
Inversion of Several Field Elements: A New

Parallel Algorithm

Pradeep Kumar Mishra and Palash Sarkar

Cryptology Researh Group,

Applied Statistis Unit,

Indian Statistial Institute,

203 B T Road,

Kolkata-700108, INDIA.

e-mail fpradeep t, palashg�isial.a.in

Abstrat. In many rypographi hardware or software pakages, a on-

siderable part is devoted to �nite �eld arithmeti. The �nite �eld arith-

meti is a very ostly operation in omparison to other �nite �eld oper-

ations. Taming the omplexity of this operation has been a major hal-

lenge for researhers and implementers. One approah for the purpose

is aumulate all the elements to be inverted and to ompute several

inversions simultaneously at the ost of one inversion and some multi-

plitions. One suh algorithm is known as Montgomery's trik. However

Montgomery's trik does not allow muh parallelism. In [5℄ an algorithm

for omputation of inverses of several �eld elements simultaneously in

parallel has been proposed. The algorithm allows ample sope for par-

allelism and performes well if there is no restrition on the number of

proessors used. In the urrent work, we present an algorithm, whih

is same in omplexity as Montgomery's trik but suitable for a paral-

lel implementation. In parallel implementation, it omputes inverse of n

elements in 2 log n parallel rounds. It performs better than both the pre-

vious algorithms under the irumstanes where the restrited number

of multipliers is used.

keywords Parallel algorithm, Montgomery's trik, inversion.

1 Introdution

In oding theory and ryptography, �nite �elds have a lot of appliations. In

the implementation of many ryptographi primitives a non-trivial part is the

implementation of �nite �eld arithmeti. In a �nite �eld the basi operations are

addition, multipliation and inversion. Of these operations addition is generally

the heapest one and inversion is the ostliest. An addition takes negligible time

in omparison to time taken by a multipliation. The ost of inversion varies a

lot depending upon the underlying �eld. For prime �elds, the ost of inversion

an be 30 to 50 times that of an multipliation [1℄, [2℄.

Suppose we wish to invert � and �. Instead of omputing two inverses we an

ompute the produt �� and ompute its inverse. Then we an ompute inverse

of � and � by two more multipliations: �

�1

= (��)

�1

� and �

�1

= (��)

�1

�.

Thus inverses of two �eld elements an be omputed at the ost of one inversion

and 3 multipliations. This trik and its elegant generalisation to n elements is

alled Montgomary's trik. It takes one inversion and 3(n�1) multipliations to

ompute the inverse of n elements using the Montgomery's trik.

However, Montgomery's trik does not allow muh sope for parallel imple-

mentation. In [5℄, a parallel algorithm for simultaneous omputation of inverses

has been proposed. It performs better than Montgomery's trik if the number

of multipliers is more than 2. With 2 multipliers Montgomery's trik is a better

alternative. Besides, the algorithm omputes higher number of multipliations

than required by Montgomery's trik.

In the urrent work we present a new algorithm whih performs as good

as Montgomery's trik in sequential exeution. In parallel implementation it is

muh better than Montgomery's trik. If the number of multipliers is restrited,

the algorithm performs better than the parallel algorithm proposed in [5℄. The

algorithm in [5℄ performs the best when the number of multipliers employed is

3/2 times n for inverting n elements. For n or lesser number of multipliers, the

performane of our new algorithm is muh better. In the new algorithm requires

as muh memory as Montgomery's trik.

2 Bakground

2.1 Montgomery's Trik

In Montgomery's trik (see for example [4℄) inverses are omputed as follows.

Let x

1

; � � � ; x

n

be the elements to be inverted. Set a

1

= x

1

and for i = 2; : : : ; n

ompute a

i

= a

i�1

x

i

. Then invert a

n

and ompute x

�1

n

= a

n�1

a

�1

n

. Now, for

i = n � 1; n � 2; : : : ; 2, ompute a

�1

i

= x

i+1

a

�1

i+1

and x

�1

i

= a

i�1

a

�1

i

. Finally

ompute x

�1

1

= a

�1

1

= x

2

a

�1

2

. This proedure provides x

�1

1

; : : : ; x

�1

n

using a total

of 3(n� 1) multipliations and one inversion. However, there is very little sope

for parallel implementation of this algorithm. The �rst part of the algorithm

omputing the a

i

's is inherently sequential. One an not ompute a

j

before

omputing a

j�1

. In the next setion we desribe an algorithm, whih omputes

inverses of several �eld elements in parallel.

3 Computing Simultaneous Inverses

Let x

1

; x

2

; � � � ; x

n

be the �eld elements to be inverted. Let A[1; � � � ; (2n� 1)℄ be

an array of (2n � 1) elements, eah apable of storing one �eld element. The

following algorithm omputes the inverses simultaneously.

Algorithm 1

Input: Field elements x

1

; x

2

; � � � ; x

n

.

Output: x

�1

1

; x

�1

2

; � � � ; x

�1

n

.

1. For i = n to (2n� 1), A[i℄ x

i�n+1

;

2. For i = (n� 1) down to 1, A[i℄ A[2i℄ �A[2i+ 1℄;

3. Invert A[1℄, i.e. A[1℄ A[1℄

�1

;

4. For i = 2 to 2n� 1 step 2,

t A[i℄;

A[i℄ A[bi=2℄ �A[i� 1℄;

A[i+ 1℄ A[bi=2℄ � t;

5. Output A[i℄; (n � i � (2n� 1);

Proposition 1. The ost of Algorithm 1 is 3(n � 1) multipliations and one

inversion.

Proof : It is obvious that Step 2 and 4 of the algorithm require n�1 and 3(n�1)

multipliations respetively. There is one inversion in Step 3.

The algorithm requires 2nmemory loations, eah apable of holding one �eld

element eah ((2n�1) for A[℄ and 1 for t). The elements A[n℄ to A[2n�1℄ in the

array store the input data and A[1℄ to A[n� 1℄ are used for storing intermediate

variables. Montgomery's trik also demands same amount of memory. However,

the beauty of Algorithm 1 is that it an be implemented in parallel. In the next

setion we exhibit how it an be implemented in parallel.

4 Parallel Implementation

Let the elements to be inverted be x

1

; x

2

; � � � ; x

n

where 2

r�1

� n � 2

r

. We

assume that the algorithm is to be proessed by 2

r�1

multipliers and we have

suÆient memory to store 2 � n �eld elements. We name the multipliers as

P

1

; P

2

; � � � ; P

2

r�1
. In fat we do not need more than 2

r�1

multipliers. The algo-

rithm an also be run with less number of multipliers, but the number of parallel

multipliation rounds will be more. We will disuss that senario in details later.

Next, we desribe our algorithm.

Algorithm 2

Input: Field elements x

1

; x

2

; � � � ; x

n

.

Output: x

�1

1

; x

�1

2

; � � � ; x

�1

n

.

1. Initialisation: For i = n to 2n� 1, A[i℄ x

i

;

2. For k 1 to r do in parallel

(Round k:)

For i = 2

r=k

to minf2

r�(k�1)

� 1; n� 1g;

P

i+1�2

r�k omputes A[i℄ A[2i℄ �A[2i+ 1℄

3. Round r+1:

Invert the element in A[1℄ and store to A[1℄;

4. For k r + 2 to 2r + 1 do

(Round k:)

For 2

k�(r+1)

� i � 2

k�r

� 1;

P

i�2

k�(r+1)

+1

omputes in parallel A[i℄ A[bi=2℄ �A[i� 1℄;

Output A[i℄, n � i � (2n� 1):

Proposition 2. Algorithm 2 orretly omputes the inverses of 2

r

elements in

2r parallel multipliation rounds.

A[9]

A[13]
A[9]

A[13]

A[1]

A[2] A[3]

A[5]
A[6] A[7]

A[8]
A[10] A[12]

A[14] A[15]

A[11]

A[1]

A[2] A[3]

A[4] A[5]
A[6] A[7]

A[8]
A[10] A[12]

A[14] A[15]

A[11]

−1

−1
−1

A[4]
−1 (78)−1 −1 −1

−1−1−1−1−1−1−1−1

Round 1

Round 2

Round 3 Round 4

Round 5

Round 6

Round 7

a b c d e f g h

(ab) (cd) (ef) (gh)

(abcd) (efgh)

(abcdefgh)
(abcdefgh)

(abcd) (efgh)

(ab) (cd) (ef)

a b c d e f g h

Fig. 1. Algorithm 2 in Ation with n = 8. The �gure demonstrates various parallel

rounds of the Algorithm 2 for inverting 8 elements a; � � � ; h. Round 4 is the inversion

round.

4.1 Computing with Lesser Number of Multipliers

With 2

r�1

multipliers Algorithm 2 an ompute the inverses in 2r parallel

rounds. Let the number of available multipliers be t = 2

p

. Then the obvious

way of arying out the omputations is to allow the available multipliers to par-

allelly ompute one round of Algorithm 2 possibly in more than one parallel

rounds.

To arry out the omputations of round k; (1 � k � r) of Algorithm 2, the t

proessors will require d2

r�k

=2

p

e parallel rounds of omputations. The (r+1)st

round is an inversion round. Similarly, for round k, r + 2 � k � 2r + 1 , the t

proessors will require d2

k�r�1

=2

p

e parallel rounds of omputations. Hene we

have,

Proposition 3. With t = 2

p

multipliers Algorithm 2 an be omputed in

r

X

k=1

d

2

r�k

2

p

e+

2r

X

i=r+2

d

2

k�r�1

2

p

e = 2

r�1

X

k=1

d

2

k

2

p

e+ 2

r�p

parallel rounds of omputation besides one inversion round.

Table 1. Number of parallel rounds required for inverting n = 8; 16; 32 elements with

k = 8; 4; 2 multipliers by Algorithm 2.

n=k 8 4 2

8 6 7 11

16 9 13 23

32 15 25 47

5 Performane and Comparison

In the Table 1 we show the number of parallel rounds required for inverting n

number of elements by k number of multipliers using Algorithm 2.

As Montgomery's trik is a sequential algorithm it will be unfair to ompare

performane of Algorithm 2 with the performane of Montgomery's trik. Re-

ently in [5℄ a parallel algorithm for omputing the inverses has been proposed.

We ompare performane of Algorithm 2 with the algorithm presented in [5℄.

For that we ite the following table (Table 2 from [5℄.

Table 2. Number of rounds required by k multipliers for inverting n elements by

Algorithm in [5℄.

nnk 8 4 2

8 6 9 16

16 12 21 40

Clearly, the algorithm presented in this work performs better. However, al-

gorithm presented in [5℄ inverts 2

r

elements with 3 � 2

r�1

multipliers in r + 1

parallel multipliation rounds for whih Algorithm 2 takes 2r parallel multipli-

ation rounds. So if there is no restrition on the number of multipliers then

the algorithm presented in [5℄ is better than Algorithm 2. However, in prati-

al implementations, where the number of multipliers is limited, Algorithm 2 is

preferable.

5.1 Memory Requirement

Here by a memory unit we mean a storage unit apable of storing a �eld element.

It is easy to hek that Algorithm 1 and Montgomery's trik require n additional

memory units to invert n elements. Algorithm 2 requires (n � 1) additional

memory units. In memory requirement, algorithm presented in [5℄ is the best. It

requires only n=2 additional memory units.

6 Conlusion

In this work we presented a new algorithm and its parallel version to ompute

inversion of several �eld elements simultaneously. The parallel version an �t

into parallel implementations of any ryptographi primitive whih requires si-

multaneous inversions. In terms of performane, the new algorithm is better than

the one presented in [5℄ in pratial senario where there is a limitation on the

number of multipliers used.

Referenes

1. K. Fong and D. Hankerson and J. L�opez and A. Menezes. Field inversion and point

halving revisited. Tehnial Report, CORR 2003-18, Department of Combinatoris

and Optimization, University of Waterloo, Canada, 2003.

2. A. J. Menezes, P. C. van Oorshot and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.

3. P. Montgomery. Speeding the Pollard and Ellipti Curve Methods for Fatorisation.

In Math. Comp., vol 48, pp 243-264, 1987.

4. H. Shaham, D. Boneh. Improving SSL Handshake Performane via Bathing. In

CT-RSA, LNCS 2020, Springer-Varlag, 2001.

5. P. Sarkar, P. K. Mishra and R. Barua. A Parallel Algorithm for Computing Simul-

taneous Inversions with Appliation to Ellipti Curve Salar Multipliaton (Ex-

tended Abstrat)To appear in Proeeding of 46th Midwest Symposium on Systems

and Ciruits, 2003.

