
Proto
ol Initialization for the Framework of Universal

Composability

Boaz Barak

�

Yehuda Lindell

y

Tal Rabin

y

January 8, 2004

Abstra
t

Universally
omposable proto
ols (Canetti, FOCS 2000) are
ryptographi
 proto
ols that

remain se
ure even when run
on
urrently with arbitrary other proto
ols. Thus, universally

omposable proto
ols
an be run in modern networks, like the Internet, and their se
urity

is guaranteed. However, the de�nition of universal
omposition a
tually assumes that ea
h

exe
ution of the proto
ol is assigned a unique session identi�er, and furthermore, that this

identi�er is known to all the parti
ipating parties. In addition, all universally
omposable

proto
ols assume that the set of parti
ipating parties and the spe
i�
ation of the proto
ol to

be run are a-priori agreed upon and known to all parties. In a de
entralized network like the

Internet, this setup information must be se
urely generated by the parties themselves. In this

note we formalize the setup problem and show how to se
urely realize it with a simple and

highly eÆ
ient proto
ol.

Key words: Universal
omposition, se
ure multiparty
omputation

1 Introdu
tion

The framework of universal
omposability (UC) [1℄ is a powerful tool aiding in the design and

analysis of
ryptographi
 proto
ols. The
entral feature of this framework is a robust
omposition

theorem that states the following: Any proto
ol that is proven se
ure (as stand-alone) under the

de�nition of universal
omposability, is guaranteed to remain se
ure when run
on
urrently with

arbitrary other proto
ols. Thus, for example, universally
omposable proto
ols
an be safely used in

real settings like the Internet, where many sets of parties run many di�erent proto
ols
on
urrently.

In order to formalize the notion of se
urity under
on
urrent
omposition, the framework of

universal
omposability assumes that for every proto
ol exe
ution there is a unique session identi-

�er that is known (and agreed upon) by all parties. In addition, all known universally
omposable

proto
ols assume that all parties know (and agree upon) the set of parti
ipating parties and the

proto
ol to be exe
uted. We stress that the above assumptions are not merely te
hni
ality; rather

they are heavily relied on by known
onstru
tion in order to a
hieve se
urity. (For example, the

ommitment proto
ol of [2℄, that forms the basis for their entire
onstru
tion, binds the session

identi�er to the
ommitted value, in order to prevent the
opying of
ommitments from one ex-

e
ution to another.) Sin
e the a
tual se
urity of universally
omposable proto
ols relies on the

�

Institute for Advan
ed Study, Prin
eton NJ, USA. email: boaz�ias.edu. This work was
arried out while visiting

the IBM T.J.Watson Resear
h Center.

y

IBM T.J.Watson Resear
h, 19 Skyline Drive, Hawthorne, NY 10532, USA. email: lindell�us.ibm.
om,

talr�watson.ibm.
om.

1

\
orre
tness" of the setup information (e.g., that the session identi�er is indeed unique and
om-

mon to all parti
ipants), a se
ure setup proto
ol must be used. In parti
ular, it does not suÆ
e

to allow one party (say, the party initiating the proto
ol exe
ution) to
hoose the session identi�er

and distribute it to all the parti
ipants.

Our results. Before des
ribing how the problem of obtaining the required setup
an be solved,

we must �rst
onsider how proto
ols are invoked in a de
entralized network. Spe
i�
ally, how

do parties de
ide to start running a spe
i�
 proto
ol, and with whom? Typi
ally, there exists a

proto
ol initiator who \invites" a set of parties to parti
ipate in some exe
ution. If the proto
ol

is an au
tion, then the initiator is most likely to be the au
tioneer. Then, parties who re
eive

this \invitation" may parti
ipate if they wish. (Prior to the beginning of the proto
ol exe
ution,

parties may approa
h the initiator and express interest in parti
ipating. However, the �nal de
ision

is in the initiator's hands.) In this note, we provide a formal de�nition of the \initialization and

setup problem"; i.e., the problem of se
urely obtaining the proto
ol setup assumptions of the UC

framework, in a setting where any party
an initiate proto
ol exe
utions. We then present a very

eÆ
ient and simple proto
ol that solves this problem without any
entral or trusted authorities,

and without any assumed threshold regarding the number of
orrupted parties.

Our proto
ol guarantees that globally unique session identi�ers are used in ea
h exe
ution. That

is, the adversary is unable to
ause two (or more) di�erent proto
ol exe
utions to have the same

session identi�er. At �rst glan
e, this may seem to
ontradi
t the impossibility results of [4℄. In

[4℄, it is proven that in the setting of parallel or
on
urrent (stateless)
omposition, it is impossible

to a
hieve authenti
ated Byzantine agreement when at least a third of the parties are
orrupted.

In addition, they prove that authenti
ated Byzantine agreement under
on
urrent
omposition
an

be a
hieved if unique identi�ers are somehow initially obtained. Combining these two results, it

follows that in the setting of authenti
ated Byzantine agreement under
on
urrent
omposition, it

is impossible for the parties to generate unique session identi�ers by themselves (be
ause if they

ould, then they
ould a
hieve authenti
ated Byzantine agreement, in
ontradi
tion to the �rst

result). In
ontrast, we do generate unique session identi�ers, without any external trusted help

and for any number of
orrupted parties. The reason that no
ontradi
tion a
tually exists is due to

the fa
t that the requirements on termination are di�erent. That is, the de�nition of authenti
ated

Byzantine agreement requires that the parties always su

essfully obtain output. In
ontrast, in our

setting there is no requirement that the proto
ol will su

essfully
on
lude. Rather, it is guaranteed

that if a party
on
ludes the setup proto
ol, then it has obtained a unique session identi�er. (We

also present a variant of the setup proto
ol where su

essful termination is guaranteed, but only if

the initiator is honest.)

Se
urity in the initiator model. As we have mentioned, in this paper, we
onsider a model

where a proto
ol initiator
hooses the set of parti
ipating parties as it wishes. It should be noted

that in su
h a
ase, an adversarial initiator
an
hoose this set so that only one party is honest. It

is important to be aware of this be
ause in some
ases this
an have undesired e�e
ts. For example,

onsider a se
ure proto
ol for polling the voting patterns of the population. If only one party in

the poll is honest, then the adversary
an learn the exa
t vote of this party.

The framework of universal
omposability. We refer the reader to [1, 2℄ for a des
ription

and de�nition of the framework of universal
omposability. Due to di�ering versions of the frame-

work regarding message delivery, we brie
y
larify what we
onsider here. In the ideal model, all

messages between the honest parties and the ideal fun
tionality are delivered immediately without

2

any involvement from the adversary. (This is the model
onsidered in the latest version of [1℄.)

In the basi
 real model that we
onsider, the adversary sees all the messages sent, and delivers

or blo
ks these messages at will (but
annot modify them). However, we will also
onsider a real

model where message delivery is guaranteed between honest parties. We note that in this work we

onsider adaptive, mali
ious adversaries.

2 The Initialization and Setup Problem

2.1 Problem De�nition

In a de
entralized network, any party
an initiate a proto
ol exe
ution by inviting some subset of

parties to parti
ipate. Of
ourse, some of these parties may not want to parti
ipate, and may
hoose

not to. This models real settings where parties notify the initiator of their interest to parti
ipate,

and the initiator then
hooses some subset of interested parties as it wishes. The naive way to

implement su
h a s
enario is to simply have this proto
ol initiator send an \initiate" message to all

the parties who will parti
ipate in the exe
ution. However, this initiate message must also in
lude

a unique session identi�er, the identities of all parti
ipating parties, and the spe
i�
ation of the

fun
tionality that is to be
alled. We note that se
ure proto
ols all assume that this information

is a-priori known to all parties; the framework of universal
omposability is no ex
eption. Thus,

a dishonest initiator may provide di�erent sets of identities to di�erent parties and may
hoose a

session identi�er that has already been used in the past (or is even being used in a
on
urrently

running session; see [4℄ for an example of where
opying session identi�ers
an be very detrimental

to proto
ols that assume uniqueness). We therefore de�ne an initialize fun
tionality, denoted F

init

,

that prevents the adversary from su
h behavior. In this fun
tionality, the initiating party
hooses

the set of parti
ipating parties and the spe
i�
ation of the fun
tionality to be
omputed by these

parties. However, the session identi�er is
hosen by the adversary, with the only limitation that

it must be unique. Sin
e uniqueness is the only requirement for session identi�ers, allowing the

adversary the power to
hoose the spe
i�
 unique string does not
ompromise the se
urity of the

system. We stress that the output of the initialize fun
tionality is su
h that all the parties re
eive

the same session identi�er, the same set of identities, and the same fun
tionality spe
i�
ation. This

therefore provides the parties with the setup information needed for running a se
ure proto
ol. The

fun
tionality is de�ned in Figure 1.

We note that the adversary S has full
ontrol over whi
h parties re
eive the invoke message from

the fun
tionality. In fa
t, a party only re
eives output after S expli
itly instru
ts the fun
tionality

to send it to the party. This
orresponds to the basi
 model
onsidered for the UC framework

where message delivery is not guaranteed in the real model. In this
ase the adversary
an always

prevent a party from re
eiving output by blo
king its last message in the proto
ol. The ideal

fun
tionality therefore also provides the adversary with this
apability. The
ase where message

delivery is guaranteed in the real model is dealt with in Se
tion 2.3.

Using the F

init

fun
tionality. Re
all that the UC framework assumes that when a proto
ol

�
ontains an ideal
all to a fun
tionality F , then all the parties have already agreed upon the

set of parti
ipating parties, the spe
i�
ation of the fun
tionality they are
alling, and the unique

session identi�er sid. Ensuring that this holds is seen to be the \responsibility" of the
alling

proto
ol �. In a de
entralized network, the fun
tionality F

init

an be
alled before the �rst
all to

a fun
tionality F . Spe
i�
ally, in order to initiate an exe
ution of F , the initiator �rst
alls F

init

.

Then, after a party P

j

obtains output (invoke; 0; hsid; P

i

;P;Fi), it
an pro
eed to
all F with the

set of parti
ipating parties P and session identi�er sid.

3

Fun
tionality F

init

F

init

, with �xed session identi�er 0, runs in the universe with parties U and an adversary S. When

alled for the �rst time, it sets Hist = ;.

� Upon re
eiving a value (initiate; 0; hP

i

;P ;Fi) from P

i

, where P � U , exe
ute the following:

1. Send (initiate; 0; hP

i

;P ;Fi) to S.

2. Upon re
eiving ba
k (set-id; 0; hsid

0

; P

i

;P ;Fi) from S, do the following:

(a) If sid

0

2 Hist,
hoose an arbitrary sid 62 Hist.

(b) If sid

0

62 Hist, set sid sid

0

.

(
) Update Hist Hist [fsidg.

(d) Send (invoke; 0; hsid; P

i

;P ;Fi) to S.

3. Upon re
eiving a message (send-output; 0; hsid; P

i

;P ;Fi; P

j

) from S:

(a) If P

j

2 P and it has not yet been sent the invoke message with hsid; P

i

;P ;Fi, send

it (invoke; 0; hsid; P

i

;P ;Fi).

Figure 1: The Initialize Fun
tionality

We stress that there is only a single
opy of the F

init

fun
tionality, and it has the �xed session

identi�er 0. (If it was ne
essary to agree upon a unique identi�er for every invo
ation of F

init

, then

we would have solved nothing.) Te
hni
ally, we
an use the same identi�er for every
all to F

init

,

be
ause the fun
tionality does not need to asso
iate di�erent messages from di�erent parties within

a single
all. (If di�erent parties did send messages to F

init

in a single
all, then some me
hanism,

like a unique identi�er, would be needed to ensure that messages would be
orre
tly asso
iated.)

We note that for the intera
tion between the fun
tionality and the adversary it suÆ
es for the

fun
tionality to \identify" the exe
ution via the values sent in the initiate message.

2.2 Proto
ol Constru
tion

We now present a simple proto
ol that se
urely
omputes F

init

in the UC framework. The basi
 idea

behind the proto
ol is for the parties to jointly generate the session identi�er sid by
on
atenating

n-bit random strings (n denotes the se
urity parameter). Then, a party will \a

ept" the �nal

sid only if its random string is in
luded. This means that honest parties will only a

ept unique

identi�ers, be
ause an sid with an n-bit random string is unique ex
ept with negligible probability.

The set of parti
ipating parties and the fun
tionality spe
i�
ation are also appended to the session

identi�er sid, in order to ensure that all parties that
on
lude with the same sid agree on the

parti
ipating parties and fun
tionality spe
i�
ation. We note that a
orrupted initiator
an
ause

di�erent parties to
on
lude with di�erent identi�ers. However, this is equivalent to the initiator

running multiple setups with di�erent parties. Sin
e it
an always do this in the ideal model, it is

also allowed to do so in a real proto
ol exe
ution. The proto
ol is presented in Figure 2.

Theorem 1 Proto
ol �

init

se
urely
omputes the fun
tionality F

init

in the UC framework, in the

presen
e of adaptive, mali
ious adversaries and in an asyn
hronous model where message delivery

is not guaranteed.

4

Proto
ol �

init

1. Upon input (initiate; 0; hP

i

;P ;Fi), party P

i

hooses a random value sid

i

2

R

f0; 1g

n

and sends

(start

�

init

; sid

i

; P

i

;P ;F) to all parties P

j

2 P . (Identi�er sid

i

is used to enable the parties to

distinguish messages from this exe
ution from messages from other exe
utions.)

2. Ea
h party P

j

that re
eives the start

�

init

message
hooses a random string r

j

2

R

f0; 1g

n

and

sends (sid

i

; r

j

) to P

i

. (If P

j

62 P then it ignores the message.)

3. Denote the parties in P by P

j

1

; : : : ; P

j

`

, where the parties are sorted in as
ending order of

identities (i.e., j

i

< j

i+1

for every i).

Then, when party P

i

re
eives the (sid

i

; r

j

) messages from all parties P

j

2 P , it
hooses

r

i

2

R

f0; 1g

n

, sets sid = r

i

; r

j

1

; : : : ; r

j

`

;P ;F and sends (sid

i

; sid) to all parties P

j

2 P .

4. When party P

j

re
eives (sid

i

; sid) from P

i

it
he
ks the following:

(a) The set of parties and fun
tionality des
ription appearing at the end of sid equals the

set P and fun
tionality F that it re
eived from P

i

in the �rst message.

(b) The random value r

j

that P

j

hose appears in sid in its \
orre
t" position.

If both these hold, then P

j

outputs (invoke; 0; hsid; P

i

;P ;Fi). Otherwise, it outputs nothing.

Figure 2: Proto
ol for se
urely
omputing the F

init

fun
tionality

Proof: Let A be a real-model adversary. Then, we
onstru
t an ideal-model simulator/adversary S

su
h that no environment Z
an distinguish a real exe
ution of �

init

with A from an ideal exe
ution

of F

init

with S.

The simulator S invokes A and emulates an exe
ution of �

init

, while playing all of the un
or-

rupted parties. We distinguish between the
ase that the initiating party P

i

is
orrupted at the

time that it sends its start

�

init

message to the parties in P, from the
ase that it is un
orrupted:

P

i

is
orrupted: In this
ase, A sends a series of start

�

init

messages to honest parties, in the

name of P

i

. For every su
h (start

�

init

; sid

i

; P

i

;P;F) message that A sends an honest party P

j

,

simulator S
hooses r

j

2

R

f0; 1g

n

and internally sends (sid

i

; r

j

) ba
k to A. (S simulates P

j

sending this reply, unless P

j

62 P, in whi
h
ase S does nothing.)

When A sends another message (sid

i

; sid) to the honest P

j

in the emulation, simulator S
he
ks

that the random string r

j

appears in sid in the
orre
t position and that P and F appear at

the end of sid. If no, then it does nothing. Otherwise, there are two possibilities:

1. S has already sent a (set-id; 0; hsid; P

i

;P;Fi) message to F

init

:

In this
ase, S sends the message (send-output; 0; hsid; P

i

;P;Fi; P

j

) to F

init

, instru
ting it

to send output to P

j

.

2. S has not yet sent a (set-id; 0; hsid; P

i

;P;Fi) message to F

init

: In this
ase, S �rst instru
ts

P

i

to send (initiate; 0; hP

i

;P;Fi) to the fun
tionality F

init

. Fun
tionality F

init

then sends

(initiate; 0; hP

i

;P;Fi) to S, and S replies with (set-id; 0; hsid; P

i

;P;Fi), for the above sid.

Finally, after S re
eives ba
k the (invoke; 0; hsid; P

i

;P;Fi) from F

init

, it sends the message

(send-output; 0; hsid; P

i

;P;Fi; P

j

) to F

init

, instru
ting it to send output to P

j

.

P

i

is un
orrupted: In this
ase, S re
eives a message (initiate; 0; hP

i

;P;Fi) from F

init

. Then,

S simulates P

i

sending (start

�

init

; sid

i

; P

i

;P;F) to all parties P

j

2 P, for a random sid

i

2

R

5

f0; 1g

n

. In addition, S simulates all the honest parties P

j

replying with (sid

i

; r

j

). Then, S

waits until A delivers all of the (sid

i

; r

j

) messages from the honest parties to P

i

, and until A

sends (sid

i

; r

j

0

) messages to P

i

from all the
orrupted parties P

j

0

. Following this, S
omputes

sid

0

= r

i

; r

j

1

; : : : ; r

j

`

;P;F and sends (set-id; 0; hsid

0

; P

i

;P;Fi) to F

init

.

Now, let sid = sid

0

. Then, S simulates P

i

writing (sid

i

; sid) messages on its outgoing
ommuni-

ation tape for all P

j

2 P. Then, S sends a (send-output; 0; hsid; P

i

;P;Fi; P

j

) message to F

init

whenever A delivers the (sid

i

; sid) message from P

i

to P

j

in the emulation.

Dealing with
orruptions: Noti
e that in the above-des
ribed simulation, S simply plays the

roles of all the honest parties and sends F

init

the initiatemessage with the sid that is generated by

the proto
ol. Therefore, if A
orrupts P

i

at sometime during the exe
ution, S simply
ontinues

by following the instru
tions for the
ase that P

i

is
orrupted. Likewise,
orruptions of parties

P

j

(j 6= i) are dealt with in a straightforward way (they have no se
ret information, so there is

no private state to be revealed).

Analysis of S: We now prove that the simulator S is su
h that no environment Z
an distinguish

between an ideal exe
ution with F

init

and S, from a real exe
ution of Proto
ol �

init

with A. First

note that the honest parties have no se
ret information. Therefore, S perfe
tly simulates a real

exe
ution of Proto
ol �

init

for A. Furthermore, assuming that the identi�er sid sent by S is always

unique, the honest parties all output the same values as they would in a real exe
ution. This is the

ase be
ause the sid

0

value sent by S in the set-id message to F

init

is simply the sid value that the

honest parties would re
eive from P

i

in a real exe
ution. Thus, it remains to show that the value

sid

0

sent by S is unique, ex
ept with negligible probability (we prove this for the
ase that at least

one honest party is parti
ipating, otherwise it is of no signi�
an
e).

In the
ase that the initiator P

i

is
orrupted and some P

j

is not
orrupted, simulator S only sends

(set-id; 0; hsid

0

; P

i

;P;Fi) to F

init

if the value r

j

appears in sid

0

in the
orre
t position. Re
all that

r

j

2

R

f0; 1g

n

was
hosen randomly by S. Therefore, the probability that this sid

0

was previously

used is at most time(A)=2

n

, where time(A) denotes the running time of adversary A. Sin
e A runs

in polynomial time, this probability is negligible. Next, if P

i

is not
orrupted, then sid

0

begins with

a random value r

i

2

R

f0; 1g

n

. As above, this means that the probability that sid

0

has been used

before is negligible.

In order to
omplete the proof, note that S instru
ts F

init

to deliver output to a party P

j

at

the same time that A delivers the message (sid

i

; sid) from P

i

to P

j

in the emulation. Therefore,

honest parties obtain outputs at the same time in a real and ideal exe
ution.

Noti
e that in the
ase that the initiator is
orrupted, Proto
ol �

init

provides almost no \agreement"

guarantees. Spe
i�
ally, every honest party may end up with a di�erent session identi�er. However,

this does not
ontradi
t the se
urity of the proto
ol be
ause in the ideal model, a
orrupted initiator

may initiate many di�erent sessions. Furthermore, the adversary
an deliver output to only one

honest party in ea
h of these sessions. This is equivalent to the situation in the real model where

ea
h party
on
ludes with a di�erent session identi�er.

2.3 Proto
ol Initialization With Guaranteed Termination

The real model that we have
onsidered until now is one where the adversary has
ontrol over all

message delivery between the honest parties. In this
ase, the adversary
an always prevent an

honest party from re
eiving output, by not delivering its last message in the proto
ol. As we have

mentioned, the de�nition of F

init

for the ideal model therefore expli
itly allows the adversary S to

de
ide when (if at all) an honest party re
eives its output. In this se
tion, we
onsider a real model

6

where message delivery is guaranteed between honest parties. For simpli
ity, we assume that the

network is syn
hronous, although we
ould also
onsider a partially asyn
hronous network where

messages
an be delayed for at most � units of time, for a given and publi
ly known �. In this
ase,

we would like to ensure su

essful termination of the proto
ol, with all parties re
eiving output.

This will ensure that if the se
ure proto
ol to be run following the initialization guarantees output

delivery, then the
omposition of Proto
ol �

init

with the se
ure proto
ol will also guarantee output

delivery.

We �rst modify F

init

so that output delivery is guaranteed. This
annot be done in a naive way

be
ause then Byzantine (or authenti
ated Byzantine) agreement would be implied, in
ontradi
tion

to known impossibility results [3, 5, 4℄. Rather, we require that if the initiator is honest, then it

is guaranteed that all the honest parties
on
lude with the same session identi�er, the same set

of parti
ipating parties and the same fun
tionality spe
i�
ation. In
ontrast, if the initiator is

not honest, then the e�e
t a
hieved is like in the previous se
tion. (That is, the honest parties

may
on
lude with di�erent session identi�ers, but the identi�ers are always unique and ful�ll the

requirements of a se
ure setup.)

Modi�
ations to fun
tionality F

init

. We modify F

init

as follows. First, the initiator P

i

sends

a unique identi�er sid

0

in its initiate message to the fun
tionality. Then, if the adversary S does

not reply with sid

0

in the next round and sid

0

=2 Hist, the session identi�er in the output is set

to sid

0

. If the adversary S does reply with sid

0

, then Step 2 of F

init

remains the same. The

se
ond modi�
ation is that instead of S instru
ting the fun
tionality to send-output in Step 3, these

instru
tions are provided by the initiator. Of
ourse, an honest initiator is expe
ted to
hoose sid

0

randomly (to ensure uniqueness) and to instru
t the fun
tionality to send output to all parties.

The result of the above is that in the
ase that the initiator P

i

is honest, su

essful termination

is guaranteed (i.e., all parties re
eive (invoke; 0; hsid; P

i

;P;Fi) where sid is a unique identi�er and

P;F are as
hosen by P

i

. On the other hand, if the initiator is
orrupted, then the same e�e
t as

the original F

init

is a
hieved.

Modi�
ations to proto
ol �

init

. With a slight modi�
ation, Proto
ol �

init

an be made to

se
urely realize the modi�ed initialize fun
tionality. The required modi�
ation to the proto
ol is

in Step 3 (see Figure 2): Instead of Party P

i

waiting until it re
eives all of the (sid

i

; r

j

) messages,

it waits one round (re
all, we assume here that the network is syn
hronous). If a party P

j

does

not send its message in the next round, then P

i

hooses r

j

2

R

f0; 1g

n

and
ontinues as if P

j

sent

(sid

i

; r

j

). Noti
e that on
e P

i

sends the (sid

i

; r

j

) messages, all parties re
eive output. Therefore,

this modi�
ation to Proto
ol �

init

ensures su

essful termination when the initiator P

i

is honest.

Referen
es

[1℄ R. Canetti. Universally Composable Se
urity: A New Paradigm for Crypto-

graphi
 Proto
ols. In 42nd FOCS, pages 136{145, 2001. Full version available at

http://eprint.ia
r.org/2000/067.

[2℄ R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and

Multi-Party Computation. In 34th STOC, pages 494{503, 2002.

[3℄ L. Lamport, R. Shosta
k, and M. Pease. The Byzantine Generals Problem. ACM Transa
-

tions on Programming Languages and Systems, 4(3):382{401, 1982.

7

[4℄ Y. Lindell, A. Lysysanskaya and T. Rabin. On the Composition of Authenti
ated Byzantine

Agreement. In 34th STOC, pages 514{523, 2002.

[5℄ M. Pease, R. Shostak, and L. Lamport. Rea
hing Agreement in the Presen
e of Faults.

Journal of the ACM, 27(2):228{234, 1980.

8

