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ABSTRACT

A quantum digital signature scheme based on quan-

tum mechanics is proposed in this paper. The secu-

rity of the protocol relies on the existence of quantum

one-way functions by fundamental quantum princi-

ples. Our protocol involves a so-called arbitrator who

validates and authenticates the signed message. This

scheme uses public quantum keys publicized by the

signatory to verify the validity of the signature and

uses quantum one-time pad to ensure the security of

quantum information on channel. To guarantee the au-

thenticity of the transmitted quantum states, a family

of quantum stabilizer code is employed. The proposed

scheme presents a novel method to construct secure

quantum signature systems for future secure commu-

nications.
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1 Introduction

Quantum cryptography aims at providing information

security that relies on the main properties of quan-

tum mechanics. The most successful topic of quan-

tum cryptography is quantum key distribution (QKD),

which was firstly invented by Bennett and Brassard in

1984 [1]. QKD is believed to be the first practical

quantum information processor and its unconditional

security has been proven [2, 3].

Other than QKD, quantum cryptography proto-

cols are widely studied in these years, such as quan-

tum digital signature and quantum message authen-

tication. Digital signature is a main task in modern

cryptography and is widely used in today’s commu-

nication systems. Digital signature cares about the

“authenticity” data on channel [4]. Informally, an un-

forgeable signature scheme requires that each user be

able to efficiently generate his(her) own signature and

verify the validity of another user’s signature on a spe-

cific document, and no one be able to efficiently gen-

erate the signatures of other users to documents that

those users didn’t sign.

Gottesman and Chuang proposed a quantum dig-

ital system [5] based on quantum mechanics, and

claimed that the scheme was absolutely secure, even

against an adversary having unlimited computational

resources. The scheme, however, can only sign classi-

cal bits string and can’t deal with general quantum su-

perposition states. Zeng presented an arbitrated quan-

tum signature scheme, the security of which is due to

the correlation of the GHZ triplet states and utilization

of quantum one-time pad [6].In an arbitrated signature

scheme, all communications involve a so called arbi-

trator who has access to the contents of the messages

[7]. The security of most arbitrated signature schemes

depends heavily on the trustworthiness of the arbitra-

tors. Zeng’s protocol signs quantum messages which

are known to the signatory. It seems impossible to

sign a general unknown quantum state [5, 6, 8].
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In this paper, we present a novel arbitrated quan-

tum digital signature scheme which can sign general

quantum states, the security of which is based on a

family of quantum one-way functions by quantum in-

formation theory. The rest of the article is arranged as

follows.

Section 2 introduces some definitions and pre-

liminaries we will use in the article. Section 3 de-

scribes the proposed quantum signature scheme. The

security is considered in Section 4. Section 5 gives

discussions and conclusions.

2 Preliminaries

2.1 Quantum one-way function

This section introduces a class of quantum one-way

functions based on the fundamental principles of

quantum mechanics, which was proposed by Gottes-

man and Chuang [5] and the definitions are presented

as below.

Definition 1 (quantum one-way function ) A func-

tion f : |x〉n1
7→ |f(x)〉n2

where x ∈ Fn1

2 and

n1 ≫ n2, is called a quantum one-way function under

physical mechanics if

(1) Easy to compute: There is a quantum

polynomial-time algorithm A such that on input |x〉
outputs |f(x)〉.

(2) Hard to invert: Given |f(x)〉, it is impossible

to invert x by virtue of fundamental quantum informa-

tion theory.

What should be pointed out for the above defi-

nition is that the conditionn1 ≫ n2 is necessary. By

Holevo’s theorem [10], no more thann classical bits

of information can be obtained by measuringn qubits

quantum states. Several means to construct quantum

one-way function were introduced by Gottesman and

Chuang [5] and here we choose the quantum finger-

printing function [11] for the candidate. The quantum

fingerprinting function of a bit stringu ∈ Fw
2 is

|f(u)〉 =
1√
m

m∑

l=1

(−1)El(u) · |l〉 (1)

whereE : {0, 1}w → {0, 1}m is a family of error

correcting code with fixedc > 1, 0 < δ < 1 andm =

cw. El(u) denotes thelth bit of E(u). The distance

between distinct code wordsE(u1) andE(u2) is at

least(1 − δ)m. Since two distinct code words can be

equal in at mostδm positions, for anyu1 6= u2 we

have〈f(u1)|f(u2)〉 ≤ δm/m = δ. Heref(u) can

be regarded as a class of quantum one-way functions,

which are easy to compute, but difficult to reverse.

2.2 Quantum stabilizer codes

Quantum error correction code (QECC) is a way

of encoding quantum data (havingm qubits) inton

qubits (m<n), which protects quantum states against

the effects of noise. Quantum stabilizer code is an

important class of QECC and has been used to the

other subject of quantum information, such as quan-

tum cryptography [10].

The Pauli operators{±I,±σx,±σy,±σz} con-

stitute a group of order 8. Then-fold tensor prod-

ucts of single qubit Pauli operators also form a group

Gn = ±{I,±σx,±σy,±σz}, of order22n+1. We re-

fer toGn as then-qubit Pauli group. LetS denote an

abelian subgroup of then-qubit Pauli groupGn. Then

the stabilizer codesHS ⊆ H22n satisfy,

|ψ〉 ∈ HS , iff M |ψ〉 = |ψ〉 for all M ∈ S (2)

The groupS is called the stabilizer of the code,

since it preserves all of the codewords.

For stabilizer codes [[n, k, d]], the generators

Mi and the errorsEa, write

MiEa = (−1)SiaEaMi, i = 1, · · · , n − k (3)

Thes′ias constitute a syndrome for the errorEa,

as(−1)Sia will be the result of measuringMi if the

error Ea happens. For a nondegenerate code,s′ias

will be distinct for allEa ∈ ε, so that measuring the

n−k stabilizer generators will diagnose the error com-

pletely.
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3 The Proposed Protocol

3.1 Security requirements

The proposed scheme is a cryptographic protocol in-

volving three entities: a signatory Alice, a receiver

Bob, and an arbitrator Trent who authenticates and

validates the signed message. The security of the sig-

nature scheme depends much on the trustworthiness

of the arbitrator who has access to the contents of the

messages. The quantum digital signature discussed in

this article should meet the following security condi-

tions:

1. Each user (Alice) can efficiently generate her

own signature on messages of his choice;

2. A receiver Bob can efficiently verify whether a

given string is a signature of another user’s on

specific message with Trent’s help;

3. The signatory can’t disavow the message that she

has signed;

4. It is infeasible to produce signatures of other

users’ messages they haven’t signed.

3.2 The protocol

3.2.1 Key generation

1. Key distribution. Alice, Bob and Trent agree on

some random bitsKAT , KAB andKTB as their

private keys.KAT is shared between Alice and

Trent,KAB is shared between Alice and Bob and

KTB between Trent and Bob .

To ensure that the scheme is unconditionally

secure, the keys can be generated using quantum

key distribution protocols, such as BB84 or EPR

protocol[1, 10].

2. Signature key generation. Alice generates 2k

random secret stringsui,j ∈ Fw
2 and computes

|yi,j〉 = |f(ui,j)〉, 1 ≤ i ≤ 2n, j ∈ {0, 1} (4)

Here f : |x〉 7→ |f(x)〉 is a class of quantum

one-way functions introduced in section 2. Al-

ice generates 4n key pairs of{ui,j , |yi,j〉}1≤i≤2n
j∈{0,1}

and then publicly announces{|yi,j〉}1≤i≤2n
j∈{0,1} as

her public key and keeps{ui,j}1≤i≤2n
j∈{0,1} as her pri-

vate key.

3.2.2 Signature

1. Suppose that Alice has a quantum state|ψ〉 ∈
H2n and wants to send it to Bob. Alice randomly

selects bits stringsx ∈ F 2n
2 , k for the stabilizer

codes{Qk} ands. Sheq-encrypts|ψ〉 asρ using

x. Alice encodesρ according toQk with syn-

dromess and obtainsπ.

2. Alice computes

X = (xpre|s| ⊕ y)||(xsuf2n−|s|
)1 (5)

and generates four copies ofX ′s signa-

ture |ΣK(X)〉 according to her keyK ∈
{ui,j , |yi,j〉|1 ≤ i ≤ 2n, j ∈ {0, 1}}

|ΣK(X)〉 = |y1,X1
⊗ . . . ⊗ y2n,X2n

〉

= |a1 ⊗ . . . ⊗ a2n〉 = |a〉 (6)

Alice sendsπ and two copies of|ΣK(X)〉 to

Bob. At the same time, she encrypts{s, k, x} as

C1 usingKAT
2 and sendsC1 and two copies of

|ΣK(X)〉 to Trent. We assume that each setting

up of a protocol has a unique sequence number.

3.2.3 Verification

1. Trent receivesC ′
1 and two copies of|Σ′

K(X)〉 =

|a′〉. Trent checks whether these two copies of

1Supposings < 2n in the algorithm. Here,xpre|y|
denotes

the first |y| bits of x and xsuf
2n−|y|

denotes the last2n − |y|

bits of x, a ⊕ b means the bit-by-bit XOR of the stringsa andb,

namelya ⊕ b = a1 ⊕ b1, · · · , am ⊕ bm. The symbol“||′′ means

concatenation of two binary strings.
2In this algorithm, we select classical one-time-pad to encrypt

classical message to ensure the unconditional security.
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|Σ′
K(x)〉 he recieved are equivalent by perform-

ing a quantum swap test circuit (QSTC [11]). If

any one of|a′i〉’s fails the test, Trent aborts the

protocol. Trent decryptsC ′
1 using his secure key

KAT and obtains{sT , kT , xT }. He computes

|ΣK(X)(T )〉 according toxT and Alice’s public

keys. Trent compares|ΣK(X)(T )〉 = |a〉T to

|Σ′
K(X)〉. If any one of them fails the test, Trent

aborts the protocol. Trent encrypts{kT , xT } as

C2 usingKTB and sends the ciphertext to Bob.

The comparison of two quantum states is less

straightforward than in the classical case because

of the statistical properties of quantum measure-

ments. Another serious problem is that quan-

tum measurements usually introduce a noneli-

gible disturbance of the measured state. Here,

we use the quantum swap test circuit (QSTC)

proposed in [11] to compare whether|ai〉T and

|a′i〉 are equivalent or not. QSTC is a com-

parison strategy with one-sided error probability

(1+ δ2/2), and each pair of the compared qubits

has an inner product with an absolute value at

most δ. Because there are2n sets of qubits to

be compared, the error probability of the test can

be reduced to(1+δ2

2 )2n, where〈fi|fj〉 ≤ δ with

i 6= j, andn is the security parameter. Let the

number of the incorrect keys beej , Bob rejects

it as invalid signature ifej > cM . Herec is a

threshold for rejection and acceptance in the pro-

tocol.

2. Bob has received Alice’s information

[π′, |Σ′′
K(X)〉 = |a′′〉], π′ and Trent’s mes-

sageC ′
2 now. He deciphersC ′

2 as{kB, xB} and

computesXB according to Eq.(5). He measures

the syndromesB of the stabilizer codeQk on π′

and decodes the qubits asρ′. He encryptssB as

C3 using parts ofKTB and sends it to Trent.

3. Trent encryptssT asC4 using parts ofKTB and

sends it to Bob.

4. Bob deciphersC ′
4 and obtainssT . He compares

sB to sT and aborts if any error is detected. Bob

checks whether these two copies of|Σ′′
K(X)〉 are

equivalent by performing the QSTC. He com-

putes quantum states|Σ(X)〉B = |a〉B usingXB

and Alice’s public keys{|yi,j〉}1≤i≤2n
j∈{0,1} . He veri-

fies Alice’s signature according to

VK(XB, |Σ′
K(X)〉) = True ⇔ {|a′i〉

= |yi,Xi
〉 = |a′′i 〉B}1≤i≤2n (7)

Bob q-decryptsρ′ as|ψ′〉 according toxB.

4 Security Analysis

4.1 Correctness

Theorem 1 (Correctness)Suppose all the entities

involved in the scheme follow the protocol, then Eq.

(7) holds.

Proof. The correctness of the scheme can be seen

by inspection. In the absence of intervention, Trent

will obtain Alice’s keys, x, k and her signature ofX.

Trent verifies the signature and sendsx, k secretly to

Bob. Bob can successfully decode and decipher the

quantum states and verify Alice’s signature. Because

Alice signs her message according to Eq. (6), it’s easy

to verify that Eq. (7) holds.

4.2 Security against repudiation

Alice can’t deny her signature. When Alice disavows

her signature, Bob will resort to Trent. Bob sends one

copy of the signature|Σ′′
K(X)〉 to Trent. Trent com-

paressB and|Σ′′
K(X)〉 with sT and his kept copy of

signature|Σ′
K(X)〉 Alice has sent to him. If all these

pass the test, Trent reveals that Alice is cheating be-

cause|ΣK(X)〉 contains Alice’s signature on her pri-

vate keysx ands. Otherwise, Trent concludes that the

signature has been forged by Bob or other attackers.
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4.3 Security against forgery

Theorem 2 Other entities forge Alice’s sig-

nature with a successful probability at most

2−[(w−t⌈log2m⌉)+2n].

Proof. Considering that an adversary (Eve or Bob)

controls the communication channels connecting Al-

ice, Trent and Bob and wants to forger Alice’s signa-

ture. Here we present two strategies that the attack

Eve (Bob) can apply.

1. One is that she tries to alter the signed quan-

tum states. Eve intercepts[π′, |Σ′
K(X)〉]. She

keepsπ′ and selects a random keyxE to en-

crypt another quantum states|φ〉 asτ and sends

[τ, |Σ′K(X)〉] to Bob. Because Eve knows noth-

ing about the stabilizer code{Qk} and syndrome

s, her cheating will be detected by Bob in the

fourth step of the verification phase when he

compares the syndromey to y′.

2. The second strategy is that the attacker tries to re-

cover Alice’s private keys and generates a “legal”

signature. Because she knows nothing about Al-

ice’s private keysx, y, k, KAT and{ui,j}1≤i≤2n
j∈{0,1} .

She can’t computex, y, k from the mixed state

π′. According to Holevo’s theorem [10], Eve can

obtain at mostt⌈log2m⌉ bits of classical infor-

mation about one of Alice’s signature key{ui,j}
from Alice’s public key. Here,t is a small natural

number and we letc = 4 in our scheme. Since

she lacksw−t⌈log2m⌉ bits of information about

any private key which Alice hasn’t revealed, she

will only guess correctly at most2−[w−t⌈log2m⌉]

of it. Therefore, the attacker can forger Alice’s

signature only with a successful probability less

than2−[(w−t⌈log2m⌉)+2n].

5 Concluding Remarks

Designing quantum digital signature protocol is not

trivial because of several fundamental properties of

quantum message.

The first and the most important property of

quantum information is the no-clone theorem, which

forbids the unknown qubits reproduction. For digital

signature, how can we verify the signature is indeed

the signature on a specific state without generating

copies of the original message?

The second is the probability and irreversibil-

ity properties of quantum measurement. That brings

much troubles to decide whether a state is a legal sig-

nature without changing that state.

The last property of secure quantum signature

scheme is that it is also a secure encryption scheme,

which has been shown by Barnumet al. in literature

[8].

In this article, we investigate how to span these

obstacles and present a quantum digital signature

scheme. The security of the scheme relies on the

existence of a family of quantum one-way functions

by quantum principles. The authenticity of the quan-

tum information is obtained by quantum error correc-

tion codes and security of the quantum information on

channel is ensured by quantum one-time pad.
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