Protocol Initialization for the Framework of Universal
Composability

Boaz Barak* Yehuda Lindellf Tal Rabinf

January 8, 2004

Abstract

Universally composable protocols (Canetti, FOCS 2000) are cryptographic protocols that
remain secure even when run concurrently with arbitrary other protocols. Thus, universally
composable protocols can be run in modern networks, like the Internet, and their security
is guaranteed. However, the definition of universal composition actually assumes that each
execution of the protocol is assigned a unique session identifier, and furthermore, that this
identifier is known to all the participating parties. In addition, all universally composable
protocols assume that the set of participating parties and the specification of the protocol to
be run are a-priori agreed upon and known to all parties. In a decentralized network like the
Internet, this setup information must be securely generated by the parties themselves. In this
note we formalize the setup problem and show how to securely realize it with a simple and
highly efficient protocol.

Key words: Universal composition, secure multiparty computation

1 Introduction

The framework of universal composability (UC) [1] is a powerful tool aiding in the design and
analysis of cryptographic protocols. The central feature of this framework is a robust composition
theorem that states the following: Any protocol that is proven secure (as stand-alone) under the
definition of universal composability, is guaranteed to remain secure when run concurrently with
arbitrary other protocols. Thus, for example, universally composable protocols can be safely used in
real settings like the Internet, where many sets of parties run many different protocols concurrently.

In order to formalize the notion of security under concurrent composition, the framework of
universal composability assumes that for every protocol execution there is a unique session identi-
fier that is known (and agreed upon) by all parties. In addition, all known universally composable
protocols assume that all parties know (and agree upon) the set of participating parties and the
protocol to be executed. We stress that the above assumptions are not merely technicality; rather
they are heavily relied on by known construction in order to achieve security. (For example, the
commitment protocol of [2], that forms the basis for their entire construction, binds the session
identifier to the committed value, in order to prevent the copying of commitments from one ex-
ecution to another.) Since the actual security of universally composable protocols relies on the

“Institute for Advanced Study, Princeton NJ, USA. email: boaz@ias.edu. This work was carried out while visiting
the IBM T.J.Watson Research Center.

fIBM T.J.Watson Research, 19 Skyline Drive, Hawthorne, NY 10532, USA. email: lindellQus.ibm.com,
talr@watson.ibm.com.

“correctness” of the setup information (e.g., that the session identifier is indeed unique and com-
mon to all participants), a secure setup protocol must be used. In particular, it does not suffice
to allow one party (say, the party initiating the protocol execution) to choose the session identifier
and distribute it to all the participants.

Our results. Before describing how the problem of obtaining the required setup can be solved,
we must first consider how protocols are invoked in a decentralized network. Specifically, how
do parties decide to start running a specific protocol, and with whom? Typically, there exists a
protocol initiator who “invites” a set of parties to participate in some execution. If the protocol
is an auction, then the initiator is most likely to be the auctioneer. Then, parties who receive
this “invitation” may participate if they wish. (Prior to the beginning of the protocol execution,
parties may approach the initiator and express interest in participating. However, the final decision
is in the initiator’s hands.) In this note, we provide a formal definition of the “initialization and
setup problem”; i.e., the problem of securely obtaining the protocol setup assumptions of the UC
framework, in a setting where any party can initiate protocol executions. We then present a very
efficient and simple protocol that solves this problem without any central or trusted authorities,
and without any assumed threshold regarding the number of corrupted parties.

Our protocol guarantees that globally unique session identifiers are used in each execution. That
is, the adversary is unable to cause two (or more) different protocol executions to have the same
session identifier. At first glance, this may seem to contradict the impossibility results of [4]. In
[4], it is proven that in the setting of parallel or concurrent (stateless) composition, it is impossible
to achieve authenticated Byzantine agreement when at least a third of the parties are corrupted.
In addition, they prove that authenticated Byzantine agreement under concurrent composition can
be achieved if unique identifiers are somehow initially obtained. Combining these two results, it
follows that in the setting of authenticated Byzantine agreement under concurrent composition, it
is impossible for the parties to generate unique session identifiers by themselves (because if they
could, then they could achieve authenticated Byzantine agreement, in contradiction to the first
result). In contrast, we do generate unique session identifiers, without any external trusted help
and for any number of corrupted parties. The reason that no contradiction actually exists is due to
the fact that the requirements on termination are different. That is, the definition of authenticated
Byzantine agreement requires that the parties always successfully obtain output. In contrast, in our
setting there is no requirement that the protocol will successfully conclude. Rather, it is guaranteed
that if a party concludes the setup protocol, then it has obtained a unique session identifier. (We
also present a variant of the setup protocol where successful termination is guaranteed, but only if
the initiator is honest.)

Security in the initiator model. As we have mentioned, in this paper, we consider a model
where a protocol initiator chooses the set of participating parties as it wishes. It should be noted
that in such a case, an adversarial initiator can choose this set so that only one party is honest. It
is important to be aware of this because in some cases this can have undesired effects. For example,
consider a secure protocol for polling the voting patterns of the population. If only one party in
the poll is honest, then the adversary can learn the exact vote of this party.

The framework of universal composability. We refer the reader to [1, 2] for a description
and definition of the framework of universal composability. Due to differing versions of the frame-
work regarding message delivery, we briefly clarify what we consider here. In the ideal model, all
messages between the honest parties and the ideal functionality are delivered immediately without

any involvement from the adversary. (This is the model considered in the latest version of [1].)
In the basic real model that we consider, the adversary sees all the messages sent, and delivers
or blocks these messages at will (but cannot modify them). However, we will also consider a real
model where message delivery is guaranteed between honest parties. We note that in this work we
consider adaptive, malicious adversaries.

2 The Initialization and Setup Problem

2.1 Problem Definition

In a decentralized network, any party can initiate a protocol execution by inviting some subset of
parties to participate. Of course, some of these parties may not want to participate, and may choose
not to. This models real settings where parties notify the initiator of their interest to participate,
and the initiator then chooses some subset of interested parties as it wishes. The naive way to
implement such a scenario is to simply have this protocol initiator send an “initiate” message to all
the parties who will participate in the execution. However, this initiate message must also include
a unique session identifier, the identities of all participating parties, and the specification of the
functionality that is to be called. We note that secure protocols all assume that this information
is a-priori known to all parties; the framework of universal composability is no exception. Thus,
a dishonest initiator may provide different sets of identities to different parties and may choose a
session identifier that has already been used in the past (or is even being used in a concurrently
running session; see [4] for an example of where copying session identifiers can be very detrimental
to protocols that assume uniqueness). We therefore define an initialize functionality, denoted Fipi,
that prevents the adversary from such behavior. In this functionality, the initiating party chooses
the set of participating parties and the specification of the functionality to be computed by these
parties. However, the session identifier is chosen by the adversary, with the only limitation that
it must be unique. Since uniqueness is the only requirement for session identifiers, allowing the
adversary the power to choose the specific unique string does not compromise the security of the
system. We stress that the output of the initialize functionality is such that all the parties receive
the same session identifier, the same set of identities, and the same functionality specification. This
therefore provides the parties with the setup information needed for running a secure protocol. The
functionality is defined in Figure 1.

We note that the adversary S has full control over which parties receive the invoke message from
the functionality. In fact, a party only receives output after S explicitly instructs the functionality
to send it to the party. This corresponds to the basic model considered for the UC framework
where message delivery is not guaranteed in the real model. In this case the adversary can always
prevent a party from receiving output by blocking its last message in the protocol. The ideal
functionality therefore also provides the adversary with this capability. The case where message
delivery is guaranteed in the real model is dealt with in Section 2.3.

Using the Fi,it functionality. Recall that the UC framework assumes that when a protocol
7 contains an ideal call to a functionality F, then all the parties have already agreed upon the
set of participating parties, the specification of the functionality they are calling, and the unique
session identifier sid. Ensuring that this holds is seen to be the “responsibility” of the calling
protocol 7. In a decentralized network, the functionality Fini; can be called before the first call to
a functionality F. Specifically, in order to initiate an execution of F, the initiator first calls Fipj;.
Then, after a party P; obtains output (invoke, 0, (sid, P;, P, F)), it can proceed to call F with the
set of participating parties P and session identifier sid.

Functionality Fipnit

Finit, with fixed session identifier 0, runs in the universe with parties ¢/ and an adversary S. When
called for the first time, it sets Hist = 0.

e Upon receiving a value (initiate, 0, (P;, P, F)) from P;, where P C U, execute the following:

1. Send (initiate, 0, (P;, P, F)) to S.
2. Upon receiving back (set-id, 0, (sid', P;, P, F)) from S, do the following:
(a) If sid" € Hist, choose an arbitrary sid & Hist.
(b) If sid ¢ Hist, set sid < sid'.
(c) Update Hist Hist U {sid}.
(d) Send (invoke, 0, (sid, P;, P, F)) to S.
3. Upon receiving a message (send-output, 0, (sid, P;,P,F), P;) from S:

(a) If P; € P and it has not yet been sent the invoke message with (sid, P;, P, F), send
it (invoke, 0, (sid, P;, P, F)).

Figure 1: The Initialize Functionality

We stress that there is only a single copy of the Finj; functionality, and it has the fixed session
identifier 0. (If it was necessary to agree upon a unique identifier for every invocation of Fiuj;, then
we would have solved nothing.) Technically, we can use the same identifier for every call to Finit,
because the functionality does not need to associate different messages from different parties within
a single call. (If different parties did send messages to Fini¢ in a single call, then some mechanism,
like a unique identifier, would be needed to ensure that messages would be correctly associated.)
We note that for the interaction between the functionality and the adversary it suffices for the
functionality to “identify” the execution via the values sent in the initiate message.

2.2 Protocol Construction

We now present a simple protocol that securely computes Fipi; in the UC framework. The basic idea
behind the protocol is for the parties to jointly generate the session identifier sid by concatenating
n-bit random strings (n denotes the security parameter). Then, a party will “accept” the final
std only if its random string is included. This means that honest parties will only accept unique
identifiers, because an sid with an n-bit random string is unique except with negligible probability.
The set of participating parties and the functionality specification are also appended to the session
identifier sid, in order to ensure that all parties that conclude with the same sid agree on the
participating parties and functionality specification. We note that a corrupted initiator can cause
different parties to conclude with different identifiers. However, this is equivalent to the initiator
running multiple setups with different parties. Since it can always do this in the ideal model, it is
also allowed to do so in a real protocol execution. The protocol is presented in Figure 2.

Theorem 1 Protocol Il securely computes the functionality Finye in the UC framework, in the
presence of adaptive, malicious adversaries and in an asynchronous model where message delivery
s not guaranteed.

Protocol IT;,;¢

1. Upon input (initiate, 0, (P;, P, F)), party P; chooses a random value sid; €r {0,1}" and sends
(startm,,,, , sid;, P;, P, F) to all parties P; € P. (Identifier sid; is used to enable the parties to
distinguish messages from this execution from messages from other executions.)

2. Each party P; that receives the startr,,,, message chooses a random string r; € {0,1}" and
sends (sid;,r;) to P;. (If P; ¢ P then it ignores the message.)

3. Denote the parties in P by Fj,,..., P;,, where the parties are sorted in ascending order of
identities (i.e., j; < jj+1 for every 7).
Then, when party P; receives the (sid;,r;) messages from all parties P; € P, it chooses
ri €r {0,1}™, sets sid = r;,rj,,...,7;,, P, F and sends (sid;, sid) to all parties P; € P.

4. When party P; receives (sid;, sid) from P; it checks the following:

(a) The set of parties and functionality description appearing at the end of sid equals the
set P and functionality F that it received from P; in the first message.

(b) The random value r; that P; chose appears in sid in its “correct” position.

If both these hold, then P; outputs (invoke, 0, (sid, P;, P, F)). Otherwise, it outputs nothing.

Figure 2: Protocol for securely computing the Fini; functionality

Proof: Let A be a real-model adversary. Then, we construct an ideal-model simulator/adversary S
such that no environment Z can distinguish a real execution of Il;,;; with A from an ideal execution
of Finit with S.

The simulator S invokes A and emulates an execution of IIj,;, while playing all of the uncor-
rupted parties. We distinguish between the case that the initiating party P; is corrupted at the

time that it sends its starty, ,, message to the parties in P, from the case that it is uncorrupted:

P; is corrupted: In this case, A sends a series of starty, ,, messages to honest parties, in the
name of P;. For every such (startm,,,, sid;, P;, P, F) message that A sends an honest party Pj,
simulator S chooses r; €p {0,1}" and internally sends (sid;,r;) back to A. (S simulates P;
sending this reply, unless P; € P, in which case S does nothing.)

When A sends another message (sid;, sid) to the honest P; in the emulation, simulator S checks
that the random string r; appears in sid in the correct position and that P and F appear at
the end of sid. If no, then it does nothing. Otherwise, there are two possibilities:

1. S has already sent a (set-id, 0, (sid, P;, P, F)) message to Finit-
In this case, S sends the message (send-output, 0, (sid, P;, P, F), P;) to Finit, instructing it
to send output to P;.

2. S has not yet sent a (set-id, 0, (sid, P;, P, F)) message to Finit: In this case, S first instructs
P; to send (initiate, 0, (P;, P, F)) to the functionality Fi,i;. Functionality Finj; then sends
(initiate, 0, (P;, P, F)) to S, and S replies with (set-id, 0, (sid, P;, P, F)), for the above sid.
Finally, after S receives back the (invoke, 0, (sid, P;, P, F)) from Fipit, it sends the message
(send-output, 0, (sid, P;, P, F), Pj) to Finit, instructing it to send output to P;.

P; is uncorrupted: In this case, S receives a message (initiate,0, (P;, P, F)) from Fin;;. Then,
S simulates P; sending (start,,,,, sid;, P;,P,F) to all parties P; € P, for a random sid; €r

nit?

{0,1}". In addition, S simulates all the honest parties P; replying with (sid;,r;). Then, S
waits until A delivers all of the (sid;,r;) messages from the honest parties to P;, and until A
sends (sid;,rj) messages to P; from all the corrupted parties Pj. Following this, S computes
sid =r;,rj,...,7,P,F and sends (set-id,0, (sid', P;, P, F)) to Finit-

Now, let sid = sid’. Then, S simulates P; writing (sid;, sid) messages on its outgoing communi-
cation tape for all P; € P. Then, S sends a (send-output, 0, (sid, P;, P, F), Pj) message to Finit
whenever A delivers the (sid;, sid) message from P; to P; in the emulation.

Dealing with corruptions: Notice that in the above-described simulation, S simply plays the
roles of all the honest parties and sends Fiyj; the initiate message with the sid that is generated by
the protocol. Therefore, if A corrupts P; at sometime during the execution, S simply continues
by following the instructions for the case that P; is corrupted. Likewise, corruptions of parties
P; (j #14) are dealt with in a straightforward way (they have no secret information, so there is
no private state to be revealed).

Analysis of §: We now prove that the simulator S is such that no environment Z can distinguish
between an ideal execution with Fi,;; and S, from a real execution of Protocol Il;,;; with A. First
note that the honest parties have no secret information. Therefore, S perfectly simulates a real
execution of Protocol ITjy;; for A. Furthermore, assuming that the identifier sid sent by S is always
unique, the honest parties all output the same values as they would in a real execution. This is the
case because the sid’ value sent by S in the set-id message to Fin;; is simply the sid value that the
honest parties would receive from P; in a real execution. Thus, it remains to show that the value
sid' sent by S is unique, except with negligible probability (we prove this for the case that at least
one honest party is participating, otherwise it is of no significance).

In the case that the initiator P; is corrupted and some P; is not corrupted, simulator S only sends
(set-id, 0, (sid', P;, P, F)) to Finit if the value r; appears in sid' in the correct position. Recall that
r; €r {0,1}" was chosen randomly by S. Therefore, the probability that this sid’ was previously
used is at most time(A)/2", where time(.A) denotes the running time of adversary A. Since A runs
in polynomial time, this probability is negligible. Next, if P; is not corrupted, then sid’ begins with
a random value r; €p {0,1}". As above, this means that the probability that sid’ has been used
before is negligible.

In order to complete the proof, note that & instructs Fiui; to deliver output to a party P; at
the same time that A delivers the message (sid;, sid) from P; to P; in the emulation. Therefore,
honest parties obtain outputs at the same time in a real and ideal execution. [

Notice that in the case that the initiator is corrupted, Protocol IIj,;; provides almost no “agreement”
guarantees. Specifically, every honest party may end up with a different session identifier. However,
this does not contradict the security of the protocol because in the ideal model, a corrupted initiator
may initiate many different sessions. Furthermore, the adversary can deliver output to only one
honest party in each of these sessions. This is equivalent to the situation in the real model where
each party concludes with a different session identifier.

2.3 Protocol Initialization With Guaranteed Termination

The real model that we have considered until now is one where the adversary has control over all
message delivery between the honest parties. In this case, the adversary can always prevent an
honest party from receiving output, by not delivering its last message in the protocol. As we have
mentioned, the definition of Fi,;; for the ideal model therefore explicitly allows the adversary S to
decide when (if at all) an honest party receives its output. In this section, we consider a real model

where message delivery is guaranteed between honest parties. For simplicity, we assume that the
network is synchronous, although we could also consider a partially asynchronous network where
messages can be delayed for at most € units of time, for a given and publicly known e. In this case,
we would like to ensure successful termination of the protocol, with all parties receiving output.
This will ensure that if the secure protocol to be run following the initialization guarantees output
delivery, then the composition of Protocol II;,;; with the secure protocol will also guarantee output
delivery.

We first modify Finit so that output delivery is guaranteed. This cannot be done in a naive way
because then Byzantine (or authenticated Byzantine) agreement would be implied, in contradiction
to known impossibility results [3, 5, 4]. Rather, we require that if the initiator is honest, then it
is guaranteed that all the honest parties conclude with the same session identifier, the same set
of participating parties and the same functionality specification. In contrast, if the initiator is
not honest, then the effect achieved is like in the previous section. (That is, the honest parties
may conclude with different session identifiers, but the identifiers are always unique and fulfill the
requirements of a secure setup.)

Modifications to functionality Fi,;;. We modify Fi,; as follows. First, the initiator P; sends
a unique identifier sidy in its initiate message to the functionality. Then, if the adversary S does
not reply with sid’ in the next round and sidy ¢ Hist, the session identifier in the output is set
to sidy. If the adversary S does reply with sid’, then Step 2 of Fin; remains the same. The
second modification is that instead of S instructing the functionality to send-output in Step 3, these
instructions are provided by the initiator. Of course, an honest initiator is expected to choose sidg
randomly (to ensure uniqueness) and to instruct the functionality to send output to all parties.
The result of the above is that in the case that the initiator P; is honest, successful termination
is guaranteed (i.e., all parties receive (invoke, 0, (sid, P;, P, F)) where sid is a unique identifier and
‘P, F are as chosen by P;. On the other hand, if the initiator is corrupted, then the same effect as
the original Fi,i; is achieved.

Modifications to protocol ITj,;. With a slight modification, Protocol Ilj,;; can be made to
securely realize the modified initialize functionality. The required modification to the protocol is
in Step 3 (see Figure 2): Instead of Party P; waiting until it receives all of the (sid;,r;) messages,
it waits one round (recall, we assume here that the network is synchronous). If a party P; does
not send its message in the next round, then P; chooses r; €g {0,1}" and continues as if P; sent
(sid;,rj). Notice that once P; sends the (sid;,r;) messages, all parties receive output. Therefore,
this modification to Protocol II;,;; ensures successful termination when the initiator P; is honest.

References

[1] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd FOCS, pages 136-145, 2001. Full version available at
http://eprint.iacr.org/2000/067.

[2] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and
Multi-Party Computation. In 34th STOC, pages 494-503, 2002.

[3] L. Lamport, R. Shostack, and M. Pease. The Byzantine Generals Problem. ACM Transac-
tions on Programming Languages and Systems, 4(3):382-401, 1982.

[4] Y. Lindell, A. Lysysanskaya and T. Rabin. On the Composition of Authenticated Byzantine
Agreement. In 34th STOC, pages 514-523, 2002.

[5] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults.
Journal of the ACM, 27(2):228-234, 1980.

