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Abstrat

In this paper we study the additive rossorrelation spetra between two Boolean

funtions whose supports are union of ertain osets. These funtions on even number

of input variables have been introdued by Dillon and we refer to them as Dillon type

funtions. Our general result shows that the rossorrelation spetra between any

two Dillon type funtions are at most 5-valued. As a onsequene we �nd that the

rossorrelation spetra between two Dillon type bent funtions on n-variables are

at most 3-valued with maximum possible absolute value at the nonzero points being

� 2

n

2

+1

. Moreover, in the same line, the autoorrelation spetra of Dillon type bent

funtions at di�erent deimations is studied. Further we demonstrate that these

results an be used to show the existene of a lass of polynomials for whih the

absolute value of the Weil sum has a sharper upper bound than the Weil bound.

Patterson and Wiedemann extended the idea of Dillon for funtions on odd number

of variables. We study the rossorrelation spetra between two suh funtions and

then use the results for alulating the autoorrelation spetra too.

Keywords: Boolean Funtions, Nonlinearity, Crossorrelation, Autoorrelation, Chara-

ter Sums.

1 Introdution

Analysis of rossorrelation between sequenes has reeived a lot of attention in literature.

The rossorrelation an be multipliative or additive. Analysis of multipliative (shift)

rossorrelation has important role in several �elds suh as digital signal proessing, oding

and ryptology. Similarly study on additive rossorrelation (spei�ally for Boolean fun-

tions, that an also be seen as sequenes) has immediate e�et in design and rtptanalysis of

symmetri key ryptosystems. Boolean funtions have frequent appliations in both stream

and blok iphers and di�erent kinds of orrelation analysis has found appliation in this

�eld. Nonlinearity is one of the most important properties of Boolean funtions (or vetor
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valued Boolean funtions) for ryptographi appliations. For funtions on even number

of variables n, the maximum nonlinearity is 2

n�1

� 2

n

2

�1

and the most well known (oldest

too) onstrution has been provided by Dillon [4, 5℄. Considering the Boolean funtions as

mappings from GF (2

n

) ! GF (2), the Dillon type ones are the funtions whose supports

are union of osets of GF (2

n

2

)

�

in GF (2

n

)

�

. Under some weight onstraints, these Dillon

type funtions provide maximum nonlinearity to give rise to (Dillon type) bent funtions.

Though these funtions have been introdued almost thirty years ago and there are many

other di�erent onstrutions of bent funtions [2℄, till date these Dillon type funtions re-

eive serious attention in literature [22, 1℄. When funtions on odd number of variables are

onsidered, then also Dillon's strategy omes into play to ahieve very high nonlinearity.

Patterson and Wiedemann [13, 14℄ exploited similar idea to obtain funtions with nonlin-

earity stritly greater than 2

n�1

� 2

n�1

2

for odd number of input variables n � 15. This

result is pioneering as this is the �rst instane when suh a high nonlinearity has been

demonstrated and further till date (even after twenty years) there is no other strategy to

get suh funtions. Later in [16, 11℄ these funtions have been hanged heuristially to get

highly nonlinear balaned funtions.

In this paper we systematially analyse the additive rossorrelation spetra between

two Dillon type (respetively Patterson-Wiedemann type) funtions for n even (respe-

tively n odd). We �rst present a tehnial result to show that the rossorrelation (from

now on rossorrelation will imply additive rossorrelation in the rest of the paper) spe-

tra between any two bent funtions (may not be Dillon type) are the same as the Walsh

spetra of sum of their duals. This result follows diretly from the well known relationship

between the rossorrelation spetra between two funtions and the Walsh spetra of the

respetive funtions. However, this tehnique does not suÆe to ompletely haraterize

the rossorrelation spetra between any two Dillon type (may not be bent) funtions.

Thus we need to take a di�erent route using the interleaved sequene of Dillon type fun-

tions and show that the rossorrelation spetra between two Dillon type (may not be

bent) funtions are at most 5-valued. Roughly speaking, the tehnique uses ounting the

points of intersetions between the osets of

n

2

-dimensional subspaes of GF (2

n

). Further

we show that the rossorrelation spetra between two Dillon type bent funtions is at

most 3-valued and the maximum absolute value in the spetra (exept the zero point) is

� 2

n

2

+1

. Then we introdue the onept of generalized autoorrelation (autoorrelation

spetra at di�erent deimations) and show that it is meaningful for Dillon type bent fun-

tions. Unlike all zero values in the autoorrelation spetra of a bent funtion at nonzero

points, we show that the generalized autoorrelation spetra of Dillon type bent funtions

ontain nonzero values. Further our results have onsequenes to harater sum problems

for additive haraters. We extend our study for odd number of variables and use the

inherent symmetry of Patterson-Wiedemann funtions to get the rossorrelation results.

Our analysis provides theoretial justi�ation to the fat that the autoorrelation spetra

of Patterson-Wiedemann type funtions are few valued and the maximum absolute value

at the nonzero points of the spetra is very low.
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1.1 Preliminaries

Now we introdue some basi de�nitions and notations. Let F

n

be the set of all Boolean

funtions on n variables, that is mappings from GF (2

n

) to GF (2). For any sub�eld GF (2

t

)

of GF (2

n

) de�ne the trae map Tr

n

t

: GF (2

n

) �! GF (2

t

) by Tr

n

t

(x) = x + x

2

t

+ x

2

2t

+

: : : + x

2

(

n

t

�1)t

: It is known that GF (2

t

) is a sub�eld of GF (2

n

) if and only if tjn. In

partiular when t = 1 we obtain the map Tr

n

1

from GF (2

n

) to GF (2) de�ned by Tr

n

t

(x) =

x+ x

2

+ x

2

2

+ : : :+ x

2

(n�1)

: Any linear funtion in F

n

an be written as Tr

n

1

(�x) for some

� 2 GF (2

n

) and onsequently any aÆne funtion an be written as Tr

n

1

(�x) + � where

� 2 GF (2).

The nonlinearity of a funtion f 2 F

n

, denoted by nl(f) is the distane of this

funtion from the set of all aÆne funtions. The Walsh Hadamard transform of f at

� 2 GF (2

n

) is de�ned by W

f

(�) =

P

x2GF (2

n

)

(�1)

Tr

n

1

(�x)+f(x)

: By using the de�nition of

Walsh Hadamard transform we get the following expression of nonlinearity of f , nl(f) =

2

n�1

�

1

2

max

�2GF (2

n

)

jw

f

(�)j:When n = 2r, for some positive integer r, that is n is an even

positive integer [15℄, the maximum possible nonlinearity of funtions in F

n

is 2

n�1

� 2

n

2

�1

.

A funtion in F

n

is alled bent if and only if it's nonlinearity is 2

n�1

� 2

n

2

�1

, equivalently

if and only if W

f

(�) = �2

n

2

.

De�ne additive rossorrelation between f; g 2 F

n

at � by

C

f;g

(�) =

X

x2GF (2

n

)

(�1)

f(x+�)+g(x)

:

In ase f = g then the additive rossorrelation C

f;f

(�) is alled the autoorrelation of f

at � and denoted by �

f

(�). An alternate haraterization [15℄ of bent funtions states

that a funtion f 2 F

n

is bent if and only if �

f

(�) = 0 for all nonzero � 2 GF (2

n

). It is

well known (see for referene [17℄) that for ! 2 f0; 1g

n

,

C

f;g

(!) = 2

�n

X

x2f0;1g

n

W

f

(x)W

g

(x)(�1)

<!;x>

;

where < !; x > denotes the inner produt. Note that we will also use the result that for

! 2 GF (2

n

), C

f;g

(!) = 2

�n

P

x2GF (2

n

)

W

f

(x)W

g

(x)(�1)

Tr

n

1

(!x)

. It is lear that evaluation

in the seond ase is di�erent from the �rst ase when evaluation is done at a single point.

However, when we onsider the omplete rossorrelation spetra, then the multiset of

values will be the same. Thus we use both the relations as and when required.

We will be using the onept of interleaved sequene [7, 22℄ extensively in this doument.

A binary sequene of length m is denoted by a = fa

0

; a

1

; a

2

; : : : ; a

m�1

g where a

i

2 f0; 1g

for all i = 0; 1; 2; : : : ; (m � 1). In ase m = 2

n

� 1 for some positive integer n we an

hoose a primitive element � 2 GF (2

n

) and onstrut a funtion suh that f(0) = 0 and

f(�

i

) = a

i

where i = 0; 1; 2; : : : ; 2

n

�2. This funtion f is alled the funtion orresponding

to the sequene a with respet to the primitive element �. Again if f is a funtion from

GF (2

n

) to GF (2) with f(0) = 0 and � 2 GF (2

n

) is a primitive element then the sequene

ff(1); f(�); f(�

2

); : : : ; f(�

2

n

�2

)g is referred to as the sequene assoiated to f with respet

to �. When there is no hane of onfusion the primitive element � is not mentioned.
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De�nition 1 Suppose m is a omposite number suh that m = d � k where d and k are

both positive integers greater than 1, a is a binary sequene fa

0

; a

1

; a

2

; : : : ; a

m�1

g, where

a

i

2 f0; 1g for all i, then the (d; k)-interleaved sequene a

d;k

orresponding to the binary

sequene a is de�ned as

a

d;k

=

2

6

6

6

6

6

6

6

6

4

a

0

a

1

a

2

: : : a

(d�1)

a

d

a

1+d

a

2+d

: : : a

(d�1)+d

a

2d

a

1+2d

a

2+2d

: : : a

(d�1)+2d

: : : : :

: : : : :

a

(k�1)d

a

1+(k�1)d

a

2+(k�1)d

: : : a

(d�1)+(k�1)d

3

7

7

7

7

7

7

7

7

5

:

For detailed disussion on interleaved sequene we refer to [7℄. Let 2

n

� 1 = d � k,

a

d;k

be an interleaved sequene and � 2 GF (2

n

) be a primitive element. Then a funtion

f : GF (2

n

)! GF (2) with f(0) = 0 and f(�

i+�d

) = a

i+�d

where i = 0; 1; 2; : : : ; (d� 1) and

� = 0; 1; 2; : : : ; (k� 1) is de�ned as the funtion orresponding to the interleaved sequene

a

d;k

with respet to the primitive element �. Conversely, for any funtion f : GF (2

n

) !

GF (2) and a primitive element � 2 GF (2

n

) an interleaved sequene a

d;k

an be onstruted

suh that a

i+�d

= f(�

i+�d

) for all i = 0; 1; 2; : : : ; (d � 1) and � = 0; 1; 2; : : : ; (k � 1).

This interleaved sequene is alled the (d; k)-interleaved sequene orresponding to f with

respet to � and denoted by S

(d;k)

(f(x); �). Again as in the ase of binary sequenes we

drop the referene to � when there is no hane of onfusion. The rows and olumns of

a

d;k

are numbered from 0 to (k � 1) and 0 to (d� 1) respetively.

2 Crossorrelation Results

In this setion we �rst start with some tehnial results on rossorrelation of bent fun-

tions. The following result heavily depends on the duality property of bent funtions. For

more details of a bent funtion and its dual, see [15, 2℄.

Theorem 1 Let f and g be n-variable bent funtions and

^

f; ĝ be their dual funtions

respetively. Then C

f;g

(!) = W

^

f(x)+ĝ(x)

(!), for ! 2 f0; 1g

n

. Further if

^

f(x) + ĝ(x) is bent

then C

f;g

(!) = �2

n

2

, for all ! 2 f0; 1g

n

.

Proof : From [17℄, we have the result C

f;g

(!) = 2

�n

P

x2f0;1g

n

W

f

(x)W

g

(x)(�1)

<!;x>

. If

both the funtions f; g are bent then W

f

(x);W

g

(x) an only take the values �2

n

2

for all x.

Hene,

C

f;g

(!) =

X

x2f0;1g

n

sgn(W

f

(x)W

g

(x))(�1)

<!;x>

:

From duality results of bent funtions, sgn(W

f

(x)W

g

(x)) = (�1)

^

f(x)+ĝ(x)

. This gives,

C

f;g

(!) =

X

x2f0;1g

n

(�1)

(

^

f(x)+ĝ(x))+<!;x>

=W

^

f(x)+ĝ(x)

(!):
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If

^

f(x) + ĝ(x) is bent then W

^

f(x)+ĝ(x)

(!) is �2

n

2

for all ! 2 f0; 1g

n

. Thus, C

f;g

(!) = �2

n

2

,

for all ! 2 f0; 1g

n

.

Corollary 1 For n-variable bent funtions f and g,

P

!2f0;1g

n

C

2

f;g

(!) = 2

2n

.

Proof : From Parseval's relation [3℄, for any n-variable Boolean funtion �,

X

!2f0;1g

n

W

2

�

(!) = 2

2n

:

Thus the result follows from Theorem 1.

It is interesting to analyse the value of max

!2f0;1g

n

;! 6=0

jC

f;g

(!)j and the following result

shows that improper hoie of two bent funtions may provide this value as high as 2

n

.

For the proof we use the Maiorana-MFarland lass of bent funtions [4℄ whih we briey

desribe now. Consider n-variable Boolean funtions on x = (z; y), where z; y 2 f0; 1g

n

2

of

the form  (z; y) = z ��(y)+g(y) where � is a permutation on f0; 1g

n

2

and g is any Boolean

funtion on

n

2

variables.

Proposition 1 It is possible to onstrut two n-variable bent funtions f; g suh that

C

f;g

(!) = 2

n

for some nonzero !.

Proof : Consider two Maiorana-MFarland type bent funtions  

1

;  

2

as follows. For

both the funtions �(y) = y. For the funtion  

1

, g(y) is zero for all y. For the funtion

 

2

, g(y) is zero when y

n

2

= 0, and g(y) = 1 when y

n

2

= 1. Let f; g be bent funtions suh

that

^

f =  

1

and ĝ =  

2

. Then

^

f + ĝ = 0 when x

n

= 0 and

^

f + ĝ = 1 when x

n

= 1. In fat,

^

f + ĝ is the linear funtion x

n

. Note that W

^

f+ĝ

(!) = 2

n

, when ! = (0; : : : ; 0; 1), whih

gives, C

f;g

(!) = 2

n

for some nonzero !.

Natural question in this ontext is, whether there is any lass of bent funtions suh

that the rossorrelation spetra between any two of them is muh better than that pre-

sented in Proposition 1. In this diretion, we show that if we hoose any two Dillon type

bent funtions then at eah point exept 0 the maximum absolute value of the additive

rossorrelation is � 2

n

2

+1

. In fat our analysis demonstrates all the possible values of

the additive rossorrelation spetra between any two Dillon type funtions (may not be

bent) in Theorem 2 (Subsetion 2.1). Results onerning Dillon type bent funtions are

presented in Corollary 3 (Subsetion 2.1).

2.1 Results for Dillon type funtions

In this setion we onentrate on the rossorrelation spetra for Dillon type funtions. We

always onsider the funtions with f(0) = 0. Let us �rst de�ne the Dillon type funtions

for even n.

De�nition 2 Suppose n is an even positive integer, i.e., n = 2r for some positive integer

r. A funtion f 2 F

n

is alled Dillon type funtion if its (2

r

+1; 2

r

�1)-interleaved sequene

with respet to a (basially this is true for `any' primitive element � that will be learer with

Proposition 2 and Corollary 2 below) primitive element �, onsists of all zero and all one

olumns only and f(0) = 0.
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We shall refer to the interleaved sequene S

(2

r

+1;2

r

�1)

(f(x); �) by S(f(x)) for brevity

in this setion if not mentioned otherwise. For any two nonnegative integers a and q by

a%q 2 f0; 1; : : : ; q � 1g denote the remainder of a when divided by q.

Proposition 2 A funtion f 2 F

n

, where n = 2r, is Dillon type with respet to a primitive

element � if and only if f(x



) is also Dillon type with respet to the same primitive element

for any  oprime to 2

n

� 1.

Proof : Assume that f(0) = 0. Now,

X

x2GF (2

n

)

(�1)

f(x)

= 1 +

2

n

�2

X

i=0

(�1)

f(�

i

)

= 1 +

2

n

�2

X

i=0

(�1)

f(�

i

)

=

X

x2GF (2

n

)

(�1)

f(x



)

;

where  is oprime to 2

n

� 1 that is the gd(; 2

n

� 1) = 1. Thus the weights of f(x) and

f(x



) are same.

Suppose f(x) is a Dillon type funtion and therefore S(f(x)) onsists of only all zero

and all one olumns. If possible let the i-th olumn of S(f(x



)) is neither all zero nor all one,

i.e.,

P

2

r

�2

�=0

(�1)

f(�

i+�(2

r

+1)

)

6= �(2

r

� 1): Sine gd(; 2

n

� 1) = 1 implies gd(; 2

r

� 1) = 1

the mapping � 7! (�)%(2

r

� 1) is a permutation on the set f0; 1; : : : ; 2

r

� 2g. Thus we

an rewrite the above sum as

P

2

r

�2

�=0

(�1)

f(�

i+�(2

r

+1)

)

6= �(2

r

�1): That is in the interleaved

sequene S(f(x)), the (i)%(2

r

+ 1)-th olumn is neither all zero nor all one. This is a

ontradition. The other diretion is similar. Hene the proof.

Corollary 2 If f(x) is Dillon type with respet to a primitive element then it is also Dillon

type with respet to any other primitive element.

Proof : Suppose � and �

1

are two distint primitive elements of GF (2

n

). Then there

exists a positive integer oprime to 2

n

� 1 suh that �

1

= �



. Thus, S

(2

r

+1;2

r

�1)

(f(x); �



) =

S

(2

r

+1;2

r

�1)

(f(x



); �), and the proof follows from Proposition 2.

Next we de�ne Dillon type bent funtions [4, 5℄.

De�nition 3 Suppose n is an even positive integer, i.e., n = 2r for some positive integer

r. A Dillon type funtion f 2 F

n

is alled a Dillon type bent funtion if S(f(x)) ontains

2

r�1

all one olumns.

Suppose � is a primitive element of GF (2

n

) and tjn. Denote

2

n

�1

2

t

�1

by d. De�ne

V

i

(�; t) = f0; �

i

; �

i+d

; : : : ; �

i+(2

t

�2)d

g

where i = 0; 1; : : : ; d � 1. In the ontext of Dillon type funtions we shall always assume

n = 2r and denote V

i

(�; r) by V

i

(assuming that a primitive element � is already �xed).

For eah i, V

i

(�; t) is a t-dimensional subspae of GF (2

n

). Moreover for i = 0 and for any

primitive element � of GF (2

n

), V

0

(�; t) is the sub�eld GF (2

t

) of GF (2

n

). For any two

Boolean funtions f; g 2 F

n

, for any � 2 GF (2

n

) and any subset V � GF (2

n

) we denote

the sum

P

x2V

(�1)

f(x+�)+g(x)

by [C

f;g

(�)℄

V

.

6



Suppose f; g 2 F

n

are two Dillon type funtions. We observe that for any � 2 V

i

the

sequene

ff(�+ 0); f(�+ �

i

); f(�+ �

i+(2

r

+1)

); : : : ; f(�+ �

i+(2

r

�2)(2

r

+1)

)g

is a permutation of the sequene

ff(0); f(�

i

); f(�

i+(2

r

+1)

); : : : ; f(�

i+(2

r

�2)(2

r

+1)

)g:

Sine f(x) and g(x) being Dillon type funtions are either all zero or all one over V

i

n f0g,

the weight of the funtion f(x + �) + g(x) when restrited to V

i

an be omputed easily,

in the ase � 2 V

i

. The ase � =2 V

i

is desribed in the following lemma.

Lemma 1 If f 2 F

n

is a Dillon type funtion, i 6= j, then for any � =2 V

i

we have

j(�+ V

i

) \ V

j

j = 1.

Proof : Suppose � =2 V

i

for some i 2 f0; 1; : : : ; 2

r

g. If x + � 2 V

i

for some x 2 V

i

then

sine V

i

is a subspae of GF (2

n

) the element � 2 V

i

whih is a ontradition. Suppose for

two distint elements x

1

; x

2

2 V

i

the elements x

1

+ �; x

2

+ � 2 V

j

for some j 6= i. Sine V

j

is a subspae of GF (2

n

), x

1

+ � + x

2

+ � = x

1

+ x

2

2 V

j

, further x

1

+ x

2

2 V

i

. Therefore

x

1

+ x

2

= 0 sine V

i

\ V

j

= f0g. This implies x

1

= x

2

, sine the �elds under onsideration

are of harateristi 2, whih ontradits the assumption that x

1

6= x

2

.

Thus the oset � + V

i

intersets eah V

j

if j 6= i in atmost one point and has no

intersetion with V

i

. The total number of V

j

's when i 6= j is 2

r

. There are 2

r

number of

distint points in � + V

i

. This proves that j(�+ V

i

) \ V

j

j = 1.

For any Dillon type funtion f 2 F

n

de�ne,

H

f

0

= fV

i

jf(x) = 0 for all x 2 V

i

g

and

H

f

1

= fV

i

jf(x) = 1 for all x 2 V

i

n f0gg:

Given any two Dillon type funtions f; g 2 F

n

the value of the sum [C

f;g

(�)℄

V

i

depends

on whether � is in V

i

or not and the values of �; � 2 f0; 1g for whih V

i

2 H

f

�

\H

g

�

. In the

following two lemmas we explore all the possibilities.

Lemma 2 If � 2 V

i

2 H

f

�

\H

g

�

, where �; � 2 f0; 1g then [C

f;g

(�)℄

V

i

= (�1)

�+�

2

r

+ 2(�+

�)� 8��.

Proof : Sine � 2 V

i

we have x + � 2 V

i

for all x 2 V

i

.

If V

i

2 H

f

0

then f(x + �) = 0 for all x 2 V

i

. Note that H

f

0

= (H

f

0

\H

g

0

) [ (H

f

0

\H

g

1

).

If V

i

2 (H

f

0

\H

g

0

) then [C

f;g

(�)℄

V

i

= 2

r

and if V

i

2 (H

f

0

\H

g

1

) then [C

f;g

(�)℄

V

i

= �2

r

+ 2.

If V

i

2 H

f

1

then f(x+�) = 1 for all x 2 V

i

exept at x = �. At x = �, the value of the

funtion is f(�+ �) = f(0) = 0. In this ase [C

f;g

(�)℄

V

i

= �2

r

+ 2 or 2

r

� 4 aording as

V

i

2 H

f

1

\H

g

0

or V

i

2 H

f

1

\H

g

1

respetively.

7



The above result an be expressed using a single formula:

[C

f;g

(�)℄

V

i

= (�1)

�+�

2

r

+ 2(�+ �)� 8��;

where V

i

2 H

f

�

\H

g

�

and �; � 2 f0; 1g.

In order to write the expression for C

f;g

(�) in a ompat way we introdue the symbol

�

�

�;�

for any �; � 2 f0; 1g and � 2 GF (2

n

)

�

. Any � 2 GF (2

n

)

�

belongs to V

k

for some

k 2 f0; 1; : : : ; 2

r

g. The set V

k

must be ontained in exatly one of the disjoint sets H

f

0

\H

g

0

,

H

f

0

\ H

g

1

, H

f

1

\ H

g

0

and H

f

1

\H

g

1

. Suppose V

k

2 H

f

�

\ H

g

�

where �; � 2 f0; 1g. Then the

value of �

�

�;�

= 1 and the values of �

�

a;b

= 0 if a 6= � or b 6= �.

Lemma 3 If � =2 V

i

2 H

f

a

\ H

g

b

and f; g 2 F

n

be two Dillon type funtions suh that

S(f(x)) has l all one olumns then

[C

f;g

(�)℄

V

i

= ((�1)

b

(2

r

�2l)+2(a+b�2ab))(�

�

0;0

+�

�

0;1

)+(�1)

b

(2

r

�2l+2(a+b))(�

�

1;0

+�

�

1;1

):

Proof : � =2 V

i

. Suppose � 2 V

k

for some �xed k 6= i. By lemma 1, the oset � + V

i

intersets eah V

j

if j 6= i at exatly one point and has no intersetion with V

i

.

If V

k

2 H

f

0

then if V

i

2 H

f

0

, the funtion f(x+�) = 0 at x = 0 and jfx 2 V

i

jf(x+�) =

1; x 6= 0gj = l, jfx 2 V

i

jf(x + �) = 0; x 6= 0gj = 2

r

� l � 1. If V

i

2 H

f

0

\ H

g

0

then

[C

f;g

(�)℄

V

i

= 2

r

� 2l: If V

i

2 H

f

0

\H

g

1

then [C

f;g

(�)℄

V

i

= �2

r

+ 2l + 2:

If V

i

2 H

f

1

, the funtion f(x+�) = 0 at x = 0 and jfx 2 V

i

jf(x+�) = 1; x 6= 0gj = l�1,

jfx 2 V

i

jf(x+ �) = 0; x 6= 0gj = 2

r

� l. If V

i

2 H

f

1

\H

g

0

then [C

f;g

(�)℄

V

i

= 2

r

� 2l + 2: If

V

i

2 H

f

1

\H

g

1

then [C

f;g

(�)℄

V

i

= �2

r

+ 2l:

Combining we write that if � 2 V

k

2 H

f

0

then [C

f;g

(�)℄

V

i

= (�1)

b

(2

r

�2l)+2(a+b�2ab)

where V

i

2 H

f

a

\H

g

b

.

If V

k

2 H

f

1

then if V

i

2 H

f

0

, the funtion f(x+�) = 1 at x = 0 and jfx 2 V

i

jf(x+�) =

1; x 6= 0gj = l � 1, jfx 2 V

i

jf(x + �) = 0; x 6= 0gj = 2

r

� l. If V

i

2 H

f

0

\ H

g

0

then

[C

f;g

(�)℄

V

i

= 2

r

� 2l: If V

i

2 H

f

0

\H

g

1

then [C

f;g

(�)℄

V

i

= �2

r

+ 2l � 2:

If V

i

2 H

f

1

, the funtion f(x+�) = 1 at x = 0 and jfx 2 V

i

jf(x+�) = 1; x 6= 0gj = l�2,

jfx 2 V

i

jf(x+ �) = 0; x 6= 0gj = 2

r

� l+ 1. If V

i

2 H

f

1

\H

g

0

then [C

f;g

(�)℄

V

i

= 2

r

� 2l+ 2:

If V

i

2 H

f

1

\H

g

1

then [C

f;g

(�)℄

V

i

= �2

r

+ 2l � 4:

Combining we write that if � 2 V

k

2 H

f

0

then [C

f;g

(�)℄

V

i

= (�1)

b

(2

r

� 2l + 2(a + b))

where V

i

2 H

f

a

\H

g

b

.

Combining all these expressions together and noting that when V

k

2 H

f

0

then �

�

0;0

+�

�

0;1

=

1, �

�

1;0

+�

�

1;1

= 0 and when V

k

2 H

f

1

then �

�

0;0

+�

�

0;1

= 0, �

�

1;0

+�

�

1;1

= 1 we derive the expression

for [C

f;g

(�)℄

V

i

when � =2 V

i

.

Finally we are in a position to prove the main theorem of this setion.

Theorem 2 Consider two Dillon type funtions f; g 2 F

n

, where n = 2r. Then the

additive rossorrelation spetra between f and g an be at most 5-valued. In partiular at

any nonzero point � 2 GF (2

n

), C

f;g

(�) takes one of the following values:

2l + 2s� 4w + (2

r

� 2s)(2

r

� 2l), �2

r+1

+ 2l + 2s� 4w + (2

r

� 2l)(2

r

� 2s+ 2),

�4w � 2s+ 2l + (2

r

� 2s)(2

r

� 2l), 2

r+1

+ 2l � 4w � 2s+ (2

r

� 2l)(2

r

+ 2� 2s).
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Here l, s are the number of all one olumns in S(f(x)) and S(g(x)) respetively and

w is the number of all one olumns of S(f(x)) that gets added to all one olumns of

S(g(x)) in S(f(x)) + S(g(x)) (the addition is element wise mod 2). Further C

f;g

(0) =

2

n

� 2(l + s� 2w)(2

n

2

� 1).

Proof : For the Dillon type funtions f; g 2 F

n

, omparing the interleaved sequenes

S(f(x)) and S(g(x)) we obtain: jH

f

0

\H

g

0

j = 2

r

+w+1�s� l = w

0;0

, jH

f

0

\H

g

1

j = s�w =

w

0;1

, jH

f

1

\H

g

0

j = l � w = w

1;0

, jH

f

1

\H

g

1

j = w = w

1;1

. Let � 2 V

k

and V

k

2 H

�

\H

�

. By

lemmas 2, 3.

1. If V

k

2 H

f

�

\H

g

�

then [C

f;g

(�)℄

V

k

= (�1)

�+�

2

r

+ 2(�+ �)� 8��.

2. If V

i

2 H

f

a

\H

g

b

then

[C

f;g

(�)℄

V

i

= ((�1)

b

(2

r

� 2l) + 2(a+ b� 2ab))(�

�

0;0

+ �

�

0;1

)

+(�1)

b

(2

r

� 2l + 2(a+ b))(�

�

1;0

+ �

�

1;1

):

The rossorrelation of f , g at � is given by

C

f;g

(�) =

X

x2GF (2

n

)

(�1)

f(x+�)+g(x)

= (�2

r

)(�1)

f(�)+g(0)

+

2

r

X

i=0

[C

f;g

(�)℄

V

i

= (�2

r

)(�1)

f(�)+g(0)

+ [C

f;g

(�)℄

V

k

+

1

X

a=0

1

X

b=0

X

V

i

2H

f

a

\H

g

b

;i 6=k

[C

f;g

(�)℄

V

i

= (�2

r

)(�1)

f(�)+g(0)

+ ((�1)

�+�

2

r

+ 2(�+ �)� 8��)

+

1

X

a=0

1

X

b=0

(w

a;b

� �

�

a;b

)(((�1)

b

(2

r

� 2l) + 2(a+ b� 2ab))(�

�

0;0

+ �

�

0;1

)

+(�1)

b

(2

r

� 2l + 2(a+ b))(�

�

1;0

+ �

�

1;1

)):

Sine the set V

k

is ontained in one of the disjoint sets H

f

0

\ H

g

0

, H

f

0

\ H

g

1

, H

f

1

\ H

g

0

,

H

f

1

\H

g

1

, all the possible values of (�; �) are (0; 0), (0; 1), (1; 0) and (1; 1).

By putting all possible values of (�; �) that is (0; 0), (0; 1), (1; 0) and (1; 1) we obtain

the four rossorrelation values given above. Details of the alulation is given below.

Case 1. If � = 0, � = 0 then �

�

00

= 1, �

�

01

= 0, �

�

10

= 0, �

�

11

= 0. Therefore rossorrelation

value is:

�2

r

+2

r

+w(�2

r

+2l)+(l�w)(2

r

�2l+2)+(s�w)(�2

r

+2l+2)+(2

r

+w�s� l)(2

r

�2l)

= 2l + 2s� 4w + (2

r

� 2s)(2

r

� 2l):

In the partiular ase l = s = 2

r�1

the rossorrelation value is 2

r+1

� 4w.

Case 2. If � = 0, � = 1 then �

�

00

= 0, �

�

01

= 1, �

�

10

= 0, �

�

11

= 0. Therefore the

rossorrelation value is:

�2

r

� 2

r

+ 2 + w(�2

r

+ 2l) + (l � w)(2

r

� 2l + 2) + (s� w � 1)(�2

r

+ 2l + 2)

9



+(2

r

+ 1 + w � s� l)(2

r

� 2l) = �2

r+1

+ 2l + 2s� 4w + (2

r

� 2l)(2

r

� 2s+ 2):

In the partiular ase l = s = 2

r�1

the rossorrelation value is �4w.

Case 3. If � = 1, � = 0 then then �

�

00

= 0, �

�

01

= 0, �

�

10

= 1, �

�

11

= 0. Therefore the

rossorrelation values are:

(2

r

) + (�2

r

+ 2) + (w)(�2

r

+ 2l � 4) + (l � w � 1)(2

r

� 2l + 2) + (s� w)(�2

r

+ 2l � 2)

+(2

r

+ 1 + w � s� l)(2

r

� 2l) = �4w � 2s+ 2l + (2

r

� 2s)(2

r

� 2l)

In the partiular ase l = s = 2

r�1

the rossorrelation value is �4w.

Case 4. If � = 1, � = 1 then �

�

00

= 0, �

�

01

= 0, �

�

10

= 0, �

�

11

= 1. Therefore the

rossorrelation value is:

(2

r

) + (2

r

� 4) + (w � 1)(�2

r

+ 2l � 4) + (l � w)(2

r

� 2l + 2) + (s� w)(�2

r

+ 2l � 2)

+(2

r

+ 1 + w � s� l)(2

r

� 2l) = 2

r+1

+ 2l � 4w � 2s+ (2

r

� 2l)(2

r

+ 2� 2s):

In the partiular ase l = s = 2

r�1

the rossorrelation value is 2

r+1

� 4w.

Note that C

f;g

(0) =

P

x2GF (2

n

)

(�1)

f(x)+g(x)

, whih is 2

n

� 2wt(f(x) + g(x))) and the

further alulation is routine.

Corollary 3 If f; g 2 F

n

and both are Dillon type bent then the rossorrelation spetra

between f; g an be at most 3-valued. In partiular, C

f;g

(�) at any nonzero � 2 GF (2

n

) an

have only two values 2

n

2

+1

� 4w or �4w, where w has the usual meaning as in Theorem 2

and the maximum absolute value is � 2

n

2

+1

. Further C

f;g

(0) = 2

n

� 2(2

n

2

� 2w)(2

n

2

� 1).

Proof : We reall that any funtion f 2 F

n

is a Dillon type bent if its (2

r

+ 1; 2

r

� 1)-

interleaved sequene onsists of only all zero olumns and all one olumns and the number

of all one olumns is 2

r�1

. Thus, l = s = 2

r�1

. Putting these values in 2l+2s� 4w+(2

r

�

2s)(2

r

�2l), �2

r+1

+2l+2s�4w+(2

r

�2l)(2

r

�2s+2), �4w�2s+2l+(2

r

�2s)(2

r

�2l),

2

r+1

+ 2l � 4w � 2s + (2

r

� 2l)(2

r

+ 2� 2s) as mentioned in Theorem 2, we get only two

distint values, namely, 2

r+1

� 4w or �4w. Now, 0 � w � minfl; sg, i.e., 0 � w � 2

r�1

.

Hene, the maximum absolute value of the rossorrelation spetra at nonzero point is at

most 2

n

2

+1

. The value of C

f;g

(0) also follows from Theorem 2.

If f; g are Dillon type bent funtions, then diret sum of f; g is also Dillon type if and

only if w = 2

r�2

. By Corollary 3 the possible rossorrelation values of f and g at any �

is �2

r

= �2

n

2

. This result agrees with the result of Theorem 1 whih is a more general

result for bent funtions.

2.2 Generalized Autoorrelation

In [22℄, Youssef and Gong introdued generalized nonlinearity of Boolean funtions and

studied the Dillon type funtions under this framework. Instead of the set of all aÆne fun-

tions, they onsidered the set fTr

n

1

(�x



)+�j� 2 GF (2

n

); � 2 GF (2);  is oprime to 2

n

�1g
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and de�ned the generalized nonlinearity of a funtion f 2 F

n

as the distane of the fun-

tion from the above set. The funtions of the form Tr

n

1

(�x



) where � 2 GF (2

n

) and

 is oprime to 2

n

� 1 are alled bijetive monomials. Clearly the linear funtions are

also bijetive monomials. They also extended Walsh Hadamard transform as, W

f

(�; ) =

P

x2GF (2

n

)

(�1)

Tr

n

1

(�x



)+f(x)

; where  is oprime to 2

n

� 1. The generalized nonlinearity of

f 2 F

n

was de�ned as nlg(f) = 2

n�1

�

1

2

max

�2GF (2

n

);gd(;2

n

�1)=1

jw

f

(�; )j: The bent fun-

tions whose generalized nonlinearity equals the nonlinearity are alled hyper-bent funtions.

The lass of hyper-bent funtions are more restrited than the lass of bent funtions. The

sublass of hyper-bent funtions desribed in [22℄ are the Dillon type bent funtions as

pointed out by Carlet [22℄.

We de�ne generalized autoorrelation the analogue of autoorrelation in this set up and

show that unlike autoorrelation for bent funtions, for hyper-bent funtions generalized

autoorrelation need not be always zero. Suppose U(2

n

�1) is the set of all positive integers

oprime to 2

n

� 1.

De�nition 4 The generalized autoorrelation of a funtion f 2 F

n

at � 2 GF (2

n

) and

 2 U(2

n

� 1) is de�ned as �

f

(�; ) =

P

x2GF (2

n

)

(�1)

f(x)+f(x



+�)

:

It is desirable that the generalized autoorrelation of a funtion is low for all values of � and

, that is, max

�2GF (2

n

);2U(2

n

�1)

j�

f

(�; )j is low (exept the ases � = 0 when f(x); f(x



)

are idential).

Let f(x) be a Dillon type bent funtion (same as hyperbent funtion onstruted by

Youssef and Gong [22℄). For any  2 U(2

n

� 1), f(x



) is also a Dillon type bent funtion.

Proposition 3 Let f(x) be a Dillon type funtion on n = 2r variables. If  � 

1

mod 2

r

+1

for ; 

1

2 U(2

n

� 1) then f(x



) = f(x



1

).

Proof : If f(x) is a Dillon type funtion then f(x) an be written as g(x

2

r

�1

). Suppose

; 

1

2 U(2

n

�1) are suh that  � 

1

mod 2

r

+1, that is  = 

1

+ q(2

r

+1) for some integer

q. Then f(x



) = f(x



1

+q(2

r

+1)

) = g(x



1

(2

r

�1)

) = f(x



1

).

De�nition 5 Let n = 2r. For ; 

1

2 U(2

n

� 1),  is related to 

1

if and only if  �



1

mod 2

r

+1. This partitions the set U(2

n

�1) in distint equivalene lasses. By L(2

n

�1),

we denote the set of smallest elements from eah equivalene lass.

Note that the autoorrelation property of any bent funtion is known [15℄, i.e., �

f

(�;  =

1) = 0 for all nonzero � 2 GF (2

n

). Thus we will be interested in the generalized spetra

even when  6= 1. Based on this disussion and Proposition 3, it is enough to disuss

the generalized autoorrelation of a Dillon type bent funtion f 2 F

n

at � 2 GF (2

n

) and

 2 L(2

n

�1)nf1g. Now we have the following result related to generalized autoorrelation

spetra of Dillon type bent funtions, i.e., Youssef and Gong type hyper-bent funtions.

Lemma 4 Let f(x) 2 F

n

be a Dillon type bent funtion. Then for  2 L(2

n

� 1) n f1g,

�

f

(�; ) = 2

n

2

+1

� 4w



or �4w



, for nonzero � 2 GF (2

n

),

= 2

n

� 2(2

n

2

� 2w



)(2

n

2

� 1) for � = 0,

11



where w



is the number of all one olumns of S(f(x)) that gets added to all one olumns

of S(f(x



)) in S(f(x)) + S(f(x



)) as in Theorem 2. Further �

f

(�; ) � 2

n

2

+1

for nonzero

�. In addition, if f(x) + f(x



) is bent, then �

f

(�; ) = �2

n

2

.

Proof : From Proposition 2 it follows that f(x) is Dillon type bent if and only if f(x



) is

Dillon type bent. Then the result follows from Corollary 3. The last result follows from

the last result of Theorem 1. That we need to vary  only in L(2

n

� 1) n f1g follows from

Proposition 3.

It is now important to see whether there is any Dillon type bent funtion so that either

(i) f(x)+f(x



) is bent or (ii) f(x) = f(x



) for all  2 L(2

n

�1)nf1g. The reason is, in ase

suh a funtion f(x) exists, j�

f

(�; )j an take values 0;�2

n

2

(exept the ases � = 0 when

f(x); f(x



) are idential). This is learly the best possible generalized autoorrelation

spetra for a Dillon type (hyper) bent funtion. We experimentally heked that suh

Dillon type bent funtions are available for n = 4; 6, but not available for n = 8. It is

open whether suh funtions are available for even n � 10, though given the ombinatorial

restrition on these funtions, it is unlikely that suh funtions exist.

2.3 Charater Sums

In this setion we show that the rossorrelation results on Dillon type bent funtions

have important onsequenes in improving the upper bound on the absolute values of Weil

sums [21, 19, 12℄ for a partiular lass of polynomials. Additive harater of GF (p

n

) is a

homomorphism from GF (p

n

) into the set of all omplex numbers with absolute value 1.

The additive harater �

1

(x) = e

2�iTr(x)

p

is alled the anonial additive harater, where

Tr(x) = x+x

p

+x

p

2

+ : : :+x

p

n�1

. It is well known that [10℄ for any additive harater � of

GF (p

n

) there exists some �xed a 2 GF (p

n

) suh that �(x) = �

1

(ax) for all x 2 GF (p

n

).

In ase p = 2 the anonial additive harater takes the form �

1

(x) = (�1)

Tr(x)

. If �

is a nontrivial additive harater of the �eld GF (p

n

) and g(x) 2 GF (p

n

)[x℄ of degree

deg(g(x)). It is well known [21, 19℄ that

�

�

�

P

x2GF (p

n

)

�(g(x))

�

�

� � (deg(g(x)) � 1)p

n

2

, where

gd(deg(g(x)); p) = 1. We shall refer to the sum

P

x2GF (p

n

)

�(g(x)) as the Weil sum for

g(x) and the above upper bound as the Weil bound. Mullen and Shparlinski [12℄ have

mentioned the problem of evaluating the upper bounds of the absolute value of the Weil

sum for speial �elds and polynomials. Several suh bounds are desribed in [18, 20℄. We

here haraterize a lass of polynomials for whih the Weil bound is improved.

Lemma 5 Let n be an even positive integer. There exists nonzero � 2 GF (2

n

2

) suh that

�

�

�

�

�

�

X

x2GF (2

n

)

�

1

(�(

i

(x)

2

n

2

�1

+ 

j

(x + Æ)

2

n

2

�1

))

�

�

�

�

�

�

� 2

n

2

+1

;

for nonzero Æ 2 GF (2

n

).

Proof : For even n = 2r, let  be a generator of the yli group of order 2

r

+1. Lahaud

and Wolfmann [9℄ have proved that there exists � 2 GF (2

r

) suh that f

j

(x) = Tr(�

j

x

2

r

�1

)

12



is bent (basially Dillon type) for all 0 � j � 2

r

(see also [1℄). From Corollary 3, if i 6= j

then

�

�

�

P

x2GF (2

n

)

(�1)

f

i

(x)+f

j

(x+Æ)

�

�

� =

�

�

�

P

x2GF (2

n

)

(�1)

Tr(�

i

x

2

r

�1

)+Tr(�

j

(x+Æ)

2

r

�1

)

�

�

� � 2

r+1

:

The result in Lemma 5 improves the Weil bound for this lass of polynomial. Note that

deg(�(

i

x

2

n

2

�1

+ 

j

(x+ Æ)

2

n

2

�1

)) = 2

n

2

� 1

for i 6= j. So Weil bound gives,

j

X

x2GF (2

n

)

�

1

(�(

i

x

2

n

2

�1

+ 

j

(x+ Æ)

2

n

2

�1

))j � (2

n

2

� 2)2

n

2

= 2

n

� 2

n

2

+1

;

for nonzero Æ 2 GF (2

n

). Our result is muh more improved for anonial additive harater

and for this speial lass of polynomials.

Let us denote the �rst row of S(Tr(�x

2

n

2

�1

)) by R

�

and the number of 1's in R

�

as

wt(R

�

). It follows from [9, Theorem 6.6℄ that 2

n

2

�1

� min

�2GF (2

n

)

�

wt(R

�

) � 2

n

4

+ 1 and

max

�2GF (2

n

)

�

wt(R

�

) � 2

n

2

�1

� 2

n

4

+ 1. However, it seems that the bound is muh better

in pratie as is shown by the following experimental result for even n, 4 � n � 24.

n 4 6 8 10 12 14 16 18 20 22 24

min

�2GF (2

n

)

�

wt(R

�

) 2 2 6 12 26 54 114 234 482 980 1986

2

n

2

�1

2 4 8 16 32 64 128 256 512 1024 2048

max

�2GF (2

n

)

�

wt(R

�

) 4 6 12 22 40 74 144 278 544 1068 2112

We observe that 2

n

2

�1

�min

�2GF (2

n

)

�

wt(R

�

) and max

�2GF (2

n

)

�

wt(R

�

)� 2

n

2

�1

are both

� nblog

2

n for even n, 4 � n � 24, whih is muh better than 2

n

4

+1 that has been proved

in [9℄. However, we will use the result of [9℄ to present a more general statement than

Lemma 5, though the bound is little bit weaker.

Theorem 3 Let n be an even positive integer. For any �; �; Æ 2 GF (2

n

)

�

,

�

�

�

�

�

�

X

x2GF (2

n

)

�

1

(�(x)

2

n

2

�1

+ �(x+ Æ)

2

n

2

�1

)

�

�

�

�

�

�

� 8 � 2

n

2

+ 20 � 2

n

4

+ 16:

Proof : Consider that for any � 2 GF (2

n

)

�

, jwt(R

�

) � 2

n

2

�1

j � v. Now onsider two

Dillon type funtions f; g (may not be bent) on n variables, suh that the �rst row of their

interleaved sequenes S(f(x)); S(g(x)) are R

�

; R

�

respetively. Following the notation of

Theorem 2, it an be heked that maximum absolute value of C

f;g

(Æ) � 4v

2

+12v+ 2

r+2

,

for n = 2r. It follows from [9, Theorem 6.6℄ that v � 2

n

4

+ 1. Hene the result.

The result in Theorem 3 improves the Weil bound for this lass of polynomial. Note

that deg(�(x)

2

n

2

�1

+ �(x+ Æ)

2

n

2

�1

) = 2

n

2

� 1 for � 6= �. Thus Weil bound gives the value

2

n

�2

n

2

+1

for nonzero Æ 2 GF (2

n

). Our result is muh more improved for anonial additive

harater and for this extended lass of polynomials than in Lemma 5.
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Corollary 4 Let n be an even positive integer. For any �; �; Æ 2 GF (2

n

)

�

,

j

X

x2GF (2

n

)

�(�(x)

2

n

2

�1

+ �(x + Æ)

2

n

2

�1

)j � 8 � 2

n

2

+ 20 � 2

n

4

+ 16;

for any nontrivial additive harater � of GF (2

n

).

Proof : The proof is diret from the fat that Theorem 3 is true for any �; � 2 GF (2

n

)

and the relationship between any additive harater to the anonial additive harater

de�ned on a �nite �eld.

Finally we prove the following result.

Corollary 5 Let n be an even positive integer. Let p(x) 2 GF (2

n

)[x℄ be a polynomial of

the form p(x) = �x

2

n

2

�1

+ x

2

n

2

�2

+ x

2

n

2

�3

+ : : : + x + 1, where 1 6= � 2 GF (2

n

)

�

. Then

for any nontrivial additive harater � of GF (2

n

) the Weil sum j

P

x2GF (2

n

)

�(p(x))j �

8 � 2

n

2

+ 20 � 2

n

4

+ 16:

Proof : The proof follows from

j

X

x2GF (2

n

)

�(�x

2

n

2

�1

+x

2

n

2

�2

+x

2

n

2

�3

+ : : :+x+1)j = j

X

x2GF (2

n

)

�((x+1)

2

n

2

�1

+(�+1)x

2

n

2

�1

)j

and Corollary 4.

3 Results on Patterson-Wiedemann type funtions

Patterson and Wiedemann [13, 14℄ extended the onept introdued by Dillon when the

number of input variables n is odd and sueeded in �nding out funtions having non-

linearity stritly greater than 2

n�1

� 2

n�1

2

for odd n � 15. This result is pioneering as

this is the �rst instane when suh a high nonlinearity has been demonstrated and further

till date there is no other strategy to get suh funtions. Later in [11℄ these funtions

have been hanged heuristially to get highly nonlinear balaned funtions. Also it has

been noted in [11℄ that the autoorrelation spetra of Patterson-Wiedemann funtions are

very nie and some theoretial justi�ation in this diretion has been provided reently

in [6℄. In this setion we present rossorrelation results for Patterson-Wiedemann type

funtions and provide a more generalized framework than what obtained in [6℄. In fat

our results provide some justi�ation why the maximum absolute value in the autoorre-

lation spetra of Patterson-Wiedemann type funtions are very low. We also desribe this

onstrution using interleaved sequene as was exploited in [6℄. Now we formally desribe

Patterson-Wiedemann onstrution using interleaved sequene.

De�nition 6 Let n be a positive odd integer suh that n = tq, where both t and q are primes

and t > q. Let K = GF (2

t

)

�

�GF (2

q

)

�

be the yli group of order k = (2

t

� 1)(2

q

� 1) in

GF (2

n

). Let h�

2

i be the group of Frobenius automorphisms where �

2

: GF (2

n

) �! GF (2

n

)

is de�ned by x 7! x

2

. We all a funtion f 2 F

n

Patterson-Wiedemann (PW) type if it is

invariant under the ation of both K and h�

2

i.
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Suppose d =

2

n

�1

2

t

�1

and d

1

=

2

n

�1

k

. The equivalene relation denoted by �

d

1

is de�ned as

follows:

i�

d

1

j , there exists a positive integer s suh that i � 2

s

j mod d

1

:

Now from De�nition 6, it is lear that (d

1

; k)-interleaved sequene of a PW funtion onsists

of only all 0 or all 1 olumns. Further the olumns in eah equivalene lass with respet

to �

d

1

have the same value.

In order to ompute the distane of a funtion of the above type from a linear funtion

Tr

n

1

(�x) where � 2 GF (2

n

) the (d; 2

t

� 1)-interleaved sequene of both the funtions (the

PW one and the linear one) are to be onsidered.

1. In a (d; 2

t

�1)-interleaved sequene of Tr

n

1

(�x) with resepet of any primitive element

�, the weight of eah olumn is either 2

t�1

or 0. It is also known that the number of

zero olumns is d� 2

n�t

.

2. Sine GF (2

t

)

�

� K, S

(d;2

t

�1)

(f(x); �) onsists of all one olumns and all zero olumns

only.

Beause of this by using (d; 2

t

� 1)-interleaved sequenes one an ompute the distanes

of f(x) and Tr

n

1

(�x) and the nonlinearity of the funtion an be omputed (see [6℄ for

more details). It has been shown in [6℄ that W

f

(�

i

) = W

f

(�

j

) if i�

d

1

j. Thus the maximum

number of distint Walsh transform values of f(x), at nonzero points, is r, where r is the

number of equivalene lasses when �

d

1

ats on f0; : : : ; 2

n

� 2g. In [6℄, 

i;j

is de�ned as the

number of all zero olumns of the (d; 2

t

� 1)-interleaved sequene of Tr

n

1

(�

i

x) that are in

the j-th (0 � j � r � 1) equivalene lass orresponding to �

d

1

.

Theorem 4 Let f; g be two PW type funtions on n-variables and the Walsh transform

values of f; g at eah point of the j-th equivalene lass be w(f; j); w(g; j) respetively.

Then C

f;g

(�

i

) =

1

2

n

[

P

r�1

j=0

(2

t



i;j

� b

j

)w(f; j)w(g; j) +W

f

(0)W

g

(0)℄; where b

j

is the number

of elements in the j-th equivalene lass of �

d

1

when it is de�ned on the set f0; 1; : : : ; d�1g.

Further the additive rossorrelation spetra ontains at most r distint values at nonzero

points (at most r + 1 inluding the zero point).

Proof : If � is a primitive element of GF (2

n

) then all the elements of GF (2

n

)

�

an be

written as powers of �. We know that all these elements are partitioned into r equivalene

lasses by �

d

1

. Walsh transform values at the elements from the same equivalene lass are

same [6℄. From [17℄, we have the result C

f;g

(�

i

) = 2

�n

P

x2GF (2

n

)

W

f

(x)W

g

(x)(�1)

Tr(�

i

x)

.

Note that both

fW

f

(�

0

)W

g

(�

0

);W

f

(�

1

)W

g

(�

1

); : : : ;W

f

(�

2

n

�2

)W

g

(�

2

n

�2

)g

and

f(�1)

Tr(�

i

�

0

)

; (�1)

Tr(�

i

�

1

)

; : : : ; (�1)

Tr(�

i

�

2

n

�2

)

g
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an be written as (d; 2

t

� 1)-interleaved sequenes. Denote them by

^

W (f(x); g(x)) and

L(Tr(�

i

x)) respetively.

When a olumn from the j-th equivalene lass

^

W (f(x); g(x)) is element wise multiplied

to an `all one' olumn of the (d; 2

t

�1)-interleaved sequene of (�1)

Tr(�

i

x)

, L(Tr(�

i

x)), and

all the produts are added we get (2

t

� 1)w(f; j)w(g; j). Sine there are 

i;j

olumns of the

j-th lass that get multiplied to `all one' olumns of L(Tr(�

i

x)) the total ontribution from

this soure by summing over all the equivalene lasses is

P

r�1

j=0



i;j

(2

t

� 1)w(f; j)w(g; j):

Rest of the b

j

�

i;j

olumns of the j-th equivalene lass of

^

W (f(x); g(x)) get multiplied

to the `mixed' olumns of L(Tr(�

i

x)). These olumns of L(Tr(�

i

x)) ontain 2

t�1

, �1's and

2

t�1

�1, 1's. Thus when we take the sum of the produts (after element wise multipliation)

we obtain (b

j

�

i;j

)(�w(f; j)w(g; j)). Summing over all the equivalene lasses we get total

ontribution from this soure as,

P

r�1

j=0

(b

j

� 

i;j

)(�w(f; j)w(g; j)):

Thus the rossorrelation C

f;g

(�

i

) of the Patterson-Wiedemann type funtions at �

i

is

C

f;g

(�

i

) =

1

2

n

[

r�1

X

j=0



i;j

(2

t

� 1)w(f; j)w(g; j) +

r�1

X

j=0

(b

j

� 

i;j

)(�w(f; j)w(g; j)) +W

f

(0)W

g

(0)℄;

that is,

C

f;g

(�

i

) =

1

2

n

[

r�1

X

j=0

(2

t



i;j

� b

j

)w(f; j)w(g; j) +W

f

(0)W

g

(0)℄:

Next we show that the number of distint rossorrelation values is r. It is enough to

show that if i�

d

1

l then 

i;j

= 

l;j

. Suppose the olumn number e in the j-th equivalene lass

is suh that Tr

n

1

(�

i

�

e+�d

) = 0 for all � = 0; 1; : : : ; 2

t

�2; that is in the (d; 2

t

�1)-interleaved

sequene of Tr

n

1

(�

i

x) the e th olumn is 0.

i�

d

1

l ) i = 2

k

l + �d

1

. From this we obtain

Tr

n

1

(�

2

k

l+�d

1

�

e+�d

) = Tr

n

1

(�

2

k

l

�

(e+�d

1

)+�d

)

= Tr

n

1

(�

l

�

2

n�k

(e+�d

1

)+�2

n�k

d

):

Sine � 7! (�2

n�k

)%(2

t

� 1) is a permutation on f0; 1; : : : ; 2

t

� 2g, the 2

n�k

(e + �d

1

)%d-

th olumn of the (d; 2

t�1

)-interleaved sequene of Tr

n

1

(�

l

x) is all zero.It an be diretly

heked that this olumn number is in the j th equivalene lass.

It is also lear that if e

1

� e

2

mod d then 2

n�k

(e

1

+ �d

1

)%d = 2

n�k

(e

2

+ �d

1

)%d. Thus



i;j

� 

l;j

. Similarly it an be shown that 

l;j

� 

i;j

. Hene 

l;j

= 

i;j

. Thus while omputing

rossorrelation it is enough to ompute C

f;g

(�

i

) by hoosing one i from eah equivalene

lass of �

d

1

. Thus there an be atmost r distint values of rossorrelation at nonzero

points. At 0, C

f;g

(0) =

P

x2GF (2

n

)

(�1)

f(x)+g(x)

= 2

n

� 2wt(f(x) + g(x)).

Patterson-Wiedemann obtained two funtions (upto omplementation and aÆne trans-

form) for n = 15 whih posses nonlinearity 16276. Call these funtions f; g. Note that

C

f;g

(0) = 6728. Now we alulate the rossorrelation spetra at the nonzero points. There

are r = 11 equivalene lasses and the values at eah of the lasses are as follows: 904, 280,

184, 136, 40, 8, -8, -104, -152, -184, -248.
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To get the autoorrelation spetra of PW type funtions we put f = g and obtain,

�

f

(�

i

) = C

f;f

(�

i

) =

1

2

n

2

4

r�1

X

j=0

(2

t



i;j

� b

j

)w(f; j)

2

+W

f

(0)

2

3

5

:

It is lear that the spetra is at most r-valued at the nonzero points. This has been proved

in [6℄ independently using a di�erent tehnique. Here, this is a onsequene of a more

general rossorrelation result as desribed in Theorem 4.

It has been experimentally heked in [11℄ that the maximum absolute value in the

autoorrelation spetra is very low (only 160) for the two highly nonlinear PW type fun-

tions and till date there is no lear answer why these should be so low (even the theoretial

analysis in [6℄ does not provide a lear answer). Note that as the nonlinearity of the these

funtions are very high, the Walsh transform values are low. It is now interesting to study

the following expression that appears in Theorem 4:

r�1

X

j=0

(2

t



i;j

� b

j

) = 2

t

r�1

X

j=0



i;j

�

r�1

X

j=0

b

j

= 2

t

(

2

n

� 1

2

t

� 1

� 2

n�t

)�

2

n

� 1

2

t

� 1

= 2

n

� 1� 2

n

= �1:

Note that, if we onsider the Walsh spetra values are almost onstant, this gives the reason

why the funtions of this type have very low autoorrelation values.

Referenes

[1℄ A. Canteaut and P. Charpin. Deomposing Bent Funtions. IEEE Transations on

Information Theory, August, 2003.

[2℄ C. Carlet. Reent results on binary bent funtions. In International Conferene on

Combinatoris, Information Theory and Statistis, 1997.

[3℄ C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers. Number

561 in Leture Notes in Computer Siene. Springer-Verlag, 1991.

[4℄ J. F. Dillon. Elementary Hadamard Di�erene sets. PhD Thesis, University of Mary-

land, 1974.

[5℄ J. F. Dillon. Elementary Hadamard di�erene sets. In Proeedings of 6th S. E. Con-

ferene of Combinatoris, Graph Theory, and Computing. Utility Mathematis, Win-

nipeg, Pages 237{249, 1975.

[6℄ S. Gangopadhyay, P. H. Keskar and S. Maitra. Patterson-Wiedemann funtions

revisited. Web address: http://eprint.iar.org/, Report no. 2003/176.

[7℄ G. Gong. Theory and appliations of q-ary interleaved sequenes. IEEE Transations

on Information Theory, 41(2):400{411, 1995.

17



[8℄ G. Gong and S. W. Golomb. Transform domain analysis of DES. IEEE Transations

on Information Theory, 45(6):2065{2073, September 1999.

[9℄ G. Lahaud and J. Wolfmann. The weights of the orthogonal of the extended quadrati

binary Goppa odes. IEEE Transations on Information Theory, 36(3):686{692,

September 1990.

[10℄ R. Lidl and H. Niederreiter. Introdution to �nite �elds and their appliations. Cam-

bridge University Press, 1994.

[11℄ S. Maitra and P. Sarkar. Modi�ations of Patterson-Wiedemann funtions for ryp-

tographi appliations. IEEE Transations on Information Theory, 48(1):278{284,

January 2002.

[12℄ G. L. Mullen, I. E. Shparlinski. Open Problems and Conjetures in �nite �elds. LMS

Leture Notes Series, vol. 233, pages 243 - 268, 1996.

[13℄ N. J. Patterson and D. H. Wiedemann. The overing radius of the (2

15

; 16) Reed-Muller

ode is at least 16276. IEEE Transations on Information Theory, IT-29(3):354{356,

1983.

[14℄ N. J. Patterson and D. H. Wiedemann. Corretion to - the overing radius of the

(2

15

; 16) Reed-Muller ode is at least 16276. IEEE Transations on Information The-

ory, IT-36(2):443, 1990.

[15℄ O. S. Rothaus. On bent funtions. Journal of Combinatorial Theory, Series A, 20:300{

305, 1976.

[16℄ P. Sarkar and S. Maitra. Constrution of nonlinear Boolean funtions with important

ryptographi properties. In Advanes in Cryptology - EUROCRYPT 2000, number

1807 in Leture Notes in Computer Siene, pages 485{506. Springer Verlag, May

2000.

[17℄ P. Sarkar and S. Maitra. Cross-Correlation Analysis of Cryptographially Useful

Boolean Funtions and S-boxes. Theory of Computing Systems, 35(1):39{57, 2002.

[18℄ I. E. Shparlinski. Computational and algorithmi problems in �nite �elds. Kluwer

Aad. Publ., Dordreht, The Netherlands, 1992.

[19℄ S. A. Stepanov. Arithmeti of Algebrai Curves. Plenum, New York 1994.

[20℄ S. A. Stepanov. Charater sums and oding theory. LMS Let. Notes Series 233, pp.

355{378, 1996.

[21℄ A. Weil. On some exponential sums. Pro. Nat. Aad. Si. U.S.A. 1948, 34 pp. 204 -

207.

18



[22℄ A. Youssef and G. Gong. Hyper-bent Funtions. In Advanes in Cryptology, Eurorypt

2001, Leture Notes in Computer Siene, Number 2045, Pages 406{419, Springer-

Verlag, 2001.

19


