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1 Introdu
tion

A 
lassi
al question in the theory of zero knowledge (ZK) [10℄ is whether there exist 3-round, negligible-

error ZK proofs or arguments for NP. The diÆ
ulty in answering this question stems from the fa
t

that su
h proto
ols would have to be non-bla
k-box simulation ZK [9℄, and there are few approa
hes

or te
hniques to this end. A positive answer has, however, been provided, by Hada and Tanaka

[11, 12℄. Their result (a negligible-error, 3-round ZK argument for NP) requires a pair of non-standard

assumptions that we will denote by KEA1 and KEA2.

The assumptions, roughly. Let q be a prime su
h that 2q+1 is also prime, and let g be a generator

of the order q subgroup of Z

�

2q+1

. Suppose we are given input q; g; g

a

and want to output a pair (C; Y )

su
h that Y = C

a

. One way to do this is to pi
k some 
 2 Z

q

, let C = g




, and let Y = (g

a

)




. Intuitively,

KEA1 
an be viewed as saying that this is the \only" way to produ
e su
h a pair. The assumption


aptures this by saying that any adversary outputting su
h a pair must \know" an exponent 
 su
h

that g




= C. The formalization asks that there be an \extra
tor" that 
an return 
. Roughly:

KEA1: For any adversary A that takes input q; g; g

a

and returns (C; Y ) with Y = C

a

, there exists

an \extra
tor"

�

A, whi
h given the same inputs as A returns 
 su
h that g




= C.

Suppose we are given input q; g; g

a

; g

b

; g

ab

and want to output a pair (C; Y ) su
h that Y = C

b

. One

way to do this is to pi
k some 
 2 Z

q

, let C = g




, and let Y = (g

b

)




. Another way is to pi
k some


 2 Z

q

, let C = (g

a

)




, and let Y = (g

ab

)




. Intuitively, KEA2 
an be viewed as saying that these are

the \only" ways to produ
e su
h a pair. The assumption 
aptures this by saying that any adversary

outputting su
h a pair must \know" an exponent 
 su
h that either g




= C or (g

a

)




= C. The

formalization asks that there be an \extra
tor" that 
an return 
. Roughly:

KEA2: For any adversary A that takes input q; g; g

a

; g

b

; g

ab

and returns (C; Y ) with Y = C

b

,

there exists an \extra
tor"

�

A, whi
h given the same inputs as A returns 
 su
h that either

g




= C or (g

a

)




= C.

As per [11, 12℄, adversaries and extra
tors are poly-size families of (deterministi
) 
ir
uits. See

Assumption 3.1 for a formalization of KEA2, and Assumption B.1 for a formalization of KEA1.

History and nomen
lature of the assumptions. KEA1 is due to Damg�ard [7℄, and is used

by [11, 12℄ to prove their proto
ol is ZK. To prove soundness of their proto
ol, Hada and Tanaka

[11, 12℄ introdu
e and use KEA2. (In addition, they make the Dis
rete Logarithm Assumption,

DLA.) The preliminary version of their work [11℄ referred to the assumptions as SDHA1 and SDHA2

(Strong DiÆe-Hellman Assumptions 1 and 2), respe
tively. However, the full version [12℄ points

out that the formalizations in the preliminary version are 
awed, and provides 
orre
ted versions


alled non-uniform-DA1 and non-uniform-DA2. The latter are the assumptions 
onsidered in this

paper, but we use the terminology of Naor [15℄ whi
h we feel is more re
e
tive of the 
ontent of the

assumption: \KEA" stands for \Knowledge of Exponent Assumption", the exponent being the value


 above.

Falsifying KEA2. In this paper we show that KEA2 is false. What is interesting about this |besides

the fa
t that it renders the results of [11, 12℄ va
uous| is that we are able to \falsify" an assumption

whose nature, as pointed out by Naor [15℄, does not lend itself easily to \eÆ
ient falsi�
ation." Let

us explain this issue before expanding more on the result itself.

The most standard format for an assumption is to ask that the probability that an adversary

produ
es a 
ertain output on 
ertain inputs is negligible. For example, the Fa
toring assumption

is of this type, asking that the probability that a polynomial-time adversary 
an output the prime

fa
tors of an integer (
hosen by multipling a pair of random primes) is negligible. To show su
h an

assumption is false, we 
an present an \atta
k," in the form of an adversary whose su

ess probability
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is not negligible. (For example, a polynomial-time fa
toring algorithm.) KEA1 and KEA2 are not of

this standard format. They involve a more 
omplex quanti�
ation: \For every adversary there exists

an extra
tor su
h that ...". To show KEA2 is false, we must show there is an adversary for whi
h

there exists no extra
tor. As we will see later, it is relatively simple to identify an adversary for whi
h

there does not appear to exist an extra
tor, but how 
an we a
tually show that none of the in�nite

number of possible extra
tors su

eeds?

An analogy. The diÆ
ulty of falsifying an assumption with the quanti�er format of KEA2 may be

better appre
iated via an analogy. The de�nition of ZK has a similar quanti�er format: \For every

(
heating) veri�er there exists a simulator su
h that ...". This makes it hard to show a proto
ol is

not ZK, for, even though we may be able to identify a 
heating veri�er strategy that appears hard

to simulate, it is not 
lear how we 
an a
tually show no simulator exists. (For example, it is hard to

imagine how one 
ould �nd a simulator for the 
heating veri�er, for Blum's ZK proof of Hamiltonian

Cy
le [5℄, that produ
es its 
hallenges by hashing the permuted graphs sent by the prover in the

�rst step. But there is to date no proof that su
h a simulator does not exist). However it has been

possible to show proto
ols are not bla
k-box simulation ZK [9℄, taking advantage of the fa
t that

the quanti�
ation in this de�nition is di�erent from that of ZK itself. It has also been possible to

show 
onditional results, for example that the parallel version of the Fiat-Shamir [8℄ proto
ol is not

ZK, unless there is no hash fun
tion that, when applied to 
ollapse this proto
ol, results in a se
ure

signature s
heme [16℄. Our result too is 
onditional.

Falsifi
ation result. At an intuitive level, the weakness in KEA2 is easy to see, and indeed it is

surprising this was not noted before. Namely, 
onsider an adversary A that on input q; g; g

a

; g

b

; g

ab

pi
ks 


1

; 


2

in some fashion, and outputs (C; Y ) where C = g




1

(g

a

)




2

and Y = (g

b

)




1

(g

ab

)




2

. Then

Y = C

b

but this adversary does not appear to \know" 
 su
h that either g




= C or (g

a

)




= C. The

diÆ
ulty, however, as indi
ated above, is to prove that there does not exist an extra
tor. We do this

by �rst spe
ifying a parti
ular strategy for 
hoosing 


1

and 


2

and then showing that if there exists an

extra
tor for the resulting adversary, then this extra
tor 
an be used to solve the dis
rete logarithm

problem (DLP). Thus, our result (
f. Theorem 3.2) is that if the DLP is hard then KEA2 is false. Note

that if the DLP is easy, then KEA2 is true, for the extra
tor 
an simply 
ompute a dis
rete logarithm

of C and output it, and thus the assumption that it is hard is ne
essary to falsify KEA2.

Remark. We emphasize that we have not found any weaknesses in KEA1, an assumption used not

only in [7, 11, 12℄ but also elsewhere.

KEA3. Providing a 3-round, negligible-error ZK proto
ol for NP is a 
hallenging problem that has

attra
ted 
onsiderable resear
h e�ort. The fa
t that KEA2 is false means that we \lose" one of the

only positive results [11, 12℄ that we had on this subje
t. A

ordingly, we would like to \re
over"

it. To this end, we propose a modi�
ation of KEA2 that addresses the weakness we found. The new

assumption is, roughly, as follows:

KEA3: For any adversary A that takes input q; g; g

a

; g

b

; g

ab

and returns (C; Y ) with Y = C

b

,

there exists an \extra
tor"

�

A, whi
h given the same inputs as A returns 


1

; 


2

su
h that

g




1

(g

a

)




2

= C.

Before pro
eeding to use this assumption, we note a relation that we 
onsider interesting, namely, that

KEA3 implies KEA1 (
f. Proposition 4.2).

1

The relation means that KEA3 is a natural extension of

KEA1. It also allows us to simplify result statements, assuming only KEA3 rather than both this

assumption and KEA1.

1

KEA2 was not shown by [12℄ to imply KEA1. Our proof of Proposition 4.2 does extend to establish it, but the

point is moot sin
e KEA2 is false and hen
e of 
ourse implies everything anyway.
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Re
overing the ZK result. Let HTP denote the 3-round proto
ol of Hada and Tanaka, whi
h

they 
laim to be sound (i.e., have negligible error) and ZK. The falsity of KEA2 invalidates their

proof of soundness. However, this does not mean that HTP is not sound: perhaps it is and this 
ould

be proved under another assumption, su
h as KEA3. This turns out to be almost, but not quite,

true. We identify a small bug in HTP based on whi
h we 
an present a su

essful 
heating prover

strategy, showing that HTP is not sound. This is easily �xed, however, to yield a proto
ol we 
all

pHTP (pat
hed HTP). This proto
ol is 
lose enough to HTP that the proof of ZK (based on KEA1)

is un
hanged. On the other hand, the proof of soundness of HTP provided in [12℄ extends with very

minor modi�
ations to prove soundness of pHTP based on KEA3 and DLA (
f. Theorem 5.3). In

summary, assuming KEA3 and DLA, there exists a 3-round, negligible error ZK argument for NP.

Strength of the assumptions. The knowledge-of-exponent assumptions are strong and non-

standard ones, and have been 
riti
ized for assuming that one 
an perform what some people 
all

\reverse engineering" of an adversary. These 
ritiques are 
ertainly valid. Our falsi�
ation of KEA2

does not provide information on this aspe
t of the assumptions, un
overing, rather, other kinds of

problems. However, by showing that su
h assumptions 
an be falsi�ed, we open the door to further

analyses.

We also stress that in re
overing the result of [12℄ on 3-round ZK we have not su

eeded in

weakening the assumptions on whi
h it is based, for KEA3 
ertainly remains a strong assumption of

the same non-standard nature as KEA1.

Related Work. Sin
e [11, 12℄ there has been more progress with regard to the design of non-bla
k-

box simulation ZK proto
ols [1℄. However, this work does not provide a 3-round, negligible-error ZK

proto
ol for NP. To date, there have been only two positive results. One is that of [11, 12℄, broken and

re
overed in this paper. The other, whi
h builds a proof system rather than an argument, is reported

in [14℄ and further do
umented in [13℄. It also relies on non-standard assumptions, but di�erent from

the Knowledge of Exponent type ones. Roughly, they assume the existen
e of a hash fun
tion su
h that

a 
ertain dis
rete-log-based proto
ol, that uses this hash fun
tion and is related to the non-intera
tive

OT of [3℄, is a proof of knowledge.

2 Preliminaries

If x is a binary string, then jxj denotes its length, and if n � 1 is an integer, then jnj denotes the

length of its binary en
oding, meaning the unique integer ` su
h that 2

`�1

� n < 2

`

. The empty

string is denoted ". We let N = f1; 2; 3; : : :g be the set of positive integers. If q is a prime number

su
h that 2q + 1 is also prime, then we denote by G

q

the subgroup of quadrati
 residues of Z

�

2q+1

.

(Operations are modulo 2q + 1 but we will omit writing \mod 2q + 1" for simpli
ity.) Re
all this

is a 
y
li
 subgroup of order q. If g is a generator of G

q

then we let DLog

q;g

: G

q

! Z

q

denote the

asso
iated dis
rete logarithm fun
tion, meaning DLog

q;g

(g

a

) = a for any a 2 Z

q

. We let

GL = f (q; g) : q; 2q + 1 are primes and g is a generator of G

q

g :

For any n 2 N we let GL

n

be the set of all (q; g) 2 GL su
h that the length of the binary representation

of 2q + 1 is n bits, i.e.,

GL

n

= f (q; g) 2 GL : j2q + 1j = n g :

Assumptions and problems in [11, 12℄ involve 
ir
uits. A family of 
ir
uits C = fC

n

g

n2N


ontains one


ir
uit for ea
h value of n 2 N. It is poly-size if there is a polynomial p su
h that the size of C

n

is at

most p(n) for all n 2 N. Unless otherwise stated, 
ir
uits are deterministi
. If they are randomized,

we will say so expli
itly. We now re
all the DLA following [12℄.
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Assumption 2.1 [DLA℄ Let I = fI

n

g

n2N

be a family of randomized 
ir
uits, and �: N ! [0; 1℄ a

fun
tion. We asso
iate to any n 2 N and any (q; g) 2 GL

n

the following experiment:

Experiment Exp

dl

I

(n; q; g)

a

$

 Z

q

; A g

a

; �a

$

 I

n

(q; g; A) ; If a = �a then return 1 else return 0

We let

Adv

dl

I

(n; q; g) = Pr

h

Exp

dl

I

(n; q; g) = 1

i

denote the advantage of I on inputs n; q; g, the probability being over the random 
hoi
e of a and the


oins of I

n

, if any. We say that I has su

ess bound � if

8n 2 N 8(q; g) 2 GL

n

: Adv

dl

I

(n; q; g) � �(n) :

We say that the Dis
rete Logarithm Assumption (DLA) holds if for every poly-size family of 
ir
uits

I there exists a negligible fun
tion � su
h that I has su

ess bound �.

The above formulation of the DLA, whi
h, as we have indi
ated, follows [12℄, has some non-standard

features that are important for their results. Let us dis
uss these brie
y.

First, we note that the de�nition of the su

ess bound is not with respe
t to (q; g) being 
hosen

a

ording to some distribution as is standard, but rather makes the stronger requirement that the

advantage of I is small for all (q; g).

Se
ond, we stress that the assumption only requires poly-size families of deterministi
 
ir
uits to

have a negligible su

ess bound. However, in their proofs, whi
h aim to 
ontradi
t the DLA, Hada

and Tanaka [11, 12℄ build adversaries that are poly-size families of randomized 
ir
uits, and then

argue that these 
an be 
onverted to related poly-size families of deterministi
 
ir
uits that do not

have a negligible su

ess bound. We will also need to build su
h randomized adversaries, but, rather

than using ad ho
 
onversion arguments repeated a
ross proofs, we note the following more general

Proposition, whi
h simply says that DLA, as per Assumption 2.1, implies that poly-size families of

randomized 
ir
uits also have a negligible su

ess bound. We will appeal to this in several later pla
es

in this paper.

Proposition 2.2 Assume the DLA, and let J = fJ

n

g

n2N

be a poly-size family of randomized 
ir
uits.

Then there exists a negligible fun
tion � su
h that J has su

ess bound �.

As is typi
al in su
h 
laims, the proof pro
eeds by showing that for every n there exists a \good"


hoi
e of 
oins for J

n

, and by embedding these 
oins we get a deterministi
 
ir
uit. For 
ompleteness,

we provide the proof in Appendix A.

3 KEA2 is false

We begin by re
alling the assumption. Our presentation is slightly di�erent from, but 
learly equivalent

to, that of [12℄: we have merged the two separate 
onditions of their formalization into one. Re
all

that they refer to this assumption as \non-uniform-DA2," and it was referred to, under a di�erent and

in
orre
t formalization, as SDHA2 in [11℄.

Assumption 3.1 [KEA2℄ Let A = fA

n

g

n2N

and

�

A = f

�

A

n

g

n2N

be families of 
ir
uits, and �: N !

[0; 1℄ a fun
tion. We asso
iate to any n 2 N, any (q; g) 2 GL

n

, and any A 2 G

q

the following

experiment:
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Experiment Exp

kea2

A;

�

A

(n; q; g; A)

b

$

 Z

q

; B  g

b

; X  A

b

(C; Y ) A

n

(q; g; A;B;X) ; 
 

�

A

n

(q; g; A;B;X)

If (Y = C

b

AND g




6= C AND A




6= C) then return 1 else return 0

We let

Adv

kea2

A;

�

A

(n; q; g; A) = Pr

h

Exp

kea2

A;

�

A

(n; q; g; A) = 1

i

denote the advantage of A relative to

�

A on inputs n; q; g; A. We say that

�

A is a kea2-extra
tor for A

with error bound � if

8n 2 N 8(q; g) 2 GL

n

8A 2 G

q

: Adv

kea2

A;

�

A

(n; q; g; A) � �(n) :

We say that KEA2 holds if for every poly-size family of 
ir
uits A there exists a poly-size family of


ir
uits

�

A and a negligible fun
tion � su
h that

�

A is a kea2-extra
tor for A with error bound �.

We stress again that in the above formulations, following [12℄, both the adversary and the extra
tor

are families of deterministi
 
ir
uits. One 
an 
onsider various variants of the assumptions, in
luding

an extension to families of randomized 
iruits, and we dis
uss these variants following the theorem

below.

Theorem 3.2 If the DLA holds then KEA2 is false.

The basi
 idea behind the failure of the assumption, as sket
hed in Se
tion 1, is simple. Consider

an adversary given input q; g; A;B;X, where A = g

a

; B = g

b

and X = g

ab

. The assumption says

that there are only two ways for the adversary to output a pair C; Y satisfying Y = C

b

. One way

is to pi
k some 
, let C = g




and let Y = B




. The other way is to pi
k some 
, let C = A




and

let Y = X




. The assumption thus states that the adversary \knows" 
 su
h that either C = g




(i.e., 
 = DLog

q;g

(C)) or C = A




(i.e., 
 = DLog

q;A

(C)). This ignores the possibility of performing

a linear 
ombination of the two steps above. In other words, an adversary might pi
k 


1

; 


2

, let

C = g




1

A




2

and Y = B




1

X




2

. In this 
ase, Y = C

b

but the adversary does not appear to ne
essarily

know DLog

q;g

(C) = 


1

+ 


2

DLog

q;g

(A) or DLog

q;A

(C) = 


1

DLog

q;A

(g) + 


2

.

However, going from this intuition to an a
tual proof that the assumption is false takes some

work, for several reasons. The above may be intuition that there exists an adversary for whi
h there

would not exist an extra
tor, but we need to prove that there is no extra
tor. This 
annot be done

un
onditionally, sin
e 
ertainly if the dis
rete logarithm problem (DLP) is easy, then in fa
t there is an

extra
tor: it simply 
omputes DLog

q;g

(C) and returns it. A

ordingly, our strategy will be to present

an adversary A for whi
h we 
an prove that if there exists an extra
tor

�

A then there is a method to

eÆ
iently 
ompute the dis
rete logarithm of A.

An issue in implementing this is that the natural adversary A arising from the above intuition

is randomized, pi
king 


1

; 


2

at random and forming C; Y as indi
ated, but our adversaries must be

deterministi
. We resolve this by designing an adversary that makes 
ertain spe
i�
 
hoi
es of 


1

; 


2

.

We now pro
eed to the formal proof.

Proof of Theorem 3.2. Assume to the 
ontrary that KEA2 is true. We show that the DLP is easy.

The outline of the proof is as follows. We �rst 
onstru
t an adversary A for the KEA2 problem. By

assumption, there exists for it an extra
tor

�

A with negligible error bound. Using

�

A, we then present

a poly-size family of randomized 
ir
uits J = fJ

n

g

n2N

and show that it does not have a negligible

su

ess bound. By Proposition 2.2, this 
ontradi
ts the DLA.

The poly-size family of 
ir
uits A = fA

n

g

n2N

is presented in Figure 1. Now, under KEA2, there

exists a poly-size family of 
ir
uits

�

A = f

�

A

n

g

n2N

and a negligible fun
tion � su
h that

�

A is an
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A

n

(q; g; A;B;X)

C  gA

Y  BX

Return (C; Y )

J

n

(q; g; A)

b

$

 Z

q

; B  g

b

; X  A

b


 

�

A

n

(q; g; A;B;X)

C  gA

If g




= C then �a (
� 1) mod q EndIf

If A




= C then �a (
� 1)

�1

mod q EndIf

Return �a

Figure 1: Adversary A = fA

n

g

n2N

for the KEA2 problem and adversary J = fJ

n

g

n2N

for the DLP,

for the proof of Theorem 3.2.

extra
tor for A with error bound �. Using

�

A, we de�ne the poly-size family of 
ir
uits J = fJ

n

g

n2N

shown in Figure 1.

Claim 3.3 For all n 2 N, all (q; g) 2 GL

n

and all A 2 G

q

Pr

h

�a

$

 J

n

(q; g; A) : g

�a

6= A

i

� �(n) :

Note the 
laim shows mu
h more than we need. Namely, J does not merely have a su

ess bound that

is not negligible. In fa
t, it su

eeds with probability almost one.

Proof of Claim 3.3: We let Pr[�℄ denote the probability in the experiment of exe
uting J

n

(q; g; A).

We �rst write some inequalities leading to the 
laim and then justify them:

Pr

�

g

�a

6= A

�

� Pr [ g




6= C ^A




6= C ℄ (1)

� Adv

kea2

A;

�

A

(n; q; g; A) (2)

� �(n) : (3)

We justify Equation (1) by showing that if g




= C or A




= C then g

�a

= A. First assume g




= C.

Sin
e C = gA, we have g




= gA, when
e A = g


�1

. Sin
e we set �a = (
� 1) mod q, we have A = g

�a

.

Next assume A




= C. Sin
e C = gA, we have A




= gA, when
e A


�1

= g. Now observe that 
 6= 1,

be
ause otherwise A




= A 6= gA. (Sin
e g is a generator, it is not equal to 1). Sin
e 
 6= 1 and q is

prime, 
� 1 has an inverse modulo q whi
h we have denoted by �a. Raising both sides of the equation

\A


�1

= g" to the power �a we get A = g

�a

.

Exp

kea2

A;

�

A

(n; q; g; A) returns 1 exa
tly when Y = C

b

and g




6= C and A




6= C. By 
onstru
tion of A, we

have C = gA and Y = BX, and thus Y = C

b

, so Exp

kea2

A;

�

A

(n; q; g; A) returns 1 exa
tly when g




6= C

and A




6= C. This justi�es Equation (2).

Equation (3) is justi�ed by the assumption that

�

A is an extra
tor for A with error bound �.

Claim 3.3 implies that J does not have a negligible su

ess bound, whi
h, by Proposition 2.2, shows

that the DLP is not hard, 
ontradi
ting the assumption made in this Theorem. This 
ompletes the

proof of Theorem 3.2.

Extensions and variants. There are many ways in whi
h the formalization of Assumption 3.1 
an

be varied to 
apture the same basi
 intuition. However, Theorem 3.2 extends to these variants as well.

Let us dis
uss this brie
y.

As mentioned above, we might want to allow the adversary to be randomized. (In that 
ase, it

is important that the extra
tor get the 
oins of the adversary as an additional input, sin
e otherwise

8



the assumption is 
learly false.) Theorem 3.2 remains true for the resulting assumption, in parti
ular

be
ause it is stronger than the original assumption. (Note however that the proof of the theorem

would be easier for this stronger assumption.)

Another variant is that adversaries and extra
tors are uniform, namely standard algorithms, not


ir
uits. (In this 
ase we should 
ertainly allow both to be randomized, and should again give the

extra
tor the 
oins of the adversary.) Again, it is easy to see that Theorem 3.2 extends to show that

the assumption remains false.

4 The KEA3 assumption

The obvious �x to KEA2 is to take into a

ount the possibility of linear 
ombinations by saying this

is the only thing the adversary 
an do. This leads to the following.

Assumption 4.1 [KEA3℄ Let A = fA

n

g

n2N

and

�

A = f

�

A

n

g

n2N

be families of 
ir
uits, and �: N !

[0; 1℄ a fun
tion. We asso
iate to any n 2 N, any (q; g) 2 GL

n

, and any A 2 G

q

the following

experiment:

Experiment Exp

kea3

A;

�

A

(n; q; g; A)

b

$

 Z

q

; B  g

b

; X  A

b

(C; Y ) A

n

(q; g; A;B;X) ; (


1

; 


2

) 

�

A

n

(q; g; A;B;X)

If (Y = C

b

AND g




1

A




2

6= C) then return 1 else return 0

We let

Adv

kea3

A;

�

A

(n; q; g; A) = Pr

h

Exp

kea3

A;

�

A

(n; q; g; A) = 1

i

denote the advantage of A relative to

�

A on inputs n; q; g; A. We say that

�

A is a kea3-extra
tor for A

with error bound � if

8n 2 N 8(q; g) 2 GL

n

8A 2 G

q

: Adv

kea3

A;

�

A

(n; q; g; A) � �(n) :

We say that KEA3 holds if for every poly-size family of 
ir
uits A there exists a poly-size family of


ir
uits

�

A and a negligible fun
tion � su
h that

�

A is a kea3-extra
tor for A with error bound �.

We have formulated this assumption in the style of the formalization of KEA2 of [12℄ given in

Assumption 3.1. Naturally, variants su
h as dis
ussed above are possible. Namely, we 
ould strengthen

the assumption to allow the adversary to be a family of randomized 
ir
uits, of 
ourse then giving the

extra
tor the adversary's 
oins as an additional input. We do not do this be
ause we do not need it

for what follows. We 
ould also formulate a uniform-
omplexity version of the assumption. We do

not do this be
ause it does not suÆ
e to prove the results that follow. However, these extensions or

variations might be useful in other 
ontexts.

In Appendix B we re
all the formalization of KEA1 and prove the following:

Proposition 4.2 KEA3 implies KEA1.

This indi
ates that KEA3 is a natural extension of KEA1.

5 Three-round zero knowledge

The falsity of KEA2 renders va
uous the result of [11, 12℄ saying that there exists a negligible-error,

3-round ZK argument for NP. In this se
tion we look at re
overing this result.

9



Prover

�

P Veri�er

�

V

Initial State St = (x;w;R)

((Cmt; q; g);St ) 

�

P (";St) d 1

(Cmt; q; g)

-

n jxj

If (q; g) =2 GL

n

then d 0 EndIf

r

$

 Z

�

q

; Ch g

r

Ch

�

(Rsp;St) 

�

P (Ch;St)

Rsp

-

If DEC

x

((Cmt; q; g);Ch;Rsp) = 0 then

d 0 EndIf

Figure 2: A 3-round argument. The 
ommon input is x. Prover

�

P has auxiliary input w and

random tape R, and maintains state St . Veri�er

�

V returns boolean de
ision d.

We �rst 
onsider the proto
ol of [11, 12℄, here 
alled HTP. What has been lost is the proof of

soundness (i.e., of negligible error). The simplest thing one 
ould hope for is to re-prove soundness of

HTP under KEA3 without modifying the proto
ol. However, we identify a bug in HTP that renders

it unsound. This bug has nothing to do with the assumptions on whi
h the proof of soundness was or


an be based.

The bug is, however, small and easily �xed. We 
onsider a modi�ed proto
ol whi
h we 
all pHTP.

We are able to show it is sound (i.e., has negligible error) under KEA3. Sin
e we have modi�ed the

proto
ol we need to re-establish ZK under KEA1 as well, but this is easily done.

Arguments. We begin by re
alling some de�nitions. An argument for an NP language L [6℄ is a

two-party proto
ol in whi
h a polynomial-time prover tries to \
onvin
e" a polynomial-time veri�er

that their 
ommon input x belongs to L. (A party is said to be polynomial time if its running time is

polynomial in the length of the 
ommon input.) In addition to x, the prover has an auxiliary input

a. The proto
ol is a message ex
hange at the end of whi
h the veri�er outputs a bit indi
ating its

de
ision to a

ept or reje
t. The probability (over the 
oin tosses of both parties) that the veri�er

a

epts is denoted A



P;a

V

(x). The formal de�nition follows.

De�nition 5.1 A two-party proto
ol (P; V ), where P and V are both polynomial time, is an argument

for L with error probability Æ : N ! [0; 1℄, if the following 
onditions are satis�ed:

Completeness: For all x 2 L there exists w 2 f0; 1g

�

su
h that A



P;w

V

(x) = 1.

Soundness: For all probabilisti
 polynomial-time algorithms

b

P , all suÆ
iently long x =2 L, and all

a 2 f0; 1g

�

, A



b

P;a

V

(x) � Æ(jxj).

We say (P; V ) is a negligible-error argument for L if there exists a negligible fun
tion Æ : N ! [0; 1℄

su
h that (P; V ) is an argument for L with error probability Æ.

Canoni
al proto
ols. The 3-round proto
ol proposed by [11, 12℄, whi
h we 
all HTP, is based on

a 3-round argument (

�

P ;

�

V ) for an NP-
omplete language L with the following properties:

10



(1) The proto
ol is of the form depi
ted in Figure 2. The prover is identi�ed with a fun
tion

�

P

that given an in
oming message M

in

(this is " when the prover is initiating the proto
ol) and its


urrent state St , returns an outgoing message M

out

and an updated state. The initial state of

the prover is (x;w;R), where x is the 
ommon input, w is an auxiliary input and R is a random

tape. The prover's �rst message is 
alled its 
ommitment. This is a tuple 
onsisting of a string

Cmt, a prime number q and an element g, where (q; g) 2 GL

jxj

. The veri�er sele
ts a 
hallenge

Ch uniformly at random from G

q

, and, upon re
eiving a response Rsp from the prover, applies

a deterministi
 de
ision predi
ate DEC

x

((Cmt; q; g);Ch;Rsp) to 
ompute a boolean de
ision.

(2) For any x =2 L and any 
ommitment (Cmt; q; g), where (q; g) 2 GL

jxj

, there is at most one


hallenge Ch 2 G

q

for whi
h there exists a response Rsp 2 f0; 1g

�

su
h that DEC

x

((Cmt; q; g);

Ch;Rsp) = 1. This property is 
alled strong soundness.

(3) The proto
ol is honest-veri�er zero knowledge (HVZK),meaning there exists a probabilisti


polynomial-time simulator S su
h that the following two ensembles are 
omputationally in-

distinguishable:

fS(x)g

x2L

and fView

�

P ;W (x)

�

V

(x)g

x2L

;

where W is any fun
tion that given an input in L returns a witness to its membership in L, and

View

�

P;W (x)

�

V

(x), is a random variable taking value

�

V 's internal 
oin tosses and the sequen
e of

messages it re
eives during an intera
tion between prover

�

P (with auxiliary input W (x)) and

veri�er

�

V on 
ommon input x.

If (

�

P ;

�

V ) is a 3-round argument for an NP-
omplete language, meeting the three 
onditions above,

then we refer to (

�

P ;

�

V ) as a 
anoni
al argument. In what follows, we assume that we have su
h


anoni
al arguments. They 
an be 
onstru
ted in various ways. For example, a 
anoni
al argument


an be 
onstru
ted by modifying the parallel 
omposition of Blum's zero-knowledge proto
ol for the

Hamiltonian 
ir
uit problem [5℄, as des
ribed in [11, 12℄.

The Hada-Tanaka proto
ol. Let (

�

P ;

�

V ) be a 
anoni
al argument for an NP-
omplete language L,

and let DEC be the veri�er's de
ision predi
ate. The Hada-Tanaka proto
ol HTP = (P; V ) is des
ribed

in Figure 3. Note V 's de
ision predi
ate does not in
lude the highlighted portion of its 
ode.

We now observe that the HTP proto
ol is unsound. More pre
isely, there exist 
anoni
al arguments

su
h that the HTP proto
ol based on them does not have negligible error. This is true for any


anoni
al argument (

�

P ;

�

V ) satisfying the extra 
ondition that for in�nitely many x 62 L there exists a


ommitment (Cmt

x

; q

x

; g

x

) for whi
h there is a response Rsp

x

to 
hallenge 1 that will make the veri�er

a

ept. There are many su
h 
anoni
al arguments. For instan
e, a 
anoni
al argument satisfying

this 
ondition results from using an appropriate en
oding of group elements in Hada and Tanaka's

modi�
ation of the parallel 
omposition of Blum's zero-knowledge proto
ol for the Hamiltonian 
ir
uit

problem.

Proposition 5.2 Let HTP be the Hada-Tanaka proto
ol based on a 
anoni
al argument satisfying

the 
ondition stated above. Then there exists a polynomial-time prover for HTP that 
an make the

veri�er a

ept with probability one for in�nitely many 
ommon inputs not in L.

Proof of Proposition 5.2: Let (

�

P ;

�

V ) be the 
anoni
al argument and let V be the veri�er of

the 
orresponding proto
ol HTP. Consider a 
heating prover

b

P that on initial state (x; ((Cmt

x

; q

x

;

g

x

);Rsp

x

); ") sele
ts an exponent a 2 Z

q

x

uniformly at random, and sends (Cmt

x

; q

x

; g

x

; g

a

x

) as its


ommitment to veri�er V . Upon re
eiving a 
hallenge (B;X), it 
he
ks if X = B

a

. If not, it aborts.
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Prover P Veri�ers V; V

0

Initial State St = (x;w;R)

((Cmt; q; g);St ) 

�

P (";St)

a

$

 Z

q

; A g

a

d 1

(Cmt; q; g; A)

-

n jxj

If (q; g) =2 GL

n

then d 0 EndIf

b

$

 Z

�

q

; B  g

b

; X  A

b

(B;X)

�

If X 6= B

a

then abort

else 


$

 Z

�

q

; C  g




; Ch B




(Rsp;St) 

�

P (Ch;St) EndIf

(Rsp; C;Ch)

-

If Ch 6= C

b

_ Ch = 1 _

DEC

x

((Cmt; q; g);Ch;Rsp) = 0 then

d 0 EndIf

Figure 3: HTP and pHTP. Veri�er V of proto
ol HTP = (P; V ) does not in
lude the highlighted

portion. Veri�er V

0

of proto
ol pHTP = (P; V

0

) does.

Otherwise, it sends (Rsp

x

; 1; 1) as its response to V . By the assumption about proto
ol (

�

P ;

�

V ), for

in�nitely many x 62 L there exists an auxiliary input y = ((Cmt

x

; q

x

; g

x

);Rsp

x

) 2 f0; 1g

�

su
h that

A



b

P ;y

V

(x) = 1.

Proto
ol pHTP. The above atta
k 
an be avoided by modifying the veri�er to in
lude the high-

lighted portion of the 
ode in Figure 3. We 
all the resulting veri�er V

0

. The following guarantees

that the proto
ol pHTP = (P; V

0

) is sound under KEA3, if the DLP is hard.

Theorem 5.3 If KEA3 holds, the DLA holds, and (

�

P ;

�

V ) is a 
anoni
al 3-round argument for an

NP-
omplete language L, then pHTP = (P; V

0

) as de�ned in Figure 3 is a negligible-error argument

for L.

Proof of Theorem 5.3. The proof is almost identi
al to that of [12℄. For 
ompleteness, however,

we provide it.

Completeness follows dire
tly from the 
ompleteness of proto
ol (

�

P ;

�

V ). To prove soundness, we

pro
eed by 
ontradi
tion. Assume that pHTP is not sound, i.e., there is no negligible fun
tion Æ su
h

that the soundness 
ondition in De�nition 5.1 holds with respe
t to Æ. We show that the DLP is easy

under KEA3.

By the assumption that pHTP is not sound and a result of [2℄, there exists a probabilisti


polynomial-time algorithm

b

P su
h that the fun
tion

Err

b

P

(n) = maxfA



b

P;a

V

0

(x) : x 2 f0; 1g

n

^ x 62 L ^ a 2 f0; 1g

�

g

2

2

We note that this set is �nite sin
e

b

P is a polynomial-time algorithm and A



b

P;a

V

0

(x) depends only on the �rst t

b

P

(jxj)
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is not negligible. Hen
e there exists a probabilisti
 polynomial-time algorithm

b

P , a polynomial p, and

an in�nite set S = f (x; a) : x 2 f0; 1g

�

n L ^ a 2 f0; 1g

�

g su
h that for every (x; a) 2 S

A



b

P;a

V

0

(x) > 1=p(jxj) ; (4)

and f x 2 f0; 1g

�

: 9a 2 f0; 1g

�

su
h that (x; a) 2 S g is in�nite.

Sin
e

b

P takes an auxiliary input a, we may assume, without loss of generality, that

b

P is deter-

ministi
. We also assume that, if (Cmt; q

0

; g

0

; A

0

) is

b

P 's 
ommitment on input " when the initial state

is (x; a; "), for some x; a 2 f0; 1g

�

with jxj = n, then (q

0

; g

0

) 2 GL

n

. (There exists a prover

b

P

0

for

whi
h A



b

P

0

;a

V

0

(x) = A



b

P ;a

V

0

(x) for every x; a 2 f0; 1g

�

and this assumption holds.) We will use

b

P

to 
onstru
t an adversary A for the KEA3 problem. By assumption, there exists for it an extra
tor

�

A with negligible error bound. Using

�

A and

b

P , we then present a poly-size family of randomized


ir
uits J = fJ

n

g

n2N

and show that it does not have a negligible su

ess bound. By Proposition 2.2,

this shows that the DLP is not hard.

Let K = f n 2 N : 9 (x; a) 2 S su
h that jxj = n g. We observe that K is an in�nite set. For

ea
h n 2 K, �x (x; a) 2 S su
h that jxj = n. The poly-size family of 
ir
uits A = fA

n

g

n2N

is

presented in Figure 4. Now, under KEA3, there exists a poly-size family of 
ir
uits

�

A = f

�

A

n

g

n2N

and a negligible fun
tion � su
h that

�

A is an extra
tor for A with error bound �. For ea
h n 2 K,

let a

0

= DLog

q

0

;g

0

(A

0

), where (Cmt; q

0

; g

0

; A

0

) is

b

P 's 
ommitment on input " when the initial state is

(x; a; "). Using

�

A, we de�ne the poly-size family of 
ir
uits J = fJ

n

g

n2N

shown in Figure 4. The

proof of the following is in Appendix C.

Claim 5.4 For in�nitely many n 2 N there exists (q; g) 2 GL

n

su
h that for every A 2 G

q

Pr

h

�a

$

 J

n

(q; g; A) : g

�a

= A

i

>

1

p(n)

2

�

8

2

n

p(n)

� 2�(n) :

Claim 5.4 implies that J does not have a negligible su

ess bound, whi
h, by Proposition 2.2, shows

that the DLP is not hard, 
ontradi
ting the assumption made in this Theorem.

Zero knowledge of pHTP. Having modi�ed HTP, we need to revisit the zero knowledge. Hada

and Tanaka proved that if the 
anoni
al argument is HVZK (property (3) above) then HTP is zero

knowledge under KEA1. However, we observe that pHTP modi�es only the veri�er, not the prover.

Furthermore, only the de
ision predi
ate of the veri�er is modi�ed, not the messages it sends. This

means that the view (i.e., the internal 
oin tosses and the sequen
e of messages re
eived during an

intera
tion with a prover P ) of veri�er V

0

of pHTP is identi
al to that of veri�er V of HTP. Thus,

zero knowledge of pHTP follows from zero knowledge of HTP, and in parti
ular is true under the same

assumptions, namely KEA1.

Summary. In summary, pHTP is a 3-round proto
ol that we have shown is a negligible-error argument

for NP assuming DLA and KEA3, and is ZK assuming KEA1. Given Proposition 4.2, this means we

have shown that assuming DLA and KEA3 there exists a 3-round negligible-error ZK argument for

NP.
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bits of a, where t

b

P

(�) is the running time of

b

P .
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A

n

(q; g; A;B;X) ==n 2 K

St  (x; a; ") ; ((Cmt; q

0

; g

0

; A

0

);St) 

b

P (";St)

If q

0

6= q _ g

0

6= g _A

0

6= A then return (1; 1)

else ((Rsp; C;Ch);St) 

b

P ((B;X);St ) ; return (C;Ch) EndIf

A

n

(q; g; A;B;X) ==n 62 K

Return (1; 1)

J

n

(q; g; A) ==n 2 K

St  (x; a; ") ; ((Cmt; q

0

; g

0

; A

0

);St) 

b

P (";St)

If q

0

6= q _ g

0

6= g then return ? EndIf

b

$

 Z

q

; B  A � g

b

; X  B

a

0

((Rsp; C;Ch);St

1

) 

b

P ((B;X);St) ; (


1

; 


2

) 

�

A

n

(q; g; A

0

; B;X)

If DEC

x

((Cmt; q; g);Ch;Rsp) = 0 _Ch 6= B




1

X




2

then return ? EndIf

b

0

$

 Z

q

; B

0

 g

b

0

; X

0

 B

0a

0

If B = B

0

then �a b

0

� b mod q ; return �a EndIf

((Rsp

0

; C

0

;Ch

0

);St

0

1

) 

b

P ((B

0

;X

0

);St) ; (


0

1

; 


0

2

) 

�

A

n

(q; g; A

0

; B

0

;X

0

)

If DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 0 _Ch

0

6= B

0


0

1

X

0


0

2

then return ? EndIf

If 


1

+ a

0




2

6� 0 (mod q) then

�a (b

0




0

1

+ b

0

a

0




0

2

� b


1

� ba

0




2

) � (


1

+ a

0




2

)

�1

mod q ; return �a

else return ? EndIf

J

n

(q; g; A) ==n 62 K

Return ?

Figure 4: Adversary A = fA

n

g

n2N

for the KEA3 problem and adversary J = fJ

n

g

n2N

for the DLP,

for the proof of Theorem 5.3.
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A Proof of Proposition 2.2

Let K = f n 2 N : GL

n

6= ; g. For ea
h n 2 K we let (q

n

; g

n

) 2 GL

n

be su
h that

8(q; g) 2 GL

n

: Adv

dl

J

(n; q; g) � Adv

dl

J

(n; q

n

; g

n

) : (5)

For n 2 K, let R(n) denote the set from whi
h J

n

draws its 
oins on inputs n; q

n

; g

n

. We say that

r 2 R(n) is n-good if

Pr

h

A

$

 G

q

n

; �a J

n

(q

n

; g

n

; A; r) : g

�a

= A

i

� Adv

dl

J

(n; q

n

; g

n

) :

Claim A.1 For ea
h n 2 K there exists a r 2 R(n) su
h that r is n-good.

Proof: De�ne X: G

q

n

� Z

q

n

! f0; 1g as follows:

X(A; r)

�a J

n

(q

n

; g

n

; A; r)

If g

�a

= A then return 1 else return 0

Then we have:

X

r2R(n)

1

jR(n)j

� Pr

h

A

$

 G

q

n

; �a J

n

(q

n

; g

n

; A; r) : g

�a

= A

i
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=

X

r2R(n)

1

jR(n)j

X

A2G

q

n

1

q

n

�X(A; r)

=

X

A2G

q

n

1

q

n

X

r2R(n)

1

jR(n)j

�X(A; r)

= Adv

dl

J

n

(n; q

n

; g

n

) :

This means that there must exist a r 2 R(n) su
h that

Pr

h

A

$

 G

q

n

; �a J

n

(q

n

; g

n

; A; r) : g

�a

= A

i

� Adv

dl

J

n

(n; q

n

; g

n

) ;

whi
h proves the 
laim.

We now de�ne a poly-size family I = fI

n

g

n2N

of (deterministi
) 
ir
uits, as follows. Let n 2 N. If

n 62 K then we de�ne I

n

arbitrarily. If n 2 K then Claim A.1 tells us that there exists a string, whi
h

we denote by r

n

, that is n-good. We then de�ne I

n

as follows:

I

n

(q; g; A)

If q 6= q

n

or g 6= g

n

then abort

�a J

n

(q

n

; g

n

; A; r

n

)

Return �a

Sin
e I is a poly-size family of deterministi
 
ir
uits, the assumption that the DLP is hard says that

there is a negligible fun
tion � su
h that I has su

ess bound �. Now putting this together with

Equation (5) and Claim A.1 we have

8n 2 K 8(q; g) 2 GL

n

: Adv

dl

J

(n; q; g) � Adv

dl

J

(n; q

n

; g

n

) � Adv

dl

I

(n; q

n

; g

n

) � �(n) :

This means that J also has su

ess bound �, whi
h proves the Proposition.

B KEA3 implies KEA1

We re
all KEA1, following [12℄, but applying the same simpli�
ations as we did for KEA2 so as to

merge their two 
onditions into one:

Assumption B.1 [KEA1℄ Let A = fA

n

g

n2N

and

�

A = f

�

A

n

g

n2N

be families of 
ir
uits, and �: N !

[0; 1℄ a fun
tion. We asso
iate to any n 2 N, any (q; g) 2 GL

n

, and any A 2 G

q

the following

experiment:

Experiment Exp

kea1

A;

�

A

(n; q; g)

b

$

 Z

q

; B  g

b

(C; Y ) A

n

(q; g;B) ; 
 

�

A

n

(q; g;B)

If (Y = C

b

AND g




6= C) then return 1 else return 0

We let

Adv

kea1

A;

�

A

(n; q; g) = Pr

h

Exp

kea1

A;

�

A

(n; q; g) = 1

i

denote the advantage of A relative to

�

A on inputs n; q; g. We say that

�

A is a kea1-extra
tor for A

with error bound � if

8n 2 N 8(q; g) 2 GL

n

: Adv

kea1

A;

�

A

(n; q; g) � �(n) :

We say that KEA1 holds if for every poly-size family of 
ir
uits A there exists a poly-size family of


ir
uits

�

A and a negligible fun
tion � su
h that

�

A is a kea1-extra
tor for A with error bound �.
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Proof of Proposition 4.2: Let A be an adversary (poly-size family of 
ir
uits) for KEA1. We

need to show there exists a negligible fun
tion � and a poly-size family of 
ir
uits

�

A su
h that

�

A is a

kea1-extra
tor for A with error-bound �.

We begin by 
onstru
ting from A the following adversary A

0

for KEA3:

Adversary A

0

n

(q; g; A;B;X)

(C; Y ) A

n

(q; g;B)

Return (C; Y )

We have assumed KEA3. Thus there exists a negligible fun
tion � and an extra
tor

�

A

0

su
h that

�

A

0

is a kea3-extra
tor for A

0

with error bound �. Now we de�ne an extra
tor

�

A for A as follows:

Extra
tor

�

A

n

(q; g;B)

a

$

 Z

q

; A g

a

; X  B

a

(


1

; 


2

) 

�

A

0

(q; g; A;B;X)


 


1

+ a


2

mod q

Return 


We 
laim that

�

A is a kea1-extra
tor for A with error bound �. To see this, assume

�

A

0

n

(q; g; A;B;X)

is su

essful, meaning g




1

A




2

= C. Then g




= g




1

+a


2

= g




1

A




2

= C so

�

A

n

(q; g;B) is su

essful as

well.

C Proof of Claim 5.4

We let Pr[�℄ denote the probability in the experiment of exe
uting J

n

(q; g; A). We show that for every

n 2 K su
h that n � 4, if (Cmt; q; g; A

0

) is

b

P 's 
ommitment on input " when the initial state is

(x; a; "), then for every A 2 G

q

Pr

�

g

�a

= A

�

>

1

p(n)

2

�

8

2

n

p(n)

� 2�(n) :

Sin
e K is in�nite and, by our assumption about the output of

b

P , q; g are su
h that (q; g) 2 GL

n

, this

proves the 
laim.

Fix n 2 K su
h that n � 4. Let (Cmt; q; g; A

0

) be

b

P 's 
ommitment on input " when the initial

state is (x; a; "), and let A 2 G

q

. We �rst write some inequalities leading to the 
laim and then justify

them:

Pr

�

g

�a

= A

�

� Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 1 ^Ch = B




1

X




2

^B 6= B

0

^

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 1 ^Ch

0

= B

0


0

1

X

0


0

2

^ 


1

+ a

0




2

6� 0 (mod q) ℄ (6)

� Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 1 ^Ch = B




1

X




2

^Ch 6= 1 ^B 6= B

0

^

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 1 ^Ch

0

= B

0


0

1

X

0


0

2

^Ch

0

6= 1 ℄ (7)

� Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 1 ^Ch = C

DLog

q;g

(B)

^Ch 6= 1 ^B 6= B

0

^

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 1 ^Ch

0

= C

0DLog

q;g

(B

0

)

^Ch

0

6= 1 ℄�
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�

Pr [Ch 6= B




1

X




2

^Ch = C

DLog

q;g

(B)

℄+ Pr [Ch

0

6= B

0


0

1

X

0


0

2

^Ch

0

= C

0DLog

q;g

(B

0

)

℄

�

(8)

�

�

A



b

P ;a

V

0

(x)

�

2

�

1

q � 1

A



b

P;a

V

0

(x)� 2Adv

kea3

A;

�

A

(n; q; g; A

0

) (9)

>

1

p(n)

2

�

1

(q � 1)p(n)

� 2�(n) (10)

�

1

p(n)

2

�

8

2

n

p(n)

� 2�(n) : (11)

We justify Equation (6) by showing that if DEC

x

((Cmt; q; g);Ch;Rsp) = 1, Ch = B




1

X




2

, B 6= B

0

,

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 1, Ch

0

= B

0


0

1

X

0


0

2

and 


1

+ a

0




2

6� 0 (mod q) then g

�a

= A. Assume

that the former statement holds. By the strong soundness property of proto
ol (

�

P ;

�

V ), Ch = Ch

0

,

when
e B




1

X




2

= B

0


0

1

X

0


0

2

. Thus we have

g

�a

= g

(b

0




0

1

+b

0

a

0




0

2

�b


1

�ba

0




2

)�(


1

+a

0




2

)

�1

mod q

=

�

g

b

0




0

1

+b

0

a

0




0

2

�

(


1

+a

0




2

)

�1

g

�b

=

�

B

0


0

1

X

0


0

2

�

(


1

+a

0




2

)

�1

g

�b

= (B




1

X




2

)

(


1

+a

0




2

)

�1

g

�b

=

�

B




1

B

a

0




2

�

(


1

+a

0




2

)

�1

g

�b

=

�

B




1

+a

0




2

�

(


1

+a

0




2

)

�1

g

�b

= Bg

�b

= A,

as desired.

To justify Equation (7) we observe that if Ch = B




1

X




2

and Ch 6= 1 then 


1

+ a

0




2

6� 0 (mod q),

and that adding the 
ondition Ch

0

6= 1 
an only de
rease the probability further.

Now Equation (8) is justi�ed as follows.

Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 0 _Ch 6= B




1

X




2

_Ch = 1 _B = B

0

_

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 0 _Ch

0

6= B

0


0

1

X

0


0

2

_Ch

0

= 1 ℄

� Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 0 _Ch 6= C

DLog

q;g

(B)

_Ch = 1 _B = B

0

_

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 0 _Ch

0

6= C

0DLog

q;g

(B

0

)

_Ch

0

= 1 _

�

Ch 6= B




1

X




2

^Ch = C

DLog

q;g

(B)

�

_

�

Ch

0

6= B

0


0

1

X

0


0

2

^Ch

0

= C

0DLog

q;g

(B

0

)

�

℄

� Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 0 _Ch 6= C

DLog

q;g

(B)

_Ch = 1 _B = B

0

_

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 0 _Ch

0

6= C

0DLog

q;g

(B

0

)

_Ch

0

= 1℄+

Pr [Ch 6= B




1

X




2

^Ch = C

DLog

q;g

(B)

℄+Pr [Ch

0

6= B

0


0

1

X

0


0

2

^Ch

0

= C

0DLog

q;g

(B

0

)

℄ :

Exp

kea3

A;

�

A

(n; q; g; A

0

) returns 1 exa
tly when Y = C

DLog

q;g

(B)

and g




1

A

0


2

6= C. By 
onstru
tion of

A, we have Y = Ch, and thus Ch = C

DLog

q;g

(B)

^ Ch 6= B




1

X




2

implies that Exp

kea3

A;

�

A

(n; q; g; A

0

)

returns 1. Similarly, Ch

0

= C

DLog

q;g

(B

0

)

^ Ch 6= B

0


0

1

X

0


0

2

implies that Exp

kea3

A;

�

A

(n; q; g; A

0

) returns 1.

To justify Equation (9) it remains to show that

Pr [DEC

x

((Cmt; q; g);Ch;Rsp) = 1 ^Ch = C

DLog

q;g

(B)

^Ch 6= 1 ^B 6= B

0

^

DEC

x

((Cmt; q; g);Ch

0

;Rsp

0

) = 1 ^Ch

0

= C

0DLog

q;g

(B

0

)

^Ch

0

6= 1 ℄
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�

�

A



b

P ;a

V

0

(x)

�

2

�

1

q � 1

A



b

P;a

V

0

(x) : (12)

Let RES denote the event in the experiment of exe
uting J

n

(q; g; A) whose probability is bounded from

below in Equation (12). Note that the 
orresponding sample spa
e is Z

�

q

� Z

�

q

. Let ACC denote the

event that in an intera
tion between

b

P (with initial state (x; a; ")) and V

0

(with input x), the latter

a

epts (i.e., Pr [ACC ℄ = A



b

P;a

V

0

(x)). The sample spa
e of the 
orresponding experiment is Z

�

q

. We

observe that if b 2 ACC, b

0

2 ACC and b 6= b

0

then (b; b

0

) 2 RES. Therefore,

jRESj � jACCj(jACCj � 1) and

Pr [RES ℄ =

jRESj

jZ

�

q

� Z

�

q

j

�

jACCj

jZ

�

q

j

�

jACCj

jZ

�

q

j

�

1

jZ

�

q

j

�

=

�

A



b

P ;a

V

0

(x)

�

2

�

1

q � 1

A



b

P;a

V

0

(x) :

Equation (10) is justi�ed by Equation (4) and the assumption that

�

A is an extra
tor for A with error

bound �.

The assumption that (q; g) 2 GL

n

implies that j2q + 1j = n, i.e., 2

n�1

� 2q + 1 < 2

n

, and hen
e

q � 1 � 2

n�3

(re
all that n � 4). This justi�es Equation (11).
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