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1 Introdution

A lassial question in the theory of zero knowledge (ZK) [10℄ is whether there exist 3-round, negligible-

error ZK proofs or arguments for NP. The diÆulty in answering this question stems from the fat

that suh protools would have to be non-blak-box simulation ZK [9℄, and there are few approahes

or tehniques to this end. A positive answer has, however, been provided, by Hada and Tanaka

[11, 12℄. Their result (a negligible-error, 3-round ZK argument for NP) requires a pair of non-standard

assumptions that we will denote by KEA1 and KEA2.

The assumptions, roughly. Let q be a prime suh that 2q+1 is also prime, and let g be a generator

of the order q subgroup of Z

�

2q+1

. Suppose we are given input q; g; g

a

and want to output a pair (C; Y )

suh that Y = C

a

. One way to do this is to pik some  2 Z

q

, let C = g



, and let Y = (g

a

)



. Intuitively,

KEA1 an be viewed as saying that this is the \only" way to produe suh a pair. The assumption

aptures this by saying that any adversary outputting suh a pair must \know" an exponent  suh

that g



= C. The formalization asks that there be an \extrator" that an return . Roughly:

KEA1: For any adversary A that takes input q; g; g

a

and returns (C; Y ) with Y = C

a

, there exists

an \extrator"

�

A, whih given the same inputs as A returns  suh that g



= C.

Suppose we are given input q; g; g

a

; g

b

; g

ab

and want to output a pair (C; Y ) suh that Y = C

b

. One

way to do this is to pik some  2 Z

q

, let C = g



, and let Y = (g

b

)



. Another way is to pik some

 2 Z

q

, let C = (g

a

)



, and let Y = (g

ab

)



. Intuitively, KEA2 an be viewed as saying that these are

the \only" ways to produe suh a pair. The assumption aptures this by saying that any adversary

outputting suh a pair must \know" an exponent  suh that either g



= C or (g

a

)



= C. The

formalization asks that there be an \extrator" that an return . Roughly:

KEA2: For any adversary A that takes input q; g; g

a

; g

b

; g

ab

and returns (C; Y ) with Y = C

b

,

there exists an \extrator"

�

A, whih given the same inputs as A returns  suh that either

g



= C or (g

a

)



= C.

As per [11, 12℄, adversaries and extrators are poly-size families of (deterministi) iruits. See

Assumption 3.1 for a formalization of KEA2, and Assumption B.1 for a formalization of KEA1.

History and nomenlature of the assumptions. KEA1 is due to Damg�ard [7℄, and is used

by [11, 12℄ to prove their protool is ZK. To prove soundness of their protool, Hada and Tanaka

[11, 12℄ introdue and use KEA2. (In addition, they make the Disrete Logarithm Assumption,

DLA.) The preliminary version of their work [11℄ referred to the assumptions as SDHA1 and SDHA2

(Strong DiÆe-Hellman Assumptions 1 and 2), respetively. However, the full version [12℄ points

out that the formalizations in the preliminary version are awed, and provides orreted versions

alled non-uniform-DA1 and non-uniform-DA2. The latter are the assumptions onsidered in this

paper, but we use the terminology of Naor [15℄ whih we feel is more reetive of the ontent of the

assumption: \KEA" stands for \Knowledge of Exponent Assumption", the exponent being the value

 above.

Falsifying KEA2. In this paper we show that KEA2 is false. What is interesting about this |besides

the fat that it renders the results of [11, 12℄ vauous| is that we are able to \falsify" an assumption

whose nature, as pointed out by Naor [15℄, does not lend itself easily to \eÆient falsi�ation." Let

us explain this issue before expanding more on the result itself.

The most standard format for an assumption is to ask that the probability that an adversary

produes a ertain output on ertain inputs is negligible. For example, the Fatoring assumption

is of this type, asking that the probability that a polynomial-time adversary an output the prime

fators of an integer (hosen by multipling a pair of random primes) is negligible. To show suh an

assumption is false, we an present an \attak," in the form of an adversary whose suess probability
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is not negligible. (For example, a polynomial-time fatoring algorithm.) KEA1 and KEA2 are not of

this standard format. They involve a more omplex quanti�ation: \For every adversary there exists

an extrator suh that ...". To show KEA2 is false, we must show there is an adversary for whih

there exists no extrator. As we will see later, it is relatively simple to identify an adversary for whih

there does not appear to exist an extrator, but how an we atually show that none of the in�nite

number of possible extrators sueeds?

An analogy. The diÆulty of falsifying an assumption with the quanti�er format of KEA2 may be

better appreiated via an analogy. The de�nition of ZK has a similar quanti�er format: \For every

(heating) veri�er there exists a simulator suh that ...". This makes it hard to show a protool is

not ZK, for, even though we may be able to identify a heating veri�er strategy that appears hard

to simulate, it is not lear how we an atually show no simulator exists. (For example, it is hard to

imagine how one ould �nd a simulator for the heating veri�er, for Blum's ZK proof of Hamiltonian

Cyle [5℄, that produes its hallenges by hashing the permuted graphs sent by the prover in the

�rst step. But there is to date no proof that suh a simulator does not exist). However it has been

possible to show protools are not blak-box simulation ZK [9℄, taking advantage of the fat that

the quanti�ation in this de�nition is di�erent from that of ZK itself. It has also been possible to

show onditional results, for example that the parallel version of the Fiat-Shamir [8℄ protool is not

ZK, unless there is no hash funtion that, when applied to ollapse this protool, results in a seure

signature sheme [16℄. Our result too is onditional.

Falsifiation result. At an intuitive level, the weakness in KEA2 is easy to see, and indeed it is

surprising this was not noted before. Namely, onsider an adversary A that on input q; g; g

a

; g

b

; g

ab

piks 

1

; 

2

in some fashion, and outputs (C; Y ) where C = g



1

(g

a

)



2

and Y = (g

b

)



1

(g

ab

)



2

. Then

Y = C

b

but this adversary does not appear to \know"  suh that either g



= C or (g

a

)



= C. The

diÆulty, however, as indiated above, is to prove that there does not exist an extrator. We do this

by �rst speifying a partiular strategy for hoosing 

1

and 

2

and then showing that if there exists an

extrator for the resulting adversary, then this extrator an be used to solve the disrete logarithm

problem (DLP). Thus, our result (f. Theorem 3.2) is that if the DLP is hard then KEA2 is false. Note

that if the DLP is easy, then KEA2 is true, for the extrator an simply ompute a disrete logarithm

of C and output it, and thus the assumption that it is hard is neessary to falsify KEA2.

Remark. We emphasize that we have not found any weaknesses in KEA1, an assumption used not

only in [7, 11, 12℄ but also elsewhere.

KEA3. Providing a 3-round, negligible-error ZK protool for NP is a hallenging problem that has

attrated onsiderable researh e�ort. The fat that KEA2 is false means that we \lose" one of the

only positive results [11, 12℄ that we had on this subjet. Aordingly, we would like to \reover"

it. To this end, we propose a modi�ation of KEA2 that addresses the weakness we found. The new

assumption is, roughly, as follows:

KEA3: For any adversary A that takes input q; g; g

a

; g

b

; g

ab

and returns (C; Y ) with Y = C

b

,

there exists an \extrator"

�

A, whih given the same inputs as A returns 

1

; 

2

suh that

g



1

(g

a

)



2

= C.

Before proeeding to use this assumption, we note a relation that we onsider interesting, namely, that

KEA3 implies KEA1 (f. Proposition 4.2).

1

The relation means that KEA3 is a natural extension of

KEA1. It also allows us to simplify result statements, assuming only KEA3 rather than both this

assumption and KEA1.

1

KEA2 was not shown by [12℄ to imply KEA1. Our proof of Proposition 4.2 does extend to establish it, but the

point is moot sine KEA2 is false and hene of ourse implies everything anyway.
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Reovering the ZK result. Let HTP denote the 3-round protool of Hada and Tanaka, whih

they laim to be sound (i.e., have negligible error) and ZK. The falsity of KEA2 invalidates their

proof of soundness. However, this does not mean that HTP is not sound: perhaps it is and this ould

be proved under another assumption, suh as KEA3. This turns out to be almost, but not quite,

true. We identify a small bug in HTP based on whih we an present a suessful heating prover

strategy, showing that HTP is not sound. This is easily �xed, however, to yield a protool we all

pHTP (pathed HTP). This protool is lose enough to HTP that the proof of ZK (based on KEA1)

is unhanged. On the other hand, the proof of soundness of HTP provided in [12℄ extends with very

minor modi�ations to prove soundness of pHTP based on KEA3 and DLA (f. Theorem 5.3). In

summary, assuming KEA3 and DLA, there exists a 3-round, negligible error ZK argument for NP.

Strength of the assumptions. The knowledge-of-exponent assumptions are strong and non-

standard ones, and have been ritiized for assuming that one an perform what some people all

\reverse engineering" of an adversary. These ritiques are ertainly valid. Our falsi�ation of KEA2

does not provide information on this aspet of the assumptions, unovering, rather, other kinds of

problems. However, by showing that suh assumptions an be falsi�ed, we open the door to further

analyses.

We also stress that in reovering the result of [12℄ on 3-round ZK we have not sueeded in

weakening the assumptions on whih it is based, for KEA3 ertainly remains a strong assumption of

the same non-standard nature as KEA1.

Related Work. Sine [11, 12℄ there has been more progress with regard to the design of non-blak-

box simulation ZK protools [1℄. However, this work does not provide a 3-round, negligible-error ZK

protool for NP. To date, there have been only two positive results. One is that of [11, 12℄, broken and

reovered in this paper. The other, whih builds a proof system rather than an argument, is reported

in [14℄ and further doumented in [13℄. It also relies on non-standard assumptions, but di�erent from

the Knowledge of Exponent type ones. Roughly, they assume the existene of a hash funtion suh that

a ertain disrete-log-based protool, that uses this hash funtion and is related to the non-interative

OT of [3℄, is a proof of knowledge.

2 Preliminaries

If x is a binary string, then jxj denotes its length, and if n � 1 is an integer, then jnj denotes the

length of its binary enoding, meaning the unique integer ` suh that 2

`�1

� n < 2

`

. The empty

string is denoted ". We let N = f1; 2; 3; : : :g be the set of positive integers. If q is a prime number

suh that 2q + 1 is also prime, then we denote by G

q

the subgroup of quadrati residues of Z

�

2q+1

.

(Operations are modulo 2q + 1 but we will omit writing \mod 2q + 1" for simpliity.) Reall this

is a yli subgroup of order q. If g is a generator of G

q

then we let DLog

q;g

: G

q

! Z

q

denote the

assoiated disrete logarithm funtion, meaning DLog

q;g

(g

a

) = a for any a 2 Z

q

. We let

GL = f (q; g) : q; 2q + 1 are primes and g is a generator of G

q

g :

For any n 2 N we let GL

n

be the set of all (q; g) 2 GL suh that the length of the binary representation

of 2q + 1 is n bits, i.e.,

GL

n

= f (q; g) 2 GL : j2q + 1j = n g :

Assumptions and problems in [11, 12℄ involve iruits. A family of iruits C = fC

n

g

n2N

ontains one

iruit for eah value of n 2 N. It is poly-size if there is a polynomial p suh that the size of C

n

is at

most p(n) for all n 2 N. Unless otherwise stated, iruits are deterministi. If they are randomized,

we will say so expliitly. We now reall the DLA following [12℄.
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Assumption 2.1 [DLA℄ Let I = fI

n

g

n2N

be a family of randomized iruits, and �: N ! [0; 1℄ a

funtion. We assoiate to any n 2 N and any (q; g) 2 GL

n

the following experiment:

Experiment Exp

dl

I

(n; q; g)

a

$

 Z

q

; A g

a

; �a

$

 I

n

(q; g; A) ; If a = �a then return 1 else return 0

We let

Adv

dl

I

(n; q; g) = Pr

h

Exp

dl

I

(n; q; g) = 1

i

denote the advantage of I on inputs n; q; g, the probability being over the random hoie of a and the

oins of I

n

, if any. We say that I has suess bound � if

8n 2 N 8(q; g) 2 GL

n

: Adv

dl

I

(n; q; g) � �(n) :

We say that the Disrete Logarithm Assumption (DLA) holds if for every poly-size family of iruits

I there exists a negligible funtion � suh that I has suess bound �.

The above formulation of the DLA, whih, as we have indiated, follows [12℄, has some non-standard

features that are important for their results. Let us disuss these briey.

First, we note that the de�nition of the suess bound is not with respet to (q; g) being hosen

aording to some distribution as is standard, but rather makes the stronger requirement that the

advantage of I is small for all (q; g).

Seond, we stress that the assumption only requires poly-size families of deterministi iruits to

have a negligible suess bound. However, in their proofs, whih aim to ontradit the DLA, Hada

and Tanaka [11, 12℄ build adversaries that are poly-size families of randomized iruits, and then

argue that these an be onverted to related poly-size families of deterministi iruits that do not

have a negligible suess bound. We will also need to build suh randomized adversaries, but, rather

than using ad ho onversion arguments repeated aross proofs, we note the following more general

Proposition, whih simply says that DLA, as per Assumption 2.1, implies that poly-size families of

randomized iruits also have a negligible suess bound. We will appeal to this in several later plaes

in this paper.

Proposition 2.2 Assume the DLA, and let J = fJ

n

g

n2N

be a poly-size family of randomized iruits.

Then there exists a negligible funtion � suh that J has suess bound �.

As is typial in suh laims, the proof proeeds by showing that for every n there exists a \good"

hoie of oins for J

n

, and by embedding these oins we get a deterministi iruit. For ompleteness,

we provide the proof in Appendix A.

3 KEA2 is false

We begin by realling the assumption. Our presentation is slightly di�erent from, but learly equivalent

to, that of [12℄: we have merged the two separate onditions of their formalization into one. Reall

that they refer to this assumption as \non-uniform-DA2," and it was referred to, under a di�erent and

inorret formalization, as SDHA2 in [11℄.

Assumption 3.1 [KEA2℄ Let A = fA

n

g

n2N

and

�

A = f

�

A

n

g

n2N

be families of iruits, and �: N !

[0; 1℄ a funtion. We assoiate to any n 2 N, any (q; g) 2 GL

n

, and any A 2 G

q

the following

experiment:
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Experiment Exp

kea2

A;

�

A

(n; q; g; A)

b

$

 Z

q

; B  g

b

; X  A

b

(C; Y ) A

n

(q; g; A;B;X) ;  

�

A

n

(q; g; A;B;X)

If (Y = C

b

AND g



6= C AND A



6= C) then return 1 else return 0

We let

Adv

kea2

A;

�

A

(n; q; g; A) = Pr

h

Exp

kea2

A;

�

A

(n; q; g; A) = 1

i

denote the advantage of A relative to

�

A on inputs n; q; g; A. We say that

�

A is a kea2-extrator for A

with error bound � if

8n 2 N 8(q; g) 2 GL

n

8A 2 G

q

: Adv

kea2

A;

�

A

(n; q; g; A) � �(n) :

We say that KEA2 holds if for every poly-size family of iruits A there exists a poly-size family of

iruits

�

A and a negligible funtion � suh that

�

A is a kea2-extrator for A with error bound �.

We stress again that in the above formulations, following [12℄, both the adversary and the extrator

are families of deterministi iruits. One an onsider various variants of the assumptions, inluding

an extension to families of randomized iruits, and we disuss these variants following the theorem

below.

Theorem 3.2 If the DLA holds then KEA2 is false.

The basi idea behind the failure of the assumption, as skethed in Setion 1, is simple. Consider

an adversary given input q; g; A;B;X, where A = g

a

; B = g

b

and X = g

ab

. The assumption says

that there are only two ways for the adversary to output a pair C; Y satisfying Y = C

b

. One way

is to pik some , let C = g



and let Y = B



. The other way is to pik some , let C = A



and

let Y = X



. The assumption thus states that the adversary \knows"  suh that either C = g



(i.e.,  = DLog

q;g

(C)) or C = A



(i.e.,  = DLog

q;A

(C)). This ignores the possibility of performing

a linear ombination of the two steps above. In other words, an adversary might pik 

1

; 

2

, let

C = g



1

A



2

and Y = B



1

X



2

. In this ase, Y = C

b

but the adversary does not appear to neessarily

know DLog

q;g

(C) = 

1

+ 

2

DLog

q;g

(A) or DLog

q;A

(C) = 

1

DLog

q;A

(g) + 

2

.

However, going from this intuition to an atual proof that the assumption is false takes some

work, for several reasons. The above may be intuition that there exists an adversary for whih there

would not exist an extrator, but we need to prove that there is no extrator. This annot be done

unonditionally, sine ertainly if the disrete logarithm problem (DLP) is easy, then in fat there is an

extrator: it simply omputes DLog

q;g

(C) and returns it. Aordingly, our strategy will be to present

an adversary A for whih we an prove that if there exists an extrator

�

A then there is a method to

eÆiently ompute the disrete logarithm of A.

An issue in implementing this is that the natural adversary A arising from the above intuition

is randomized, piking 

1

; 

2

at random and forming C; Y as indiated, but our adversaries must be

deterministi. We resolve this by designing an adversary that makes ertain spei� hoies of 

1

; 

2

.

We now proeed to the formal proof.

Proof of Theorem 3.2. Assume to the ontrary that KEA2 is true. We show that the DLP is easy.

The outline of the proof is as follows. We �rst onstrut an adversary A for the KEA2 problem. By

assumption, there exists for it an extrator

�

A with negligible error bound. Using

�

A, we then present

a poly-size family of randomized iruits J = fJ

n

g

n2N

and show that it does not have a negligible

suess bound. By Proposition 2.2, this ontradits the DLA.

The poly-size family of iruits A = fA

n

g

n2N

is presented in Figure 1. Now, under KEA2, there

exists a poly-size family of iruits

�

A = f

�

A

n

g

n2N

and a negligible funtion � suh that

�

A is an
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A

n

(q; g; A;B;X)

C  gA

Y  BX

Return (C; Y )

J

n

(q; g; A)

b

$

 Z

q

; B  g

b

; X  A

b

 

�

A

n

(q; g; A;B;X)

C  gA

If g



= C then �a (� 1) mod q EndIf

If A



= C then �a (� 1)

�1

mod q EndIf

Return �a

Figure 1: Adversary A = fA

n

g

n2N

for the KEA2 problem and adversary J = fJ

n

g

n2N

for the DLP,

for the proof of Theorem 3.2.

extrator for A with error bound �. Using

�

A, we de�ne the poly-size family of iruits J = fJ

n

g

n2N

shown in Figure 1.

Claim 3.3 For all n 2 N, all (q; g) 2 GL

n

and all A 2 G

q

Pr

h

�a

$

 J

n

(q; g; A) : g

�a

6= A

i

� �(n) :

Note the laim shows muh more than we need. Namely, J does not merely have a suess bound that

is not negligible. In fat, it sueeds with probability almost one.

Proof of Claim 3.3: We let Pr[�℄ denote the probability in the experiment of exeuting J

n

(q; g; A).

We �rst write some inequalities leading to the laim and then justify them:

Pr

�

g

�a

6= A

�

� Pr [ g



6= C ^A



6= C ℄ (1)

� Adv

kea2

A;

�

A

(n; q; g; A) (2)

� �(n) : (3)

We justify Equation (1) by showing that if g



= C or A



= C then g

�a

= A. First assume g



= C.

Sine C = gA, we have g



= gA, whene A = g

�1

. Sine we set �a = (� 1) mod q, we have A = g

�a

.

Next assume A



= C. Sine C = gA, we have A



= gA, whene A

�1

= g. Now observe that  6= 1,

beause otherwise A



= A 6= gA. (Sine g is a generator, it is not equal to 1). Sine  6= 1 and q is

prime, � 1 has an inverse modulo q whih we have denoted by �a. Raising both sides of the equation

\A

�1

= g" to the power �a we get A = g

�a

.

Exp

kea2

A;

�

A

(n; q; g; A) returns 1 exatly when Y = C

b

and g



6= C and A



6= C. By onstrution of A, we

have C = gA and Y = BX, and thus Y = C

b

, so Exp

kea2

A;

�

A

(n; q; g; A) returns 1 exatly when g



6= C

and A



6= C. This justi�es Equation (2).

Equation (3) is justi�ed by the assumption that

�

A is an extrator for A with error bound �.

Claim 3.3 implies that J does not have a negligible suess bound, whih, by Proposition 2.2, shows

that the DLP is not hard, ontraditing the assumption made in this Theorem. This ompletes the

proof of Theorem 3.2.

Extensions and variants. There are many ways in whih the formalization of Assumption 3.1 an

be varied to apture the same basi intuition. However, Theorem 3.2 extends to these variants as well.

Let us disuss this briey.

As mentioned above, we might want to allow the adversary to be randomized. (In that ase, it

is important that the extrator get the oins of the adversary as an additional input, sine otherwise

8



the assumption is learly false.) Theorem 3.2 remains true for the resulting assumption, in partiular

beause it is stronger than the original assumption. (Note however that the proof of the theorem

would be easier for this stronger assumption.)

Another variant is that adversaries and extrators are uniform, namely standard algorithms, not

iruits. (In this ase we should ertainly allow both to be randomized, and should again give the

extrator the oins of the adversary.) Again, it is easy to see that Theorem 3.2 extends to show that

the assumption remains false.

4 The KEA3 assumption

The obvious �x to KEA2 is to take into aount the possibility of linear ombinations by saying this

is the only thing the adversary an do. This leads to the following.

Assumption 4.1 [KEA3℄ Let A = fA

n

g

n2N

and

�

A = f

�

A

n

g

n2N

be families of iruits, and �: N !

[0; 1℄ a funtion. We assoiate to any n 2 N, any (q; g) 2 GL

n

, and any A 2 G

q

the following

experiment:

Experiment Exp

kea3

A;

�

A

(n; q; g; A)

b

$

 Z

q

; B  g

b

; X  A

b

(C; Y ) A

n

(q; g; A;B;X) ; (

1

; 

2

) 

�

A

n

(q; g; A;B;X)

If (Y = C

b

AND g



1

A



2

6= C) then return 1 else return 0

We let

Adv

kea3

A;

�

A

(n; q; g; A) = Pr

h

Exp

kea3

A;

�

A

(n; q; g; A) = 1

i

denote the advantage of A relative to

�

A on inputs n; q; g; A. We say that

�

A is a kea3-extrator for A

with error bound � if

8n 2 N 8(q; g) 2 GL

n

8A 2 G

q

: Adv

kea3

A;

�

A

(n; q; g; A) � �(n) :

We say that KEA3 holds if for every poly-size family of iruits A there exists a poly-size family of

iruits

�

A and a negligible funtion � suh that

�

A is a kea3-extrator for A with error bound �.

We have formulated this assumption in the style of the formalization of KEA2 of [12℄ given in

Assumption 3.1. Naturally, variants suh as disussed above are possible. Namely, we ould strengthen

the assumption to allow the adversary to be a family of randomized iruits, of ourse then giving the

extrator the adversary's oins as an additional input. We do not do this beause we do not need it

for what follows. We ould also formulate a uniform-omplexity version of the assumption. We do

not do this beause it does not suÆe to prove the results that follow. However, these extensions or

variations might be useful in other ontexts.

In Appendix B we reall the formalization of KEA1 and prove the following:

Proposition 4.2 KEA3 implies KEA1.

This indiates that KEA3 is a natural extension of KEA1.

5 Three-round zero knowledge

The falsity of KEA2 renders vauous the result of [11, 12℄ saying that there exists a negligible-error,

3-round ZK argument for NP. In this setion we look at reovering this result.

9



Prover

�

P Veri�er

�

V

Initial State St = (x;w;R)

((Cmt; q; g);St ) 

�

P (";St) d 1

(Cmt; q; g)

-

n jxj

If (q; g) =2 GL

n

then d 0 EndIf

r

$

 Z

�

q

; Ch g

r

Ch

�

(Rsp;St) 

�

P (Ch;St)

Rsp

-

If DEC

x

((Cmt; q; g);Ch;Rsp) = 0 then

d 0 EndIf

Figure 2: A 3-round argument. The ommon input is x. Prover

�

P has auxiliary input w and

random tape R, and maintains state St . Veri�er

�

V returns boolean deision d.

We �rst onsider the protool of [11, 12℄, here alled HTP. What has been lost is the proof of

soundness (i.e., of negligible error). The simplest thing one ould hope for is to re-prove soundness of

HTP under KEA3 without modifying the protool. However, we identify a bug in HTP that renders

it unsound. This bug has nothing to do with the assumptions on whih the proof of soundness was or

an be based.

The bug is, however, small and easily �xed. We onsider a modi�ed protool whih we all pHTP.

We are able to show it is sound (i.e., has negligible error) under KEA3. Sine we have modi�ed the

protool we need to re-establish ZK under KEA1 as well, but this is easily done.

Arguments. We begin by realling some de�nitions. An argument for an NP language L [6℄ is a

two-party protool in whih a polynomial-time prover tries to \onvine" a polynomial-time veri�er

that their ommon input x belongs to L. (A party is said to be polynomial time if its running time is

polynomial in the length of the ommon input.) In addition to x, the prover has an auxiliary input

a. The protool is a message exhange at the end of whih the veri�er outputs a bit indiating its

deision to aept or rejet. The probability (over the oin tosses of both parties) that the veri�er

aepts is denoted A

P;a

V

(x). The formal de�nition follows.

De�nition 5.1 A two-party protool (P; V ), where P and V are both polynomial time, is an argument

for L with error probability Æ : N ! [0; 1℄, if the following onditions are satis�ed:

Completeness: For all x 2 L there exists w 2 f0; 1g

�

suh that A

P;w

V

(x) = 1.

Soundness: For all probabilisti polynomial-time algorithms

b

P , all suÆiently long x =2 L, and all

a 2 f0; 1g

�

, A

b

P;a

V

(x) � Æ(jxj).

We say (P; V ) is a negligible-error argument for L if there exists a negligible funtion Æ : N ! [0; 1℄

suh that (P; V ) is an argument for L with error probability Æ.

Canonial protools. The 3-round protool proposed by [11, 12℄, whih we all HTP, is based on

a 3-round argument (

�

P ;

�

V ) for an NP-omplete language L with the following properties:

10



(1) The protool is of the form depited in Figure 2. The prover is identi�ed with a funtion

�

P

that given an inoming message M

in

(this is " when the prover is initiating the protool) and its

urrent state St , returns an outgoing message M

out

and an updated state. The initial state of

the prover is (x;w;R), where x is the ommon input, w is an auxiliary input and R is a random

tape. The prover's �rst message is alled its ommitment. This is a tuple onsisting of a string

Cmt, a prime number q and an element g, where (q; g) 2 GL

jxj

. The veri�er selets a hallenge

Ch uniformly at random from G

q

, and, upon reeiving a response Rsp from the prover, applies

a deterministi deision prediate DEC

x

((Cmt; q; g);Ch;Rsp) to ompute a boolean deision.

(2) For any x =2 L and any ommitment (Cmt; q; g), where (q; g) 2 GL

jxj

, there is at most one

hallenge Ch 2 G

q

for whih there exists a response Rsp 2 f0; 1g

�

suh that DEC

x

((Cmt; q; g);

Ch;Rsp) = 1. This property is alled strong soundness.

(3) The protool is honest-veri�er zero knowledge (HVZK),meaning there exists a probabilisti

polynomial-time simulator S suh that the following two ensembles are omputationally in-

distinguishable:

fS(x)g

x2L

and fView

�

P ;W (x)

�

V

(x)g

x2L

;

where W is any funtion that given an input in L returns a witness to its membership in L, and

View

�

P;W (x)

�

V

(x), is a random variable taking value

�

V 's internal oin tosses and the sequene of

messages it reeives during an interation between prover

�

P (with auxiliary input W (x)) and

veri�er

�

V on ommon input x.

If (

�

P ;

�

V ) is a 3-round argument for an NP-omplete language, meeting the three onditions above,

then we refer to (

�

P ;

�

V ) as a anonial argument. In what follows, we assume that we have suh

anonial arguments. They an be onstruted in various ways. For example, a anonial argument

an be onstruted by modifying the parallel omposition of Blum's zero-knowledge protool for the

Hamiltonian iruit problem [5℄, as desribed in [11, 12℄.

The Hada-Tanaka protool. Let (

�

P ;

�

V ) be a anonial argument for an NP-omplete language L,

and let DEC be the veri�er's deision prediate. The Hada-Tanaka protool HTP = (P; V ) is desribed

in Figure 3. Note V 's deision prediate does not inlude the highlighted portion of its ode.

We now observe that the HTP protool is unsound. More preisely, there exist anonial arguments

suh that the HTP protool based on them does not have negligible error. This is true for any

anonial argument (

�

P ;

�

V ) satisfying the extra ondition that for in�nitely many x 62 L there exists a

ommitment (Cmt

x

; q

x

; g

x

) for whih there is a response Rsp

x

to hallenge 1 that will make the veri�er

aept. There are many suh anonial arguments. For instane, a anonial argument satisfying

this ondition results from using an appropriate enoding of group elements in Hada and Tanaka's

modi�ation of the parallel omposition of Blum's zero-knowledge protool for the Hamiltonian iruit

problem.

Proposition 5.2 Let HTP be the Hada-Tanaka protool based on a anonial argument satisfying

the ondition stated above. Then there exists a polynomial-time prover for HTP that an make the

veri�er aept with probability one for in�nitely many ommon inputs not in L.

Proof of Proposition 5.2: Let (

�

P ;

�

V ) be the anonial argument and let V be the veri�er of

the orresponding protool HTP. Consider a heating prover

b

P that on initial state (x; ((Cmt

x

; q

x

;

g

x

);Rsp

x

); ") selets an exponent a 2 Z

q

x

uniformly at random, and sends (Cmt

x

; q

x

; g

x

; g

a

x

) as its

ommitment to veri�er V . Upon reeiving a hallenge (B;X), it heks if X = B

a

. If not, it aborts.

11



Prover P Veri�ers V; V

0

Initial State St = (x;w;R)

((Cmt; q; g);St ) 

�

P (";St)

a

$

 Z

q

; A g

a

d 1

(Cmt; q; g; A)

-

n jxj

If (q; g) =2 GL

n

then d 0 EndIf

b

$

 Z

�

q

; B  g

b

; X  A

b

(B;X)

�

If X 6= B

a

then abort

else 

$

 Z

�

q

; C  g



; Ch B



(Rsp;St) 

�

P (Ch;St) EndIf

(Rsp; C;Ch)

-

If Ch 6= C

b

_ Ch = 1 _

DEC

x

((Cmt; q; g);Ch;Rsp) = 0 then

d 0 EndIf

Figure 3: HTP and pHTP. Veri�er V of protool HTP = (P; V ) does not inlude the highlighted

portion. Veri�er V

0

of protool pHTP = (P; V

0

) does.

Otherwise, it sends (Rsp

x

; 1; 1) as its response to V . By the assumption about protool (

�

P ;

�

V ), for

in�nitely many x 62 L there exists an auxiliary input y = ((Cmt

x

; q

x

; g

x

);Rsp

x

) 2 f0; 1g

�

suh that

A

b

P ;y

V

(x) = 1.

Protool pHTP. The above attak an be avoided by modifying the veri�er to inlude the high-

lighted portion of the ode in Figure 3. We all the resulting veri�er V

0

. The following guarantees

that the protool pHTP = (P; V

0

) is sound under KEA3, if the DLP is hard.

Theorem 5.3 If KEA3 holds, the DLA holds, and (

�

P ;

�

V ) is a anonial 3-round argument for an

NP-omplete language L, then pHTP = (P; V

0

) as de�ned in Figure 3 is a negligible-error argument

for L.

Proof of Theorem 5.3. The proof is almost idential to that of [12℄. For ompleteness, however,

we provide it.

Completeness follows diretly from the ompleteness of protool (

�

P ;

�

V ). To prove soundness, we

proeed by ontradition. Assume that pHTP is not sound, i.e., there is no negligible funtion Æ suh

that the soundness ondition in De�nition 5.1 holds with respet to Æ. We show that the DLP is easy

under KEA3.

By the assumption that pHTP is not sound and a result of [2℄, there exists a probabilisti

polynomial-time algorithm

b

P suh that the funtion

Err

b

P

(n) = maxfA

b

P;a

V

0

(x) : x 2 f0; 1g

n

^ x 62 L ^ a 2 f0; 1g

�

g

2

2

We note that this set is �nite sine

b

P is a polynomial-time algorithm and A

b

P;a

V

0

(x) depends only on the �rst t

b

P

(jxj)
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is not negligible. Hene there exists a probabilisti polynomial-time algorithm

b

P , a polynomial p, and

an in�nite set S = f (x; a) : x 2 f0; 1g

�

n L ^ a 2 f0; 1g

�

g suh that for every (x; a) 2 S

A

b

P;a

V

0

(x) > 1=p(jxj) ; (4)

and f x 2 f0; 1g

�

: 9a 2 f0; 1g

�

suh that (x; a) 2 S g is in�nite.

Sine

b

P takes an auxiliary input a, we may assume, without loss of generality, that

b

P is deter-

ministi. We also assume that, if (Cmt; q

0

; g

0

; A

0

) is

b

P 's ommitment on input " when the initial state

is (x; a; "), for some x; a 2 f0; 1g

�

with jxj = n, then (q

0

; g

0

) 2 GL

n

. (There exists a prover

b

P

0

for

whih A

b

P

0

;a

V

0

(x) = A

b

P ;a

V

0

(x) for every x; a 2 f0; 1g

�

and this assumption holds.) We will use

b

P

to onstrut an adversary A for the KEA3 problem. By assumption, there exists for it an extrator

�

A with negligible error bound. Using

�

A and

b

P , we then present a poly-size family of randomized

iruits J = fJ

n

g

n2N

and show that it does not have a negligible suess bound. By Proposition 2.2,

this shows that the DLP is not hard.

Let K = f n 2 N : 9 (x; a) 2 S suh that jxj = n g. We observe that K is an in�nite set. For

eah n 2 K, �x (x; a) 2 S suh that jxj = n. The poly-size family of iruits A = fA

n

g

n2N

is

presented in Figure 4. Now, under KEA3, there exists a poly-size family of iruits

�

A = f

�

A

n

g

n2N

and a negligible funtion � suh that

�

A is an extrator for A with error bound �. For eah n 2 K,

let a

0

= DLog

q

0

;g

0

(A

0

), where (Cmt; q

0

; g

0

; A

0

) is

b

P 's ommitment on input " when the initial state is

(x; a; "). Using

�

A, we de�ne the poly-size family of iruits J = fJ

n

g

n2N

shown in Figure 4. The

proof of the following is in Appendix C.

Claim 5.4 For in�nitely many n 2 N there exists (q; g) 2 GL

n

suh that for every A 2 G

q

Pr

h

�a

$

 J

n

(q; g; A) : g

�a

= A

i

>

1

p(n)

2

�

8

2

n

p(n)

� 2�(n) :

Claim 5.4 implies that J does not have a negligible suess bound, whih, by Proposition 2.2, shows

that the DLP is not hard, ontraditing the assumption made in this Theorem.

Zero knowledge of pHTP. Having modi�ed HTP, we need to revisit the zero knowledge. Hada

and Tanaka proved that if the anonial argument is HVZK (property (3) above) then HTP is zero

knowledge under KEA1. However, we observe that pHTP modi�es only the veri�er, not the prover.

Furthermore, only the deision prediate of the veri�er is modi�ed, not the messages it sends. This

means that the view (i.e., the internal oin tosses and the sequene of messages reeived during an

interation with a prover P ) of veri�er V

0

of pHTP is idential to that of veri�er V of HTP. Thus,

zero knowledge of pHTP follows from zero knowledge of HTP, and in partiular is true under the same

assumptions, namely KEA1.

Summary. In summary, pHTP is a 3-round protool that we have shown is a negligible-error argument

for NP assuming DLA and KEA3, and is ZK assuming KEA1. Given Proposition 4.2, this means we

have shown that assuming DLA and KEA3 there exists a 3-round negligible-error ZK argument for

NP.
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bits of a, where t

b

P

(�) is the running time of

b

P .

13



A

n

(q; g; A;B;X) ==n 2 K

St  (x; a; ") ; ((Cmt; q

0

; g

0

; A

0

);St) 

b

P (";St)

If q

0

6= q _ g

0

6= g _A

0

6= A then return (1; 1)

else ((Rsp; C;Ch);St) 

b

P ((B;X);St ) ; return (C;Ch) EndIf

A

n

(q; g; A;B;X) ==n 62 K

Return (1; 1)

J

n

(q; g; A) ==n 2 K

St  (x; a; ") ; ((Cmt; q

0

; g

0

; A

0

);St) 

b

P (";St)

If q

0

6= q _ g

0

6= g then return ? EndIf

b

$

 Z

q

; B  A � g

b

; X  B

a

0

((Rsp; C;Ch);St

1

) 

b

P ((B;X);St) ; (

1

; 

2

) 

�

A

n

(q; g; A

0

; B;X)

If DEC

x

((Cmt; q; g);Ch;Rsp) = 0 _Ch 6= B



1

X



2

then return ? EndIf

b

0

$

 Z

q

; B

0

 g

b

0

; X

0

 B

0a

0

If B = B

0

then �a b

0

� b mod q ; return �a EndIf

((Rsp

0

; C

0

;Ch

0

);St

0

1

) 

b

P ((B

0

;X

0

);St) ; (

0

1

; 

0

2

) 

�

A

n

(q; g; A

0

; B

0

;X

0

)

If DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 0 _Ch

0

6= B

0

0

1

X

0

0

2

then return ? EndIf

If 

1

+ a

0



2

6� 0 (mod q) then

�a (b

0



0

1

+ b

0

a

0



0

2

� b

1

� ba

0



2

) � (

1

+ a

0



2

)

�1

mod q ; return �a

else return ? EndIf

J

n

(q; g; A) ==n 62 K

Return ?

Figure 4: Adversary A = fA

n

g

n2N

for the KEA3 problem and adversary J = fJ

n

g

n2N

for the DLP,

for the proof of Theorem 5.3.
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A Proof of Proposition 2.2

Let K = f n 2 N : GL

n

6= ; g. For eah n 2 K we let (q

n

; g

n

) 2 GL

n

be suh that

8(q; g) 2 GL

n

: Adv

dl

J

(n; q; g) � Adv

dl

J

(n; q

n

; g

n

) : (5)

For n 2 K, let R(n) denote the set from whih J

n

draws its oins on inputs n; q

n

; g

n

. We say that

r 2 R(n) is n-good if

Pr

h

A

$

 G

q

n

; �a J

n

(q

n

; g

n

; A; r) : g

�a

= A

i

� Adv

dl

J

(n; q

n

; g

n

) :

Claim A.1 For eah n 2 K there exists a r 2 R(n) suh that r is n-good.

Proof: De�ne X: G

q

n

� Z

q

n

! f0; 1g as follows:

X(A; r)

�a J

n

(q

n

; g

n

; A; r)

If g

�a

= A then return 1 else return 0

Then we have:

X

r2R(n)

1

jR(n)j

� Pr

h

A

$

 G

q

n

; �a J

n

(q

n

; g

n

; A; r) : g

�a

= A

i

15



=

X

r2R(n)

1

jR(n)j

X

A2G

q

n

1

q

n

�X(A; r)

=

X

A2G

q

n

1

q

n

X

r2R(n)

1

jR(n)j

�X(A; r)

= Adv

dl

J

n

(n; q

n

; g

n

) :

This means that there must exist a r 2 R(n) suh that

Pr

h

A

$

 G

q

n

; �a J

n

(q

n

; g

n

; A; r) : g

�a

= A

i

� Adv

dl

J

n

(n; q

n

; g

n

) ;

whih proves the laim.

We now de�ne a poly-size family I = fI

n

g

n2N

of (deterministi) iruits, as follows. Let n 2 N. If

n 62 K then we de�ne I

n

arbitrarily. If n 2 K then Claim A.1 tells us that there exists a string, whih

we denote by r

n

, that is n-good. We then de�ne I

n

as follows:

I

n

(q; g; A)

If q 6= q

n

or g 6= g

n

then abort

�a J

n

(q

n

; g

n

; A; r

n

)

Return �a

Sine I is a poly-size family of deterministi iruits, the assumption that the DLP is hard says that

there is a negligible funtion � suh that I has suess bound �. Now putting this together with

Equation (5) and Claim A.1 we have

8n 2 K 8(q; g) 2 GL

n

: Adv

dl

J

(n; q; g) � Adv

dl

J

(n; q

n

; g

n

) � Adv

dl

I

(n; q

n

; g

n

) � �(n) :

This means that J also has suess bound �, whih proves the Proposition.

B KEA3 implies KEA1

We reall KEA1, following [12℄, but applying the same simpli�ations as we did for KEA2 so as to

merge their two onditions into one:

Assumption B.1 [KEA1℄ Let A = fA

n

g

n2N

and

�

A = f

�

A

n

g

n2N

be families of iruits, and �: N !

[0; 1℄ a funtion. We assoiate to any n 2 N, any (q; g) 2 GL

n

, and any A 2 G

q

the following

experiment:

Experiment Exp

kea1

A;

�

A

(n; q; g)

b

$

 Z

q

; B  g

b

(C; Y ) A

n

(q; g;B) ;  

�

A

n

(q; g;B)

If (Y = C

b

AND g



6= C) then return 1 else return 0

We let

Adv

kea1

A;

�

A

(n; q; g) = Pr

h

Exp

kea1

A;

�

A

(n; q; g) = 1

i

denote the advantage of A relative to

�

A on inputs n; q; g. We say that

�

A is a kea1-extrator for A

with error bound � if

8n 2 N 8(q; g) 2 GL

n

: Adv

kea1

A;

�

A

(n; q; g) � �(n) :

We say that KEA1 holds if for every poly-size family of iruits A there exists a poly-size family of

iruits

�

A and a negligible funtion � suh that

�

A is a kea1-extrator for A with error bound �.
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Proof of Proposition 4.2: Let A be an adversary (poly-size family of iruits) for KEA1. We

need to show there exists a negligible funtion � and a poly-size family of iruits

�

A suh that

�

A is a

kea1-extrator for A with error-bound �.

We begin by onstruting from A the following adversary A

0

for KEA3:

Adversary A

0

n

(q; g; A;B;X)

(C; Y ) A

n

(q; g;B)

Return (C; Y )

We have assumed KEA3. Thus there exists a negligible funtion � and an extrator

�

A

0

suh that

�

A

0

is a kea3-extrator for A

0

with error bound �. Now we de�ne an extrator

�

A for A as follows:

Extrator

�

A

n

(q; g;B)

a

$

 Z

q

; A g

a

; X  B

a

(

1

; 

2

) 

�

A

0

(q; g; A;B;X)

 

1

+ a

2

mod q

Return 

We laim that

�

A is a kea1-extrator for A with error bound �. To see this, assume

�

A

0

n

(q; g; A;B;X)

is suessful, meaning g



1

A



2

= C. Then g



= g



1

+a

2

= g



1

A



2

= C so

�

A

n

(q; g;B) is suessful as

well.

C Proof of Claim 5.4

We let Pr[�℄ denote the probability in the experiment of exeuting J

n

(q; g; A). We show that for every

n 2 K suh that n � 4, if (Cmt; q; g; A

0

) is

b

P 's ommitment on input " when the initial state is

(x; a; "), then for every A 2 G

q

Pr

�

g

�a

= A

�

>

1

p(n)

2

�

8

2

n

p(n)

� 2�(n) :

Sine K is in�nite and, by our assumption about the output of

b

P , q; g are suh that (q; g) 2 GL

n

, this

proves the laim.

Fix n 2 K suh that n � 4. Let (Cmt; q; g; A

0

) be

b

P 's ommitment on input " when the initial

state is (x; a; "), and let A 2 G

q

. We �rst write some inequalities leading to the laim and then justify

them:

Pr

�

g

�a

= A

�

� Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 1 ^Ch = B



1

X



2

^B 6= B

0

^

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 1 ^Ch

0

= B

0

0

1

X

0

0

2

^ 

1

+ a

0



2

6� 0 (mod q) ℄ (6)

� Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 1 ^Ch = B



1

X



2

^Ch 6= 1 ^B 6= B

0

^

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 1 ^Ch

0

= B

0

0

1

X

0

0

2

^Ch

0

6= 1 ℄ (7)

� Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 1 ^Ch = C

DLog

q;g

(B)

^Ch 6= 1 ^B 6= B

0

^

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 1 ^Ch

0

= C

0DLog

q;g

(B

0

)

^Ch

0

6= 1 ℄�

17



�

Pr [Ch 6= B



1

X



2

^Ch = C

DLog

q;g

(B)

℄+ Pr [Ch

0

6= B

0

0

1

X

0

0

2

^Ch

0

= C

0DLog

q;g

(B

0

)

℄

�

(8)

�

�

A

b

P ;a

V

0

(x)

�

2

�

1

q � 1

A

b

P;a

V

0

(x)� 2Adv

kea3

A;

�

A

(n; q; g; A

0

) (9)

>

1

p(n)

2

�

1

(q � 1)p(n)

� 2�(n) (10)

�

1

p(n)

2

�

8

2

n

p(n)

� 2�(n) : (11)

We justify Equation (6) by showing that if DEC

x

((Cmt; q; g);Ch;Rsp) = 1, Ch = B



1

X



2

, B 6= B

0

,

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 1, Ch

0

= B

0

0

1

X

0

0

2

and 

1

+ a

0



2

6� 0 (mod q) then g

�a

= A. Assume

that the former statement holds. By the strong soundness property of protool (

�

P ;

�

V ), Ch = Ch

0

,

whene B



1

X



2

= B

0

0

1

X

0

0

2

. Thus we have

g

�a

= g

(b

0



0

1

+b

0

a

0



0

2

�b

1

�ba

0



2

)�(

1

+a

0



2

)

�1

mod q

=

�

g

b

0



0

1

+b

0

a

0



0

2

�

(

1

+a

0



2

)

�1

g

�b

=

�

B

0

0

1

X

0

0

2

�

(

1

+a

0



2

)

�1

g

�b

= (B



1

X



2

)

(

1

+a

0



2

)

�1

g

�b

=

�

B



1

B

a

0



2

�

(

1

+a

0



2

)

�1

g

�b

=

�

B



1

+a

0



2

�

(

1

+a

0



2

)

�1

g

�b

= Bg

�b

= A,

as desired.

To justify Equation (7) we observe that if Ch = B



1

X



2

and Ch 6= 1 then 

1

+ a

0



2

6� 0 (mod q),

and that adding the ondition Ch

0

6= 1 an only derease the probability further.

Now Equation (8) is justi�ed as follows.

Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 0 _Ch 6= B



1

X



2

_Ch = 1 _B = B

0

_

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 0 _Ch

0

6= B

0

0

1

X

0

0

2

_Ch

0

= 1 ℄

� Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 0 _Ch 6= C

DLog

q;g

(B)

_Ch = 1 _B = B

0

_

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 0 _Ch

0

6= C

0DLog

q;g

(B

0

)

_Ch

0

= 1 _

�

Ch 6= B



1

X



2

^Ch = C

DLog

q;g

(B)

�

_

�

Ch

0

6= B

0

0

1

X

0

0

2

^Ch

0

= C

0DLog

q;g

(B

0

)

�

℄

� Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 0 _Ch 6= C

DLog

q;g

(B)

_Ch = 1 _B = B

0

_

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 0 _Ch

0

6= C

0DLog

q;g

(B

0

)

_Ch

0

= 1℄+

Pr [Ch 6= B



1

X



2

^Ch = C

DLog

q;g

(B)

℄+Pr [Ch

0

6= B

0

0

1

X

0

0

2

^Ch

0

= C

0DLog

q;g

(B

0

)

℄ :

Exp

kea3

A;

�

A

(n; q; g; A

0

) returns 1 exatly when Y = C

DLog

q;g

(B)

and g



1

A

0

2

6= C. By onstrution of

A, we have Y = Ch, and thus Ch = C

DLog

q;g

(B)

^ Ch 6= B



1

X



2

implies that Exp

kea3

A;

�

A

(n; q; g; A

0

)

returns 1. Similarly, Ch

0

= C

DLog

q;g

(B

0

)

^ Ch 6= B

0

0

1

X

0

0

2

implies that Exp

kea3

A;

�

A

(n; q; g; A

0

) returns 1.

To justify Equation (9) it remains to show that

Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 1 ^Ch = C

DLog

q;g

(B)

^Ch 6= 1 ^B 6= B

0

^

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 1 ^Ch

0

= C

0DLog

q;g

(B

0

)

^Ch

0

6= 1 ℄
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�

�

A

b

P ;a

V

0

(x)

�

2

�

1

q � 1

A

b

P;a

V

0

(x) : (12)

Let RES denote the event in the experiment of exeuting J

n

(q; g; A) whose probability is bounded from

below in Equation (12). Note that the orresponding sample spae is Z

�

q

� Z

�

q

. Let ACC denote the

event that in an interation between

b

P (with initial state (x; a; ")) and V

0

(with input x), the latter

aepts (i.e., Pr [ACC ℄ = A

b

P;a

V

0

(x)). The sample spae of the orresponding experiment is Z

�

q

. We

observe that if b 2 ACC, b

0

2 ACC and b 6= b

0

then (b; b

0

) 2 RES. Therefore,

jRESj � jACCj(jACCj � 1) and

Pr [RES ℄ =

jRESj

jZ

�

q

� Z

�

q

j

�

jACCj

jZ

�

q

j

�

jACCj

jZ

�

q

j

�

1

jZ

�

q

j

�

=

�

A

b

P ;a

V

0

(x)

�

2

�

1

q � 1

A

b

P;a

V

0

(x) :

Equation (10) is justi�ed by Equation (4) and the assumption that

�

A is an extrator for A with error

bound �.

The assumption that (q; g) 2 GL

n

implies that j2q + 1j = n, i.e., 2

n�1

� 2q + 1 < 2

n

, and hene

q � 1 � 2

n�3

(reall that n � 4). This justi�es Equation (11).

19


