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1. Introduction

Since elliptic curve cryptosystems were proposed in 1985 by V. Miller [16]

and by N. Koblitz [10] independently, as a good source of public key cryptosys-

tem with a small key length, there has been a lot of research in this direction.

The advantages using elliptic curve cryptosystem were the greater flexibility

in choosing the group over a given field and especially the absence of subex-

ponential time algorithms to break the system if an elliptic curve is suitably

chosen.

In 1989, Koblitz generalized the concept of elliptic curve cryptosystems to

hyperelliptic curves of higher genus [11]. Using the Jacobian of a hyperelliptic

curve defined over a finite field instead of a finite field or an elliptic curve, we

can further reduce the key size while maintaining the same level of security.

One can use a hyperelliptic curve of genus 2 over a finite field Fq, where q ≈ 280,

and achieve the same level of security as when an elliptic curve group E(Fq)

is used, where q ≈ 2160 or a group F∗q is used with q ≈ 21024.
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To select suitable hyperelliptic curves, we need some security requirements.

Let H be a hyperelliptic curve over the field Fq of genus g such that the order

of the Jacobian JH(Fq) is N = c · `, where ` is a large prime. At first, ` should

be greater than 2160 to protect against Pollard-rho and Baby-Step/Giant-Step

attacks. And if q = 2r, then r should be a prime to prevent Weil descent

attack on JH(Fq). To protect against the Tate-pairing attack, the smallest

s ≥ 1 such that qs ≡ 1 (mod p) should be greater than 20[8]. At last, the

genus g must be smaller than 5 to protect against the attack by Gaudry[9].

So we consider the only hyperelliptic curves of genus 2, 3 or 4.

It may be useful to classify the isomorphism classes of hyperelliptic curves of

genus 2 and 3 over finite fields, in order to know how many essentially different

choices of curves are. And this classification is used to produce nonisomor-

phic hyperelliptic curves, which may be useful for a cryptographic purpose.

In [7] the number of isomorphism classes of hypereilliptic curves of genus 2

over Fq with characteristic different from 2 or 5 were studied. Later the bound

of number of isomorphism classes of the hyperelliptic curves of genus 2 over

F2n was derived in [5] and the exact number and the representatives of each

isomorphism classes are determined[4].

In this paper we count the number of isomorphism classes of hyperelliptic

curves of genus 3 over a finite field with characteristic different from 2,7.

This paper is organized as follows; In section 2 we give necessary definitions.

In section 3 we give the number of isomorphism classes of hyperelliptic curves

of genus 3 over finite fields.

2. Hyperelliptic curves

In this section, we recall the basic definitions and theories. We follow nota-

tions given in [13].

A hyperelliptic curve over a field F of genus g is a nonsingular projective

curve C over F of genus g for which there exists a map C −→ P1(F) of degree

two.

A divisor on the curve C is a finite formal sum of points of the curve. For a

divisor D, let L(D) denote a vector space of rational functions f over C which

satisfy (f) + D ≥ 0 and l(D) = dimL(D). For C ∈ Hg, P ∈ C is called a
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Weierstrass point of C if l(2P ) > 1. When g = 1, every point is a Weierstrass

point. However, when g > 1, there are at least 2g + 2 Weierstrass points

(see [3], page 43). As in [13], we assume that C ∈ Hg has an Weierstrass

point. In this paper, we consider a pointed hyperelliptic curve the pair (C,P ).

Thus, when g = 1, (C, P ) being hyperelliptic means that C is an elliptic curve

with origin P. We denote the set of all hyperelliptic curves (C, P ) over F of

genus g by Hg.

Two curves in Hg are said to be isomorphic over F if they are isomorphic as

projective varieties over F. The relation of isomorphism over F is an equiva-

lence relation on Hg.

It is known that if (C1, P ), (C2, P ) ∈ Hg are isomorphic over F, then their

jacobian JC1(F) and JC2(F) are isomorphic [17]. But note that the converse is

not true.

Next, we consider the notion of Weierstrass equation;

Definition 2.1. A Weierstrass equation E over F of genus g is

E/F : y2 + h(x)y = f(x),

where h, f ∈ F[x], deg(h) ≤ g, deg(f) = 2g + 1, f is monic, and there are no

singular points; a singular point on E(x, y) = y2 + h(x)y − f(x) is a solution

(x, y) ∈ F̄ × F̄ which satisfies E(x, y), Ex(x, y) and Ey(x, y). We denote the

set of all Weierstrass equations of genus g over F by Wg.

The following proposition corresponds a Weierstrss equation to hyperelliptic

pair (C,P ).

Proposition 2.2. [13] Let (C, P ) be hyperelliptic over F with genus g. Then

there exist nonconstant functions x, y ∈ F(C) with x ∈ L(2P ), y ∈ L((2g +

1)P ), which satisfy a Weierstrass equation of genus g over F. Moreover, such

an equation is unique up to a change of coordinates of the form

(x, y)−→(α2x + β, α2g+1y + t)(2.1)

where α, β ∈ F with α 6= 0 and t ∈ F[x] with deg(t) ≤ g.

Furthermore, a Weierstrass equation E arises from some (C, P ) if and only

if E has no singular points, and in this case the set of such E form an equiv-

alence class of Weierstrass equations related by the transformations (2.1).
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So, we can say that there is a 1-1 correspondence between isomorphism

classes of curves in Hg and equivalence classes of Weierstrass equations in Wg,

where E, Ē ∈ Wg are said to be equivalent over F if there exist such that the

change of coordinates transforms (2.1) equation E to equation Ē. Thus, it is

enough to count the number of equivalence classes in Wg in order to count

the number of isomorphism classes in Hg. In the remainder we call E ∈ Wg a

hyperelliptic curve and let isomorphism denote a change of coordinates of the

above type.

3. Isomorphism classes of hyperelliptic curves of genus 3

In this section, we count the number of isomorphism classes of genus 3

hyperelliptic curves over Fq, q = pn, p 6= 2, 7 and list all the representatives of

each isomorphism class. In this section, we let q = pn.

Let H be a hyperelliptic curve of genus 3 defined over Fq given by a Weier-

strass equation;

H : y2 + h(x)y = f(x),

where h(x) is a polynomial of degree ≤ 3, and f(x) is a monic polynomial of

degree 7, i.e.,

h(x) = a1x
3 + a3x

2 + a5x + a7,

f(x) = x7 + a2x
6 + a4x

5 + a6x
4 + a8x

3 + a10x
2 + a12x + a14,

with ai ∈ Fq.

The equation (3.1) defining a hyperelliptic curves H of genus 3 is unique up

to a change of coordinates of the form

(3.1) (x, y) 7→ (α2x + β, α7y + t(x)),

where α ∈ F∗q and t(x) ∈ Fq[x] with deg t ≤ 3 (see [13]).

Proposition 3.1. Every hyperelliltic curve of genus 3 over Fq can be repre-

sented by an equation of the form

y2 = x7 + a4x
5 + a6x

4 + a8x
3 + a10x

2 + a12x + a14.

If H, H̄ be isomorphic curves of genus 3 defined over Fq given by the following

equations

H : y2 = x7 + a4x
5 + a6x

4 + a8x
3 + a10x

2 + a12x + a14,
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H̄ : y2 = x7 + ā4x
5 + ā6x

4 + ā8x
3 + ā10x

2 + ā12x + ā14,

then only admissible change of variables (3.2) transforming H into H̄ is

(x, y) 7→ (α2x, α7y), α ∈ F∗q.
This gives the following relations;

(3.2)





α4ā4 = a4

α6ā6 = a6

α8ā8 = a8

α10ā10 = a10

α12ā12 = a12

α14ā14 = a14.

(Proof)Letting t(x) = −1
2
h(x) and β = −1

7
a2− 1

28
a2

1, we obtain āi = 0, i =

1, 2, 3, 5, 7. If ai = āi, i = 1, 2, 3, 5, 7, then β = t(x) = 0. ¤

3.1. The number of singular equations.

The Weierstrass equation y2 = f(x) over Fq is singular if and only if f(x)

has a multiple root in F̄q. We denote ∆(f) is a discriminant of the polynomial

f(x).

Theorem 3.2. Let

V = {f(x) ∈ Fq[x]|f(x) = x7+a4x
5+a6x

4+a8x
3+a10x

2+a12x+a14, ∆(f) = 0}.
Then |V| = q5.

(Proof)Suppose f(x) ∈ V .

Then we have one of the following three factorizations of f(x) ∈ Fq[x];

A = {f(x) | f(x) = (x− α)2(x5 + 2αx4 + βx3 + γx2 + δx + ε),

α, β, γ, δ, ε ∈ Fq}
B = {f(x) | f(x) = (x2 + αx + β)2(x3 − 2αx2 + γx + δ),

α, β, γ, δ ∈ Fq, x
2 + αx + β is irreducible over Fq[x]}

C = {f(x)| f(x) = (x3 + αx2 + βx + γ)2(x− 2α), α, β, γ ∈ Fq,

x3 + αx2 + βx + γ is irreducible over Fq[x]}
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Define a map

ϕ : F5
q −→ V ,

ϕ(α, β, γ, δ, ε) = (x− α)2(x5 + 2αx4 + βx3 + γx2 + δx + ε).

Suppose α 6= ᾱ and ϕ(α, β, γ, δ, ε) = ϕ(ᾱ, β̄, γ̄, δ̄, ε̄). That is f(x) = f̄(x),

where

f(x) = (x− α)2(x5 + 2αx4 + βx3 + γx2 + δx + ε)

and

f̄(x) = (x− ᾱ)2(x5 + 2ᾱx4 + β̄x3 + γ̄x2 + δ̄x + ε̄).

Then

f(x) = f̄(x) = (x− α)2(x− ᾱ)2(x3 + 2(α + ᾱ)x2 + β′x + γ′)

for some β′, γ′ ∈ Fq and the above polynomial determined the non-ordered

pairs (α, ᾱ) such that α 6= ᾱ and β′, γ′ ∈ Fq. Also if α, ᾱ, ¯̄α are distinct and

ϕ(α, β, γ, δ, ε) = ϕ(ᾱ, β̄, γ̄, δ̄, ε̄) = ϕ( ¯̄α, ¯̄β, ¯̄γ, ¯̄δ, ¯̄ε), then

f(x) = f̄(x) = ¯̄f(x) = (x− α)2(x− ᾱ)2(x− ¯̄α)2(x + 2(α + ᾱ + ¯̄α))

and the above polynomial determined the non-ordered tuples (α, ᾱ, ¯̄α) such

that α, ᾱ, ¯̄α are pairwise distinct. So we have

|A| = q5 − q3(q − 1)/2 + q(q − 1)(q − 2)/6.

We note that there are 1
d
(qd− q) many monic irreducible polynomial of degree

d over Fq ( see [12]), so we get

|B| = q3(q − 1)/2, |C| = q2(q − 1)/3.

If f(x) ∈ A ∩B, then

f(x) = (x− α)2(x2 + βx + γ)2(x + 2α− 2β),

where α, β, γ ∈ Fq and x2+βx+γ is irreducible. Therefore |A∩B| = 1
2
q2(q−1).

Since B ∩ C = C ∩ A = φ, we get

V = |A|+ |B|+ |C| − |A ∩B| = q5.

¤
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3.2. The number of isomorphism classes .

Let H be the set of hyperelliptic curves H : y2 = f(x) where f(x) ∈ Fq[x]

is of the following form;

f(x) = x7 + a2x
6 + a4x

5 + a6x
4 + a8x

3 + a10x
2 + a12x + a14.

Let Hi, 1 ≤ i ≤ 5 be the subsets in H defined as follows;

H1 = {H ∈ H|a4 = a6 = a8 = a10 = a12 = 0, a14 6= 0}
H2 = {H ∈ H|a4 = a6 = a8 = a10 = a14 = 0, a12 6= 0}
H3 = {H ∈ H|a4 = a8 = a10 = a14 = 0, a6 6= 0, a12 6= 0}
H4 = {H ∈ H|a6 = a10 = a14 = 0, a4 6= 0 or a8 6= 0}
H5 = H\(H1 ∪H2 ∪H3 ∪H4).

Then H is the disjoint union of sets ∪5
i=1Hi. We have |Hi| for each 1 ≤ i ≤ 5

as the following lemma;

Lemma 3.3. |H1| = |H2| = q − 1, |H3| = (q − 1)(q − 2),

|H4| = q(q − 1)2, |H5| = q2(q − 1)2(q2 + q + 1).

(Proof)

(1) Let f(x) = x7 + a14. Then the Weierstrass equation y2 = f(x) is

nonsingular if and only if a14 6= 0. So we have |H1| = q − 1.

(2) Let f(x) = x7 + a12x. Also the equation y2 = f(x) is nonsingular if

and only if a12 6= 0 and we get the desired result.

(3) Let f(x) = x7 + a6x
4 + a12x, a6 6= 0 and a12 6= 0. Then

∆(f) = 36a4
12(a

2
6 − 4a12)

3.

Therefore the equation y2 = f(x) is singular if and only if a12 = a2
6/4

and we obtain |H3| = (q − 1)2 − (q − 1) = (q − 1)(q − 2).

(4) Let f(x) = x7 + a4x
5 + a8x

3 + a12x, a4 6= 0 or a8 6= 0.

If a12 = 0, then f(x) has a multiple root zero. Suppose a12 6= 0.

If f(x) can be factorized as

f(x) = (x− α)2(x5 + 2αx4 + βx3 + γx2 + δx + ε), α, β, γ, δ, ε ∈ Fq,

then

α 6= 0, β 6= α2, γ = 2αβ − 2α3, δ = α2β − α4,
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and

f(x) = x(x− α)2(x + α)2(x2 + β − α2).

There are (q − 1)2/2 many polynomials which have the above form.

If f(x) can be factorized as

f(x) = (x2 + αx + β)2(x3 − 2αx2 + γx + δ), α, β, γ, δ ∈ Fq,

where x2 + αx + β is irreducible over Fq[x], then

α = δ = 0, γ 6= 0,
√

β /∈ F∗q.
Also there are (q−1)2/2 many polynomials which have the above form.

One can check f(x) cannot be factorized as

(x3 + αx2 + βx + γ)2(x− 2α), α, β, γ ∈ Fq

where x3 + αx2 + βx + γ is irreducible over Fq[x]. Therefore we get

|H4| = (q − 1)(q2 − 1)− (q − 1)2 = q(q − 1)2.

(5) We have |H| = q6 − q5 from Theorem 3.2. So we obtain

|H5| = |H| −
4∑

i=1

|Hi| = q2(q − 1)2(q2 + q + 1).

¤

Theorem 3.4. The number of isomorphism classes of hyperelliptic curves of

genus 3 over Fq, q = pn, p 6= 2, 7 is 2q5 + r(q), where r(q) is given in the fol-

lowing table;

r(q) q ≡ 1 (mod 12) q ≡ 5 (mod 12) q ≡ 7 (mod 12) q ≡ 11 (mod 12)

q ≡ 1 (mod 7) 2q2 + 2q + 14 2q2 − 2q + 14 4q + 8 12

q 6≡ 1 (mod 7) 2q2 + 2q + 2 2q2 − 2q + 2 4q − 4 0

(Proof)

Let A be the group of transforms of the form (x, y) → (α2x, α7y). Let Ai

be the group of automorphisms of an arbitrary curve in each of the classes Hi,

with i = 1, 2, 3, 4, 5. From (3.2), we get the follows;
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A1 = {α ∈ F∗q| α14 = 1}, A2 = {α ∈ F∗q| α12 = 1},
A3 = {α ∈ F∗q| α6 = 1}, A4 = {α ∈ F∗q| α4 = 1},
A5 = {α ∈ F∗q| α2 = 1}.
And we have

|A1| =




14 if q ≡ 1 (mod 7)

2 if q 6≡ 1 (mod 7)

|A2| =





12 if q ≡ 1 (mod 12)

6 if q 6≡ 1 (mod 12), q ≡ 1 (mod 3)

4 if q 6≡ 1 (mod 12), q ≡ 1 (mod 4)

2 if q 6≡ 1 (mod 3), q 6≡ 1 (mod 4)

|A3| =




6 if q ≡ 1 (mod 3)

2 if q 6≡ 1 (mod 3)

|A4| =




4 if q ≡ 1 (mod 4)

2 if q 6≡ 1 (mod 4)

|A5| = 2.

|H/A| =
5∑

i=1

|Hi/A|

= |A1|+ |A2|+ |A3|(q − 2) + |A4| q(q − 1) + 2q5 − 2q2.

Then we get the desired result. ¤
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