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Abstra
t

In this paper we study the additive 
ross
orrelation spe
tra between two Boolean

fun
tions whose supports are union of 
ertain 
osets. These fun
tions on even number

of input variables have been introdu
ed by Dillon and we refer to them as Dillon type

fun
tions. Our general result shows that the 
ross
orrelation spe
tra between any

two Dillon type fun
tions are at most 5-valued. As a 
onsequen
e we �nd that the


ross
orrelation spe
tra between two Dillon type bent fun
tions on n-variables are

at most 3-valued with maximum possible absolute value at the nonzero points being

� 2

n

2

+1

. Moreover, in the same line, the auto
orrelation spe
tra of Dillon type bent

fun
tions at di�erent de
imations is studied. Further we demonstrate that these

results 
an be used to show the existen
e of a 
lass of polynomials for whi
h the

absolute value of the Weil sum has a sharper upper bound than the Weil bound.

Patterson and Wiedemann extended the idea of Dillon for fun
tions on odd number

of variables. We study the 
ross
orrelation spe
tra between two su
h fun
tions and

then use the results for 
al
ulating the auto
orrelation spe
tra too.

Keywords: Boolean Fun
tions, Nonlinearity, Cross
orrelation, Auto
orrelation, Chara
-

ter Sums.

1 Introdu
tion

Analysis of 
ross
orrelation between sequen
es has re
eived a lot of attention in literature.

The 
ross
orrelation 
an be multipli
ative or additive. Analysis of multipli
ative (shift)


ross
orrelation has important role in several �elds su
h as digital signal pro
essing, 
oding

and 
ryptology. Similarly study on additive 
ross
orrelation (spe
i�
ally for Boolean fun
-

tions, that 
an also be seen as sequen
es) has immediate e�e
t in design and 
rtptanalysis of

symmetri
 key 
ryptosystems. Boolean fun
tions have frequent appli
ations in both stream

and blo
k 
iphers and di�erent kinds of 
orrelation analysis has found appli
ation in this

�eld. Nonlinearity is one of the most important properties of Boolean fun
tions (or ve
tor
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valued Boolean fun
tions) for 
ryptographi
 appli
ations. For fun
tions on even number

of variables n, the maximum nonlinearity is 2

n�1

� 2

n

2

�1

and the most well known (oldest

too) 
onstru
tion has been provided by Dillon [4, 5℄. Considering the Boolean fun
tions as

mappings from GF (2

n

) ! GF (2), the Dillon type ones are the fun
tions whose supports

are union of 
osets of GF (2

n

2

)

�

in GF (2

n

)

�

. Under some weight 
onstraints, these Dillon

type fun
tions provide maximum nonlinearity to give rise to (Dillon type) bent fun
tions.

Though these fun
tions have been introdu
ed almost thirty years ago and there are many

other di�erent 
onstru
tions of bent fun
tions [2℄, till date these Dillon type fun
tions re-


eive serious attention in literature [22, 1℄. When fun
tions on odd number of variables are


onsidered, then also Dillon's strategy 
omes into play to a
hieve very high nonlinearity.

Patterson and Wiedemann [13, 14℄ exploited similar idea to obtain fun
tions with nonlin-

earity stri
tly greater than 2

n�1

� 2

n�1

2

for odd number of input variables n � 15. This

result is pioneering as this is the �rst instan
e when su
h a high nonlinearity has been

demonstrated and further till date (even after twenty years) there is no other strategy to

get su
h fun
tions. Later in [16, 11℄ these fun
tions have been 
hanged heuristi
ally to get

highly nonlinear balan
ed fun
tions.

In this paper we systemati
ally analyse the additive 
ross
orrelation spe
tra between

two Dillon type (respe
tively Patterson-Wiedemann type) fun
tions for n even (respe
-

tively n odd). We �rst present a te
hni
al result to show that the 
ross
orrelation (from

now on 
ross
orrelation will imply additive 
ross
orrelation in the rest of the paper) spe
-

tra between any two bent fun
tions (may not be Dillon type) are the same as the Walsh

spe
tra of sum of their duals. This result follows dire
tly from the well known relationship

between the 
ross
orrelation spe
tra between two fun
tions and the Walsh spe
tra of the

respe
tive fun
tions. However, this te
hnique does not suÆ
e to 
ompletely 
hara
terize

the 
ross
orrelation spe
tra between any two Dillon type (may not be bent) fun
tions.

Thus we need to take a di�erent route using the interleaved sequen
e of Dillon type fun
-

tions and show that the 
ross
orrelation spe
tra between two Dillon type (may not be

bent) fun
tions are at most 5-valued. Roughly speaking, the te
hnique uses 
ounting the

points of interse
tions between the 
osets of

n

2

-dimensional subspa
es of GF (2

n

). Further

we show that the 
ross
orrelation spe
tra between two Dillon type bent fun
tions is at

most 3-valued and the maximum absolute value in the spe
tra (ex
ept the zero point) is

� 2

n

2

+1

. Then we introdu
e the 
on
ept of generalized auto
orrelation (auto
orrelation

spe
tra at di�erent de
imations) and show that it is meaningful for Dillon type bent fun
-

tions. Unlike all zero values in the auto
orrelation spe
tra of a bent fun
tion at nonzero

points, we show that the generalized auto
orrelation spe
tra of Dillon type bent fun
tions


ontain nonzero values. Further our results have 
onsequen
es to 
hara
ter sum problems

for additive 
hara
ters. We extend our study for odd number of variables and use the

inherent symmetry of Patterson-Wiedemann fun
tions to get the 
ross
orrelation results.

Our analysis provides theoreti
al justi�
ation to the fa
t that the auto
orrelation spe
tra

of Patterson-Wiedemann type fun
tions are few valued and the maximum absolute value

at the nonzero points of the spe
tra is very low.
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1.1 Preliminaries

Now we introdu
e some basi
 de�nitions and notations. Let F

n

be the set of all Boolean

fun
tions on n variables, that is mappings from GF (2

n

) to GF (2). For any sub�eld GF (2

t

)

of GF (2

n

) de�ne the tra
e map Tr

n

t

: GF (2

n

) �! GF (2

t

) by Tr

n

t

(x) = x + x

2

t

+ x

2

2t

+

: : : + x

2

(

n

t

�1)t

: It is known that GF (2

t

) is a sub�eld of GF (2

n

) if and only if tjn. In

parti
ular when t = 1 we obtain the map Tr

n

1

from GF (2

n

) to GF (2) de�ned by Tr

n

t

(x) =

x+ x

2

+ x

2

2

+ : : :+ x

2

(n�1)

: Any linear fun
tion in F

n


an be written as Tr

n

1

(�x) for some

� 2 GF (2

n

) and 
onsequently any aÆne fun
tion 
an be written as Tr

n

1

(�x) + � where

� 2 GF (2).

The nonlinearity of a fun
tion f 2 F

n

, denoted by nl(f) is the distan
e of this

fun
tion from the set of all aÆne fun
tions. The Walsh Hadamard transform of f at

� 2 GF (2

n

) is de�ned by W

f

(�) =

P

x2GF (2

n

)

(�1)

Tr

n

1

(�x)+f(x)

: By using the de�nition of

Walsh Hadamard transform we get the following expression of nonlinearity of f , nl(f) =

2

n�1

�

1

2

max

�2GF (2

n

)

jw

f

(�)j:When n = 2r, for some positive integer r, that is n is an even

positive integer [15℄, the maximum possible nonlinearity of fun
tions in F

n

is 2

n�1

� 2

n

2

�1

.

A fun
tion in F

n

is 
alled bent if and only if it's nonlinearity is 2

n�1

� 2

n

2

�1

, equivalently

if and only if W

f

(�) = �2

n

2

.

De�ne additive 
ross
orrelation between f; g 2 F

n

at � by

C

f;g

(�) =

X

x2GF (2

n

)

(�1)

f(x+�)+g(x)

:

In 
ase f = g then the additive 
ross
orrelation C

f;f

(�) is 
alled the auto
orrelation of f

at � and denoted by �

f

(�). An alternate 
hara
terization [15℄ of bent fun
tions states

that a fun
tion f 2 F

n

is bent if and only if �

f

(�) = 0 for all nonzero � 2 GF (2

n

). It is

well known (see for referen
e [17℄) that for ! 2 f0; 1g

n

,

C

f;g

(!) = 2

�n

X

x2f0;1g

n

W

f

(x)W

g

(x)(�1)

<!;x>

;

where < !; x > denotes the inner produ
t. Note that we will also use the result that for

! 2 GF (2

n

), C

f;g

(!) = 2

�n

P

x2GF (2

n

)

W

f

(x)W

g

(x)(�1)

Tr

n

1

(!x)

. It is 
lear that evaluation

in the se
ond 
ase is di�erent from the �rst 
ase when evaluation is done at a single point.

However, when we 
onsider the 
omplete 
ross
orrelation spe
tra, then the multiset of

values will be the same. Thus we use both the relations as and when required.

We will be using the 
on
ept of interleaved sequen
e [7, 22℄ extensively in this do
ument.

A binary sequen
e of length m is denoted by a = fa

0

; a

1

; a

2

; : : : ; a

m�1

g where a

i

2 f0; 1g

for all i = 0; 1; 2; : : : ; (m � 1). In 
ase m = 2

n

� 1 for some positive integer n we 
an


hoose a primitive element � 2 GF (2

n

) and 
onstru
t a fun
tion su
h that f(0) = 0 and

f(�

i

) = a

i

where i = 0; 1; 2; : : : ; 2

n

�2. This fun
tion f is 
alled the fun
tion 
orresponding

to the sequen
e a with respe
t to the primitive element �. Again if f is a fun
tion from

GF (2

n

) to GF (2) with f(0) = 0 and � 2 GF (2

n

) is a primitive element then the sequen
e

ff(1); f(�); f(�

2

); : : : ; f(�

2

n

�2

)g is referred to as the sequen
e asso
iated to f with respe
t

to �. When there is no 
han
e of 
onfusion the primitive element � is not mentioned.
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De�nition 1 Suppose m is a 
omposite number su
h that m = d � k where d and k are

both positive integers greater than 1, a is a binary sequen
e fa

0

; a

1

; a

2

; : : : ; a

m�1

g, where

a

i

2 f0; 1g for all i, then the (d; k)-interleaved sequen
e a

d;k


orresponding to the binary

sequen
e a is de�ned as

a

d;k

=

2

6

6

6

6

6

6

6

6

4

a

0

a

1

a

2

: : : a

(d�1)

a

d

a

1+d

a

2+d

: : : a

(d�1)+d

a

2d

a

1+2d

a

2+2d

: : : a

(d�1)+2d

: : : : :

: : : : :

a

(k�1)d

a

1+(k�1)d

a

2+(k�1)d

: : : a

(d�1)+(k�1)d

3

7

7

7

7

7

7

7

7

5

:

For detailed dis
ussion on interleaved sequen
e we refer to [7℄. Let 2

n

� 1 = d � k,

a

d;k

be an interleaved sequen
e and � 2 GF (2

n

) be a primitive element. Then a fun
tion

f : GF (2

n

)! GF (2) with f(0) = 0 and f(�

i+�d

) = a

i+�d

where i = 0; 1; 2; : : : ; (d� 1) and

� = 0; 1; 2; : : : ; (k� 1) is de�ned as the fun
tion 
orresponding to the interleaved sequen
e

a

d;k

with respe
t to the primitive element �. Conversely, for any fun
tion f : GF (2

n

) !

GF (2) and a primitive element � 2 GF (2

n

) an interleaved sequen
e a

d;k


an be 
onstru
ted

su
h that a

i+�d

= f(�

i+�d

) for all i = 0; 1; 2; : : : ; (d � 1) and � = 0; 1; 2; : : : ; (k � 1).

This interleaved sequen
e is 
alled the (d; k)-interleaved sequen
e 
orresponding to f with

respe
t to � and denoted by S

(d;k)

(f(x); �). Again as in the 
ase of binary sequen
es we

drop the referen
e to � when there is no 
han
e of 
onfusion. The rows and 
olumns of

a

d;k

are numbered from 0 to (k � 1) and 0 to (d� 1) respe
tively.

2 Cross
orrelation Results

In this se
tion we �rst start with some te
hni
al results on 
ross
orrelation of bent fun
-

tions. The following result heavily depends on the duality property of bent fun
tions. For

more details of a bent fun
tion and its dual, see [15, 2℄.

Theorem 1 Let f and g be n-variable bent fun
tions and

^

f; ĝ be their dual fun
tions

respe
tively. Then C

f;g

(!) = W

^

f(x)+ĝ(x)

(!), for ! 2 f0; 1g

n

. Further if

^

f(x) + ĝ(x) is bent

then C

f;g

(!) = �2

n

2

, for all ! 2 f0; 1g

n

.

Proof : From [17℄, we have the result C

f;g

(!) = 2

�n

P

x2f0;1g

n

W

f

(x)W

g

(x)(�1)

<!;x>

. If

both the fun
tions f; g are bent then W

f

(x);W

g

(x) 
an only take the values �2

n

2

for all x.

Hen
e,

C

f;g

(!) =

X

x2f0;1g

n

sgn(W

f

(x)W

g

(x))(�1)

<!;x>

:

From duality results of bent fun
tions, sgn(W

f

(x)W

g

(x)) = (�1)

^

f(x)+ĝ(x)

. This gives,

C

f;g

(!) =

X

x2f0;1g

n

(�1)

(

^

f(x)+ĝ(x))+<!;x>

=W

^

f(x)+ĝ(x)

(!):
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If

^

f(x) + ĝ(x) is bent then W

^

f(x)+ĝ(x)

(!) is �2

n

2

for all ! 2 f0; 1g

n

. Thus, C

f;g

(!) = �2

n

2

,

for all ! 2 f0; 1g

n

.

Corollary 1 For n-variable bent fun
tions f and g,

P

!2f0;1g

n

C

2

f;g

(!) = 2

2n

.

Proof : From Parseval's relation [3℄, for any n-variable Boolean fun
tion �,

X

!2f0;1g

n

W

2

�

(!) = 2

2n

:

Thus the result follows from Theorem 1.

It is interesting to analyse the value of max

!2f0;1g

n

;! 6=0

jC

f;g

(!)j and the following result

shows that improper 
hoi
e of two bent fun
tions may provide this value as high as 2

n

.

For the proof we use the Maiorana-M
Farland 
lass of bent fun
tions [4℄ whi
h we brie
y

des
ribe now. Consider n-variable Boolean fun
tions on x = (z; y), where z; y 2 f0; 1g

n

2

of

the form  (z; y) = z ��(y)+g(y) where � is a permutation on f0; 1g

n

2

and g is any Boolean

fun
tion on

n

2

variables.

Proposition 1 It is possible to 
onstru
t two n-variable bent fun
tions f; g su
h that

C

f;g

(!) = 2

n

for some nonzero !.

Proof : Consider two Maiorana-M
Farland type bent fun
tions  

1

;  

2

as follows. For

both the fun
tions �(y) = y. For the fun
tion  

1

, g(y) is zero for all y. For the fun
tion

 

2

, g(y) is zero when y

n

2

= 0, and g(y) = 1 when y

n

2

= 1. Let f; g be bent fun
tions su
h

that

^

f =  

1

and ĝ =  

2

. Then

^

f + ĝ = 0 when x

n

= 0 and

^

f + ĝ = 1 when x

n

= 1. In fa
t,

^

f + ĝ is the linear fun
tion x

n

. Note that W

^

f+ĝ

(!) = 2

n

, when ! = (0; : : : ; 0; 1), whi
h

gives, C

f;g

(!) = 2

n

for some nonzero !.

Natural question in this 
ontext is, whether there is any 
lass of bent fun
tions su
h

that the 
ross
orrelation spe
tra between any two of them is mu
h better than that pre-

sented in Proposition 1. In this dire
tion, we show that if we 
hoose any two Dillon type

bent fun
tions then at ea
h point ex
ept 0 the maximum absolute value of the additive


ross
orrelation is � 2

n

2

+1

. In fa
t our analysis demonstrates all the possible values of

the additive 
ross
orrelation spe
tra between any two Dillon type fun
tions (may not be

bent) in Theorem 2 (Subse
tion 2.1). Results 
on
erning Dillon type bent fun
tions are

presented in Corollary 3 (Subse
tion 2.1).

2.1 Results for Dillon type fun
tions

In this se
tion we 
on
entrate on the 
ross
orrelation spe
tra for Dillon type fun
tions. We

always 
onsider the fun
tions with f(0) = 0. Let us �rst de�ne the Dillon type fun
tions

for even n.

De�nition 2 Suppose n is an even positive integer, i.e., n = 2r for some positive integer

r. A fun
tion f 2 F

n

is 
alled Dillon type fun
tion if its (2

r

+1; 2

r

�1)-interleaved sequen
e

with respe
t to a (basi
ally this is true for `any' primitive element � that will be 
learer with

Proposition 2 and Corollary 2 below) primitive element �, 
onsists of all zero and all one


olumns only and f(0) = 0.
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We shall refer to the interleaved sequen
e S

(2

r

+1;2

r

�1)

(f(x); �) by S(f(x)) for brevity

in this se
tion if not mentioned otherwise. For any two nonnegative integers a and q by

a%q 2 f0; 1; : : : ; q � 1g denote the remainder of a when divided by q.

Proposition 2 A fun
tion f 2 F

n

, where n = 2r, is Dillon type with respe
t to a primitive

element � if and only if f(x




) is also Dillon type with respe
t to the same primitive element

for any 
 
oprime to 2

n

� 1.

Proof : Assume that f(0) = 0. Now,

X

x2GF (2

n

)

(�1)

f(x)

= 1 +

2

n

�2

X

i=0

(�1)

f(�

i

)

= 1 +

2

n

�2

X

i=0

(�1)

f(�


i

)

=

X

x2GF (2

n

)

(�1)

f(x




)

;

where 
 is 
oprime to 2

n

� 1 that is the g
d(
; 2

n

� 1) = 1. Thus the weights of f(x) and

f(x




) are same.

Suppose f(x) is a Dillon type fun
tion and therefore S(f(x)) 
onsists of only all zero

and all one 
olumns. If possible let the i-th 
olumn of S(f(x




)) is neither all zero nor all one,

i.e.,

P

2

r

�2

�=0

(�1)

f(�


i+
�(2

r

+1)

)

6= �(2

r

� 1): Sin
e g
d(
; 2

n

� 1) = 1 implies g
d(
; 2

r

� 1) = 1

the mapping � 7! (
�)%(2

r

� 1) is a permutation on the set f0; 1; : : : ; 2

r

� 2g. Thus we


an rewrite the above sum as

P

2

r

�2

�=0

(�1)

f(�


i+�(2

r

+1)

)

6= �(2

r

�1): That is in the interleaved

sequen
e S(f(x)), the (
i)%(2

r

+ 1)-th 
olumn is neither all zero nor all one. This is a


ontradi
tion. The other dire
tion is similar. Hen
e the proof.

Corollary 2 If f(x) is Dillon type with respe
t to a primitive element then it is also Dillon

type with respe
t to any other primitive element.

Proof : Suppose � and �

1

are two distin
t primitive elements of GF (2

n

). Then there

exists a positive integer 
oprime to 2

n

� 1 su
h that �

1

= �




. Thus, S

(2

r

+1;2

r

�1)

(f(x); �




) =

S

(2

r

+1;2

r

�1)

(f(x




); �), and the proof follows from Proposition 2.

Next we de�ne Dillon type bent fun
tions [4, 5℄.

De�nition 3 Suppose n is an even positive integer, i.e., n = 2r for some positive integer

r. A Dillon type fun
tion f 2 F

n

is 
alled a Dillon type bent fun
tion if S(f(x)) 
ontains

2

r�1

all one 
olumns.

Suppose � is a primitive element of GF (2

n

) and tjn. Denote

2

n

�1

2

t

�1

by d. De�ne

V

i

(�; t) = f0; �

i

; �

i+d

; : : : ; �

i+(2

t

�2)d

g

where i = 0; 1; : : : ; d � 1. In the 
ontext of Dillon type fun
tions we shall always assume

n = 2r and denote V

i

(�; r) by V

i

(assuming that a primitive element � is already �xed).

For ea
h i, V

i

(�; t) is a t-dimensional subspa
e of GF (2

n

). Moreover for i = 0 and for any

primitive element � of GF (2

n

), V

0

(�; t) is the sub�eld GF (2

t

) of GF (2

n

). For any two

Boolean fun
tions f; g 2 F

n

, for any � 2 GF (2

n

) and any subset V � GF (2

n

) we denote

the sum

P

x2V

(�1)

f(x+�)+g(x)

by [C

f;g

(�)℄

V

.
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Suppose f; g 2 F

n

are two Dillon type fun
tions. We observe that for any � 2 V

i

the

sequen
e

ff(�+ 0); f(�+ �

i

); f(�+ �

i+(2

r

+1)

); : : : ; f(�+ �

i+(2

r

�2)(2

r

+1)

)g

is a permutation of the sequen
e

ff(0); f(�

i

); f(�

i+(2

r

+1)

); : : : ; f(�

i+(2

r

�2)(2

r

+1)

)g:

Sin
e f(x) and g(x) being Dillon type fun
tions are either all zero or all one over V

i

n f0g,

the weight of the fun
tion f(x + �) + g(x) when restri
ted to V

i


an be 
omputed easily,

in the 
ase � 2 V

i

. The 
ase � =2 V

i

is des
ribed in the following lemma.

Lemma 1 If f 2 F

n

is a Dillon type fun
tion, i 6= j, then for any � =2 V

i

we have

j(�+ V

i

) \ V

j

j = 1.

Proof : Suppose � =2 V

i

for some i 2 f0; 1; : : : ; 2

r

g. If x + � 2 V

i

for some x 2 V

i

then

sin
e V

i

is a subspa
e of GF (2

n

) the element � 2 V

i

whi
h is a 
ontradi
tion. Suppose for

two distin
t elements x

1

; x

2

2 V

i

the elements x

1

+ �; x

2

+ � 2 V

j

for some j 6= i. Sin
e V

j

is a subspa
e of GF (2

n

), x

1

+ � + x

2

+ � = x

1

+ x

2

2 V

j

, further x

1

+ x

2

2 V

i

. Therefore

x

1

+ x

2

= 0 sin
e V

i

\ V

j

= f0g. This implies x

1

= x

2

, sin
e the �elds under 
onsideration

are of 
hara
teristi
 2, whi
h 
ontradi
ts the assumption that x

1

6= x

2

.

Thus the 
oset � + V

i

interse
ts ea
h V

j

if j 6= i in atmost one point and has no

interse
tion with V

i

. The total number of V

j

's when i 6= j is 2

r

. There are 2

r

number of

distin
t points in � + V

i

. This proves that j(�+ V

i

) \ V

j

j = 1.

For any Dillon type fun
tion f 2 F

n

de�ne,

H

f

0

= fV

i

jf(x) = 0 for all x 2 V

i

g

and

H

f

1

= fV

i

jf(x) = 1 for all x 2 V

i

n f0gg:

Given any two Dillon type fun
tions f; g 2 F

n

the value of the sum [C

f;g

(�)℄

V

i

depends

on whether � is in V

i

or not and the values of �; � 2 f0; 1g for whi
h V

i

2 H

f

�

\H

g

�

. In the

following two lemmas we explore all the possibilities.

Lemma 2 If � 2 V

i

2 H

f

�

\H

g

�

, where �; � 2 f0; 1g then [C

f;g

(�)℄

V

i

= (�1)

�+�

2

r

+ 2(�+

�)� 8��.

Proof : Sin
e � 2 V

i

we have x + � 2 V

i

for all x 2 V

i

.

If V

i

2 H

f

0

then f(x + �) = 0 for all x 2 V

i

. Note that H

f

0

= (H

f

0

\H

g

0

) [ (H

f

0

\H

g

1

).

If V

i

2 (H

f

0

\H

g

0

) then [C

f;g

(�)℄

V

i

= 2

r

and if V

i

2 (H

f

0

\H

g

1

) then [C

f;g

(�)℄

V

i

= �2

r

+ 2.

If V

i

2 H

f

1

then f(x+�) = 1 for all x 2 V

i

ex
ept at x = �. At x = �, the value of the

fun
tion is f(�+ �) = f(0) = 0. In this 
ase [C

f;g

(�)℄

V

i

= �2

r

+ 2 or 2

r

� 4 a

ording as

V

i

2 H

f

1

\H

g

0

or V

i

2 H

f

1

\H

g

1

respe
tively.

7



The above result 
an be expressed using a single formula:

[C

f;g

(�)℄

V

i

= (�1)

�+�

2

r

+ 2(�+ �)� 8��;

where V

i

2 H

f

�

\H

g

�

and �; � 2 f0; 1g.

In order to write the expression for C

f;g

(�) in a 
ompa
t way we introdu
e the symbol

�

�

�;�

for any �; � 2 f0; 1g and � 2 GF (2

n

)

�

. Any � 2 GF (2

n

)

�

belongs to V

k

for some

k 2 f0; 1; : : : ; 2

r

g. The set V

k

must be 
ontained in exa
tly one of the disjoint sets H

f

0

\H

g

0

,

H

f

0

\ H

g

1

, H

f

1

\ H

g

0

and H

f

1

\H

g

1

. Suppose V

k

2 H

f

�

\ H

g

�

where �; � 2 f0; 1g. Then the

value of �

�

�;�

= 1 and the values of �

�

a;b

= 0 if a 6= � or b 6= �.

Lemma 3 If � =2 V

i

2 H

f

a

\ H

g

b

and f; g 2 F

n

be two Dillon type fun
tions su
h that

S(f(x)) has l all one 
olumns then

[C

f;g

(�)℄

V

i

= ((�1)

b

(2

r

�2l)+2(a+b�2ab))(�

�

0;0

+�

�

0;1

)+(�1)

b

(2

r

�2l+2(a+b))(�

�

1;0

+�

�

1;1

):

Proof : � =2 V

i

. Suppose � 2 V

k

for some �xed k 6= i. By lemma 1, the 
oset � + V

i

interse
ts ea
h V

j

if j 6= i at exa
tly one point and has no interse
tion with V

i

.

If V

k

2 H

f

0

then if V

i

2 H

f

0

, the fun
tion f(x+�) = 0 at x = 0 and jfx 2 V

i

jf(x+�) =

1; x 6= 0gj = l, jfx 2 V

i

jf(x + �) = 0; x 6= 0gj = 2

r

� l � 1. If V

i

2 H

f

0

\ H

g

0

then

[C

f;g

(�)℄

V

i

= 2

r

� 2l: If V

i

2 H

f

0

\H

g

1

then [C

f;g

(�)℄

V

i

= �2

r

+ 2l + 2:

If V

i

2 H

f

1

, the fun
tion f(x+�) = 0 at x = 0 and jfx 2 V

i

jf(x+�) = 1; x 6= 0gj = l�1,

jfx 2 V

i

jf(x+ �) = 0; x 6= 0gj = 2

r

� l. If V

i

2 H

f

1

\H

g

0

then [C

f;g

(�)℄

V

i

= 2

r

� 2l + 2: If

V

i

2 H

f

1

\H

g

1

then [C

f;g

(�)℄

V

i

= �2

r

+ 2l:

Combining we write that if � 2 V

k

2 H

f

0

then [C

f;g

(�)℄

V

i

= (�1)

b

(2

r

�2l)+2(a+b�2ab)

where V

i

2 H

f

a

\H

g

b

.

If V

k

2 H

f

1

then if V

i

2 H

f

0

, the fun
tion f(x+�) = 1 at x = 0 and jfx 2 V

i

jf(x+�) =

1; x 6= 0gj = l � 1, jfx 2 V

i

jf(x + �) = 0; x 6= 0gj = 2

r

� l. If V

i

2 H

f

0

\ H

g

0

then

[C

f;g

(�)℄

V

i

= 2

r

� 2l: If V

i

2 H

f

0

\H

g

1

then [C

f;g

(�)℄

V

i

= �2

r

+ 2l � 2:

If V

i

2 H

f

1

, the fun
tion f(x+�) = 1 at x = 0 and jfx 2 V

i

jf(x+�) = 1; x 6= 0gj = l�2,

jfx 2 V

i

jf(x+ �) = 0; x 6= 0gj = 2

r

� l+ 1. If V

i

2 H

f

1

\H

g

0

then [C

f;g

(�)℄

V

i

= 2

r

� 2l+ 2:

If V

i

2 H

f

1

\H

g

1

then [C

f;g

(�)℄

V

i

= �2

r

+ 2l � 4:

Combining we write that if � 2 V

k

2 H

f

0

then [C

f;g

(�)℄

V

i

= (�1)

b

(2

r

� 2l + 2(a + b))

where V

i

2 H

f

a

\H

g

b

.

Combining all these expressions together and noting that when V

k

2 H

f

0

then �

�

0;0

+�

�

0;1

=

1, �

�

1;0

+�

�

1;1

= 0 and when V

k

2 H

f

1

then �

�

0;0

+�

�

0;1

= 0, �

�

1;0

+�

�

1;1

= 1 we derive the expression

for [C

f;g

(�)℄

V

i

when � =2 V

i

.

Finally we are in a position to prove the main theorem of this se
tion.

Theorem 2 Consider two Dillon type fun
tions f; g 2 F

n

, where n = 2r. Then the

additive 
ross
orrelation spe
tra between f and g 
an be at most 5-valued. In parti
ular at

any nonzero point � 2 GF (2

n

), C

f;g

(�) takes one of the following values:

2l + 2s� 4w + (2

r

� 2s)(2

r

� 2l), �2

r+1

+ 2l + 2s� 4w + (2

r

� 2l)(2

r

� 2s+ 2),

�4w � 2s+ 2l + (2

r

� 2s)(2

r

� 2l), 2

r+1

+ 2l � 4w � 2s+ (2

r

� 2l)(2

r

+ 2� 2s).

8



Here l, s are the number of all one 
olumns in S(f(x)) and S(g(x)) respe
tively and

w is the number of all one 
olumns of S(f(x)) that gets added to all one 
olumns of

S(g(x)) in S(f(x)) + S(g(x)) (the addition is element wise mod 2). Further C

f;g

(0) =

2

n

� 2(l + s� 2w)(2

n

2

� 1).

Proof : For the Dillon type fun
tions f; g 2 F

n

, 
omparing the interleaved sequen
es

S(f(x)) and S(g(x)) we obtain: jH

f

0

\H

g

0

j = 2

r

+w+1�s� l = w

0;0

, jH

f

0

\H

g

1

j = s�w =

w

0;1

, jH

f

1

\H

g

0

j = l � w = w

1;0

, jH

f

1

\H

g

1

j = w = w

1;1

. Let � 2 V

k

and V

k

2 H

�

\H

�

. By

lemmas 2, 3.

1. If V

k

2 H

f

�

\H

g

�

then [C

f;g

(�)℄

V

k

= (�1)

�+�

2

r

+ 2(�+ �)� 8��.

2. If V

i

2 H

f

a

\H

g

b

then

[C

f;g

(�)℄

V

i

= ((�1)

b

(2

r

� 2l) + 2(a+ b� 2ab))(�

�

0;0

+ �

�

0;1

)

+(�1)

b

(2

r

� 2l + 2(a+ b))(�

�

1;0

+ �

�

1;1

):

The 
ross
orrelation of f , g at � is given by

C

f;g

(�) =

X

x2GF (2

n

)

(�1)

f(x+�)+g(x)

= (�2

r

)(�1)

f(�)+g(0)

+

2

r

X

i=0

[C

f;g

(�)℄

V

i

= (�2

r

)(�1)

f(�)+g(0)

+ [C

f;g

(�)℄

V

k

+

1

X

a=0

1

X

b=0

X

V

i

2H

f

a

\H

g

b

;i 6=k

[C

f;g

(�)℄

V

i

= (�2

r

)(�1)

f(�)+g(0)

+ ((�1)

�+�

2

r

+ 2(�+ �)� 8��)

+

1

X

a=0

1

X

b=0

(w

a;b

� �

�

a;b

)(((�1)

b

(2

r

� 2l) + 2(a+ b� 2ab))(�

�

0;0

+ �

�

0;1

)

+(�1)

b

(2

r

� 2l + 2(a+ b))(�

�

1;0

+ �

�

1;1

)):

Sin
e the set V

k

is 
ontained in one of the disjoint sets H

f

0

\ H

g

0

, H

f

0

\ H

g

1

, H

f

1

\ H

g

0

,

H

f

1

\H

g

1

, all the possible values of (�; �) are (0; 0), (0; 1), (1; 0) and (1; 1).

By putting all possible values of (�; �) that is (0; 0), (0; 1), (1; 0) and (1; 1) we obtain

the four 
ross
orrelation values given above. Details of the 
al
ulation is given below.

Case 1. If � = 0, � = 0 then �

�

00

= 1, �

�

01

= 0, �

�

10

= 0, �

�

11

= 0. Therefore 
ross
orrelation

value is:

�2

r

+2

r

+w(�2

r

+2l)+(l�w)(2

r

�2l+2)+(s�w)(�2

r

+2l+2)+(2

r

+w�s� l)(2

r

�2l)

= 2l + 2s� 4w + (2

r

� 2s)(2

r

� 2l):

In the parti
ular 
ase l = s = 2

r�1

the 
ross
orrelation value is 2

r+1

� 4w.

Case 2. If � = 0, � = 1 then �

�

00

= 0, �

�

01

= 1, �

�

10

= 0, �

�

11

= 0. Therefore the


ross
orrelation value is:

�2

r

� 2

r

+ 2 + w(�2

r

+ 2l) + (l � w)(2

r

� 2l + 2) + (s� w � 1)(�2

r

+ 2l + 2)
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+(2

r

+ 1 + w � s� l)(2

r

� 2l) = �2

r+1

+ 2l + 2s� 4w + (2

r

� 2l)(2

r

� 2s+ 2):

In the parti
ular 
ase l = s = 2

r�1

the 
ross
orrelation value is �4w.

Case 3. If � = 1, � = 0 then then �

�

00

= 0, �

�

01

= 0, �

�

10

= 1, �

�

11

= 0. Therefore the


ross
orrelation values are:

(2

r

) + (�2

r

+ 2) + (w)(�2

r

+ 2l � 4) + (l � w � 1)(2

r

� 2l + 2) + (s� w)(�2

r

+ 2l � 2)

+(2

r

+ 1 + w � s� l)(2

r

� 2l) = �4w � 2s+ 2l + (2

r

� 2s)(2

r

� 2l)

In the parti
ular 
ase l = s = 2

r�1

the 
ross
orrelation value is �4w.

Case 4. If � = 1, � = 1 then �

�

00

= 0, �

�

01

= 0, �

�

10

= 0, �

�

11

= 1. Therefore the


ross
orrelation value is:

(2

r

) + (2

r

� 4) + (w � 1)(�2

r

+ 2l � 4) + (l � w)(2

r

� 2l + 2) + (s� w)(�2

r

+ 2l � 2)

+(2

r

+ 1 + w � s� l)(2

r

� 2l) = 2

r+1

+ 2l � 4w � 2s+ (2

r

� 2l)(2

r

+ 2� 2s):

In the parti
ular 
ase l = s = 2

r�1

the 
ross
orrelation value is 2

r+1

� 4w.

Note that C

f;g

(0) =

P

x2GF (2

n

)

(�1)

f(x)+g(x)

, whi
h is 2

n

� 2wt(f(x) + g(x))) and the

further 
al
ulation is routine.

Corollary 3 If f; g 2 F

n

and both are Dillon type bent then the 
ross
orrelation spe
tra

between f; g 
an be at most 3-valued. In parti
ular, C

f;g

(�) at any nonzero � 2 GF (2

n

) 
an

have only two values 2

n

2

+1

� 4w or �4w, where w has the usual meaning as in Theorem 2

and the maximum absolute value is � 2

n

2

+1

. Further C

f;g

(0) = 2

n

� 2(2

n

2

� 2w)(2

n

2

� 1).

Proof : We re
all that any fun
tion f 2 F

n

is a Dillon type bent if its (2

r

+ 1; 2

r

� 1)-

interleaved sequen
e 
onsists of only all zero 
olumns and all one 
olumns and the number

of all one 
olumns is 2

r�1

. Thus, l = s = 2

r�1

. Putting these values in 2l+2s� 4w+(2

r

�

2s)(2

r

�2l), �2

r+1

+2l+2s�4w+(2

r

�2l)(2

r

�2s+2), �4w�2s+2l+(2

r

�2s)(2

r

�2l),

2

r+1

+ 2l � 4w � 2s + (2

r

� 2l)(2

r

+ 2� 2s) as mentioned in Theorem 2, we get only two

distin
t values, namely, 2

r+1

� 4w or �4w. Now, 0 � w � minfl; sg, i.e., 0 � w � 2

r�1

.

Hen
e, the maximum absolute value of the 
ross
orrelation spe
tra at nonzero point is at

most 2

n

2

+1

. The value of C

f;g

(0) also follows from Theorem 2.

If f; g are Dillon type bent fun
tions, then dire
t sum of f; g is also Dillon type if and

only if w = 2

r�2

. By Corollary 3 the possible 
ross
orrelation values of f and g at any �

is �2

r

= �2

n

2

. This result agrees with the result of Theorem 1 whi
h is a more general

result for bent fun
tions.

2.2 Generalized Auto
orrelation

In [22℄, Youssef and Gong introdu
ed generalized nonlinearity of Boolean fun
tions and

studied the Dillon type fun
tions under this framework. Instead of the set of all aÆne fun
-

tions, they 
onsidered the set fTr

n

1

(�x




)+�j� 2 GF (2

n

); � 2 GF (2); 
 is 
oprime to 2

n

�1g
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and de�ned the generalized nonlinearity of a fun
tion f 2 F

n

as the distan
e of the fun
-

tion from the above set. The fun
tions of the form Tr

n

1

(�x




) where � 2 GF (2

n

) and


 is 
oprime to 2

n

� 1 are 
alled bije
tive monomials. Clearly the linear fun
tions are

also bije
tive monomials. They also extended Walsh Hadamard transform as, W

f

(�; 
) =

P

x2GF (2

n

)

(�1)

Tr

n

1

(�x




)+f(x)

; where 
 is 
oprime to 2

n

� 1. The generalized nonlinearity of

f 2 F

n

was de�ned as nlg(f) = 2

n�1

�

1

2

max

�2GF (2

n

);g
d(
;2

n

�1)=1

jw

f

(�; 
)j: The bent fun
-

tions whose generalized nonlinearity equals the nonlinearity are 
alled hyper-bent fun
tions.

The 
lass of hyper-bent fun
tions are more restri
ted than the 
lass of bent fun
tions. The

sub
lass of hyper-bent fun
tions des
ribed in [22℄ are the Dillon type bent fun
tions as

pointed out by Carlet [22℄.

We de�ne generalized auto
orrelation the analogue of auto
orrelation in this set up and

show that unlike auto
orrelation for bent fun
tions, for hyper-bent fun
tions generalized

auto
orrelation need not be always zero. Suppose U(2

n

�1) is the set of all positive integers


oprime to 2

n

� 1.

De�nition 4 The generalized auto
orrelation of a fun
tion f 2 F

n

at � 2 GF (2

n

) and


 2 U(2

n

� 1) is de�ned as �

f

(�; 
) =

P

x2GF (2

n

)

(�1)

f(x)+f(x




+�)

:

It is desirable that the generalized auto
orrelation of a fun
tion is low for all values of � and


, that is, max

�2GF (2

n

);
2U(2

n

�1)

j�

f

(�; 
)j is low (ex
ept the 
ases � = 0 when f(x); f(x




)

are identi
al).

Let f(x) be a Dillon type bent fun
tion (same as hyperbent fun
tion 
onstru
ted by

Youssef and Gong [22℄). For any 
 2 U(2

n

� 1), f(x




) is also a Dillon type bent fun
tion.

Proposition 3 Let f(x) be a Dillon type fun
tion on n = 2r variables. If 
 � 


1

mod 2

r

+1

for 
; 


1

2 U(2

n

� 1) then f(x




) = f(x




1

).

Proof : If f(x) is a Dillon type fun
tion then f(x) 
an be written as g(x

2

r

�1

). Suppose


; 


1

2 U(2

n

�1) are su
h that 
 � 


1

mod 2

r

+1, that is 
 = 


1

+ q(2

r

+1) for some integer

q. Then f(x




) = f(x




1

+q(2

r

+1)

) = g(x




1

(2

r

�1)

) = f(x




1

).

De�nition 5 Let n = 2r. For 
; 


1

2 U(2

n

� 1), 
 is related to 


1

if and only if 
 �




1

mod 2

r

+1. This partitions the set U(2

n

�1) in distin
t equivalen
e 
lasses. By L(2

n

�1),

we denote the set of smallest elements from ea
h equivalen
e 
lass.

Note that the auto
orrelation property of any bent fun
tion is known [15℄, i.e., �

f

(�; 
 =

1) = 0 for all nonzero � 2 GF (2

n

). Thus we will be interested in the generalized spe
tra

even when 
 6= 1. Based on this dis
ussion and Proposition 3, it is enough to dis
uss

the generalized auto
orrelation of a Dillon type bent fun
tion f 2 F

n

at � 2 GF (2

n

) and


 2 L(2

n

�1)nf1g. Now we have the following result related to generalized auto
orrelation

spe
tra of Dillon type bent fun
tions, i.e., Youssef and Gong type hyper-bent fun
tions.

Lemma 4 Let f(x) 2 F

n

be a Dillon type bent fun
tion. Then for 
 2 L(2

n

� 1) n f1g,

�

f

(�; 
) = 2

n

2

+1

� 4w




or �4w




, for nonzero � 2 GF (2

n

),

= 2

n

� 2(2

n

2

� 2w




)(2

n

2

� 1) for � = 0,
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where w




is the number of all one 
olumns of S(f(x)) that gets added to all one 
olumns

of S(f(x




)) in S(f(x)) + S(f(x




)) as in Theorem 2. Further �

f

(�; 
) � 2

n

2

+1

for nonzero

�. In addition, if f(x) + f(x




) is bent, then �

f

(�; 
) = �2

n

2

.

Proof : From Proposition 2 it follows that f(x) is Dillon type bent if and only if f(x




) is

Dillon type bent. Then the result follows from Corollary 3. The last result follows from

the last result of Theorem 1. That we need to vary 
 only in L(2

n

� 1) n f1g follows from

Proposition 3.

It is now important to see whether there is any Dillon type bent fun
tion so that either

(i) f(x)+f(x




) is bent or (ii) f(x) = f(x




) for all 
 2 L(2

n

�1)nf1g. The reason is, in 
ase

su
h a fun
tion f(x) exists, j�

f

(�; 
)j 
an take values 0;�2

n

2

(ex
ept the 
ases � = 0 when

f(x); f(x




) are identi
al). This is 
learly the best possible generalized auto
orrelation

spe
tra for a Dillon type (hyper) bent fun
tion. We experimentally 
he
ked that su
h

Dillon type bent fun
tions are available for n = 4; 6, but not available for n = 8. It is

open whether su
h fun
tions are available for even n � 10, though given the 
ombinatorial

restri
tion on these fun
tions, it is unlikely that su
h fun
tions exist.

2.3 Chara
ter Sums

In this se
tion we show that the 
ross
orrelation results on Dillon type bent fun
tions

have important 
onsequen
es in improving the upper bound on the absolute values of Weil

sums [21, 19, 12℄ for a parti
ular 
lass of polynomials. Additive 
hara
ter of GF (p

n

) is a

homomorphism from GF (p

n

) into the set of all 
omplex numbers with absolute value 1.

The additive 
hara
ter �

1

(x) = e

2�iTr(x)

p

is 
alled the 
anoni
al additive 
hara
ter, where

Tr(x) = x+x

p

+x

p

2

+ : : :+x

p

n�1

. It is well known that [10℄ for any additive 
hara
ter � of

GF (p

n

) there exists some �xed a 2 GF (p

n

) su
h that �(x) = �

1

(ax) for all x 2 GF (p

n

).

In 
ase p = 2 the 
anoni
al additive 
hara
ter takes the form �

1

(x) = (�1)

Tr(x)

. If �

is a nontrivial additive 
hara
ter of the �eld GF (p

n

) and g(x) 2 GF (p

n

)[x℄ of degree

deg(g(x)). It is well known [21, 19℄ that

�

�

�

P

x2GF (p

n

)

�(g(x))

�

�

� � (deg(g(x)) � 1)p

n

2

, where

g
d(deg(g(x)); p) = 1. We shall refer to the sum

P

x2GF (p

n

)

�(g(x)) as the Weil sum for

g(x) and the above upper bound as the Weil bound. Mullen and Shparlinski [12℄ have

mentioned the problem of evaluating the upper bounds of the absolute value of the Weil

sum for spe
ial �elds and polynomials. Several su
h bounds are des
ribed in [18, 20℄. We

here 
hara
terize a 
lass of polynomials for whi
h the Weil bound is improved.

Lemma 5 Let n be an even positive integer. There exists nonzero � 2 GF (2

n

2

) su
h that

�

�

�

�

�

�

X

x2GF (2

n

)

�

1

(�(


i

(x)

2

n

2

�1

+ 


j

(x + Æ)

2

n

2

�1

))

�

�

�

�

�

�

� 2

n

2

+1

;

for nonzero Æ 2 GF (2

n

).

Proof : For even n = 2r, let 
 be a generator of the 
y
li
 group of order 2

r

+1. La
haud

and Wolfmann [9℄ have proved that there exists � 2 GF (2

r

) su
h that f

j

(x) = Tr(�


j

x

2

r

�1

)

12



is bent (basi
ally Dillon type) for all 0 � j � 2

r

(see also [1℄). From Corollary 3, if i 6= j

then

�

�

�

P

x2GF (2

n

)

(�1)

f

i

(x)+f

j

(x+Æ)

�

�

� =

�

�

�

P

x2GF (2

n

)

(�1)

Tr(�


i

x

2

r

�1

)+Tr(�


j

(x+Æ)

2

r

�1

)

�

�

� � 2

r+1

:

The result in Lemma 5 improves the Weil bound for this 
lass of polynomial. Note that

deg(�(


i

x

2

n

2

�1

+ 


j

(x+ Æ)

2

n

2

�1

)) = 2

n

2

� 1

for i 6= j. So Weil bound gives,

j

X

x2GF (2

n

)

�

1

(�(


i

x

2

n

2

�1

+ 


j

(x+ Æ)

2

n

2

�1

))j � (2

n

2

� 2)2

n

2

= 2

n

� 2

n

2

+1

;

for nonzero Æ 2 GF (2

n

). Our result is mu
h more improved for 
anoni
al additive 
hara
ter

and for this spe
ial 
lass of polynomials.

Let us denote the �rst row of S(Tr(�x

2

n

2

�1

)) by R

�

and the number of 1's in R

�

as

wt(R

�

). It follows from [9, Theorem 6.6℄ that 2

n

2

�1

� min

�2GF (2

n

)

�

wt(R

�

) � 2

n

4

+ 1 and

max

�2GF (2

n

)

�

wt(R

�

) � 2

n

2

�1

� 2

n

4

+ 1. However, it seems that the bound is mu
h better

in pra
ti
e as is shown by the following experimental result for even n, 4 � n � 24.

n 4 6 8 10 12 14 16 18 20 22 24

min

�2GF (2

n

)

�

wt(R

�

) 2 2 6 12 26 54 114 234 482 980 1986

2

n

2

�1

2 4 8 16 32 64 128 256 512 1024 2048

max

�2GF (2

n

)

�

wt(R

�

) 4 6 12 22 40 74 144 278 544 1068 2112

We observe that 2

n

2

�1

�min

�2GF (2

n

)

�

wt(R

�

) and max

�2GF (2

n

)

�

wt(R

�

)� 2

n

2

�1

are both

� nblog

2

n
 for even n, 4 � n � 24, whi
h is mu
h better than 2

n

4

+1 that has been proved

in [9℄. However, we will use the result of [9℄ to present a more general statement than

Lemma 5, though the bound is little bit weaker.

Theorem 3 Let n be an even positive integer. For any �; �; Æ 2 GF (2

n

)

�

,

�

�

�

�

�

�

X

x2GF (2

n

)

�

1

(�(x)

2

n

2

�1

+ �(x+ Æ)

2

n

2

�1

)

�

�

�

�

�

�

� 8 � 2

n

2

+ 20 � 2

n

4

+ 16:

Proof : Consider that for any � 2 GF (2

n

)

�

, jwt(R

�

) � 2

n

2

�1

j � v. Now 
onsider two

Dillon type fun
tions f; g (may not be bent) on n variables, su
h that the �rst row of their

interleaved sequen
es S(f(x)); S(g(x)) are R

�

; R

�

respe
tively. Following the notation of

Theorem 2, it 
an be 
he
ked that maximum absolute value of C

f;g

(Æ) � 4v

2

+12v+ 2

r+2

,

for n = 2r. It follows from [9, Theorem 6.6℄ that v � 2

n

4

+ 1. Hen
e the result.

The result in Theorem 3 improves the Weil bound for this 
lass of polynomial. Note

that deg(�(x)

2

n

2

�1

+ �(x+ Æ)

2

n

2

�1

) = 2

n

2

� 1 for � 6= �. Thus Weil bound gives the value

2

n

�2

n

2

+1

for nonzero Æ 2 GF (2

n

). Our result is mu
h more improved for 
anoni
al additive


hara
ter and for this extended 
lass of polynomials than in Lemma 5.
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Corollary 4 Let n be an even positive integer. For any �; �; Æ 2 GF (2

n

)

�

,

j

X

x2GF (2

n

)

�(�(x)

2

n

2

�1

+ �(x + Æ)

2

n

2

�1

)j � 8 � 2

n

2

+ 20 � 2

n

4

+ 16;

for any nontrivial additive 
hara
ter � of GF (2

n

).

Proof : The proof is dire
t from the fa
t that Theorem 3 is true for any �; � 2 GF (2

n

)

and the relationship between any additive 
hara
ter to the 
anoni
al additive 
hara
ter

de�ned on a �nite �eld.

Finally we prove the following result.

Corollary 5 Let n be an even positive integer. Let p(x) 2 GF (2

n

)[x℄ be a polynomial of

the form p(x) = �x

2

n

2

�1

+ x

2

n

2

�2

+ x

2

n

2

�3

+ : : : + x + 1, where 1 6= � 2 GF (2

n

)

�

. Then

for any nontrivial additive 
hara
ter � of GF (2

n

) the Weil sum j

P

x2GF (2

n

)

�(p(x))j �

8 � 2

n

2

+ 20 � 2

n

4

+ 16:

Proof : The proof follows from

j

X

x2GF (2

n

)

�(�x

2

n

2

�1

+x

2

n

2

�2

+x

2

n

2

�3

+ : : :+x+1)j = j

X

x2GF (2

n

)

�((x+1)

2

n

2

�1

+(�+1)x

2

n

2

�1

)j

and Corollary 4.

3 Results on Patterson-Wiedemann type fun
tions

Patterson and Wiedemann [13, 14℄ extended the 
on
ept introdu
ed by Dillon when the

number of input variables n is odd and su

eeded in �nding out fun
tions having non-

linearity stri
tly greater than 2

n�1

� 2

n�1

2

for odd n � 15. This result is pioneering as

this is the �rst instan
e when su
h a high nonlinearity has been demonstrated and further

till date there is no other strategy to get su
h fun
tions. Later in [11℄ these fun
tions

have been 
hanged heuristi
ally to get highly nonlinear balan
ed fun
tions. Also it has

been noted in [11℄ that the auto
orrelation spe
tra of Patterson-Wiedemann fun
tions are

very ni
e and some theoreti
al justi�
ation in this dire
tion has been provided re
ently

in [6℄. In this se
tion we present 
ross
orrelation results for Patterson-Wiedemann type

fun
tions and provide a more generalized framework than what obtained in [6℄. In fa
t

our results provide some justi�
ation why the maximum absolute value in the auto
orre-

lation spe
tra of Patterson-Wiedemann type fun
tions are very low. We also des
ribe this


onstru
tion using interleaved sequen
e as was exploited in [6℄. Now we formally des
ribe

Patterson-Wiedemann 
onstru
tion using interleaved sequen
e.

De�nition 6 Let n be a positive odd integer su
h that n = tq, where both t and q are primes

and t > q. Let K = GF (2

t

)

�

�GF (2

q

)

�

be the 
y
li
 group of order k = (2

t

� 1)(2

q

� 1) in

GF (2

n

). Let h�

2

i be the group of Frobenius automorphisms where �

2

: GF (2

n

) �! GF (2

n

)

is de�ned by x 7! x

2

. We 
all a fun
tion f 2 F

n

Patterson-Wiedemann (PW) type if it is

invariant under the a
tion of both K and h�

2

i.
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Suppose d =

2

n

�1

2

t

�1

and d

1

=

2

n

�1

k

. The equivalen
e relation denoted by �

d

1

is de�ned as

follows:

i�

d

1

j , there exists a positive integer s su
h that i � 2

s

j mod d

1

:

Now from De�nition 6, it is 
lear that (d

1

; k)-interleaved sequen
e of a PW fun
tion 
onsists

of only all 0 or all 1 
olumns. Further the 
olumns in ea
h equivalen
e 
lass with respe
t

to �

d

1

have the same value.

In order to 
ompute the distan
e of a fun
tion of the above type from a linear fun
tion

Tr

n

1

(�x) where � 2 GF (2

n

) the (d; 2

t

� 1)-interleaved sequen
e of both the fun
tions (the

PW one and the linear one) are to be 
onsidered.

1. In a (d; 2

t

�1)-interleaved sequen
e of Tr

n

1

(�x) with resepe
t of any primitive element

�, the weight of ea
h 
olumn is either 2

t�1

or 0. It is also known that the number of

zero 
olumns is d� 2

n�t

.

2. Sin
e GF (2

t

)

�

� K, S

(d;2

t

�1)

(f(x); �) 
onsists of all one 
olumns and all zero 
olumns

only.

Be
ause of this by using (d; 2

t

� 1)-interleaved sequen
es one 
an 
ompute the distan
es

of f(x) and Tr

n

1

(�x) and the nonlinearity of the fun
tion 
an be 
omputed (see [6℄ for

more details). It has been shown in [6℄ that W

f

(�

i

) = W

f

(�

j

) if i�

d

1

j. Thus the maximum

number of distin
t Walsh transform values of f(x), at nonzero points, is r, where r is the

number of equivalen
e 
lasses when �

d

1

a
ts on f0; : : : ; 2

n

� 2g. In [6℄, 


i;j

is de�ned as the

number of all zero 
olumns of the (d; 2

t

� 1)-interleaved sequen
e of Tr

n

1

(�

i

x) that are in

the j-th (0 � j � r � 1) equivalen
e 
lass 
orresponding to �

d

1

.

Theorem 4 Let f; g be two PW type fun
tions on n-variables and the Walsh transform

values of f; g at ea
h point of the j-th equivalen
e 
lass be w(f; j); w(g; j) respe
tively.

Then C

f;g

(�

i

) =

1

2

n

[

P

r�1

j=0

(2

t




i;j

� b

j

)w(f; j)w(g; j) +W

f

(0)W

g

(0)℄; where b

j

is the number

of elements in the j-th equivalen
e 
lass of �

d

1

when it is de�ned on the set f0; 1; : : : ; d�1g.

Further the additive 
ross
orrelation spe
tra 
ontains at most r distin
t values at nonzero

points (at most r + 1 in
luding the zero point).

Proof : If � is a primitive element of GF (2

n

) then all the elements of GF (2

n

)

�


an be

written as powers of �. We know that all these elements are partitioned into r equivalen
e


lasses by �

d

1

. Walsh transform values at the elements from the same equivalen
e 
lass are

same [6℄. From [17℄, we have the result C

f;g

(�

i

) = 2

�n

P

x2GF (2

n

)

W

f

(x)W

g

(x)(�1)

Tr(�

i

x)

.

Note that both

fW

f

(�

0

)W

g

(�

0

);W

f

(�

1

)W

g

(�

1

); : : : ;W

f

(�

2

n

�2

)W

g

(�

2

n

�2

)g

and

f(�1)

Tr(�

i

�

0

)

; (�1)

Tr(�

i

�

1

)

; : : : ; (�1)

Tr(�

i

�

2

n

�2

)

g
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an be written as (d; 2

t

� 1)-interleaved sequen
es. Denote them by

^

W (f(x); g(x)) and

L(Tr(�

i

x)) respe
tively.

When a 
olumn from the j-th equivalen
e 
lass

^

W (f(x); g(x)) is element wise multiplied

to an `all one' 
olumn of the (d; 2

t

�1)-interleaved sequen
e of (�1)

Tr(�

i

x)

, L(Tr(�

i

x)), and

all the produ
ts are added we get (2

t

� 1)w(f; j)w(g; j). Sin
e there are 


i;j


olumns of the

j-th 
lass that get multiplied to `all one' 
olumns of L(Tr(�

i

x)) the total 
ontribution from

this sour
e by summing over all the equivalen
e 
lasses is

P

r�1

j=0




i;j

(2

t

� 1)w(f; j)w(g; j):

Rest of the b

j

�


i;j


olumns of the j-th equivalen
e 
lass of

^

W (f(x); g(x)) get multiplied

to the `mixed' 
olumns of L(Tr(�

i

x)). These 
olumns of L(Tr(�

i

x)) 
ontain 2

t�1

, �1's and

2

t�1

�1, 1's. Thus when we take the sum of the produ
ts (after element wise multipli
ation)

we obtain (b

j

�


i;j

)(�w(f; j)w(g; j)). Summing over all the equivalen
e 
lasses we get total


ontribution from this sour
e as,

P

r�1

j=0

(b

j

� 


i;j

)(�w(f; j)w(g; j)):

Thus the 
ross
orrelation C

f;g

(�

i

) of the Patterson-Wiedemann type fun
tions at �

i

is

C

f;g

(�

i

) =

1

2

n

[

r�1

X

j=0




i;j

(2

t

� 1)w(f; j)w(g; j) +

r�1

X

j=0

(b

j

� 


i;j

)(�w(f; j)w(g; j)) +W

f

(0)W

g

(0)℄;

that is,

C

f;g

(�

i

) =

1

2

n

[

r�1

X

j=0

(2

t




i;j

� b

j

)w(f; j)w(g; j) +W

f

(0)W

g

(0)℄:

Next we show that the number of distin
t 
ross
orrelation values is r. It is enough to

show that if i�

d

1

l then 


i;j

= 


l;j

. Suppose the 
olumn number e in the j-th equivalen
e 
lass

is su
h that Tr

n

1

(�

i

�

e+�d

) = 0 for all � = 0; 1; : : : ; 2

t

�2; that is in the (d; 2

t

�1)-interleaved

sequen
e of Tr

n

1

(�

i

x) the e th 
olumn is 0.

i�

d

1

l ) i = 2

k

l + �d

1

. From this we obtain

Tr

n

1

(�

2

k

l+�d

1

�

e+�d

) = Tr

n

1

(�

2

k

l

�

(e+�d

1

)+�d

)

= Tr

n

1

(�

l

�

2

n�k

(e+�d

1

)+�2

n�k

d

):

Sin
e � 7! (�2

n�k

)%(2

t

� 1) is a permutation on f0; 1; : : : ; 2

t

� 2g, the 2

n�k

(e + �d

1

)%d-

th 
olumn of the (d; 2

t�1

)-interleaved sequen
e of Tr

n

1

(�

l

x) is all zero.It 
an be dire
tly


he
ked that this 
olumn number is in the j th equivalen
e 
lass.

It is also 
lear that if e

1

� e

2

mod d then 2

n�k

(e

1

+ �d

1

)%d = 2

n�k

(e

2

+ �d

1

)%d. Thus




i;j

� 


l;j

. Similarly it 
an be shown that 


l;j

� 


i;j

. Hen
e 


l;j

= 


i;j

. Thus while 
omputing


ross
orrelation it is enough to 
ompute C

f;g

(�

i

) by 
hoosing one i from ea
h equivalen
e


lass of �

d

1

. Thus there 
an be atmost r distin
t values of 
ross
orrelation at nonzero

points. At 0, C

f;g

(0) =

P

x2GF (2

n

)

(�1)

f(x)+g(x)

= 2

n

� 2wt(f(x) + g(x)).

Patterson-Wiedemann obtained two fun
tions (upto 
omplementation and aÆne trans-

form) for n = 15 whi
h posses nonlinearity 16276. Call these fun
tions f; g. Note that

C

f;g

(0) = 6728. Now we 
al
ulate the 
ross
orrelation spe
tra at the nonzero points. There

are r = 11 equivalen
e 
lasses and the values at ea
h of the 
lasses are as follows: 904, 280,

184, 136, 40, 8, -8, -104, -152, -184, -248.
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To get the auto
orrelation spe
tra of PW type fun
tions we put f = g and obtain,

�

f

(�

i

) = C

f;f

(�

i

) =

1

2

n

2

4

r�1

X

j=0

(2

t




i;j

� b

j

)w(f; j)

2

+W

f

(0)

2

3

5

:

It is 
lear that the spe
tra is at most r-valued at the nonzero points. This has been proved

in [6℄ independently using a di�erent te
hnique. Here, this is a 
onsequen
e of a more

general 
ross
orrelation result as des
ribed in Theorem 4.

It has been experimentally 
he
ked in [11℄ that the maximum absolute value in the

auto
orrelation spe
tra is very low (only 160) for the two highly nonlinear PW type fun
-

tions and till date there is no 
lear answer why these should be so low (even the theoreti
al

analysis in [6℄ does not provide a 
lear answer). Note that as the nonlinearity of the these

fun
tions are very high, the Walsh transform values are low. It is now interesting to study

the following expression that appears in Theorem 4:

r�1

X

j=0

(2

t




i;j

� b

j

) = 2

t

r�1

X

j=0




i;j

�

r�1

X

j=0

b

j

= 2

t

(

2

n

� 1

2

t

� 1

� 2

n�t

)�

2

n

� 1

2

t

� 1

= 2

n

� 1� 2

n

= �1:

Note that, if we 
onsider the Walsh spe
tra values are almost 
onstant, this gives the reason

why the fun
tions of this type have very low auto
orrelation values.
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