Efficient Universal Padding Schemes for Multiplicative
Trapdoor One-way Permutation*'

Yuichi Komano? Kazuo Ohtal

January 5, 2004

Abstract

Coron et al. proposed the ES-based scheme PSS-ES which realizes an encryption
scheme and a signature scheme with a unique padding scheme and key pair. The se-
curity of PSS-ES as an encryption scheme is based on the partial-domain one-wayness
of the encryption permutation. In this paper, we propose new ES schemes OAEP-
ES, OAEP++-ES, and REACT-ES, and prove their security under the assumption
of only the one-wayness of encryption permutation. OAEP-ES, OAEP++-ES, and
REACT-ES suit practical implementation because they use the same padding scheme
for encryption and for signature, and their security proof guarantees that we can pre-
pare one key pair to realize encryption and signature in the same way as PSS-ES.
Since one-wayness is a weaker assumption than partial-domain one-wayness, the pro-
posed schemes offer tighter security than PSS-ES. Hence, we conclude that OAEP-
ES, OAEP++-ES, and REACT-ES are more effective than PSS-ES. OAEP++-ES is
the most practical approach in terms of the tightness of security and communication
efficiency.

“A part of this work was performed in the master course of the first author at Waseda University,
3-4-1, Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.

fThe proceedings version of this paper [8] appeared in Advances in Cryptology — CRYPTO ’03, Lecture
Notes in Computer Science, vol. 2729, D. Boneh ed., Springer-Verlag, 2003. This is the full version and
reconsiders the communication efficiency of ES schemes discussed in [8].

#The Corporate Research and Development Center, Toshiba Corporation, 1, Komukai Toshiba-cho,
Saiwai-ku, Kawasaki-shi, Kanagawa 212-8582, Japan. e-mail)yuichil.komano@toshiba.co.jp

SDepartment of Information and Communication Engineering, The University of Electro-
Communications, 1-5-1, Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan. e-mail)ota@ice.uec.ac.jp

Contents
1 Introduction

2 Definitions
2.1 ES scheme with Universal Padding Scheme
2.2 Assumption of One-way Permutation

3 Proposal Schemes

3.1 Methodology

3.2 OAEP-ES

3.3 OAEP++-ES

3.4 REACT-ES
4 PSS-ES

4.1 Security of PSS-ES(E)

4.2 Security of PSS-ES(S)

5 Reduction Efficiency
6 Discussion

7 Conclusion
Acknowledgments

References

A Proof of Theorem 5
A1 Construction of Inverter Z
A2 Analysis oL

B Proof of Theorem 6
B.1 Construction of Inverter Zo
B.2 Analysis e e e e

C Proof of Theorem 7
C.1 Construction of Inverter Z e
C.2 Analysis

D Proof of Theorem 8
D.1 Construction of Inverter Z e
D.2 Analysis e e e e

(RN

© o~ ~S

1 Introduction

Since the invention of the RSA encryption scheme [12], there have been a lot of inter-
est in standardization and investigations into public key cryptosystems, in particular
those for encryption and signature schemes. The encryption scheme OAEP (Optimal
Asymmetric Encryption Padding, [2]) and the signature scheme PSS (Probabilistic Sig-
nature Scheme, [3]) are considered to be practical because they offer the strongest secu-
rity level: IND-CCA2 (indistinguishability against adaptive chosen ciphertext attack) and
EUF-ACMA (exzistentially unforgeable against adaptive chosen message attack).

OAEP first pads and then encrypts the plaintext while PSS pads and then signs
the message; for encryption (signature), the trapdoor one-way permutation is applied
in the direct (inverse) direction. Coron et al. [4] proposed the ES scheme (Encryption-
Signature scheme'!) PSS-ES, which is based on the message recovery signature scheme
PSS-R [3], and proved its security. For encryption and signature, PSS-ES uses a shared
padding scheme and key pair; the public key and the private key are chosen adequately
for encryption and signing, respectively. Hence this scheme is useful in terms of imple-
mentation. The security proofs in [4], however, have some (minor) technical mistakes.
Moreover, even if these mistakes are corrected, the fact that the security of PSS-ES as
an encryption scheme is based on partial-domain one-wayness of the encryption per-
mutation, decreases the reduction efficiency; it must use long keys to achieve adequate
security.

This paper gives the exact security of PSS-ES by correcting the (minor) problems
in [4]. Moreover, this paper introduces new ES schemes, OAEP-ES and REACT-ES,
that are based on OAEP+ [13] and REACT [11], respectively. The proposed schemes
satisfy IND-CCA2&ACMA (Indistinguishability against adaptive chosen ciphertext attack
and adaptive chosen message attack) as an encryption scheme and EUF-CCA2&ACMA
(Ezistentially unforgeable against adaptive chosen ciphertext attack and adaptive chosen
message attack) as a signature scheme under the assumption of only the one-wayness
of the permutation, while PSS-ES relies upon the partial-domain one-wayness of the
encryption permutation for its security as an encryption scheme.

The rest of this paper is organized as follows. Section 2 recalls the definitions of the
ES scheme and its security notations. Section 3 proposes new ES schemes, OAEP-ES
and REACT-ES, and gives their security. In section 4, we point out the problems of
original security proof of PSS-ES, given by Coron et al. [4], and give its exact security.
In sections 5 and 6, we compare reduction efficiency of proposed schemes with the one of
PSS-ES following the estimation of Nakashima and Okamoto [10] and discuss the reason
why our schemes are more practical than PSS-ES. Furthermore, Appendices A and B
present the security proofs of REACT-ES.

As a result, OAEP-ES, OAEP++-ES, and REACT-ES can realize secure encryption-
signature scheme (ES scheme) with a unique padding scheme and key pair; their reduction
efficiency are much better than those of PSS-ES. Due to the high reduction efficiency of

!The ES scheme differs from signcryption [14]; the ES scheme realizes both encryption and signature
schemes with a common padding scheme and key pair (encrypt or sign), while signcryption realizes
encrypt then sign or sign then encrypt scheme.

its security proof and its improved communication efficiency, OAEP++-ES is the most
practical approach.

2 Definitions

2.1 ES scheme with Universal Padding Scheme

We describe a model of the ES scheme® (Encryption-Signature scheme) and its secu-
rity. Since the ES scheme realizes an encryption scheme and a signature scheme with
a common padding scheme and key pair, we introduce attack model CCA2&ACMA fol-
lowing [4], where adversary A (forger F) can freely use both decryption oracle D and
signing oracle ¥. We extend notions of security IND-CCA2 [1] and EUF-ACMA [6] to
create IND-CCA2&ACMA (Indistinguishability against adaptive chosen ciphertext attack
and adaptive chosen message attack) and EUF-CCA2&ACMA (Ezistentially unforgeable
against adaptive chosen ciphertext attack and adaptive chosen message attack), respec-
tively.

Definition 1 (ES scheme with a unique padding scheme) If i is a padding scheme,
then the ES scheme (K,E,D,S,V) with v is defined as follows:

— Key generation algorithm K is probabilistic algorithm which, given security param-
eter k, outputs the pair of public and private keys, K(1¥) = (pk,sk). We regard pk
as f and sk as f~1, hereafter.

— Encryption algorithm & takes plaintext x and public key pk, calculates z = p(x,r)
with some random integer r, and returns ciphertezt’ y = f(z) = Ex(x). This
algorithm is probabilistic3.

— Decryption algorithm D takes ciphertext y and private key sk, calculates z = f~1(y)
and p1(2) = z||r (un-padding), and returns plaintext x = Dg(y) if y is a valid
ciphertext. Otherwise D returns Reject. This algorithm is deterministic.

— Signing algorithm S takes message x and private key sk, calculates z = p(x,r)
with some random integer r, and returns signature® o = f~'(z) = Ss(x). This
algorithm s probabilistic.

— Verification algorithm V takes signature o and public key pk, calculates z = f(o)
and p=(z) = z||r (un-padding), and returns message x = Vok(0) if o is a valid
signature. Otherwise V returns Reject. This algorithm is deterministic.

We denote the ES scheme for encryption and for signature by ES(E) and ES(S),
respectively (e.g., OAEP-ES(E) and OAEP-ES(S) mean the OAEP-ES using in an en-
cryption and a signature, respectively).

2The input of f may be a part of z, i.e., we allow to regard y = f(z1)||z2 (0 = f~*(21)||22) as the
ciphertext (signature) for z = z1||z2.
3Since padding scheme g is probabilistic, encryption permutation f may be deterministic(e.g., RSA).

Definition 2 (IND-CCA2&ACMA) Let A be an adversary of the encryption scheme.

The attack scenario is described as follows:
1. A receives public key pk with K(1¥) = (pk, sk).

2. A submits decryption queries for ciphertext y of his choice to decryption oracle
D and gets corresponding plaintext x. Moreover, A submits signing queries for
message =’ of his choice to signing oracle ¥ and gets corresponding signature o.

3. A generates two plaintexts xy,x1 of identical length, and sends them to encryption
oracle E as a challenge.

4. E chooses b & {0,1} and returns y* = Epk(zp) to A as a target cipherteat.

5. A continues to submit decryption queries for ciphertext y of his choice to D and
gets corresponding plaintext x. Moreover, A continues to submit signing queries
for message =’ of his choice to ¥ and gets corresponding signature o. In this phase,
the only restriction is that A cannot issue a query for y* to D.

6. A guesses b in this attack and outputs b.

The adversary’s advantage is defined as Adv(A) = |2Pr[b = b] — 1|. We say that the
encryption scheme is (t,qp, qs, qu, €)-secure in the sense of IND-CCA2&ACMA if an ar-
bitrary adversary®, whose running time is bounded by t, cannot achieve an advantage
more than € after making at most qp decryption queries, qx, signing queries, and qi hash
queries.

Definition 3 (EUF-CCA2&ACMA) Let F be a forger of the signature scheme. The
attack scenario is described as follows:

1. F receives public key pk with K(1%) = (pk, sk).

2. F submits signing queries for message x of his choice to signing oracle X and gets
corresponding signature o. Moreover, F submits decryption queries for ciphertext
y' of his choice to decryption oracle D and gets corresponding plaintext x'.

3. F outputs forgery o* with Vox(0*) = &* for some x* (x* # x for any signing query
The forger’s success probability is defined as € = Pr[Vpk(o*) = 2*]. We say that the
signature scheme is (t,qp,qs,qm,€)-secure in the sense of EUF-CCA2&ACMA if an ar-
bitrary forger ,whose running time is bounded by t, cannot achieve a success probability
more than € after making at most qp decryption queries, qx, signing queries, and qr hash
queries.

Note that the security proof of the ES scheme with a unique padding scheme comes
in two parts, first as an encryption scheme and then as a signature scheme.

“We restrict the adversary (forger) by upper bounding the running time and the number of decryption,
signing, and hash queries. We denote that A (F) breaks an encryption scheme (signature scheme) in
(t,qp,qs,qu,¢€) if A can distinguish b (F can outputs a forgery) within the time bound ¢ and the advantage
(success probability) more than € using, at most, gp decryption, gs signing, and gm hash queries.

2.2 Assumption of One-way Permutation

We classify trapdoor one-way permutations according to the difficulty of inverting them
as follows [5]:

Definition 4 Let f : {0,1}% x {0,1}*1 — {0,1}% x {0,1}*' be a permutation. We
say that

— f is (7, €)-one-way, if an arbitrary adversary whose running time is bounded by T has
success probability Succ®™ (A) that does not exceed €. Here, Succ® (A) = Prg (JA(f(s, 1)) =

(s,t)].

— f is (7, €)-partial-domain one-way, if an arbitrary adversary whose running time is
bounded by T has success probability SuccPd™""(A) that does not exceed €. Here,

SuccPd O (A) = Pry [A(f(s,1)) = s].

Moreover, we define Succ® (1) = max 4 Succ®(A) and SuccP? =" (1) = max 4 SuccPd=""(A),
for all A, whose running time is bounded by 7.

By the above definition, we have SuccP4="(7) > Succ® (7) for any 7. This inequality
means that partial-domain one-wayness is a stronger assumption than one-wayness.

Through this paper, we assume that permutation f is multiplicative®. The multi-
plicative property of the permutation is described below.

Definition 5 If f is a function, we call it a multiplicative function if

flab) = f(a)f(b)

for arbitrary a and b.

3 Proposal Schemes

Coron et al. [4] used PSS-R to construct PSS-ES which realizes both an encryption and
a signature with a common padding scheme and key pair. PSS-ES is suitable for im-
plementation, however, its security as an encryption scheme relies on the partial-domain
one-wayness of f. Since the partial-domain one-wayness is stronger assumption than the
one-wayness, the reduction efficiency is not tight and it must use long keys to achieve
adequate security.

We propose new ES schemes, OAEP-ES, OAEP++-ES, and REACT-ES, which over-
come this problem, and describe their security results. Since the security proofs of OAEP-
ES, OAEP++-ES are similar to that of REACT-ES, we give the proofs of REACT-ES
in Appendix A and B.

SThough the security of ES(S) can be ensured without the multiplicative property of f (which is
not used in the security proof of ES(E) at all) as in [4], the reduction is not tight. Our interest is the
comparison among ES schemes discussed in Section 5 in the practical situation, where RSA scheme is
adopted as (f, '), which satisfies the multiplicative property.

3.1 Methodology

We will give new ES schemes based on several encryption schemes which have a padding
scheme; OAEP+, OAEP++, and REACT. The simplest method® of constructing an ES
scheme from encryption schemes seems by replacing encryption permutation f with its
inverse f~L.

Unfortunately, if we construct a new signature scheme from an encryption scheme
by simple replacement of permutation of f with f~!, its security is not ensured. For
example, it is easy for a known-message attacker to generate an existential forgery under
the one-way permutation with a special property in the similar way of Shoup’s attack.

This is a formal explanation of this situation. In the security proof of a signature, in
order to invert f on an input of integer 1 (i.e., to calculate f !(n)), we embed 7 into some
random oracle query about message = and random integer r (e.g., consider the query r||x
to H' in OAEP+) and simulate another random oracle about r (e.g., G(r) in OAEP+).
In this strategy, if the random oracle value about r (e.g., G(r)) is already defined, we
abort the simulation (fail to simulate). However, when the adversary can freely choose
the query r, it implies that we fail to simulate this case with a high probability.

Therefore, there might be a possibility that we could generally construct a provably
secure ES scheme from an encryption scheme as follows”: (i) we replace the 7, which is
aninput for random oracle G, by a hash value of z and a new r'(e.g., r = w = H'(z||r")),
and (ii) we replace = with z||r’.

In this paper, we create ES schemes from OAEP+, OAEP++, and REACT, following
this methodology.

3.2 OAEP-ES

A simple ES scheme can be created using OAEP+ [13], OAEP-ES. OAEP-ES relies
for its security upon only the one-wayness of the permutation, so it is more practical
than PSS-ES. OAEP-ES has, however, worse reduction efficiency than OAEP++-ES and
REACT-ES as we will show. A description of OAEP-ES and its security results are as
follows.

OAEP-ES with hash functions G : {0,1}%* — {0,1}"**0 and H, H' : {0,1}"*ko
— {0,1}*1, and the common padding scheme p; (Figure 1) and key pair (f, f~1)%, is
executed as follows:
—Encryption and Signing: In order to encrypt or to sign =, we choose r pia {0, 1}%0, set
w = H'(z||r) € {0,1}1 and calculate s = (z||r)®G(w), t = H(s)®w, and u1(z,7) = s||t.
We then return y = f(u1(w,7)) as the ciphertext or o = f~!(uj(x,r)) as the signature,
respectively.

5Coron et al. simply constructed an encryption scheme by replacing signing permutation f~* of PSS-R.
with f and proposed PSS-ES which has the same padding scheme as PSS-R.

"Reference [9] gives a detailed explanation of this methodology.

®In the general model, we assume that f : {0,1}* — {0,1}" is a multiplicative permutation. If the
implementation uses RSA permutation: Z,, — Z,, we put “0” in front of the padding data to make the
domain k bit integer. In this case, the model and theorems will need to be adjusted. We adopt the same
discussion for PSS-ES, OAEP++-ES, and REACT-ES.

— Decryption and Verification: For ciphertext y or signature o, we recover s||t = f~!(y)
or s||t = f(o) (|s| = n+ ko, |t| = k1), respectively. Next, we calculate w =t & H(s),
divide z||r = s ® G(w) (|z| = n, |r| = ko), and check whether w = H'(x||r). If the check
passes, we return z; otherwise Reject.

(&)
v | [w |
()
O
s 1Lt |

Figure 1: Padding Schemes p; for ES Schemes
The security results of OAEP-ES are as follows:

Theorem 1 (Security result of OAEP-ES(E)) Let A be an adversary that breaks
OAEP-ES in (T,9p,qx,49G, 917, 9, €) in the sense of IND-CCA2&ACMA. Then:

Succ® (') > € — qHZI;BQE . (qHI+QE+1)(‘]2C;;j‘qHI+Q)D)+QD
™ <7+ {(9c +auw + a2)(qu + qu + =) + qu + a2} 7Ty
where Ty denotes the time complexity of f.

Theorem 2 (Security result of OAEP-ES(S)) Let F be a forger that breaks OAEP-
ES in (1,9p, 9%, 96,91, q1, €) in the sense of EUF-CCA2&ACMA. Then:

2ko 2k1

Succ®™(r') > € — qrqs (ayrt9s)(9a+ay+9s)+eap+1
™ <74 (2qu + 29s + 1)1

where Ty denotes the time complerity of f.

3.3 OAEP++-ES

OAEP++ was proposed by Kobara and Imai [7]. OAEP++ has the same padding
scheme as OAEP, but the input for encryption permutation is about half the padding.
OAEP++ relies upon the one-wayness of encryption permutation for its security. We
construct OAEP++-ES based on OAEP++ as follows.

OAEP++-ES with hash functions G : {0,1}¥ — {0,1}*+ko H' H : {0,1}"Fk0 —
{0,1}*1 public key f, and private one f~!, has the same padding as OAEP-ES (Figure
1) and is executed as follows:

—Encryption and Signing: In order to encrypt or to sign =, we choose r £ {0, 1}*0, set
w = H'(z||r) € {0,1}*1. Next, we calculate s = (z||r) ® G(w) and t = H(s) ®w. Finally,

we return y = f(s)||t as the ciphertext or o = f~!(s)||t as the signature, respectively.
—Decryption and Verification: For ciphertext y = c||t or signature o = ||t, we recover
s = fl(c) or s = f(c), respectively. Next, we set w = H(s) @ t, calculate z||r from
s ® G(w), and check whether w = H'(z||r). If the check passes, we return x as the
plaintext or the message, respectively; otherwise Reject.

In the following, we claim the security of OAEP++-ES.

Theorem 3 (Security result of OAEP++-ES(E)) Let A be an adversary that
breaks OAEP++-ES in (17,9p, 9%, 96, 9", qm, €) in the sense of IND-CCA2&ACMA. Then:

Succ®(7') > ¢ — qHZI;l;qz _ (qu+qz+1)(qzcl:;rqH/+qz)+qD
' <7+ (qu + 29 + 2qx)1
where Ty denotes the time complerity of f.

Theorem 4 (Security result of OAEP++-ES(S)) Let F be a forger that breaks
OAEP++-ES in (1,9p,qx,49G, 90,4, €) in the sense of EUF-CCA2& ACMA. Then:

2ko 2k1

Succ®™(r') > € — qrqs (ayrt+9s)(9a+ay+9s)+eap+1
' <7+ (2qm +2¢s +)Ty

where Ty denotes the time complerity of f.

3.4 REACT-ES

REACT was proposed by Okamoto and Pointcheval [11]. To use REACT for encryption,
we first generate random integer r and encrypt plaintext & by a symmetric encryption
scheme with the hash value of r as the key. Second, we encrypt r by an asymmetric
encryption scheme and send it with ciphertext of x and a check code.

REACT is secure when the probabilistic encryption function (e.g., Rabin function) is
utilized because of the check code. From the same reason, REACT-ES is secure when we
utilize the probabilistic encryption function. Hereafter, to make the security proof and
the comparison of efficiency simply, we regard the encryption function as the permutation
(e.g., RSA function).

REACT-ES with hash functions G : {0,1}¥* — {0,1}% H' : {0, 1}tk — {0, 1}k,
and H : {0,1}2(+kotk) 5 (0 1}F2 (k = k), symmetric encryption scheme Epy)s where
key length is k3, public key f, and private key f~!, is executed as follows (Figure 2):

—Encryption and Signing: In order to encrypt or to sign =, we choose r £ {0, 1}%0, set
w = H'(z||r) € {0,1}*1, and calculate cy = E(s;y(r:))(a:Hr) Next, we set ¢; = f(w) for
encryption or ¢; = f(w) for signing, and return (c1,ce,c3 = H(z||r,w,c1,c2)) as the
ciphertext or signature, respectively.

—Decryption and Verification: For ciphertext (c1,c2,c3) or signature (¢}, c2,c3), we re-
cover w = f~l(e1) or w = f(c,), respectively. Next, we calculate x||r from Eéy(rg)(@),
and check whether both "w = H'(z||r) and ¢3 = H(z||r,w, c1,c2)” or both ”w = H'(z||r)

Figure 2: REACT-ES

and c3 = H(x||r,w,], c2)”, respectively. If the check passes, we return x as the plaintext
or the message, respectively; otherwise Reject.

We use the following theorems to examine the security of REACT-ES. The proof are
described in Appendix A and B, respectively.

Theorem 5 (Security result of REACT-ES(E)) Let the symmetric encryption scheme
be (7', v)-secure’, and let A be an adversary that breaks REACT-ES in (T,qp, qs, 4G, Q' qH, €)
in the sense of IND-CCA2&ACMA. Then:

2ko 2k1

Succ™(7') > e —p — L= _ 4p
{ " <7+ (qa + qu + 2qu + 2q=)Ty

where Ty denotes the time complexity of f.

Theorem 6 (Security result of REACT-ES(S)) Let F be a forger that breaks REACT-
ES in (1,9p, 95, 9G, 917, i, €) in the sense of EUF-CCA2&ACMA. Then:

2ko 2k1

Succ®™(7') > e — = gp+l
{ T <7+ (290 + 2q5 + 1)1

where Ty denotes the time complerity of f.

4 PSS-ES

4.1 Security of PSS-ES(E)

The security proof of PSS-ES(E) in [4] (Theorem 2 and Lemma 4) has two minor technical
mistakes as follows: (i) the number of queries (about w) to G is not gz + ¢gx (the last
line in page 14 of [4]) but gg + qu + gu because G(w) may be defined by query w to
G directly, (ii) this proof overlooks calculation time (gg' + ¢x)Ty as part of the cost of
querying the decryption oracle (line 10 in page 14 of [4], reading in Lemma 1’s results into
proof of Lemma 4). This consideration of these problems yields the following security
result.

9See the definition of security model of symmetric encryption scheme in Appendix A.

10

Theorem 7 (Security result of PSS-ES(E)) Let A be an adversary that breaks
PSS-ES(E) in (1,9D,4q5,9G,qm,€) in the sense of IND-CCA2&ACMA. Then:

pd—ow (1 1 _ qgrtas (g tes)(@et+9yrtgs)+ap
Succ (T) Z qatqg+tags € 2ko 2k1

7 <7+ 2(qu + q=)Ty

where Ty denotes the time complexity of f.

4.2 Security of PSS-ES(S)

The proof of Theorem 3 in [4] has three minor technical mistakes as follows: (i) it misses
the probability ;TEO that appears because Z cannot answer the signing query for the pair
of message and random integers implanting 1 previously!?, (ii) the number of queries w
to G is not g + gx (line 18 in page 16 of [4]) but ¢¢ + gg' + gx because G(w) may
be defined by the query w to G directly, (iii) this proof overlooks the calculation time
(qu' +)Ty as part of the cost of querying the decryption oracle (line 9 in page 16 of
[4], reading in Lemma 1’s results into proof of Theorem 3). This consideration of these
problems yields the following security result.

Theorem 8 (Security result of PSS-ES(S)) If F is a forger that breaks PSS-ES(S)
in (T,9p,49%,9G,qu', €) in the sense of EUF-CCA2&ACMA, then:

2ko 2k1

Succ™ () > e — LIz (ggr +as)(gc+ay +as)+gp+1
™ <7+ (2qu +2¢5 + 1)T}

where Ty denotes the time complexity of f.

5 Reduction Efficiency

We evaluate the security of RSA-OAEP-ES, RSA-OAEP++-ES, and RSA-REACT-ES
following the approach taken by Nakashima and Okamoto [10] and compare them to
RSA-PSS-ES. For each scheme, we consider the usages of encryption and signature.

Reference [10] uses the recommended key size in order to confirm that no adversary
has the ability to break the 1024, 2048 bits factoring problem. In estimating the key
size, we use Lemma 4 of [5] to modify the security statement of RSA-PSS-ES; that is,
f’s partial-domain one-wayness is replaced by one-wayness of RSA permutation paying
the cost of running time and decreasing the success probability.

Throughout this evaluation, we assume that breaking the RSA problem is equivalent
to solving the factoring problem, and that ky and k; are enough large so that factors
that suppress the reduction efficiency can be ignored. The complexity of the factoring
problem is measured by applying a number field sieve. Table 1 shows the recommended
key size that achieves the same complexity as the 1024, 2048 bits factoring problem.

0Tn our results, since 7 is embedded gg times, the corresponding probability is R

11

Table 1: Recommended key size
Scheme 1024bit 2048bit

Encryption 6221 12452

PSS-ES Signature 1363 2596
Encryption 9252 10838

OAEP-ES Signature 1363 2596
Encryption 1363 2596

OAEP+H+-ES oimature 1363 2596
REACT-ES Encryption 1363 2596

Signature 1363 2596

As in Table 1, OAEP-ES has better reduction efficiency than PSS-ES because the
security of PSS-ES(E) is based on partial-domain one-wayness. Therefore, compared to
PSS-ES, OAEP-ES can decrease the key size by more than 950 bits for the 1024 bits
factoring problem and by more than 1600 bits for 2048 bits factoring problem.

Moreover, as in Table 1, OAEP++-ES and REACT-ES offer much better reduction
efficiency than PSS-ES and OAEP-ES, and the key sizes do not increase comparing with
the number of bits in the factoring problem. This is because the running time of the
permutation inverter of OAEP++-ES and REACT-ES are of the order of gy while that
of OAEP-ES is of order of ggqpm. This means that the key length of OAEP++-ES and
REACT-ES are shorter than that of OAEP-ES.

6 Discussion

OAEP++-ES and REACT-ES are superior to OAEP-ES in terms of the running time of
the permutation inverter, as shown by Theorems 3 and 5 (moreover, since PSS-ES owes
its security to partial-domain one-wayness, its reduction efficiency is not good).

More precisely, when inverting the permutation for PSS-ES and OAEP-ES, the in-
verter should locate the preimage using the product of two hash functions’ input/output
lists'! (G-List and H-List). The inverters of OAEP++-ES and REACT-ES, however, lo-
cate the preimage using only one list (H-List) and the sum of two lists (H-List and G-List),
respectively.Accordingly, the running time of the above theorems on OAEP+-+-ES and
REACT-ES are less than those on PSS-ES and OAEP-ES.

Therefore, as described in Section 5, the recommended key sizes that provide the
same complexity as the 1024, 2048 bits factoring problem are, for OAEP++-ES and
REACT-ES, much shorter than those of PSS-ES and OAEP-ES, and are about the same
as the bit size of the factoring problem.

Hereafter, let us compare OAEP++-ES and REACT-ES. With regard to communi-
cation efficiency, following [7] and [3], we can encrypt and sign on any length plaintext

UFor PSS-ES, when replacing the partial-domain one-wayness to the one-wayness as in Lemma 4 of
[6], we ought to run the adversary twice and get two input/output lists (two G-Lists).

12

and message, respectively. In OAEP++-ES, if |s| (the length of concatenation of plain-
text/massage = and random integer r) is larger than k& (the key length of public key
cryptography), then we divide s into s;, and sr with |sg| = k, and operate the permu-
tation only on sp. In REACT-ES, since the plaintext or massage is not the input data
of the permutation but they are masked with hash value, we can encrypt and sign on
any length plaintext and message. However, in order to utilize REACT-ES securely, the
output length of H' ki should be equal to k (= 1024 for RSA, for example), while k;
is about 160 (this seems to guarantee the collision resistance of H') in OAEP++-ES.
Therefore, the length of ciphertext (signature) for some plaintext (massage) in REACT-
ES is larger than that for the same plaintext (massage) in OAEP++-ES; for example,
assume k = 1024, |r| = 160, k; = 160 in OAEP++-ES, and k1 = k£ = 1024 and k2 = 160
in REACT-ES. In this situation, the length of the ciphertext for plaintext x are |z|+ 320
bits in OAEP++-ES, and |z| + 1644 bits in REACT-ES. Hence, OAEP++-ES is sperior
to REACT-ES in communication efficiency, and we can conclude OAEP++-ES is the

most practical ES scheme!?.

7 Conclusion

This paper first gave the general methodology to construct an ES scheme from an encryp-
tion scheme with a padding scheme and proposed new ES schemes, OAEP-ES, OAEP++4--
ES, and REACT-ES, which use a unique padding scheme and key pair to realize encryp-
tion and signature. It also proved that these two usages of proposed schemes satisfy
IND-CCA2&ACMA and EUF-CCA2&ACMA, respectively. These schemes are suitable for
implementation because they need only one padding scheme and key pair.

Moreover, OAEP++-ES and REACT-ES offer much better reduction efficiency than
PSS-ES and OAEP-ES. Using the evaluation of [10], the difficulty of breaking OAEP++--
ES or REACT-ES is almost equal to that of the key size factoring problem. Hence, we
conclude that OAEP++-ES and REACT-ES are more efficient than PSS-ES or OAEP-
ES. Furthermore, from the view of the communication efficiency, the length of a cipher-
text for some plaintext in OAEP++-ES is shorter than that of the same plaintext in
REACT-ES; we can conclude that OAEP+4-ES is the most practical candidate due to
the tightness of its security and its improved communication efficiency.

This paper also corrected the original (minor) mistakes made in proving the security
of PSS-ES.

Acknowledgments

We would like to thank Kazukuni Kobara (who proposed OAEP++) for the helpful
comments.

2Note that [8] concludes REACT-ES is the most practical ES scheme; [8] does not follow [7] and [3].

13

References

[1]

3]

[9]

[10]

[11]

M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In H. Krawczyk, editor, Advances in
Cryptology — CRYPTO’98, pages 26—45. Springer, 1998. Lecture Notes in Computer
Science No. 1462.

M. Bellare and P. Rogaway. Optimal asymetric encryption — how to encrypt with
RSA. In A.D. Santis, editor, Advances in Cryptology — EUROCRYPT’9}, volume
950 of Lecture Notes in Computer Science, pages 92-111, Berlin, Heidelberg, New
York, 1995. Springer-Verlag.

M. Bellare and P. Rogaway. The exact security of digital signatures ~how to sign
with RSA and Rabin. In U. Maurer, editor, Advances in Cryptology — EURO-
CRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages 399-416,
Berlin, Heidelberg, New York, 1996. Springer-Verlag.

J. S. Coron, M. Joye, D. Naccache, and P. Paillier. Universal padding schemes for
RSA. In M. Yung, editor, Advances in Cryptology — CRYPTO 2002, volume 2422 of
Lecture Notes in Computer Science, pages 226-241, Berlin, Heidelberg, New York,
2002. Springer-Verlag.

E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is chosen-
ciphertext secure under the RSA assumption. Journal of Cryptology, 2002.

S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme against adaptive
chosen message attack. Journal of Computing (Society for Industrial and Applied
Mathematics), 17(2):281-308, 1988.

K. Kobara and H. Imai. OAEP++4 : A very simple way to apply OAEP to determin-
istic OW-CPA primitives. 2002. Available at http://eprint.iacr.org/2002/130/.

Y. Komano and K. Ohta. Efficient universal padding techniques for multiplicative
trapdoor one-way permutation. In D. Boneh, editor, Advances in Cryptology —
CRYPTO’03, volume 2729 of Lecture Notes in Computer Science, Berlin, Heidelberg,
New York, 2003. Springer-Verlag.

Y. Komano and K. Ohta. OAEP-ES — Methodology of universal padding technique.
manuscript, 2003.

T. Nakashima and T. Okamoto. Key size evaluation of provably secure RSA-based
encryption schemes. SCIS 2002, The 2002 Symposium on Cryptography and Infor-
mation Security, 2002.

T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Encryptosystem Tranceform. In D. Naccache, editor, CT - RSA 2001, volume
2020 of Lecture Notes in Computer Science, pages 159-175, Berlin, Heidelberg, New
York, 2001. Springer-Verlag.

14

[12] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.

[13] V. Shoup. OAEP reconsidered. In J. Kilian, editor, Advances in Cryptology —
CRYPTO’2001, volume 2139 of Lecture Notes in Computer Science, pages 239259,
Berlin, Heidelberg, New York, 2001. Springer-Verlag.

[14] Y. Zheng. Degital signcryption or how to achieve cost(signature & encryption) <<
cost(signature) + cost(encryption). In Advances in Cryptology — CRYPTO’97, vol-
ume 1294 of Lecture Notes in Computer Science, pages 165-179, Berlin, Heidelberg,
New York, 1997. Springer-Verlag.

15

A Proof of Theorem 5

We follow the definition of symmetric encryption scheme and its security model from
[11].

Definition 6 (Symmetric Encryption Scheme) A symmetric encryption scheme with
a key-length k, on messages of length [, consists of two algorithms (ESY™, DSY™) which
depend on the k-bit string k, the secret key:

— the encryption algorithm Eiym(m) outputs a ciphertext c corresponding to the plain-
text m € {0,1}, in a deterministic way;

— the decryption algorithm Diym(c) gives back the plaintext m associated to the ci-
phertext c.

Definition 7 (Semantic Security) A symmetric encryption scheme is said to seman-
tically secure if no polynomial-time attacker can learn any bit of information about the
plaintext from the ciphertext, excepted the length. More formally, a symmetric encryption
scheme is said to (t,€)-ind if for any adversary A = (A1, A2) with running time bounded
by t, Advi™(A) < ¢, where

Advi™(A) = 2 x RPr) [(mo, m1, s) < A1 (k),c < E}™(mp) : As(c, s) z bl -1,
ok
v&40,1}

in which the probability is also taken over the random coins of adversary, and mgy, my are
two identical-length plaintexts chosen by the adversary in the message-space {0,1}L.

In the security proof of Theorem 5, assume that the symmetric encryption scheme is
(7', v)-secure.

A.1 Construction of Inverter 7

We give the construction of inverter Z that breaks the one-wayness of f about ¢, by
using adversary 4 that breaks REACT-ES(E) in (7,qp, 9%, 9G, 91", qu, €) in the sense of
IND-CCA2&ACMA, as follows: we input public key f to A, answer the queries that A
asks to the random oracles, to the decryption oracle, and to the signing oracle in the

following way, and receive challenge (xg,z1). We then choose b & {0,1}, r* & {0, 1}ko,

and k & {0,1}% and put ¢ = E;*"(xp||r"). Moreover, we answer the queries that A
asks in the following way, and finally, receive b (or stop A after its running time 7 is
over).

In simulating random oracles G, H', and H, we construct input/output lists, G-List,
H'-List, and H-List, respectively. In G-List, we preserve pair (w,G(w)) of query w and
answer G(w). In H'-List, we keep seven-tuple (z||r, H' (z||r), z, 1, ¢z, c3,c4) of query x||r,
answer H'(z||r), guarantee z,co,ch for signing queries, and pledge c1, ¢z, c3 for decryp-
tion queries. In H-List, we preserve sextuplet (w,z||r,cy,co, H(w,x||r,c1,c2)) of query
w, x||r, c1, co and answer H (w, z||r,c1, c2).

16

Answering the random oracle queries to G, H', and H: For new query w
to G, we choose a random integer from {0,1}%2, put it to G(w), answer to A, and add
(w, G(w)) to G-List. If w has already been queried to G, we locate (w, G(w)) € G-List
and answer G(w).

For new query (w,z||r,c1,c2) to H, we choose random integer c3 from {0,1}*2, put
it to H(w,x||r,c1,c2), answer to A, and add (w,z||r, ¢, ¢z, c3) to H-List. Moreover, we
simulate G(w) in the above way!3. If (w,z||r, 1, co) has already been queried to H, we
locate (w, x||r, c1,c2,c3) € H-List and answer c.

For new query z||r to H', we get z & {0,1}%1 set f(z) = w, and calculate ¢; = f(w).
Next, we simulate G(w) in the same way described above, calculate ¢y = Egy(”lz) (x]|r).
Finally, we put ¢z = H(w,z||r,c1,c2) and ¢4 = H(w,z||r, z,c2) by simulating H in the
same way described above, answer w as H'(z||r) to A, and add (z||r,w, z,¢1, c2, c3,C5)
to H'-List. If z||r has already been queried to H', we locate (z||r,w, *, x, %, x,*) € H'-List
and answer w.

Answering the decryption queries to D: In order for decryption query y =
(c1,cg,c3) to be valid ciphertext, (z||r, *, %, ¢1, ¢z, c3,*) must be contained in H'-List. In
this case, we can answer with the corresponding plaintext z. Otherwise, we answer Reject
since the probability of H'(z||r) = w is negligible.

Answering the signing queries to X: For signing query z to X, we get r £ {0, 1}ko
and check whether (z||r, %, z, x, 2, *, ¢4) is in H'-List. If so, we answer o = (z, ¢2,c}) to A

as a signature. Otherwise, we choose z pia {0,1}%1 set f(z) = w, and calculate ¢; = f(w).
Next, we simulate G(w) in the same way described above, calculate ¢y = Egy(TU) (z||r).
Finally, we put ¢3 = H(w,z||r,c1,¢2) and ¢ = H(w,z||r,z,¢2) by simulating H in
the same way described above, add (z||r,w, z, 1, ¢z, ¢3,¢5) to H'-List, and answer o =
(z,c2,¢4) as a signature to A.

A.2 Analysis

Let y* = (¢T,c5, i) be a target ciphertext that we answer to A deviating the protocol,
and w, 7T, and 27 be corresponding elements. In order to analyze the success probabil-
ity of Z, we use following notations: AskG and AskH' are events for which (w™,) € G-List,
and (*||7F, *, %, ¥, *, *, %) € H'-List, respectively, and moreover, let EBad be an event'* that
AskH' A [H' (z;||rt) # w for i = 0,1], let DBad be an event that we fail to simulate in
D, and let Bad = EBad V DBad!®. Our aim in setting these notations is to estimate the
probability of AskG. At first, we divide this event as follows:

Pr[AskG] = Pr[AskG A Bad] + Pr[AskG A —Bad]. (1)

13We simulate G because we want to collect the information of input/output on w in G-List; this makes
the estimation of the success probability of the permutation inversion easy.

YIn this event, .4 may notice that we answer y™ as a target ciphertext deviating the protocol.

15Note that we never fail to simulate the answer to the signing query, described in section A.1, and do
not need to consider event XBad.

17

With regard to Pr[AskG A Bad] in equation (1), from the definition of Bad, we have

Pr[AskG A Bad] = Pr[Bad] — Pr[-AskG A Bad|
> Pr[Bad] — Pr[EBad|=AskG] — Pr[DBad|—-AskG]. (2)

We can estimate Pr[EBad|—AskG]| in inequality (2) because, by the definition of EBad, we
have Pr[EBad|-AskG] < Pr[AskH’|-AskG]. Here, Pr[AskH’|-AskG] < q’g%, because if
—-AskG occurs, G(w*) and r* are random integers for A and it is only by accident that
*[|rt is queried to H'.

Moreover, Pr[DBad|=AskG] in inequality (2) is less than JB-. Note that in answering to
decryption query (cy, ¢z, ¢3), we search H'-List for corresponding plaintext z, therefore we
fail to simulate the decryption oracle if A does not query H' about z||r and ciphertext
(decryption query) y output by A is valid. However, if A does not query H' about
z||r, H'(x||r) is uniformly distributed in {0,1}*', and then, it is only by accident (with
probability 2%) that w = f~(c1) equals H'(z||r).

Hence, we can evaluate Pr[AskG A Bad] in equation (1) by

Pr[AskG A Bad] > Pr[Bad] — %’2% - 2% (3)

With regard to the second term of equation (1), it is meaningful to consider the

advantage of A because of the condition =Bad. We can do this by evaluating Pr[AskG A

—Bad] as follows:

Pr[AskG A —=Bad] > Pr[A =bA AskG A —Bad]
Pr[A = b A —Bad] — Pr[A = b A —AskG A —Bad]. (4)

In inequality (4), both
1
Pr[A = b A ~Bad] > Pr[A = b] — Pr[Bad] = (% +3) - Pr[Bad]
and'®

Pr[A = b A —-AskG A ~Bad] = Pr[A = b|-AskG A —Bad] Pr[-AskG A —Bad]
1
+ 5)(1 — Pr[Bad] — Pr[AskG A —Bad])

IN

(1 — Pr[Bad] — Pr[AskG A —Bad]) + g 1.

Note that in our simulation, if A notices the deviation (i.e., if event Bad occurs), it does not run
for some pairs of random coins of A and Z. Therefore, Pr[A = b] in this inequality is taken over the
random coins of A and Z in which A does not notice the deviation. Though the probabilistic space is
restricted and smaller than the entire probabilistic space, the probability of the event that A = b is equal
to the one taken over the entire probabilistic space, from the definition of the random oracle model;
Pr[A=b]=§+%.

18

hold!”. Therefore, by substituting above two inequalities into (4),

— v — Pr[Bad] + Pr[AskG A —Bad]
2

Pr[AskG A —Bad] >

holds and this inequality leads to
Pr[AskG A =Bad] > € — v — Pr[Bad]. (5)

Hence, the considerations of equation (1) and inequalities (3) and (5) conclude the
proof of Theorem 5.

The running time 7’ of Z is the sum of the following terms: (i) the running time 7 of
A because we run A once, (ii) in order to find corresponding pair from G-List to ¢, we
compute f at most gg + g’ +qu + gs times, i.e., (¢ +qu +qu + g)Ty, (iii) in order to
be able to simulate D and X, we calculate both f(z) and f(w) in simulation of H' and
S gpr + gy times, i.e., (g + gu)Ty. Hence, 7' < 7+ (q¢ + qu + 2qu’ + 2¢x)T holds.

B Proof of Theorem 6

B.1 Construction of Inverter 7

We give the construction of inverter Z that breaks the one-wayness of f about n, by
using forger F that breaks REACT-ES(S) in (7,9p, 9%, 9, qu7,9m,€) in the sense of
EUF-CCA2&ACMA as follows: we input public key f to F, answer the queries that F
asks to the random oracles, to the decryption oracle, and to the signing oracle in the
same way in section A.1, except those to H' and X (described below). Finally, we receive
forgery o* = (¢}, ch, ¢5) (or stop F after its running time 7 is over.)

In simulating random oracles G, H', and H, we construct input/output lists, G-List,
H'-List, and H-List, respectively. G-List holds (w,G(w)), the pairing of query w and
answer G(w). H'-List holds (b, z||r, H'(z||r), z, c1, ¢2, c3.¢5), the bit b = 0/1, query z||r,
answer H'(z||r), guarantee z, ¢z, ¢4 for signing queries, and pledge ¢y, ¢z, ¢3 for decryption
queries. H-List holds (w,z||r,c1,co, H(w,z||r, ¢1,¢2)), the pairing of query w,z||r, ¢y, co
and answer H(w,z||r,c1,c2).

Answering the random oracle queries to H'

For new query z||r to H', we get z i {0, 1} set f(2)n = w, and calculate ¢; = f(w).
Next, we simulate G(w) in the same way as in section A.1, calculate ¢; = Egy(:'f}) (x||r).
Finally, we put ¢ = H(w, z||r, c1,¢2) and ¢ = H(w, z||r, z,c2) by simulating in the same
way as in section A.1, answer w as H'(z||r) to F, and add (1, z||r,w, z,c1,c2, c3,c5) to

1"Note that the probability that A = b holds under the condition of =AskG and —Bad is equal to the
probability that A can distinguish b from xo, 1 and ¢, without secret key k; Pr[A = b|-AskG A ~Bad] =
5+ % This is because from —Bad, A cannot notice the deviation and performs the same way as in the
real run. Moreover, from —AskG, A cannot know k = G(w™).

18 This seems to require the calculation of f 2(qx+ + gs) times, but gy + g= calculations are sufficient.
Indeed, when we add an element including w to G-List or H-List, we check whether f(w) = ¢* holds. This
action plays the role of preparing for the simulation of D and is already counted in (ii). Therefore, we
consider only the preparation for the signing oracle queries in (iii).

19

H'-List. If z||r has already been queried to H', we locate (x,z||r,w, %, %, *, %, x) € H'-List
and answer w.

Answering the signing queries to X: For signing query z to X, we get r £ {0, 1}ko
and check whether (0, z||r, %, z, %, ¢z, *, c§) is in H'-List. If so, we answer o = (z, ¢z, ¢%) to
F as a signature. Moreover, if (1, z||r, *, %, %, %, %,) is in H'-List, we abort. Otherwise,
we choose z & {0,1}*1, put f(2) = w, and calculate ¢; = f(w). Next, we simulate

G(w) in the same way as in section A.l, calculate co = Eéy(r:))(xﬂr) Finally, we put

cs = H(w,z||r,c1,c2) and ¢ = H(w,z||r,z,¢c2) by simulating in the same way as in
section A.1, add (0,z||r,w, z,c1,ca,c3,¢5) to H'-List, and answer o = (z,c2,ch) as a
signature to F.

B.2 Analysis

Let o* = (cf,c3,c3) be a forgery output by F; w*, r*, and z* are the corresponding

elements. In order to analyze the success probability of Z, let DBad be the same event as
in A.2, ¥Bad an event that Z fails to simulate in X, and Bad = DBad vV XBad. Moreover,
let S be an event that Vpk(o*) = z*, and let AskH’ be one that F queries directly H’
about z*||r*.

At first, we consider

1 = Pr[Bad] 4+ Pr[—Bad]. (6)

With regard to Pr[Bad] < Pr[DBad] 4+ Pr[£Bad] in equation (6), we have

qH'q% qpD
Pr{Bad] < <r= + o (7)

In fact, Pr[DBad] is evaluated in the same way as in section A.2. On the other hand,
Pr[¥Bad] is bounded by gs(Z£). Note that in simulating the answer signing query z, we

2k0
first choose random integer r and z for the candidate of the signature, and simulate H'

about z||r. In this phase, ¥Bad occurs if z||r has already queried to H' by F directly,

because we can not calculate f!(n). For a signing query, the probability that z||r is
queried to H' is bounded by ‘;%19 because of randomness of r, and then, we can estimate
Pr[£Bad] by gx(3).

With regard to Pr[-Bad] in equation (6), we divide event —Bad by S and have

Pr[—Bad] = Pr[S A =Bad] + Pr[-S A —Bad]. (8)
In this equation (8),
Pr[-S A =Bad] < Pr[=S|-Bad] =1 — Pr[S|-Bad] =1 — ¢ 9)

holds??.

9Note that for signing query z, if we choose random integer r such that z||r is queried to H' through the
past signing query, we can reply this query by locating corresponding signature from H’-List. Therefore,
we only consider the case that x||r has already queried to H' by F directly, in the estimation of ¥Bad.

20Note that the success probability of F under the condition that F does not notice the simulation is
equal to the one in real run and this leads Pr[S|-Bad] = e.

20

Next, we estimate Pr[S A —=Bad] in equation (8) by dividing event S A —=Bad by AskH':
Pr[S A =Bad] = Pr[S A =Bad A AskH'] + Pr[S A ~Bad A —AskH’].

In this equality, Pr[S A -Bad A =AskH’] is bounded by 2% because it is an incident that
H'(x*||r*) = w* if (1, 2%||r*, , %, %, *, %, %) ¢ H'-List holds. On the other hand, we have
Pr[SA—-BadAAskH'] < Pr[SAAskH'] < Succ® (7') because if both (1, z*||r*, x, 2%, %, *, %, x) €
H’-List and S hold, then we can compute ;—1 = W =
property of f. Therefore, we have

f~1(n) from the multiplicative

1

Pr[S A =Bad] < Succ™(7) + TR (10)
By substituting inequalities (9) and (10) into equation (8), we have
1
Pr[-Bad] < Succ®™ (7') + ok T l1—e (11)

Finally, if we substitute inequalities (7) and (11) into equation (6), we can conclude
the proof of Theorem 6.

The running time 7’ of Z is the sum of the following terms: (i) the running time 7 of
F because we run F once, (ii) in the simulation of ¥, we have to prepare the answer for
queries to D and X, i.e., 2¢5TY, (iii) in the simulation of H’', we have to prepare the answer
for queries to D and to implant 7, i.e., 2qg Ty, (iv) we have to find z* corresponding to
¢} by computing f(c}) once, i.e., Ty. Hence, 7/ < 7 + (2qu+ + 2gs + 1)T holds.

C Proof of Theorem 7

In order to prove Theorem 7, we prove the following lemma.

Lemma 1 Let A be an adversary that breaks PSS-ES(E) in (T,q9p,qs, 9, qu') in the
sense of IND-CCA2&ACMA. Then:

SuCCSipdioW(QG + qu + g T’) > — ‘IH/I;HIZ: _ (qH/-l-tIz:)(lIG-llc-qH/-l-lIE)-i-QD
’ — 270 271
' <7+ 2(qm + g2)T

where Ty denotes the time complerity of f.

C.1 Construction of Inverter 7

We give the construction of inverter Z that breaks the set partial-domain one-wayness of
f about y™, by using adversary A that breaks PSS-ES in (7, qp, qs, G, 9, €) in the sense
of IND-CCA2&ACMA, as follows: we input public key f to A, answer the queries that A
asks to both random oracles, to the decryption oracle, and to the signing oracle in the
following way, and receive challenge (z¢,z1). We then choose b € {0,1} at random and
return y* to A as the target ciphertext corresponding to x;, without using the encryption

21

rules. Moreover, we answer the queries that .4 asks in the same manner, and finally,
receive b. (Or A uses up its running time.)

In simulating random oracles G and H'?!, we construct input/output lists, G-List
and H'-List, respectively. In G-List, we preserve pair (w,G(w)) of query w and answer
G(w). In H'-List, we keep quadruplet (x||r, H'(z||r), z,y) of query z||r, answer H'(z||r),
guarantee z for signing queries, and pledge y for decryption queries.

In this strategy, in order for A to distinguish target y*, A is expected to query G about
wt = [f~Y(y™")]k, ?2. Hence, we can output G-List that will contain wt = [f~(y™)], .

Answering the random oracle queries to G and H'

For new query w to G, we choose random integer from {0,1}"**0 put it to G(w),
answer to 4, and add (w,G(w)) to G-List. If w has already been queried G, we search
(w, G(w)) € G-List and answer G(w).

For new query z||r to H', we get z £ {0,1}* and divide f(z) = s|jw (here, |s| =
n+ ko,|Jw| = k1). In this phase, if (w, %) has already been in G-List, we abort. Otherwise,
we set G(w) = s® (z||r) and simulate G. Finally, we answer w as H'(z||r) to A, calculate
y = f(s]|w) in order of the decryption queries, and add (z||r, w, z,y) to H'-List. If z||r has
already been queried to G, we search (z||r, H'(x||r), *,*) € H'-List and answer H'(z||r).

Answering the decryption queries to D
We denote the elements of decryption query y, as w, r, and z. In order for y to be valid
ciphertext, .4 must have queried H' about z||r and in this case, (z||r, %, *,y) is in H'-List
so we can answer with the corresponding plaintext x. Otherwise, we answer Reject since
the probability of H'(z||r) = w is negligible.

Answering the signing queries to X
For signing query x to X, we get r pia {0, 1}*0 and check whether (z||r, *, z, ¥) is in H'-List.
If so, we answer z to A as a signature. Otherwise, we choose z & {0, l}k, and divide
f(z) = s||w (here, |s| = n+ko,|Jw| = k1). In this phase, if (w,) has already been in G-List,
we abort. Otherwise, we put G(w) = s @ (z||r) and simulate G. Finally, we calculate
y = f(s||lw) in order of the decryption queries, set H'(z||r) = w, add (z||r,w, z,y) to
H'-List, and answer z as a signature.

C.2 Analysis

Let y* be a target ciphertext that we return to A deviating the protocol; s*, w™, and
rT are the corresponding elements. In order to analyze the success probability of Z,
we use following notations: AskG and AskH’ are events for which (w*,x) € G-List and
(¥||rT, *, %, %) € H'-List, respectively. Moreover, let EBad be an event?3 that AskG A (z; #
[G(w™) @ st]™) or that AskH' A (H'(z;||r) # w™), let H'Bad, DBad, and ¥.Bad be events
that we fail to simulate in H', D, and X, respectively, and let Bad = H’Bad vV EBad Vv
DBad V ¥Bad. Our aim in setting these notations is to estimate the probability of AskG.

2'We simulate G and H' for direct queries output to G and H', respectively, and moreover, for the
queries output to other oracles, indirectly, too.

*2Here, [a]® and [a], denote the b least significant bits and most significant bits of a, respectively.

231n this event, A may notice that Z answers y* as a target ciphertext deviating the protocol.

22

At first, we divide this event as follows:
Pr[AskG] = Pr[AskG A Bad] + Pr[AskG A —Bad] (12)
With regard to Pr[AskG A Bad] in equation (12), from the definition of Bad, we have

Pr[AskG A Bad] = Pr[Bad] — Pr[-AskG A Bad]
> Pr[Bad] — Pr[H’Bad|—=AskG] — Pr[EBad|—AskG]

— Pr[DBad|—-AskG] — Pr[¥Bad|-AskG]. (13)
We can estimate Pr[H’Bad|—~AskG] in inequality (13) by gg (Wé%w) because through-
out the simulation of H', it is only by accident that random integer w already be-
longs to G-List?*. For the same reason, Pr[¥Bad|-AskG] in inequality (13) is bounded
by qz(qc+g++qz)_ Moreover, through the decryption query, since it is only by acci-
dent that w equals H'(z||r) under the condition that A does not query H' about z||r,
Pr[DBad|-~AskG] in inequality (13) is less than J¢-.

With regard to Pr[EBad|—-AskG]| in inequality (13), from the definition of EBad,
we have Pr[EBad| —AskG] < Pr[AskG|—AskG] + Pr[AskH'|-AskG]. In this inequality,
Pr[AskG|—~AskG] = 0 and Pr[AskH’| —AskG] < % hold. In fact, with regard to the
latter term, since if =AskG happens, 1™ = [s* @ G(w)], is a uniform integer in {0, 1},
then (||r™,*,*,*) € H'-List occurs only by accident.

Hence, we have

g t+ags (gw +4g5)(gc +qu +4gz) +ap

Pr[AskG A Bad] > Pr[Bad] oko 2k1

(14)

With regard to the second term of equation (12), it is meaningful to consider the
advantage of A because of the condition —Bad. We can do this by evaluating Pr[AskG A
—Bad] as follows:

Pr[AskG A =Bad] > Pr[A = b A AskG A —Bad]
Pr[A = b A —Bad] — Pr[A = b A -AskG A —=Bad]. (15)

In this inequality, we have both?®

Pr[A=bA-Bad] > Pr[A=0b]— Pr[Bad]

24 Although in the proof of [4], the number of w queried to G is gy + gs, it should be estimated by
qc + qu' + gx because w may be queried to G directly.

*5For equality (16), note that if ~Bad occurs, then A can exercise its ability to distinguish the target
ciphertext with probability £ 4+ (< 1). For equality (16), note that if ~AskG and —Bad then A neither
notices the dishonest replacement of the target ciphertext nor distinguishes the target validly, 1.e., under
these conditions, Pr[.A = b] is at most % (by accident).

23

and?26

Pr[A =bA-AskG A —Bad] = Pr[A = b|-AskG A —Bad] Pr[-AskG A —Bad]
= %(1 — Pr[Bad] — Pr[AskG A —Bad]). (16)

Therefore, Pr[AskG A —Bad] > EiPr[BadHPQr[ASkGAﬁBad] holds and this inequality leads to
Pr[AskG A —Bad] > ¢ — Pr[Bad]. (17)

Hence the consideration of inequalities (13), (14), and (17) concludes the proof of
Theorem 1.

The running time 7’ of Z is the sum of the following terms: (i) the running time 7 of
A because we run A once, (ii) in order to be able to simulate D and 3, we calculate both
f(z) and f(s||t) 2(gmr + gx) times in simulating H' and X, i.e., 2(qg + gs)Ts. Hence,
7" <7+ 2(qu + qu)Ty holds.

D Proof of Theorem 8

D.1 Construction of Inverter 7

We give the construction of inverter Z that breaks the one-wayness of f about 7, by using
forger F that breaks PSS-ES in (7,qp, ¢»,qG, qn’,€) in the sense of EUF-CCA2&ACMA,
as follows: we input public key f to F, answer the queries that F asks to random oracles,
to the decryption oracle, and to the signing oracle as follows: Finally, we receive forgery
y* (or stops F after its running time 7 is over).

In simulating random oracles’” G' and H’, we construct input/output lists, G-List
and H'-List, respectively. G-List holds (w,G(w)), the pairing of query w and answer
G(w). H'-List holds (b, z||r, H' (x||r), 2, y), the bit b = 0/1%%, query =||r, answer H'(x||r),
guarantee z for signing queries, and pledge y for the decryption queries.

In this strategy, in order for F to output valid signature o*, F queries H' about
2*||r*?%; in this case, we can find f1(n) = Z_*

Answering the random oracle queries to G and H'

For new query w to G, we choose random integer from {0,1}"**0 put it to G(w),
answer to F, and add (w,G(w)) to G-List. If w has already been queried G, we search
(w, G(w)) € G-List and answer G(w).

*Note that Pr[A = b] in this inequality is taken over the random coins of A and Z in which A does not
notice the simulation. The probabilistic space is restricted and smaller than the entire probabilistic space,
however, the probability of the event that A = b is equal to the one taken over the entire probabilistic
space, 5 + %, from the definition of the random oracle model.

2"We simulate G and H' for direct queries output to G and H', respectively, and moreover, for the
queries output to other oracles, indirectly, too.

?8h = 0 means that 5 is not embedded for the z||r, and b = 1 means that 7 is implanted for the z||r.

PPrecisely, F can forge o without querying z*||r* to H'. We consider this case below and estimate
the success probability of Z.

24

For new query z||r to H', we get z £ {0,1}* and divide f(2)n = s||w (here, |s| =
n+ ko,|Jw| = k1). In this phase, if (w, %) has already been in G-List, we abort. Otherwise,
we set G(w) = s ® (z||r) and simulate G. Finally, we calculate y = f(s||w) in order of
the decryption queries, answer w as H'(z||r) to F, and add (1, z||r,w, z,y) to H'-List. If
x||r has already been queried to H', we locate (x,z||r, H'(z||r), *,*) € H'-List and answer
H'(x||r).

Answering the decryption queries to D
We denote the elements of decryption query y, as w, r, and z. In order for y to be valid
ciphertext, F must have queried H' about z||r and in this case, (z||r, %, *,y) is in H'-List
so we can answer with the corresponding plaintext x. Otherwise, we answer Reject since
the probability of H'(z||r) = w is negligible.

Answering the signing queries to X
For signing query z to X, we get r £ {0,1}*0 and check whether (0,z||r,*, z, %) is
in H'-List. If so, we answer z to F as a signature. Moreover, if (1,x||r,*,,) is in
H'-List, we abort. Otherwise, we choose z £ {0,1}*, and divide f(z) = s||w (here,
|s| = n + ko,Jw| = ki1). In this phase, if (w,#*) has already been in G-List, we abort.
Otherwise, we put G(w) = s @ (z||r) and simulate G. Finally, we calculate y = f(s||w)
in order of the decryption queries, set H'(z||r) = w, add (0, z||r,w, z,y) to H'-List, and
answer z as a signature.

D.2 Analysis

Let y* be a forgery output by F; s*, w*, and r* are the corresponding elements. In

order to analyze the success probability of Z, we use H'Bad, DBad, and ¥XBad in the same

manner as in section D.2, and Bad = H'Bad vV DBad V ¥XBad. Moreover, let S be an event

that Vo (0*) = 2™, and let AskH' be an event in which F queries H' directly about z*||r*.
At first, we consider

1 = Pr[Bad] + Pr[-Bad]. (18)
With regard to Pr[Bad] in equation (18), from the definition of Bad,

Pr[Bad] < Pr[H’Bad] + Pr[DBad] + Pr[Bad]

holds. In this inequality, we can estimate Pr[H’Bad] by qp (qc+g++qz) because through-

out the simulation of H', it is only by accident that random integer w already belongs
to G-List®*. Moreover, through the decryption query, since it is only by accident that w
equals H'(x||r) under the condition that A does not query H' about z||r, Pr[DBad] is
less than ;ITDI- On the other hand, in the simulation of ¥, Pr[¥Bad] is given as the sum

of g» 1’ which represents the event of simulation abort because (1, x||r, *, *, %) € H'-List

2k0 9
9G+ayr+ax

happens for random integer 7, and gs =—4 , which represents the event that random

30 Although in the proof of [4], the number of w queried to G is qy+ + ¢s, it should be estimated by
qc + qu' + g= because w may be queried to G directly.

25

integer w is contained in G-List. Therefore, we have

quqs | (gm +92)(ge +qm +qx) +ap
wo Tt k :
2F0 21

Pr[Bad] <
With regard to Pr[—Bad] in equation (18), we divide event —Bad by S and have
Pr[-Bad] = Pr[S A =Bad] + Pr[-S A —Bad]. (20)
In this equality (20),

Pr[-S A —=Bad] < Pr[=S|-Bad]
1 — Pr[S|-Bad]
= 1—¢ (21)

holds?!.
Next, we estimate Pr[S A —Bad] in equation (20) by dividing event S A —Bad by AskH':

Pr[S A =Bad] = Pr[S A —=Bad A AskH’| + Pr[S A —=Bad A —AskH'].

In this equality, Pr[S A =Bad A =AskH'] is bounded by 2%1 because it is only by accident
that H'(z*||r*) = w* if (1,2*||r*,*,,%) ¢ H'-List holds. On the other hand, we have
Pr[S A —=Bad A AskH'] < Pr[S A AskH'] < Succ®(7') because if both (1, z*||r*, , z*, %) €
or _ [N)
=

H'-List and S hold, we can compute = = f~}(n) from the multiplicative

property of f. Therefore, we have

Pr[S A ~Bad] < Succ™ (') + 2% (22)

By substituting inequalities (21) and (22) into equation (20), we have

Pr[~Bad] < Succ™ (') + 2% e (23)

Finally, if we substitute inequalities (19) and (23) into equation (18), we can conclude
the proof of Theorem 8.

The running time 7’ of Z is the sum of the following terms: (i) the running time 7 of
F because we run F once, (ii) in the simulation of 3, we have to prepare the answer to
queries to D and X, i.e., 2qxTY, (iii) in the simulation of H', we have to prepare the answer
for queries to D and to implant 7, i.e., 2¢y/ Ty, (iv) we have to find z* corresponding to
o* by computing f(o*) once, i.e., Ty. Hence, 7" < 7+ (2qz + 2gx + 1)T holds.

31Note that the success probability of F under the condition that F does not notice the simulation is
e and this leads to Pr[S|—Bad] =e.

26

