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Abstra
t

Coron et al. proposed the ES-based s
heme PSS-ES whi
h realizes an en
ryption

s
heme and a signature s
heme with a unique padding s
heme and key pair. The se-


urity of PSS-ES as an en
ryption s
heme is based on the partial-domain one-wayness

of the en
ryption permutation. In this paper, we propose new ES s
hemes OAEP-

ES, OAEP++-ES, and REACT-ES, and prove their se
urity under the assumption

of only the one-wayness of en
ryption permutation. OAEP-ES, OAEP++-ES, and

REACT-ES suit pra
ti
al implementation be
ause they use the same padding s
heme

for en
ryption and for signature, and their se
urity proof guarantees that we 
an pre-

pare one key pair to realize en
ryption and signature in the same way as PSS-ES.

Sin
e one-wayness is a weaker assumption than partial-domain one-wayness, the pro-

posed s
hemes o�er tighter se
urity than PSS-ES. Hen
e, we 
on
lude that OAEP-

ES, OAEP++-ES, and REACT-ES are more e�e
tive than PSS-ES. OAEP++-ES is

the most pra
ti
al approa
h in terms of the tightness of se
urity and 
ommuni
ation

eÆ
ien
y.
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1 Introdu
tion

Sin
e the invention of the RSA en
ryption s
heme [12℄, there have been a lot of inter-

est in standardization and investigations into publi
 key 
ryptosystems, in parti
ular

those for en
ryption and signature s
hemes. The en
ryption s
heme OAEP (Optimal

Asymmetri
 En
ryption Padding, [2℄) and the signature s
heme PSS (Probabilisti
 Sig-

nature S
heme, [3℄) are 
onsidered to be pra
ti
al be
ause they o�er the strongest se
u-

rity level: IND-CCA2 (indistinguishability against adaptive 
hosen 
iphertext atta
k) and

EUF-ACMA (existentially unforgeable against adaptive 
hosen message atta
k).

OAEP �rst pads and then en
rypts the plaintext while PSS pads and then signs

the message; for en
ryption (signature), the trapdoor one-way permutation is applied

in the dire
t (inverse) dire
tion. Coron et al. [4℄ proposed the ES s
heme (En
ryption-

Signature s
heme

1

) PSS-ES, whi
h is based on the message re
overy signature s
heme

PSS-R [3℄, and proved its se
urity. For en
ryption and signature, PSS-ES uses a shared

padding s
heme and key pair; the publi
 key and the private key are 
hosen adequately

for en
ryption and signing, respe
tively. Hen
e this s
heme is useful in terms of imple-

mentation. The se
urity proofs in [4℄, however, have some (minor) te
hni
al mistakes.

Moreover, even if these mistakes are 
orre
ted, the fa
t that the se
urity of PSS-ES as

an en
ryption s
heme is based on partial-domain one-wayness of the en
ryption per-

mutation, de
reases the redu
tion eÆ
ien
y; it must use long keys to a
hieve adequate

se
urity.

This paper gives the exa
t se
urity of PSS-ES by 
orre
ting the (minor) problems

in [4℄. Moreover, this paper introdu
es new ES s
hemes, OAEP-ES and REACT-ES,

that are based on OAEP+ [13℄ and REACT [11℄, respe
tively. The proposed s
hemes

satisfy IND-CCA2&ACMA(Indistinguishability against adaptive 
hosen 
iphertext atta
k

and adaptive 
hosen message atta
k) as an en
ryption s
heme and EUF-CCA2&ACMA

(Existentially unforgeable against adaptive 
hosen 
iphertext atta
k and adaptive 
hosen

message atta
k) as a signature s
heme under the assumption of only the one-wayness

of the permutation, while PSS-ES relies upon the partial-domain one-wayness of the

en
ryption permutation for its se
urity as an en
ryption s
heme.

The rest of this paper is organized as follows. Se
tion 2 re
alls the de�nitions of the

ES s
heme and its se
urity notations. Se
tion 3 proposes new ES s
hemes, OAEP-ES

and REACT-ES, and gives their se
urity. In se
tion 4, we point out the problems of

original se
urity proof of PSS-ES, given by Coron et al. [4℄, and give its exa
t se
urity.

In se
tions 5 and 6, we 
ompare redu
tion eÆ
ien
y of proposed s
hemes with the one of

PSS-ES following the estimation of Nakashima and Okamoto [10℄ and dis
uss the reason

why our s
hemes are more pra
ti
al than PSS-ES. Furthermore, Appendi
es A and B

present the se
urity proofs of REACT-ES.

As a result, OAEP-ES, OAEP++-ES, and REACT-ES 
an realize se
ure en
ryption-

signature s
heme (ES s
heme) with a unique padding s
heme and key pair; their redu
tion

eÆ
ien
y are mu
h better than those of PSS-ES. Due to the high redu
tion eÆ
ien
y of

1

The ES s
heme di�ers from sign
ryption [14℄; the ES s
heme realizes both en
ryption and signature

s
hemes with a 
ommon padding s
heme and key pair (en
rypt or sign), while sign
ryption realizes

en
rypt then sign or sign then en
rypt s
heme.

3



its se
urity proof and its improved 
ommuni
ation eÆ
ien
y, OAEP++-ES is the most

pra
ti
al approa
h.

2 De�nitions

2.1 ES s
heme with Universal Padding S
heme

We des
ribe a model of the ES s
heme

3

(En
ryption-Signature s
heme) and its se
u-

rity. Sin
e the ES s
heme realizes an en
ryption s
heme and a signature s
heme with

a 
ommon padding s
heme and key pair, we introdu
e atta
k model CCA2&ACMA fol-

lowing [4℄, where adversary A (forger F) 
an freely use both de
ryption ora
le D and

signing ora
le �. We extend notions of se
urity IND-CCA2 [1℄ and EUF-ACMA [6℄ to


reate IND-CCA2&ACMA (Indistinguishability against adaptive 
hosen 
iphertext atta
k

and adaptive 
hosen message atta
k) and EUF-CCA2&ACMA (Existentially unforgeable

against adaptive 
hosen 
iphertext atta
k and adaptive 
hosen message atta
k), respe
-

tively.

De�nition 1 (ES s
heme with a unique padding s
heme) If � is a padding s
heme,

then the ES s
heme (K; E ;D;S;V) with � is de�ned as follows:

| Key generation algorithm K is probabilisti
 algorithm whi
h, given se
urity param-

eter k, outputs the pair of publi
 and private keys, K(1

k

) = (pk; sk). We regard pk

as f and sk as f

�1

, hereafter.

| En
ryption algorithm E takes plaintext x and publi
 key pk, 
al
ulates z = �(x; r)

with some random integer r, and returns 
iphertext

2

y = f(z) = E

pk

(x). This

algorithm is probabilisti


3

.

| De
ryption algorithm D takes 
iphertext y and private key sk, 
al
ulates z = f

�1

(y)

and �

�1

(z) = xjjr (un-padding), and returns plaintext x = D

sk

(y) if y is a valid


iphertext. Otherwise D returns Reje
t. This algorithm is deterministi
.

| Signing algorithm S takes message x and private key sk, 
al
ulates z = �(x; r)

with some random integer r, and returns signature

5

� = f

�1

(z) = S

sk

(x). This

algorithm is probabilisti
.

| Veri�
ation algorithm V takes signature � and publi
 key pk, 
al
ulates z = f(�)

and �

�1

(z) = xjjr (un-padding), and returns message x = V

pk

(�) if � is a valid

signature. Otherwise V returns Reje
t. This algorithm is deterministi
.

We denote the ES s
heme for en
ryption and for signature by ES(E) and ES(S),

respe
tively (e.g., OAEP-ES(E) and OAEP-ES(S) mean the OAEP-ES using in an en-


ryption and a signature, respe
tively).

2

The input of f may be a part of z, i.e., we allow to regard y = f(z

1

)jjz

2

(� = f

�1

(z

1

)jjz

2

) as the


iphertext (signature) for z = z

1

jjz

2

.

3

Sin
e padding s
heme � is probabilisti
, en
ryption permutation f may be deterministi
(e.g., RSA).

4



De�nition 2 (IND-CCA2&ACMA) Let A be an adversary of the en
ryption s
heme.

The atta
k s
enario is des
ribed as follows:

1. A re
eives publi
 key pk with K(1

k

) = (pk; sk).

2. A submits de
ryption queries for 
iphertext y of his 
hoi
e to de
ryption ora
le

D and gets 
orresponding plaintext x. Moreover, A submits signing queries for

message x

0

of his 
hoi
e to signing ora
le � and gets 
orresponding signature �.

3. A generates two plaintexts x

0

; x

1

of identi
al length, and sends them to en
ryption

ora
le E as a 
hallenge.

4. E 
hooses b

R

 f0; 1g and returns y

�

= E

pk

(x

b

) to A as a target 
iphertext.

5. A 
ontinues to submit de
ryption queries for 
iphertext y of his 
hoi
e to D and

gets 
orresponding plaintext x. Moreover, A 
ontinues to submit signing queries

for message x

0

of his 
hoi
e to � and gets 
orresponding signature �. In this phase,

the only restri
tion is that A 
annot issue a query for y

�

to D.

6. A guesses b in this atta
k and outputs

^

b.

The adversary's advantage is de�ned as Adv(A) = j2Pr[b =

^

b℄ � 1j. We say that the

en
ryption s
heme is (t; q

D

; q

�

; q

H

; �)-se
ure in the sense of IND-CCA2&ACMA if an ar-

bitrary adversary

4

, whose running time is bounded by t, 
annot a
hieve an advantage

more than � after making at most q

D

de
ryption queries, q

�

signing queries, and q

H

hash

queries.

De�nition 3 (EUF-CCA2&ACMA) Let F be a forger of the signature s
heme. The

atta
k s
enario is des
ribed as follows:

1. F re
eives publi
 key pk with K(1

k

) = (pk; sk).

2. F submits signing queries for message x of his 
hoi
e to signing ora
le � and gets


orresponding signature �. Moreover, F submits de
ryption queries for 
iphertext

y

0

of his 
hoi
e to de
ryption ora
le D and gets 
orresponding plaintext x

0

.

3. F outputs forgery �

�

with V

pk

(�

�

) = x

�

for some x

�

(x

�

6= x for any signing query

x).

The forger's su

ess probability is de�ned as � = Pr[V

pk

(�

�

) = x

�

℄. We say that the

signature s
heme is (t; q

D

; q

�

; q

H

; �)-se
ure in the sense of EUF-CCA2&ACMA if an ar-

bitrary forger

7

,whose running time is bounded by t, 
annot a
hieve a su

ess probability

more than � after making at most q

D

de
ryption queries, q

�

signing queries, and q

H

hash

queries.

Note that the se
urity proof of the ES s
heme with a unique padding s
heme 
omes

in two parts, �rst as an en
ryption s
heme and then as a signature s
heme.

4

We restri
t the adversary (forger) by upper bounding the running time and the number of de
ryption,

signing, and hash queries. We denote that A (F) breaks an en
ryption s
heme (signature s
heme) in

(t; q

D

; q

�

; q

H

; �) ifA 
an distinguish b (F 
an outputs a forgery) within the time bound t and the advantage

(su

ess probability) more than � using, at most, q

D

de
ryption, q

�

signing, and q

H

hash queries.
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2.2 Assumption of One-way Permutation

We 
lassify trapdoor one-way permutations a

ording to the diÆ
ulty of inverting them

as follows [5℄:

De�nition 4 Let f : f0; 1g

k

0

� f0; 1g

k

1

! f0; 1g

k

0

� f0; 1g

k

1

be a permutation. We

say that

| f is (�; �)-one-way, if an arbitrary adversary whose running time is bounded by � has

su

ess probability Su



ow

(A) that does not ex
eed �. Here, Su



ow

(A) = Pr

s;t

[A(f(s; t)) =

(s; t)℄.

| f is (�; �)-partial-domain one-way, if an arbitrary adversary whose running time is

bounded by � has su

ess probability Su



pd�ow

(A) that does not ex
eed �. Here,

Su



pd�ow

(A) = Pr

s;t

[A(f(s; t)) = s℄.

Moreover, we de�ne Su



ow

(�) = max

A

Su



ow

(A) and Su



pd�ow

(�) = max

A

Su



pd�ow

(A),

for all A, whose running time is bounded by � .

By the above de�nition, we have Su



pd�ow

(�) � Su



ow

(�) for any � . This inequality

means that partial-domain one-wayness is a stronger assumption than one-wayness.

Through this paper, we assume that permutation f is multipli
ative

5

. The multi-

pli
ative property of the permutation is des
ribed below.

De�nition 5 If f is a fun
tion, we 
all it a multipli
ative fun
tion if

f(ab) = f(a)f(b)

for arbitrary a and b.

3 Proposal S
hemes

Coron et al. [4℄ used PSS-R to 
onstru
t PSS-ES whi
h realizes both an en
ryption and

a signature with a 
ommon padding s
heme and key pair. PSS-ES is suitable for im-

plementation, however, its se
urity as an en
ryption s
heme relies on the partial-domain

one-wayness of f . Sin
e the partial-domain one-wayness is stronger assumption than the

one-wayness, the redu
tion eÆ
ien
y is not tight and it must use long keys to a
hieve

adequate se
urity.

We propose new ES s
hemes, OAEP-ES, OAEP++-ES, and REACT-ES, whi
h over-


ome this problem, and des
ribe their se
urity results. Sin
e the se
urity proofs of OAEP-

ES, OAEP++-ES are similar to that of REACT-ES, we give the proofs of REACT-ES

in Appendix A and B.

5

Though the se
urity of ES(S) 
an be ensured without the multipli
ative property of f (whi
h is

not used in the se
urity proof of ES(E) at all) as in [4℄, the redu
tion is not tight. Our interest is the


omparison among ES s
hemes dis
ussed in Se
tion 5 in the pra
ti
al situation, where RSA s
heme is

adopted as (f; f

�1

), whi
h satis�es the multipli
ative property.

6



3.1 Methodology

We will give new ES s
hemes based on several en
ryption s
hemes whi
h have a padding

s
heme; OAEP+, OAEP++, and REACT. The simplest method

6

of 
onstru
ting an ES

s
heme from en
ryption s
hemes seems by repla
ing en
ryption permutation f with its

inverse f

�1

.

Unfortunately, if we 
onstru
t a new signature s
heme from an en
ryption s
heme

by simple repla
ement of permutation of f with f

�1

, its se
urity is not ensured. For

example, it is easy for a known-message atta
ker to generate an existential forgery under

the one-way permutation with a spe
ial property in the similar way of Shoup's atta
k.

This is a formal explanation of this situation. In the se
urity proof of a signature, in

order to invert f on an input of integer � (i.e., to 
al
ulate f

�1

(�)), we embed � into some

random ora
le query about message x and random integer r (e.g., 
onsider the query rjjx

to H

0

in OAEP+) and simulate another random ora
le about r (e.g., G(r) in OAEP+).

In this strategy, if the random ora
le value about r (e.g., G(r)) is already de�ned, we

abort the simulation (fail to simulate). However, when the adversary 
an freely 
hoose

the query r, it implies that we fail to simulate this 
ase with a high probability.

Therefore, there might be a possibility that we 
ould generally 
onstru
t a provably

se
ure ES s
heme from an en
ryption s
heme as follows

7

: (i) we repla
e the r, whi
h is

aninput for random ora
le G, by a hash value of x and a new r

0

(e.g., r = w = H

0

(xjjr

0

)),

and (ii) we repla
e x with xjjr

0

.

In this paper, we 
reate ES s
hemes from OAEP+, OAEP++, and REACT, following

this methodology.

3.2 OAEP-ES

A simple ES s
heme 
an be 
reated using OAEP+ [13℄, OAEP-ES. OAEP-ES relies

for its se
urity upon only the one-wayness of the permutation, so it is more pra
ti
al

than PSS-ES. OAEP-ES has, however, worse redu
tion eÆ
ien
y than OAEP++-ES and

REACT-ES as we will show. A des
ription of OAEP-ES and its se
urity results are as

follows.

OAEP-ES with hash fun
tions G : f0; 1g

k

1

! f0; 1g

n+k

0

and H;H

0

: f0; 1g

n+k

0

! f0; 1g

k

1

, and the 
ommon padding s
heme �

1

(Figure 1) and key pair (f; f

�1

)

8

, is

exe
uted as follows:

|En
ryption and Signing : In order to en
rypt or to sign x, we 
hoose r

R

 f0; 1g

k

0

, set

w = H

0

(xjjr) 2 f0; 1g

k

1

, and 
al
ulate s = (xjjr)�G(w), t = H(s)�w, and �

1

(x; r) = sjjt.

We then return y = f(�

1

(x; r)) as the 
iphertext or � = f

�1

(�

1

(x; r)) as the signature,

respe
tively.

6

Coron et al. simply 
onstru
ted an en
ryption s
heme by repla
ing signing permutation f

�1

of PSS-R

with f and proposed PSS-ES whi
h has the same padding s
heme as PSS-R.

7

Referen
e [9℄ gives a detailed explanation of this methodology.

8

In the general model, we assume that f : f0; 1g

k

! f0; 1g

k

is a multipli
ative permutation. If the

implementation uses RSA permutation: Z

n

! Z

n

, we put \0" in front of the padding data to make the

domain k bit integer. In this 
ase, the model and theorems will need to be adjusted. We adopt the same

dis
ussion for PSS-ES, OAEP++-ES, and REACT-ES.

7



|De
ryption and Veri�
ation: For 
iphertext y or signature �, we re
over sjjt = f

�1

(y)

or sjjt = f(�) (jsj = n + k

0

, jtj = k

1

), respe
tively. Next, we 
al
ulate w = t � H(s),

divide xjjr = s�G(w) (jxj = n, jrj = k

0

), and 
he
k whether w = H

0

(xjjr). If the 
he
k

passes, we return x; otherwise Reje
t.

x r w

G

H

s

t

H

0

Figure 1: Padding S
hemes �

1

for ES S
hemes

The se
urity results of OAEP-ES are as follows:

Theorem 1 (Se
urity result of OAEP-ES(E)) Let A be an adversary that breaks

OAEP-ES in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of IND-CCA2&ACMA. Then:

(

Su



ow

(�

0

) � ��

q

H

0

+q

�

2

k

0

�

(q

H

0

+q

�

+1)(q

G

+q

H

0

+q

�

)+q

D

2

k

1

�

0

� � + f(q

G

+ q

H

0

+ q

�

)(q

H

+ q

H

0

+ q

�

) + q

H

0

+ q

�

gT

f

where T

f

denotes the time 
omplexity of f .

Theorem 2 (Se
urity result of OAEP-ES(S)) Let F be a forger that breaks OAEP-

ES in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of EUF-CCA2&ACMA. Then:

(

Su



ow

(�

0

) � ��

q

H

0

q

�

2

k

0

�

(q

H

0

+q

�

)(q

G

+q

H

0

+q

�

)+q

D

+1

2

k

1

�

0

� � + (2q

H

0

+ 2q

�

+ 1)T

f

where T

f

denotes the time 
omplexity of f .

3.3 OAEP++-ES

OAEP++ was proposed by Kobara and Imai [7℄. OAEP++ has the same padding

s
heme as OAEP, but the input for en
ryption permutation is about half the padding.

OAEP++ relies upon the one-wayness of en
ryption permutation for its se
urity. We


onstru
t OAEP++-ES based on OAEP++ as follows.

OAEP++-ES with hash fun
tions G : f0; 1g

k

1

! f0; 1g

n+k

0

, H

0

;H : f0; 1g

n+k

0

!

f0; 1g

k

1

, publi
 key f , and private one f

�1

, has the same padding as OAEP-ES (Figure

1) and is exe
uted as follows:

|En
ryption and Signing : In order to en
rypt or to sign x, we 
hoose r

R

 f0; 1g

k

0

, set

w = H

0

(xjjr) 2 f0; 1g

k

1

. Next, we 
al
ulate s = (xjjr)�G(w) and t = H(s)�w. Finally,

8



we return y = f(s)jjt as the 
iphertext or � = f

�1

(s)jjt as the signature, respe
tively.

|De
ryption and Veri�
ation: For 
iphertext y = 
jjt or signature � = 


0

jjt, we re
over

s = f

�1

(
) or s = f(


0

), respe
tively. Next, we set w = H(s) � t, 
al
ulate xjjr from

s � G(w), and 
he
k whether w = H

0

(xjjr). If the 
he
k passes, we return x as the

plaintext or the message, respe
tively; otherwise Reje
t.

In the following, we 
laim the se
urity of OAEP++-ES.

Theorem 3 (Se
urity result of OAEP++-ES(E)) Let A be an adversary that

breaks OAEP++-ES in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of IND-CCA2&ACMA. Then:

(

Su



ow

(�

0

) � ��

q

H

0

+q

�

2

k

0

�

(q

H

0

+q

�

+1)(q

G

+q

H

0

+q

�

)+q

D

2

k

1

�

0

� � + (q

H

+ 2q

H

0

+ 2q

�

)T

f

where T

f

denotes the time 
omplexity of f .

Theorem 4 (Se
urity result of OAEP++-ES(S)) Let F be a forger that breaks

OAEP++-ES in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of EUF-CCA2& ACMA. Then:

(

Su



ow

(�

0

) � ��

q

H

0

q

�

2

k

0

�

(q

H

0

+q

�

)(q

G

+q

H

0

+q

�

)+q

D

+1

2

k

1

�

0

� � + (2q

H

0

+ 2q

�

+ 1)T

f

where T

f

denotes the time 
omplexity of f .

3.4 REACT-ES

REACT was proposed by Okamoto and Point
heval [11℄. To use REACT for en
ryption,

we �rst generate random integer r and en
rypt plaintext x by a symmetri
 en
ryption

s
heme with the hash value of r as the key. Se
ond, we en
rypt r by an asymmetri


en
ryption s
heme and send it with 
iphertext of x and a 
he
k 
ode.

REACT is se
ure when the probabilisti
 en
ryption fun
tion (e.g., Rabin fun
tion) is

utilized be
ause of the 
he
k 
ode. From the same reason, REACT-ES is se
ure when we

utilize the probabilisti
 en
ryption fun
tion. Hereafter, to make the se
urity proof and

the 
omparison of eÆ
ien
y simply, we regard the en
ryption fun
tion as the permutation

(e.g., RSA fun
tion).

REACT-ES with hash fun
tions G : f0; 1g

k

1

! f0; 1g

k

3

, H

0

: f0; 1g

n+k

0

! f0; 1g

k

1

,

and H : f0; 1g

2(n+k

0

+k

1

)

! f0; 1g

k

2

(k = k

1

), symmetri
 en
ryption s
heme E

sym

key

, where

key length is k

3

, publi
 key f , and private key f

�1

, is exe
uted as follows (Figure 2):

|En
ryption and Signing : In order to en
rypt or to sign x, we 
hoose r

R

 f0; 1g

k

0

, set

w = H

0

(xjjr) 2 f0; 1g

k

1

, and 
al
ulate 


2

= E

sym

G(w)

(xjjr). Next, we set 


1

= f(w) for

en
ryption or 


1

= f

�1

(w) for signing, and return (


1

; 


2

; 


3

= H(xjjr; w; 


1

; 


2

)) as the


iphertext or signature, respe
tively.

|De
ryption and Veri�
ation: For 
iphertext (


1

; 


2

; 


3

) or signature (


0

1

; 


2

; 


3

), we re-


over w = f

�1

(


1

) or w = f(


0

1

), respe
tively. Next, we 
al
ulate xjjr from E

sym

G(w)

(


2

),

and 
he
k whether both "w = H

0

(xjjr) and 


3

= H(xjjr; w; 


1

; 


2

)" or both "w = H

0

(xjjr)

9



x rw

G

H




2




1

key

E

sym

f=f

�1




3

Figure 2: REACT-ES

and 


3

= H(xjjr; w; 


0

1

; 


2

)", respe
tively. If the 
he
k passes, we return x as the plaintext

or the message, respe
tively; otherwise Reje
t.

We use the following theorems to examine the se
urity of REACT-ES. The proof are

des
ribed in Appendix A and B, respe
tively.

Theorem 5 (Se
urity result of REACT-ES(E)) Let the symmetri
 en
ryption s
heme

be (�

0

; �)-se
ure

9

, and let A be an adversary that breaks REACT-ES in (�; q

D

, q

�

; q

G

; q

H

0

; q

H

; �)

in the sense of IND-CCA2&ACMA. Then:

�

Su



ow

(�

0

) � �� � �

q

H

0

+q

�

2

k

0

�

q

D

2

k

1

�

0

� � + (q

G

+ q

H

+ 2q

H

0

+ 2q

�

)T

f

where T

f

denotes the time 
omplexity of f .

Theorem 6 (Se
urity result of REACT-ES(S)) Let F be a forger that breaks REACT-

ES in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of EUF-CCA2&ACMA. Then:

�

Su



ow

(�

0

) � ��

q

H

0

q

�

2

k

0

�

q

D

+1

2

k

1

�

0

� � + (2q

H

0

+ 2q

�

+ 1)T

f

where T

f

denotes the time 
omplexity of f .

4 PSS-ES

4.1 Se
urity of PSS-ES(E)

The se
urity proof of PSS-ES(E) in [4℄ (Theorem 2 and Lemma 4) has two minor te
hni
al

mistakes as follows: (i) the number of queries (about w) to G is not q

H

0

+ q

�

(the last

line in page 14 of [4℄) but q

G

+ q

H

0

+ q

�

be
ause G(w) may be de�ned by query w to

G dire
tly, (ii) this proof overlooks 
al
ulation time (q

H

0

+ q

�

)T

f

as part of the 
ost of

querying the de
ryption ora
le (line 10 in page 14 of [4℄, reading in Lemma 1's results into

proof of Lemma 4). This 
onsideration of these problems yields the following se
urity

result.

9

See the de�nition of se
urity model of symmetri
 en
ryption s
heme in Appendix A.

10



Theorem 7 (Se
urity result of PSS-ES(E)) Let A be an adversary that breaks

PSS-ES(E) in (�; q

D

; q

�

; q

G

; q

H

0

; �) in the sense of IND-CCA2&ACMA. Then:

8

<

:

Su



pd�ow

(�

0

) �

1

q

G

+q

H

0

+q

�

�

��

q

H

0

+q

�

2

k

0

�

(q

H

0

+q

�

)(q

G

+q

H

0

+q

�

)+q

D

2

k

1

�

�

0

� � + 2(q

H

0

+ q

�

)T

f

where T

f

denotes the time 
omplexity of f .

4.2 Se
urity of PSS-ES(S)

The proof of Theorem 3 in [4℄ has three minor te
hni
al mistakes as follows: (i) it misses

the probability

q

�

2

k

0

that appears be
ause I 
annot answer the signing query for the pair

of message and random integers implanting � previously

10

, (ii) the number of queries w

to G is not q

H

0

+ q

�

(line 18 in page 16 of [4℄) but q

G

+ q

H

0

+ q

�

be
ause G(w) may

be de�ned by the query w to G dire
tly, (iii) this proof overlooks the 
al
ulation time

(q

H

0

+ q

�

)T

f

as part of the 
ost of querying the de
ryption ora
le (line 9 in page 16 of

[4℄, reading in Lemma 1's results into proof of Theorem 3). This 
onsideration of these

problems yields the following se
urity result.

Theorem 8 (Se
urity result of PSS-ES(S)) If F is a forger that breaks PSS-ES(S)

in (�; q

D

; q

�

; q

G

; q

H

0

; �) in the sense of EUF-CCA2&ACMA, then:

(

Su



ow

(�

0

) � ��

q

H

0

q

�

2

k

0

�

(q

H

0

+q

�

)(q

G

+q

H

0

+q

�

)+q

D

+1

2

k

1

�

0

� � + (2q

H

0

+ 2q

�

+ 1)T

f

where T

f

denotes the time 
omplexity of f .

5 Redu
tion EÆ
ien
y

We evaluate the se
urity of RSA-OAEP-ES, RSA-OAEP++-ES, and RSA-REACT-ES

following the approa
h taken by Nakashima and Okamoto [10℄ and 
ompare them to

RSA-PSS-ES. For ea
h s
heme, we 
onsider the usages of en
ryption and signature.

Referen
e [10℄ uses the re
ommended key size in order to 
on�rm that no adversary

has the ability to break the 1024, 2048 bits fa
toring problem. In estimating the key

size, we use Lemma 4 of [5℄ to modify the se
urity statement of RSA-PSS-ES; that is,

f 's partial-domain one-wayness is repla
ed by one-wayness of RSA permutation paying

the 
ost of running time and de
reasing the su

ess probability.

Throughout this evaluation, we assume that breaking the RSA problem is equivalent

to solving the fa
toring problem, and that k

0

and k

1

are enough large so that fa
tors

that suppress the redu
tion eÆ
ien
y 
an be ignored. The 
omplexity of the fa
toring

problem is measured by applying a number �eld sieve. Table 1 shows the re
ommended

key size that a
hieves the same 
omplexity as the 1024, 2048 bits fa
toring problem.

10

In our results, sin
e � is embedded q

H

0

times, the 
orresponding probability is

q

H

0

q

�

2

k

0

.
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Table 1: Re
ommended key size

S
heme 1024bit 2048bit

PSS-ES

En
ryption 6221 12452

Signature 1363 2596

OAEP-ES

En
ryption 5252 10838

Signature 1363 2596

OAEP++-ES

En
ryption 1363 2596

Signature 1363 2596

REACT-ES

En
ryption 1363 2596

Signature 1363 2596

As in Table 1, OAEP-ES has better redu
tion eÆ
ien
y than PSS-ES be
ause the

se
urity of PSS-ES(E) is based on partial-domain one-wayness. Therefore, 
ompared to

PSS-ES, OAEP-ES 
an de
rease the key size by more than 950 bits for the 1024 bits

fa
toring problem and by more than 1600 bits for 2048 bits fa
toring problem.

Moreover, as in Table 1, OAEP++-ES and REACT-ES o�er mu
h better redu
tion

eÆ
ien
y than PSS-ES and OAEP-ES, and the key sizes do not in
rease 
omparing with

the number of bits in the fa
toring problem. This is be
ause the running time of the

permutation inverter of OAEP++-ES and REACT-ES are of the order of q

H

0

while that

of OAEP-ES is of order of q

G

q

H

. This means that the key length of OAEP++-ES and

REACT-ES are shorter than that of OAEP-ES.

6 Dis
ussion

OAEP++-ES and REACT-ES are superior to OAEP-ES in terms of the running time of

the permutation inverter, as shown by Theorems 3 and 5 (moreover, sin
e PSS-ES owes

its se
urity to partial-domain one-wayness, its redu
tion eÆ
ien
y is not good).

More pre
isely, when inverting the permutation for PSS-ES and OAEP-ES, the in-

verter should lo
ate the preimage using the produ
t of two hash fun
tions' input/output

lists

11

(G-List and H-List). The inverters of OAEP++-ES and REACT-ES, however, lo-


ate the preimage using only one list (H-List) and the sum of two lists (H-List and G-List),

respe
tively.A

ordingly, the running time of the above theorems on OAEP++-ES and

REACT-ES are less than those on PSS-ES and OAEP-ES.

Therefore, as des
ribed in Se
tion 5, the re
ommended key sizes that provide the

same 
omplexity as the 1024, 2048 bits fa
toring problem are, for OAEP++-ES and

REACT-ES, mu
h shorter than those of PSS-ES and OAEP-ES, and are about the same

as the bit size of the fa
toring problem.

Hereafter, let us 
ompare OAEP++-ES and REACT-ES. With regard to 
ommuni-


ation eÆ
ien
y, following [7℄ and [3℄, we 
an en
rypt and sign on any length plaintext

11

For PSS-ES, when repla
ing the partial-domain one-wayness to the one-wayness as in Lemma 4 of

[5℄, we ought to run the adversary twi
e and get two input/output lists (two G-Lists).
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and message, respe
tively. In OAEP++-ES, if jsj (the length of 
on
atenation of plain-

text/massage x and random integer r) is larger than k (the key length of publi
 key


ryptography), then we divide s into s

L

and s

R

with js

R

j = k, and operate the permu-

tation only on s

R

. In REACT-ES, sin
e the plaintext or massage is not the input data

of the permutation but they are masked with hash value, we 
an en
rypt and sign on

any length plaintext and message. However, in order to utilize REACT-ES se
urely, the

output length of H

0

k

1

should be equal to k (= 1024 for RSA, for example), while k

1

is about 160 (this seems to guarantee the 
ollision resistan
e of H

0

) in OAEP++-ES.

Therefore, the length of 
iphertext (signature) for some plaintext (massage) in REACT-

ES is larger than that for the same plaintext (massage) in OAEP++-ES; for example,

assume k = 1024, jrj = 160, k

1

= 160 in OAEP++-ES, and k

1

= k = 1024 and k

2

= 160

in REACT-ES. In this situation, the length of the 
iphertext for plaintext x are jxj+320

bits in OAEP++-ES, and jxj+1644 bits in REACT-ES. Hen
e, OAEP++-ES is sperior

to REACT-ES in 
ommuni
ation eÆ
ien
y, and we 
an 
on
lude OAEP++-ES is the

most pra
ti
al ES s
heme

12

.

7 Con
lusion

This paper �rst gave the general methodology to 
onstru
t an ES s
heme from an en
ryp-

tion s
heme with a padding s
heme and proposed new ES s
hemes, OAEP-ES, OAEP++-

ES, and REACT-ES, whi
h use a unique padding s
heme and key pair to realize en
ryp-

tion and signature. It also proved that these two usages of proposed s
hemes satisfy

IND-CCA2&ACMA and EUF-CCA2&ACMA, respe
tively. These s
hemes are suitable for

implementation be
ause they need only one padding s
heme and key pair.

Moreover, OAEP++-ES and REACT-ES o�er mu
h better redu
tion eÆ
ien
y than

PSS-ES and OAEP-ES. Using the evaluation of [10℄, the diÆ
ulty of breaking OAEP++-

ES or REACT-ES is almost equal to that of the key size fa
toring problem. Hen
e, we


on
lude that OAEP++-ES and REACT-ES are more eÆ
ient than PSS-ES or OAEP-

ES. Furthermore, from the view of the 
ommuni
ation eÆ
ien
y, the length of a 
ipher-

text for some plaintext in OAEP++-ES is shorter than that of the same plaintext in

REACT-ES; we 
an 
on
lude that OAEP++-ES is the most pra
ti
al 
andidate due to

the tightness of its se
urity and its improved 
ommuni
ation eÆ
ien
y.

This paper also 
orre
ted the original (minor) mistakes made in proving the se
urity

of PSS-ES.
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Note that [8℄ 
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ludes REACT-ES is the most pra
ti
al ES s
heme; [8℄ does not follow [7℄ and [3℄.
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A Proof of Theorem 5

We follow the de�nition of symmetri
 en
ryption s
heme and its se
urity model from

[11℄.

De�nition 6 (Symmetri
 En
ryption S
heme) A symmetri
 en
ryption s
heme with

a key-length k, on messages of length l, 
onsists of two algorithms (E

sym

;D

sym

) whi
h

depend on the k-bit string k, the se
ret key:

| the en
ryption algorithm E

sym

k

(m) outputs a 
iphertext 
 
orresponding to the plain-

text m 2 f0; 1g

l

, in a deterministi
 way;

| the de
ryption algorithm D

sym

k

(
) gives ba
k the plaintext m asso
iated to the 
i-

phertext 
.

De�nition 7 (Semanti
 Se
urity) A symmetri
 en
ryption s
heme is said to seman-

ti
ally se
ure if no polynomial-time atta
ker 
an learn any bit of information about the

plaintext from the 
iphertext, ex
epted the length. More formally, a symmetri
 en
ryption

s
heme is said to (t; �)-ind if for any adversary A = (A

1

; A

2

) with running time bounded

by t, Adv

ind

(A) < �, where

Adv

ind

(A) = 2� Pr

k

R

 f0;1g

k

b

R

 f0;1g

[(m

0

;m

1

; s) A

1

(k); 
 E

sym

k

(m

b

) : A

2

(
; s)

?

= b℄� 1;

in whi
h the probability is also taken over the random 
oins of adversary, and m

0

;m

1

are

two identi
al-length plaintexts 
hosen by the adversary in the message-spa
e f0; 1g

l

.

In the se
urity proof of Theorem 5, assume that the symmetri
 en
ryption s
heme is

(�

0

; �)-se
ure.

A.1 Constru
tion of Inverter I

We give the 
onstru
tion of inverter I that breaks the one-wayness of f about 


+

, by

using adversary A that breaks REACT-ES(E) in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of

IND-CCA2&ACMA, as follows: we input publi
 key f to A, answer the queries that A

asks to the random ora
les, to the de
ryption ora
le, and to the signing ora
le in the

following way, and re
eive 
hallenge (x

0

; x

1

). We then 
hoose b

R

 f0; 1g, r

+

R

 f0; 1g

k

0

,

and k

R

 f0; 1g

k

3

and put 


+

2

= E

sym

k

(x

b

jjr

+

). Moreover, we answer the queries that A

asks in the following way, and �nally, re
eive

^

b (or stop A after its running time � is

over).

In simulating random ora
les G, H

0

, and H, we 
onstru
t input/output lists, G-List,

H

0

-List, and H-List, respe
tively. In G-List, we preserve pair (w;G(w)) of query w and

answer G(w). In H

0

-List, we keep seven-tuple (xjjr;H

0

(xjjr); z; 


1

; 


2

; 


3

; 


0

3

) of query xjjr,

answer H

0

(xjjr), guarantee z; 


2

; 


0

3

for signing queries, and pledge 


1

; 


2

; 


3

for de
ryp-

tion queries. In H-List, we preserve sextuplet (w; xjjr; 


1

; 


2

;H(w; xjjr; 


1

; 


2

)) of query

w; xjjr; 


1

; 


2

and answer H(w; xjjr; 


1

; 


2

).

16



Answering the random ora
le queries to G, H

0

, and H: For new query w

to G, we 
hoose a random integer from f0; 1g

k

3

, put it to G(w), answer to A, and add

(w;G(w)) to G-List. If w has already been queried to G, we lo
ate (w;G(w)) 2 G-List

and answer G(w).

For new query (w; xjjr; 


1

; 


2

) to H, we 
hoose random integer 


3

from f0; 1g

k

2

, put

it to H(w; xjjr; 


1

; 


2

), answer to A, and add (w; xjjr; 


1

; 


2

; 


3

) to H-List. Moreover, we

simulate G(w) in the above way

13

. If (w; xjjr; 


1

; 


2

) has already been queried to H, we

lo
ate (w; xjjr; 


1

; 


2

; 


3

) 2 H-List and answer 


3

.

For new query xjjr to H

0

, we get z

R

 f0; 1g

k

1

, set f(z) = w, and 
al
ulate 


1

= f(w).

Next, we simulate G(w) in the same way des
ribed above, 
al
ulate 


2

= E

sym

G(w)

(xjjr).

Finally, we put 


3

= H(w; xjjr; 


1

; 


2

) and 


0

3

= H(w; xjjr; z; 


2

) by simulating H in the

same way des
ribed above, answer w as H

0

(xjjr) to A, and add (xjjr; w; z; 


1

; 


2

; 


3

; 


0

3

)

to H

0

-List. If xjjr has already been queried to H

0

, we lo
ate (xjjr; w; �; �; �; �; �) 2 H

0

-List

and answer w.

Answering the de
ryption queries to D: In order for de
ryption query y =

(


1

; 


2

; 


3

) to be valid 
iphertext, (xjjr; �; �; 


1

; 


2

; 


3

; �) must be 
ontained in H

0

-List. In

this 
ase, we 
an answer with the 
orresponding plaintext x. Otherwise, we answer Reje
t

sin
e the probability of H

0

(xjjr) = w is negligible.

Answering the signing queries to �: For signing query x to �, we get r

R

 f0; 1g

k

0

and 
he
k whether (xjjr; �; z; �; 


2

; �; 


0

3

) is in H

0

-List. If so, we answer � = (z; 


2

; 


0

3

) to A

as a signature. Otherwise, we 
hoose z

R

 f0; 1g

k

1

, set f(z) = w, and 
al
ulate 


1

= f(w).

Next, we simulate G(w) in the same way des
ribed above, 
al
ulate 


2

= E

sym

G(w)

(xjjr).

Finally, we put 


3

= H(w; xjjr; 


1

; 


2

) and 


0

3

= H(w; xjjr; z; 


2

) by simulating H in

the same way des
ribed above, add (xjjr; w; z; 


1

; 


2

; 


3

; 


0

3

) to H

0

-List, and answer � =

(z; 


2

; 


0

3

) as a signature to A.

A.2 Analysis

Let y

+

= (


+

; 


+

2

; 


+

3

) be a target 
iphertext that we answer to A deviating the proto
ol,

and w

+

, r

+

, and x

+

be 
orresponding elements. In order to analyze the su

ess probabil-

ity of I, we use following notations: AskG and AskH

0

are events for whi
h (w

+

; �) 2 G-List,

and (�jjr

+

; �; �; �; �; �; �) 2 H

0

-List, respe
tively, and moreover, let EBad be an event

14

that

AskH

0

^ [H

0

(x

i

jjr

+

) 6= w

+

for i = 0; 1℄, let DBad be an event that we fail to simulate in

D, and let Bad = EBad _ DBad

15

. Our aim in setting these notations is to estimate the

probability of AskG. At �rst, we divide this event as follows:

Pr[AskG℄ = Pr[AskG ^ Bad℄ + Pr[AskG ^ :Bad℄: (1)

13

We simulate G be
ause we want to 
olle
t the information of input/output on w in G-List; this makes

the estimation of the su

ess probability of the permutation inversion easy.

14

In this event, A may noti
e that we answer y

+

as a target 
iphertext deviating the proto
ol.

15

Note that we never fail to simulate the answer to the signing query, des
ribed in se
tion A.1, and do

not need to 
onsider event �Bad.

17



With regard to Pr[AskG ^ Bad℄ in equation (1), from the de�nition of Bad, we have

Pr[AskG ^ Bad℄ = Pr[Bad℄� Pr[:AskG ^ Bad℄

� Pr[Bad℄� Pr[EBadj:AskG℄� Pr[DBadj:AskG℄: (2)

We 
an estimate Pr[EBadj:AskG℄ in inequality (2) be
ause, by the de�nition of EBad, we

have Pr[EBadj:AskG℄ � Pr[AskH

0

j:AskG℄: Here, Pr[AskH

0

j:AskG℄ �

q

H

0

+q

�

2

k

0

, be
ause if

:AskG o

urs, G(w

+

) and r

+

are random integers for A and it is only by a

ident that

�jjr

+

is queried to H

0

.

Moreover, Pr[DBadj:AskG℄ in inequality (2) is less than

q

D

2

k

1

. Note that in answering to

de
ryption query (


1

; 


2

; 


3

), we sear
h H

0

-List for 
orresponding plaintext x, therefore we

fail to simulate the de
ryption ora
le if A does not query H

0

about xjjr and 
iphertext

(de
ryption query) y output by A is valid. However, if A does not query H

0

about

xjjr, H

0

(xjjr) is uniformly distributed in f0; 1g

k

1

, and then, it is only by a

ident (with

probability

1

2

k

1

) that w = f

�1

(


1

) equals H

0

(xjjr).

Hen
e, we 
an evaluate Pr[AskG ^ Bad℄ in equation (1) by

Pr[AskG ^ Bad℄ � Pr[Bad℄�

q

H

0

+ q

�

2

k

0

�

q

D

2

k

1

: (3)

With regard to the se
ond term of equation (1), it is meaningful to 
onsider the

advantage of A be
ause of the 
ondition :Bad. We 
an do this by evaluating Pr[AskG ^

:Bad℄ as follows:

Pr[AskG ^ :Bad℄ � Pr[A = b ^ AskG ^ :Bad℄

= Pr[A = b ^ :Bad℄� Pr[A = b ^ :AskG ^ :Bad℄: (4)

In inequality (4), both

Pr[A = b ^ :Bad℄ � Pr[A = b℄� Pr[Bad℄ = (

�

2

+

1

2

)� Pr[Bad℄

and

16

Pr[A = b ^ :AskG ^ :Bad℄ = Pr[A = bj:AskG ^ :Bad℄ Pr[:AskG ^ :Bad℄

= (

�

2

+

1

2

)(1� Pr[Bad℄� Pr[AskG ^ :Bad℄)

�

1

2

(1� Pr[Bad℄� Pr[AskG ^ :Bad℄) +

�

2

� 1:

16

Note that in our simulation, if A noti
es the deviation (i.e., if event Bad o

urs), it does not run

for some pairs of random 
oins of A and I. Therefore, Pr[A = b℄ in this inequality is taken over the

random 
oins of A and I in whi
h A does not noti
e the deviation. Though the probabilisti
 spa
e is

restri
ted and smaller than the entire probabilisti
 spa
e, the probability of the event that A = b is equal

to the one taken over the entire probabilisti
 spa
e, from the de�nition of the random ora
le model;

Pr[A = b℄ =

�

2

+

1

2

.

18



hold

17

. Therefore, by substituting above two inequalities into (4),

Pr[AskG ^ :Bad℄ �

�� � � Pr[Bad℄ + Pr[AskG ^ :Bad℄

2

holds and this inequality leads to

Pr[AskG ^ :Bad℄ � �� � � Pr[Bad℄: (5)

Hen
e, the 
onsiderations of equation (1) and inequalities (3) and (5) 
on
lude the

proof of Theorem 5.

The running time �

0

of I is the sum of the following terms: (i) the running time � of

A be
ause we run A on
e, (ii) in order to �nd 
orresponding pair from G-List to 


+

, we


ompute f at most q

G

+ q

H

0

+ q

H

+ q

�

times, i.e., (q

G

+ q

H

0

+ q

H

+ q

�

)T

f

, (iii) in order to

be able to simulate D and �, we 
al
ulate both f(z) and f(w) in simulation of H

0

and

�

18

q

H

0

+ q

�

times, i.e., (q

H

0

+ q

�

)T

f

. Hen
e, �

0

� � + (q

G

+ q

H

+ 2q

H

0

+ 2q

�

)T

f

holds.

B Proof of Theorem 6

B.1 Constru
tion of Inverter I

We give the 
onstru
tion of inverter I that breaks the one-wayness of f about �, by

using forger F that breaks REACT-ES(S) in (�; q

D

; q

�

; q

G

; q

H

0

; q

H

; �) in the sense of

EUF-CCA2&ACMA as follows: we input publi
 key f to F , answer the queries that F

asks to the random ora
les, to the de
ryption ora
le, and to the signing ora
le in the

same way in se
tion A.1, ex
ept those to H

0

and � (des
ribed below). Finally, we re
eive

forgery �

�

= (


�

1

; 


�

2

; 


�

3

) (or stop F after its running time � is over.)

In simulating random ora
les G, H

0

, and H, we 
onstru
t input/output lists, G-List,

H

0

-List, and H-List, respe
tively. G-List holds (w;G(w)), the pairing of query w and

answer G(w). H

0

-List holds (b; xjjr;H

0

(xjjr); z; 


1

; 


2

; 


3

:


0

3

), the bit b = 0=1, query xjjr,

answer H

0

(xjjr), guarantee z; 


2

; 


0

3

for signing queries, and pledge 


1

; 


2

; 


3

for de
ryption

queries. H-List holds (w; xjjr; 


1

; 


2

;H(w; xjjr; 


1

; 


2

)), the pairing of query w; xjjr; 


1

; 


2

and answer H(w; xjjr; 


1

; 


2

).

Answering the random ora
le queries to H

0

For new query xjjr to H

0

, we get z

R

 f0; 1g

k

1

, set f(z)� = w, and 
al
ulate 


1

= f(w).

Next, we simulate G(w) in the same way as in se
tion A.1, 
al
ulate 


2

= E

sym

G(w)

(xjjr).

Finally, we put 


3

= H(w; xjjr; 


1

; 


2

) and 


0

3

= H(w; xjjr; z; 


2

) by simulating in the same

way as in se
tion A.1, answer w as H

0

(xjjr) to F , and add (1; xjjr; w; z; 


1

; 


2

; 


3

; 


0

3

) to

17

Note that the probability that A = b holds under the 
ondition of :AskG and :Bad is equal to the

probability that A 
an distinguish b from x

0

; x

1

and 


+

2

, without se
ret key k; Pr[A = bj:AskG^:Bad℄ =

�

2

+

1

2

. This is be
ause from :Bad, A 
annot noti
e the deviation and performs the same way as in the

real run. Moreover, from :AskG, A 
annot know k = G(w

+

).

18

This seems to require the 
al
ulation of f 2(q

H

0

+ q

�

) times, but q

H

0

+ q

�


al
ulations are suÆ
ient.

Indeed, when we add an element in
luding w to G-List or H-List, we 
he
k whether f(w) = 


+

holds. This

a
tion plays the role of preparing for the simulation of D and is already 
ounted in (ii). Therefore, we


onsider only the preparation for the signing ora
le queries in (iii).

19



H

0

-List. If xjjr has already been queried to H

0

, we lo
ate (�; xjjr; w; �; �; �; �; �) 2 H

0

-List

and answer w.

Answering the signing queries to �: For signing query x to �, we get r

R

 f0; 1g

k

0

and 
he
k whether (0; xjjr; �; z; �; 


2

; �; 


0

3

) is in H

0

-List. If so, we answer � = (z; 


2

; 


0

3

) to

F as a signature. Moreover, if (1; xjjr; �; �; �; �, �; �) is in H

0

-List, we abort. Otherwise,

we 
hoose z

R

 f0; 1g

k

1

, put f(z) = w, and 
al
ulate 


1

= f(w). Next, we simulate

G(w) in the same way as in se
tion A.1, 
al
ulate 


2

= E

sym

G(w)

(xjjr). Finally, we put




3

= H(w; xjjr; 


1

; 


2

) and 


0

3

= H(w; xjjr; z; 


2

) by simulating in the same way as in

se
tion A.1, add (0; xjjr; w; z; 


1

; 


2

; 


3

; 


0

3

) to H

0

-List, and answer � = (z; 


2

; 


0

3

) as a

signature to F .

B.2 Analysis

Let �

�

= (


�

1

; 


�

2

; 


�

3

) be a forgery output by F ; w

�

, r

�

, and x

�

are the 
orresponding

elements. In order to analyze the su

ess probability of I, let DBad be the same event as

in A.2, �Bad an event that I fails to simulate in �, and Bad = DBad_�Bad. Moreover,

let S be an event that V

pk

(�

�

) = x

�

, and let AskH

0

be one that F queries dire
tly H

0

about x

�

jjr

�

.

At �rst, we 
onsider

1 = Pr[Bad℄ + Pr[:Bad℄: (6)

With regard to Pr[Bad℄ � Pr[DBad℄ + Pr[�Bad℄ in equation (6), we have

Pr[Bad℄ �

q

H

0

q

�

2

k

0

+

q

D

2

k

1

: (7)

In fa
t, Pr[DBad℄ is evaluated in the same way as in se
tion A.2. On the other hand,

Pr[�Bad℄ is bounded by q

�

(

q

H

0

2

k

0

). Note that in simulating the answer signing query x, we

�rst 
hoose random integer r and z for the 
andidate of the signature, and simulate H

0

about xjjr. In this phase, �Bad o

urs if xjjr has already queried to H

0

by F dire
tly,

be
ause we 
an not 
al
ulate f

�1

(�). For a signing query, the probability that xjjr is

queried to H

0

is bounded by

q

H

0

2

k

0

19

be
ause of randomness of r, and then, we 
an estimate

Pr[�Bad℄ by q

�

(

q

H

0

2

k

0

).

With regard to Pr[:Bad℄ in equation (6), we divide event :Bad by S and have

Pr[:Bad℄ = Pr[S ^ :Bad℄ + Pr[:S ^ :Bad℄: (8)

In this equation (8),

Pr[:S ^ :Bad℄ � Pr[:Sj:Bad℄ = 1� Pr[Sj:Bad℄ = 1� � (9)

holds

20

.

19

Note that for signing query x, if we 
hoose random integer r su
h that xjjr is queried toH

0

through the

past signing query, we 
an reply this query by lo
ating 
orresponding signature from H

0

-List. Therefore,

we only 
onsider the 
ase that xjjr has already queried to H

0

by F dire
tly, in the estimation of �Bad.

20

Note that the su

ess probability of F under the 
ondition that F does not noti
e the simulation is

equal to the one in real run and this leads Pr[Sj:Bad℄ = �.

20



Next, we estimate Pr[S^:Bad℄ in equation (8) by dividing event S^:Bad by AskH

0

:

Pr[S ^ :Bad℄ = Pr[S ^ :Bad ^ AskH

0

℄ + Pr[S ^ :Bad ^ :AskH

0

℄:

In this equality, Pr[S ^ :Bad ^ :AskH

0

℄ is bounded by

1

2

k

1

be
ause it is an in
ident that

H

0

(x

�

jjr

�

) = w

�

if (1; x

�

jjr

�

; �; �; �; �; �; �) =2 H

0

-List holds. On the other hand, we have

Pr[S^:Bad^AskH

0

℄ � Pr[S^AskH

0

℄ � Su



ow

(�

0

) be
ause if both (1; x

�

jjr

�

; �; z

�

; �; �; �; �) 2

H

0

-List and S hold, then we 
an 
ompute




�

1

z

�

=

f

�1

(f(z

�

)�)

z

�

= f

�1

(�) from the multipli
ative

property of f . Therefore, we have

Pr[S ^ :Bad℄ � Su



ow

(�

0

) +

1

2

k

1

: (10)

By substituting inequalities (9) and (10) into equation (8), we have

Pr[:Bad℄ � Su



ow

(�

0

) +

1

2

k

1

+ 1� �: (11)

Finally, if we substitute inequalities (7) and (11) into equation (6), we 
an 
on
lude

the proof of Theorem 6.

The running time �

0

of I is the sum of the following terms: (i) the running time � of

F be
ause we run F on
e, (ii) in the simulation of �, we have to prepare the answer for

queries toD and �, i.e., 2q

�

T

f

, (iii) in the simulation ofH

0

, we have to prepare the answer

for queries to D and to implant �, i.e., 2q

H

0

T

f

, (iv) we have to �nd z

�


orresponding to




�

1

by 
omputing f(


�

1

) on
e, i.e., T

f

. Hen
e, �

0

� � + (2q

H

0

+ 2q

�

+ 1)T

f

holds.

C Proof of Theorem 7

In order to prove Theorem 7, we prove the following lemma.

Lemma 1 Let A be an adversary that breaks PSS-ES(E) in (�; q

D

; q

�

; q

G

; q

H

0

) in the

sense of IND-CCA2&ACMA. Then:

(

Su



s�pd�ow

(q

G

+ q

H

0

+ q

�

; �

0

) � ��

q

H

0

+q

�

2

k

0

�

(q

H

0

+q

�

)(q

G

+q

H

0

+q

�

)+q

D

2

k

1

�

0

� � + 2(q

H

0

+ q

�

)T

f

where T

f

denotes the time 
omplexity of f .

C.1 Constru
tion of Inverter I

We give the 
onstru
tion of inverter I that breaks the set partial-domain one-wayness of

f about y

+

, by using adversary A that breaks PSS-ES in (�; q

D

; q

�

; q

G

; q

H

0

; �) in the sense

of IND-CCA2&ACMA, as follows: we input publi
 key f to A, answer the queries that A

asks to both random ora
les, to the de
ryption ora
le, and to the signing ora
le in the

following way, and re
eive 
hallenge (x

0

; x

1

). We then 
hoose b 2 f0; 1g at random and

return y

+

to A as the target 
iphertext 
orresponding to x

b

without using the en
ryption

21



rules. Moreover, we answer the queries that A asks in the same manner, and �nally,

re
eive

^

b. (Or A uses up its running time.)

In simulating random ora
les G and H

021

, we 
onstru
t input/output lists, G-List

and H

0

-List, respe
tively. In G-List, we preserve pair (w;G(w)) of query w and answer

G(w). In H

0

-List, we keep quadruplet (xjjr;H

0

(xjjr); z; y) of query xjjr, answer H

0

(xjjr),

guarantee z for signing queries, and pledge y for de
ryption queries.

In this strategy, in order forA to distinguish target y

+

, A is expe
ted to queryG about

w

+

= [f

�1

(y

+

)℄

k

1

22

. Hen
e, we 
an output G-List that will 
ontain w

+

= [f

�1

(y

+

)℄

k

1

.

Answering the random ora
le queries to G and H

0

For new query w to G, we 
hoose random integer from f0; 1g

n+k

0

, put it to G(w),

answer to A, and add (w;G(w)) to G-List. If w has already been queried G, we sear
h

(w;G(w)) 2 G-List and answer G(w).

For new query xjjr to H

0

, we get z

R

 f0; 1g

k

and divide f(z) = sjjw (here, jsj =

n+ k

0

,jwj = k

1

). In this phase, if (w; �) has already been in G-List, we abort. Otherwise,

we set G(w) = s�(xjjr) and simulate G. Finally, we answer w as H

0

(xjjr) to A, 
al
ulate

y = f(sjjw) in order of the de
ryption queries, and add (xjjr; w; z; y) to H

0

-List. If xjjr has

already been queried to G, we sear
h (xjjr;H

0

(xjjr); �; �) 2 H

0

-List and answer H

0

(xjjr).

Answering the de
ryption queries to D

We denote the elements of de
ryption query y, as w, r, and x. In order for y to be valid


iphertext, A must have queried H

0

about xjjr and in this 
ase, (xjjr; �; �; y) is in H

0

-List

so we 
an answer with the 
orresponding plaintext x. Otherwise, we answer Reje
t sin
e

the probability of H

0

(xjjr) = w is negligible.

Answering the signing queries to �

For signing query x to �, we get r

R

 f0; 1g

k

0

and 
he
k whether (xjjr; �; z; �) is in H

0

-List.

If so, we answer z to A as a signature. Otherwise, we 
hoose z

R

 f0; 1g

k

, and divide

f(z) = sjjw (here, jsj = n+k

0

,jwj = k

1

). In this phase, if (w; �) has already been in G-List,

we abort. Otherwise, we put G(w) = s � (xjjr) and simulate G. Finally, we 
al
ulate

y = f(sjjw) in order of the de
ryption queries, set H

0

(xjjr) = w, add (xjjr; w; z; y) to

H

0

-List, and answer z as a signature.

C.2 Analysis

Let y

+

be a target 
iphertext that we return to A deviating the proto
ol; s

+

, w

+

, and

r

+

are the 
orresponding elements. In order to analyze the su

ess probability of I,

we use following notations: AskG and AskH

0

are events for whi
h (w

+

; �) 2 G-List and

(�jjr

+

; �; �; �) 2 H

0

-List, respe
tively. Moreover, let EBad be an event

23

that AskG^ (x

i

6=

[G(w

+

)� s

+

℄

n

) or that AskH

0

^ (H

0

(x

i

jjr

+

) 6= w

+

), let H'Bad, DBad, and �Bad be events

that we fail to simulate in H

0

, D, and �, respe
tively, and let Bad = H'Bad _ EBad _

DBad_�Bad. Our aim in setting these notations is to estimate the probability of AskG.

21

We simulate G and H

0

for dire
t queries output to G and H

0

, respe
tively, and moreover, for the

queries output to other ora
les, indire
tly, too.

22

Here, [a℄

b

and [a℄

b

denote the b least signi�
ant bits and most signi�
ant bits of a, respe
tively.

23

In this event, A may noti
e that I answers y

+

as a target 
iphertext deviating the proto
ol.

22



At �rst, we divide this event as follows:

Pr[AskG℄ = Pr[AskG ^ Bad℄ + Pr[AskG ^ :Bad℄ (12)

With regard to Pr[AskG ^ Bad℄ in equation (12), from the de�nition of Bad, we have

Pr[AskG ^ Bad℄ = Pr[Bad℄� Pr[:AskG ^ Bad℄

� Pr[Bad℄� Pr[H'Badj:AskG℄� Pr[EBadj:AskG℄

�Pr[DBadj:AskG℄� Pr[�Badj:AskG℄: (13)

We 
an estimate Pr[H'Badj:AskG℄ in inequality (13) by q

H

0

(

q

G

+q

H

0

+q

�

2

k

1

) be
ause through-

out the simulation of H

0

, it is only by a

ident that random integer w already be-

longs to G-List

24

. For the same reason, Pr[�Badj:AskG℄ in inequality (13) is bounded

by q

�

(

q

G

+q

H

0

+q

�

2

k

1

). Moreover, through the de
ryption query, sin
e it is only by a

i-

dent that w equals H

0

(xjjr) under the 
ondition that A does not query H

0

about xjjr,

Pr[DBadj:AskG℄ in inequality (13) is less than

q

D

2

k

1

.

With regard to Pr[EBadj:AskG℄ in inequality (13), from the de�nition of EBad,

we have Pr[EBadj :AskG℄ � Pr[AskGj:AskG℄ + Pr[AskH

0

j:AskG℄. In this inequality,

Pr[AskGj:AskG℄ = 0 and Pr[AskH

0

j :AskG℄ �

q

H

0

+q

�

2

k

0

hold. In fa
t, with regard to the

latter term, sin
e if :AskG happens, r

+

= [s

+

�G(w)℄

k

0

is a uniform integer in f0; 1g

k

0

,

then (�jjr

+

; �; �; �) 2 H

0

-List o

urs only by a

ident.

Hen
e, we have

Pr[AskG ^ Bad℄ � Pr[Bad℄�

q

H

0

+ q

�

2

k

0

�

(q

H

0

+ q

�

)(q

G

+ q

H

0

+ q

�

) + q

D

2

k

1

: (14)

With regard to the se
ond term of equation (12), it is meaningful to 
onsider the

advantage of A be
ause of the 
ondition :Bad. We 
an do this by evaluating Pr[AskG ^

:Bad℄ as follows:

Pr[AskG ^ :Bad℄ � Pr[A = b ^ AskG ^ :Bad℄

= Pr[A = b ^ :Bad℄� Pr[A = b ^ :AskG ^ :Bad℄: (15)

In this inequality, we have both

25

Pr[A = b ^ :Bad℄ � Pr[A = b℄� Pr[Bad℄

= (

�

2

+

1

2

)� Pr[Bad℄

24

Although in the proof of [4℄, the number of w queried to G is q

H

0

+ q

�

, it should be estimated by

q

G

+ q

H

0

+ q

�

be
ause w may be queried to G dire
tly.

25

For equality (16), note that if :Bad o

urs, then A 
an exer
ise its ability to distinguish the target


iphertext with probability

�

2

+

1

2

(� 1). For equality (16), note that if :AskG and :Bad then A neither

noti
es the dishonest repla
ement of the target 
iphertext nor distinguishes the target validly, �.e., under

these 
onditions, Pr[A = b℄ is at most

1

2

(by a

ident).

23



and

26

Pr[A = b ^ :AskG ^ :Bad℄ = Pr[A = bj:AskG ^ :Bad℄ Pr[:AskG ^ :Bad℄

=

1

2

(1� Pr[Bad℄� Pr[AskG ^ :Bad℄): (16)

Therefore, Pr[AskG ^ :Bad℄ �

��Pr[Bad℄+Pr[AskG^:Bad℄

2

holds and this inequality leads to

Pr[AskG ^ :Bad℄ � �� Pr[Bad℄: (17)

Hen
e the 
onsideration of inequalities (13), (14), and (17) 
on
ludes the proof of

Theorem 1.

The running time �

0

of I is the sum of the following terms: (i) the running time � of

A be
ause we run A on
e, (ii) in order to be able to simulate D and �, we 
al
ulate both

f(z) and f(sjjt) 2(q

H

0

+ q

�

) times in simulating H

0

and �, i.e., 2(q

H

0

+ q

�

)T

f

. Hen
e,

�

0

� � + 2(q

H

0

+ q

�

)T

f

holds.

D Proof of Theorem 8

D.1 Constru
tion of Inverter I

We give the 
onstru
tion of inverter I that breaks the one-wayness of f about �, by using

forger F that breaks PSS-ES in (�; q

D

; q

�

; q

G

; q

H

0

; �) in the sense of EUF-CCA2&ACMA,

as follows: we input publi
 key f to F , answer the queries that F asks to random ora
les,

to the de
ryption ora
le, and to the signing ora
le as follows: Finally, we re
eive forgery

y

�

(or stops F after its running time � is over).

In simulating random ora
les

27

G and H

0

, we 
onstru
t input/output lists, G-List

and H

0

-List, respe
tively. G-List holds (w;G(w)), the pairing of query w and answer

G(w). H

0

-List holds (b; xjjr;H

0

(xjjr); z; y), the bit b = 0=1

28

, query xjjr, answer H

0

(xjjr),

guarantee z for signing queries, and pledge y for the de
ryption queries.

In this strategy, in order for F to output valid signature �

�

, F queries H

0

about

x

�

jjr

�29

; in this 
ase, we 
an �nd f

�1

(�) =

y

�

z

�

.

Answering the random ora
le queries to G and H

0

For new query w to G, we 
hoose random integer from f0; 1g

n+k

0

, put it to G(w),

answer to F , and add (w;G(w)) to G-List. If w has already been queried G, we sear
h

(w;G(w)) 2 G-List and answer G(w).

26

Note that Pr[A = b℄ in this inequality is taken over the random 
oins of A and I in whi
h A does not

noti
e the simulation. The probabilisti
 spa
e is restri
ted and smaller than the entire probabilisti
 spa
e,

however, the probability of the event that A = b is equal to the one taken over the entire probabilisti


spa
e,

�

2

+

1

2

, from the de�nition of the random ora
le model.

27

We simulate G and H

0

for dire
t queries output to G and H

0

, respe
tively, and moreover, for the

queries output to other ora
les, indire
tly, too.

28

b = 0 means that � is not embedded for the xjjr, and b = 1 means that � is implanted for the xjjr.

29

Pre
isely, F 
an forge �

�

without querying x

�

jjr

�

to H

0

. We 
onsider this 
ase below and estimate

the su

ess probability of I.

24



For new query xjjr to H

0

, we get z

R

 f0; 1g

k

and divide f(z)� = sjjw (here, jsj =

n+ k

0

,jwj = k

1

). In this phase, if (w; �) has already been in G-List, we abort. Otherwise,

we set G(w) = s � (xjjr) and simulate G. Finally, we 
al
ulate y = f(sjjw) in order of

the de
ryption queries, answer w as H

0

(xjjr) to F , and add (1; xjjr; w; z; y) to H

0

-List. If

xjjr has already been queried to H

0

, we lo
ate (�; xjjr;H

0

(xjjr); �; �) 2 H

0

-List and answer

H

0

(xjjr).

Answering the de
ryption queries to D

We denote the elements of de
ryption query y, as w, r, and x. In order for y to be valid


iphertext, F must have queried H

0

about xjjr and in this 
ase, (xjjr; �; �; y) is in H

0

-List

so we 
an answer with the 
orresponding plaintext x. Otherwise, we answer Reje
t sin
e

the probability of H

0

(xjjr) = w is negligible.

Answering the signing queries to �

For signing query x to �, we get r

R

 f0; 1g

k

0

and 
he
k whether (0; xjjr; �; z; �) is

in H

0

-List. If so, we answer z to F as a signature. Moreover, if (1; xjjr; �; �; �) is in

H

0

-List, we abort. Otherwise, we 
hoose z

R

 f0; 1g

k

, and divide f(z) = sjjw (here,

jsj = n + k

0

,jwj = k

1

). In this phase, if (w; �) has already been in G-List, we abort.

Otherwise, we put G(w) = s� (xjjr) and simulate G. Finally, we 
al
ulate y = f(sjjw)

in order of the de
ryption queries, set H

0

(xjjr) = w, add (0; xjjr; w; z; y) to H

0

-List, and

answer z as a signature.

D.2 Analysis

Let y

�

be a forgery output by F ; s

�

, w

�

, and r

�

are the 
orresponding elements. In

order to analyze the su

ess probability of I, we use H'Bad, DBad, and �Bad in the same

manner as in se
tion D.2, and Bad = H'Bad_DBad_�Bad. Moreover, let S be an event

that V

pk

(�

�

) = x

�

, and let AskH

0

be an event in whi
h F queries H

0

dire
tly about x

�

jjr

�

.

At �rst, we 
onsider

1 = Pr[Bad℄ + Pr[:Bad℄: (18)

With regard to Pr[Bad℄ in equation (18), from the de�nition of Bad,

Pr[Bad℄ � Pr[H'Bad℄ + Pr[DBad℄ + Pr[�Bad℄

holds. In this inequality, we 
an estimate Pr[H'Bad℄ by q

H

0

(

q

G

+q

H

0

+q

�

2

k

1

) be
ause through-

out the simulation of H

0

, it is only by a

ident that random integer w already belongs

to G-List

30

. Moreover, through the de
ryption query, sin
e it is only by a

ident that w

equals H

0

(xjjr) under the 
ondition that A does not query H

0

about xjjr, Pr[DBad℄ is

less than

q

D

2

k

1

. On the other hand, in the simulation of �, Pr[�Bad℄ is given as the sum

of q

�

q

H

0

2

k

0

, whi
h represents the event of simulation abort be
ause (1; xjjr; �; �; �) 2 H

0

-List

happens for random integer r, and q

�

q

G

+q

H

0

+q

�

2

k

1

, whi
h represents the event that random

30

Although in the proof of [4℄, the number of w queried to G is q

H

0

+ q

�

, it should be estimated by

q

G

+ q

H

0

+ q

�

be
ause w may be queried to G dire
tly.

25



integer w is 
ontained in G-List. Therefore, we have

Pr[Bad℄ �

q

H

0

q

�

2

k

0

+

(q

H

0

+ q

�

)(q

G

+ q

H

0

+ q

�

) + q

D

2

k

1

: (19)

With regard to Pr[:Bad℄ in equation (18), we divide event :Bad by S and have

Pr[:Bad℄ = Pr[S ^ :Bad℄ + Pr[:S ^ :Bad℄: (20)

In this equality (20),

Pr[:S ^ :Bad℄ � Pr[:Sj:Bad℄

= 1� Pr[Sj:Bad℄

= 1� � (21)

holds

31

.

Next, we estimate Pr[S^:Bad℄ in equation (20) by dividing event S^:Bad by AskH

0

:

Pr[S ^ :Bad℄ = Pr[S ^ :Bad ^ AskH

0

℄ + Pr[S ^ :Bad ^ :AskH

0

℄:

In this equality, Pr[S ^ :Bad ^ :AskH

0

℄ is bounded by

1

2

k

1

be
ause it is only by a

ident

that H

0

(x

�

jjr

�

) = w

�

if (1; x

�

jjr

�

; �; �; �) =2 H

0

-List holds. On the other hand, we have

Pr[S ^ :Bad ^ AskH

0

℄ � Pr[S ^ AskH

0

℄ � Su



ow

(�

0

) be
ause if both (1; x

�

jjr

�

; �; z

�

; �) 2

H

0

-List and S hold, we 
an 
ompute

�

�

z

�

=

f

�1

(f(z

�

)�)

z

�

= f

�1

(�) from the multipli
ative

property of f . Therefore, we have

Pr[S ^ :Bad℄ � Su



ow

(�

0

) +

1

2

k

1

: (22)

By substituting inequalities (21) and (22) into equation (20), we have

Pr[:Bad℄ � Su



ow

(�

0

) +

1

2

k

1

+ 1� �: (23)

Finally, if we substitute inequalities (19) and (23) into equation (18), we 
an 
on
lude

the proof of Theorem 8.

The running time �

0

of I is the sum of the following terms: (i) the running time � of

F be
ause we run F on
e, (ii) in the simulation of �, we have to prepare the answer to

queries toD and �, i.e., 2q

�

T

f

, (iii) in the simulation ofH

0

, we have to prepare the answer

for queries to D and to implant �, i.e., 2q

H

0

T

f

, (iv) we have to �nd z

�


orresponding to

�

�

by 
omputing f(�

�

) on
e, i.e., T

f

. Hen
e, �

0

� � + (2q

H

0

+ 2q

�

+ 1)T

f

holds.

31

Note that the su

ess probability of F under the 
ondition that F does not noti
e the simulation is

� and this leads to Pr[Sj:Bad℄ = �.
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