Cryptanalysis of a Provably Secure Cryptographic Hash Function

Jean-Sébastien Coron¹ and Antoine Joux²

 ¹ Gemplus Card International
34 rue Guynemer, 92447 Issy-les-Moulineaux, France jean-sebastien.coron@gemplus.com
² DCSSI Crypto Lab
51, Bd de Latour-Maubourg, 75700 Paris, France antoine.joux@m4x.org

Abstract. We present a cryptanalysis of a provably secure cryptographic hash function proposed by Augot, Finiasz and Sendrier in [1]. Our attack is a variant of Wagner's generalized birthday attack. It is significantly faster than the attack considered in [1], and it is practical for two of the three proposed parameters.

1 Introduction

We describe a cryptanalysis of a provably secure cryptographic hash function proposed by Augot, Finiasz and Sendrier in [1]. The hash function is based on xoring the columns of a random binary matrix H, and is defined as follows:

Initialization: Let $s = \omega \cdot a$ be the length of the input message, split into ω blocks of a bits. Let r be the output size in bits. Let $u = 2^a$. Generate a random matrix Hof r lines and n columns where $n = \omega \cdot u$. The matrix H is split into ω sub-matrix H_i of size $r \times u$.

Input: a message m of s bits.

- 1. Split the s input bits in ω parts s_1, \ldots, s_ω of a bits.
- 2. Convert each s_i into an integer between 1 and $u = 2^a$.
- 3. Choose the corresponding column in each sub-matrix H_i .
- 4. Xor the w chosen columns to obtain a r-bit string h.
- 5. Output the *r*-bit string h.

It is shown in [1] that the security of the hash function is reduced to the average case hardness of two NP-complete problems, namely the Regular Syndrome Decoding problem and the 2-Regular Null Syndrome Decoding problem.

The authors of [1] also describe an attack, called Information Set Decoding, and propose three set of parameters in order to make this attack unpractical.

The first set of parameters takes r = 160, $\omega = 64$, u = 256, $n = 2^{14}$ and has a conjectured security level of $2^{62.3}$. The second set of parameters takes r = 224, $\omega = 96$, u = 256, $n = 3 \cdot 2^{13}$ with a security level $2^{82.3}$ and the third set of parameters takes r = 288, $\omega = 128$, u = 64 and $n = 2^{13}$.

However, we describe in this paper a much faster attack, which is practical for the two first set of parameters.

2 Our Attack

2.1 Wagner's generalized birthday attack

Our attack is based on Wagner's generalized birthday attack [2], which is the following. Let L_1, \ldots, L_4 be four lists of *n*-bit random integers. The task is to find $x_i \in L_i$ such that $x_1 \oplus x_2 \oplus x_3 \oplus x_4 = 0$. A solution exists with good probability if each list contains at least $2^{n/4}$ integer. The obvious approach consists in generating all possible values of $x_1 \oplus x_2$ and $x_3 \oplus x_4$ and then look for a collision; this requires $\mathcal{O}(2^{n/2})$ time.

Wagner's generalized birthday attack solves this problem in time $\mathcal{O}(2^{n/3})$ for lists of size at least $2^{n/3}$. First one generates a list of roughly $2^{n/3}$ values $y = x_1 \oplus x_2$ such that the n/3 low-order bits of y are zero. This can be done in time $\mathcal{O}(2^{n/3})$. The same is done for values $z = x_3 \oplus x_4$. One obtains two lists of roughly $2^{n/3}$ integers with the n/3 low-order bits set to zero. Then one looks for a collision between the two lists, and a solution is found in time $\mathcal{O}(2^{n/3})$.

This technique can be generalized to find a zero sum between 2^a lists, and requires $\mathcal{O}(2^a \cdot 2^{n/(a+1)})$ time with lists of size $\mathcal{O}(2^{n/(a+1)})$.

2.2 Our attack

Our attack against the previous hash function is then as follows. Our goal is to produce a collision, that is to produce two messages $m \neq m'$ such that H(m) = H(m'). Therefore, for each of the ω matrices H_i of u columns, we must select two columns, so that the xor of the 2ω columns gives 0.

For each sub-matrix H_i , we can generate a list L_i of roughly $u^2/2$ values x_i which are the xor of 2 columns of H_i . Then we apply Wagner's algorithm to find a generalized birthday attack among the ω lists:

$$x_1 \oplus x_2 \oplus \ldots \oplus x_\omega = 0$$

More precisely, let ℓ such that $2^{\ell} = u^2/2$. There are $2^{2\ell}$ elements $x_1 \oplus x_2$, where $x_1 \in L_1$ and $x_2 \in L_2$, among which 2^{ℓ} are such that the rightmost ℓ bits are 0. This gives a list L'_1 , which can be generated in time $\mathcal{O}(2^{\ell})$. We can do the same with the lists (L_3, L_4) and obtain L'_2 .

Then, by the birthday paradox, we can find an element in $L'_1 \oplus L'_2$ with the 3ℓ rightmost bits equal to zero, in time $\mathcal{O}(2^\ell)$. Therefore, if $\omega = 4$ and the hash size is $r = 3\ell$, we can find a collision in time $\mathcal{O}(2^\ell)$. We can generalize this to higher values of ω by building the corresponding tree and we obtain that we can find a collision in time $\mathcal{O}(\omega \cdot 2^\ell)$ if:

$$r \le (\log_2(\omega) + 1) \cdot \ell$$

where $\ell = 2 \log_2(u) - 1$.

Unfortunately, this is not enough for breaking the hash function for the recommended parameters, so we can generalize this by first taking all the $2^{2\ell}$ elements $x_1 \oplus x_2$, and working with a tree with the same depth minus one. It is easy to see that one can find a collision in time $\mathcal{O}(\omega \cdot 2^{2\ell})$ if :

$$r \le 2(\log_2 \omega) \cdot \ell$$

This breaks the first instance with $r = 160, \omega = 64, u = 256$ and $\ell = 15$, in time 2^{36} (instead of 2^{62} for the attack considered in the paper).

For the second instance $(r = 224, \omega = 96, u = 256, \ell = 15)$, we can first group the lists L_i by three, which gives 32 lists of 2^{45} elements, from which we take only 2^{38} . If $\omega = 6$, we can zero $2 \cdot 38 = 76$ bits, if $\omega = 12$, we can zero $3 \cdot 38 = 114$ bits, and with $\omega = 96$, we can zero $6 \cdot 38 = 228$ bits, which breaks the hash function in time $32 \cdot 2^{38} = 2^{43}$ (instead of 2^{82} operations for the attack considered in the paper).

For the third instance $(r = 288, w = 128, u = 64, \ell = 11)$, we can group the lists L_i by six, and take 2^{58} elements instead of 2^{66} . With $\omega = 12$, we can zero $2 \cdot 58 = 116$ bits, and with $\omega = 96 < 128$, we can zero $5 \cdot 58 = 290$ bits, which breaks the hash function in time $16 \cdot 2^{58} = 2^{62}$ (but this is probably not optimal).

3 Conclusion

We have described a cryptanalysis of a provably secure cryptographic hash function proposed by Augot, Finiasz and Sendrier in [1]. Our attack is a variant of Wagner's generalized birthday attack, and it is significantly faster than the attack considered in [1]. We have shown that it is practical for two of the three proposed parameters.

References

- 1. D. Augot, M. Finiasz and N. Sendrier, A Fast Provably Secure Cryptographic Hash Function, Cryptology ePrint Archive, Report 2003/230. Available at http://www.iacr.org/eprint.
- D. Wagner, A Generalized Birthday Problem, Proceedings of Crypto '02, LNCS vol. 2442, Springer-Verlage, 2002.