
EÆient Universal Padding Shemes for Multipliative

Trapdoor One-way Permutation

�y

Yuihi Komano

z

Kazuo Ohta

x

January 5, 2004

Abstrat

Coron et al. proposed the ES-based sheme PSS-ES whih realizes an enryption

sheme and a signature sheme with a unique padding sheme and key pair. The se-

urity of PSS-ES as an enryption sheme is based on the partial-domain one-wayness

of the enryption permutation. In this paper, we propose new ES shemes OAEP-

ES, OAEP++-ES, and REACT-ES, and prove their seurity under the assumption

of only the one-wayness of enryption permutation. OAEP-ES, OAEP++-ES, and

REACT-ES suit pratial implementation beause they use the same padding sheme

for enryption and for signature, and their seurity proof guarantees that we an pre-

pare one key pair to realize enryption and signature in the same way as PSS-ES.

Sine one-wayness is a weaker assumption than partial-domain one-wayness, the pro-

posed shemes o�er tighter seurity than PSS-ES. Hene, we onlude that OAEP-

ES, OAEP++-ES, and REACT-ES are more e�etive than PSS-ES. OAEP++-ES is

the most pratial approah in terms of the tightness of seurity and ommuniation

eÆieny.

�

A part of this work was performed in the master ourse of the �rst author at Waseda University,

3-4-1, Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.

y

The proeedings version of this paper [8℄ appeared in Advanes in Cryptology { CRYPTO '03, Leture

Notes in Computer Siene, vol. 2729, D. Boneh ed., Springer-Verlag, 2003. This is the full version and

reonsiders the ommuniation eÆieny of ES shemes disussed in [8℄.

z

The Corporate Researh and Development Center, Toshiba Corporation, 1, Komukai Toshiba-ho,

Saiwai-ku, Kawasaki-shi, Kanagawa 212-8582, Japan. e-mail)yuihi1.komano�toshiba.o.jp

x

Department of Information and Communiation Engineering, The University of Eletro-

Communiations, 1-5-1, Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan. e-mail)ota�ie.ue.a.jp

1

Contents

1 Introdution 3

2 De�nitions 4

2.1 ES sheme with Universal Padding Sheme 4

2.2 Assumption of One-way Permutation . 6

3 Proposal Shemes 6

3.1 Methodology . 7

3.2 OAEP-ES . 7

3.3 OAEP++-ES . 8

3.4 REACT-ES . 9

4 PSS-ES 10

4.1 Seurity of PSS-ES(E) . 10

4.2 Seurity of PSS-ES(S) . 11

5 Redution EÆieny 11

6 Disussion 12

7 Conlusion 13

Aknowledgments 13

Referenes 14

A Proof of Theorem 5 16

A.1 Constrution of Inverter I . 16

A.2 Analysis . 17

B Proof of Theorem 6 19

B.1 Constrution of Inverter I . 19

B.2 Analysis . 20

C Proof of Theorem 7 21

C.1 Constrution of Inverter I . 21

C.2 Analysis . 22

D Proof of Theorem 8 24

D.1 Constrution of Inverter I . 24

D.2 Analysis . 25

2

1 Introdution

Sine the invention of the RSA enryption sheme [12℄, there have been a lot of inter-

est in standardization and investigations into publi key ryptosystems, in partiular

those for enryption and signature shemes. The enryption sheme OAEP (Optimal

Asymmetri Enryption Padding, [2℄) and the signature sheme PSS (Probabilisti Sig-

nature Sheme, [3℄) are onsidered to be pratial beause they o�er the strongest seu-

rity level: IND-CCA2 (indistinguishability against adaptive hosen iphertext attak) and

EUF-ACMA (existentially unforgeable against adaptive hosen message attak).

OAEP �rst pads and then enrypts the plaintext while PSS pads and then signs

the message; for enryption (signature), the trapdoor one-way permutation is applied

in the diret (inverse) diretion. Coron et al. [4℄ proposed the ES sheme (Enryption-

Signature sheme

1

) PSS-ES, whih is based on the message reovery signature sheme

PSS-R [3℄, and proved its seurity. For enryption and signature, PSS-ES uses a shared

padding sheme and key pair; the publi key and the private key are hosen adequately

for enryption and signing, respetively. Hene this sheme is useful in terms of imple-

mentation. The seurity proofs in [4℄, however, have some (minor) tehnial mistakes.

Moreover, even if these mistakes are orreted, the fat that the seurity of PSS-ES as

an enryption sheme is based on partial-domain one-wayness of the enryption per-

mutation, dereases the redution eÆieny; it must use long keys to ahieve adequate

seurity.

This paper gives the exat seurity of PSS-ES by orreting the (minor) problems

in [4℄. Moreover, this paper introdues new ES shemes, OAEP-ES and REACT-ES,

that are based on OAEP+ [13℄ and REACT [11℄, respetively. The proposed shemes

satisfy IND-CCA2&ACMA(Indistinguishability against adaptive hosen iphertext attak

and adaptive hosen message attak) as an enryption sheme and EUF-CCA2&ACMA

(Existentially unforgeable against adaptive hosen iphertext attak and adaptive hosen

message attak) as a signature sheme under the assumption of only the one-wayness

of the permutation, while PSS-ES relies upon the partial-domain one-wayness of the

enryption permutation for its seurity as an enryption sheme.

The rest of this paper is organized as follows. Setion 2 realls the de�nitions of the

ES sheme and its seurity notations. Setion 3 proposes new ES shemes, OAEP-ES

and REACT-ES, and gives their seurity. In setion 4, we point out the problems of

original seurity proof of PSS-ES, given by Coron et al. [4℄, and give its exat seurity.

In setions 5 and 6, we ompare redution eÆieny of proposed shemes with the one of

PSS-ES following the estimation of Nakashima and Okamoto [10℄ and disuss the reason

why our shemes are more pratial than PSS-ES. Furthermore, Appendies A and B

present the seurity proofs of REACT-ES.

As a result, OAEP-ES, OAEP++-ES, and REACT-ES an realize seure enryption-

signature sheme (ES sheme) with a unique padding sheme and key pair; their redution

eÆieny are muh better than those of PSS-ES. Due to the high redution eÆieny of

1

The ES sheme di�ers from signryption [14℄; the ES sheme realizes both enryption and signature

shemes with a ommon padding sheme and key pair (enrypt or sign), while signryption realizes

enrypt then sign or sign then enrypt sheme.

3

its seurity proof and its improved ommuniation eÆieny, OAEP++-ES is the most

pratial approah.

2 De�nitions

2.1 ES sheme with Universal Padding Sheme

We desribe a model of the ES sheme

3

(Enryption-Signature sheme) and its seu-

rity. Sine the ES sheme realizes an enryption sheme and a signature sheme with

a ommon padding sheme and key pair, we introdue attak model CCA2&ACMA fol-

lowing [4℄, where adversary A (forger F) an freely use both deryption orale D and

signing orale �. We extend notions of seurity IND-CCA2 [1℄ and EUF-ACMA [6℄ to

reate IND-CCA2&ACMA (Indistinguishability against adaptive hosen iphertext attak

and adaptive hosen message attak) and EUF-CCA2&ACMA (Existentially unforgeable

against adaptive hosen iphertext attak and adaptive hosen message attak), respe-

tively.

De�nition 1 (ES sheme with a unique padding sheme) If � is a padding sheme,

then the ES sheme (K; E ;D;S;V) with � is de�ned as follows:

| Key generation algorithm K is probabilisti algorithm whih, given seurity param-

eter k, outputs the pair of publi and private keys, K(1

k

) = (pk; sk). We regard pk

as f and sk as f

�1

, hereafter.

| Enryption algorithm E takes plaintext x and publi key pk, alulates z = �(x; r)

with some random integer r, and returns iphertext

2

y = f(z) = E

pk

(x). This

algorithm is probabilisti

3

.

| Deryption algorithm D takes iphertext y and private key sk, alulates z = f

�1

(y)

and �

�1

(z) = xjjr (un-padding), and returns plaintext x = D

sk

(y) if y is a valid

iphertext. Otherwise D returns Rejet. This algorithm is deterministi.

| Signing algorithm S takes message x and private key sk, alulates z = �(x; r)

with some random integer r, and returns signature

5

� = f

�1

(z) = S

sk

(x). This

algorithm is probabilisti.

| Veri�ation algorithm V takes signature � and publi key pk, alulates z = f(�)

and �

�1

(z) = xjjr (un-padding), and returns message x = V

pk

(�) if � is a valid

signature. Otherwise V returns Rejet. This algorithm is deterministi.

We denote the ES sheme for enryption and for signature by ES(E) and ES(S),

respetively (e.g., OAEP-ES(E) and OAEP-ES(S) mean the OAEP-ES using in an en-

ryption and a signature, respetively).

2

The input of f may be a part of z, i.e., we allow to regard y = f(z

1

)jjz

2

(� = f

�1

(z

1

)jjz

2

) as the

iphertext (signature) for z = z

1

jjz

2

.

3

Sine padding sheme � is probabilisti, enryption permutation f may be deterministi(e.g., RSA).

4

De�nition 2 (IND-CCA2&ACMA) Let A be an adversary of the enryption sheme.

The attak senario is desribed as follows:

1. A reeives publi key pk with K(1

k

) = (pk; sk).

2. A submits deryption queries for iphertext y of his hoie to deryption orale

D and gets orresponding plaintext x. Moreover, A submits signing queries for

message x

0

of his hoie to signing orale � and gets orresponding signature �.

3. A generates two plaintexts x

0

; x

1

of idential length, and sends them to enryption

orale E as a hallenge.

4. E hooses b

R

 f0; 1g and returns y

�

= E

pk

(x

b

) to A as a target iphertext.

5. A ontinues to submit deryption queries for iphertext y of his hoie to D and

gets orresponding plaintext x. Moreover, A ontinues to submit signing queries

for message x

0

of his hoie to � and gets orresponding signature �. In this phase,

the only restrition is that A annot issue a query for y

�

to D.

6. A guesses b in this attak and outputs

^

b.

The adversary's advantage is de�ned as Adv(A) = j2Pr[b =

^

b℄ � 1j. We say that the

enryption sheme is (t; q

D

; q

�

; q

H

; �)-seure in the sense of IND-CCA2&ACMA if an ar-

bitrary adversary

4

, whose running time is bounded by t, annot ahieve an advantage

more than � after making at most q

D

deryption queries, q

�

signing queries, and q

H

hash

queries.

De�nition 3 (EUF-CCA2&ACMA) Let F be a forger of the signature sheme. The

attak senario is desribed as follows:

1. F reeives publi key pk with K(1

k

) = (pk; sk).

2. F submits signing queries for message x of his hoie to signing orale � and gets

orresponding signature �. Moreover, F submits deryption queries for iphertext

y

0

of his hoie to deryption orale D and gets orresponding plaintext x

0

.

3. F outputs forgery �

�

with V

pk

(�

�

) = x

�

for some x

�

(x

�

6= x for any signing query

x).

The forger's suess probability is de�ned as � = Pr[V

pk

(�

�

) = x

�

℄. We say that the

signature sheme is (t; q

D

; q

�

; q

H

; �)-seure in the sense of EUF-CCA2&ACMA if an ar-

bitrary forger

7

,whose running time is bounded by t, annot ahieve a suess probability

more than � after making at most q

D

deryption queries, q

�

signing queries, and q

H

hash

queries.

Note that the seurity proof of the ES sheme with a unique padding sheme omes

in two parts, �rst as an enryption sheme and then as a signature sheme.

4

We restrit the adversary (forger) by upper bounding the running time and the number of deryption,

signing, and hash queries. We denote that A (F) breaks an enryption sheme (signature sheme) in

(t; q

D

; q

�

; q

H

; �) ifA an distinguish b (F an outputs a forgery) within the time bound t and the advantage

(suess probability) more than � using, at most, q

D

deryption, q

�

signing, and q

H

hash queries.

5

2.2 Assumption of One-way Permutation

We lassify trapdoor one-way permutations aording to the diÆulty of inverting them

as follows [5℄:

De�nition 4 Let f : f0; 1g

k

0

� f0; 1g

k

1

! f0; 1g

k

0

� f0; 1g

k

1

be a permutation. We

say that

| f is (�; �)-one-way, if an arbitrary adversary whose running time is bounded by � has

suess probability Su

ow

(A) that does not exeed �. Here, Su

ow

(A) = Pr

s;t

[A(f(s; t)) =

(s; t)℄.

| f is (�; �)-partial-domain one-way, if an arbitrary adversary whose running time is

bounded by � has suess probability Su

pd�ow

(A) that does not exeed �. Here,

Su

pd�ow

(A) = Pr

s;t

[A(f(s; t)) = s℄.

Moreover, we de�ne Su

ow

(�) = max

A

Su

ow

(A) and Su

pd�ow

(�) = max

A

Su

pd�ow

(A),

for all A, whose running time is bounded by � .

By the above de�nition, we have Su

pd�ow

(�) � Su

ow

(�) for any � . This inequality

means that partial-domain one-wayness is a stronger assumption than one-wayness.

Through this paper, we assume that permutation f is multipliative

5

. The multi-

pliative property of the permutation is desribed below.

De�nition 5 If f is a funtion, we all it a multipliative funtion if

f(ab) = f(a)f(b)

for arbitrary a and b.

3 Proposal Shemes

Coron et al. [4℄ used PSS-R to onstrut PSS-ES whih realizes both an enryption and

a signature with a ommon padding sheme and key pair. PSS-ES is suitable for im-

plementation, however, its seurity as an enryption sheme relies on the partial-domain

one-wayness of f . Sine the partial-domain one-wayness is stronger assumption than the

one-wayness, the redution eÆieny is not tight and it must use long keys to ahieve

adequate seurity.

We propose new ES shemes, OAEP-ES, OAEP++-ES, and REACT-ES, whih over-

ome this problem, and desribe their seurity results. Sine the seurity proofs of OAEP-

ES, OAEP++-ES are similar to that of REACT-ES, we give the proofs of REACT-ES

in Appendix A and B.

5

Though the seurity of ES(S) an be ensured without the multipliative property of f (whih is

not used in the seurity proof of ES(E) at all) as in [4℄, the redution is not tight. Our interest is the

omparison among ES shemes disussed in Setion 5 in the pratial situation, where RSA sheme is

adopted as (f; f

�1

), whih satis�es the multipliative property.

6

3.1 Methodology

We will give new ES shemes based on several enryption shemes whih have a padding

sheme; OAEP+, OAEP++, and REACT. The simplest method

6

of onstruting an ES

sheme from enryption shemes seems by replaing enryption permutation f with its

inverse f

�1

.

Unfortunately, if we onstrut a new signature sheme from an enryption sheme

by simple replaement of permutation of f with f

�1

, its seurity is not ensured. For

example, it is easy for a known-message attaker to generate an existential forgery under

the one-way permutation with a speial property in the similar way of Shoup's attak.

This is a formal explanation of this situation. In the seurity proof of a signature, in

order to invert f on an input of integer � (i.e., to alulate f

�1

(�)), we embed � into some

random orale query about message x and random integer r (e.g., onsider the query rjjx

to H

0

in OAEP+) and simulate another random orale about r (e.g., G(r) in OAEP+).

In this strategy, if the random orale value about r (e.g., G(r)) is already de�ned, we

abort the simulation (fail to simulate). However, when the adversary an freely hoose

the query r, it implies that we fail to simulate this ase with a high probability.

Therefore, there might be a possibility that we ould generally onstrut a provably

seure ES sheme from an enryption sheme as follows

7

: (i) we replae the r, whih is

aninput for random orale G, by a hash value of x and a new r

0

(e.g., r = w = H

0

(xjjr

0

)),

and (ii) we replae x with xjjr

0

.

In this paper, we reate ES shemes from OAEP+, OAEP++, and REACT, following

this methodology.

3.2 OAEP-ES

A simple ES sheme an be reated using OAEP+ [13℄, OAEP-ES. OAEP-ES relies

for its seurity upon only the one-wayness of the permutation, so it is more pratial

than PSS-ES. OAEP-ES has, however, worse redution eÆieny than OAEP++-ES and

REACT-ES as we will show. A desription of OAEP-ES and its seurity results are as

follows.

OAEP-ES with hash funtions G : f0; 1g

k

1

! f0; 1g

n+k

0

and H;H

0

: f0; 1g

n+k

0

! f0; 1g

k

1

, and the ommon padding sheme �

1

(Figure 1) and key pair (f; f

�1

)

8

, is

exeuted as follows:

|Enryption and Signing : In order to enrypt or to sign x, we hoose r

R

 f0; 1g

k

0

, set

w = H

0

(xjjr) 2 f0; 1g

k

1

, and alulate s = (xjjr)�G(w), t = H(s)�w, and �

1

(x; r) = sjjt.

We then return y = f(�

1

(x; r)) as the iphertext or � = f

�1

(�

1

(x; r)) as the signature,

respetively.

6

Coron et al. simply onstruted an enryption sheme by replaing signing permutation f

�1

of PSS-R

with f and proposed PSS-ES whih has the same padding sheme as PSS-R.

7

Referene [9℄ gives a detailed explanation of this methodology.

8

In the general model, we assume that f : f0; 1g

k

! f0; 1g

k

is a multipliative permutation. If the

implementation uses RSA permutation: Z

n

! Z

n

, we put \0" in front of the padding data to make the

domain k bit integer. In this ase, the model and theorems will need to be adjusted. We adopt the same

disussion for PSS-ES, OAEP++-ES, and REACT-ES.

7

|Deryption and Veri�ation: For iphertext y or signature �, we reover sjjt = f

�1

(y)

or sjjt = f(�) (jsj = n + k

0

, jtj = k

1

), respetively. Next, we alulate w = t � H(s),

divide xjjr = s�G(w) (jxj = n, jrj = k

0

), and hek whether w = H

0

(xjjr). If the hek

passes, we return x; otherwise Rejet.

x r w

G

H

s

t

H

0

Figure 1: Padding Shemes �

1

for ES Shemes

The seurity results of OAEP-ES are as follows:

Theorem 1 (Seurity result of OAEP-ES(E)) Let A be an adversary that breaks

OAEP-ES in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of IND-CCA2&ACMA. Then:

(

Su

ow

(�

0

) � ��

q

H

0

+q

�

2

k

0

�

(q

H

0

+q

�

+1)(q

G

+q

H

0

+q

�

)+q

D

2

k

1

�

0

� � + f(q

G

+ q

H

0

+ q

�

)(q

H

+ q

H

0

+ q

�

) + q

H

0

+ q

�

gT

f

where T

f

denotes the time omplexity of f .

Theorem 2 (Seurity result of OAEP-ES(S)) Let F be a forger that breaks OAEP-

ES in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of EUF-CCA2&ACMA. Then:

(

Su

ow

(�

0

) � ��

q

H

0

q

�

2

k

0

�

(q

H

0

+q

�

)(q

G

+q

H

0

+q

�

)+q

D

+1

2

k

1

�

0

� � + (2q

H

0

+ 2q

�

+ 1)T

f

where T

f

denotes the time omplexity of f .

3.3 OAEP++-ES

OAEP++ was proposed by Kobara and Imai [7℄. OAEP++ has the same padding

sheme as OAEP, but the input for enryption permutation is about half the padding.

OAEP++ relies upon the one-wayness of enryption permutation for its seurity. We

onstrut OAEP++-ES based on OAEP++ as follows.

OAEP++-ES with hash funtions G : f0; 1g

k

1

! f0; 1g

n+k

0

, H

0

;H : f0; 1g

n+k

0

!

f0; 1g

k

1

, publi key f , and private one f

�1

, has the same padding as OAEP-ES (Figure

1) and is exeuted as follows:

|Enryption and Signing : In order to enrypt or to sign x, we hoose r

R

 f0; 1g

k

0

, set

w = H

0

(xjjr) 2 f0; 1g

k

1

. Next, we alulate s = (xjjr)�G(w) and t = H(s)�w. Finally,

8

we return y = f(s)jjt as the iphertext or � = f

�1

(s)jjt as the signature, respetively.

|Deryption and Veri�ation: For iphertext y = jjt or signature � =

0

jjt, we reover

s = f

�1

() or s = f(

0

), respetively. Next, we set w = H(s) � t, alulate xjjr from

s � G(w), and hek whether w = H

0

(xjjr). If the hek passes, we return x as the

plaintext or the message, respetively; otherwise Rejet.

In the following, we laim the seurity of OAEP++-ES.

Theorem 3 (Seurity result of OAEP++-ES(E)) Let A be an adversary that

breaks OAEP++-ES in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of IND-CCA2&ACMA. Then:

(

Su

ow

(�

0

) � ��

q

H

0

+q

�

2

k

0

�

(q

H

0

+q

�

+1)(q

G

+q

H

0

+q

�

)+q

D

2

k

1

�

0

� � + (q

H

+ 2q

H

0

+ 2q

�

)T

f

where T

f

denotes the time omplexity of f .

Theorem 4 (Seurity result of OAEP++-ES(S)) Let F be a forger that breaks

OAEP++-ES in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of EUF-CCA2& ACMA. Then:

(

Su

ow

(�

0

) � ��

q

H

0

q

�

2

k

0

�

(q

H

0

+q

�

)(q

G

+q

H

0

+q

�

)+q

D

+1

2

k

1

�

0

� � + (2q

H

0

+ 2q

�

+ 1)T

f

where T

f

denotes the time omplexity of f .

3.4 REACT-ES

REACT was proposed by Okamoto and Pointheval [11℄. To use REACT for enryption,

we �rst generate random integer r and enrypt plaintext x by a symmetri enryption

sheme with the hash value of r as the key. Seond, we enrypt r by an asymmetri

enryption sheme and send it with iphertext of x and a hek ode.

REACT is seure when the probabilisti enryption funtion (e.g., Rabin funtion) is

utilized beause of the hek ode. From the same reason, REACT-ES is seure when we

utilize the probabilisti enryption funtion. Hereafter, to make the seurity proof and

the omparison of eÆieny simply, we regard the enryption funtion as the permutation

(e.g., RSA funtion).

REACT-ES with hash funtions G : f0; 1g

k

1

! f0; 1g

k

3

, H

0

: f0; 1g

n+k

0

! f0; 1g

k

1

,

and H : f0; 1g

2(n+k

0

+k

1

)

! f0; 1g

k

2

(k = k

1

), symmetri enryption sheme E

sym

key

, where

key length is k

3

, publi key f , and private key f

�1

, is exeuted as follows (Figure 2):

|Enryption and Signing : In order to enrypt or to sign x, we hoose r

R

 f0; 1g

k

0

, set

w = H

0

(xjjr) 2 f0; 1g

k

1

, and alulate

2

= E

sym

G(w)

(xjjr). Next, we set

1

= f(w) for

enryption or

1

= f

�1

(w) for signing, and return (

1

;

2

;

3

= H(xjjr; w;

1

;

2

)) as the

iphertext or signature, respetively.

|Deryption and Veri�ation: For iphertext (

1

;

2

;

3

) or signature (

0

1

;

2

;

3

), we re-

over w = f

�1

(

1

) or w = f(

0

1

), respetively. Next, we alulate xjjr from E

sym

G(w)

(

2

),

and hek whether both "w = H

0

(xjjr) and

3

= H(xjjr; w;

1

;

2

)" or both "w = H

0

(xjjr)

9

x rw

G

H

2

1

key

E

sym

f=f

�1

3

Figure 2: REACT-ES

and

3

= H(xjjr; w;

0

1

;

2

)", respetively. If the hek passes, we return x as the plaintext

or the message, respetively; otherwise Rejet.

We use the following theorems to examine the seurity of REACT-ES. The proof are

desribed in Appendix A and B, respetively.

Theorem 5 (Seurity result of REACT-ES(E)) Let the symmetri enryption sheme

be (�

0

; �)-seure

9

, and let A be an adversary that breaks REACT-ES in (�; q

D

, q

�

; q

G

; q

H

0

; q

H

; �)

in the sense of IND-CCA2&ACMA. Then:

�

Su

ow

(�

0

) � �� � �

q

H

0

+q

�

2

k

0

�

q

D

2

k

1

�

0

� � + (q

G

+ q

H

+ 2q

H

0

+ 2q

�

)T

f

where T

f

denotes the time omplexity of f .

Theorem 6 (Seurity result of REACT-ES(S)) Let F be a forger that breaks REACT-

ES in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of EUF-CCA2&ACMA. Then:

�

Su

ow

(�

0

) � ��

q

H

0

q

�

2

k

0

�

q

D

+1

2

k

1

�

0

� � + (2q

H

0

+ 2q

�

+ 1)T

f

where T

f

denotes the time omplexity of f .

4 PSS-ES

4.1 Seurity of PSS-ES(E)

The seurity proof of PSS-ES(E) in [4℄ (Theorem 2 and Lemma 4) has two minor tehnial

mistakes as follows: (i) the number of queries (about w) to G is not q

H

0

+ q

�

(the last

line in page 14 of [4℄) but q

G

+ q

H

0

+ q

�

beause G(w) may be de�ned by query w to

G diretly, (ii) this proof overlooks alulation time (q

H

0

+ q

�

)T

f

as part of the ost of

querying the deryption orale (line 10 in page 14 of [4℄, reading in Lemma 1's results into

proof of Lemma 4). This onsideration of these problems yields the following seurity

result.

9

See the de�nition of seurity model of symmetri enryption sheme in Appendix A.

10

Theorem 7 (Seurity result of PSS-ES(E)) Let A be an adversary that breaks

PSS-ES(E) in (�; q

D

; q

�

; q

G

; q

H

0

; �) in the sense of IND-CCA2&ACMA. Then:

8

<

:

Su

pd�ow

(�

0

) �

1

q

G

+q

H

0

+q

�

�

��

q

H

0

+q

�

2

k

0

�

(q

H

0

+q

�

)(q

G

+q

H

0

+q

�

)+q

D

2

k

1

�

�

0

� � + 2(q

H

0

+ q

�

)T

f

where T

f

denotes the time omplexity of f .

4.2 Seurity of PSS-ES(S)

The proof of Theorem 3 in [4℄ has three minor tehnial mistakes as follows: (i) it misses

the probability

q

�

2

k

0

that appears beause I annot answer the signing query for the pair

of message and random integers implanting � previously

10

, (ii) the number of queries w

to G is not q

H

0

+ q

�

(line 18 in page 16 of [4℄) but q

G

+ q

H

0

+ q

�

beause G(w) may

be de�ned by the query w to G diretly, (iii) this proof overlooks the alulation time

(q

H

0

+ q

�

)T

f

as part of the ost of querying the deryption orale (line 9 in page 16 of

[4℄, reading in Lemma 1's results into proof of Theorem 3). This onsideration of these

problems yields the following seurity result.

Theorem 8 (Seurity result of PSS-ES(S)) If F is a forger that breaks PSS-ES(S)

in (�; q

D

; q

�

; q

G

; q

H

0

; �) in the sense of EUF-CCA2&ACMA, then:

(

Su

ow

(�

0

) � ��

q

H

0

q

�

2

k

0

�

(q

H

0

+q

�

)(q

G

+q

H

0

+q

�

)+q

D

+1

2

k

1

�

0

� � + (2q

H

0

+ 2q

�

+ 1)T

f

where T

f

denotes the time omplexity of f .

5 Redution EÆieny

We evaluate the seurity of RSA-OAEP-ES, RSA-OAEP++-ES, and RSA-REACT-ES

following the approah taken by Nakashima and Okamoto [10℄ and ompare them to

RSA-PSS-ES. For eah sheme, we onsider the usages of enryption and signature.

Referene [10℄ uses the reommended key size in order to on�rm that no adversary

has the ability to break the 1024, 2048 bits fatoring problem. In estimating the key

size, we use Lemma 4 of [5℄ to modify the seurity statement of RSA-PSS-ES; that is,

f 's partial-domain one-wayness is replaed by one-wayness of RSA permutation paying

the ost of running time and dereasing the suess probability.

Throughout this evaluation, we assume that breaking the RSA problem is equivalent

to solving the fatoring problem, and that k

0

and k

1

are enough large so that fators

that suppress the redution eÆieny an be ignored. The omplexity of the fatoring

problem is measured by applying a number �eld sieve. Table 1 shows the reommended

key size that ahieves the same omplexity as the 1024, 2048 bits fatoring problem.

10

In our results, sine � is embedded q

H

0

times, the orresponding probability is

q

H

0

q

�

2

k

0

.

11

Table 1: Reommended key size

Sheme 1024bit 2048bit

PSS-ES

Enryption 6221 12452

Signature 1363 2596

OAEP-ES

Enryption 5252 10838

Signature 1363 2596

OAEP++-ES

Enryption 1363 2596

Signature 1363 2596

REACT-ES

Enryption 1363 2596

Signature 1363 2596

As in Table 1, OAEP-ES has better redution eÆieny than PSS-ES beause the

seurity of PSS-ES(E) is based on partial-domain one-wayness. Therefore, ompared to

PSS-ES, OAEP-ES an derease the key size by more than 950 bits for the 1024 bits

fatoring problem and by more than 1600 bits for 2048 bits fatoring problem.

Moreover, as in Table 1, OAEP++-ES and REACT-ES o�er muh better redution

eÆieny than PSS-ES and OAEP-ES, and the key sizes do not inrease omparing with

the number of bits in the fatoring problem. This is beause the running time of the

permutation inverter of OAEP++-ES and REACT-ES are of the order of q

H

0

while that

of OAEP-ES is of order of q

G

q

H

. This means that the key length of OAEP++-ES and

REACT-ES are shorter than that of OAEP-ES.

6 Disussion

OAEP++-ES and REACT-ES are superior to OAEP-ES in terms of the running time of

the permutation inverter, as shown by Theorems 3 and 5 (moreover, sine PSS-ES owes

its seurity to partial-domain one-wayness, its redution eÆieny is not good).

More preisely, when inverting the permutation for PSS-ES and OAEP-ES, the in-

verter should loate the preimage using the produt of two hash funtions' input/output

lists

11

(G-List and H-List). The inverters of OAEP++-ES and REACT-ES, however, lo-

ate the preimage using only one list (H-List) and the sum of two lists (H-List and G-List),

respetively.Aordingly, the running time of the above theorems on OAEP++-ES and

REACT-ES are less than those on PSS-ES and OAEP-ES.

Therefore, as desribed in Setion 5, the reommended key sizes that provide the

same omplexity as the 1024, 2048 bits fatoring problem are, for OAEP++-ES and

REACT-ES, muh shorter than those of PSS-ES and OAEP-ES, and are about the same

as the bit size of the fatoring problem.

Hereafter, let us ompare OAEP++-ES and REACT-ES. With regard to ommuni-

ation eÆieny, following [7℄ and [3℄, we an enrypt and sign on any length plaintext

11

For PSS-ES, when replaing the partial-domain one-wayness to the one-wayness as in Lemma 4 of

[5℄, we ought to run the adversary twie and get two input/output lists (two G-Lists).

12

and message, respetively. In OAEP++-ES, if jsj (the length of onatenation of plain-

text/massage x and random integer r) is larger than k (the key length of publi key

ryptography), then we divide s into s

L

and s

R

with js

R

j = k, and operate the permu-

tation only on s

R

. In REACT-ES, sine the plaintext or massage is not the input data

of the permutation but they are masked with hash value, we an enrypt and sign on

any length plaintext and message. However, in order to utilize REACT-ES seurely, the

output length of H

0

k

1

should be equal to k (= 1024 for RSA, for example), while k

1

is about 160 (this seems to guarantee the ollision resistane of H

0

) in OAEP++-ES.

Therefore, the length of iphertext (signature) for some plaintext (massage) in REACT-

ES is larger than that for the same plaintext (massage) in OAEP++-ES; for example,

assume k = 1024, jrj = 160, k

1

= 160 in OAEP++-ES, and k

1

= k = 1024 and k

2

= 160

in REACT-ES. In this situation, the length of the iphertext for plaintext x are jxj+320

bits in OAEP++-ES, and jxj+1644 bits in REACT-ES. Hene, OAEP++-ES is sperior

to REACT-ES in ommuniation eÆieny, and we an onlude OAEP++-ES is the

most pratial ES sheme

12

.

7 Conlusion

This paper �rst gave the general methodology to onstrut an ES sheme from an enryp-

tion sheme with a padding sheme and proposed new ES shemes, OAEP-ES, OAEP++-

ES, and REACT-ES, whih use a unique padding sheme and key pair to realize enryp-

tion and signature. It also proved that these two usages of proposed shemes satisfy

IND-CCA2&ACMA and EUF-CCA2&ACMA, respetively. These shemes are suitable for

implementation beause they need only one padding sheme and key pair.

Moreover, OAEP++-ES and REACT-ES o�er muh better redution eÆieny than

PSS-ES and OAEP-ES. Using the evaluation of [10℄, the diÆulty of breaking OAEP++-

ES or REACT-ES is almost equal to that of the key size fatoring problem. Hene, we

onlude that OAEP++-ES and REACT-ES are more eÆient than PSS-ES or OAEP-

ES. Furthermore, from the view of the ommuniation eÆieny, the length of a ipher-

text for some plaintext in OAEP++-ES is shorter than that of the same plaintext in

REACT-ES; we an onlude that OAEP++-ES is the most pratial andidate due to

the tightness of its seurity and its improved ommuniation eÆieny.

This paper also orreted the original (minor) mistakes made in proving the seurity

of PSS-ES.

Aknowledgments

We would like to thank Kazukuni Kobara (who proposed OAEP++) for the helpful

omments.

12

Note that [8℄ onludes REACT-ES is the most pratial ES sheme; [8℄ does not follow [7℄ and [3℄.

13

Referenes

[1℄ M. Bellare, A. Desai, D. Pointheval, and P. Rogaway. Relations among notions

of seurity for publi-key enryption shemes. In H. Krawzyk, editor, Advanes in

Cryptology | CRYPTO'98, pages 26{45. Springer, 1998. Leture Notes in Computer

Siene No. 1462.

[2℄ M. Bellare and P. Rogaway. Optimal asymetri enryption | how to enrypt with

RSA. In A.D. Santis, editor, Advanes in Cryptology | EUROCRYPT'94, volume

950 of Leture Notes in Computer Siene, pages 92{111, Berlin, Heidelberg, New

York, 1995. Springer-Verlag.

[3℄ M. Bellare and P. Rogaway. The exat seurity of digital signatures {how to sign

with RSA and Rabin. In U. Maurer, editor, Advanes in Cryptology | EURO-

CRYPT'96, volume 1070 of Leture Notes in Computer Siene, pages 399{416,

Berlin, Heidelberg, New York, 1996. Springer-Verlag.

[4℄ J. S. Coron, M. Joye, D. Naahe, and P. Paillier. Universal padding shemes for

RSA. In M. Yung, editor, Advanes in Cryptology | CRYPTO 2002, volume 2422 of

Leture Notes in Computer Siene, pages 226{241, Berlin, Heidelberg, New York,

2002. Springer-Verlag.

[5℄ E. Fujisaki, T. Okamoto, D. Pointheval, and J. Stern. RSA-OAEP is hosen-

iphertext seure under the RSA assumption. Journal of Cryptology, 2002.

[6℄ S. Goldwasser, S. Miali, and R. Rivest. A digital signature sheme against adaptive

hosen message attak. Journal of Computing (Soiety for Industrial and Applied

Mathematis), 17(2):281{308, 1988.

[7℄ K. Kobara and H. Imai. OAEP++ : A very simple way to apply OAEP to determin-

isti OW-CPA primitives. 2002. Available at http://eprint.iar.org/2002/130/.

[8℄ Y. Komano and K. Ohta. EÆient universal padding tehniques for multipliative

trapdoor one-way permutation. In D. Boneh, editor, Advanes in Cryptology |

CRYPTO'03, volume 2729 of Leture Notes in Computer Siene, Berlin, Heidelberg,

New York, 2003. Springer-Verlag.

[9℄ Y. Komano and K. Ohta. OAEP-ES { Methodology of universal padding tehnique.

manusript, 2003.

[10℄ T. Nakashima and T. Okamoto. Key size evaluation of provably seure RSA-based

enryption shemes. SCIS 2002, The 2002 Symposium on Cryptography and Infor-

mation Seurity, 2002.

[11℄ T. Okamoto and D. Pointheval. REACT: Rapid Enhaned-seurity Asymmetri

Enryptosystem Traneform. In D. Naahe, editor, CT { RSA '2001, volume

2020 of Leture Notes in Computer Siene, pages 159{175, Berlin, Heidelberg, New

York, 2001. Springer-Verlag.

14

[12℄ R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and publi key ryptosystems. Communiations of the ACM, 21(2):120{126, 1978.

[13℄ V. Shoup. OAEP reonsidered. In J. Kilian, editor, Advanes in Cryptology |

CRYPTO'2001, volume 2139 of Leture Notes in Computer Siene, pages 239{259,

Berlin, Heidelberg, New York, 2001. Springer-Verlag.

[14℄ Y. Zheng. Degital signryption or how to ahieve ost(signature & enryption) <<

ost(signature) + ost(enryption). In Advanes in Cryptology | CRYPTO'97, vol-

ume 1294 of Leture Notes in Computer Siene, pages 165{179, Berlin, Heidelberg,

New York, 1997. Springer-Verlag.

15

A Proof of Theorem 5

We follow the de�nition of symmetri enryption sheme and its seurity model from

[11℄.

De�nition 6 (Symmetri Enryption Sheme) A symmetri enryption sheme with

a key-length k, on messages of length l, onsists of two algorithms (E

sym

;D

sym

) whih

depend on the k-bit string k, the seret key:

| the enryption algorithm E

sym

k

(m) outputs a iphertext orresponding to the plain-

text m 2 f0; 1g

l

, in a deterministi way;

| the deryption algorithm D

sym

k

() gives bak the plaintext m assoiated to the i-

phertext .

De�nition 7 (Semanti Seurity) A symmetri enryption sheme is said to seman-

tially seure if no polynomial-time attaker an learn any bit of information about the

plaintext from the iphertext, exepted the length. More formally, a symmetri enryption

sheme is said to (t; �)-ind if for any adversary A = (A

1

; A

2

) with running time bounded

by t, Adv

ind

(A) < �, where

Adv

ind

(A) = 2� Pr

k

R

 f0;1g

k

b

R

 f0;1g

[(m

0

;m

1

; s) A

1

(k); E

sym

k

(m

b

) : A

2

(; s)

?

= b℄� 1;

in whih the probability is also taken over the random oins of adversary, and m

0

;m

1

are

two idential-length plaintexts hosen by the adversary in the message-spae f0; 1g

l

.

In the seurity proof of Theorem 5, assume that the symmetri enryption sheme is

(�

0

; �)-seure.

A.1 Constrution of Inverter I

We give the onstrution of inverter I that breaks the one-wayness of f about

+

, by

using adversary A that breaks REACT-ES(E) in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of

IND-CCA2&ACMA, as follows: we input publi key f to A, answer the queries that A

asks to the random orales, to the deryption orale, and to the signing orale in the

following way, and reeive hallenge (x

0

; x

1

). We then hoose b

R

 f0; 1g, r

+

R

 f0; 1g

k

0

,

and k

R

 f0; 1g

k

3

and put

+

2

= E

sym

k

(x

b

jjr

+

). Moreover, we answer the queries that A

asks in the following way, and �nally, reeive

^

b (or stop A after its running time � is

over).

In simulating random orales G, H

0

, and H, we onstrut input/output lists, G-List,

H

0

-List, and H-List, respetively. In G-List, we preserve pair (w;G(w)) of query w and

answer G(w). In H

0

-List, we keep seven-tuple (xjjr;H

0

(xjjr); z;

1

;

2

;

3

;

0

3

) of query xjjr,

answer H

0

(xjjr), guarantee z;

2

;

0

3

for signing queries, and pledge

1

;

2

;

3

for deryp-

tion queries. In H-List, we preserve sextuplet (w; xjjr;

1

;

2

;H(w; xjjr;

1

;

2

)) of query

w; xjjr;

1

;

2

and answer H(w; xjjr;

1

;

2

).

16

Answering the random orale queries to G, H

0

, and H: For new query w

to G, we hoose a random integer from f0; 1g

k

3

, put it to G(w), answer to A, and add

(w;G(w)) to G-List. If w has already been queried to G, we loate (w;G(w)) 2 G-List

and answer G(w).

For new query (w; xjjr;

1

;

2

) to H, we hoose random integer

3

from f0; 1g

k

2

, put

it to H(w; xjjr;

1

;

2

), answer to A, and add (w; xjjr;

1

;

2

;

3

) to H-List. Moreover, we

simulate G(w) in the above way

13

. If (w; xjjr;

1

;

2

) has already been queried to H, we

loate (w; xjjr;

1

;

2

;

3

) 2 H-List and answer

3

.

For new query xjjr to H

0

, we get z

R

 f0; 1g

k

1

, set f(z) = w, and alulate

1

= f(w).

Next, we simulate G(w) in the same way desribed above, alulate

2

= E

sym

G(w)

(xjjr).

Finally, we put

3

= H(w; xjjr;

1

;

2

) and

0

3

= H(w; xjjr; z;

2

) by simulating H in the

same way desribed above, answer w as H

0

(xjjr) to A, and add (xjjr; w; z;

1

;

2

;

3

;

0

3

)

to H

0

-List. If xjjr has already been queried to H

0

, we loate (xjjr; w; �; �; �; �; �) 2 H

0

-List

and answer w.

Answering the deryption queries to D: In order for deryption query y =

(

1

;

2

;

3

) to be valid iphertext, (xjjr; �; �;

1

;

2

;

3

; �) must be ontained in H

0

-List. In

this ase, we an answer with the orresponding plaintext x. Otherwise, we answer Rejet

sine the probability of H

0

(xjjr) = w is negligible.

Answering the signing queries to �: For signing query x to �, we get r

R

 f0; 1g

k

0

and hek whether (xjjr; �; z; �;

2

; �;

0

3

) is in H

0

-List. If so, we answer � = (z;

2

;

0

3

) to A

as a signature. Otherwise, we hoose z

R

 f0; 1g

k

1

, set f(z) = w, and alulate

1

= f(w).

Next, we simulate G(w) in the same way desribed above, alulate

2

= E

sym

G(w)

(xjjr).

Finally, we put

3

= H(w; xjjr;

1

;

2

) and

0

3

= H(w; xjjr; z;

2

) by simulating H in

the same way desribed above, add (xjjr; w; z;

1

;

2

;

3

;

0

3

) to H

0

-List, and answer � =

(z;

2

;

0

3

) as a signature to A.

A.2 Analysis

Let y

+

= (

+

;

+

2

;

+

3

) be a target iphertext that we answer to A deviating the protool,

and w

+

, r

+

, and x

+

be orresponding elements. In order to analyze the suess probabil-

ity of I, we use following notations: AskG and AskH

0

are events for whih (w

+

; �) 2 G-List,

and (�jjr

+

; �; �; �; �; �; �) 2 H

0

-List, respetively, and moreover, let EBad be an event

14

that

AskH

0

^ [H

0

(x

i

jjr

+

) 6= w

+

for i = 0; 1℄, let DBad be an event that we fail to simulate in

D, and let Bad = EBad _ DBad

15

. Our aim in setting these notations is to estimate the

probability of AskG. At �rst, we divide this event as follows:

Pr[AskG℄ = Pr[AskG ^ Bad℄ + Pr[AskG ^ :Bad℄: (1)

13

We simulate G beause we want to ollet the information of input/output on w in G-List; this makes

the estimation of the suess probability of the permutation inversion easy.

14

In this event, A may notie that we answer y

+

as a target iphertext deviating the protool.

15

Note that we never fail to simulate the answer to the signing query, desribed in setion A.1, and do

not need to onsider event �Bad.

17

With regard to Pr[AskG ^ Bad℄ in equation (1), from the de�nition of Bad, we have

Pr[AskG ^ Bad℄ = Pr[Bad℄� Pr[:AskG ^ Bad℄

� Pr[Bad℄� Pr[EBadj:AskG℄� Pr[DBadj:AskG℄: (2)

We an estimate Pr[EBadj:AskG℄ in inequality (2) beause, by the de�nition of EBad, we

have Pr[EBadj:AskG℄ � Pr[AskH

0

j:AskG℄: Here, Pr[AskH

0

j:AskG℄ �

q

H

0

+q

�

2

k

0

, beause if

:AskG ours, G(w

+

) and r

+

are random integers for A and it is only by aident that

�jjr

+

is queried to H

0

.

Moreover, Pr[DBadj:AskG℄ in inequality (2) is less than

q

D

2

k

1

. Note that in answering to

deryption query (

1

;

2

;

3

), we searh H

0

-List for orresponding plaintext x, therefore we

fail to simulate the deryption orale if A does not query H

0

about xjjr and iphertext

(deryption query) y output by A is valid. However, if A does not query H

0

about

xjjr, H

0

(xjjr) is uniformly distributed in f0; 1g

k

1

, and then, it is only by aident (with

probability

1

2

k

1

) that w = f

�1

(

1

) equals H

0

(xjjr).

Hene, we an evaluate Pr[AskG ^ Bad℄ in equation (1) by

Pr[AskG ^ Bad℄ � Pr[Bad℄�

q

H

0

+ q

�

2

k

0

�

q

D

2

k

1

: (3)

With regard to the seond term of equation (1), it is meaningful to onsider the

advantage of A beause of the ondition :Bad. We an do this by evaluating Pr[AskG ^

:Bad℄ as follows:

Pr[AskG ^ :Bad℄ � Pr[A = b ^ AskG ^ :Bad℄

= Pr[A = b ^ :Bad℄� Pr[A = b ^ :AskG ^ :Bad℄: (4)

In inequality (4), both

Pr[A = b ^ :Bad℄ � Pr[A = b℄� Pr[Bad℄ = (

�

2

+

1

2

)� Pr[Bad℄

and

16

Pr[A = b ^ :AskG ^ :Bad℄ = Pr[A = bj:AskG ^ :Bad℄ Pr[:AskG ^ :Bad℄

= (

�

2

+

1

2

)(1� Pr[Bad℄� Pr[AskG ^ :Bad℄)

�

1

2

(1� Pr[Bad℄� Pr[AskG ^ :Bad℄) +

�

2

� 1:

16

Note that in our simulation, if A noties the deviation (i.e., if event Bad ours), it does not run

for some pairs of random oins of A and I. Therefore, Pr[A = b℄ in this inequality is taken over the

random oins of A and I in whih A does not notie the deviation. Though the probabilisti spae is

restrited and smaller than the entire probabilisti spae, the probability of the event that A = b is equal

to the one taken over the entire probabilisti spae, from the de�nition of the random orale model;

Pr[A = b℄ =

�

2

+

1

2

.

18

hold

17

. Therefore, by substituting above two inequalities into (4),

Pr[AskG ^ :Bad℄ �

�� � � Pr[Bad℄ + Pr[AskG ^ :Bad℄

2

holds and this inequality leads to

Pr[AskG ^ :Bad℄ � �� � � Pr[Bad℄: (5)

Hene, the onsiderations of equation (1) and inequalities (3) and (5) onlude the

proof of Theorem 5.

The running time �

0

of I is the sum of the following terms: (i) the running time � of

A beause we run A one, (ii) in order to �nd orresponding pair from G-List to

+

, we

ompute f at most q

G

+ q

H

0

+ q

H

+ q

�

times, i.e., (q

G

+ q

H

0

+ q

H

+ q

�

)T

f

, (iii) in order to

be able to simulate D and �, we alulate both f(z) and f(w) in simulation of H

0

and

�

18

q

H

0

+ q

�

times, i.e., (q

H

0

+ q

�

)T

f

. Hene, �

0

� � + (q

G

+ q

H

+ 2q

H

0

+ 2q

�

)T

f

holds.

B Proof of Theorem 6

B.1 Constrution of Inverter I

We give the onstrution of inverter I that breaks the one-wayness of f about �, by

using forger F that breaks REACT-ES(S) in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of

EUF-CCA2&ACMA as follows: we input publi key f to F , answer the queries that F

asks to the random orales, to the deryption orale, and to the signing orale in the

same way in setion A.1, exept those to H

0

and � (desribed below). Finally, we reeive

forgery �

�

= (

�

1

;

�

2

;

�

3

) (or stop F after its running time � is over.)

In simulating random orales G, H

0

, and H, we onstrut input/output lists, G-List,

H

0

-List, and H-List, respetively. G-List holds (w;G(w)), the pairing of query w and

answer G(w). H

0

-List holds (b; xjjr;H

0

(xjjr); z;

1

;

2

;

3

:

0

3

), the bit b = 0=1, query xjjr,

answer H

0

(xjjr), guarantee z;

2

;

0

3

for signing queries, and pledge

1

;

2

;

3

for deryption

queries. H-List holds (w; xjjr;

1

;

2

;H(w; xjjr;

1

;

2

)), the pairing of query w; xjjr;

1

;

2

and answer H(w; xjjr;

1

;

2

).

Answering the random orale queries to H

0

For new query xjjr to H

0

, we get z

R

 f0; 1g

k

1

, set f(z)� = w, and alulate

1

= f(w).

Next, we simulate G(w) in the same way as in setion A.1, alulate

2

= E

sym

G(w)

(xjjr).

Finally, we put

3

= H(w; xjjr;

1

;

2

) and

0

3

= H(w; xjjr; z;

2

) by simulating in the same

way as in setion A.1, answer w as H

0

(xjjr) to F , and add (1; xjjr; w; z;

1

;

2

;

3

;

0

3

) to

17

Note that the probability that A = b holds under the ondition of :AskG and :Bad is equal to the

probability that A an distinguish b from x

0

; x

1

and

+

2

, without seret key k; Pr[A = bj:AskG^:Bad℄ =

�

2

+

1

2

. This is beause from :Bad, A annot notie the deviation and performs the same way as in the

real run. Moreover, from :AskG, A annot know k = G(w

+

).

18

This seems to require the alulation of f 2(q

H

0

+ q

�

) times, but q

H

0

+ q

�

alulations are suÆient.

Indeed, when we add an element inluding w to G-List or H-List, we hek whether f(w) =

+

holds. This

ation plays the role of preparing for the simulation of D and is already ounted in (ii). Therefore, we

onsider only the preparation for the signing orale queries in (iii).

19

H

0

-List. If xjjr has already been queried to H

0

, we loate (�; xjjr; w; �; �; �; �; �) 2 H

0

-List

and answer w.

Answering the signing queries to �: For signing query x to �, we get r

R

 f0; 1g

k

0

and hek whether (0; xjjr; �; z; �;

2

; �;

0

3

) is in H

0

-List. If so, we answer � = (z;

2

;

0

3

) to

F as a signature. Moreover, if (1; xjjr; �; �; �; �, �; �) is in H

0

-List, we abort. Otherwise,

we hoose z

R

 f0; 1g

k

1

, put f(z) = w, and alulate

1

= f(w). Next, we simulate

G(w) in the same way as in setion A.1, alulate

2

= E

sym

G(w)

(xjjr). Finally, we put

3

= H(w; xjjr;

1

;

2

) and

0

3

= H(w; xjjr; z;

2

) by simulating in the same way as in

setion A.1, add (0; xjjr; w; z;

1

;

2

;

3

;

0

3

) to H

0

-List, and answer � = (z;

2

;

0

3

) as a

signature to F .

B.2 Analysis

Let �

�

= (

�

1

;

�

2

;

�

3

) be a forgery output by F ; w

�

, r

�

, and x

�

are the orresponding

elements. In order to analyze the suess probability of I, let DBad be the same event as

in A.2, �Bad an event that I fails to simulate in �, and Bad = DBad_�Bad. Moreover,

let S be an event that V

pk

(�

�

) = x

�

, and let AskH

0

be one that F queries diretly H

0

about x

�

jjr

�

.

At �rst, we onsider

1 = Pr[Bad℄ + Pr[:Bad℄: (6)

With regard to Pr[Bad℄ � Pr[DBad℄ + Pr[�Bad℄ in equation (6), we have

Pr[Bad℄ �

q

H

0

q

�

2

k

0

+

q

D

2

k

1

: (7)

In fat, Pr[DBad℄ is evaluated in the same way as in setion A.2. On the other hand,

Pr[�Bad℄ is bounded by q

�

(

q

H

0

2

k

0

). Note that in simulating the answer signing query x, we

�rst hoose random integer r and z for the andidate of the signature, and simulate H

0

about xjjr. In this phase, �Bad ours if xjjr has already queried to H

0

by F diretly,

beause we an not alulate f

�1

(�). For a signing query, the probability that xjjr is

queried to H

0

is bounded by

q

H

0

2

k

0

19

beause of randomness of r, and then, we an estimate

Pr[�Bad℄ by q

�

(

q

H

0

2

k

0

).

With regard to Pr[:Bad℄ in equation (6), we divide event :Bad by S and have

Pr[:Bad℄ = Pr[S ^ :Bad℄ + Pr[:S ^ :Bad℄: (8)

In this equation (8),

Pr[:S ^ :Bad℄ � Pr[:Sj:Bad℄ = 1� Pr[Sj:Bad℄ = 1� � (9)

holds

20

.

19

Note that for signing query x, if we hoose random integer r suh that xjjr is queried toH

0

through the

past signing query, we an reply this query by loating orresponding signature from H

0

-List. Therefore,

we only onsider the ase that xjjr has already queried to H

0

by F diretly, in the estimation of �Bad.

20

Note that the suess probability of F under the ondition that F does not notie the simulation is

equal to the one in real run and this leads Pr[Sj:Bad℄ = �.

20

Next, we estimate Pr[S^:Bad℄ in equation (8) by dividing event S^:Bad by AskH

0

:

Pr[S ^ :Bad℄ = Pr[S ^ :Bad ^ AskH

0

℄ + Pr[S ^ :Bad ^ :AskH

0

℄:

In this equality, Pr[S ^ :Bad ^ :AskH

0

℄ is bounded by

1

2

k

1

beause it is an inident that

H

0

(x

�

jjr

�

) = w

�

if (1; x

�

jjr

�

; �; �; �; �; �; �) =2 H

0

-List holds. On the other hand, we have

Pr[S^:Bad^AskH

0

℄ � Pr[S^AskH

0

℄ � Su

ow

(�

0

) beause if both (1; x

�

jjr

�

; �; z

�

; �; �; �; �) 2

H

0

-List and S hold, then we an ompute

�

1

z

�

=

f

�1

(f(z

�

)�)

z

�

= f

�1

(�) from the multipliative

property of f . Therefore, we have

Pr[S ^ :Bad℄ � Su

ow

(�

0

) +

1

2

k

1

: (10)

By substituting inequalities (9) and (10) into equation (8), we have

Pr[:Bad℄ � Su

ow

(�

0

) +

1

2

k

1

+ 1� �: (11)

Finally, if we substitute inequalities (7) and (11) into equation (6), we an onlude

the proof of Theorem 6.

The running time �

0

of I is the sum of the following terms: (i) the running time � of

F beause we run F one, (ii) in the simulation of �, we have to prepare the answer for

queries toD and �, i.e., 2q

�

T

f

, (iii) in the simulation ofH

0

, we have to prepare the answer

for queries to D and to implant �, i.e., 2q

H

0

T

f

, (iv) we have to �nd z

�

orresponding to

�

1

by omputing f(

�

1

) one, i.e., T

f

. Hene, �

0

� � + (2q

H

0

+ 2q

�

+ 1)T

f

holds.

C Proof of Theorem 7

In order to prove Theorem 7, we prove the following lemma.

Lemma 1 Let A be an adversary that breaks PSS-ES(E) in (�; q

D

; q

�

; q

G

; q

H

0

) in the

sense of IND-CCA2&ACMA. Then:

(

Su

s�pd�ow

(q

G

+ q

H

0

+ q

�

; �

0

) � ��

q

H

0

+q

�

2

k

0

�

(q

H

0

+q

�

)(q

G

+q

H

0

+q

�

)+q

D

2

k

1

�

0

� � + 2(q

H

0

+ q

�

)T

f

where T

f

denotes the time omplexity of f .

C.1 Constrution of Inverter I

We give the onstrution of inverter I that breaks the set partial-domain one-wayness of

f about y

+

, by using adversary A that breaks PSS-ES in (�; q

D

; q

�

; q

G

; q

H

0

; �) in the sense

of IND-CCA2&ACMA, as follows: we input publi key f to A, answer the queries that A

asks to both random orales, to the deryption orale, and to the signing orale in the

following way, and reeive hallenge (x

0

; x

1

). We then hoose b 2 f0; 1g at random and

return y

+

to A as the target iphertext orresponding to x

b

without using the enryption

21

rules. Moreover, we answer the queries that A asks in the same manner, and �nally,

reeive

^

b. (Or A uses up its running time.)

In simulating random orales G and H

021

, we onstrut input/output lists, G-List

and H

0

-List, respetively. In G-List, we preserve pair (w;G(w)) of query w and answer

G(w). In H

0

-List, we keep quadruplet (xjjr;H

0

(xjjr); z; y) of query xjjr, answer H

0

(xjjr),

guarantee z for signing queries, and pledge y for deryption queries.

In this strategy, in order forA to distinguish target y

+

, A is expeted to queryG about

w

+

= [f

�1

(y

+

)℄

k

1

22

. Hene, we an output G-List that will ontain w

+

= [f

�1

(y

+

)℄

k

1

.

Answering the random orale queries to G and H

0

For new query w to G, we hoose random integer from f0; 1g

n+k

0

, put it to G(w),

answer to A, and add (w;G(w)) to G-List. If w has already been queried G, we searh

(w;G(w)) 2 G-List and answer G(w).

For new query xjjr to H

0

, we get z

R

 f0; 1g

k

and divide f(z) = sjjw (here, jsj =

n+ k

0

,jwj = k

1

). In this phase, if (w; �) has already been in G-List, we abort. Otherwise,

we set G(w) = s�(xjjr) and simulate G. Finally, we answer w as H

0

(xjjr) to A, alulate

y = f(sjjw) in order of the deryption queries, and add (xjjr; w; z; y) to H

0

-List. If xjjr has

already been queried to G, we searh (xjjr;H

0

(xjjr); �; �) 2 H

0

-List and answer H

0

(xjjr).

Answering the deryption queries to D

We denote the elements of deryption query y, as w, r, and x. In order for y to be valid

iphertext, A must have queried H

0

about xjjr and in this ase, (xjjr; �; �; y) is in H

0

-List

so we an answer with the orresponding plaintext x. Otherwise, we answer Rejet sine

the probability of H

0

(xjjr) = w is negligible.

Answering the signing queries to �

For signing query x to �, we get r

R

 f0; 1g

k

0

and hek whether (xjjr; �; z; �) is in H

0

-List.

If so, we answer z to A as a signature. Otherwise, we hoose z

R

 f0; 1g

k

, and divide

f(z) = sjjw (here, jsj = n+k

0

,jwj = k

1

). In this phase, if (w; �) has already been in G-List,

we abort. Otherwise, we put G(w) = s � (xjjr) and simulate G. Finally, we alulate

y = f(sjjw) in order of the deryption queries, set H

0

(xjjr) = w, add (xjjr; w; z; y) to

H

0

-List, and answer z as a signature.

C.2 Analysis

Let y

+

be a target iphertext that we return to A deviating the protool; s

+

, w

+

, and

r

+

are the orresponding elements. In order to analyze the suess probability of I,

we use following notations: AskG and AskH

0

are events for whih (w

+

; �) 2 G-List and

(�jjr

+

; �; �; �) 2 H

0

-List, respetively. Moreover, let EBad be an event

23

that AskG^ (x

i

6=

[G(w

+

)� s

+

℄

n

) or that AskH

0

^ (H

0

(x

i

jjr

+

) 6= w

+

), let H'Bad, DBad, and �Bad be events

that we fail to simulate in H

0

, D, and �, respetively, and let Bad = H'Bad _ EBad _

DBad_�Bad. Our aim in setting these notations is to estimate the probability of AskG.

21

We simulate G and H

0

for diret queries output to G and H

0

, respetively, and moreover, for the

queries output to other orales, indiretly, too.

22

Here, [a℄

b

and [a℄

b

denote the b least signi�ant bits and most signi�ant bits of a, respetively.

23

In this event, A may notie that I answers y

+

as a target iphertext deviating the protool.

22

At �rst, we divide this event as follows:

Pr[AskG℄ = Pr[AskG ^ Bad℄ + Pr[AskG ^ :Bad℄ (12)

With regard to Pr[AskG ^ Bad℄ in equation (12), from the de�nition of Bad, we have

Pr[AskG ^ Bad℄ = Pr[Bad℄� Pr[:AskG ^ Bad℄

� Pr[Bad℄� Pr[H'Badj:AskG℄� Pr[EBadj:AskG℄

�Pr[DBadj:AskG℄� Pr[�Badj:AskG℄: (13)

We an estimate Pr[H'Badj:AskG℄ in inequality (13) by q

H

0

(

q

G

+q

H

0

+q

�

2

k

1

) beause through-

out the simulation of H

0

, it is only by aident that random integer w already be-

longs to G-List

24

. For the same reason, Pr[�Badj:AskG℄ in inequality (13) is bounded

by q

�

(

q

G

+q

H

0

+q

�

2

k

1

). Moreover, through the deryption query, sine it is only by ai-

dent that w equals H

0

(xjjr) under the ondition that A does not query H

0

about xjjr,

Pr[DBadj:AskG℄ in inequality (13) is less than

q

D

2

k

1

.

With regard to Pr[EBadj:AskG℄ in inequality (13), from the de�nition of EBad,

we have Pr[EBadj :AskG℄ � Pr[AskGj:AskG℄ + Pr[AskH

0

j:AskG℄. In this inequality,

Pr[AskGj:AskG℄ = 0 and Pr[AskH

0

j :AskG℄ �

q

H

0

+q

�

2

k

0

hold. In fat, with regard to the

latter term, sine if :AskG happens, r

+

= [s

+

�G(w)℄

k

0

is a uniform integer in f0; 1g

k

0

,

then (�jjr

+

; �; �; �) 2 H

0

-List ours only by aident.

Hene, we have

Pr[AskG ^ Bad℄ � Pr[Bad℄�

q

H

0

+ q

�

2

k

0

�

(q

H

0

+ q

�

)(q

G

+ q

H

0

+ q

�

) + q

D

2

k

1

: (14)

With regard to the seond term of equation (12), it is meaningful to onsider the

advantage of A beause of the ondition :Bad. We an do this by evaluating Pr[AskG ^

:Bad℄ as follows:

Pr[AskG ^ :Bad℄ � Pr[A = b ^ AskG ^ :Bad℄

= Pr[A = b ^ :Bad℄� Pr[A = b ^ :AskG ^ :Bad℄: (15)

In this inequality, we have both

25

Pr[A = b ^ :Bad℄ � Pr[A = b℄� Pr[Bad℄

= (

�

2

+

1

2

)� Pr[Bad℄

24

Although in the proof of [4℄, the number of w queried to G is q

H

0

+ q

�

, it should be estimated by

q

G

+ q

H

0

+ q

�

beause w may be queried to G diretly.

25

For equality (16), note that if :Bad ours, then A an exerise its ability to distinguish the target

iphertext with probability

�

2

+

1

2

(� 1). For equality (16), note that if :AskG and :Bad then A neither

noties the dishonest replaement of the target iphertext nor distinguishes the target validly, �.e., under

these onditions, Pr[A = b℄ is at most

1

2

(by aident).

23

and

26

Pr[A = b ^ :AskG ^ :Bad℄ = Pr[A = bj:AskG ^ :Bad℄ Pr[:AskG ^ :Bad℄

=

1

2

(1� Pr[Bad℄� Pr[AskG ^ :Bad℄): (16)

Therefore, Pr[AskG ^ :Bad℄ �

��Pr[Bad℄+Pr[AskG^:Bad℄

2

holds and this inequality leads to

Pr[AskG ^ :Bad℄ � �� Pr[Bad℄: (17)

Hene the onsideration of inequalities (13), (14), and (17) onludes the proof of

Theorem 1.

The running time �

0

of I is the sum of the following terms: (i) the running time � of

A beause we run A one, (ii) in order to be able to simulate D and �, we alulate both

f(z) and f(sjjt) 2(q

H

0

+ q

�

) times in simulating H

0

and �, i.e., 2(q

H

0

+ q

�

)T

f

. Hene,

�

0

� � + 2(q

H

0

+ q

�

)T

f

holds.

D Proof of Theorem 8

D.1 Constrution of Inverter I

We give the onstrution of inverter I that breaks the one-wayness of f about �, by using

forger F that breaks PSS-ES in (�; q

D

; q

�

; q

G

; q

H

0

; �) in the sense of EUF-CCA2&ACMA,

as follows: we input publi key f to F , answer the queries that F asks to random orales,

to the deryption orale, and to the signing orale as follows: Finally, we reeive forgery

y

�

(or stops F after its running time � is over).

In simulating random orales

27

G and H

0

, we onstrut input/output lists, G-List

and H

0

-List, respetively. G-List holds (w;G(w)), the pairing of query w and answer

G(w). H

0

-List holds (b; xjjr;H

0

(xjjr); z; y), the bit b = 0=1

28

, query xjjr, answer H

0

(xjjr),

guarantee z for signing queries, and pledge y for the deryption queries.

In this strategy, in order for F to output valid signature �

�

, F queries H

0

about

x

�

jjr

�29

; in this ase, we an �nd f

�1

(�) =

y

�

z

�

.

Answering the random orale queries to G and H

0

For new query w to G, we hoose random integer from f0; 1g

n+k

0

, put it to G(w),

answer to F , and add (w;G(w)) to G-List. If w has already been queried G, we searh

(w;G(w)) 2 G-List and answer G(w).

26

Note that Pr[A = b℄ in this inequality is taken over the random oins of A and I in whih A does not

notie the simulation. The probabilisti spae is restrited and smaller than the entire probabilisti spae,

however, the probability of the event that A = b is equal to the one taken over the entire probabilisti

spae,

�

2

+

1

2

, from the de�nition of the random orale model.

27

We simulate G and H

0

for diret queries output to G and H

0

, respetively, and moreover, for the

queries output to other orales, indiretly, too.

28

b = 0 means that � is not embedded for the xjjr, and b = 1 means that � is implanted for the xjjr.

29

Preisely, F an forge �

�

without querying x

�

jjr

�

to H

0

. We onsider this ase below and estimate

the suess probability of I.

24

For new query xjjr to H

0

, we get z

R

 f0; 1g

k

and divide f(z)� = sjjw (here, jsj =

n+ k

0

,jwj = k

1

). In this phase, if (w; �) has already been in G-List, we abort. Otherwise,

we set G(w) = s � (xjjr) and simulate G. Finally, we alulate y = f(sjjw) in order of

the deryption queries, answer w as H

0

(xjjr) to F , and add (1; xjjr; w; z; y) to H

0

-List. If

xjjr has already been queried to H

0

, we loate (�; xjjr;H

0

(xjjr); �; �) 2 H

0

-List and answer

H

0

(xjjr).

Answering the deryption queries to D

We denote the elements of deryption query y, as w, r, and x. In order for y to be valid

iphertext, F must have queried H

0

about xjjr and in this ase, (xjjr; �; �; y) is in H

0

-List

so we an answer with the orresponding plaintext x. Otherwise, we answer Rejet sine

the probability of H

0

(xjjr) = w is negligible.

Answering the signing queries to �

For signing query x to �, we get r

R

 f0; 1g

k

0

and hek whether (0; xjjr; �; z; �) is

in H

0

-List. If so, we answer z to F as a signature. Moreover, if (1; xjjr; �; �; �) is in

H

0

-List, we abort. Otherwise, we hoose z

R

 f0; 1g

k

, and divide f(z) = sjjw (here,

jsj = n + k

0

,jwj = k

1

). In this phase, if (w; �) has already been in G-List, we abort.

Otherwise, we put G(w) = s� (xjjr) and simulate G. Finally, we alulate y = f(sjjw)

in order of the deryption queries, set H

0

(xjjr) = w, add (0; xjjr; w; z; y) to H

0

-List, and

answer z as a signature.

D.2 Analysis

Let y

�

be a forgery output by F ; s

�

, w

�

, and r

�

are the orresponding elements. In

order to analyze the suess probability of I, we use H'Bad, DBad, and �Bad in the same

manner as in setion D.2, and Bad = H'Bad_DBad_�Bad. Moreover, let S be an event

that V

pk

(�

�

) = x

�

, and let AskH

0

be an event in whih F queries H

0

diretly about x

�

jjr

�

.

At �rst, we onsider

1 = Pr[Bad℄ + Pr[:Bad℄: (18)

With regard to Pr[Bad℄ in equation (18), from the de�nition of Bad,

Pr[Bad℄ � Pr[H'Bad℄ + Pr[DBad℄ + Pr[�Bad℄

holds. In this inequality, we an estimate Pr[H'Bad℄ by q

H

0

(

q

G

+q

H

0

+q

�

2

k

1

) beause through-

out the simulation of H

0

, it is only by aident that random integer w already belongs

to G-List

30

. Moreover, through the deryption query, sine it is only by aident that w

equals H

0

(xjjr) under the ondition that A does not query H

0

about xjjr, Pr[DBad℄ is

less than

q

D

2

k

1

. On the other hand, in the simulation of �, Pr[�Bad℄ is given as the sum

of q

�

q

H

0

2

k

0

, whih represents the event of simulation abort beause (1; xjjr; �; �; �) 2 H

0

-List

happens for random integer r, and q

�

q

G

+q

H

0

+q

�

2

k

1

, whih represents the event that random

30

Although in the proof of [4℄, the number of w queried to G is q

H

0

+ q

�

, it should be estimated by

q

G

+ q

H

0

+ q

�

beause w may be queried to G diretly.

25

integer w is ontained in G-List. Therefore, we have

Pr[Bad℄ �

q

H

0

q

�

2

k

0

+

(q

H

0

+ q

�

)(q

G

+ q

H

0

+ q

�

) + q

D

2

k

1

: (19)

With regard to Pr[:Bad℄ in equation (18), we divide event :Bad by S and have

Pr[:Bad℄ = Pr[S ^ :Bad℄ + Pr[:S ^ :Bad℄: (20)

In this equality (20),

Pr[:S ^ :Bad℄ � Pr[:Sj:Bad℄

= 1� Pr[Sj:Bad℄

= 1� � (21)

holds

31

.

Next, we estimate Pr[S^:Bad℄ in equation (20) by dividing event S^:Bad by AskH

0

:

Pr[S ^ :Bad℄ = Pr[S ^ :Bad ^ AskH

0

℄ + Pr[S ^ :Bad ^ :AskH

0

℄:

In this equality, Pr[S ^ :Bad ^ :AskH

0

℄ is bounded by

1

2

k

1

beause it is only by aident

that H

0

(x

�

jjr

�

) = w

�

if (1; x

�

jjr

�

; �; �; �) =2 H

0

-List holds. On the other hand, we have

Pr[S ^ :Bad ^ AskH

0

℄ � Pr[S ^ AskH

0

℄ � Su

ow

(�

0

) beause if both (1; x

�

jjr

�

; �; z

�

; �) 2

H

0

-List and S hold, we an ompute

�

�

z

�

=

f

�1

(f(z

�

)�)

z

�

= f

�1

(�) from the multipliative

property of f . Therefore, we have

Pr[S ^ :Bad℄ � Su

ow

(�

0

) +

1

2

k

1

: (22)

By substituting inequalities (21) and (22) into equation (20), we have

Pr[:Bad℄ � Su

ow

(�

0

) +

1

2

k

1

+ 1� �: (23)

Finally, if we substitute inequalities (19) and (23) into equation (18), we an onlude

the proof of Theorem 8.

The running time �

0

of I is the sum of the following terms: (i) the running time � of

F beause we run F one, (ii) in the simulation of �, we have to prepare the answer to

queries toD and �, i.e., 2q

�

T

f

, (iii) in the simulation ofH

0

, we have to prepare the answer

for queries to D and to implant �, i.e., 2q

H

0

T

f

, (iv) we have to �nd z

�

orresponding to

�

�

by omputing f(�

�

) one, i.e., T

f

. Hene, �

0

� � + (2q

H

0

+ 2q

�

+ 1)T

f

holds.

31

Note that the suess probability of F under the ondition that F does not notie the simulation is

� and this leads to Pr[Sj:Bad℄ = �.

26

