
Divide and Concatenate: A Scalable Hardware Architecture for
Universal MAC

Bo Yang Ramesh Karri

ECE Department
Polytechnic University, Brooklyn, NY, 11201

yangbo@photon.poly.edu, ramesh@india.poly.edu

David A. McGrew
Cisco Systems, Inc.
San Jose, CA 95134
mcgrew@cisco.com

Abstract
We present a cryptographic architecture optimization

technique called divide-and-concatenate based on two
observations: (i) the area of a multiplier and associated data
path decreases exponentially and their speeds increase
linearly as their operand size is reduced. (ii) in hash
functions, message authentication codes and related
cryptographic algorithms, two functions are equivalent if
they have the same collision probability property. In the
proposed approach we divide a 2w-bit data path (with
collision probability 2-2w) into two w-bit data paths (each
with collision probability 2-w) and concatenate their results
to construct an equivalent 2w-bit data path (with a collision
probability 2-2w).

We applied this technique on NH hash, a universal
hash function that uses multiplications and additions. When
compared to the 100% overhead associated with duplicating
a straightforward 32-bit pipelined NH hash data path, the
divide-and-concatenate approach yields a 94% increase in
throughput with only 40% hardware overhead. The NH
hash associated message authentication code UMAC
architecture with collision probability 2-32 that uses four
equivalent 8-bit divide-and-concatenate NH hash data paths
yields a throughput of 79.2 Gbps with only 3840 FPGA
slices when implemented on a Xilinx XC2VP7-7 Field
Programmable Gate Array (FPGA).

1. Motivation

In the past, most cryptographic algorithms have been
developed to run fast on general-purpose processors. More
recently, dedicated cryptographic hardware is being
developed and deployed to match the >10 Gbps wire speed
requirements. In this paper we will investigate scalable
hardware architectures for cryptographic algorithms.

Cryptographic algorithms such as block encryption
and message authentication are iterative, data-driven
algorithms. These algorithms take an input message and a
user key and generate a result after several iterations. Since
these cryptographic algorithms are data-dominated, their
hardware implementations are data path dominated with
only a small amount of control logic. Arithmetic operations
such as add, multiply and shift/rotate are at the core of these

cryptographic algorithms. One straightforward approach to
speeding up cryptographic hardware is to use fast
implementations of adders, multipliers and other
components [13]. Orthogonal to the circuit level and logic
level approaches are architectural level speed-up
techniques such as pipelining and loop unrolling [11].

+32
R

R
R

+32
R

R
R

R +64 ×32 R

R

32-bit

register
msgi

keyi

msgi+1

keyi+1

64-bit

hash

Figure 1: 32-bit data path for the NH hash function

Consider the NH hash data path shown in Figure 1

that is the core building block of the UMAC (Universal
Message Authentication Code). This data path can be
implemented as a three-stage pipeline. In the first stage,
two 32-bit adders are used to add two adjacent message
words to their corresponding sub keys. In the second stage,
these two 32-bit intermediate results are multiplied. In the
final stage the 64-bit result from a multiplier is
accumulated into an output register using a 64-bit adder.
We implemented this three-stage pipeline on a Xilinx
Virtex II FPGA device using a single cycle adder and a
single cycle multiplier. Since the clock rate of a 64-bit
combinational adder is 193MHz and the clock rate of a
32-bit combinational multiplier is 83MHz, the throughput
of this design is limited by the throughput of the multiplier
and equals 5.3Gbps (=64bits×83MHz). Replacing the
single cycle multiplier by a 5-stage 32-bit pipelined Xilinx
multiplier core doubles the clock rate of the multiplier
stage and that of the design to 160MHz. This in turn
doubles the throughput of the design to 10.2Gbps (=64
bits×160 MHz). Finally, we can replicate this pipelined

0
100
200
300
400
500
600
700
800

2 4 8 16 32 64
operand size

slices

adders multipliers
NH hash

0
50

100
150
200
250
300
350
400
450

2 4 8 16 32 64
operand size

MHz

adders multipliers and NH hash

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 16 32 64
operand size

adders multipliers
NH hash

Figure 2: Area and throughput of adders, multipliers and NH hash data path as a function of operand size. Since (a) the area of a
multiplier and NH hash data path grow exponentially and (b) their clock rates decrease linearly with operand size, (c) the throughput/area
ratio of multiplier and NH hash data path decrease exponentially with operand size.

data path, with each copy operating on an independent
input stream to get an additional improvement in
throughput. However, this approach is expensive.

1.1. Can we do any better?

Cryptographic algorithms use large bit-width
operations to improve security. For example, UMAC uses
32-bit and 64-bit additions and 32-bit multiplications.
128-bit Advanced Encryption Standard uses 32-bit
additions and multiplications. Let us now analyze
bottlenecks in speeding up wide operand data paths.
• The hardware-complexity of a multiplier and NH data

path increase exponentially with operand size, while the
hardware-complexity of an adder increases linearly with
operand size. This is summarized in Figure 2(a). For
example, while an 8-bit multiplier consumes 44 Virtex II
slices, a 16-bit multiplier consumes 161 Virtex II slices
and a 32-bit multiplier consumes 588 Virtex II slices.
Furthermore, the area of an adder is much smaller than
that of a multiplier for operand sizes ≥ 8-bits.

• From Figure 2 (b), it can be seen that a 2-bit adder and a
2-bit multiplier have identical speeds of 420MHz, the
speed limit of the target FPGA device. This is because
each output bit of 2-bit adder and multiplier is a 4-to-1
function and can be implemented exactly in one FPGA
Look Up Table (LUT). Furthermore, the clock rates of
adders and multipliers decrease almost linearly with the
size of the operand. For example, the clock rates of 4-bit,
8-bit, 16-bit and 32-bit multipliers are 353MHz, 310MHz,
237MHz and 160MHz respectively. Since the clock rate
of an adder is ≥ that of a multiplier with same operand
size, multiplier delay determines the critical path of NH
hash data path.

• Figure 2(c) shows that the normalized throughput/area
ratio (using the ratio for a 2-bit unit as 1) for multipliers
and the NH hash decreases exponentially with operand

size. The case for adders is less dramatic.
In a nutshell, (1) crypto implementations that do not

use multiplications are superior to those that do. (2) For a
given operand size, adders yield more throughput (in Gbps)
per unit area (per FPGA slice) than a multiplier. (3)
Implementations that use small sized operands are superior
to those that use large operands.

In this paper we propose to divide a 2w-bit data path
into two w-bit data paths and concatenate their results to
construct an equivalent 2w-bit data path. The concept of
equivalence is crucial. Obviously, a straightforward data
path and the corresponding divide-and-concatenate data
path cannot be equivalent in terms of the results that they
output. We define two data paths to be equivalent if the
results that they output satisfy a pre-defined property. For
cryptographic algorithms such as hash functions and
message authentication codes the actual result is not
important. Rather, it is the collision probability of the
result that is important. Hence, we propose that two data
paths implementing a hash function be considered
equivalent if they have the same collision probability.

In the rest of this paper we will describe the
divide-and-concatenate architecture optimization technique.
Specifically, we will introduce universal hash functions,
NH hash a universal hash function and the UMAC
message authentication code based on NH hash in section
2. We will apply the divide-and-concatenate technique to
NH hash in section 3. In section 4 we will present the
architecture for the UMAC based on the NH hash
architectures from section 3. We will then compare our
work with related work in section 5 and finally summarize
our contributions in section 6.

2. Universal Message Authentication Code

UMAC is a NESSIE (New European Schemes for
Signatures, Integrity, and Encryption) message

authentication code standard [16]. The core of UMAC is the
universal hash function NH hash. In this section we will
describe universal hash functions in general and the NH
hash in particular.

2.1. Universal Hash Function

Carter and Wegman [4] defined a universal hash
function as follows: Let A and B be two sets, and let H be a
family of functions from A to B. H is a universal family of
hash functions if for every pair x1, x2 ∈ A with x1≠x2, and
h(x1), h(x2) ∈ B, the collision probability of h(x1) = h(x2)
equals to 1/|B| and h in H. |B| is size of set B and 1/|B| is the
smallest possible value of the probability. When B is small,
the collision probability is large.

A MAC that uses a universal hash function as a
building block hashes the input message M down to a
small-size hash value using the universal hash function and
then applies a cryptographic primitive to this hash value [5].
Since universal hash functions can compress the message
M efficiently, the associated MACs are fast. Several
universal hash functions and associated MACs have been
proposed including MMH [6], Square Hash [7],
bucket-hash [8], TMMH [9] and NH hash [3]. MACs are
used by a receiver to verify whether the data received from
the sender is not modified by a third party during
transmission by computing the MAC of the received
message using the secret key shared with the sender and
matching it with the received MAC.

2.2. NH Hash

NH hash is a universal hash function that uses
additions and multiplications; the operations correspond to
machine instructions on modern processors. When NH hash
is implemented on a modern processor, it can calculate the
hash value for a 1024 word (a word is 32-bit wide) message
using 1024 32-bit word sub keys as follows:
(M1 +32 K1) × (M2 +32 K2) +64�+64 (Mk-1 +32 Kk-1) × (Mk +32 Kk)
Mi and Ki are 32-bit message words and corresponding sub
key words. +32 and +64 are addition mod 232 and addition
mod 264 respectively. The fastest implementation will
require (i) 1024 32-bit adders to add each message word
with its corresponding sub key word in the first step; (ii)
512 32-bit multipliers to multiply adjacent pairs of results
from the addition step and (iii) a 9-level balanced addition
tree composed of 511 64-bit adders to generate the hash
value. This is expensive and in normal applications data
paths are much smaller.

A 32-bit NH hash data path that operates on 32-bit
input message words and 32-bit sub key words has a
collision probability of 2-32. Generally, A w-bit NH hash
data path that operates on w-bit input message words and
w-bit sub key words has a collision probability of 2-w [3].

2.3. Reducing Collision Probability of NH hash
Since the bit-width w of the NH hash function is

determined by the architecture of the underlying processor,
increasing w is not always a feasible solution to reduce the
collision probability. However, since NH is a universal
hash function, its collision probability of 2-w can be
reduced to 2-nw by hashing the same message n times using
n independent keys and concatenating the results [5]. For
example, if we hash a message twice using the w-bit NH
hash function, each time with a different set of sub keys
and concatenating the two hash values, the collision
probability will drop from 2-w to 2-2w.

However this solution requires 2× key material. The
Toeplitz-extension described in [3] reduces the amount of
sub key material making this approach practical. As shown
in Figure 3, when we use two 16-bit data paths to construct
a 32-bit NH hash using Toeplitz-extension, the sub keys
for the second data path are obtained by shifting the
corresponding sub keys of the of the first data path using
component S. When Toeplitz-extension is used a single
1024 w-bit-word sub key RAM is sufficient independent
of the number of data paths.

3. Divide and Concatenate: An Architecture

Level Optimization Technique
The straightforward 32-bit NH hash data path shown

in Figure 1 takes two 32-bit message words every cycle
and generates a 64-bit hash value after the entire message
is processed.

Using the divide-and-concatenate technique a 32-bit
NH hash data path with a collision probability of 2-32 can
be constructed using two 16-bit NH hash data paths, each
with collision probability of 2-16, and concatenating their
32-bit results to generate a 64-bit hash value. This
corresponds to the two data paths at the top of Figure 3.

Using the data from Figure 2, the throughput of the
straightforward 32-bit NH hash data path is 10.24 Gbps
(=160MHz×64bits), while the throughput of the equivalent
16-bit divide-and concatenate data path is 7.58 Gbps
(=237MHz×32bits). The equivalent 16-bit divide-and-
concatenate data path consumes 408 FPGA slices (=204
slices per 16-bit NH hash data path×2) compared to 684
slices by the straightforward 32-bit data path. Overall, the
throughput/area ratio of 0.0186 Gbps/slice (=7.58 Gbps ÷
408 slices) for the divide-and-concatenate architecture is
25% more efficient than 0.0149 Gbps/slice (=10.24 Gbps ÷
684 slices) for the straightforward architecture.

The duplicated divide-and-concatenate architecture
shown in Figure 3 uses four 16-bit NH hash data paths and
processes a 64-bit input every cycle (same as the
straightforward 32-bit NH data path) yielding a throughput
of 15.17 Gbps (=237MHz×64bits) with an area of 816
slices (=204slices×4units). The fixed shift operation S and

the concatenation operation || in Figure 3 do not contribute
to the area overhead in hardware. Compared to the
straightforward 32-bit NH data path, this data path yields a
48% (=15.17Gbps÷10.24Gbps) improvement in throughput
with an associated area overhead of 19%
(=816slices÷684slices).

Let us apply this divide-and-concatenate technique
once more and construct each 16-bit NH hash data path
using four 8-bit NH hash data paths. This translates into
sixteen 8-bit NH hash data paths to construct an equivalent
32-bit NH hash data path. From Figure 2, the area of an
8-bit NH hash data path is 60 slices and the clock rate is
310 MHz, yielding a throughput of 19.84 Gbps (=310
MHz×64 bits). The area for this equivalent 8-bit NH hash
data path is 960 slices (=60 slices ×16 units). Compared to
the straightforward 32-bit NH hash data path, this 8-bit
equivalent data path yields a 94% improvement in
throughput (=19.84Gbps÷10.24Gbps) with an area
overhead of 40% (=960slices÷684slices). The
throughput/area ratio of this 8-bit data path is 0.021
Gbps/slice (19.84Gpbs÷960slices), greater than 0.0186
Gbps/slice of the 16-bit data path based architecture.

+16

+16
×16 +32

 ||

msgi

msgi+1

keyi+1

+16

+16
×16 +32

keyi

S

S

Hashk

+16

+16
×16 +32

 ||

msgi+2

msgi+3

keyi+3

+16

+16
×16 +32

keyi+2

S

S

Hashk+1

16-bit
32-bit
64-bit

Figure 3: This NH data path composed of four 16-bit NH hash
data paths has a collision probability of 2-32. It processes two
32-bit messages per clock cycle in parallel and generates two
64-bit hash values.

Does this mean that the more components that the
basic data path is divided into, the better the resulting
divide-and-concatenate data path? Let us construct a 32-bit
NH hash data path using 64 4-bit data paths. The
throughput of this data path is 22.6Gbps (=353MHz×64bits)
and area is 1280 slices (=20slices×64units) yielding a

throughput/area ratio of 0.0177 Gbps/slices (22.6
Gpbs÷1280slices, which is less than that for the 8-bit
equivalent NH hash data path.

Figure 4 summarizes the area, throughput and
throughput/area ratio for five equivalent 32-bit NH hash
data paths (i.e., all these data paths have a collision
probability of 2-32 and process 64 input bits every clock
cycle). The 8-bit data path has the best throughput/area
ratio. It achieves 90% throughput improvement with only
40% area overhead. Compare this with the 100% area
overhead when the straightforward 32-bit data path is
duplicated achieve a 100% improvement in throughput.

4-bit and 2-bit data path based designs are not as
efficient as an 8-bit data path based design. In the
divide-and-concatenate approach, the number of adders
increases exponentially while their area decreases linearly.
In 8-bit and larger designs the NH hash area is dominated
by large multipliers. On the other hand, in 4-bit and 2-bit
data path based designs the NH area is dominated by
adders. This is because the area of an adder is comparable
to that of a multiplier and the number of adders grows
exponentially.

0
0.5

1
1.5

2
2.5

3

area throughput throughput/area

32-bit unit 16-bit unit 8-bit unit
4-bit unit 2-bit unit

Figure 4: Normalized area, throughput and throughput/area ratio
of five equivalent divided-and-concatenated data paths for a NH
hash with collision probability of 2-32.

 A drawback of the divide-and-concatenate technique
is that the length of the output hash doubles as you go from
the straightforward 32-bit data path to an equivalent 16-bit
data path to an equivalent 8-bit data path and so on. In fact,
the length of hash value of an equivalent 2-bit data path is
16 times longer than that for the straightforward data path.
We will discuss how this increase in output length impacts
the overall performance of UMAC in next section.

4. Putting It All Together: The UMAC

Architecture
The Universal Message Authentication Code has

three steps:
• Step 1: sub key generation:

In this step, the user key is expanded into (i) 1024
w-bit-word sub keys that are used by NH hash in step 2 and
(ii) 512-bit key A for the HMAC-SHA1 cryptographic
primitive used in step 3. Since sub keys are generated just
once at the beginning of a session, this step does not impact
the overall throughput of UMAC.
• Step2: Hashing the input message using NH hash:

If the message is larger than 1024 w-bit word, it will
be partitioned into 1024 w-bit word blocks. Each block is
compressed independently according to the method
explained in section 2.2 and the final hash value is obtained
as the concatenation of the hash values of each block and
the message length encoded in binary:
HM = NH(Msg blk 1)||NH(Msg blk 2)�||NH (Msg blk t)||
Message Length
• Step 3: Computing the MAC:

HMAC-SHA1, a cryptographic MAC, is applied to the
concatenated hash HM from step 2 to obtain fixed length
MAC.

MAC = HMAC-SHA1A (HM ||Nonce)
Typically the nonce is a counter which the sender

increments with each transmitted message.
HMAC-SHA1 operates on 512-bit block and generates

a 160-bit result after 80 cycles. This 160-bit result is used
by HMAC-SHA1 when it processes the next 512-bit
message block. When all message blocks are consumed,
this 160-bit result is the MAC. The fastest implementation
of HMAC-SHA1 on an FPGA yields a throughput of 652
Mbps and consumes 569 slices [10].

When the UMAC architecture processes a single
message stream, multiple NH data paths hash different parts
of the message and concatenate them into HM as described
in step 2. HM is then hashed into a MAC using
HMAC-SHA1. The divide-and-concatenate approach
cannot be applied to HMAC-SHA1 as it is not a universal
hash function.

In general, the throughput of HMAC-SHA1 is not a
bottleneck for the overall UMAC architecture. The
straightforward 32-bit NH hash data path compresses each
1024×32-bit message block input into a 64-bit
intermediate value or hash value output yielding a
compression ratio of 512. The throughput of this
straightforward NH hash data path is 10.24 Gbps at its input
and 20 Mbps (=10.24 Gbps÷512) at its output (which is
also the input to HMAC-SHA1). This is 32 times smaller
than the 652 Mbps throughput of HMAC-SHA1. The 2-bit
equivalent NH hash data path generates an output of 1024
bits translating into a compression ratio of only 32
(=1024×32-bit input ÷1024-bit output). The resulting
throughput of 840Mbps (=26.9 Gbps÷32) at the input to the
HMAC-SHA1 is > 652 Mbps throughput of HMAC-SHA1.
Now, HMAC-SHA1 is the bottleneck. Table 1 summarizes
the throughput, compression ratio and output data rate of
the equivalent data paths for the 32-bit NH hash.

Table 1: Input throughput, compression ratio, output data rate
for equivalent architectures of a 32-bit NH hash.

Size 2bit 4bit 8bit 16bit 32bit

Thro�put (Gbps) 26.9 22.6 19.8 15.2 10.2

Comp. ratio 32 64 128 256 512

O/p data rate (Mbps) 840 353 155 60 20

To effectively utilize HMAC-SHA1 data path, the

UMAC architecture can be designed such that
HMAC-SHA1 works with multiple message streams and
associated NH hash data paths. For example, since the data
rate at the output of straightforward 32-bit NH hash
architecture is 20Mbps and the throughput of
HMAC-SHA1 is 654 Mbps, one HMAC-SHA1 data path
can work with thirty two 32-bit NH hash data paths and
associated message streams. This translates into an
effective UMAC throughput of 326.4 Gbps. Table 2
summarizes the maximum throughput, maximum number
of independent message streams that can be supported,
area (NH hash data path + HMAC-SHA1 data path) and
throughput/area ratio of five UMAC architectures. For
example, for 8-bit equivalent UMAC architecture, we use
4(=654Mbps÷155Mbps) 16-bit NH hash data paths with
960 slices. Its area is 3840 slices (=960slices per
equivalent NH hash×4+569slices for HMAC-SHA1). Its
throughput is 79.2 Gbps (19.8 Gbps per equivalent NH
hash data path× 4). The 8-bit equivalent architecture has
the best throughput/area ratio.

Table 2: Effective throughput, maximum number of independent
message streams that can be supported, area (NH hash data path
+ HMAC-SHA1 data path) and throughput/area ratio of four
UMAC architectures.

5. Comparison to Related Work

Early MAC algorithms used private-key based block
ciphers in the cipher block-chaining (CBC) mode [1]. The
hardware implementation of most block ciphers produces
moderate throughput. The throughput of FPGA
implementation of RC6 varies from 88.5 Mbps with 2638
slices to 2.397 Gbps with 10856 slices [11]. Many
academic and commercial IP cores of AES are available.
The most efficient implementation has the throughput of
1.19 Gbps with 450 slices and 10 Block RAMs [12].

Architecture 4-bit 8-bit 16-bit 32-bit

Max thro�put (Gbps) 22.6 79.2 167.2 326.4

Area(slices) 1849 3840 9545 22457
Throughput/Area

(Gbps/slice)
0.012 0.021 0.018 0.015

The second class of MACs uses cryptographic hash
functions such as MD5 and SHA1. MD5 and SHA1 are
IETF MAC standards. Krawczyk et al. [2] defined HMAC
by combining traditional hash functions with keying. A
commercial implementation of MD5 has a throughput of
528 Mbps and area cost of 551 slices and 1 BlockRAMs
[17].

Most universal hash functions use modular
multiplication [6] [7] [8] [9] [3] and hence the throughput
of associated MAC depends on the speed of modular
multiplication [14] [15]. The divide-and-concatenate
technique can be applied to hardware implementation of
this class of MACs.

6. Conclusions

Applying general hardware design techniques to
cryptographic architectures yields only moderate
improvements. We defined a collision probability
equivalent data path and combined it with the
divide-and-concatenate technique to design efficient high
throughput architectures. We characterized the area and
throughput of equivalent data paths of 32-bit NH hash and
demonstrated that the 8-bit equivalent NH hash data path is
the most efficient architecture with the associated UMAC
architecture achieving 79.2 Gbps using only 3840 FPGA
slices.

The divide-and-concatenate technique cannot speed-up
software implementations but can only improve the
collision probability beyond that provided by the processor
architecture. This is because, if a processor supports w-bit
additions and multiplications in one or two cycles, then
w/2-bit operations will also consume the same number of
cycles as w-bit operations.

References
[1] ISO/IEC 9797-1. Information technology - security
techniques - data integrity mechanism using a
cryptographic check function employing a block cipher
algorithm. International Organization for Standards, Geneva,
Switzerland, Second edition, 1999.
[2] M. Bellare, R. Canetti, H. Krawczyk. Keying hash
functions for message authentication. In Advances in
Cryptology - CRYPTO'96 vol. 1109 of Lecture Notes in
Computer Science Springer-Verlag pp. 1-15, 1996.
[3] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P.
Rogaway. UMAC: Fast and secure message authentication.
In M. Wiener, editor, Advances in Cryptology �
CRYPTO �99, volume 1666 of Lecture Notes in Computer
Science, pp. 216�233. Springer-Verlag, Berlin Germany,
Aug.1999.
[4] L. Carter, and M. Wegman. Universal hash functions.
Journal of Computer and System Sciences, Vol 18, pp.
143�154, 1979.

[5] M. Wegman and L. Carter. New hash functions and
their use in authentication and set equality. Journal of
Computer and System Sciences, vol. 22, pp. 265�279,
1981.
[6] S. Halevi, and H. Krawczyk. MMH: Software
message authentication in the Gbit/second rates. In
Proceedings of the 4th Workshop on Fast Software
Encryption, vol. 1267, Springer-Verlag, pp. 172-189, 1997
[7] M. Etzel, S. Patel, and Z. Ramzan. Square hash: Fast
message authentication via optimized universal hash
functions, Advances in Cryptology, volume 1666 of
Lecture Notes in Computer Science, pp. 234-251, 1999.
[8] T. Johansson. Bucket hashing with small key size. In
Advances in Cryptology-Eurocrypt'97, Lecture Notes in
Computer Science, Springer-Verlag, pp. 149-162, 1997
[9] D. A. McGrew. The Truncated Multi-Modular Hash
Function (TMMH), IETF Internet Draft, 2001. http://www.
mindspring.com/~dmcgrew/draft-mcgrew-saag-tmmh-01.t
xt
[10] Helion Technology. Datasheet-High Performance
SHA1 Hash Core for Xilinx FPGA, 2003.
http://www.heliontech.com/downloads/sha1_xilinx_helion
core.pdf
[11] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An
FPGA-Based Performance Evaluation of the AES Block
Cipher Candidate Algorithm Finalists. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 9(4), pp.
545-557, August 2001.
[12] Helion Technologies. High Performance
AES(Rijndael) cores for Xilinx FPGA, 2003.
http://www.heliontech.com/downloads/aes_xilinx_helionc
ore.pdf
[13] C. K. Koc. RSA hardware implementation. Technical
Report TR 801, RSA Laboratories, April 1996.
http://islab.oregonstate.edu/koc/papers/r02rsahw.pdf
[14] M. Shand and J. Vuillemin. Fast implementations of
RSA cryptography, in Proceedings 11th Symposium on
Computer Arithmetic, pp. 252-259, 1993.
[15] A. F. Tenca and C. K. Koc. A Scalable Architecture
for Modular Multiplication Based on Montgomery�s
Algorithm. IEEE Transactions on Computer, Vol. 52, No.9,
pp. 1215-1221, September, 2003
[16] Nessie. Nessie Project Announces Final Selection of
Crypto Algorithms, 2003. https://www.cosic.esat.kuleuven.
ac.be/nessie/deliverables/press_release_feb27.pdf
[17] Helion Technology. Datasheet-High Performance
MD5 Hash Core for Xilinx FPGA, 2003.
http://www.heliontech.com/downloads/md5_xilinx_helion
core.pdf

