

Committing Encryption
and Publicly-Verifiable SignCryption

Yitchak Gertner� Amir Herzberg�

Department of Computer Science, Bar-Ilan University

��/��/����

 Abstract

Encryption is often conceived as a committing process, in the sense that the ciphertext
may serve as a commitment to the plaintext. But this does not follow from the standard
definitions of secure encryption.

We define and construct symmetric and asymmetric committing encryption schemes,
enabling publicly verifiable non-repudiation. Committing encryption eliminates key-spoofing
attacks and has also the robustness to be signed afterwards. Our constructions are very
efficient and practical. In particular, we show that most popular asymmetric encryption
schemes, e.g. RSA, are committing encryption schemes; we also have an (efficient)
construction given an arbitrary asymmetric encryption scheme. Our construction of
symmetric committing encryption retains the efficiency of the symmetric encryption for real-
time operations, although it uses few public key signatures in the setup phase.

Finally, we investigate how to achieve both confidentiality and non-repudiation, and
present a publicly verifiable signcryption scheme. Contrary to previous signcryption schemes,
which are not publicly verifiable, our publicly verifiable signcryption supports non-
repudiation. We construct a simple and efficient publicly verifiable signcryption scheme
based on a new composition method which we call “commit-encrypt-then-sign” (CEtS) that
preserves security properties of both committing encryption and digital signature schemes.

Keywords: Encryption, Commitment, Key-spoofing attack, Committing Encryption,
Signcryption, Non-repudiation, Signatures.

1 Introduction
Encryption is often conceived as a committing process, in the sense that the ciphertext

may serve as a commitment to the plaintext. But without appropriate security properties, the
encryption scheme is vulnerable to key-spoofing attacks. Key-spoofing attacks [AN95]

� Email: gertner@ieee.org
�Department of Computer Science, Bar-Ilan University, Ramat-Gan 529000, ISRAEL. Email:

amir@herzberg.name

 2

derive different message m’ from the original ciphertext c by changing the (decryption) key.
Key-spoofing can cause failures of non-repudiation protocols such as of [ZG96a].

We introduce symmetric and asymmetric committing encryption schemes. Committing
encryption schemes combine the security properties of commitment and encryption schemes
such that they ensure that the decrypted message is indeed the original message. Committing
encryption schemes allow the sender (encrypt side) to prove to a third party that the recipient
(decrypt side) is able to open the ciphertext and retrieve the original plaintext, and allow the
recipient to prove to a third party that this is the original plaintext that was sent by the sender.
Having these properties, committing encryption schemes eliminate key-spoofing attacks and
can be safely signed.

Many existing crypto protocols use encryption and implicitly assume commitment
properties. Is this secure, for typical, standard cryptosystem? We show that indeed, most
asymmetric cryptosystems such as (padded) RSA are also committing encryption. In fact, any
public-key cryptosystem where decryption recovers the random bits used during encryption is
also committing encryption. However, we did not find a similar requirement to ensure that
symmetric encryption schemes are also committing. In fact, it is easy to show secure
encryption schemes where key-spoofing is easy, e.g. one-time pad.

In this work we formally study the notion of committing encryption. We provide a formal
definition of committing encryption schemes for both symmetric and asymmetric setting. The
definition provides for better understanding the security requirements and the constraints
under which an encryption can provide also commitment along with confidentiality.

The definition is essential also for cryptanalysts. Given an encryption algorithm that may
be used for commitment, cryptanalysts can analyze and check according to the committing
encryption definition whether the encryption algorithm can be used to provide also
commitment along with confidentiality or not. This is especially relevant to symmetric
encryption; we suggest that this should be an additional criteria in the cryptoanalytical
evaluation of proposed symmetric encryption schemes.

The common intuition to use encryption for commitment is getting formalized in this
work by proposing a simple method of constructing asymmetric committing encryption
scheme that is based on a ‘regular’ asymmetric encryption scheme that its decryption
function restores the random value used by the encryption function. Such an encryption
scheme is the popular and most commonly used RSA encryption scheme with EME
(Encoding Method for Encryption) operations i.e., with padding or with hashing e.g. using
OAEP (Optimal Asymmetric Encryption Padding) [BR94, PKCS1v2.0, PKCS1v2.1]. We
further refer to such a scheme as randomness-recovering asymmetric encryption.

We present a new composition method which we call “commit-then-encrypt”. This
composition involves several cryptographic tools such as asymmetric encryption,
commitment and digital signature schemes. Even though, it is still fairly efficient in the run
time. We prove that this simple and efficient composition constructs a secure asymmetric
committing encryption scheme. This construction may be used as a mechanism to transform
any asymmetric encryption (even if the decryption function does not restore the random value
used by the encryption function) to committing encryption.

Another important construction is the construction of symmetric committing encryption
scheme. We show that given any symmetric encryption scheme, although by itself it is not a
committing encryption, adding a committing key setup protocol results in a secure symmetric
committing encryption scheme. We propose a simple method of constructing symmetric
committing encryption scheme. This construction involves several cryptographic tools such

 3

as symmetric encryption, commitment and digital signature schemes. Even though, in the run
time, its efficiency remains the same as the efficiency of the chosen symmetric encryption.
We prove that this simple and efficient construction is a secure symmetric committing
encryption scheme.

Finally, we present a publicly verifiable signcryption scheme. Contrary to Zheng [Zh97]
and An, Dodis and Rabin [ADR02] signcryption schemes which are not publicly verifiable,
our publicly verifiable signcryption supports non-repudiation. We construct a simple and
efficient publicly verifiable signcryption scheme based on a new composition method which
we call “commit-encrypt-then-sign” (CEtS) that preserves security properties of both
ingredients committing encryption and digital signature schemes including the non-
repudiation feature of the signature scheme.

NOTATIONS

If x, y denote bit strings, |x| denotes the bit length of string x, and x||y denotes the
concatenation of strings x and y. Let {0, 1}* be the space of (finite) binary strings. If S is a set
then Sa R��� denotes the experiment of selecting a point uniformly from S and assigning a
this value.

If A(·, ·, …) is any probabilistic algorithm then ...) ,,(21 xxAa R��� denotes the
experiment of running A on inputs x1, x2, … and letting a be the outcome, the probability
being over the coins of A obtained internally by A. If the coins of A are given explicitly to A,
we denote by r the input of a random value where *1} {0,���Rr and we write

)..., ,,(21 rxxAa ��� .

An adversary denoted �, is a probabilistic algorithm that may access one or more oracles.
An oracle is a probabilistic algorithm. If O is an oracle then ,...),(,|)(yxpXxXO ��� denotes an
adversary � that has access to an oracle O with a restriction that the predicate, p(x, y, …), is
true for all the queries x � X, where X is the set of the queries x that were given by � as inputs
to O in one invocation of �.

When S, T, … denotes probability spaces, Pr [p(x, y, …) | TySx RR ������ , , …]
denotes the probability that the predicate, p(x, y, …), is true after the experiments,

TySx RR ������ , , …, are executed in that order.

A function �(k) is called negligible if for any strictly positive polynomial p(k) there exist
k0 such that for all k > k0 we have �(k) < 1/p(k). We often write negl(k) to indicate some
negligible function of k, without giving an explicit name.

In this work we assume only polytime algorithms i.e. algorithms that their running time is
polynomially bounded in the length of their inputs. We let 1k denote the string of 1’s of
length k. When a probabilistic algorithm A is given 1k as an input, this suggests that A is
allowed to work in time polynomial in k. Note that if an adversary � is polytime and an
oracle O is also polytime then the composition �O(·) is also polytime.

2 Definition of Committing Encryption
We define a symmetric committing encryption scheme, which uses a secret key shared by

the sender and recipient and an asymmetric committing encryption scheme, which uses a
public-key known to the sender and a corresponding private-key known only to the recipient.

 4

SYNTAX OF SYMMETRIC COMMITTING ENCRYPTION SCHEMES

The symmetric committing encryption scheme adds to the regular symmetric encryption
scheme (1) a public key, which is used for commitment purposes and (2) a public verification
function.

The verification function confirms that message m is the original plaintext of committing
ciphertext c, and that recipient of committing ciphertext c is able to open it i.e., the message
m was encrypted with the original encryption key.

A symmetric committing encryption scheme ��sym = (KeyGenSetup, CmtEnc, DcmtDec,
Ver) consists of four algorithms:

� The randomized key generation algorithm KeyGenSetup takes as input a security
parameter k � N and returns a pair of keys (CK, K). CK is the public commitment key
(possibly empty, but usually consisting of public parameters for the commitment), and
K is the encryption and decryption key, which is kept secret; we write

)1(),(kR pKeyGenSetuKCK ��� .

� The committing encryption algorithm CmtEnc takes as input the keys (CK, K), a
message m from the associated message space � and a random value r, and returns
committing ciphertext c; we write c � CmtEncCK,K(m, r).

� The deterministic de-committing decryption algorithm DcmtDec takes as input the
keys (CK, K), the committing ciphertext c, and returns either a pair (m, hint), where
m � � is the corresponding plaintext and hint is a value to help the public verification
of the committing encryption, or the symbol � denoting failure; we write
(m, hint) � DcmtDecCK,K(c).

� The deterministic verification algorithm Ver takes as input the public key CK, the
committing ciphertext c, a message m from the associated message space �, and a
hint, and returns an answer a which is either succeed in case the message m is the
plaintext of c, or fail otherwise; we write a � VerCK(c, m, hint).

We require, for any m � �, any keys (CK, K), and any random value r,

� DcmtDecCK,K(CmtEncCK,K(m, r)) = (m, hint), and

� VerCK(CmtEncCK,K(m, r), DcmtDecCK,K(CmtEncCK,K(m, r))) = succeed.

SYNTAX OF ASYMMETRIC COMMITTING ENCRYPTION SCHEMES

The asymmetric committing encryption scheme adds to the regular asymmetric
encryption scheme the public verification function. The public encryption key is now used for
commitment purposes also.

An asymmetric committing encryption scheme ��asym = (KeyGenSetup, CmtEnc,
DcmtDec, Ver) consists of four algorithms.

� The randomized key generation algorithm KeyGenSetup takes as input a security
parameter k � N and outputs a pair of keys (CEK, DK). CEK is the public committing
encryption key, and DK is the decryption key, which is kept secret; we write

)1(),(kR pKeyGenSetuDKCEK ��� .

 5

� The committing encryption algorithm CmtEnc takes as input the public key CEK, a
message m from the associated message space � and a random value r, and returns
committing ciphertext c; we write c � CmtEncCEK(m, r).

� The deterministic de-committing decryption algorithm DcmtDec takes as input the
keys (CEK, DK), the committing ciphertext c, and returns either a pair (m, hint),
where m � � is the corresponding plaintext and hint is a value to help the public
verification of the committing encryption, or the symbol � denoting failure; we write
(m, hint) � DcmtDecCEK,DK(c).

� The deterministic verification algorithm Ver takes as input the public key CEK, the
committing ciphertext c, a message m from the associated message space �, and a
hint, and returns an answer a which is either succeed in case the message m is the
plaintext of c, or fail otherwise; we write a � VerCEK(c, m, hint).

We require, for any m � �, any keys (CEK, DK) and any random value r,

� DcmtDecCEK,DK(CmtEncCEK(m, r)) = (m, hint), and

� VerCEK(CmtEncCEK(m, r), DcmtDecCEK,DK(CmtEncCEK(m, r))) = succeed.

SECURITY OF COMMITTING ENCRYPTION

For brevity and since the definitions of the security notions are very similar for symmetric
and asymmetric committing encryptions we define them simultaneously for both symmetric
and asymmetric committing encryptions.

Both schemes consist of four algorithms each. It is clear that the sender runs CmtEnc
algorithm and the recipient runs DcmtDec algorithm; anyone can run Ver. In the asymmetric
scheme the recipient runs KeyGenSetup because only the recipient knows the secret
decryption key DK. In the symmetric scheme, although it is symmetric, since the sender is
also the committing party, we again require the recipient to run KeyGenSetup and choose the
keys. This eliminates the possibility that the sender selects CK in such a way that it is
possible for the committing party to find collisions i.e., to commit itself to message m with c
and hint, but reveal to another message m’ with c and hint’.

We consider three security goals:

� Indistinguishability of ciphertexts (IND)

� Binding

� Recoverability

Indistinguishability of ciphertexts (IND) Intuitively we want that given a committing
ciphertext c an adversary cannot gain significant information about the message content. We
assume an adversary that runs in two stages. During the find stage, the adversary endeavors to
come up with a pair of equal-length messages, x0 and x1, whose committing encryptions it
wants to try to tell apart. It also retains some state information s that it may want to preserve
to help it later. In the guess stage, it is given a random committing ciphertext y for one of the
plaintexts x0, x1, together with the state information s. The adversary “wins” if it correctly
identifies which plaintext goes with y. The committing encryption scheme is “good” if
“reasonable” adversaries cannot win significantly more than half the time.

We consider the following types of attack:

� Chosen Plaintext Attack (CPA)

 6

� Chosen Ciphertext Attack (CCA)

Chosen Plaintext Attack (CPA) For the symmetric committing encryption, under the
chosen plaintext attack, the adversary �cpa is given access to the committing encryption oracle
CmtEncCK,K() to commit-encrypt arbitrary messages of its choice. While for the asymmetric
committing encryption, the adversary �cpa is not given any extra capabilities other than using
the public committing encryption key CEK. We denote this notion of security CE-IND-CPA.

Definition 1.1, 1.2 [CEsym-IND-CPA-security, CEasym-IND-CPA-security]

Let ��sym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be a symmetric committing
encryption scheme. Let ��asym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be an asymmetric
committing encryption scheme. Let }1 ,0{���Rb and k � N. Let �cpa be an adversary that
runs in two stages, find and guess, and for symmetric committing encryption has access to the
oracle CmtEncCK,K(). We consider the following experiments:

Experiment)(cpaind
, cpa

kExp b

������

)1(),(kR pKeyGenSetuKCK ���

),1 ,(),,()(
cpa10

, findCKsxx kCmtEncR KCK 	��� �

 y � CmtEncCK,K(xb, r)
),,,1 ,()(

cpa
, syguessCKb kCmtEncR KCK 	���� �

Return b’

Experiment)(cpaind
, cpa

kExp b

�������

)1(),(kR pKeyGenSetuDKCEK ���
),(),,(cpa10 findCEKsxx R

����

 y � CmtEncCEK(xb, r)
),,,(cpa syguessCEKb R

�����
Return b’

The schemes ��sym, ��asym are said to be CE-IND-CPA-secure if (1.1) and (1.2) holds
respectively:

�)(
2
1

)(},1 ,0{| Pr cpaind
, cpa

kneglkExpbbbb bRR �����������

������

 (1.1)

�)(
2
1

)(},1 ,0{| Pr cpaind
, cpa

kneglkExpbbbb bRR �����������

�������

 (1.2)

Chosen Ciphertext Attack (CCA) For the symmetric committing encryption, under the
chosen ciphertext attack, the adversary �cca is given access to the committing encryption
oracle CmtEncCK,K() to commit encrypt arbitrary messages of its choice and to the de-
committing decryption oracle DcmtDecCK,K() to de-commit decrypt arbitrary committing
ciphertexts of its choice.

For the asymmetric committing encryption, under the chosen ciphertext attack, the
adversary �cca is given access to the de-committing decryption oracle DcmtDecCEK,DK() to de-
commit decrypt arbitrary committing ciphertexts of its choice.

Several types of CCA attacks were defined for asymmetric encryption schemes: CCA1
[NY95], CCA2 [RS91], and gCCA2 [ADR02]. Similar definitions apply to symmetric and
asymmetric committing encryption schemes. We denote these notions of security CE-IND-
CCA1, CE-IND-CCA2, and CE-IND-gCCA2.

Definition 2.1, 2.2 [CEsym-IND-CCA1-security, CEasym-IND-CCA1-security]

Let ��sym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be a symmetric committing
encryption scheme. Let ��asym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be an asymmetric

 7

committing encryption scheme. Let }1 ,0{���Rb and k � N. Let �cca1 be an adversary that
runs in two stages, find and guess, and for symmetric committing encryption has access to the
oracles CmtEncCK,K() and DcmtDecCK,K() in the find stage and to the oracle CmtEncCK,K() in
the guess stage. And for asymmetric committing encryption, has access to the oracle
DcmtDecCEK,DK() in the find stage. We consider the following experiments:

Experiment)(cca1ind
, cca1

kExp b

������

)1(),(kR pKeyGenSetuKCK ���

),1 ,(),,()(),(
cca110

,, findCKsxx kDcmtDecCmtEncR KCKKCK 		��� �
 y � CmtEncCK,K(xb, r)

),,,1 ,()(
cca1

, syguessCKb kCmtEncR KCK 	���� �
Return b’

Experiment)(cca1ind
, cca1

kExp b

�������

)1(),(kR pKeyGenSetuDKCEK ���

),(),,()(
cca110

, findCEKsxx DKCEKDcmtDecR 	��� �
 y � CmtEncCEK(xb, r)

),,,(cca1 syguessCEKb R
�����

Return b’

The schemes ��sym, ��asym are said to be CE-IND-CCA1-secure if (2.1) and (2.2) holds
respectively:

�)(
2
1

)(},1 ,0{| Pr cca1ind
, cca1

kneglkExpbbbb bRR �����������

������

 (2.1)

�)(
2
1

)(},1 ,0{| Pr cca1ind
, cca1

kneglkExpbbbb bRR �����������

�������

 (2.2)

Definition 3.1, 3.2 [CEsym-IND-CCA2-security, CEsym-IND-gCCA2-security, CEasym-
IND-CCA2-security CEasym-IND-gCCA2-security]

Let ��sym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be a symmetric committing
encryption scheme. Let ��asym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be an asymmetric
committing encryption scheme. Let }1 ,0{���Rb and k � N. Let �cca2 be an adversary that
runs in two stages, find and guess, and for symmetric committing encryption has access to the
oracles CmtEncCK,K() and DcmtDecCK,K(). And for asymmetric committing encryption, has
access to the oracle DcmtDecCEK,DK().

Let 	 (y, y’) = true � y = y’ for CCA2. For gCCA2, for symmetric committing
encryption 	 (y, y’) = true � DcmtDecCK,K(y) = DcmtDecCK,K(y’), and for asymmetric
committing encryption, 	 (y, y’) = true � DcmtDecCEK,DK(y) = DcmtDecCEK,DK(y’). �cca2, in
the guess stage, is not allowed to ask oracle DcmtDecCK,K() or DcmtDecCEK,DK() a query y’
s.t. 	 (y, y’) = true. We consider the following experiments:

 8

Experiment)(cca2ind
, cca2

kExp b

������

)1(),(kR pKeyGenSetuKCK ���

),1 ,(),,()(),(
cca210

,, findCKsxx kDcmtDecCmtEncR KCKKCK 		��� �
 y � CmtEncCK,K(xb, r)

),,,1 ,(),(,,, |)(),(
cca2 syguessCKb kZDcmtDecCmtEncR falsezyZzKCKKCK ���	���� 	�

Return b’

Experiment)(cca2ind
, cca2

kExp b

�������

)1(),(kR pKeyGenSetuDKCEK ���

),(),,()(
cca210

, findCEKsxx DKCEKDcmtDecR 	��� �
 y � CmtEncCEK(xb, r)

),,,(),(,, |)(
cca2 syguessCEKb falsezyZzDKCEK ZDcmtDecR ������� 	�

Return b’

The schemes ��sym, ��asym are said to be CE-IND-CCA2-secure if (3.1) and (3.2) holds
respectively:

�)(
2
1

)(},1 ,0{| Pr cca2ind
, cca2

kneglkExpbbbb bRR �����������

������

 (3.1)

�)(
2
1

)(},1 ,0{| Pr cca2ind
, cca2

kneglkExpbbbb bRR �����������

�������

 (3.2)

Binding Intuitively we want that an adversary �bnd cannot find a committing ciphertext
c, which can be publicly verified for two different messages m, and m’ using possibly two
different hints hint, and hint’.

Having the knowledge of (CK, K) (for the symmetric committing encryption) or CEK,
(for the asymmetric committing encryption), it is computationally hard for an adversary �bnd
to come up with c, (m, hint), (m’, hint’), m’ � m such that giving (c, m, hint) and (c, m’, hint’)
as input to the verification algorithm Ver results in succeed (such a triple c, (m, hint), (m’,
hint’) is said to cause a collision). That is, �bnd cannot find a value c, which it can open in two
different ways. We denote this notion of security CE-BIND.

Definition 4.1, 4.2 [CEsym-BIND-security, CEasym-BIND-security]

Let ��sym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be a symmetric committing
encryption scheme. Let ��asym = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be an asymmetric
committing encryption scheme. Let k � N and �bnd be an adversary that runs in find stage. Let
collision(c, (m, hint), (m’, hint’)) = true � m � m’ � VerCK(c, m, hint) = succeed � VerCK(c,
m’, hint’) = succeed for symmetric committing encryption, and for asymmetric committing
encryption, collision(c, (m, hint), (m’, hint’)) = true � m � m’ � VerCEK(c, m, hint) = succeed
� VerCEK(c, m’, hint’) = succeed. We consider the following experiments:

 9

Experiment)(bind
, bnd

kExp ������

)1(),(kR pKeyGenSetuKCK ���

),,()),(),,(,(bnd findKCKthinmhintmc R
������

Return (c, (m, hint), (m’, hint’))

Experiment)(bind
, bnd

kExp �������

)1(),(kR pKeyGenSetuDKCEK ���

),()),(),,(,(bnd findCEKthinmhintmc R
������

Return (c, (m, hint), (m’, hint’))

The schemes ��sym, ��asym are said to be CE-BIND-secure if (4.1) and (4.2) holds
respectively:

)(
)()),(),,(,()),(),,(,(

Pr
bind

, bnd knegl
kExpthinmhintmc

true

thinmhintmccollision R

�
�
�
�

������
�
�

�

�

�� ������ (4.1)

)(
)()),(),,(,()),(),,(,(

Pr
bind

, bnd knegl
kExpthinmhintmc

true

thinmhintmccollision R

�
�
�
�

������
�
�

�

�

�� ������� (4.2)

Recoverability Intuitively we want that an adversary �rcvr cannot produce committing
ciphertext c in such a way that it cannot be de-committed decrypted by the other side
nevertheless the adversary itself can produce m and hint such that Ver(c, m, hint) = succeed.
In other words, changing secret key (i.e. using another secret key than the agreed upon one) is
not possible.

Indeed, this security goal might be trivial for asymmetric committing encryption since
Ver uses the public committing encryption key, which is bound to the private decryption key.
But for symmetric committing encryption this kind of attack is still possible unless we have
some kind of bindings between the public committing key and the secret
encryption/decryption key. For the uniformity of the definition, we require this security goal
for both symmetric and asymmetric committing encryptions. We denote this notion of
security CE-RECOVER.

Definition 5.1, 5.2 [CEsym-RECOVER-security, CEasym-RECOVER-security]

Formally, having the knowledge of (CK, K) for symmetric committing encryption, it is
computationally hard for an adversary �rcvr to come up with c, m, and hint such that
DcmtDecCK,K(c) = � but VerCK(c, m, hint) = succeed.

)(
),,(),,(

),1(),(

),,(

,)(
Pr

rcvr

, knegl
findKCKhintmc

pKeyGenSetuKCK

succeedhintmcVer

cDcmtDec
R

kR

CK

KCK ��
�

�

���

���

�
�
�

�

�

��

�
 (5.1)

And for asymmetric committing encryption, having the knowledge of CEK, it is
computationally hard for an adversary �rcvr to come up with c, m, and hint such that
DcmtDecCEK,DK(c) = � but VerCEK(c, m, hint) = succeed.

 10

)(
),(),,(

),1(),(

),,(

,)(
Pr

rcvr

, knegl
findCEKhintmc

pKeyGenSetuDKCEK

succeedhintmcVer

cDcmtDec
R

kR

CEK

DKCEK ��
�

�

���

���

�
�
�

�

�

��

�
 (5.2)

3 Committing Encryption from Randomness-Recovering
Asymmetric Encryption

In this section we propose a simple method for constructing an asymmetric committing
encryption scheme. This construction formalizes the common intuition to use encryption to
provide also commitment along with confidentiality. Our construction is based on a random
recovery asymmetric encryption scheme where decryption restores the random value used for
encryption e.g. RSA with padding e.g. using OAEP (Optimal Asymmetric Encryption
Padding) [BR94, PKCS1v2.0, PKCS1v2.1]. Having the randomness-recovering property
enables the public verification algorithm Ver to publicly verify that (a) the message m is the
original message and (b) the recipient of the committing ciphertext c is able to open it and
restore the message m and the correct hint.

CONSTRUCTION OF ASYMMETRIC COMMITTING ENCRYPTION

Let � = (EncKeyGen, Enc, Dec) be a randomness-recovering asymmetric encryption
scheme. Define an asymmetric committing encryption scheme ��RR = (KeyGenSetup,
CmtEnc, DcmtDec, Ver) as follows:

� KeyGenSetup(1k) runs)1(),(kR EncKeyGenDKEK ��� , sets CEK = EK, and outputs
(CEK, DK)

� CmtEncCEK(m, r) simply outputs c � EncEK(m, r)

� DcmtDecCEK,DK(c) runs (m, r) � DecDK(c), sets hint = r, and outputs (m, hint)

� VerCEK(c, m, hint) parse r = hint, computes c’ � EncEK(m, r), and outputs succeed if
c = c’ or fail otherwise

Theorem 1 Assume that � satisfies the syntactic properties of a randomness-recovering
asymmetric encryption scheme. Let ��RR be an asymmetric committing encryption scheme
constructed from � as defined above. Then we have:

(1) ��RR satisfies the syntactic properties of an asymmetric committing encryption
scheme.

(2) � is E-IND-CCA2 (E-IND-gCCA2, E-IND-CPA, E-IND-CCA1) -secure � ��RR is
CE-IND-CCA2 (CE-IND-gCCA2, CE-IND-CPA, CE-IND-CCA1) -secure.

(3) ��RR is CE-BIND-secure.

(4) ��RR is CE-RECOVER-secure.

The proof for this theorem is given in appendix A.

4 CtE: Composing Asymmetric Encryption and Commitment
We now present a new composition that we call “commit-then-encrypt”. This composition

involves several cryptographic tools such as asymmetric encryption, commitment and digital
signature schemes, yet it is fairly efficient in the run time. We prove that this simple and
efficient composition constructs a secure asymmetric committing encryption scheme. This

 11

construction may be used as a mechanism to transform any asymmetric encryption (even if
the decryption function does not restore the random value used by the encryption function) to
committing encryption.

COMMIT-THEN-ENCRYPT (CTE) COMPOSITION

As the name suggests we compose encryption and commitment schemes. In CmtEnc, the
committing encryption function, a message m first passes a commitment stage which
produces cc(m) and d(m). Then, in the second stage, the de-commitment d(m) is encrypted to
produce ciphertext ce. Together, (cc, ce) form the committing ciphertext c. The process of
DcmtDec, the de-committing decryption function, is exactly the reverse of CmtEnc process.
DcmtDec outputs the message m and the de-commitment d(m) as hint.

In Ver, the verification function, it seems that we have a problem. We require the public
verification algorithm Ver to ensure not only that

(a) message m is the original plaintext of committing ciphertext c, but also that

(b) recipient of committing ciphertext c is able to open it with DcmtDec i.e., the message
m was encrypted with the original encryption key.

In the CtE composition, the public committing encryption key CEK is composed of two
sub-keys (CK, EK) such that there is no relation between them. Thus, key-spoofing attack is
still possible.

Indeed, if the recipient gives the input parameters for Ver, we can assume that the
recipient of committing ciphertext c was able to open it with DcmtDec i.e., the message m
was encrypted with the original encryption key. Thus, it is sufficient for Ver to ensure only
(a) i.e., that message m is the original plaintext of committing ciphertext c. But if the sender
gives the input parameters for Ver, key-spoofing attack is still possible and thus we require
Ver to ensure both (a) and (b).

In order to fix this problem we use a digital signature scheme to distinguish that the
receiver gave the input parameters for Ver. For that, we require KeyGenSetup to generate also
signing keys (SK, VK) for the recipient. The signing key SK is kept secret and is used only by
the recipient to sign the de-commitment d(m) given by the recipient to Ver algorithm as hint.
Ver algorithm uses the public verification key VK to validate the signature of hint. If Ver
succeeds to verify the signature, it retrieves the signed de-commitment d(m) from hint and
uses Reveal(cc, d) to retrieve the original message m.

If Ver fails to verify the signature of hint then the sender gave the input parameters for
Ver. The sender will set the parameter hint to the random value r used to encrypt message m.
Ver algorithm will use this to repeat the encryption process and ensure both (a) and (b).

Therefore, Ver algorithm now runs differently depending whether the recipient or the
sender gave the input parameters. Ver algorithm determines, independently, who gave the
input parameters, using the hint parameter. The hint parameter that Ver algorithm receives is
different from the sender and the recipient. If Ver algorithm succeeds to verify the signature
of hint then the recipient gave the input parameters, otherwise the sender gave them.

Note that the recipient does not need to sign the de-commitment d(m) unless the recipient
needs to use Ver, and usually this is not the case. So implementation can divide DcmtDec into
two steps. The first step (retrieving de-commitment d(m) by decrypting ce and then Reveal(cc,
d) to retrieve the original message m) is very efficient and is done always and in real time.
The second step (signing the de-commitment d(m)) is done only offline or in exception cases

 12

when the recipient needs to use Ver. Thus, CmtEnc and DcmtDec are both very efficient in
the usual case.

CONSTRUCTION OF CTE COMPOSITION

Let � = (EncKeyGen, Enc, Dec) be an asymmetric encryption scheme, � = (KeySetup,
Commit, Decommit, Reveal) be a commitment scheme, and
 = (SigKeyGen, Sign, Msg,
SigVer) be a digital signature scheme. Define an asymmetric committing encryption scheme
��CtE = (KeyGenSetup, CmtEnc, DcmtDec, Ver) as follows:

� KeyGenSetup(1k) runs)1(),(kR EncKeyGenDKEK ��� ,)1(),(kR SigKeyGenVKSK ��� ,
)1(kR KeySetupCK ��� , sets CEK = (CK, EK, VK), DK’ = (DK, SK), and outputs

(CEK, DK’)

� CmtEncCEK(m, rc||re) runs cc � CommitCK(m, rc), d � DecommitCK(m, rc),
ce � EncEK(d, re), and outputs c = (cc, ce)

� DcmtDecCEK,DK’(c) parse (cc, ce) = c, runs d � DecDK(ce), m � RevealCK(cc, d),
)(dSigns SK

R��� , sets hint = s, and outputs (m, hint)

� VerCEK(c, m, hint) parse s = hint, runs a � SigVerVK(s) if a = succeed (input
parameters from the recipient) then parse (cc, ce) = c, runs d � MsgVK(s),
m’ � RevealCK(cc, d), and outputs succeed if m = m’ or fail otherwise. If a = fail
(input parameters from the sender) parse rc||re = hint, computes c’ � CmtEncCEK(m,
rc||re), and outputs succeed if c = c’ or fail otherwise.

Theorem 2 Assume that �, �, and
 satisfy the syntactic properties of an asymmetric
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let
��CtE be an asymmetric committing encryption scheme constructed from �, �, and
 as
defined above. Then we have:

(1) ��CtE satisfies the syntactic properties of an asymmetric committing encryption
scheme.

(2) � satisfies the binding property � ��CtE is CE-BIND-secure.

(3)
 is UF-NMA-secure � ��CtE is CE-RECOVER-secure.

The proof for this theorem is given in appendix A.

Theorem 3 Assume that � is E-IND-CCA2 (E-IND-gCCA2, E-IND-CPA, E-IND-CCA1)
-secure, � and
 satisfy the syntactic properties of a commitment scheme and a digital
signature scheme respectively. Let ��CtE be an asymmetric committing encryption scheme
constructed from �, �, and
 as defined above. Then we have:

(1) ��CtE is CE-IND-CCA2 (CE-IND-gCCA2, CE-IND-CPA, CE-IND-CCA1) -secure
� � satisfies the hiding property.

(2) � satisfies the hiding and binding properties � ��CtE is CE-IND-CCA2 (CE-IND-
gCCA2, CE-IND-CPA, CE-IND-CCA1) -secure.

The formal proof for this theorem is given in appendix A. Partial proof for this theorem
(only for CE-IND-gCCA2-security) is given by [ADR02] in Appendix D. We expand their
proof by proving CE-IND-CCA2-security also.

 13

Intuitively, the hiding property is necessary since cc is given “in the clear”, and is
sufficient since � is E-IND-CCA2 (E-IND-gCCA2, E-IND-CPA, E-IND-CCA1) -secure and
there is at most one valid value cc corresponding to every d.

5 Symmetric Committing Encryption with Key Setup Protocol
In this section we propose a simple method of constructing symmetric committing

encryption scheme. This construction involves several cryptographic tools such as symmetric
encryption, commitment and digital signature schemes, yet its runtime efficiency remains the
same as of the symmetric encryption.

SYMMETRIC COMMITTING ENCRYPTION WITH KEY SETUP PROTOCOL

As the name suggests we simply use any symmetric encryption scheme. In order to
construct symmetric committing encryption, we have to add the ability to publicly prove that
(a) message m is the original plaintext of committing ciphertext c, and also that (b) recipient
of committing ciphertext c is able to open it with DcmtDec i.e., the message m was encrypted
with the original encryption key.

We can have both requirements publicly verifiable if Ver, the verification function, is able
to run Dec, the decryption function of the symmetric encryption scheme. For that sake we
need to expose the decryption key K that is kept secret by both communicating sides.

There are several problems with this suggestion. First, exposing the secret key K will
expose also all the messages sent by both communicating sides. Second, since there is no
public proof that the exposed secret key K is the original key, key-spoofing attack is still
possible.

For the first problem, our suggestion is to produce n secret keys and to use each key Ki,
i = 1 .. n, only once and only for one message. Now exposing one secret key Ki, for the
verification of message mi does not expose all other messages sent between the
communicating sides. WLOG, we will assume that the index i can be determined from the
message m (e.g., is part of it), and write i = Index(m) to denote the index of message m.

For the second problem, our suggestion is to use commitment and digital signature
schemes. Each side commits itself to the secret keys Ki, i = 1 .. n, during KeyGenSetup. The
commitment c(Ki) is publicly exposed. The de-commitment d(Ki) is signed by each side and
the signed de-commitment is kept secret, shared by both sides.

Now each side exposes its own public committing parameters. Denote user P = R (for the
recipient) and S (for the sender). User P exposes its public commitment key CKP, the
commitment c(Ki), i = 1 .. n, denoted ciP, and its public verification key VKP. We combine all
these parameters to be part of user P public committing key CK’P = (CKP, c1P, … , cnP, VKP),
and the public committing key is CK = (CK’R, CK’S).

Each side has also some secret information that is shared with the other side. Both
communicating sides share the encryption/decryption keys Ki, i = 1 .. n, and the signed de-
commitment siR and siS, i = 1 .. n. The shared information is kept secret by both
communicating sides. We combine all these parameters to be part of the secret
encryption/decryption key K = (K1, … , Kn, s1R, … , snR, s1S, … , snS).

Note that since we do not need any more the signing keys of each party, we do not require
KeyGenSetup to output them.

When user P comes to run Ver, we expect the hint parameter given to Ver to be the sender
and the receiver signatures on the de-commitment to some Ki, i.e. siS||siR. The Ver algorithm

 14

validates each signature, retrieves the de-commitment d(Ki) from siP and uses Reveal(ciP, diP)
to retrieve the original key Ki. Now Ver is able to run Dec, the decryption function of the
symmetric encryption scheme.

Note that the use of the signature and commitment is only at offline. During run time we
use only the symmetric encryption scheme. Thus, the efficiency of this construction is the
same as the selected symmetric encryption.

Note that we cannot use the original definition of symmetric committing encryption
scheme. We must slightly modify it and add algorithms for key setup protocol as follows:

A symmetric committing encryption scheme with key setup protocol ��sym = (KeyGen,
KeyCommitSetup, KeyCommit, CmtEnc, DcmtDec, Ver) consists of six algorithms:

� The randomized key generation algorithm KeyGen takes as input a security parameter
k � N and returns a key K’ � KEYS; we write)1(kR KeyGenK ���� .

� The randomized key commitment setup algorithm KeyCommitSetup takes as input a
security parameter k � N and returns a public commitment key CK’ (possibly empty,
but usually consisting of public parameters for the commitment); we write

)1(kR etupKeyCommitSKC ���� .

� The randomized key commitment algorithm KeyCommit takes as input a security
parameter k � N, a commitment key CK’, and a key K’. It returns a triplet (c, s, VK)
where c is c(K’) i.e., a commitment to K’ under the commitment key CK’, s is the de-
commitment d(K’) signed with an internal generated signing key SK, and VK is the
validation key for validating s. c and VK are public information, and s is kept secret
(shared information); we write),,1(),,(KKCKeyCommitVKsc kR ����� .

We put the public information to be CK = (CK’, c, VK) and the shared information to be
K = (K’, s). The rest of the algorithms CmtEnc, DcmtDec, and Ver are the same as defined in
the original definition of symmetric committing encryption scheme.

SECURITY OF SYMMETRIC COMMITTING ENCRYPTION SCHEMES WITH KEY SETUP PROTOCOL

The symmetric committing encryption scheme with key setup protocol consists of six
algorithms. As in the original definition of symmetric committing encryption scheme, it is
clear that the sender runs CmtEnc algorithm and the recipient runs DcmtDec algorithm. We
also note that anyone can run Ver algorithm all alone, offline, and without any interaction
with any of the communicating sides.

As opposed to the original definition of symmetric committing encryption scheme, for
KeyGen algorithm, since it is a symmetric scheme, either the sender or the recipient can run
KeyGen and choose the shared key.

We require both sides to run KeyCommitSetup and KeyCommit algorithms as follows: the
recipient runs KeyCommitSetup to generate CKR, and then the sender runs KeyCommit and
uses CKR as the input parameter CK’. The sender runs KeyCommitSetup to generate CKS, and
then the recipient runs KeyCommit and uses CKS as the input parameter CK’.

Denoting the outputs of the sender’s running of KeyCommit as (cS, sS, VKS) and the
outputs of the recipient’s running of KeyCommit as (cR, sR, VKR), we combine the outputs and
put the public information to be CK = (CKR, cR, VKR, CKS, cS, VKS) and the shared
information to be K = (K’, sR, sS).

 15

The rest of changes in the security notions definitions are trivial and follow from the
syntax definition and thus omitted.

We only note that for the CE-BIND-security (Definition 4.1) we require also that the
colliding triplet (c, (m, hint), (m’, hint’)) be produced s.t. m and m’ have the same index i.

CONSTRUCTION OF SYMMETRIC COMMITTING ENCRYPTION

Let � = (EncKeyGen, Enc, Dec) be a symmetric encryption scheme, � = (KeySetup,
Commit, Decommit, Reveal) be a commitment scheme, and
 = (SigKeyGen, Sign, Msg,
SigVer) be a digital signature scheme. Define a symmetric committing encryption scheme
��KSP = (KeyGen, KeyCommitSetup, KeyCommit, CmtEnc, DcmtDec, Ver) as follows:

� KeyGen(1k) for i = 1 .. n times runs)1(kR
i EncKeyGenK ��� , set K’ = (K1, … , Kn),

and outputs K’

� KeyCommitSetup(1k) simply outputs)1(kR KeySetupKC ����

Denote the outputs of the sender’s running of KeyCommitSetup as CKS and the outputs of
the recipient’s running of KeyCommitSetup as CKR.

� KeyCommit(1k, CK’, K’) runs)1(),(kR SigKeyGenVKSK ��� , parse (K1, … , Kn) =
K’, for i = 1 .. n times runs (1) ci � CommitCK’(Ki, r), (2) di � DecommitCK’(Ki, r),
(3))(iSK

R
i dSigns ��� , and outputs (c1, … , cn, s1, … , sn, VK)

Denote the outputs of the sender’s running of KeyCommit as (c1S, … , cnS, s1S, … , snS, VKS)
and the outputs of the recipient’s running of KeyCommit as (c1R, … , cnR, s1R, … , snR, VKR).

We put the public information to be CK = (CKR, c1R, … , cnR, VKR, CKS, c1S, … , cnS, VKS)
and the shared information to be K = (K1, … , Kn, s1R, … , snR, s1S, … , snS).

� CmtEncCK,K(m, r) retrieve i = Index(m), and outputs c � EncKi(m, r)

� DcmtDecCK,K(c) retrieve i = Index(m), runs m � DecKi(c), sets hint = siS||siR, and
outputs (m, hint)

� VerCK(c, m, hint) parse siS||siR = hint, for each siP runs a � SigVerVKp(siP), if a = fail
return fail and stop. Otherwise, runs diP � MsgVKp(siP), for siS run

),(iSiSCKiS dcRevealK
R

��� , for siR run),(iRiRCKiR dcRevealK
S

��� . If KiS � KiR
return fail and stop. Otherwise, runs m’ � DecKi(c), and outputs succeed if m = m’ or
fail otherwise

Theorem 4 Assume that �, �, and
 satisfy the syntactic properties of a symmetric
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let
��KSP be a symmetric committing encryption scheme constructed from �, �, and
 as defined
above. Then we have:

(1) ��KSP satisfies the syntactic properties of a symmetric committing encryption scheme.

(2) � is E-IND-CCA2 (E-IND-gCCA2, E-IND-CPA, E-IND-CCA1) -secure � ��KSP is
CE-IND-CCA2 (CE-IND-gCCA2, CE-IND-CPA, CE-IND-CCA1) -secure.

(3) � satisfies the binding property � ��KSP is CE-BIND-secure.

(4) � satisfies the binding property � ��KSP is CE-RECOVER-secure.

The proof for this theorem is given in appendix A.

 16

6 Commit-Encrypt-then-Sign (CEtS) Publicly Verifiable
Signcryption

In this section we present a new scheme which we call publicly verifiable signcryption
scheme. Publicly verifiable signcryption schemes capture the security properties of
committing encryption and signature schemes and provide public verification to anyone and
without the need for interaction with any side. Publicly verifiable signcryption schemes do
not suffer from key-spoofing attacks and support non-repudiation.

We also present in this section a simple and efficient construction of commit-encrypt-
then-sign (CEtS) composition that preserves security properties of both ingredients
committing encryption and signature including the non-repudiation feature of the signature
scheme.

PUBLICLY VERIFIABLE SIGNCRYPTION

An, Dodis and Rabin [ADR02] defined signcryption following Zheng [Zh97]. Their
definition of signcryption lacks public verification. We present here formal syntax and
security definitions for publicly verifiable signcryption schemes. Publicly verifiable
signcryption schemes do not suffer from key-spoofing attacks and support non-repudiation.

A publicly verifiable signcryption scheme
�asym = (EncKeyGen, SigKeyGen, EncSign,
VerDec, SCVer) consists of five algorithms:

� The randomized key generation algorithm EncKeyGen takes as input a security
parameter k � N and outputs a pair of keys (CEK, DK). CEK is the committing
encryption key, which is made public, and DK is the decryption key, which is kept
secret; we write)1(),(kR EncKeyGenDKCEK ��� .

� The randomized key generation algorithm SigKeyGen takes as input a security
parameter k � N and outputs a pair of keys (SK, VK). SK is the signing key, which is
kept secret, and VK is the verification key, which is made public. We write

)1(),(kR SigKeyGenVKSK ��� .

� The signcryption algorithm EncSign takes as input the public key CEK, the signing
key SK, a message m from the associated message space � and a random value r, and
returns signcryption ciphertext c; we write c � EncSignCEK,SK(m, r).

� The deterministic de-signcryption algorithm VerDec takes as input the keys (CEK,
DK, VK), the signcryption ciphertext c, and returns either a pair (m, hint), where m �
� is the corresponding plaintext and hint is a value to help the public verification of
the signcryption, or the symbol � denoting failure; we write (m, hint) �
VerDecCEK,DK,VK(c).

� The deterministic signcryption verification algorithm SCVer takes as input the public
verification key VK, the signcryption ciphertext c, a message m from the associated
message space �, and a hint, and returns an answer a which is either succeed in case
the message m is the plaintext of c, or fail otherwise; we write a � SCVerVK(c, m,
hint).

We require, for any m � �, any keys (CEK, DK, SK, VK) and any random value r,

� VerDecCEK,DK,VK(EncSignCEK,SK(m, r)) = (m, hint), and

� SCVerVK(EncSignCEK,SK(m, r), VerDecCEK,DK,VK(EncSignCEK,SK(m, r))) = succeed.

 17

SECURITY OF PUBLICLY VERIFIABLE SIGNCRYPTION SCHEMES

Given any publicly verifiable signcryption scheme
�asym = (EncKeyGen, SigKeyGen,
EncSign, VerDec, SCVer), we define the corresponding induced asymmetric committing
encryption scheme ��SC = (KeyGenSetup, CmtEnc, DcmtDec, Ver) and induced digital
signature scheme
SC = (SigKeyGen, Sign, Msg, SigVer).

INDUCED ASYMMETRIC COMMITTING ENCRYPTION SCHEME ��SC

For any adversarial signing/verification keys (SK, VK),

� KeyGenSetup(1k) simply outputs)1(),(kR EncKeyGenDKCEK ���

We set the public committing encryption key CEK’ = (CEK, SK, VK).

� CmtEncCEK’(m, r) simply outputs c � EncSignCEK,SK(m, r)

� DcmtDecCEK’,DK(c) simply outputs (m, hint) � VerDecCEK,DK,VK(c)

� VerCEK’(c, m, hint) simply outputs a � SCVerVK(c, m, hint)

INDUCED DIGITAL SIGNATURE SCHEME
SC

For any adversarial committing encryption/decryption keys (CEK, DK),

� SigKeyGen(1k) simply outputs)1(),(kR SigKeyGenVKSK ���

We set the public verification key VK’ = (CEK, DK, VK) and the secret signing key SK’ =
(CEK, SK).

� SignSK’(m) runs c � EncSignCEK,SK(m, r), and outputs s = c

� MsgVK’(s) parse c = s, runs (m, hint) � VerDecCEK,DK,VK(c), and outputs m

� SigVerVK’(s) parse c = s, runs (m, hint) � VerDecCEK,DK,VK(c), and outputs a �
SCVerVK(c, m, hint)

We say that the publicly verifiable signcryption
� is secure against the corresponding
attack (e.g. gCCA2/BIND/RECOVER/CMA) on the privacy/non-ambiguity/viability/
authenticity property, if the corresponding induced committing encryption/signature is secure
against the same attack. We will aim to satisfy CE-IND-gCCA2, CE-BIND, and CE-
RECOVER -security for the induced committing encryption, and UF-CMA-security for the
induced signature.

CONSTRUCTION OF COMMIT-ENCRYPT-THEN-SIGN (CETS) COMPOSITION

Let �� = (KeyGenSetup, CmtEnc, DcmtDec, Ver) be a secure asymmetric committing
encryption scheme and
 = (SigKeyGen, Sign, Msg, SigVer) be a secure digital signature
scheme. Define a publicly verifiable signcryption scheme
����
 = (EncKeyGen, SigKeyGen,
EncSign, VerDec, SCVer) as follows:

� EncKeyGen(1k) simply outputs)1(),(kR pKeyGenSetuDKCEK ���

� SigKeyGen(1k) simply outputs)1(),(kR SigKeyGenVKSK ���

� EncSignCEK,SK(m, r) runs cce � CmtEncCEK(m, r), sets c = cce||CEK, runs
)(cSigns SK

R��� , and outputs cs = s

 18

� VerDecCEK,DK,VK(cs) parse s = cs, runs a � SigVerVK(s), if a = fail return �. Otherwise
(a = succeed), runs c � MsgVK(s), parse cce||CEK = c, and outputs (m, hint) �
DcmtDecCEK,DK(cce)

� SCVerVK(cs, m, hint) parse s = cs, runs a � SigVerVK(s), if a = fail return fail.
Otherwise (a = succeed), runs c � MsgVK(s), parse cce||CEK = c, and outputs a �
VerCEK(cce, m, hint)

SECURITY OF CETS COMPOSITION

We prove
����
 security against the strongest security notion of the committing
encryption �� and signature
, i.e. CE-IND-gCCA2 and UF-CMA. Weaker notions e.g. CE-
IND-CPA, CE-IND-CCA1, and UF-NMA could easily be proved as well.

Theorem 5 Assume that �� and
 satisfy the syntactic properties of an asymmetric
committing encryption scheme and a digital signature scheme respectively. Let
����
 be a
publicly verifiable signcryption scheme constructed from �� and
 as defined above. Then
we have:

(1)
����
 satisfies the syntactic properties of a publicly verifiable signcryption scheme.

(2) �� is CE-IND-gCCA2-secure �
����
 is CE-IND-gCCA2-secure.

(3) �� is CE-BIND-secure �
����
 is CE-BIND-secure.

(4) �� is CE-RECOVER-secure �
����
 is CE-RECOVER-secure.

(5)
 is UF-CMA-secure �
����
 is UF-CMA-secure.

The formal proof for this theorem is given in appendix A. We remark the crucial use of
CE-IND-gCCA2-security when proving the security of
����
. Indeed, we can call two
signcryption ciphertexts cs1 and cs2 equivalent for ��SC, if each csi is a valid signature (w.r.t.

) of ccei||CEK = MsgVK(csi), and cce1 and cce2 are equivalent (e.g., equal) w.r.t. the equivalence
relation of ��. In other words, a different signature of the same committing encryption
clearly corresponds to the same message, and we should not reward the adversary for
achieving such a trivial task. The task is indeed trivial, since the adversary has the signing
key.

7 Conclusion and Open Questions
Compared to commitment schemes and digital signatures, conventional notions of

encryption schemes do not have public verification facility. Usually, there is no way one can
prove to a third party that a message m is the plaintext of ciphertext c without exposing the
secret key and thus exposing all other messages too (a special case is the randomness-
recovering asymmetric encryption scheme). Committing encryption schemes have that
ability. Having the public verification facility provide also non-repudiation.

Committing encryption schemes provide also the ability for the sender (encrypt side) to
prove to a third party that the recipient (decrypt side) is able to open the ciphertext and
retrieve the original plaintext. Having these properties, committing encryption schemes
eliminate key-spoofing attacks and can be signed.

We have provided a formal definition of committing encryption schemes. The definition
is essential for cryptanalysts. Given an encryption algorithm that is going to be used for
commitment, cryptanalysts can analyze and check according to the committing encryption

 19

definition whether the encryption algorithm can be used to provide commitment also along
with confidentiality or not.

We presented several simple and efficient constructions of symmetric and asymmetric
committing encryption schemes.

Contrary to Zheng [Zh97] and An, Dodis and Rabin [ADR02] signcryption scheme that is
not publicly verifiable, we have presented in this work a publicly verifiable signcryption
scheme that does not suffer from key-spoofing attacks and support non-repudiation. We
provided a simple and efficient construction of commit-encrypt-then-sign (CEtS) composition
that preserves security properties of both ingredients committing encryption and signature
including the non-repudiation feature of the signature scheme.

In our construction of symmetric committing encryption scheme in section �5 we changed the
definition of the symmetric committing encryption scheme from section �2 and add a key
setup protocol. Is it possible to construct a symmetric committing encryption scheme without
changing the definition of the symmetric committing encryption scheme i.e., use the
KeyGenSetup function as defined originally in section �2?

References
[ADR02] Jee Hea An, Yevgeniy Dodis, Tal Rabin. On the Security of Joint Signature and Encryption.
In L. Knudsen, editor, Advances in Cryptology EUROCRYPT 2002.
http://citeseer.nj.nec.com/an02security.html
[AN95] Ross Anderson, Roger Needham. Robustness Principles for Public Key Protocols. In
Proceedings of Int'l. Conference on Advances in Cryptology (CRYPTO 95), Vol. 963 of Lecture
Notes in Computer Science, pp. 236-247, Springer-Verlag, 1995.
http://citeseer.nj.nec.com/anderson95robustness.html
[BR94] Mihir Bellare, Phillip Rogaway. Optimal Asymmetric Encryption – How to Encrypt with RSA.
In A. De Santis, editor, Advances in Cryptology – Eurocrypt ’94, Vol. 950 of Lecture Notes in
Computer Science, pp. 92-111, Springer Verlag, 1995.
http://citeseer.nj.nec.com/bellare94optimal.html
[NY95] Moni Naor, Moti Yung. Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attack. Proceedings of the 22nd Annual Symposium on the Theory of Computing, ACM
STOC, pp. 427-437, May 14-16, 1990. http://citeseer.nj.nec.com/naor95publickey.html
[PKCS1v2.0] RSA Laboratories. PKCS #1 v2.0: RSA Encryption Standard. October 1998. Available
from http://www.rsasecurity.com/rsalabs/pkcs/
[PKCS1v2.1] RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard. 14, June 2002.
Available from http://www.rsasecurity.com/rsalabs/pkcs/
[RS91] C. Rackoff, D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. Advances in Cryptology, CRYPTO ’91, Lecture Notes in Computer Science, Vol.
576, J. Feigenbaum ed., Springer-Verlag, 1991.
[ZG96a] Jianying Zhou, Dieter Gollmann. A fair non-repudiation protocol. In Proceedings of the
IEEE Symposium on Research in Security and Privacy [IEE96], pp. 55-61, Oakland, CA, May 1996.
http://citeseer.nj.nec.com/62704.html
[Zh97] Yuliang Zheng. Digital Signcryption or How to Achieve Cost(Signature & Encryption) <<
Cost(Signature) + Cost(Encryption). In Advances in Cryptology - CRYPTO'97, Berlin, New York,
Tokyo, Vol. 1294 of LNCS, pp. 165--179, Springer-Verlag, 1997.
http://citeseer.nj.nec.com/zheng97digital.html

 20

Appendix A
PROOFS

Proof of Theorem 1 We prove ��RR security against the strongest security notion of the
encryption �, i.e. E-IND-CCA2 and E-IND-gCCA2. Weaker notions e.g. E-IND-CPA and E-
IND-CCA1 could easily be proved as well.

The theorem is immediately follows from Lemmas 1.1 – 1.4. 	

Lemma 1.1 Assume that � satisfies the syntactic properties of a randomness-recovering
asymmetric encryption scheme. Let ��RR be an asymmetric committing encryption scheme
constructed from � as defined above. Then ��RR satisfies the syntactic properties of an
asymmetric committing encryption scheme.

Proof From the syntax requirement of the randomness-recovering asymmetric encryption
scheme �, Dec deterministically recovers the plaintext m and the randomness r that were
input to Enc i.e., DecDK(EncEK(m, r)) = (m, r). From the definitions of DcmtDec and CmtEnc
follows that DcmtDecCEK,DK(CmtEncCEK(m, r)) = DecDK(EncEK(m, r)) = (m, r).

Let c = CmtEncCEK(m, r) then from the definition of CmtEnc also c = EncEK(m, r). From the
definition of Ver follows that: VerCEK(CmtEncCEK(m, r), DcmtDecCEK,DK(CmtEncCEK(m, r))) =
VerCEK(c, m, r) = succeed. 	

Lemma 1.2 Assume that � satisfies the syntactic properties of a randomness-recovering
asymmetric encryption scheme. Let ��RR be an asymmetric committing encryption scheme
constructed from � as defined above. Then

� is E-IND-CCA2 (E-IND-gCCA2) -secure � ��RR is CE-IND-CCA2 (CE-IND-gCCA2) -
secure.

Proof We prove CE-IND-CCA2-security and CE-IND-gCCA2-security of ��RR
simultaneously. For CE-IND-gCCA2-security, let 	 be the equivalence relation w.r.t. which
� is secure. We define the equivalence relation for ��RR to be 	’(c1, c2) = true iff�	 (c1, c2) =
true. For the uniformity and simplicity of the proof we define also for CE-IND-CCA2-
security an equivalence relation for ��RR to be 	’ (c1, c2) = true iff c1 = c2.

� Assume adversary �’ can break the CE-IND-CCA2-security (CE-IND-gCCA2-
security) of ��RR. We can easily construct adversary � that can break the E-IND-CCA2-
security (E-IND-gCCA2-security) of �. � runs �’ internally, passing every de-committing
decryption queries made by �’ to its own decryption oracle. When �’ outputs x0, and x1, �
outputs them also. When � is presented with the challenge cb = EncEK(xb, r) (for unknown b),
it hands it to �’ and continue running �’ waiting to its answer. Now, the definition of 	’ tells
us that �’ is disallowed to de-commit decrypt any c satisfying 	’(cb, c) = true. But such c are
the only queries that � itself is disallowed to ask its decryption oracle! Thus, � can still
handle all the legal de-committing decryption queries of �’, in the same manner as before.
Finally, � outputs the same guess b’ that �’ outputs, which clearly gives � the same
probability of being correct as �’ has.

� Assume adversary � can break the E-IND-CCA2-security (E-IND-gCCA2-security)
of �. We can easily construct adversary �’ that can break the CE-IND-CCA2-security (CE-
IND-gCCA2-security) of ��RR. �’ runs � internally, passing every decryption queries made
by � to its own de-committing decryption oracle. When � outputs x0, and x1, �’ outputs them

 21

also. When �’ is presented with the challenge cb = CmtEncCEK(xb, r) (for unknown b), it
hands it to � and continue running � waiting to its answer. Now, the definition of 	’ tells us
that �’ is disallowed to de-commit decrypt any c satisfying 	’(cb, c) = true. But such c are the
only queries that � itself is disallowed to ask its decryption oracle! Thus, �’ can still handle
all the legal de-committing decryption queries of �, in the same manner as before. Finally, �’
outputs the same guess b’ that � outputs, which clearly gives �’ the same probability of being
correct as � has. 	

Lemma 1.3 Assume that � satisfies the syntactic properties of a randomness-recovering
asymmetric encryption scheme. Let ��RR be an asymmetric committing encryption scheme
constructed from � as defined above. Then ��RR is CE-BIND-secure.

Proof Assume ��RR is not CE-BIND-secure. We can show that � cannot be syntactically an
encryption scheme. Let c, (m1, hint1), (m2, hint2) be a collision for ��RR. That is VerCEK(c, m1,
hint1) = VerCEK(c, m2, hint2) = succeed and m1 � m2. From the definition of Ver follows that c
= EncEK(m1, r1) and also c = EncEK(m2, r2). But from the syntax requirement of the encryption
scheme Dec deterministically recovers the plaintext i.e.,

DecDK(c) = DecDK(EncEK(m1, r1)) = (m1, r1) � (m2, r2) = DecDK(EncEK(m2, r2)) = DecDK(c),
contradiction. 	

Lemma 1.4 Assume that � satisfies the syntactic properties of a randomness-recovering
asymmetric encryption scheme. Let ��RR be an asymmetric committing encryption scheme
constructed from � as defined above. Then ��RR is CE-RECOVER-secure.

Proof Assume ��RR is not CE-RECOVER-secure. We can show that � cannot be
syntactically an encryption scheme. Let c, m, and hint, be s.t. VerCEK(c, m, hint) = succeed but
DcmtDecCEK,DK(c) = �. From the definition of Ver follows that c = EncEK(m, r). From the
definition of DcmtDec follows that DcmtDecCEK,DK(c) = DecDK(c) = DecDK(EncEK(m, r)) � (m,
r), but from the syntax requirement of the encryption scheme Dec deterministically recovers
the plaintext, contradiction. 	

Proof of Theorem 2 The theorem is immediately follows from Lemmas 2.1 – 2.3. 	

Recall that:

(i) From the syntax requirement of the asymmetric encryption scheme �, Dec
deterministically recovers the plaintext m that was the input to Enc i.e., DecDK(EncEK(m)) =
m.

(ii) From the syntax requirement of the commitment scheme �, Reveal deterministically
recovers the message m that was the input to Commit and Decommit i.e.,
RevealCK(CommitCK(m, r), DecommitCK(m, r)) = m.

(iii) From the syntax requirement of the digital signature scheme
, Msg deterministically
recovers the message m that was signed by Sign i.e., MsgVK(SignSK(m)) = m.

Lemma 2.1 Assume that �, �, and
 satisfy the syntactic properties of an asymmetric
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let
��CtE be an asymmetric committing encryption scheme constructed from �, �, and
 as
defined above. Then ��CtE satisfies the syntactic properties of an asymmetric committing
encryption scheme.

 22

Proof Let c = CmtEncCEK(m, rc||re). From the definition of CmtEnc we have c = (cc, ce) =
(CommitCK(m, rc), EncEK(DecommitCK(m, rc), re)).

(*) RevealCK(CommitCK(m, rc), MsgVK(SignSK(DecommitCK(m, rc)))) = [using (iii)]
RevealCK(CommitCK(m, rc), DecommitCK(m, rc)) = [using (ii)] m.

From the definitions of DcmtDec and CmtEnc follows that DcmtDecCEK,DK(CmtEncCEK(m, r))

= (RevealCK(CommitCK(m, rc), DecDK(EncEK(DecommitCK(m, rc), re))), SignSK(DecDK(EncEK(
DecommitCK(m, rc), re))))

=[using (i)] (RevealCK(CommitCK(m, rc), DecommitCK(m, rc)), SignSK(DecommitCK(m, rc)))
=[using (ii)] (m, SignSK(DecommitCK(m, rc))) = (m, hint).

From the definition of Ver (input parameters given by the recipient) follows that:

VerCEK(CmtEncCEK(m, r), DcmtDecCEK,DK(CmtEncCEK(m, r))) = VerCEK(c, m, hint) = VerCEK(c,
m, SignSK(DecommitCK(m, rc))) = [using (*)] succeed. 	

Lemma 2.2 Assume that �, �, and
 satisfy the syntactic properties of an asymmetric
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let
��CtE be an asymmetric committing encryption scheme constructed from �, �, and
 as
defined above. Then

� satisfies the binding property � ��CtE is CE-BIND-secure.

Proof

� Assume adversary �’ can find collisions for ��CtE i.e., �’ can find c = (cc, ce), (m,
hint), (m’, hint’) such that VerCEK(c, m, hint) = succeed, VerCEK(c, m’, hint’) = succeed and m
� m’.

Recall that VerCEK(c, m, hint) has two options to succeed.

(a) Input parameters given by the sender: parse hint as rc||re, check if c = (cc, ce) =
CmtEncCEK(m, rc||re) = (CommitCK(m, rc), EncEK(DecommitCK(m, rc), re)).

(b) Input parameters given by the recipient: parse hint as SignSK(d), check if m =
RevealCK(CommitCK(m, rc), MsgVK(SignSK(DecommitCK(m, rc)))).

We now show that in either case (a) or (b), if �’ succeeds to find collisions for ��CtE, then
either � cannot be syntactically an encryption scheme or � cannot be syntactically a
commitment scheme, or we can find collisions for �.

Proof of case (a) Assume �’ succeeds to find collisions for ��CtE s.t. the first option for
Ver success holds. We can show that either � cannot be syntactically an encryption scheme or
� cannot be syntactically a commitment scheme, or we can find collisions for �.

From the definition of CmtEnc we have:

c = (cc, ce) = (CommitCK(m, rc1), EncEK(DecommitCK(m, rc1), re1)) and also, c = (cc, ce) =
(CommitCK(m’, rc2), EncEK(DecommitCK(m’, rc2), re2)).

Thus, cc = CommitCK(m, rc1) = CommitCK(m’, rc2), and ce = EncEK(DecommitCK(m, rc1), re1) =
EncEK(DecommitCK(m’, rc2), re2).

Now, if DecommitCK(m, rc1) = DecommitCK(m’, rc2) then, denote d = DecommitCK(m, rc1) =
DecommitCK(m’, rc2), we have:

RevealCK(cc, d) = RevealCK(CommitCK(m, rc1), DecommitCK(m, rc1)) = m � m’ =
RevealCK(CommitCK(m’, rc2), DecommitCK(m’, rc2)) = RevealCK(cc, d), contradiction.

 23

Otherwise, denote d1 = DecommitCK(m, rc1) and d2 = DecommitCK(m’, rc2), we have:
DecDK(ce) = DecDK(EncEK(d1, rc1)) = d1 � d2 = DecDK(EncEK(d2, rc2)) = DecDK(ce),
contradiction.

Moreover, (cc, d1, d2) is a collision for �, since:

RevealCK(cc, d1) = RevealCK(CommitCK(m, rc1), DecommitCK(m, rc1)) = m � m’ =
RevealCK(CommitCK(m’, rc2), DecommitCK(m’, rc2)) = RevealCK(cc, d2), contradiction.

Proof of case (b) If �’ succeeds with the second option of Ver, we can easily construct
adversary � that can find collisions for �. � views the commitment key CK and by itself picks
a pair of encryption/decryption keys (EK, DK) � EncKeyGen(1k), and a pair of
signing/verification keys (SK, VK) � SigKeyGen(1k), and sets CEK = (CK, EK, VK). � then
hands CEK to �’ as the public committing encryption key. � runs �’ to find triple c, (m, hint),
(m’, hint’) which is a collision for ��CtE. Then, � sets d = MsgVK(hint) and d’ = MsgVK(hint’),
and outputs the triple cc, d, d’ which is a collision for��. It is easy to see that (cc, d) and (cc,
d’) are valid commitments for m and m’ and m � m’ since m = RevealCK(cc, d) � RevealCK(cc,
d’) = m’.

� Assume adversary � can find collisions for � i.e., � can find cc, d, d’ such that (cc, d)
and (cc, d’) are valid commitments for m and m’ but m � m’. We can easily construct
adversary �’ that can find collisions for ��CtE. �’ views the commitment key CK and by itself
picks a pair of encryption/decryption keys (EK, DK) � EncKeyGen(1k), a pair of
signing/verification keys (SK, VK) � SigKeyGen(1k), and sets CEK = (CK, EK, VK). �’ then
hands CK to � as the public commitment key.��’ runs � to find triple cc, d, d’ which is a
collision for �. Then, �’ runs internally m � RevealCK(cc, d), m’ � RevealCK(cc, d’), sets hint
= SignSK(d), hint’ = SignSK(d’), then �’ chooses � = d or d’ and runs ce � EncEK(�, re), and
outputs the triplet c = (cc, ce), (m, hint), (m’, hint’) which is a collision for ��CtE. It is easy to
see that VerCEK(c, m, hint) = succeed and VerCEK(c, m’, hint’) = succeed for m and m’ and m �
m’. 	

Lemma 2.3 Assume that �, �, and
 satisfy the syntactic properties of an asymmetric
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let
��CtE be an asymmetric committing encryption scheme constructed from �, �, and
 as
defined above. Then

 is UF-NMA-secure � ��CtE is CE-RECOVER-secure.

Proof Assume ��CtE is not CE-RECOVER-secure i.e., adversary �’ can find c, m, and hint,
such that VerCEK(c, m, hint) = succeed but DcmtDecCEK,DK(c) = �.

Recall that VerCEK(c, m, hint) has two options to succeed.

(a) Input parameters given by the sender: parse hint as rc||re, check if c = (cc, ce) =
CmtEncCEK(m, rc||re) = (CommitCK(m, rc), EncEK(DecommitCK(m, rc), re)).

(b) Input parameters given by the recipient: parse hint as SignSK(d), check if m =
RevealCK(CommitCK(m, rc), MsgVK(SignSK(DecommitCK(m, rc))).

We now show that in either case (a) or (b), if �’ succeeds to find c, m, and hint, such that
VerCEK(c, m, hint) = succeed but DcmtDecCEK,DK(c) = �, then either � cannot be syntactically
an encryption scheme or � cannot be syntactically a commitment scheme, or
 cannot be UF-
NMA-secure.

 24

Proof of case (a) Assume �’ succeeds to find c, m, and hint s.t. the first option for Ver
success holds and DcmtDecCEK,DK(c) = �. We can show that either � cannot be syntactically
an encryption scheme or � cannot be syntactically a commitment scheme.

Indeed, if DcmtDecCEK,DK(c) = � then it follows that: DcmtDecCEK,DK(c) =
DcmtDecCEK,DK(cc, ce)

= (RevealCK(cc, DecDK(ce)), SignSK(DecDK(ce))

= (RevealCK(CommitCK(m, rc), DecDK(EncEK(DecommitCK(m, rc), re)), SignSK(DecDK(
EncEK(DecommitCK(m, rc), re))))

� (m, hint), contradiction.

Proof of case (b) If �’ succeeds with the second option of Ver, we can easily construct
adversary � that can forge signatures for
 without any assistance from a signing oracle. �
views the verification key VK and by itself picks a commitment key CK � KeySetup(1k), and
a pair of encryption/decryption keys (EK, DK) � EncKeyGen(1k), and sets CEK = (CK, EK,
VK). � then hands CEK to �’ as the public committing encryption key. � runs �’ to find
triple c, m, and hint, which for the second option of Ver succeeds. � outputs hint. 	

Proof of Theorem 3 We prove ��CtE security against the strongest security notion of the
encryption �, i.e. E-IND-CCA2 and E-IND-gCCA2. Weaker notions e.g. E-IND-CPA and E-
IND-CCA1 could easily be proved as well.

The theorem is immediately follows from Lemmas 3.1 – 3.2. 	

Lemma 3.1 Assume that � is E-IND-CCA2 (E-IND-gCCA2) -secure, � and
 satisfy the
syntactic properties of a commitment scheme and a digital signature scheme respectively. Let
��CtE be an asymmetric committing encryption scheme constructed from �, �, and
 as
defined above. Then

��CtE is CE-IND-CCA2 (CE-IND-gCCA2) -secure � � satisfies the hiding property.

Proof Assume adversary � can break hiding property of � then we can show that ��CtE
cannot pass the indistinguishability test even without using the decryption oracle at all (E-
IND-CPA-security), let alone E-IND-gCCA2-secure.

Indeed, if � can find m0, and m1 s.t. it can distinguish the commitment of m0, cc(m0), from
the commitment of m1, cc(m1), then obviously we can distinguish also CmtEncCEK(m0, rc||re)

(cc(m0), EncEK(d(m0), re)) from CmtEncCEK(m1, rc||re)
 (cc(m1), EncEK(d(m1), re)),
contradicting E-IND-CPA-security and certainly E-IND-gCCA2-security. 	

Lemma 3.2 Assume that � is E-IND-CCA2 (E-IND-gCCA2) -secure, � and
 satisfy the
syntactic properties of a commitment scheme and a digital signature scheme respectively. Let
��CtE be an asymmetric committing encryption scheme constructed from �, �, and
 as
defined above. Then

� satisfies the hiding and binding properties � ��CtE is CE-IND-CCA2 (CE-IND-gCCA2) -
secure.

Proof We will show CE-IND-CCA2-security (CE-IND-gCCA2-security) of ��CtE based on
E-IND-CCA2-security (E-IND-gCCA2-security) of � and hiding and binding properties of �.

 25

For CE-IND-gCCA2-security, let 	 be the equivalence relation w.r.t. which � is secure.
We define the equivalence relation for ��CtE to be 	’ (c1, c2) = 	’ ((cc1, ce1), (cc2, ce2)) = true
iff�	 (ce1, ce2) = true and cc1 = cc2. It is easy to see that 	’ is decryption-respecting, since if di
= DecDK(cei), then 	’ ((cc1, ce1), (cc2, ce2)) = true implies that (cc1, d1) = (cc2, d2), which implies
that m1 = RevealCK(cc1, d1) = RevealCK(cc2, d2) = m2.

For the uniformity and simplicity of the proof we define also for CE-IND-CCA2-security
an equivalence relation for ��CtE to be 	’ (c1, c2) = 	’ ((cc1, ce1), (cc2, ce2)) = true iff c1 = c2
i.e., ce1 = ce2 and cc1 = cc2.

We now show CE-IND-CCA2-security (CE-IND-gCCA2-security) of ��CtE w.r.t. 	’. For
that, let Env1 denote the usual environment where we place any adversary � for ��CtE.
Namely,

(1) In find, Env1 honestly answers the de-committing decryption queries of �.

(2) After m0 and m1 are selected, Env1 picks at random b � {0, 1}, rc, and re, then applies
ccb � CommitCK(mb, rc), db � DecommitCK(mb, rc) and ceb � EncEK(db, re), and
returns cb = (ccb, ceb).

(3) In guess, Env1 honestly answers de-committing decryption query c = (cc, ce) provided
that 	’ ((cc, ce), (ccb, ceb)) = false.

For CE-IND-gCCA2-security, we can assume that � never asks a query c = (cc, ce) where
	 (ce, ceb) = true but cc � ccb. Indeed, by our assumption only the value cc = ccb will check
with db, so the answer to queries with cc � ccb is � (and � knows it). Hence, we can assume
that 	’ ((cc, ce), (ccb, ceb)) = false implies that 	 (ce, ceb) = false.

We let Succ1(�) denote the probability � succeeds in Env1 in predicting b.

Then we define the following “fake” environment Env2. It is identical to Env1 above,
except for one aspect: in step (2) it would return bogus committing encryption (cc(0), ceb), i.e.
puts the commitment to the zero string 0 instead of the expected ccb by applying cc(0) �
CommitCK(0, rc). In particular, step (3) is the same as before with the understanding that 	’
((cc, ce), (ccb, ceb)) is evaluated with the fake challenge (cc(0), ceb). We let Succ2(�) denote the
probability � succeeds in Env2. We make two claims:

(a) Using hiding property of �, no PPT adversary � can distinguish Env1 from Env2, that
is

� satisfies the hiding property � | Succ1(�) - Succ2(�) | � negl(k)

(b) Using E-IND-gCCA2-security of �, no PPT adversary � can succeed in Env2, that is

� is E-IND-gCCA2-secure � Succ2(�) < ½ + negl(k)

Combined, claims (a) and (b) imply the theorem.

Proof of claim (a) If for some �, Succ1(�) - Succ2(�) > � for non-negligible �, we create
�1 that will break the hiding property of �. �1 picks, by itself, a pair of encryption/decryption
keys (EK, DK) � EncKeyGen(1k), a pair of signing/verification keys (SK, VK) �
SigKeyGen(1k), sets CEK = (CK, EK, VK), and runs � (answering his de-committing
decryption queries using DK, SK) until � outputs m0 and m1. At this stage �1 picks at random
b � {0, 1}, and outputs 0 and mb, and claim to be able to distinguish cc(0) � CommitCK(0,
rc) from ccb = cc(mb) � CommitCK(mb, rc). �1 computes ceb � EncEK(d(mb), re) =
EncEK(DecommitCK(mb, rc), re). When presented with cc’ – a commitment to either 0 or mb –

 26

�1 will return to � the committing encryption (cc’, ceb). �1 will then again run � to
completion, refusing to de-committing decrypting (cc, ce) such that 	’ ((cc, ce), (cc’, ceb)) =
true. When � outputs b’, �1 says that the message was mb if � succeeds (b’ = b), and says 0
otherwise. It is easy to check that in case cc’ = cc(mb) = ccb, � was run exactly in Env1,
otherwise – in Env2, which easily implies that Pr [�1 succeeds] ½ + �/2, a contradiction.

Proof of claim (b) If for some �, Succ2(�) > ½ + �, we create �2 that will break the IND-
CCA2-security (IND-gCCA2-security) of �. Specifically, �2 can simulate the de-committing
decryption query (cc, ce) of � by asking its own decryption oracle to decrypt d = DecDK(ce),
and returning RevealCK(cc, d). When �’ outputs m0 and m1, �2 runs cci � CommitCK(mi, r) and
di � DecommitCK(mi, r) for i = {0, 1}, and claim to distinguish d0 and d1. When given
challenge ceb � EncEK(db, r), for unknown b, �2 gives �’ the challenge (cc(0), ceb). Then,
again, �2 uses its own decryption oracle to answer all queries (cc, ce) as long as 	’ ((cc, ce),
(cc(0), ceb)) = false. For CE-IND-gCCA2-security, from the definition of 	’ and our
assumption earlier, we see that 	 (ce, ceb) = false as well, so all such queries are legal. Since
�2 exactly recreates the environment Env2 for �, �2 succeeds with probability Succ2(�) > ½ +
�. 	

Proof of Theorem 4 We prove ��KSP security against the strongest security notion of the
encryption �, i.e. E-IND-CCA2 and E-IND-gCCA2. Weaker notions e.g. E-IND-CPA and E-
IND-CCA1 could easily be proved as well.

The theorem is immediately follows from Lemmas 4.1 – 4.4. 	

Recall that:

(i) From the syntax requirement of the symmetric encryption scheme �, Dec deterministically
recovers the plaintext m that was the input to Enc i.e., DecK(EncK(m)) = m.

(ii) From the syntax requirement of the commitment scheme �, Reveal deterministically
recovers the message m that was the input to Commit and Decommit i.e.,
RevealCK(CommitCK(m, r), DecommitCK(m, r)) = m.

(iii) From the syntax requirement of the digital signature scheme
, Msg deterministically
recovers the message m that was signed by Sign i.e., MsgVK(SignSK(m)) = m.

Lemma 4.1 Assume that �, �, and
 satisfy the syntactic properties of a symmetric
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let
��KSP be a symmetric committing encryption scheme constructed from �, �, and
 as defined
above. Then ��KSP satisfies the syntactic properties of a symmetric committing encryption
scheme.

Proof From the definitions of DcmtDec and CmtEnc, and using (i), follows that
DcmtDecCK,K(CmtEncCK,K(m, r)) = (DecKi(EncKi(m)), hint) = (m, hint).

From the definition of Ver in order to retrieve the secret key Ki that was used to encrypt
message m we apply:

(*) RevealCK(CommitCK(Ki, rc), MsgVK(SignSK(DecommitCK(Ki, rc)))) = [using (iii)]
RevealCK(CommitCK(Ki, rc), DecommitCK(Ki, rc)) = [using (ii)] Ki.

Let c = CmtEncCK,K(m, r) then from the definition of CmtEnc also c = EncKi(m). Thus, from
the definition of Ver follows that:

 27

VerCK(CmtEncCK,K(m, r), DcmtDecCK,K(CmtEncCK,K(m, r))) = VerCK(EncKi(m), m, hint) =
VerCK(EncKi(m), m, SignSK(DecommitCK(Ki, rc))) = [using (*)] succeed. 	

Lemma 4.2 Assume that �, �, and
 satisfy the syntactic properties of a symmetric
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let
��KSP be a symmetric committing encryption scheme constructed from �, �, and
 as defined
above. Then

� is E-IND-CCA2 (E-IND-gCCA2) -secure � ��KSP is CE-IND-CCA2 (CE-IND-gCCA2) -
secure.

Proof We prove CE-IND-CCA2-security and CE-IND-gCCA2-security of ��KSP
simultaneously. For CE-IND-gCCA2-security, let 	 be the equivalence relation w.r.t. which
� is secure. We define the equivalence relation for ��KSP to be 	’(c1, c2) = true iff�	 (c1, c2) =
true. For the uniformity and simplicity of the proof we define also for CE-IND-CCA2-
security an equivalence relation for ��KSP to be 	’ (c1, c2) = true iff c1 = c2.

� Assume adversary �’ can break the CE-IND-CCA2-security (CE-IND-gCCA2-
security) of ��KSP. We can easily construct adversary � that can break the E-IND-CCA2-
security (E-IND-gCCA2-security) of �. � runs �’ internally, passing every de-committing
decryption queries made by �’ to its own decryption oracle. When �’ outputs x0, and x1, �
outputs them also. When � is presented with the challenge cb = EncKi(xb, r) (for unknown b),
it hands it to �’ and continue running �’ waiting to its answer. Now, the definition of 	’ tells
us that �’ is disallowed to de-commit decrypt any c satisfying 	’(cb, c) = true. But such c are
the only queries that � itself is disallowed to ask its decryption oracle! Thus, � can still
handle all the legal de-committing decryption queries of �’, in the same manner as before.
Finally, � outputs the same guess b’ that �’ outputs, which clearly gives � the same
probability of being correct as �’ has.

� Assume adversary � can break the E-IND-CCA2-security (E-IND-gCCA2-security)
of �. We can easily construct adversary �’ that can break the CE-IND-CCA2-security (CE-
IND-gCCA2-security) of ��KSP. �’ runs � internally, passing every decryption queries made
by � to its own de-committing decryption oracle. When � outputs x0, and x1, �’ outputs them
also. When �’ is presented with the challenge cb = CmtEncCK,K(xb, r) (for unknown b), it
hands it to � and continue running � waiting to its answer. Now, the definition of 	’ tells us
that �’ is disallowed to de-commit decrypt any c satisfying 	’(cb, c) = true. But such c are the
only queries that � itself is disallowed to ask its decryption oracle! Thus, �’ can still handle
all the legal de-committing decryption queries of �, in the same manner as before. Finally, �’
outputs the same guess b’ that � outputs, which clearly gives �’ the same probability of being
correct as � has. 	

Lemma 4.3 Assume that �, �, and
 satisfy the syntactic properties of a symmetric
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let
��KSP be a symmetric committing encryption scheme constructed from �, �, and
 as defined
above. Then

� satisfies the binding property � ��KSP is CE-BIND-secure.

Proof Assume ��KSP is not CE-BIND-secure. We can show that � cannot be syntactically an
encryption scheme or we can find collisions for �.

 28

Let c, (m1, hint1), (m2, hint2) be a collision for ��KSP. That is VerCK(c, m1, hint1) =
VerCK(c, m2, hint2) = succeed and m1 � m2.

If the committing ciphertext c was produced for message m1 and m2 honestly, i.e. using
the agreed key Ki, and hint is set honestly to the agreed siS||siR, then � cannot be syntactically
an encryption scheme. From the definition of CmtEnc we have:

c = CmtEncCK,K(m1, r1) = EncKi(m1, r1) and also c = CmtEncCK,K(m2, r2) = EncKi(m2, r2)

But for the deterministic Dec we require:

DecKi(c) = DecKi(EncKi(m1, r1)) = m1 � m2 = DecKi(EncKi(m2, r2)) = DecKi(c),
contradiction.

If the committing ciphertext c was produced for either message m1 or m2 dishonestly, i.e.
using key K � Ki, and hint is set to appropriate dS(K) and dR(K) generated dishonestly by the
sender (i.e. hint = dKS||dKR), then (ciS, diS, dKS) and (ciR, diR, dKR) are both collisions for �,
since:),(),(KSiSCKiSiSiSCK dcRevealKKdcReveal

RR
��� and

),(),(KRiRCKiRiRiRCK dcRevealKKdcReveal
SS

��� . 	

Lemma 4.4 Assume that �, �, and
 satisfy the syntactic properties of a symmetric
encryption scheme, a commitment scheme, and a digital signature scheme respectively. Let
��KSP be a symmetric committing encryption scheme constructed from �, �, and
 as defined
above. Then

� satisfies the binding property � ��KSP is CE-RECOVER-secure.

Proof Assume ��KSP is not CE-RECOVER-secure. We can show that � cannot be
syntactically an encryption scheme or we can find collisions for �.

Let c, m, and hint, be s.t. VerCK(c, m, hint) = succeed but DcmtDecCK,K(c) = �.

If the committing ciphertext c was produced for message mi honestly, i.e. using the agreed
key Ki, and hint is set honestly to the agreed siS||siR then � cannot be syntactically an
encryption scheme, since:

DcmtDecCK,K(c) = (DecKi(c), hint) = (DecKi(EncKi(m)), hint) � (m, hint), contradiction.

If the committing ciphertext c was produced for message mi dishonestly, i.e. using key K
� Ki, and hint is set to appropriate dS(K) and dR(K) generated dishonestly by the sender (i.e.
hint = dKS||dKR), then (ciS, diS, dKS) and (ciR, diR, dKR) are both collisions for �, since:

),(),(KSiSCKiSiSiSCK dcRevealKKdcReveal
RR

��� and

),(),(KRiRCKiRiRiRCK dcRevealKKdcReveal
SS

��� , contradiction. 	

Proof of Theorem 5 The theorem is immediately follows from Lemmas 5.1 – 5.5. 	

Lemma 5.1 Assume that �� and
 satisfy the syntactic properties of an asymmetric
committing encryption scheme and a digital signature scheme respectively. Let
����
 be a
publicly verifiable signcryption scheme constructed from �� and
 as defined above. Then

����
 satisfies the syntactic properties of a publicly verifiable signcryption scheme.

Proof Recall that:

 29

(i) From the syntax requirement of the asymmetric committing encryption scheme ��,
DcmtDec deterministically recovers the plaintext m that was the input to CmtEnc and the hint
i.e., DcmtDecCEK,DK(CmtEncCEK(m)) = (m, hint).

(ii) From the syntax requirement of the digital signature scheme
, Msg deterministically
recovers the message m that was signed by Sign i.e., MsgVK(SignSK(m)) = m.

Let cs = EncSignCEK,SK(m, r). From the definition of EncSign we have cs =
SignSK(CmtEncCEK(m, r)||CEK). In the following we omit the concatenation of CEK in the
signature following the definitions of VerDec and SCVer. From the definition of VerDec and
EncSign follows that: VerDecCEK,DK,VK(EncSignCEK,SK(m, r))

= DcmtDecCEK,DK(MsgVK(SignSK(CmtEncCEK(m, r))))

= [using (ii)] DcmtDecCEK,DK(CmtEncCEK(m, r)) = [using (i)] (m, hint).

From the definition of SCVer follows that:

SCVerVK(EncSignCEK,SK(m, r), VerDecCEK,DK,VK(EncSignCEK,SK(m, r)))

= VerCEK(MsgVK(SignSK(CmtEncCEK(m, r))), DcmtDecCEK,DK(MsgVK(SignSK(
CmtEncCEK(m, r)))))

= [using (ii)] VerCEK(CmtEncCEK(m, r), DcmtDecCEK,DK(CmtEncCEK(m, r))) = succeed. 	

Lemma 5.2 Assume that �� and
 satisfy the syntactic properties of an asymmetric
committing encryption scheme and a digital signature scheme respectively. Let
����
 be a
publicly verifiable signcryption scheme constructed from �� and
 as defined above. Then

�� is CE-IND-gCCA2-secure �
����
 is CE-IND-gCCA2-secure.

Proof We will show CE-IND-gCCA2-security of ��SE based on E-IND-gCCA2-security of
��. Let 	 be the equivalence relation w.r.t. which �� is secure. We define the equivalence
relation for ��SC to be 	’(cs1, cs2) = true iff�	 (cce1, cce2) = true where cce1||CEK = MsgVK(cs1),
and cce2||CEK = MsgVK(cs2). We now show CE-IND-gCCA2-security of ��SC w.r.t. 	’.

� Assume adversary �’ can break the CE-IND-gCCA2-security of ��SC. We can easily
construct adversary � that can break the E-IND-gCCA2-security of ��. � views the public
committing encryption key CEK and by itself picks a pair of signing/verification keys (SK,
VK) � SigKeyGen(1k), and sets CEK’ = (CEK, SK, VK). � then hands CEK’ to �’ as the
public committing encryption key.�� uses its own de-committing decryption oracle to answer
the de-signcryption queries it receives from �’ as follows: � interprets the signcryption
ciphertext cs as a signature s and derives cce||CEK � MsgVK(s), then � passes cce to its own
de-committing decryption oracle. When �’ outputs x0, and x1, � outputs them also. When � is
presented with the challenge cce = CmtEncCEK(xb, r) (for unknown b), it sets c = cce||CEK, runs

)(cSigns SK
R��� and passes s as signcryption ciphertext cs to �’ and continue running �’

waiting to its answer. Now, the definition of 	’ tells us that �’ is disallowed to de-signcrypt
any cs’ satisfying 	’(cs, cs’) = true. But such cs’ results in cce’||CEK = MsgVK(cs’) and cce’ are
the only queries that � itself is disallowed to ask its de-committing decryption oracle! Thus,
� can still handle all the legal de-signcryption queries of �’, in the same manner as before.
Finally, � outputs the same guess b’ that �’ outputs, which clearly gives � the same
probability of being correct as �’ has.

� Assume adversary � can break the CE-IND-gCCA2-security of ��. We can easily
construct adversary �’ that can break the CE-IND-gCCA2-security of ��SC. �’ views the

 30

public committing encryption key CEK’ = (CEK, SK, VK) and hands CEK to � as the public
committing encryption key. �’ uses its own de-signcryption oracle to answer the de-
committing decryption queries it receives from � as follows: �’ first appends the public
committing encryption key CEK to the committing ciphertext cce it receives from � and have
c = cce||CEK, then �’ runs)(cSigns SK

R��� , and passes the signature s as signcryption
ciphertext cs to its own de-signcryption oracle. When � outputs x0, and x1, �’ outputs them
also. When �’ is presented with the challenge cs = EncSignCEK,SK(xb, r) (for unknown b), it
interprets cs as signature s and derives cce||CEK � MsgVK(s). It passes the retrieved cce to �
and continue running � waiting to its answer. Now, the definition of 	’ tells us that �’ is
disallowed to de-signcrypt any cs’ satisfying 	’(cs, cs’) = true. But such cs’ results in cce’||CEK
= MsgVK(cs’) and cce’ are the only queries that � itself is disallowed to ask its de-committing
decryption oracle! Thus, �’ can still handle all the legal de-signcryption queries of �, in the
same manner as before. Finally, �’ outputs the same guess b’ that � outputs, which clearly
gives �’ the same probability of being correct as � has. 	

Lemma 5.3 Assume that �� and
 satisfy the syntactic properties of an asymmetric
committing encryption scheme and a digital signature scheme respectively. Let
����
 be a
publicly verifiable signcryption scheme constructed from �� and
 as defined above. Then

�� is CE-BIND-secure �
����
 is CE-BIND-secure.

Proof

� Assume adversary �’ can find collisions for ��SC i.e., �’ can find cs, (m, hint), (m’,
hint’) such that SCVerCEK’(cs, m, hint) = succeed, SCVerCEK’(cs, m’, hint’) = succeed and m �
m’. We can easily construct adversary � that can find collisions for ��. � views the public
committing encryption key CEK and by itself picks a pair of signing/verification keys (SK,
VK) � SigKeyGen(1k), and sets CEK’ = (CEK, SK, VK). � then hands CEK’ to �’ as the
public committing encryption key.�� runs �’ to find triplet cs, (m, hint), (m’, hint’) which is a
collision for ��SE. Then, � interprets the signcryption ciphertext cs as signature s and derives
cce||CEK � MsgVK(s), and output the triplet cce, (m, hint), (m’, hint’). It is easy to see that
VerCEK(cce, m, hint) = succeed, VerCEK(cce, m’, hint’) = succeed and m � m’.

� Assume adversary � can find collisions for �� i.e., � can find cce, (m, hint), (m’,
hint’) such that VerCEK(cce, m, hint) = succeed, VerCEK(cce, m’, hint’) = succeed and m � m’.
We can easily construct adversary �’ that can find collisions for ��SC. �’ views the public
committing encryption key CEK’ = (CEK, SK, VK) and hands CEK to � as the public
committing encryption key.��’ runs � to find triplet cce, (m, hint), (m’, hint’) which is a
collision for ��. Then, �’ appends the public committing encryption key CEK to the
committing ciphertext cce and have c = cce||CEK, then �’ runs)(cSigns SK

R��� , sets cs = s,
and output the triplet cs, (m, hint), (m’, hint’). It is easy to see that SCVerCEK’(cs, m, hint) =
succeed, SCVerCEK’(cs, m’, hint’) = succeed and m � m’. 	

Lemma 5.4 Assume that �� and
 satisfy the syntactic properties of an asymmetric
committing encryption scheme and a digital signature scheme respectively. Let
����
 be a
publicly verifiable signcryption scheme constructed from �� and
 as defined above. Then

�� is CE-RECOVER-secure �
����
 is CE-RECOVER-secure.

Proof

 31

� Assume ��SC is not CE-RECOVER-secure and adversary �’ can find cs, m, and hint
such that SCVerCEK’(cs, m, hint) = succeed but VerDecCEK,DK,VK(cs) = �. Then we can easily
construct adversary � that can find cce, m, and hint such that VerCEK(cce, m, hint) = succeed
but DcmtDecCEK,DK(cce) = � and thus break CE-RECOVER security of ��. � views the public
committing encryption key CEK and by itself picks a pair of signing/verification keys (SK,
VK) � SigKeyGen(1k), and sets CEK’ = (CEK, SK, VK). � then hands CEK’ to �’ as the
public committing encryption key.�� runs �’ to find cs, m, and hint such that SCVerCEK’(cs, m,
hint) = succeed but VerDecCEK,DK,VK(cs) = �. Then, � interprets the signcryption ciphertext cs
as signature s and derives cce||CEK � MsgVK(s), and outputs cce, m, and hint. It is easy to see
that VerCEK(cce, m, hint) = succeed and DcmtDecCEK,DK(cce) = �.

� Assume �� is not CE-RECOVER-secure and adversary � can find cce, m, and hint
such that VerCEK(cce, m, hint) = succeed but DcmtDecCEK,DK(cce) = � then we can easily
construct adversary �’ that can find cs, m, and hint such that SCVerCEK’(cs, m, hint) = succeed
but VerDecCEK,DK,VK(cs) = � and thus break CE-RECOVER security of ��SC. �’ views the
public committing encryption key CEK’ = (CEK, SK, VK) and hands CEK to � as the public
committing encryption key.��’ runs � to find cce, m, and hint such that VerCEK(cce, m, hint) =
succeed but DcmtDecCEK,DK(cce) = �. Then, �’ appends the public committing encryption key
CEK to the committing ciphertext cce and have c = cce||CEK, �’ runs)(cSigns SK

R��� , sets
cs = s, and output the triplet cs, m, and hint. It is easy to see that SCVerCEK’(cs, m, hint) =
succeed and VerDecCEK,DK,VK(cs) = �. 	

Lemma 5.5 Assume that �� and
 satisfy the syntactic properties of an asymmetric
committing encryption scheme and a digital signature scheme respectively. Let
����
 be a
publicly verifiable signcryption scheme constructed from �� and
 as defined above. Then

 is UF-CMA-secure �
����
 is UF-CMA-secure.

Proof Assume adversary �’ can forge signatures for
SC then we can easily construct
adversary � that can forge signatures for
 without any assistance from a signing oracle. �
views the verification key VK and by itself picks a pair of committing encryption keys (CEK,
DK) � KeyGenSetup(1k), and sets VK’ = (CEK, DK, VK). � then hands VK’ to �’ as the
public verification key.�� runs �’ to forge signature s such that SigVerVK’(s) = succeed. Then,
� outputs the same signature s that �’ outputs. 	

