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Abstract. In this paper, we study the security notions of verifiably
committed signatures by introducing privacy and cut-off time, and then
we propose the first scheme which is provably secure in the standard
complexity model based on the strong RSA assumption. The idea behind
the construction is that given any valid partial signature of messages, if
a co-signer with its auxiliary input is able to generate variables called
the resolution of messages such that the distribution of the variables is
indistinguishable from that generated by the primary signer alone from
the views of the verifier/arbitrator, a verifiably committed signature can
be constructed.
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1 Introduction

An important issue in electronic commerce is how to exchange electronic data
between two potentially distributed parties in an efficient and fair manner. In-
tuitively, fairness allows two parties to exchange items in a way so that either
each party gets other’s item, or neither party does. Examples of such exchanges
include signing of electronic contracts, certificated e-mail delivery and fair pur-
chase of electronic goods over communication network. In such instances, ensur-
ing fairness is crucial if the participants are to be protected from fraud.

Related works The problem of fair exchange has a rich history due to its
fundamental importance. In the following, we only briefly mention the body of
research most relevant to our results, and refer the reader to [4], [25] and [34]
and [1] for further references. Early work on fair exchange of secrets/signatures,
focused on the gradual release of secrets to obtain simultaneity and fairness [7],
[23], [33] and [20]. The idea is that if each party alternately release a small
portion of the secret, then neither party has a considerable advantage over the
other. Unfortunately, such a solution has several drawbacks. Apart from being
expensive in terms of computation and communication, it has the problem in
real situations of uncertain termination.

Alternative approach to achieve fairness makes use of a trusted third party
(TTP). A TTP is essentially a judge that can be called in to handle disputes



between the participants. The TTP can be on-line in the sense of mediating after
every exchange as in [18] and [24], or off-line, meaning that it only gets involved
when something goes wrong (e.g., a participant attempts to cheat, or simply
crashes, or the communication delays between the participants are intolerably
high, etc.). The latter approach has been called optimistic [2].

Fair exchange protocols using verifiable encryption was proposed by Atenies
[1] and Bao et al. [6]. These protocols apply ad-hoc techniques to create the fair-
ness primitive via a specific encryption scheme that confirms to a given signature
type. Unfortunately, the schemes proposed in [1] and [5] lack any formal security
analysis, and consequently, one of the schemes proposed in [6] was shown to be
insecure in [10] and [1]. In [3] and [4], Asokan et al. propose an optimistic that
uses a cryptographic primitive denoted as verifiably encrypted signatures to pro-
duce the fairness. In such schemes, Alice encrypts her signature under TTP’s
encryption key and proves to Bob that she indeed encrypted her valid signature.
After receiving her item from Bob, she proceeds to open the encryption. This
approach of [3] and [2] was later generalized by Cachin and Camenisch [12] and
Camenisch Damg̊ard [13] but all these schemes involve expensive and highly
interactive zero-knowledge proof in the exchange phase.

In PODC 2003, Park, Chong, Siegel and Ray [34] provided alternative method
of constructing fair exchange protocol by distributing the computation of RSA
signature. This approach avoids the design of verifiable encryption scheme at
the expense of having co-signer store a piece of prime signer’s secret key. Based
on Park et.al’s study, Dodis and Reyzin [22] presented a unified model for non-
interactive fair exchange protocols which results in a new primitive called veri-
fiably committed signatures later. Verifiably Committed signatures are the fol-
lowing thing: Alice can produce a partial signature to Bob; upon receiving what
she needs from Bob, she can convert it to a full signature. If she refuses, the
trusted third party Charlie can do it for her upon receipt of partial signature
and proper verification that Bob fulfilled his obligation to Alice.

Park, Chong, Siegel and Ray’s fair exchange protocol is actually a verifi-
ably committed signature scheme since the mechanism of the non-interactive
fair exchange is the same thing as a verifiably committed signature. Unfortu-
nately this verifiably committed signature is totally breakable in the registration
phase [22]. Dodis and Reyzin [22] then presented a remedy scheme by utiliz-
ing Boldyreva’s non-interactive two-party multi-signature scheme [9]. Therefore
Dodis and Reyzin’s scheme is the first verifiably committed signature provably
secure under the Gap Diffie-Hellman assumption in the random oracle paradigm.

Security in the random oracle model does not imply security in the real world.
The existence of verifiably committed signatures provably secure in the stan-
dard complexity model are obvious provided the underlying signature schemes
are provably secure in the standard complexity model as two signatures with
independent keys (pk1, sk1), (pk2, sk2) are sufficient to build a secure verifi-
ably committed signature if we define PK = (pk1, pk2), SK = (sk1, sk2) and
σ = (σ1, σ2). Hence the challenge problem is to construct a verifiably commit-



ted signature consistent with a stand-alone signature scheme in the standard
complexity model.

If we insist on two important items (1) the privacy of exchange message, and
(2) the cut-off time of exchange message, integrated with fair-exchange protocols
as that have been studied by Asokan et al [4] and Micali [31], then verifiably
committed signatures can be classified as follows:

– (1) Verifiably committed signatures without privacy and cut-off time;
– (2) Verifiably committed signatures with privacy but without cut-off time;
– (3) Verifiably committed signatures without privacy but with cut-off time;
– (4) And verifiably committed signatures with privacy and cut-off time.

We remark that Park, Chong, Siegel and Ray [34], and Dodis and Reyzin [22]
do not embed two items into their schemes. Recent works of Micali [31], provides
a unified model to deal with cut-off time. In Micali’s model, Alice chooses cut-
off time t and sends SigA(t,m) to Bob, where t represents the time after which
co-signer or the arbitrator should not help to completing the transaction any
more. Thus before executing the response message generation algorithm, Bob
should decide whether he has enough time to get the co-signer or arbitrator help
if necessary, taking into consideration any possible time discrepancies between
his own watch and that of the co-signer or arbitrator. We refer readers to [31]
for further references.

Our contributions In this paper, we study the security notions of verifi-
ably committed signatures by introducing privacy and cut-off time, and then we
propose the first scheme which is provably secure in the standard complexity
model based on the strong RSA assumption. The idea behind the construction
is that given any valid partial signature of messages, if a co-signer with its aux-
iliary input is able to generate variables called the resolution of messages such
that the distribution of the variables is indistinguishable from that generated by
the primary signer alone from the views of the verifier/arbitrator, a verifiably
committed signature can be constructed.

The rest of paper is organized as follows: in Section 2, we study the security
definitions of verifiably committed signatures by introducing privacy and cut-off
time; A verifiably committed signature without privacy and cut-off time is fully
described in the Subsection 3.1, from which a verifiably committed signature
with privacy and cut-off time can be easily derived. The proof of its security is
presented in Subsection 3.2. Finally, the conclusion is presented in section 4.

2 Four notions of verifiably committed signatures

Continuing the works of Dodis and Reyzin [22], we further consider four notions
of verifiably committed signatures by introducing privacy and cut-off time.



2.1 Verifiably committed signatures without privacy

Definition 2.1.1 A verifiably committed signature without privacy and cut-
off time, involves a primary singer Alice, a verifier Bob and a co-singer (or
arbitrator) Charlie, and is given by the following efficient procedures:

-Key generator KG: This is an interactive protocol between a primary signer
and a co-signer, by the end of which either one of the parties aborts, or
the primary signer learns her secret signing key SK, the co-signer learns his
secret key ASK, and both parties agree on the primary signer’s public key
PK and partial verification key APK;

-Partially signing algorithm PSig and the correspondent verification algorithm
PV er: These are partial signing and verification algorithms, which are sim-
ilar to ordinary signing and verification algorithms, except they can depend
on the public arbitration key APK. PSig(m,SK, PK,APK), run by the pri-
mary signer, outputs a partial signature σ′, while PV er(m,σ′, PK,APK),
run by any verifier, outputs 1 (accept) or 0 (reject);

-Fully signing algorithm Sig and its correspondent verification algorithm V er:
These are conventional signing and verification algorithms. Sig(m,SK) run
by the primary signer, outputs a full signature σ on m, while V er(m,σ, PK)
run by any verifier, outputs 1 (accept) or 0 (reject);

-Resolution algorithm Res: This is a resolution algorithm run by the co-singer
(arbitrator) in case the primary singer refuses to open her signature σ to
the verifier, who in turn possesses a valid partial signature σ′ on m and
a proof that he fulfilled his obligation to the primary signer. In this case,
Res(m,σ′, ASK, PK) should output a valid full signature of m.

Correctness of verifiably committed signatures states that:

– V er(m,Sig(m,SK), PK) = 1;
– PV er(m,PSig(m,SK, PK,APK), PK,APK) = 1;
– V er(m,Res(PSig(m,SK, PK,APK), ASK, APK,PK), PK) = 1.

Verifiably committed signatures with cut-off time If we replace the
message m by (t||m), in the above protocol, where t represents the time after
which cosigner or the arbitrator should not help to completing the transaction
any more, then the correspondent schemes are called verifiably committed sig-
natures with cut-off time. We emphasize that before executing the response
message generation algorithm, Bob should decide whether he has enough time
to get the co-signer or arbitrator help if necessary, taking into consideration any
possible time discrepancies between his own watch and that of the co-signer or
arbitrator. We point out here that the function of cut-off time t involved in the
partial signature and full signature schemes is to specify the duration of vali-
dation of signatures, and it does not affect the security definition of verifiably
committed signatures.

Security of verifiably committed signature schemes The security of
verifiably committed signature scheme should consist of ensuring three aspects:



security against a primary signer Alice, security against a verifier Bob, and se-
curity against a co-singer/abitrator Charlie.

Security against a primary signer Intuitively, a primary signer Alice
should not provide a partial signature which is valid both from the point views
of a verifier and a co-signer but which will not be opened into the primary
signer’s full signature by the honest co-signer. More formally:

Let P be an oracle simulating the partial signing procedure PSig, and R
be an oracle simulating the resolution procedure Res. Let k be system security
parameter. We require that any probabilistic polynomial time Adv succeeds with
at most negligible probability in the following experiment.

Experiment 2.1.2 (security against primary signer):

2.1.2.1: Key generation: (SK∗, PK,ASK,APK) ← KG∗(1k), where KG∗

denotes the run of key generator KG with the dishonest primary signer by the
adversary, and SK∗ denotes the adversary’s states.

2.1.2.2: Res oracle query: In this phase, for each adaptively chosen message
mj , the adversary computes its partial signature σj

′ for mj . Finally the adversary
forward σj

′ to the oracle R to obtain the full signature σj of message mj , where
1 ≤ j ≤ p(k), and p(·) is a polynomial. At the end of R oracle query, the
adversary produces a message and its full signature pair (m,σ), i.e., (m,σ′) ←
AdvR(SK∗, PK,APK), σ ← Adv(m,σ′, SK∗, APK, PK), where m 6= mj , 1 ≤
j ≤ p(k).

2.1.2.3. Success of Adv : = [PV er(m,σ′, APK, PK) = 1 ∧ V er(m,σ, PK) =
0].

Definition 2.1.3 A verifiably committed signature scheme is secure against
primary signer attack, if any probabilistic polynomial time adversary Adv as-
sociated with Resolution oracle, succeeds with at most negligible probability,
where the probability takes over coin tosses in KG(·), PSig(·) and R(·).

Security against verifier We consider the following scenario: suppose a
primary signer Alice and a verifier Bob are trying to exchange signature in a
fair way. Alice wants to commit to the transaction by providing her partial
signature. Of course, it should be computationally infeasible for Bob to compute
the full signature from the partial signature. More formally, we require that any
probabilistic polynomial time adversary Adv succeeds with at most negligible
probability in the following experiment:

Experiment 2.1.4 (security against verifier):

2.1.4.1 Key generation: (SK, PK,ASK, APK)← KG(1k), where KG is run
by the honest primary signer and honest co-signer. Adversary Adv are admitted
to make queries to the two orales P and R.

2.1.4.2 P and R oracle query: For each adaptively chosen message mj , the
adversary obtains the partial signature σj

′ of message mj by querying the partial
signing oracle P . Then the adversary forward σj

′ to the resolution oracle R to
obtain the full signature σj of message mj , where 1 ≤ j ≤ p(k), and p(·) is a



polynomial. At the end of oracle both P and R queries, the adversary produces
a message-full signature pair (m,σ) ← AdvP,R(PK, APK).

2.1.4.3 Success of adversary Adv : = [V er(m,σ, PK) = 1∧m /∈ Query(Adv,R)],
where Query(Adv,R) is the set of valid queries the adversary Adv asked to the
resolution oracle R, i.e., (m,σ′) such that PV er(m,σ′) = 1.

Definition 2.1.5 A verifiably committed signature scheme is secure against
verifier attack, if any probabilistic polynomial time adversary Adv associated
with partial signing oracle P and the resolution oracle R, succeeds with at most
negligible probability, where the probability takes over coin tosses in KG(·), P (·)
and R(·).

Security against co-signer/arbitrator This property is crucial. Even
though the co-signer (arbitrator) is semi-trusted, the primary signer does not
want this co-signer to produce a valid signature which the primary signer did
not intend on producing. To achieve this goal, we require that any probabilistic
polynomial time adversary Adv associated with partial signing oracle P , succeeds
with at most negligible probability in the following experiment:

Experiment 2.1.6 (security against co-signer/arbitrator):

2.1.6.1 Key generation: (SK,PK,ASK∗, APK)← KG∗(1k), where KG∗(1k)
is run by the dishonest co-signer or arbitrator. Adversary Adv are admitted to
make queries to the partial signing orale P .

2.1.6.2 P oracle query: For each adaptively chosen message mj , the adver-
sary obtains the partial signature σj

′ for mj from the oracle P , where 1 ≤
j ≤ p(k), and p(·) is a polynomial. At the end of the partial signing ora-
cle query, the adversary produces a message-full signature pair (m,σ), i.e.,
(m,σ)← AdvP (ASK∗, PK,APK).

2.1.6.3 Success of adversary Adv : = [V er(m,σ, PK) = 1∧m /∈ Query(Adv, P )],
where Query(Adv, P ) is the set of valid queries Adv asked to the partial oracle
P , i.e., (m,σ′) such that PV er(m,σ′) = 1.

Definition 2.1.7 A verifiably committed signature scheme is secure against
co-signer attack, if any probabilistic polynomial time adversary Adv associated
with partial signing oracle P , succeeds with at most negligible probability, where
the probability takes over coin tosses in KG(·), P (·).

Definition 2.1.8 A verifiably committed signature scheme is secure if it is
secure against primary signer attack, verifier attack and co-signer attack.

The correspondent fair-exchange protocol A fair-exchange protocol
without privacy and cut-off time can be derived by adding response message
generation algorithm to the correspondent verifiably committed signature as fol-
lows.

-Alice runs the partially signing algorithm PSig on input message m, and sends
the partial signature σ′ to Bob;

-Bob runs the response message generation algorithm Rmg as follows: If Bob
receives the properly signed partial signature σ′ of message m, he generates a



proper message Rmg(m) related to the message m, and digitally signs it and
sends SigB(Rmg(m)) to Alice (otherwise, the response message generation
algorithm outputs a null string indicating termination of the protocol);

-If Alice receives a properly signed message SigB(Rmg(m)), she runs Sig(m,SK)
and the output of the algorithm Sig(m,SK) is a full signature σ on m
(otherwise, the response message generation algorithm outputs a null string
indicating termination of the protocol);

-If the primary singer refuses to open her signature σ to the verifier, Bob sends
the record (σ′, SigB(Rmg(m)) to the arbitrator together with a proof that
he fulfilled his obligation to the primary signer. The co-signer then runs the
resolution algorithm on input σ′ which outputs a valid full signature σ of m
and then sends σ to Bob.

2.2 Verifiably committed signatures with privacy

We now present a formal definition on verifiably committed signatures with pri-
vacy but without cut-off time in which no one else including co-signer/ arbitrator
may learn partial information of message which is sent to Bob by Alice. Essen-
tially, we properly replace message m by EB(m), where by EB(m), we denote
the encryption of a message m with the public key of Bob.

Definition 2.2.1 A verifiably committed signature with privacy but without
cut-off time, involves a primary singer Alice, a verifier Bob and a co-singer (or
arbitrator) Charlie, and is given by the following efficient procedures:

-Key generator KG: The algorithm KG is an interactive protocol between a
primary signer and a co-signer, by the end of which either one of the parties
aborts, or the primary signer learns her secret signing key SK, the co-signer
learns his secret key ASK, and both parties agree on the primary signer’s
public key PK and partial verification key APK;

-Partially signing algorithm PSig and the correspondent verification algorithm
PV er: These are partial signing and verification algorithms, which are sim-
ilar to ordinary signing and verification algorithms, except they can depend
on the public arbitration key APK. PSig(EB(m), SK, PK,APK), run by
the primary signer, outputs a partial signature σ′, while PV er(EB(m), σ′, PK,APK),
run by any verifier, outputs 1 (accept) or 0 (reject);

-Fully signing algorithm Sig and its correspondent verification algorithm V er:
These are conventional signing and verification algorithms. Sig(EB(m), SK)
run by the primary signer, outputs a full signature σ on EB(m), while
V er(EB(m), σ, PK) run by any verifier, outputs 1 (accept) or 0 (reject);

-Resolution algorithm Res: This is a resolution algorithm run by the co-singer
(arbitrator) in case the primary singer refuses to open her signature σ to
the verifier, who in turn possesses a valid partial signature σ′ on EB(m) and
a proof that he fulfilled his obligation to the primary signer. In this case,
Res(EB(m), σ′, ASK, PK) should output a valid full signature of EB(m).

Correctness of committed signatures states that:



– V er(EB(m), Sig(EB(m), SK), PK) = 1;
– PV er(EB(m), PSig(EB(m), SK, PK,APK), PK,APK) = 1;
– V er(EB(m), Res(PSig(EB(m), SK, PK,APK), ASK, APK,PK), PK) = 1.

Verifiably committed signatures with privacy and cut-off time If
we replace the cipher-text EB(m) by t||EB(m) in the above protocol, where t
represents the time after which cosigner or the arbitrator should not help to
completing the transaction any more, then the correspondent schemes are called
verifiably committed signatures with privacy and cut-off time. Again we point
out here that the function of cut-off time t involved in the partial signature and
full signature schemes is to specify the duration of validity of signatures in the
protocol, and it does not affect the security definition of verifiably committed
signatures indeed.

Security of verifiably committed signature schemes with privacy
The security of verifiably committed signature scheme with privacy should con-
sist of ensuring three aspects: security against a primary signer Alice, security
against a verifier Bob, and security against a co-singer/abitrator Charlie.

Security against a primary signer Experiment 2.2.2 (security against
primary signer):

2.2.2.1 Key generation: (SK∗, PK,ASK,APK) ← KG∗(1k), where KG∗

denotes the run of key generator KG with the dishonest primary signer by the
adversary, and SK∗ denotes the adversary’s states.

2.2.2.2 Res oracle query: In this phase, for each adaptively chosen message
mj ( we view mj as the cipher-text of a plain-text message mj under the encryp-
tion of public key of Bob EB , i.e., mj ← EB(mj) since the security definition
against primary signer could ignore the privacy), the adversary computes its
partial signature σj

′ for mj , Finally the adversary forward σj
′ to the oracle R

to obtain the full signature σj of message mj , where 1 ≤ j ≤ p(k), and p(·)
is a polynomial. At the end of R oracle query, the adversary produces a mes-
sage m and its full signature pair (m,σ), i.e., (m,σ′)← AdvR(SK∗, PK,APK),
σ ← Adv(m,σ′, SK∗, APK,PK), where m 6= mj , 1 ≤ j ≤ p(k).

2.2.2.3 Success of Adv : = [PV er(m,σ′, APK,PK) = 1 ∧ V er(m,σ, PK) =
0].

Definition 2.2.3 A verifiably committed signature scheme is secure against
primary signer attack, if any probabilistic polynomial time adversary Adv as-
sociated with Resolution oracle, succeeds with at most negligible probability,
where the probability takes over coin tosses in KG(·), PSig(·) and R(·).

Security against verifier Experiment 2.2.4 (security against verifier):

2.2.4.1 Key generation: (SK, PK,ASK, APK)← KG(1k), where KG is run
by the honest primary signer and honest co-signer. Adversary Adv are admitted
to make queries to the two orales P and R.

2..2.4.2 P and R oracle query: For each adaptively chosen message mj (since
the plain-text mj is encrypted with Bob’s public key by Alice, therefore both



Alice and Bob know the transmitted message mj , consequently we can assume
that mj is a cipher-text of a message mj or simply assume that it is plain-
text an adaptively chosen mj), the adversary obtains the partial signature σj

′

of message mj by querying the partial signing oracle P . Then the adversary
forward σj

′ to the resolution oracle R to obtain the full signature σj of message
mj , where 1 ≤ j ≤ p(k), and p(·) is a polynomial. At the end of oracle both P
and R queries, the adversary produces a message-full signature pair (m,σ) ←
AdvP,R(PK,APK).

2.2.4.3 Success of adversary Adv : = [V er(m,σ, PK) = 1∧m /∈ Query(Adv,R)],
where Query(Adv,R) is the set of valid queries the adversary Adv asked to the
resolution oracle R, i.e., (m,σ′) such that PV er(m,σ′) = 1.

Definition 2.2.5 A verifiably committed signature scheme is secure against
verifier attack, if any probabilistic polynomial time adversary Adv associated
with partial signing oracle P and the resolution oracle R, succeeds with at most
negligible probability, where the probability takes over coin tosses in KG(·), P (·)
and R(·).

Security against co-signer/arbitrator Experiment 2.2.6 (security against
co-signer/arbitrator):

2.2.6.1 Key generation: (SK,PK,ASK∗, APK)← KG∗(1k), where KG∗(1k)
is run by the dishonest co-signer or arbitrator. Adversary Adv are admitted to
make queries to the partial signing orale P and decryption oracle queries to DB ,
where by DB(m), we denote the decryption algorithm with secret key of Bob;

2.2.6.2A P oracle query: For each adaptively chosen message mj , the adver-
sary obtains the partial signature σj

′ for mj from the oracle P , where mj ←
EB(mj), 1 ≤ j ≤ p(k), and p(·) is a polynomial. At the end of the par-
tial signing oracle query, the adversary produces a message-full signature pair
(m,σ), i.e., (m,σ)← AdvP (ASK∗, PK,APK). Success of adversary Adv(Sig) :
= [V er(m,σ, PK) = 1 ∧ m /∈ Query(Adv, P )], where Query(Adv, P ) is the
set of valid queries Adv asked to the partial oracle P , i.e., (m,σ′) such that
PV er(m,σ′) = 1;

2.2.6.2B DB oracle query (security against privacy in the sense of Rackoff
and Simons definition [36]): First, the encryption scheme’s key generation al-
gorithm is run, with a security parameter as input. Next the adversary makes
arbitrary queries to the decryption oracle DB , decrypting the cipher-texts of it
choice. Next the adversary chooses two message m0,m1, and sends these to the
encryption oracle EB . The encryption oracle chooses a bit b ∈ {0, 1}, at random
and encrypts mb. The correspondent cipher-text is given to the adversary (the
internal coin tosses of the encryption oracle, in particular b, are not in the ad-
versary’s view). After receiving the cipher-text from the decryption oracle, the
adversary continues to query the decryption oracle, subject only to the restric-
tion that the query must be different than the output of the encryption oracle.
At the end of game, the adversary outputs b′ ∈ {0, 1}, which is supposed to be
the adversary’s guess of the value b. If the probability that b′ = b is 1/2 + ε, the
adversary’s advantage Adv(Enc) := ε;



Definition 2.2.7 A verifiably committed signature scheme is secure against
co-signer attack, if any probabilistic polynomial time adversary Adv associated
with partial signing oracle P and decryption oracle DB , succeeds with at most
negligible probability of both Adv(Sig) and Adv(Enc), where the probability
takes over coin tosses in KG(·), KGB(·), P (·).

Definition 2.2.8 A verifiably committed signature scheme is secure if it is
secure against primary signer attack, verifier attack and co-signer attack.

The correspondent fair-exchange protocol A fair-exchange protocol
with privacy and cut-off time can be derived by adding response message gener-
ation algorithm to the correspondent verifiably committed signature as follows.

-Alice runs the partially signing algorithm PSig on input message t||EB(m),
and sends the partial signature σ′ to Bob, where EB is Cramer-Shoup’s
encryption algorithm which is provably secure under assumption of hardness
of decisional Diffie-Hellman problem in the standard complexity model [17];

-Bob runs the response message generation algorithm Rmg as follows: If Bob
receives the properly signed partial signature σ′ of message t||EB(m), he
generates a proper message Rmg(m) related to the message m, and digitally
signs it and sends SigB(EA(Rmg(m)) to Alice (otherwise, the response mes-
sage generation algorithm outputs a null string indicating termination of the
protocol);

-If Alice receives a properly signed message SigB(EA(Rmg(m)), she runs Sig(t||EB(m), SK)
and the output of the algorithm Sig(t||EB(m), SK) is a full signature σ on
t||EB(m) (otherwise, the response message generation algorithm outputs a
null string indicating termination of the protocol);

-If the primary singer refuses to open her signature σ to the verifier, Bob sends
the record (σ′, SigB(EA(Rmg(m))) to the arbitrator together with a proof
that he fulfilled his obligation to the primary signer. The co-signer then runs
the resolution algorithm on input σ′ which outputs a valid full signature σ
of t||EB(m) and then sends σ to Bob.

3 Constructing verifiably committed signatures from
strong RSA assumption in the standard complexity
model

In this section, we provide the first verifiably committed signatures from strong
RSA assumption in the standard complexity model. The core technique is that
by specifying a proper index set, we can convert partial signature of a message
to the full signature of the message. The technique is not new and it has been
used by Rabin [35], Blum and Zhu [8], Deng, Lee and Zhu [21], and Camenish
and Koprowski [19], for constructing secure protocols.

Key generation algorithm: We choose two safe primes p = 2p′ + 1, q =
2q′ + 1 and compute N = pq. Denote the quadratic residue of Z∗

N by QRN . Let
x, h1, h2 be elements chosen uniformly at random from the cyclic group QRN .



Let PriG be a prime generator. On input 1k, it generates 2s primes, each with
bit length (l+1). The prime pair {ei,1, ei,2} is indexed by some i ∈ I (1 ≤ i ≤ s).
The public key (X, g1, g2) is computed from x, h1, h2 and (e1,2, e2,2, · · · es,2) as
follows:

X ← xe1,2e2,2···es−1,2es,2modN

g1 ← h1
e1,2e2,2···es−1,2es,2modN

g2 ← h2
e1,2e2,2···es−1,2es,2modN

By Iused, we denote a subset of index set in which each index i has been
used to sign some message mi. We then build a public accessible prime list table
PriT as follows. On input i ∈ Iused, PriT outputs {ei,1, ei,2}.

The primary signer’s public key PK is (N,X, g1, g2,H, PriT, Iused). The
private key SK is {x, h1, h2, p, q, (ei,1, ei,2), 1 ≤ i ≤ s)}, where H is a publicly
known collision-free hash function.

The APK of the co-signer is (N,X, g1, g2,H, PriT, Iused). The secret key of
the co-signer ASK is {x, h1, h2, (e1,2, e2,2, · · · , es,2)}.

Partial signing algorithm PSig and correspondent verification al-
gorithm PV er: To sing a message m, we choose i ∈ I \ Iused and a random
string ti,1 ∈ {0, 1}l. The equation:

y
ei,1
i,1 = Xg

ti,1
1 g

H(m)
2 modN

is solved for yi,1.
We then update the index Iused by accumulating

Iused ← Iused

⋃
{i}

The partial signature of message m is σ′ = (i, ei,1, ti,1, yi,1).
On upon receiving a putative partial signature σ′ = (i, ei,1, ti,1, yi,1), the

verification algorithm checks whether i ∈ Iused or not, if i /∈ Iused, then it
outputs 0, otherwise, it runs PriT , on input i to obtain a prime pair (ei,1, ei,2),
and it outputs 1, i.e., PV er(m,σ′) = 1 if σ′(m) satisfies the equation:

X = y
ei,1
i,1 g

−ti,1
1 g

−H(m)
2 modN

Full signing algorithm Sig and correspondent verification algorithm
V er: To fully sign the message m, for the given i, we obtain the prime pair
{ei,1, ei,2} by running PriT on input i ∈ Iused. Then we choose a random string
ti,2 ∈ {0, 1}l uniformly at random and compute yi,2 from the equation:

y
ei,2
i,2 = Xg

ti,2
1 g

H(ti,1||m)
2 modN

The corresponding full signature σ of the message m is defined below:



σ := (i, ei,1, ei,2, ti,1, ti,2, yi,1, yi,2)

To verify the correctness of full signature scheme σ, the verification algorithm
checks whether i ∈ Iused or not, if i /∈ Iused, then it outputs 0, otherwise, it runs
PriT , on input i to obtain a prime pair (ei,1, ei,2). Finally it tests whether the
following equations are valid:

X = y
ei,1
i,1 g

−ti,1
1 g

−H(m)
2 modN

and

X = y
ei,2
i,2 g

−ti,2
1 g

−H(ti,1||m)
2 modN

If both equations are valid, then the verification function outputs V er(m,σ) =
1, otherwise, it outputs 0;

Resolution algorithm Res: Given a partial signature σ′ = (i, ei,1, ti,1, yi,1)
of message m, the co-signer runs the prime list table PriT on input i ∈ Iused to
obtain the pair of primes (ei,1, ei,2), and checks whether ei,1 is a component of
partial signature σ′ (such a prime ei,1 is called a valid prime). If it is valid then
the co-signer checks the valid of the following equation:

y
ei,1
i,1 = Xg

ti,1
1 g

H(m)
2 modN

If it is valid, the co-signer then computes:

Xi ← xe1,2···ei−1,2ei+1,2···es,2

gi,1 ← h1
e1,2···ei−1,2ei+1,2···es,2

and
gi,2 ← h2

e1,2···ei−1,2ei+1,2···es,2

Finally, the co-singer chooses a random string t′i,2 ∈ {0, 1}l and computes
yi,2 from the following equation:

yi,2 = Xigi,1
t′i,2gi,2

H(ti,1||m)modN

The output of the resolution algorithm is (i, ei,1, ei,2, ti,1, t
′
i,2, yi,1, yi,2)

Obviously,

X = y
ei,2
i,2 g

−t′i,2
1 g

−H(ti,1||m)
2 modN

-We remark that the choice of random string t′i,2 ∈ {0, 1}l in the resolution
phase does not dependent on the random string ti,2 in the full signature algo-
rithm. If we insist on the same string used in the resolution algorithm Res, then
the random pair (ti,1, ti,2) can be listed as public known random string set which
is also indexed by the set I.



-We also remark that the number of signature is bounded by s, where s(·)
is a polynomial of security parameter k. This is an interesting property as a
primary signer can specify the number of signatures for each certificate during
its validity duration.

3.1 The proof of security

In this subsection, we are able to prove that the main result stated below:

Theorem 3.1: The verifiably committed signature is secure under the strong
RSA assumption and the assumption that H is collision resistant in the standard
complexity model.

Proof: Security against the primary signer Alice is trivial since the co-signer
holds ASK in the protocol.

Security against the verifier Bob: Assume that protocol is not secure against
the verifier attack. That is, there is an adversary playing the role of verifier in the
actually protocol, who is able to forge a full signature σ of a message m (m 6= mi,
1 ≤ i ≤ f) with non-negligible probability after it has queried partial signing
oracle and resolution oracle of messages m1, · · · ,mf , each is chosen adaptively
by the adversary. Let (i, ei,1, ei,2, ti,1, t

′
i,2, yi,1, yi,2) be the full signature provided

by the partial signing oracle and the resolution oracle corresponding to a set of
messages mi (1 ≤ i ≤ f). We consider three types of forgeries as that in [16]:

1) for some 1 ≤ j ≤ f , ek = ej,2 and t′k,2 = t′j,2, where k /∈ {1, · · · , f};

2) for some 1 ≤ j ≤ f , ek = ej,2 and t′k,2 6= t′j,2, where k /∈ {1, · · · , f};

3) for all 1 ≤ j ≤ f , ek 6= ej,2, where k /∈ {1, · · · , f}.

We should show that any forgery scheme of the three types will lead to
a contradiction to the assumptions of the theorem. This renders any forgery
impossible.

By the security definition, the adversary can query the types of oracles: par-
tial signing oracle and resolution oracle. Therefore we should describe the two
oracles in the following simulation according to the forgery types defined above.

Type 1 forgery: On input (z, e), where z ∈ Z∗
N , e is a (l + 1)-bit prime, we

choose (2f − 1) primes (ei,1, ei,2) for 1 ≤ i 6= j ≤ f , each with length (l + 1)-
bit. The j-th prime pair is defined by (ej,1, e). We compute PK and APK by
choosing z1, z2 ∈ Z∗

N uniformly at random and computing

g1 ← z1
2e1,1e1,2···ef,1ef,2z2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1···ef,1ef,2

g2 ← z2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2···ef,1ef,2

X ← z2
2βe1,1e1,2···ef,1ef,2z2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2···ef,1ef,2(−α)

where α ∈ {0, 1}l+1 and β ∈ ZN are chosen uniformly at random.



Since the simulator knows each ei,1 (1 ≤ i ≤ f), therefore it is easy to
compute the partial signing oracle of message mi (1 ≤ i ≤ f). And it is also
easy to compute the resolution of i-th message i 6= j queried to resolution oracle
query Res. What we need to show is how to simulate the j-th resolution oracle
query. This can be done as follows:

yj,2
ej,2 = Xg1

t′j,2g2
H(tj,1||mj)

= z2
2β

∏
1,···f (ei,1ei,2)z1

2t′j,2
∏

1,···f (ei,1ei,2)×

z2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2···ef,1ef,2(−α+t′j,2+H(tj,1||mj))

Now we set −α + t′j,2 + H(tj,1||mj) = 0, i.e., t′j,2 = α−H(tj,1||mj). To show
that the simulation is not trivial, we should show that t′j,2 is uniformly distributed
over {0, 1}l with non-negligible amount. Since α ∈ {0, 1}l+1 is chosen uniformly
at random, the probability that t′j,2 belongs to the correct interval and it does
so with the correct uniform distribution can be computed as follows:

(2l+1 − 1−H(tj,1||mj)− 2l + 1) + H(tj,1||mj)
(2l+1 − 1−H(tj,1||mj))− (−H(tj,1||mj)) + 1

= 1/2

Suppose the adversary is able to forge a faking signature of message mk,
denoted by (k, ek,1, ek,2, t

′
k,1, t

′
k,2, yk,1, yk,2), where ek,2 = ej,2 and t′k,2 = t′j,2,

k /∈ {1, · · · , f}. We can not assume that ek,2 = ej,2, t′k,2 = t′j,2 and yk,2 = yj,2 as
H is a collision free hash function. Now we have two equations:

yj,2
ej,2 = Xg1

t′j,2g2
H(tj,1||mj)

And
yj,2

ej,2 = Xg1
t′j,2g2

H(tj,1||mj)

It follows that
(
yj,2

yk,2
)ej,2 = g2

H(tj,1||mj)−H(tk,1||mk)

= z2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2···ef,1ef,2(H(tj,1||mj)−H(tk,1||mk))

where ej,2 = e. Consequently, one is able to extract the e-th root of z with
non-negligible probability. It contradicts the standard RSA assumption.

Type 2 forgery: On input z and e, where z ∈ Z∗
N , e is a (l+1)-bit prime, we

choose (2f−1) primes (ei,1, ei,2) for 1 ≤ i 6= j ≤ f . The j-th prime pair is defined
by (ej,1, e). We compute PK and APK by choosing z1, z2 ∈ Z∗

N uniformly at
random and computing

g1 ← z2e1,1e1,2···ej−1,1ej−1,2ej,1ej+1,1ej+1,2···ef,1ef,2

g2 ← z1
2e1,1e1,2···ej−1,1ej−1,2ej,1ej,2ej+1,1ej+1,2···ef,1ef,2

X ← g−α
1 z2

2e1,1e1,2···ej−1,1ej−1,2ej,1ej,2ej+1,1ej+1,2···ef,1ef,2



where z1, z2 ∈ ZN and α ∈ {0, 1}l are chosen uniformly at random. Since QRN

is a cyclic group, we can assume that g1, g2 are generators of QRN with over-
whelming probability.

Since ei,1 for 1 ≤ i ≤ f are known therefore, the partial singing oracle is
perfect from the point views of the adversary. To simulate the i-th message mi

(i 6= j) to the resolution oracle, we select a random string t′i,2 ∈ {0, 1}l and
computes:

y
ei,2
i,2 = Xg1

t′i,2g2
H(ti,1||mi)

= ((z1
H(ti,1||mi)z2)2e1,1e1,2···ei−1,1ei−1,2ei,1ei+1,1ei+1,2···ef,1ef,2z2ei,1(t

′
i,2−α)

∏
s 6=i,j es,1es,2)ei,2

The output of resolution oracle is (i, ei,2, yi,2, t
′
i,2).

To sign the j-th message mj , the signing oracle sets t′j,2 ← α and computes:

yj,2
ej,2 = ((z1

H(tj,1||mi)z2)2ej,1
∏

s 6=j es,1es,2)ej,2

where ej,2 = e.
Let Res(mk) = (k, ek,2, yk,2, t

′
k,2) be a legal signature generated by the ad-

versary of message mk 6= mi for all 1 ≤ i ≤ f . By the assumption, we know
that

yk,2
ek,2 = Xg1

t′k,2g2
H(t′k,1||mk)

and
yj,2

ej,2 = Xg1
t′j,2g2

H(t′j,1||mj)

Consequently, we have the following equation:

(
yk,2

yj,2
)ej,2 = g1

t′k,2−t′j,2g2
H(t′k,1||mk)−H(t′j,1||mj)

Equivalently,

z2(α−t′k,2)ej,1
∏

i6=j ei,1ei,2 = (z1
2ej,1(H(t′j,1||mj)−H(t′k,1||mk))

∏
i6=j ei,1ei,2)ej,2

Since t′j,2 = α and tk,2 6= t′j,2, it follows that α − t′k,2 6= 0. We then apply
Guillou-Quisquater lemma to extract the e-th root of z. This contradicts the
standard RSA assumption.

Type 3 forgery: On input z, where z ∈ Z∗
N , we choose 2f primes (ei,1, ei,2)

for 1 ≤ i ≤ f and compute the PK and ASK as follows:

g1 ← z2e1,1e1,2···ef,1ef,2

and
g2 ← ga

1 , X ← gb
1

where a, b ∈ {1, n2}.
Since the simulator knows all prime pairs, it follows it can simulate both

partial signing and resolution queries. Let Res(mk) = (k, ek,2, yk,2, t
′
k,2) be a



legal signature generated by the adversary of message mk 6= mi for all 1 ≤ i ≤ f .
It yields the equation

yk,2
ek,2 = Xg

t′k,2
1 g2

H(tk,1||mk) = zE

where E = 2(b + t′k,2 + aH(tk,1||mk))e1,1e1,2 · · · ef,1ef,2

Since we are able to compute the e
E -th root of z provided e is a not a divisor

of E according to the lemma of Guillou and Qusiquater [32], it is sufficient to
show that e is not a divisor of E with non-negligible probability. Due to the the
fact that gcd(e, e1,1e1,2 · · · ef,1ef,2) = 1, it is sufficient to show that e is not a
divisor of b+ t+aH(tk,1||mk)) with non-negligible probability. Since b ∈ (1, n2),
it follows that one can write b = b′p′q′ + b′′. Therefore, the probability that
b + t + aH(m) ≡ 0mode is about 1/e.

Security against the co-signer/arbitrator Charlie: Even though the co-signer
(arbitrator) is semi-trusted, the primary signer does not want this co-signer to
produce valid signature which the primary signer did not intend on producing.
In other words, if the co-signer is able to forge a partial signature of a message m,
then we make use of Charlie as a subroutine to break the strong RSA assump-
tion. Since Bob holds the correspondent ASK, therefore we can assume that
Bob succeeds in forging a valid partial signature with non-negligible probability.
The simulation is the same as the proof of Zhu’s signature, please refer to the
appendix for details.

We have presented a basic verifiably committed signatures from strong RSA
assumption without privacy and cut-off time. However, one can easily transform
the above scheme to verifiably committed signatures with privacy and cut-off
time under the same assumption if one replaces m by t||EB(m). The proof is
straight forward and is very similar to the above argument, therefore omitted.

4 Conclusion

In this report, we provide the first verifiably committed signature from the strong
RSA assumption based on Zhu’s signature scheme. As the verifiably committed
signature formalized the same thing as the fair exchange protocol, our scheme
is actually a fair exchange protocol with provably secure.
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Appendix: A variation of Cramer-Shoup’s signature scheme

Cramer-Shoup’s trapdoor hash scheme Cramer and Shoup presented
an elegant signature scheme called trapdoor hash function defined below (see
[16] for more details):

– Key generation algorithm: Let p, q be two safe primes (p − 1 = 2p′ and
q − 1 = 2q′, where p′, q′ are two primes) with length l′. Let n = pq and



QRn be the quadratic residue of Z∗
n. Let x, h be two generators of QRn.

Also chosen are a group G of order s, where s is an (l + 1)-bit prime, and
two random generators g1, g2 of G. The public key is (n, h, x, g1, g2,H) along
with an appropriate description of G including s. The private key is (p, q).

– Signature algorithm: To sign a message m, an (l + 1)-bit prime e and a
string t ∈ Zs is chosen uniformly at random. The are chosen at random.
The equation ye = xhH(gt

1g
H(m)
2 )modn is solved for y. The corresponding

signature of the message m is (e, t, y).
– Verification algorithm: Given a putative triple (e, t, y), the verifier first checks

that e is an odd (l + 1)-bit number. Second it checks the validation that
x = yeh−H(gt

1g
H(m)
2 )modn. If the equation is valid, then the verifier accepts,

otherwise, it rejects.

Zhu’s signature scheme In Cramer-Shoup’s scheme, another extra group
G is defined. From the point views of computational complexity it is non-trivial
work if one can reduce the computational and communication complexity while
its provability and efficiency can be maintained. Based on this observation, Zhu
provides a variation scheme below [37]:

– Key generation algorithm: Let p, q be two large safe primes such that p−1 =
2p′ and q−1 = 2q′, where p′, q′ are two primes with length (l′+1). Let n = pq
and QRn be the quadratic residue of Z∗

n. Let X, g, h be three generators
of QRn. The public key is (n, g, h,X,H), where H is a collision free hash
function with output length l. The private key is (p, q).

– Signature algorithm: To sign a message m, a (l +1)-bit prime e and a string
t ∈ {0, 1}l are chosen at random. The equation ye = XgthH(m)modn is
solved for y. The corresponding signature of the message m is (e, t, y).

– Verification algorithm: Given a putative triple (e, t, y), the verifier first checks
that e is an odd (l + 1)-bit number. Second it checks the validation that
X = yeg−th−H(m)modn. If the equation is valid, then the verifier accepts,
otherwise, it rejects.

Camenisch-Lysyanskaya’s signature scheme In SCN’02, Camenisch and
Lysyanskaya [14] presented alternative signature scheme. The Camenisch and
Lysyanskaya signature is described as follows (see [14] for more details).

– Key generation algorithm: On input 1k, choose a special RSA modulus n =
pq, p = 2p′ + 1, q = 2q′ + 1 of length ln = 2k. Choose, uniformly at random,
a, b, c ∈ QRn. Output PK = (n, a, b, c), and SK = p.

– Message space. Let lm be a parameter. The message space consist of all
binary string of length lm. Equivalently, it can be thought of as consisting
of integers in the range [0, 2lm).

– Signing algorithm: On input m, choose a random prime number e > 2lm+1

of length le = lm + 2, and a random number s of length ls = ln + lm + l,
where l is a security parameter. Compute the value v such that

ve = cambsmodn



– Verification algorithm: To verify that the tuple (e, s, v) is a signature on
message m in the message space, check that ve = cambsmodn and check
that 2le > e > 2l2−1.

Fischlin’s signature scheme Later a similar modification is presented in
PKC’03 by Marc Fischlin. Fischlin’s signature scheme is defined as follows [28]:

– Key generation: Generating n = pq, where p = 2p′ + 1 and q = 2q′ + 1
for primes p, q, p′, q′. Also pick three quadratic residue h1, h2, x ∈ QRn. The
public key verification key is (n, h1, h2, x) and the private key is (p, q).

– Signing: To sign a message m calculate the l-bit hash value H(m) with a
collision-intractable hash function H(·). Pick a random (l + 1)-bit prime
e, and a random l-bit string α and compute a representation (−α,−(α ⊕
H(m)), y) of x with respect to h1, h2, e, n, i.e.,

ye = xh1
αh2

α⊕H(m)modn.

Computing this e-th root y from xh1
αh2

α⊕H(m) is easy given the factoriza-
tion of n. The signature is (e, α, y).

– Verification algorithm: On upon receiving a triple (e, α, y), one checks that
e is an odd (l + 1)-bit integer and α is l bits long string, finally it checks the
validity of the equation ye = xh1

αh2
α⊕H(m)modn. It is valid, then it output

”ACCEPT”, otherwise, it outputs ”REJECT”

Claim Zhu’s signature scheme is immune to adaptive chosen-message attack
under the strong RSA assumption and the assumption that H is a collision
resistant.

Proof: Assume that the signature scheme is NOT secure against adaptive
chosen message attack. That is, there is an adversary, who is able to forge the
signature (e, t, y) of a message m(m 6= mi, 1 ≤ i ≤ f) with non-negligible prob-
ability after it has queried correspondent signature of each message m1, · · · ,mf ,
which is chosen adaptively by the adversary. Let (e1, t1, y1), · · · , (ef , tf , yf ) be
signatures provided by the signing oracle corresponding to a set of messages
m1, · · · ,mf . We consider three types of forgeries: 1) for some 1 ≤ j ≤ f , e = ej

and t = tj ; 2) for some 1 ≤ j ≤ f , e = ej and t 6= tj ; 3) for all 1 ≤ j ≤ f ,
e 6= ej . We should show that any forgery scheme of the three types will lead
to a contradiction to the assumptions of the theorem. This renders any forgery
impossible.

Type 1-Forgery: We consider an adversary who chooses a forgery signature
such that e = ej for a fixed j: 1 ≤ j ≤ f , where f is the total number of the
queries to the signing oracle. If the adversary succeeds in a signature forgery
as type1 with non-negligible probability then given n, we are able to compute
z1/r with non-negligible probability, where r is a (l + 1)-bit prime. This con-
tradicts to the assumed hardness of the standard RSA problem. We state the
attack in details as follows: given z ∈ Z∗

n and r, we choose a set of total f − 1
primes with length (l + 1)-bit e1, ...ej−1, ej+1, ..., ef uniformly at random. We



then create the correspondent public key (X, g, h) of the simulator as follows:
given z ∈ Z∗

n and r, we choose a set of total f − 1 primes with length (l + 1)-bit
e1, ...ej−1, ej+1, ..., ef uniformly at random. We choose w, v ∈ Zn uniformly at
random, and compute h = z2e1...ej−1ej+1...ef , g = v2e1···ef z2e1...ej−1ej+1...ef and
X = w2βe1···ef z2e1...ej−1ej+1...ef (−α), where α ∈ {0, 1}l+1 and β ∈ Zn are chosen
uniformly at random.

Since the simulator knows each ei, therefore it is easy to compute the i-th
signing query. What we need to show is how to simulate the j-th signing query.
This can be done as follows:

y
ej

j = Xgtj hH(mj) = (wβvtj )2e1···ef z2e1...ej−1ej+1...ef (−α+tj+H(mj))

Now we set −α + tj + H(mj) = 0, i.e, tj = α−H(mj).
To show the simulation above is non-trivial, we should show ti is uniformly

distributed over {0, 1}l with non-negligible amount. Since α ∈ {0, 1}l+1 is chosen
uniformly at random, i.e., 0 ≤ α ≤ 2l+1 − 1, the probability tj belongs to the
correct interval and it does so with the correct uniform distribution can be
computed as follows:

(2l+1 − 1−H(mj)− 2l + 1) + H(mj)
(2l+1 − 1−H(mj))− (−H(mj)) + 1

= 1/2

Suppose the adversary is able to forge a faking signature of message m,
denoted by (e, y, t), such that ej = e(= r), tj = t. Notice that one can not
assume that ej = e, tj = t and yj = y, since H is a collision free hash function.
Now we have two equations: ye

j = XgthH(mj) and ye = XgthH(m). Consequently,
we obtain the equation:

(
yj

y
)e = hH(mj)−H(m) = z2e1,...ej−1,ej+1,...,ef (H(mj)−H(m))

It follows that one can extract the e-th root of z with non-negligible probabil-
ity. Therefore, we arrive at the contradiction of the standard hardness of RSA
assumption.

Type 2-Forgery: We consider an adversary who succeed in forging a valid
signature such that e = ej , t 6= ej for a fixed j: 1 ≤ j ≤ f , where f is the
total number of the queries to the signing oracle. If the adversary succeeds in
a signature forgery as type1 with non-negligible probability then given n, we
are able to compute z1/r with non-negligible probability for a given z and r,
where r is a (l + 1)-bit prime. This contradicts to the assumed hardness of
the standard RSA problem. We state the attack in details as follows: given
z ∈ Z∗

n and r, we choose a set of total f − 1 primes with length (l + 1)-bit
e1, ...ej−1, ej+1, ..., ef at random. We then create the correspondent public key
(X, g, h) of the simulated signature scheme as follows: g = z2e1...ej−1ej+1...ef ,
h = v2e1...ef and X = g−αw2e1...ef , where w, v ∈ Zn and α is a l-bit random
string. Since QRn is a cyclic group, we can assume that g, h are generators of



QRn with overwhelming probability. To sign the i-th message mi(i 6= j), the
signing oracle selects a random string ti ∈ {0, 1}l, and computes:

yi
ei = ((wvH(mi))2e1...ei−1ei+1...ef z2(ti−α)Πs 6=i,s 6=jes)ei

The output of the signing oracle is a signature of message mi, denoted by
σ(mi) = (ei, yi, ti).

To sign the j-th message mj , the signing oracle, sets tj ← α and computes:

yj
ej = ((wvH(mj))2Πs 6=jes)ej

The output of the signing oracle is a signature of message mj , denoted by
σ(mj) = (ej , yj , tj).

Let σ(m) = (e, y, t) be a valid signature forged by the adversary of message
m. By assumption, we know that ye = XgthH(m). Consequently, we have the
following equation:

gtj hH(mj)yj
ej = gthH(m)ye

Equivalently
z2(α−t)Πi6=jei = (v2(H(m)−H(mj))Πi6=jei

y

yj
)ej

Since tj = α and t 6= tj by assumption, it follows that t 6= α. We then apply
Guillou-Quisquater lemma to extract the r-th root of z, where r = ej .

Type 3-Forgery: We consider the third type of the attack: the adversary
forgery is that for all 1 ≤ j ≤ f , e 6= ej . If the adversary succeeds in forgery
with non-negligible probability, then given n, a random z ∈ Z∗

n, we are able to
compute z1/d (d > 1 ) with non-negligible probability, which contradicts to the
assumed hardness of strong RSA assumption. We state our attack in details as
follows: we generate g and h with the help of z. We define g = z2e1...ef and
h = ga, where a ∈ (1, n2), is a random element. We can assume that g is a
generator of QRn with overwhelming probability. Finally, we define X = gb,
where b ∈ (1, n2). Since the simulator knows the all ej , the signature oracle can
be perfectly simulated. Let (e, t, y) be a forgery signature of message m. It yields
the equation ye = XgthH(m) = zE , where E = (b + t + aH(m))2e1...ef .

Since we are able to compute (e/E)-th root of z provided e is a not a divisor
of E according to the lemma of Guillou and Qusiquater, it is sufficient to show
that e is not a divisor of E with non-negligible probability. Due to the the
fact that gcd(e, e1e2 · · · ef ) = 1, it is sufficient to show that e is not a divisor of
b+t+aH(m) with non-negligible probability. Since b ∈ (1, n2), it follows that one
can write b = b′p′q′ + b′′. Therefore, the probability that b+ t+aH(m) ≡ 0mode
is about 1/e.

Remark on Type 3- Forgery: To show that e|(b + t + aH(m) with negligible
probability, one may make use of randomness of a ∈ (1, n2). That is one can
write a as a = a′p′q′ +a′′. It follows a′ is a random element from the adversary’s
view. Hence the probability that b + t + aH(m) ≡ 0mode is about 1/e. Thus,
with non-negligible probability, e is not a divisor of b + t + aH(m). We point



out that since the adversary may find H(m) = 0, the term aH(m) may be
cancelled in the formula in the equation. Thus the random argument must be
done in term b instead of aH(m) since collision-resistance does not imply zero-
finder intractability in general. This remark also suitable for Cramer-Shoup’s
argument.


