NH hash data path + HMAC-SHA1 data path) and 
throughput/area ratio of five UMAC architectures. For 
example, for 8-bit equivalent UMAC architecture, we use 
4(=654Mbps÷155Mbps) 16-bit NH hash data paths with 
960 slices. Its area is 3840 slices (=960slices per 
equivalent NH hash×4+569slices for HMAC-SHA1). Its 
throughput is 79.2 Gbps (19.8 Gbps per equivalent NH 
hash data path× 4). The 8-bit equivalent architecture has 
the best throughput/area ratio. 

Table 2: Effective throughput, maximum number of independent 
message streams that can be supported, area (NH hash data path 
+ HMAC-SHA1 data path) and throughput/area ratio of four 
UMAC architectures.  

 
5. Comparison to Related Work 

Early MAC algorithms used private-key based block 
ciphers in the cipher block-chaining (CBC) mode [1]. The 
hardware implementation of most block ciphers produces 
moderate throughput. The throughput of FPGA 
implementation of RC6 varies from 88.5 Mbps with 2638 
slices to 2.397 Gbps with 10856 slices [11]. Many 
academic and commercial IP cores of AES are available. 
The most efficient implementation has the throughput of 
1.19 Gbps with 450 slices and 10 Block RAMs [12].  

Architecture 4-bit 8-bit 16-bit 32-bit 

Max thro�put (Gbps) 22.6 79.2 167.2 326.4 

Area(slices) 1849 3840 9545 22457 
Throughput/Area 

(Gbps/slice) 
0.012 0.021 0.018 0.015 



The second class of MACs uses cryptographic hash 
functions such as MD5 and SHA1. MD5 and SHA1 are 
IETF MAC standards. Krawczyk et al. [2] defined HMAC 
by combining traditional hash functions with keying. A 
commercial implementation of MD5 has a throughput of 
528 Mbps and area cost of 551 slices and 1 BlockRAMs 
[17].  

Most universal hash functions use modular 
multiplication [6] [7] [8] [9] [3] and hence the throughput 
of associated MAC depends on the speed of modular 
multiplication [14] [15]. The divide-and-concatenate 
technique can be applied to hardware implementation of 
this class of MACs.  

 
6. Conclusions 

Applying general hardware design techniques to 
cryptographic architectures yields only moderate 
improvements. We defined a collision probability 
equivalent data path and combined it with the 
divide-and-concatenate technique to design efficient high 
throughput architectures. We characterized the area and 
throughput of equivalent data paths of 32-bit NH hash and 
demonstrated that the 8-bit equivalent NH hash data path is 
the most efficient architecture with the associated UMAC 
architecture achieving 79.2 Gbps using only 3840 FPGA 
slices.  

The divide-and-concatenate technique cannot speed-up 
software implementations but can only improve the 
collision probability beyond that provided by the processor 
architecture. This is because, if a processor supports w-bit 
additions and multiplications in one or two cycles, then 
w/2-bit operations will also consume the same number of 
cycles as w-bit operations.  
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