Inversion of Several Field Elements: A New
Parallel Algorithm

Pradeep Kumar Mishra and Palash Sarkar

Cryptology Research Group,
Applied Statistics Unit,
Indian Statistical Institute,
203 B T Road,
Kolkata-700108, INDIA.
e-mail {pradeep_t, palash} Qisical.ac.in

Abstract. In many crypographic hardware or software packages, a con-
siderable part is devoted to finite field arithmetic. The finite field arith-
metic is a very costly operation in comparison to other finite field oper-
ations. Taming the complexity of this operation has been a major chal-
lenge for researchers and implementers. One approach for the purpose
is accumulate all the elements to be inverted and to compute several
inversions simultaneously at the cost of one inversion and some multi-
plictions. One such algorithm is known as Montgomery’s trick. However
Montgomery’s trick does not allow much parallelism. In [5] an algorithm
for computation of inverses of several field elements simultaneously in
parallel has been proposed. The algorithm allows ample scope for par-
allelism and performes well if there is no restriction on the number of
processors used. In the current work, we present an algorithm, which
is same in complexity as Montgomery’s trick but suitable for a paral-
lel implementation. In parallel implementation, it computes inverse of n
elements in 2log n parallel rounds. It performs better than both the pre-
vious algorithms under the circumstances where the restricted number
of multipliers is used.

keywords Parallel algorithm, Montgomery’s trick, inversion.

1 Introduction

In coding theory and cryptography, finite fields have a lot of applications. In
the implementation of many cryptographic primitives a non-trivial part is the
implementation of finite field arithmetic. In a finite field the basic operations are
addition, multiplication and inversion. Of these operations addition is generally
the cheapest one and inversion is the costliest. An addition takes negligible time
in comparison to time taken by a multiplication. The cost of inversion varies a
lot depending upon the underlying field. For prime fields, the cost of inversion
can be 30 to 50 times that of an multiplication [1], [2].

Suppose we wish to invert a and . Instead of computing two inverses we can
compute the product a8 and compute its inverse. Then we can compute inverse
of a and 8 by two more multiplications: a! = (af) !4 and 37! = (aB) 'a.
Thus inverses of two field elements can be computed at the cost of one inversion
and 3 multiplications. This trick and its elegant generalisation to n elements is
called Montgomary’s trick. It takes one inversion and 3(n — 1) multiplications to
compute the inverse of n elements using the Montgomery’s trick.

However, Montgomery’s trick does not allow much scope for parallel imple-
mentation. In [5], a parallel algorithm for simultaneous computation of inverses
has been proposed. It performs better than Montgomery’s trick if the number
of multipliers is more than 2. With 2 multipliers Montgomery’s trick is a better
alternative. Besides, the algorithm computes higher number of multiplications
than required by Montgomery’s trick.

In the current work we present a new algorithm which performs as good
as Montgomery’s trick in sequential execution. In parallel implementation it is
much better than Montgomery’s trick. If the number of multipliers is restricted,
the algorithm performs better than the parallel algorithm proposed in [5]. The
algorithm in [5] performs the best when the number of multipliers employed is
3/2 times n for inverting n elements. For n or lesser number of multipliers, the
performance of our new algorithm is much better. In the new algorithm requires
as much memory as Montgomery’s trick.

2 Background

2.1 Montgomery’s Trick

In Montgomery’s trick (see for example [4]) inverses are computed as follows.
Let x1,---,x, be the elements to be inverted. Set a; = 1 and for i = 2,...,n
compute a; = a;—ix;. Then invert a, and compute z,;' = a,—1a,"'. Now, for
i =n-—1,n-—2,...,2, compute ai_1 = xi+1ai_+11 and xi_l = ai,lai_l. Finally
compute xfl = afl = acga;l. This procedure provides xfl, ..., z, ! using a total
of 3(n — 1) multiplications and one inversion. However, there is very little scope
for parallel implementation of this algorithm. The first part of the algorithm
computing the a;’s is inherently sequential. One can not compute a; before
computing a;j_;. In the next section we describe an algorithm, which computes
inverses of several field elements in parallel.

3 Computing Simultaneous Inverses

Let x1, 22, -, xp be the field elements to be inverted. Let A[l,---,(2n — 1)] be
an array of (2n — 1) elements, each capable of storing one field element. The
following algorithm computes the inverses simultaneously.

Algorithm 1

Input: Field elements xq, 22, -, Ty.

Output: mfl,%l,---,m

n -

1.Fori=nto (2n — 1), A[i] ¢ z;—pt1;
2. For i = (n — 1) down to 1, A[{] + A[2i] * A[2i + 1];
3. Invert A[1], i.e. A[1] + A[1]7%;
4. For i = 2 to 2n — 1 step 2,
t + Ali;
Ali] « Alli/2]] = Ali & 1];
Ali +1] + A[[i/2]] = ¢;
5. Output Afi],(n <i < (2n—1);

Proposition 1. The cost of Algorithm 1 is 3(n — 1) multiplications and one
INVErsion.

Proof : It is obvious that Step 2 and 4 of the algorithm require n—1 and 3(n—1)
multiplications respectively. There is one inversion in Step 3.

The algorithm requires 2n memory locations, each capable of holding one field
element each ((2n — 1) for A[] and 1 for ¢). The elements A[n] to A[2n — 1] in the
array store the input data and A[1] to A[n — 1] are used for storing intermediate
variables. Montgomery’s trick also demands same amount of memory. However,
the beauty of Algorithm 1 is that it can be implemented in parallel. In the next
section we exhibit how it can be implemented in parallel.

4 Parallel Implementation

Let the elements to be inverted be zi,zs, -+, x, where 2""1 < n < 27. We
assume that the algorithm is to be processed by 2"~ multipliers and we have
sufficient memory to store 2 x n field elements. We name the multipliers as
P, P,,---, Pyr—1. In fact we do not need more than 2"~ multipliers. The algo-
rithm can also be run with less number of multipliers, but the number of parallel
multiplication rounds will be more. We will discuss that scenario in details later.
Next, we describe our algorithm.

Algorithm 2
Input: Field elements xq, 22, -, Ty.
Output: x; ,xy b, oyt
1. Initialisation: For i = n to 2n — 1, A[i] + z;;
2. For k < 1 to r do in parallel
(Round k:)
For i = 2"=F to min{2"~*~1 —1,n — 1};
P; 1 or—x computes A[i] < A[2i] x A[2i + 1]
3. Round r+1:
Invert the element in A[1] and store to A[1];
4. For k+r+2to2r+1do
(Round k:)
For 2k—(rt1) < < 9k=7 _ 1,
P;_sr—(r+1)4, computes in parallel Afi] <— A[[i/2]] x Afi ® 1];

Output Ali], n <i< (2n—1).

Proposition 2. Algorithm 2 correctly computes the inverses of 2" elements in
2r parallel multiplication rounds.

-1
(abcdefgh)
(abedefgh)

Round 3 Round ¢

Round ¢
Round 2 (abed)

(efgh) Al3]

Round €
Round 1 (ab)

1 Round i

Fig. 1. Algorithm 2 in Action with n = 8. The figure demonstrates various parallel
rounds of the Algorithm 2 for inverting 8 elements a,---,h. Round 4 is the inversion
round.

4.1 Computing with Lesser Number of Multipliers

With 27! multipliers Algorithm 2 can compute the inverses in 2r parallel
rounds. Let the number of available multipliers be ¢ = 2P. Then the obvious
way of carying out the computations is to allow the available multipliers to par-
allelly compute one round of Algorithm 2 possibly in more than one parallel
rounds.

To carry out the computations of round k, (1 < k < r) of Algorithm 2, the ¢
processors will require [2"~*/2P] parallel rounds of computations. The (r + 1)st
round is an inversion round. Similarly, for round k, r +2 < £k < 2r + 1 , the ¢
processors will require [2¥=7~1/2P] parallel rounds of computations. Hence we
have,

Proposition 3. With t = 2P multipliers Algorithm 2 can be computed in

T or—k 2r 9k—r—1 r—1 ok

— - r=p
Z[o 1+ Z [o 1_22(21)]_'_2
k=1 i=r+2 k=1

parallel rounds of computation besides one inversion round.

Table 1. Number of parallel rounds required for inverting n = 8,16, 32 elements with
k = 8,4, 2 multipliers by Algorithm 2.

n/k|8 |4 |2
8 16 |7 |11
16 |9 |13|23
32 |15|25|47

5 Performance and Comparison

In the Table 1 we show the number of parallel rounds required for inverting n
number of elements by k& number of multipliers using Algorithm 2.

As Montgomery’s trick is a sequential algorithm it will be unfair to compare
performance of Algorithm 2 with the performance of Montgomery’s trick. Re-
cently in [5] a parallel algorithm for computing the inverses has been proposed.
We compare performance of Algorithm 2 with the algorithm presented in [5].
For that we cite the following table (Table 2 from [5].

Table 2. Number of rounds required by k multipliers for inverting n elements by
Algorithm in [5].

n\k|8 |4 |2
8 1619 |16
16 |12|21(40

Clearly, the algorithm presented in this work performs better. However, al-
gorithm presented in [5] inverts 2" elements with 3 x 2"~! multipliers in r + 1
parallel multiplication rounds for which Algorithm 2 takes 2r parallel multipli-
cation rounds. So if there is no restriction on the number of multipliers then
the algorithm presented in [5] is better than Algorithm 2. However, in practi-
cal implementations, where the number of multipliers is limited, Algorithm 2 is
preferable.

5.1 Memory Requirement

Here by a memory unit we mean a storage unit capable of storing a field element.
It is easy to check that Algorithm 1 and Montgomery’s trick require n additional
memory units to invert n elements. Algorithm 2 requires (n — 1) additional
memory units. In memory requirement, algorithm presented in [5] is the best. It
requires only n/2 additional memory units.

6 Conclusion

In this work we presented a new algorithm and its parallel version to compute
inversion of several field elements simultaneously. The parallel version can fit
into parallel implementations of any cryptographic primitive which requires si-
multaneous inversions. In terms of performance, the new algorithm is better than
the one presented in [5] in practical scenario where there is a limitation on the
number of multipliers used.

References

1. K. Fong and D. Hankerson and J. Lépez and A. Menezes. Field inversion and point
halving revisited. Technical Report, CORR 2003-18, Department of Combinatorics
and Optimization, University of Waterloo, Canada, 2003.

2. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

3. P. Montgomery. Speeding the Pollard and Elliptic Curve Methods for Factorisation.
In Math. Comp., vol 48, pp 243-264, 1987.

4. H. Shacham, D. Boneh. Improving SSL Handshake Performance via Batching. In
CT-RSA, LNCS 2020, Springer-Varlag, 2001.

5. P. Sarkar, P. K. Mishra and R. Barua. A Parallel Algorithm for Computing Simul-
taneous Inversions with Application to Elliptic Curve Scalar Multiplicaton (Ex-
tended Abstract) To appear in Proceeding of 46th Midwest Symposium on Systems
and Clircuits, 2003.

