
Inversion of Several Field Elements: A New

Parallel Algorithm

Pradeep Kumar Mishra and Palash Sarkar

Cryptology Resear
h Group,

Applied Statisti
s Unit,

Indian Statisti
al Institute,

203 B T Road,

Kolkata-700108, INDIA.

e-mail fpradeep t, palashg�isi
al.a
.in

Abstra
t. In many
rypographi
 hardware or software pa
kages, a
on-

siderable part is devoted to �nite �eld arithmeti
. The �nite �eld arith-

meti
 is a very
ostly operation in
omparison to other �nite �eld oper-

ations. Taming the
omplexity of this operation has been a major
hal-

lenge for resear
hers and implementers. One approa
h for the purpose

is a

umulate all the elements to be inverted and to
ompute several

inversions simultaneously at the
ost of one inversion and some multi-

pli
tions. One su
h algorithm is known as Montgomery's tri
k. However

Montgomery's tri
k does not allow mu
h parallelism. In [5℄ an algorithm

for
omputation of inverses of several �eld elements simultaneously in

parallel has been proposed. The algorithm allows ample s
ope for par-

allelism and performes well if there is no restri
tion on the number of

pro
essors used. In the
urrent work, we present an algorithm, whi
h

is same in
omplexity as Montgomery's tri
k but suitable for a paral-

lel implementation. In parallel implementation, it
omputes inverse of n

elements in 2 log n parallel rounds. It performs better than both the pre-

vious algorithms under the
ir
umstan
es where the restri
ted number

of multipliers is used.

keywords Parallel algorithm, Montgomery's tri
k, inversion.

1 Introdu
tion

In
oding theory and
ryptography, �nite �elds have a lot of appli
ations. In

the implementation of many
ryptographi
 primitives a non-trivial part is the

implementation of �nite �eld arithmeti
. In a �nite �eld the basi
 operations are

addition, multipli
ation and inversion. Of these operations addition is generally

the
heapest one and inversion is the
ostliest. An addition takes negligible time

in
omparison to time taken by a multipli
ation. The
ost of inversion varies a

lot depending upon the underlying �eld. For prime �elds, the
ost of inversion

an be 30 to 50 times that of an multipli
ation [1℄, [2℄.

Suppose we wish to invert � and �. Instead of
omputing two inverses we
an

ompute the produ
t �� and
ompute its inverse. Then we
an
ompute inverse

of � and � by two more multipli
ations: �

�1

= (��)

�1

� and �

�1

= (��)

�1

�.

Thus inverses of two �eld elements
an be
omputed at the
ost of one inversion

and 3 multipli
ations. This tri
k and its elegant generalisation to n elements is

alled Montgomary's tri
k. It takes one inversion and 3(n�1) multipli
ations to

ompute the inverse of n elements using the Montgomery's tri
k.

However, Montgomery's tri
k does not allow mu
h s
ope for parallel imple-

mentation. In [5℄, a parallel algorithm for simultaneous
omputation of inverses

has been proposed. It performs better than Montgomery's tri
k if the number

of multipliers is more than 2. With 2 multipliers Montgomery's tri
k is a better

alternative. Besides, the algorithm
omputes higher number of multipli
ations

than required by Montgomery's tri
k.

In the
urrent work we present a new algorithm whi
h performs as good

as Montgomery's tri
k in sequential exe
ution. In parallel implementation it is

mu
h better than Montgomery's tri
k. If the number of multipliers is restri
ted,

the algorithm performs better than the parallel algorithm proposed in [5℄. The

algorithm in [5℄ performs the best when the number of multipliers employed is

3/2 times n for inverting n elements. For n or lesser number of multipliers, the

performan
e of our new algorithm is mu
h better. In the new algorithm requires

as mu
h memory as Montgomery's tri
k.

2 Ba
kground

2.1 Montgomery's Tri
k

In Montgomery's tri
k (see for example [4℄) inverses are
omputed as follows.

Let x

1

; � � � ; x

n

be the elements to be inverted. Set a

1

= x

1

and for i = 2; : : : ; n

ompute a

i

= a

i�1

x

i

. Then invert a

n

and
ompute x

�1

n

= a

n�1

a

�1

n

. Now, for

i = n � 1; n � 2; : : : ; 2,
ompute a

�1

i

= x

i+1

a

�1

i+1

and x

�1

i

= a

i�1

a

�1

i

. Finally

ompute x

�1

1

= a

�1

1

= x

2

a

�1

2

. This pro
edure provides x

�1

1

; : : : ; x

�1

n

using a total

of 3(n� 1) multipli
ations and one inversion. However, there is very little s
ope

for parallel implementation of this algorithm. The �rst part of the algorithm

omputing the a

i

's is inherently sequential. One
an not
ompute a

j

before

omputing a

j�1

. In the next se
tion we des
ribe an algorithm, whi
h
omputes

inverses of several �eld elements in parallel.

3 Computing Simultaneous Inverses

Let x

1

; x

2

; � � � ; x

n

be the �eld elements to be inverted. Let A[1; � � � ; (2n� 1)℄ be

an array of (2n � 1) elements, ea
h
apable of storing one �eld element. The

following algorithm
omputes the inverses simultaneously.

Algorithm 1

Input: Field elements x

1

; x

2

; � � � ; x

n

.

Output: x

�1

1

; x

�1

2

; � � � ; x

�1

n

.

1. For i = n to (2n� 1), A[i℄ x

i�n+1

;

2. For i = (n� 1) down to 1, A[i℄ A[2i℄ �A[2i+ 1℄;

3. Invert A[1℄, i.e. A[1℄ A[1℄

�1

;

4. For i = 2 to 2n� 1 step 2,

t A[i℄;

A[i℄ A[bi=2
℄ �A[i� 1℄;

A[i+ 1℄ A[bi=2
℄ � t;

5. Output A[i℄; (n � i � (2n� 1);

Proposition 1. The
ost of Algorithm 1 is 3(n � 1) multipli
ations and one

inversion.

Proof : It is obvious that Step 2 and 4 of the algorithm require n�1 and 3(n�1)

multipli
ations respe
tively. There is one inversion in Step 3.

The algorithm requires 2nmemory lo
ations, ea
h
apable of holding one �eld

element ea
h ((2n�1) for A[℄ and 1 for t). The elements A[n℄ to A[2n�1℄ in the

array store the input data and A[1℄ to A[n� 1℄ are used for storing intermediate

variables. Montgomery's tri
k also demands same amount of memory. However,

the beauty of Algorithm 1 is that it
an be implemented in parallel. In the next

se
tion we exhibit how it
an be implemented in parallel.

4 Parallel Implementation

Let the elements to be inverted be x

1

; x

2

; � � � ; x

n

where 2

r�1

� n � 2

r

. We

assume that the algorithm is to be pro
essed by 2

r�1

multipliers and we have

suÆ
ient memory to store 2 � n �eld elements. We name the multipliers as

P

1

; P

2

; � � � ; P

2

r�1
. In fa
t we do not need more than 2

r�1

multipliers. The algo-

rithm
an also be run with less number of multipliers, but the number of parallel

multipli
ation rounds will be more. We will dis
uss that s
enario in details later.

Next, we des
ribe our algorithm.

Algorithm 2

Input: Field elements x

1

; x

2

; � � � ; x

n

.

Output: x

�1

1

; x

�1

2

; � � � ; x

�1

n

.

1. Initialisation: For i = n to 2n� 1, A[i℄ x

i

;

2. For k 1 to r do in parallel

(Round k:)

For i = 2

r=k

to minf2

r�(k�1)

� 1; n� 1g;

P

i+1�2

r�k
omputes A[i℄ A[2i℄ �A[2i+ 1℄

3. Round r+1:

Invert the element in A[1℄ and store to A[1℄;

4. For k r + 2 to 2r + 1 do

(Round k:)

For 2

k�(r+1)

� i � 2

k�r

� 1;

P

i�2

k�(r+1)

+1

omputes in parallel A[i℄ A[bi=2
℄ �A[i� 1℄;

Output A[i℄, n � i � (2n� 1):

Proposition 2. Algorithm 2
orre
tly
omputes the inverses of 2

r

elements in

2r parallel multipli
ation rounds.

A[9]

A[13]
A[9]

A[13]

A[1]

A[2] A[3]

A[5]
A[6] A[7]

A[8]
A[10] A[12]

A[14] A[15]

A[11]

A[1]

A[2] A[3]

A[4] A[5]
A[6] A[7]

A[8]
A[10] A[12]

A[14] A[15]

A[11]

−1

−1
−1

A[4]
−1 (78)−1 −1 −1

−1−1−1−1−1−1−1−1

Round 1

Round 2

Round 3 Round 4

Round 5

Round 6

Round 7

a b c d e f g h

(ab) (cd) (ef) (gh)

(abcd) (efgh)

(abcdefgh)
(abcdefgh)

(abcd) (efgh)

(ab) (cd) (ef)

a b c d e f g h

Fig. 1. Algorithm 2 in A
tion with n = 8. The �gure demonstrates various parallel

rounds of the Algorithm 2 for inverting 8 elements a; � � � ; h. Round 4 is the inversion

round.

4.1 Computing with Lesser Number of Multipliers

With 2

r�1

multipliers Algorithm 2
an
ompute the inverses in 2r parallel

rounds. Let the number of available multipliers be t = 2

p

. Then the obvious

way of
arying out the
omputations is to allow the available multipliers to par-

allelly
ompute one round of Algorithm 2 possibly in more than one parallel

rounds.

To
arry out the
omputations of round k; (1 � k � r) of Algorithm 2, the t

pro
essors will require d2

r�k

=2

p

e parallel rounds of
omputations. The (r+1)st

round is an inversion round. Similarly, for round k, r + 2 � k � 2r + 1 , the t

pro
essors will require d2

k�r�1

=2

p

e parallel rounds of
omputations. Hen
e we

have,

Proposition 3. With t = 2

p

multipliers Algorithm 2
an be
omputed in

r

X

k=1

d

2

r�k

2

p

e+

2r

X

i=r+2

d

2

k�r�1

2

p

e = 2

r�1

X

k=1

d

2

k

2

p

e+ 2

r�p

parallel rounds of
omputation besides one inversion round.

Table 1. Number of parallel rounds required for inverting n = 8; 16; 32 elements with

k = 8; 4; 2 multipliers by Algorithm 2.

n=k 8 4 2

8 6 7 11

16 9 13 23

32 15 25 47

5 Performan
e and Comparison

In the Table 1 we show the number of parallel rounds required for inverting n

number of elements by k number of multipliers using Algorithm 2.

As Montgomery's tri
k is a sequential algorithm it will be unfair to
ompare

performan
e of Algorithm 2 with the performan
e of Montgomery's tri
k. Re-

ently in [5℄ a parallel algorithm for
omputing the inverses has been proposed.

We
ompare performan
e of Algorithm 2 with the algorithm presented in [5℄.

For that we
ite the following table (Table 2 from [5℄.

Table 2. Number of rounds required by k multipliers for inverting n elements by

Algorithm in [5℄.

nnk 8 4 2

8 6 9 16

16 12 21 40

Clearly, the algorithm presented in this work performs better. However, al-

gorithm presented in [5℄ inverts 2

r

elements with 3 � 2

r�1

multipliers in r + 1

parallel multipli
ation rounds for whi
h Algorithm 2 takes 2r parallel multipli-

ation rounds. So if there is no restri
tion on the number of multipliers then

the algorithm presented in [5℄ is better than Algorithm 2. However, in pra
ti-

al implementations, where the number of multipliers is limited, Algorithm 2 is

preferable.

5.1 Memory Requirement

Here by a memory unit we mean a storage unit
apable of storing a �eld element.

It is easy to
he
k that Algorithm 1 and Montgomery's tri
k require n additional

memory units to invert n elements. Algorithm 2 requires (n � 1) additional

memory units. In memory requirement, algorithm presented in [5℄ is the best. It

requires only n=2 additional memory units.

6 Con
lusion

In this work we presented a new algorithm and its parallel version to
ompute

inversion of several �eld elements simultaneously. The parallel version
an �t

into parallel implementations of any
ryptographi
 primitive whi
h requires si-

multaneous inversions. In terms of performan
e, the new algorithm is better than

the one presented in [5℄ in pra
ti
al s
enario where there is a limitation on the

number of multipliers used.

Referen
es

1. K. Fong and D. Hankerson and J. L�opez and A. Menezes. Field inversion and point

halving revisited. Te
hni
al Report, CORR 2003-18, Department of Combinatori
s

and Optimization, University of Waterloo, Canada, 2003.

2. A. J. Menezes, P. C. van Oors
hot and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1997.

3. P. Montgomery. Speeding the Pollard and Ellipti
 Curve Methods for Fa
torisation.

In Math. Comp., vol 48, pp 243-264, 1987.

4. H. Sha
ham, D. Boneh. Improving SSL Handshake Performan
e via Bat
hing. In

CT-RSA, LNCS 2020, Springer-Varlag, 2001.

5. P. Sarkar, P. K. Mishra and R. Barua. A Parallel Algorithm for Computing Simul-

taneous Inversions with Appli
ation to Ellipti
 Curve S
alar Multipli
aton (Ex-

tended Abstra
t)To appear in Pro
eeding of 46th Midwest Symposium on Systems

and Cir
uits, 2003.

