
A Synchronous Model for Multi-Party Computation and the

Incompleteness of Oblivious Transfer

Dennis Hofheinz and Jörn Müller-Quade

IAKS, Arbeitsgruppe Systemsicherheit,
Prof. Dr. Th. Beth,

Fakultät für Informatik, Universität Karlsruhe,
Am Fasanengarten 5, 76 131 Karlsruhe, Germany

Abstract. This work develops a composable notion of security in a synchronous communication net-
work to analyze cryptographic primitives and protocols in a reliable network with guaranteed delivery.
In such a synchronous model the abort of protocols must be handled explicitly. It is shown that a
version of global bit commitment which allows to identify parties that did not give proper input cannot
be securely realized with the primitives oblivious transfer and broadcast. This proves that the primitives
oblivious transfer and broadcast are not complete in our synchronous model of security.
In the synchronous model presented ideal functionalities as well as parties can be equipped with a
“shell” which can delay communication until the adversary allows delivery or the number of rounds
since the shell received the message exceeds a specified threshold. This additionally allows asynchronous
specification of ideal functionalities and allows to model a network where messages are not necessarily
delivered in the right order. If these latency times are chosen to be infinite the network is no more
reliable and becomes completely asynchronous. It is shown that secure protocols in the setting of [Can01]
or [CLOS02] can be transformed to secure realizations in the new model if latency times are chosen to
be infinite.

1 Introduction

In this contribution it is proven that in a communication network in which message delivery is
guaranteed and participating parties are periodically activated, oblivious transfer together with a
broadcast primitive are not complete for secure multi-party computations.

To show this separation between security in reliable networks and security in completely asyn-
chronous networks a new synchronous model is developed. In addition to the properties of the
synchronous models of [Can00] the new model allows very general composition of protocols along
the line of the asynchronous settings [Can01,PW01]. The new model is a synchronous varia-
tion of [Can01] (for a relation, cf. Section 2.5). It differs from the synchronous variant sketched
in [Can01], which was not suitable for our purpose as it does not guarantee activation of ideal
functionalities in each round.

It might have been possible to formulate our main result in the frameworks of [PW01,PW00].
Yet since machine modeling and scheduling there differs substantially from that in [Can01,CLOS02],
it would be difficult to compare our result to established realizability results in the latter settings:
Our goal is to point out the importance of reliability assumptions on a network for deducing
hierarchies of primitives, and to relate our result to results derived for the asynchronous modelings
of [Can01,CLOS02].

Our new model shares with the aforementioned notions of security the concept of simulatability.
Intuitively, this means that a given protocol is compared to an idealization of the protocol task
in question and considered secure if no difference can be detected by any protocol environment,
or, an arbitrary user. There is already a (positive and constructive) general realizability result
for protocol tasks in a synchronous variant of the setting [Can01], cf. [Can01, Theorem 9 of full
version]. Another realizability result was established in [CLOS02], again for a slight (asynchronous)

variation of the setting of [Can01]. Specifically, [CLOS02] present a protocol construction with
which general reactive ideal functionalities (i. e., idealizations of protocol tasks) can be securely
realized, given only a common reference string. (A common reference string, ideally drawn from a
fixed distribution, can be considered an idealization of a public set-up information.)

However, the setting of [Can01] (and the mentioned variations) does not allow to formulate
“timeouts” or functionalities which guarantee certain response times. In consequence, even secure
protocols in that sense may “get stuck” or “hang” in face of corrupted parties, even if all protocol
messages of the uncorrupted parties get delivered immediately.1 Thus, we believe it is reason-
able to investigate—in a simulatability-based setting—security properties of functionalities which
do guarantee service. In Section 2, we therefore present a synchronous modeling of multi-party
computation, along with a very general composition theorem and a result allowing to carry over re-
alizability results established in the settings of [Can01,CLOS02] into our setting.2 In the new model
tools are provided to catch reliable or even asynchronous networks in our setting. In particular, we
show that a protocol realizing a certain ideal functionality in the settings [Can01,CLOS02] realizes
a similar functionality in our setting, yet one in which it is made explicit that no response can be
guaranteed.

However, properties like guaranteed output and explicit abort can be especially important for
real world applications—e. g., an electronic election or an electronic auction should not “hang”, but
should be robust to attacks like the one presented here.

If output is to be guaranteed, then aborting protocols must be handled explicitly. A synchronous,
i. e., a completely reliable network allows to distinguish different kinds of abort—the most interest-
ing of which is the abort with cheater identification. A commitment of one party to all parties to
the same bit (a global bit commitment) becomes more challenging in a synchronous network as the
ideal functionality aborts only if the committer refused to commit. Hence this protocol allows for
cheater identification. To make this strong contrast to the asynchronous setting explicit we prove
that it is not possible to securely implement a global bit commitment in our synchronous model
given the cryptographic primitives of oblivious transfer and broadcast.

2 The modeling

2.1 Real and Hybrid Model

The real model is an abstraction of a malicious protocol environment as one would expect it in
reality. Thus, a real-model adversary may read all messages sent between parties, or corrupt parties
and then control their behavior. The hybrid model is a real model in which parties are additionally
offered blackbox access to idealizations of (sub)protocols, henceforth called ideal functionalities.

All parties, adversaries and ideal functionalities are modelled as interactive Turing machines
(ITMs) (cf. [Can01]). An ITM has read-only tapes for incoming communication and local input,
write-once tapes for outgoing communication and local output, a work tape, a one-bit activation
tape, a read-only random tape and read-only tapes containing machine identity and security pa-
rameter, respectively. Unless explicitly noted, any ITM mentioned in this work is assumed to be
polynomially bounded in the sense that no matter with which tape contents activated, it terminates

1 For the framework of [PW01], this problem was addressed in [BPSW02].
2 Here we would like to stress that for the proofs of our Lemma 3, Theorems 4,5 and Proposition 7, we adopted

ideas already appearing in the works [PW00,Can01,PW01,Bac03]; yet of course, we had to adapt these ideas to
our specific setting.

2

this activation within p(k) steps (i. e., transitions) for a fixed, ITM-specific polynomial p and the
value k on the security parameter tape. To reflect polynomial total length of a protocol run, the
ITMs Z and A described below are assumed to halt after a polynomial number of activations. An
ITM which has halted terminates instantly—without switching at all—on all future activations.

Aside from parties Pi and an adversary A, an environment machine Z (modelled as an ITM3)
takes part in a protocol run. Z represents an arbitrary procotol environment in which the inves-
tigated protocol is run as a subprotocol. In particular, Z supplies parties with input, reads their
output and may even communicate with the adversary. In the simulatability-based definition of
security given below, Z takes a crucial role.

To protect the polynomially bounded adversary from being activated “too often” by the envi-
ronment, we introduce the following special capability of the adversary: A may enter a special class
of states to signal that further messages from Z are not to be delivered to A and thus, such messages
do not cause activation of A. When A enters such a state, we say that A blocks. This convention
resembles the mechanism of length functions used in [BPSW02] for similar purposes. Without such
a convention and polynomially bounded adversaries which may not depend on the distinguishing
environment, the environment may simply “kill” the adversary by activating it sufficiently often
right at the start of the protocol. This is especially crucial for simulators (see below).

The real model can be seen as a (trivial) special case of the hybrid model, and hence it suffices
to give a description of a protocol run in the {Fi}-hybrid model for a finite set {Fi} of ideal
functionalities. But first, a notation: Delivering a message means moving it from the outgoing
communication tape of the sending ITM to the incoming communication tape of the receiving
ITM. Here we assume authentication: the sender identity is automatically added to the message at
delivery. To prevent blocking incoming communication by sending huge or many messages “standing
in the way”, messages are delivered interleaved by sender4. After an ITM terminates its activation,
its incoming communication tape is automatically cleared to ensure future message processing. All
ITMs are assumed to initially have empty communication, local in-/output and work tapes. Each
ITM is presumed to have a unique identity, an infinite sequence of independently uniformly chosen
bits on its random tape, and a (common) security parameter k on the security parameter tape. All
activation tapes contain 0, so no ITM is active.

All ITMs may, when active, of course access their own tapes; furthermore, Z may read the
local output tapes of the Pi and write onto their local input tapes in a write-only manner. A
may read all outgoing communication tapes of the Pi and may also corrupt one or more parties.
Upon corruption of Pi, A instantly gets a message containing Pi’s complete past history (including
states, head positions and tapes). A may from then on write arbitrary messages on its outgoing
communication tape in the name of Pi, and all messages addressed to Pi are delivered to A.
Moreover, a message stating that Pi was corrupted is automatically delivered both to Z and to all
Fi. Very briefly, the message transfer rules are: Z may talk to A, A may talk to Z, to the parties
and the Fi, the Fi may talk to A and to the parties, and the parties may talk to each other and to
A. A detailed description of a protocol run in the {Fi}-hybrid model follows.

3 In [Can01], Z is the only non-uniform ITM, i. e., Z gets as initial input the value of an arbitrary function of the
security parameter. We adopt this, but stress that all results and proofs below hold also for uniform Z, cf. also
the discussion in [HMQS03].

4 That means interleaved in blocks of constant length larger than the size needed to identify the sender of the
respective message.

3

1. Attack Phase: Basically, this is a message-driven interaction between Z, A and the Fi, only
Z and the Fi may not interact directly. First, Z is activated with local input “round-start”.
After Z has terminated its activation, all messages Z possibly wrote to A are delivered or, if A
blocked messages from Z, simply erased. If there was no such message, or if Z has halted, we
consider the complete protocol run ended and the first cell on Z’s local output tape is interpreted
as Z’s (binary) output. Otherwise, A is activated next or, if A blocked, Z is activated again.
Once A has terminated its activation and wrote at least one message to Z, all such messages
are delivered and Z is activated again. However, if A wrote no message to Z, the first Fi (in
order of ITM identities) to which A wrote at least one message is activated with all messages
addressed to it from A delivered. This includes messages sent from A to Fi in the name of a
corrupted party. Once this Fi terminates its activation, all messages it possibly wrote to A or
the parties are delivered and A gets activated again. If A wrote messages neither to Z nor to
an Fi, all messages A wrote to the Pi are delivered and we proceed to the next phase.

2. Party Computation: All messages from any party Pi to another party Pj are delivered. Then,
all non-corrupted Pi are activated in parallel. When all Pi have terminated their activations,
messages they have written to the Fi or to A are delivered.

3. Ideal Functionality Computation: All Fi are activated in parallel with local input “com-
putation”. After the Fi have terminated their activations, messages the Fi have written to A
or to the parties are delivered. Then, we start over with the attack phase.

Note that A cannot access communication of uncorrupted parties with ideal functionalities.
However, our scheduling models a “rushing” adversary that may let corrupted parties send messages
in dependance of the messages sent by honest parties in the same round. Since all ITMs terminate
their current activation in polynomial time and both Z and A halt after a polynomial number of
activations, a protocol run as described above ends after a polynomial number of steps. When we
speak of a protocol, we mean a set of parties Pi running together as above. The output distribution
of Z when run on security parameter k in the {Fi}-hybrid model with protocol π and an adversary
A is denoted by Z({Fi}, π,A, k). Now we are ready to state the first part of our security definition,
which relates two protocols.

Definition 1. Let π be an n-party protocol formulated in the {Fi}-hybrid model and let τ be an
n-party protocol formulated in the {Gj}-hybrid model. We say that π securely realizes τ (written
π ≥ τ) iff for every adversary A there exists an adversary S (called simulator) such that for every
environment Z the function

P(Z({Fi}, π,A, k) = 1) −P(Z({Gj}, τ,S, k) = 1)

is negligible5 in k. If this holds even with respect to Z which are not necessarily polynomially bounded
(but still halt after polynomially many activations), we say that π securely realizes τ unconditionally
(written π≥≥ τ).

Note that for the unconditional case, we have chosen to allow an unbounded environment,
but not an unbounded adversary. When considering unbounded adversaries, there is a practical
need for an unbounded environment, as known proof techniques for composition don’t seem to
apply when only the adversary, but not the environment is unbounded. On the other hand, when

5 f : N → R is called negligible, iff ∀c ∈ N ∃k0 ∈ N ∀k > k0 : |f(k)| < k−c.

4

considering an unbounded environment, the security notion which allows for unbounded adversaries
is strictly weaker than the same notion with polynomially bounded adversaries. Also, when allowing
both unbounded adversaries and environments, the resulting security notion does not imply the
seemingly weaker bounded security notion. (Our notion “≥≥”, though, does imply “≥” trivially.)

2.2 Ideal Model

In contrast to the real model, the ideal model reflects an idealization of a given protocol task.
For simulation-based approaches, such an idealization is generally modelled as a single ideal func-
tionality F which reads all input and secretly computes output accordingly, possibly in a reactive
manner. This can be modelled in the {F}-hybrid model with a set D(F) of n identical dummy
parties. (Here, the number n of parties is implicitly determined by the specification of F .) Each
dummy party relays its local input to F and locally outputs whatever it receives from F . For
polynomially boundedness, we assume that each dummy party terminates its activation after it has
copied as much input to F as F can read in one activation (analogously for the output F may
have written). Now we are ready to define the F-ideal model as the {F}-hybrid model with dummy
parties D(F) and an additional party computation step after the functionality computation step.
This is to reflect immediate output generation and to pave the way for the composition theorems
presented below. The output of an environment Z run on security parameter k in the F-ideal
model (as described above) and an adversary A will be denoted Z(F ,A, k). The second part of our
security definition allows us to specify when we consider a protocol a secure implementation of an
ideal functionality.

Definition 2. Let π be an n-party protocol formulated in the {Fi}-hybrid model and let F be an n-
party ideal functionality. We say that π securely realizes F (written π ≥ F) iff for every adversary
A there exists an adversary S such that for any Z, the function

P(Z({Fi}, π,A, k) = 1) − P(Z(F ,S, k) = 1)

is negligible in k. If this holds even with respect to Z which are not necessarily polynomially bounded
(but still halt after polynomially many activations), we say that π securely realizes F unconditionally
(written π≥≥F).

From the definitions, it is clear that the relations “≥” and “≥≥” are transitive relations on
n-party protocols. Furthermore, π ≥ τ in conjunction with τ ≥ F implies π ≥ F , analogously
for “≥≥”. The following definition and the next lemma will be helpful for later proofs. We call
a set A of adversaries complete iff modified Definitions 1 and 2, in which only over all A ∈ A

is quantified, are already equivalent to their respective non-modified counterparts (both for “≥”
and “≥≥”). Since adversaries are assumed to halt after a polynomial number of activations, there
can be no single adversary which is complete. However, consider the set A := {Ap : p ∈ Z[x]}.
Here, Ap is a fixed dummy adversary6 which runs the following simple program: On each activation
(with exceptions denoted below), it writes its complete view as a message to Z and terminates its
activation. This view consists of all touched cells of Ap’s own incoming communication tape and the
outgoing communication tapes of uncorrupted parties (all messages are left interleaved by sender).
Additionally, Ap accepts these commands (given as messages) from Z: “corrupt Pi” makes Ap

6 A similar dummy adversary is also used in [Can01]; in fact, the proof of Lemma 3 is an adaption of the proof
in [Can01].

5

corrupt Pi prior to writing the view. “write m” causes A to write m on its outgoing communication
tape, and “write m as Pi” makes A write m with sender Pi iff Pi is corrupted. If in the first
case, the recipient of the message is an Fi, no view is written, so the message is delivered to that
Fi immediately after Ap terminates its current activation. “next round” causes Ap to terminate
its activation without writing any message, thus initiating the computation phases. Lastly, Ap runs
internal counters so that it halts after max {p(k), 1} activations and makes in each activation at
most max {p(k),M} steps, where M is the number of steps it takes to terminate immediately. Views
to be written to Z “growing too large” in this sense are simply truncated. With these precautions,
Ap is polynomially bounded and halts after a polynomial number of activations. Note that A never
blocks.

Lemma 3. The adversary set A := {Ap : p ∈ Z[x]} just described is complete.

Proof. This is proven in Appendix A. ⊓⊔

2.3 Composition

In the style of [Unr02], two composition theorems are presented. The first ensures that a (sub)pro-
tocol π can substitute an ideal functionality F once π ≥ F . The second shows that π ≥ F implies
π‖p ≥ F‖p (similarly for “≥≥”), where π‖p and F‖p are the respective multi-session extensions of
π and F (cf. [CR03] for a similar result in the [Can01]-setting).

First, we introduce a notational tool capturing what it means to “substitute” an ideal function-
ality by a subprotocol. Let π be an n-party procotol formulated in the {Fi}-hybrid model. Let τ be
an n-party protocol formulated in the {Gj}-hybrid model, so that τ ≥ F or τ ≥≥F for an F ∈ {Fi}
and {Fi} ∩ {Gj} = ∅. Here, the intersection is to be understood with respect to the identities of
ITMs. Thus, the last requirement can always be enforced by simply renaming ideal functionalities.
Then πτ denotes the protocol which is identical to π, but replaces all messages which the parties
write to F by invocations of τ . That is, party Pi of protocol πτ first runs the program of the re-
spective P π

i from π and then—after converting messages P π
i sent to F to local input—the program

of P τ
i from τ . Local output of P τ

i is converted back into F-messages which P π
i may then read in its

next activation. Inter-party communication inside π and τ is separated by prefixing the respective
messages with “π”, resp. “τ”. Hence, πτ is an n-party protocol in the {Gj} ∪ ({Fi} \ {F})-hybrid
model.

Theorem 4. Let π be an n-party procotol π formulated in the {Fi}-hybrid model. Let τ be an n-
party protocol formulated in the {Gj}-hybrid model, such that τ ≥ F (resp., τ ≥≥F) for an F ∈ {Fi}
and {Fi} ∩ {Gj} = ∅. Then πτ ≥ π (resp., πτ ≥≥π) for the protocol πτ conducted as above.

Proof. This is proven in Appendix A. ⊓⊔

Often it is useful to have a (possibly unbounded) number of instances of an ideal functionality
available. In [Can01], this is modelled directly in the F-hybrid model, where access to different
instances of F is distinguished via a session identifier (SID). Such a SID uniquely identifies one
instance of an ideal functionality, and in principle an unbounded number of instances may be
accessed. However, the composition theorem given above holds only for a constant number of
instances, which must be independent of the current security parameter.

To address a need for an unbounded (yet necessarily polynomial) number of instances, again
we first fix some notation. For an ideal functionality F and a polynomial p ∈ Z[x], we denote by

6

F‖p the p-parallelization of F . The functionality F‖p internally keeps max {p(k), 0} simulations
F j (for 1 ≤ j ≤ max {p(k), 0}) of F running and halts when all of them have halted. Every time
F‖p is activated with local “computation” input, it activates all F j with this input forwarded.
Additionally, each time F‖p receives a message of the form (j,m) for 1 ≤ j ≤ max {p(k), 0},
it forwards the “inner” message m to F j; messages not of this form are ignored. Similarly, all
messages the F j write are forwarded by F‖p after prepending them with the respective index j.
Finally, corruption notifications sent to F‖p are automatically forwarded to all simulated F j (yet
without explicitly activating them).

Also for a protocol π, let π‖p denote its p-parallelization described in the following. Each party
Pi in π‖p internally keeps max {p(k), 0} simulations P j

i of the respective party Pi in π and halts

when all of them have halted. All P j
i are activated whenever Pi gets activated. Moreover, local input

and messages of the form (j,m) with 1 ≤ j ≤ max {p(k),m} are forwarded to P j
i after deleting the

prefix j. If a simulated P j
i generates output or writes a message, Pi relays this output or message

after prefixing it with j. Consequently, if π is formulated in the {Fi}-hybrid model, then π‖p is
formulated in the {Fi‖p}-hybrid model. To achieve polynomially boundedness of both parallelized
functionalities and parties, we restrict the relaying of local input and incoming messages to the
respective maximum size the simulated functionality, resp. party, is able to read in one activation.

It should be remarked that such parallelization techniques bear a great resemblance to the
“joint state functionalities” described in [CR03]. There, a “joint state functionality” F̂ built from
an arbitrary ideal functionality F allows for an a priori unbounded number of parallel executions
of F ; similarly for parallelized protocols π[ρ̂] in that sense. (A priori unbounded means here that,
e. g., the machine F̂ itself does not restrict the number of invoked F-instances; yet a polynomial
restriction follows from the polynomiality of Z and A.)

Theorem 5. Let π and τ be n-party protocols formulated in the {Fi}, resp. {Gj}-hybrid model.
Then, for an arbitrary polynomial p ∈ Z[x], from π ≥ τ (resp., π≥≥ τ) it follows π‖p ≥ τ‖p (resp.,
π‖p≥≥ τ‖p). Specifically, π ≥ F implies π‖p ≥ F‖p and π≥≥F implies π‖p≥≥F‖p.

Proof. This is proven in Appendix A. ⊓⊔

For practical purposes, the following corollary might be handy. It combines Theorem 4, Theo-
rem 5 and the transitivity of “≥”, resp. “≥≥”.

Corollary 6. Let p ∈ Z[x]. Let π and τ be n-party protocols formulated in the {Fi}, resp. {Gj}-
hybrid model such that {Fi} ∩ {Gj‖p} = ∅. Now if τ ≥ F and F‖p ∈ {Fi}, then πτ‖p (using
functionalities {Gj‖p} ∪ ({Fi \ {F‖p})) securely realizes π. If additionally π securely realizes an
ideal functionality I, then so does πτ‖p. All this also holds unconditionally.

2.4 Shell Constructs

In contrast to [Can01,CLOS02], our model does not allow the adversary to block messages, not even
those sent from or to an ideal functionality. This allows formulating functionalities in a very specific
way, but often it might be necessary for simulation to leave delivery—to a certain degree—up to
the simulator. Therefore, we adapt the idea of [Bac03] to equip a machine with a “coat”, or “shell”,
which manages message delivery to and from it. (In [Bac03], an “asynchronous coat” was used to
investigate synchronously formulated machines in an asynchronous setting.)

7

Namely, for an ITM M (one should have in mind a party or an ideal functionality here), we
define M ’s asynchronization [M](precv, psend, clk) (often denoted [M] when the context is clear),
with precv, psend ∈ Z[x] ∪ {∞} and clk ∈ {async,sync}. Internally, [M] keeps a simulation of M and
relays local in- and output as well as communication of M with A directly, with some exceptions
explicitly noted below. Upon an incoming message m from a sender S 6= A, [M] writes a message
“request receive j from S” to A; here, j simply denotes a running number assigned by [M]. If
[M] receives a message “allow receive j” from A, where j has been assigned before, [M] relays the
corresponding message m to the simulated M . Also, any message is automatically relayed to M after
precv(k) activations of [M]—or, if M is an ideal functionality, after precv(k) local “computation”
inputs. (There is no automatic message delivery if precv = ∞.) Similarly, if M wants to send a
message m to a recipient R 6= A, [M] first generates a “request send j to R” message to A and
actually sends m to R upon an “allow send j” message from A or—whatever happens first—after
psend(k) rounds (i. e., [M]-activations, resp. local “computation” inputs). M is activated exactly
once in every [M]-activation if clk = sync. Otherwise, M is activated only if one or more messages
or local input are relayed to it in the respective [M]-activation; in that case, M is activated once
for local input other than “computation”, and each incoming message. The order is: local input
first, then incoming messages ordered by sender identity. (Formally, we assume M only to process
interleaved messages, as guaranteed by the delivery process in our modeling.)

[M] halts when M has halted and all messages from M have actually been sent. Clearly, [M]
halts after a polynomial number of activations (resp., rounds in the case of ideal functionalities)
if and only if M does so, clk = sync and psend 6= ∞. To make [M] polynomially bounded in each
activation, we first mandate that [M] reads in each activation only one local input and one message
per sender S 6= A, truncated to the maximum size which M is able to process in one activation.
(We assume that by the time of construction of the “shell”, the number n and the identities of
parties and adversary are already fixed.) Additionally, at most one “allow receive” message from
A per sender and at most one “allow send” message per recipient is processed; also, at most one
message from A to M is read and truncated if “too long” for M . Processing of A’s messages stops
as soon as “too long” or “too many” messages are encountered. Clearly, these restrictions limit the
generality of [M], yet in many cases—as, e. g., the case M = FSFT of an ideal functionality for
secure function evaluation—this might be considered condonable.

By adding shells to the parties of a protocol, one can catch the notion of reliable or even
asynchronous networks, the former which deliver messages after a polynomial number of steps.
Furthermore, ideal functionalities may be formulated asynchronously in the first place, and later a
shell may be added to leave message delivery factually up to the adversary (while it is possible to
fix certain maximum latency times for messages sent to and from the functionality).

There is another important use of (different) shell constructs, which we sketch only briefly: One
can implicitly restrict the class of adversaries by a suitable shell. Such a shell hands its internal state
(including the state of F) and all future inputs to the adversary when being notified of a corruption
which does not conform to a certain corruption structure. Furthermore, from then on the adversary
supplies [F] with all future outputs. In such a case, (perfect) simulation of a “real” protocol becomes
trivial, and only attacks which conform to the corruption structure stay relevant for a distinction.
The advantage of such a modeling of, say, static adversaries (i. e., adversaries which corrupt parties
only in the Attack Phase of the first round, i. e., before any party is activated) is that general
theorems need not be re-proven for the static case. (Of course, it is crucial that when actually
used in a hybrid model, such a shell must be exposed only to—in that case—static adversaries.)

8

Anyway, inspecting the reductions of adversaries in the respective proofs shows that Lemma 3 and
Theorems 4 and 5 still hold when restricting to static adversaries or adversaries that corrupt no
more than a fixed number of parties; of course, here the dummy adversaries have to be modified in
the obvious way.

2.5 Relation to Other Models

In [Bac03], the synchronous framework of [PSW00] is embedded in a very general way into the
asynchronous setting of [PW01]. We would like to be able to conversely investigate [Can01]-
functionalities and -protocols in our setting (then equipped with suitable shells, as sketched above).
Yet two details which make things harder for us are that (a) due to the message-driven nature
of [Can01], their machines are invoked with at most one incoming message at a time, and (b) in
contrast to [Can01], we have chosen to activate the adversary (instead the environment) if an ideal
functionality does not send a message in an activation. So for the time being, we can only state one
relation to the frameworks of [Can01] and [CLOS02]. However, this relation can be useful since it
allows for carrying over realizability results established in [Can01] or [CLOS02], thereby showing
that our security notion is not “too strict”.

Before we state this result, it should be noted that it is not made explicit which computational
limitations the adversaries in [Can01] and [CLOS02] underlie. In [Can01, Section 3 of full version],
ITMs are introduced as generally polynomially bounded in both the number of activations and
running time per activation. However, the dummy adversary Ã (where we implicitly set the cor-
responding adversary class C to include all adversaries) introduced in [Can01, Section 4.4 of full
version] is not polynomially bounded a priori in this sense. One might be tempted to reason that
polynomial bounds follow implicitly from the role of Ã taken in a run with polynomial-time Z
and Pi; then again, it is not straightforward how to interpret the quantification over adversaries,
simulators and environments in Definition 3 of [Can01] (the actual security definition) in this case.
Anyway, we believe it is reasonable to restrict only to [Can01]/[CLOS02]-adversaries, -simulators
and -environments which are a priori polynomially bounded in both the number of activations and
running time per activation (just like our equivalents).

Say that an ideal functionality F in the sense of [Can01] or [CLOS02] does not communicate
with the adversary if it (a) never sends messages to the adversary, and (b) ignores all messages from
the adversary (i. e., terminates its activation immediately when activated by a message from the
adversary). Furthermore, for a protocol π formulated in the real model of [Can01], let [π](precv, clk)
denote the modification of π, in which each party Pi has been substituted by [Pi](precv, 0, clk).

Ideal functionalities in the sense of [Can01] are not notified upon corruptions. We therefore
denote by [F](precv, psend, clk, no-not) the functionality [F](precv, psend, clk), only that the shell does
not forward corruption notifications to F . In contrast to [Can01], the setting of [CLOS02] allows
an adversary S to also delay a message m sent to a functionality F ; however, S is provided with
the “public headers” of m as soon as m is sent. Implicitly assuming the header information to
be polynomial-time computable in the security parameter, we can catch this in our setting by
a dedicated shell construction [F](precv, psend, clk, fhdr). Here, upon an incoming message m, the
public headers fhdr(m) are included in the “request receive” message sent to S. For [CLOS02]-
functionalities F , we assume fhdr to be automatically derived from F ’s specification (cf. [CLOS02,
full version]).

9

Proposition 7. Let F be an ideal functionality which does not communicate with the adversary
and let π be an n-party protocol. If π securely realizes F in the plain model7 of [Can01], then
[π](∞, async) securely realizes [F](0,∞, async, no-not) in our setting. Furthermore, if π securely
realizes F in the plain model of [CLOS02], then [π](∞, async) securely realizes [F](∞,∞, async, fhdr)
in our setting.

Proof. This is proven in Appendix A. ⊓⊔

At this point, several questions arise. A natural question is, whether or not there are relations to
the frameworks [Can00,PSW00,PW01]. The synchronous framework of [Can00] focuses on secure
function evaluation and thus considers an environment machine which is not allowed to actually
interfere a protocol run. In contrast, the environment machine of [Can00] only delivers party input
and reads party output. We believe that it is an interesting open question whether or not the
modeling of [Can00] can be related to our setting. The works [PSW00,PW01] consider a synchronous
(resp., asynchronous) network, yet with a communication model and scheduling which is very
different from that of [Can00,Can01,CLOS02] and ours. However, especially since the synchronous
model of [PSW00] could already be embedded in a very general way into the asynchronous model
of [PW01] (cf. [Bac03]), we believe that it is worthwhile to investigate a possible connection to our
setting. Another interesting question seems to be to what extent the converse statements to the last
proposition holds, possibly for different “functionality coats”. Also it is reasonable to ask whether
there can be analogous results for hybrid models in the sense of [Can01] or [CLOS02]; this is in
particular interesting, as the hybrid model in these works is slightly different from ours. Namely, as
mentioned above, it allows for an a priori unbounded number of instances of a single functionality,
each instance identified via a unique session identifier. (For example, a straightforward analogue of
Proposition 7 seems to hold for the important common-reference-string-hybrid model of [Can01],
resp. [CLOS02]; at least as long as the protocol in question uses no more than one instance of the
common reference string functionality FCRS investigated in [CLOS02].)

3 Global Bit Commitment is Impossible

In [BG90,GL91,CvdGT95], different protocols for realizing general secure function evaluation based
only on oblivious transfer and broadcast were given—yet the notion of security used in these
contributions is not simulatability-based; furthermore, these protocols can be aborted by a single
party.

In this section we will show that in a reliable network with a broadcast functionality with
guaranteed delivery, the primitive oblivious transfer (together with a broadcast primitive) is not
complete as soon as three or more parties are involved. Namely, oblivious transfer and a broadcast
channel will be proven not to be sufficient to implement a version of global bit commitment for
which the output of the uncorrupted parties upon abort allows to identify who did not cooperate.
Cryptographic primitives which upon abort allow to identify a corrupted party (which deviated
from the protocol) are of special interest as they could be used to expell “disruptors” and replace
their input by some default value until the protocol terminates successfully.

The constructions of [CLOS02] do not build up protocols from given primitives like oblivious
transfer or broadcast, but allow to translate protocols which are secure with respect to passive adver-
saries into protocols which can tolerate an actively corrupted majority. The compiler in [CLOS02] is

7 The “plain model” of [Can01] and [CLOS02] assumes authenticated message transfer, but no hybrid functionalities
available.

10

designed for an asynchronous model and no party or functionality can know if a message is missing
due to deviation of a corrupted party from the protocol, or if this message is simply not delivered
by the asynchronous network.

In contrast to that, the synchronous model of communication developed in this work reflects the
properties of a completely reliable network. Intuitively, this makes it impossible for the adversary
to let his actions appear as network problems. Hence, in a setting with authenticated links an
uncorrupted party or a functionality is always able to unambigiously identify the sender of a faulty
message or a party who refuses to send a message as required in the protocol. This allows to define
multi-party primitives which cannot be implemented with the primitives oblivious transfer and
broadcast. The functionality introduced here is a version of the primitive global bit commitment,
which allows to identify parties giving no proper input.

It is an interesting problem if a synchronous version of the compiler used in [CLOS02] allows
to securely implement general functionalities with cheater identification in a reliable network.

Settings in which oblivious transfer or secure channels are not complete were considered in the
literature before. In [FGMO01] a complete three party primitive (oblivious two cast) was presented
which can implement all secure function evaluations in presence of a corrupted minority with-
out using a broadcast channel. However, oblivious two cast cannot implement oblivious transfer
if one drops the assumption of an uncorrupted majority.8 In [MQ02], a quantum cryptographic
protocol, which implements an unconditionally secure signature scheme along the line of [PW92]
was presented. In the protocol of [MQ02], uncorrupted parties can decide from their view if the
signer refused to sign a document or if some other party aborted the computation. As shown there,
this is impossible when using only classical secure channels and a broadcast channel. The unpub-
lished draft [MQI00] which inspired part of this work informally sketches a multi-party primitive
anonymous oblivious transfer which is claimed to be more powerful than oblivious transfer.

Next we will describe a (single use per party) functionality FGCOM, intended to formalize
global bit commitment. Here, one party can be committed to all parties to the same bit. Moreover,
using the delivery guarantee of our synchronous model, a party is either committed to all honest
parties or all honest parties can deduce that Pi did not use the functionality FGCOM. We will
show that this functionality, which intuitively allows to detect misuse, cannot be securely realized

in the {[FOT‖pOT], [F
ℓ(k)
BC ‖pBC]}-hybrid model (cf. Appendix B for a description of the broadcast

functionality F
ℓ(k)
BC and the oblivious transfer functionality FOT).

Functionality FGCOM

FGCOM proceeds as follows, running with parties P1, . . . , Pn and an adversary S . Messages not covered here are
simply ignored.

– Commit: When receiving “(commit,b)” from a party Pi with b ∈ {0, 1}, store the tuple (Pi, b) and send
“(receipt,Pi)” to all parties and to the adversary. Ignore any future “commit” messages from this party
Pi as well as all messages not of the form “(commit,Pi,b)”.

– Reveal: When receiving a message “(reveal)” from a party Pi: If a tuple (Pi, b) was previously recorded,
then send the message “(reveal,Pi,b)” to all parties and to S . Otherwise, ignore.

Fig. 1. Functionality FGCOM

8 Then, a collusion of all parties but the sender of an oblivious cast can reconstruct everything that was sent.

11

Theorem 8. In the {[FOT‖pOT], [F
ℓ(k)
BC ‖pBC]}-hybrid model (for arbitrary but fixed choices of shell

parameters and polynomials pOT(k), pBC(k), ℓ(k)), there is no functionality [FGCOM](precv, psend, clk)
(with precv, psend 6= ∞ and clk ∈ {async, sync}) which can be securely realized for n ≥ 3 parties.

Proof. This is proven in Appendix A. ⊓⊔

Here a remark is in place: functionalities like FGCOM and its shell-equipped variant [FGCOM]
considered above may be hard to realize for trivial reasons, since real and ideal model must be in-
distinguishable even if both respective adversaries have already halted. Also in some cases, it might
be more suitable to restrict to functionalities which halt after a polynomial number of rounds.
However, the result of Theorem 8 remains true when restricting to explicitly “round-bounded”

functionalities [FGCOM], [FOT‖pOT] and [F
ℓ(k)
BC ‖pBC], which halt after a polynomial number of

rounds. Namely, the number of rounds each of the environments constructed in the proof of The-
orem 8 runs depends only on the choices of the shell parameters precv and psend of [FGCOM], but
not on π. In fact, the proof holds literally for “round-bounded” functionalities [FGCOM] which halt
after 2 · (precv + psend + 1) rounds. Moreover, any protocol π realizing a functionality [FGCOM] in a

hybrid model with round-bounded [FOT‖pOT] and [F
ℓ(k)
BC ‖pBC] implies a protocol π′ which does so

in a hybrid model with unbounded (regarding the number of rounds) [FOT‖pOT] and [F
ℓ(k)
BC ‖pBC].

Summarizing, the theorem holds also when restricting to round-bounded ideal functionalities.
If one allows computational assumptions as well as use of a common reference string (in form of

an ideal functionality with guaranteed delivery), the functionality FGCOM may become realizable
even in our synchronous network by a synchronous version of a protocol of [CLOS02] using a broad-
cast channel with guaranteed delivery. For this, one could use a non-interactive bit commitment
and broadcast the commitment to all parties. As the broadcast functionality guarantees delivery
this might realize a guaranteed-delivery version of [FGCOM]. This would in particular imply that
such a common reference string functionality cannot be realized by oblivious transfer and broadcast
functionalities alone.

4 Conclusions and Open Questions

In this contribution a synchronous model of security was developed as an abstraction of a reliable
network with guaranteed delivery. For this synchronous model a composition theorem was proven.

In the synchronous model a shell concept [M](precv, psend, clk) was introduced for ideal function-
alities as well as for parties. A shell allows to delay incoming messages to M up to precv rounds and
outgoing messages from M up to psend. The parameter clk can be set to sync to have the machine
M in the shell activated in each round even if no new message is to be received. For clk = async

the machine M in the shell is only activated if a message is delivered to it.
Also, shell constructs can be used for asynchronous specification of ideal functionalities. In

particular, completely asynchronous executions of protocols can be modelled. It was proven that
secure realizations in the setting of [Can01,CLOS02] can be transferred to secure realizations in
our model if the shell parameters are set accordingly.

This work showed that security in our synchronous model with precv, psend 6= ∞ is not completely
covered by the the asynchronous definitions of [Can01,CLOS02]. A variant of global bit commitment
was given as an example of a functionality which allows the identification of a party who did not
give input to the protocol. It was shown that the functionalities oblivious transfer and broadcast do
not suffice to securely realize this global bit commitment in our synchronous model. This especially

12

proves that the primitives oblivious transfer and broadcast are not complete in the synchronous
model presented here.

We also raised questions with respect to security in reliable networks like the one considered
here. Does a synchronous version of the compiler of [CLOS02] yield general realizations of ideal
functionalities which allow cheater identification? Which ideal functionalities are complete for the
synchronous model presented here?

References

[Bac03] Michael Backes. Unifying Simulatability Definitions in Cryptographic Systems under Different Timing
Assumptions. In Roberto Amadio and Denis Lugiez, editors, Concurrency Theory, Proceedings of CON-

CUR 2003, volume 2761 of Lecture Notes in Computer Science, pages 350–365. Springer-Verlag, 2003.
Full version online available at http://eprint.iacr.org/2003/114.ps.

[BG90] Donald Beaver and Shafi Goldwasser. Multiparty Computation with Faulty Majority. In Gilles Brassard,
editor, Advances in Cryptology, Proceedings of CRYPTO ’89, volume 435 of Lecture Notes in Computer

Science, pages 589–590. Springer-Verlag, 1990.
[BPSW02] Michael Backes, Birgit Pfitzmann, Michael Steiner, and Michael Waidner. Polynomial Fairness and

Liveness. In 15th IEEE Computer Security Foundations Workshop, Proceedings of CSFW 2002, pages
160–174. IEEE Computer Society, 2002. Online available at http://www.zurich.ibm.com/~mbc/papers/
BPSW_02Liveness.ps.

[Can00] Ran Canetti. Security and Composition of Multi-party Cryptographic Protocols. Journal of Cryptology,
3(1):143–202, 2000. Full version online available at http://eprint.iacr.org/1998/018.ps.

[Can01] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In 42th

Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2001, pages 136–145.
IEEE Computer Society, 2001. Full version online available at http://eprint.iacr.org/2000/067.ps.

[CF01] Ran Canetti and Marc Fischlin. Universally Composable Commitments. In Joe Kilian, editor, Advances

in Cryptology, Proceedings of CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
19–40. Springer-Verlag, 2001. Full version online available at http://eprint.iacr.org/2001/055.ps.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally Composable Two-Party and
Multi-party Secure Computation. In 34th Annual ACM Symposium on Theory of Computing, Proceedings

of STOC 2002, pages 494–503. ACM Press, 2002. Extended abstract, full version online available at
http://eprint.iacr.org/2002/140.ps.

[CR03] Ran Canetti and Tal Rabin. Universal Composition with Joint State. In Dan Boneh, editor, Advances

in Cryptology, Proceedings of CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
265–281. Springer-Verlag, 2003. Full version online available at http://eprint.iacr.org/2002/047.ps.

[CvdGT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed Oblivious Transfer and Private Multi-
Party Computation. In Don Coppersmith, editor, Advances in Cryptology, Proceedings of CRYPTO ’95,
volume 963 of Lecture Notes in Computer Science, pages 110–123. Springer-Verlag, 1995. Online available
at http://www.cs.mcgill.ca/~crepeau/PS/CGT95.ps.

[FGMO01] Matthias Fitzi, Juan A. Garay, Ueli Maurer, and Rafail Ostrovsky. Minimal Complete Primitives for
Secure Multi-party Computation. In Joe Kilian, editor, Advances in Cryptology, Proceedings of CRYPTO

2001, volume 2139 of Lecture Notes in Computer Science, pages 80–100. Springer-Verlag, 2001. Online
available at ftp://ftp.inf.ethz.ch/pub/crypto/publications/FGMO01.ps.

[GL91] Shafi Goldwasser and Leonid A. Levin. Fair Computation of General Functions in Presence of Immoral
Majority. In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology, Proceedings of

CRYPTO ’90, volume 537 of Lecture Notes in Computer Science, pages 77–93. Springer-Verlag, 1991.
[HMQS03] Dennis Hofheinz, Jörn Müller-Quade, and Rainer Steinwandt. On Modeling IND-CCA Security in Cryp-

tographic Protocols. IACR ePrint Archive, February 2003. Online available at http://eprint.iacr.

org/2003/024.ps.
[MQ02] Jörn Müller-Quade. Quantum Pseudosignatures. Journal of Modern Optics, 49(8):1269–1276, July 2002.
[MQI00] Jörn Müller-Quade and Hideki Imai. Anonymous Oblivious Transfer. lanl.arXiv.org ePrint Archive,

December 2000. Online available at http://xxx.lanl.gov/ps/cs.CR/0011004.
[PSW00] Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Secure Reactive Systems. Technical Report

RZ 3206, IBM Zurich Research Laboratory, 2000. Online available at http://www.semper.org/sirene/

publ/PfSW1_00ReactSimulIBM.ps.gz.

13

[PW92] Birgit Pfitzmann and Michael Waidner. Unconditional Byzantine Agreement for any Number of Faulty
Processors. In Alain Finkel and Matthias Jantzen, editors, 9th Annual Symposium on Theoretical Aspects

of Computer Science, Proceedings of STACS 92, volume 577 of Lecture Notes in Computer Science, pages
339–350. Springer-Verlag, 1992. Extended abstract, online available at http://www.semper.org/sirene/
publ/PfWa_92BA1-1.ps.gz.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and Integrity Preservation of Secure Reactive
Systems. In 7th ACM Conference on Computer and Communications Security, Proceedings of CCS 2000,
pages 245–254. ACM Press, 2000. Extended version online available at http://www.semper.org/sirene/
publ/PfWa_00CompInt.ps.gz.

[PW01] Birgit Pfitzmann and Michael Waidner. A Model for Asynchronous Reactive Systems and its Application
to Secure Message Transmission. In IEEE Symposium on Security and Privacy, Proceedings of SSP 2001,
pages 184–200. IEEE Computer Society, 2001. Full version online available at http://eprint.iacr.org/
2000/066.ps.

[Unr02] Dominique Unruh. Formale Sicherheit in der Quantenkryptologie. Institut für Algorithmen und Kognitive
Systeme, Universität Karlsruhe, 2002. Online available at http://www.unruh.de/DniQ/publications/

quantum_security.ps.gz.

A Proofs

Proof of Lemma 3. Let π, τ be protocols as in Definition 1. Assume π ≥ τ with respect to A holds.
We show that then, also π ≥ τ holds. Let therefore Ā be an arbitrary adversary and let p ∈ Z[x] be
a polynomial bounding (a) Ā’s total running time and (b) the number of steps it takes a dummy
adversary to write a view sufficiently large for Ā and additionally execute a “corrupt” command or
write out a message as large as Ā could have written one. (Since Ā itself is polynomially bounded,
there must be such p.) As π ≥ τ with respect to A, there is a simulator Sp attacking τ and mimicking
attacks carried out by the dummy adversary Ap on π. From Sp, we build a simulator S̄ mimicking
Ā.

Internally, S̄ runs simulations of both Ā and Sp. S̄ blocks when Ā blocks or halts, and S̄
halts when both Ā and Sp have halted. In each activation, S̄ first activates Sp with all incoming
messages from the Gj relayed (up to a size and number Sp can handle) and—as necessary—with a
faked empty message from Z. Then, if Sp supplied a view yet, Ā is activated with this view and
all messages which S̄ possibly got from the environment Z̄ relayed (as many and large as Ā can
read). Corruptions by Ā and communication of Ā with the parties or the Fi are forwarded to Sp

in form of appropriate “corrupt” or “write” commands. Corruptions issued by Sp are executed
by S̄; moreover, S̄ relays (up to a size Sp can handle) Sp’s complete communication with the Gj

and supplies Sp with S̄’s own view of the parties’ outgoing communication tapes. Finally, messages
Ā sends to Z̄ are forwarded; if there is no such message, Sp is activated with a “next round”
command. Clearly, S̄ is polynomially bounded and halts after a polynomial number of activations;
also, by construction of p, we may assume Sp not to halt or block in our simulation before Ā does.

Now let Z̄ be an arbitrary environment and let Z be an environment which internally runs
simulations of both Z̄ and Ā. Interaction of Z̄ with the parties is relayed by Z. Views for Ā are
extracted by Z from views it expects the adversary A it interacts with to deliver; furthermore,
corruptions and communication of Ā are forwarded to A. Each time Ā terminates its activation in
Z’s simulation without writing messages (and thus the message delivery phase should begin), Z
issues a “next round” command to A. Lastly, Z halts when Z̄ halts and then forwards Z̄’s local
output. So Z is polynomially bounded if Z̄ is and halts after polynomially many activations. By
assumption about p, the distributions Z({Fi}, π,Ap, k) and Z̄({Fi}, π, Ā, k) are identical. Similarly,
Z({Gj}, τ,Sp, k) and Z̄({Gj}, τ, S̄ , k) match. As Ā and Z̄ were arbitrary and π ≥ τ with respect

14

to A, this proves π ≥ τ . The proof holds also for the “≥≥” and the “π ≥ F” (resp., “π ≥≥F”)
cases. ⊓⊔

Proof of Theorem 4. By Lemma 3, it suffices to describe for any dummy adversary Ap a cor-
responding simulator S such that for every environment Z, the function P(Z({Gj} ∪ ({Fi} \
{F}), πτ ,Ap, k) = 1) − P(Z({Fi}, π,S, k) = 1) is negligible in k. In our description, we silently
assume S to halt when Ap would have halted and to automatically truncate its views to reflect
the p-bounding of Ap. Assume τ ≥ F ; then there is a simulator S̄ with P(Z̄({Gj}, τ, Āp, k) =
1)−P(Z̄(F , S̄ , k) = 1) negligible in k for any Z̄. (Here, adversary Āp is the dummy adversary Ap,
and we make a distinction in notation only to clarify which protocols are compared.) Our simulator
S internally runs a simulation of S̄ and acts like Ap, with the following exceptions. First of all, S
blocks as soon as Ap would have halted. In each S-activation, S̄ is activated exactly once, possibly
with forwarded commands from Z (see below). Any message from F is forwarded to S̄, analogously
for messages S̄ writes to F . When obtaining a valid view from S̄, S integrates messages S̄ reports
to be (a) sent between parties and (b) on S̄’s incoming communication tape into its own view after
prefixing such messages with “τ”. However, when S gets a “corrupt Pi” command from Z, it first
corrupts Pi, reconstructs from Pi’s state when and with which input subprotocol τ was invoked
and generates the history of a dummy party accordingly. (In fact, only a history as large as S̄ can
read in one activation needs to be generated.) It then activates S̄ with a “corrupt Pi” command,
supplies S̄ with the generated history as necessary, and finally merges the view which S̄ presents it
into the state of Pi. (By construction of πτ , this is canonically possible.)

If S is instructed to write a message to a Gj or to send a message prefixed with “τ” between
two parties, it relays this command to S̄ after stripping the “τ” prefix. Requests by S̄ to actually
write—possibly in the name of a corrupted party—a message to a party are buffered by S and
included only in the party history passed to S̄ upon a corruption (and, of course, in the view of
outgoing communication tapes of dummy parties S provides S̄ with). “next round” commands are
forwarded to S̄, too. Finally, if S did not get a “next round” or a “write” command, it sends its
view (merged as described with a view returned by S̄) to Z. Clearly, S is polynomially bounded
and halts after a polynomial number of activations. Furthermore, for S̄ successfully mimics Āp by
assumption, we may assume the simulated S̄ not to block or halt before S does.

Let Z be an environment trying to distinguish protocol πτ and Ap from π and S. From Z, we
build an environment Z̄ distinguishing τ and Āp from F and S̄ with the same success. For this, Z̄
internally runs a simulation of Z and Ap, functionalities {Fi} \ {F} and parties running π. Here
we label the non-simulated machines Z̄ interacts with Ā and P̄i, respectively. The scheduling of
the simulation inside Z̄ is as follows: Initially, Z is activated with local input “round-start” and
the scheduling follows the one in the hybrid model; only communication of Ap with F is forwarded
to Ā. Right after the simulated Pi have terminated their computation phase, messages they have
possibly written to F are converted into input for the P̄i and the (non-simulated!) computation
phases are started by Z̄ sending a “next round” command to Ā. By its next activation, Z̄ reads
output of the P̄i and translates it into F-messages in the simulation, which is then continued with
the functionality computation phase. Each time the simulated Ap sends a view to Z, Z̄ first queries
Ā and embeds the returned Ā-view into the Ap-view (just like S embeds views from S̄). Also,
corruption commands in the simulation are additionally forwarded to Ā; similarly, commands to
Ap to write “τ”-prefixed messages are forwarded to Ā. In both cases, the view returned by Ā is
embedded into an Ap-view and delivered to the simulated Z. Finally, Z̄ halts whenever Z halts and,

15

in that case, forwards Z’s output. Z̄ is polynomially bounded if Z is and halts after polynomially
many activations.

That way, when interacting with protocol τ and adversary Ā = Āp, the simulated Z gets exactly
the same view as when running “live” with Ap and protocol πτ . On the other hand, when running
in the F-ideal model with adversary Ā = S̄, by construction Z gets the same view it would have
gotten when running with S and π. As Z̄ simply forwards Z’s output and Ap was arbitrary, it
follows that πτ ≥ π. (Otherwise, there was an immediate contradiction to τ ≥ F .) Again, the proof
holds also for the unconditional (the “≥≥”) case. ⊓⊔

Proof of Theorem 5. Fix a polynomial p ∈ Z[x] and assume π ≥ τ . Then for any dummy ad-
versary Āq, there is a simulator S̄q such that for any Z̄, the function P(Z̄({Fi}, π, Āq, k) =
1)−P(Z̄({Gj}, τ, S̄q , k) = 1) is negligible in k. Let Aq be an arbitrary dummy adversary attacking
π‖p. We construct a simulator S attacking τ‖p and mimicking Aq. Again, we silently assume S to
honor the q-bounding of Aq just as in the proof of Theorem 4. Also, we assume S to block as soon
as Aq would have halted. Internally, S keeps max {p(k), 1} simulations S̄j of S̄q, and halts as soon
as all of them have halted. Each S̄j inherits S’s view of the parties’ outgoing communication tapes
restricted to (a) a size S̄j can handle, and (b) messages m, where (j,m) is actually sent. Messages
to (resp. from) an S̄j are relayed while deleting (resp. prepending) a j-prefix, except for messages to
and from the environment Z. Upon a “corrupt Pi” command from Z, S first corrupts Pi and then
invokes all S̄j with a “corrupt Pi” command. When S̄j wishes to actually corrupt Pi, it is supplied
with the state of the simulation P j

i inside Pi—without loss of generality, we may assume that Pi

is already corrupted. Commands to write messages of the form (j,m) with 1 ≤ j ≤ max {p(k), 0}
are forwarded to S̄j, commands to write messages of a different form are only buffered by S. (Such
messages have no effect in τ , but must be reported upon later corruption of the recipient.) When
a S̄j actually wants to write a message m in the name of a corrupted party, S writes (j,m) in the
name of that party. “next round” commands are forwarded to all S̄j. Finally, if S did not receive
a “write” or “next round” command, it queries all S̄j—sequentially, and allowing each of them
to talk to the Gj‖p—for a view. From these views, S then constructs a view eventually passed to
Z.

Now consider a Z with P(Z({Fi‖p}, π‖p,Aq, k) = 1) − P(Z({Gj‖p}, τ‖p,S, k) = 1) non-
negligible. For ℓ ∈ N, let Hℓ denote the following protocol formulated in the ({Fi‖p} ∪ {Gj‖p})-
hybrid model (we do not mandate {Fi‖p} ∩ {Gj‖p} = ∅ here). The party Pi internally keeps
min {ℓ, p(k)} simulations of the party Pi from protocol π, and max {p(k) − ℓ, 0} simulations of the
party Pi of protocol τ . Message handling and internal scheduling is just as with a p-parallelization
of a protocol. Let Hℓ be the following adversary attacking Hℓ. Hℓ is identical to S, but sim-
ulating min {ℓ, p(k)} copies of a dummy adversary Āq and only max {p(k) − ℓ, 0} copies of S̄q.
Message and corruption handling is just like with S, only each of the min {ℓ, p(k)} simulated
Āq gets access to one of the min {ℓ, p(k)} respective “protocol threads” of π inside Hℓ. Analo-
gously, the S̄q get access to the respective τ -threads in Hℓ. By construction, the distributions
Z({Fi‖p}, π‖p,Aq , k) and Z({Fi‖p}∪{Gj‖p},Hp(k),Hp(k), k) match, as well as Z({Gj‖p}, τ‖p,S, k)
equals Z({Fi‖p} ∪ {Gj‖p},H0,H0, k). Consequently, for each k, there must be m = m(k) with 1 ≤
m ≤ p(k) and P(Z({Fi‖p}∪{Gj‖p},Hm−1,Hm−1, k) = 1)−P(Z({Fi‖p}∪{Gj‖p},Hm,Hm, k) = 1)
non-negligible in k.

Let Z̄ be an environment which picks ℓ ∈ {1, . . . , p(k)} uniformly and then internally simulates
a complete protocol run of Hℓ together with Z, functionalities {Fi‖p} ∪ {Gj‖p} and adversary
Hℓ. Rounds within this simulation are synchronized with “outside rounds”, and the scheduling is

16

straightforward. All ℓ-prefixed input Z gives the simulated parties is—after removing this prefix—
forwarded by Z̄ to the “outside” parties P̄i with which Z̄ interacts. Also, Z̄ forwards output of
the P̄i into its simulation after prefixing it with “ℓ”. Similarly, communication of Hℓ with its ℓ-
th simulated adversary Āq is relayed by Z̄ to the adversary it interacts with. Finally, Z̄ halts
when Z halts and then relays Z’s output. So Z̄ is polynomially bounded if Z is and halts after a
polynomial number of activations. Furthermore, the distributions Z({Fi‖p}∪{Gj‖p},Hℓ−1,Hℓ−1, k)
and Z̄({Gj‖p}, τ,Sq , k) are identical, and Z({Fi‖p}∪{Gj‖p},Hℓ,Hℓ, k) matches Z̄({Fi‖p}, π,Aq, k).
As Z̄ chooses ℓ = m(k) with probability 1/p(k), this contradicts π ≥ τ . Since q and Z were arbitrary,
π‖p ≥ τ‖p follows. Inspection of Z̄’s running time shows that the above proof works also for the
“≥≥” case.

For the second statement, the proof carries over with a minor change and an explaining remark.
Namely, each party Pi in protocol Hℓ keeps min {ℓ, p(k)} simulations of the party Pi from protocol
π, and max {p(k) − ℓ, 0} simulations of a dummy party from protocol D(F). The scheduling for
protocol Hℓ is identical to the ideal-model scheduling, so that each party is activated twice in each
round. We therefore assume a party Pi from Hℓ to activate its simulated π-parties only in the
respective first of these activations. With these modifications, the proof given above shows that
π ≥ F implies π‖p ≥ F‖p (similar for “≥≥”). Note here that although in the F‖p-ideal model, the
dummy parties have not been “parallelized”, F‖p itself ignores inputs not of the form (j,m) for
1 ≤ j ≤ p(k). ⊓⊔

Proof of Proposition 7. Assume that π securely realizes F in the plain model of [Can01]. In the
following, Ãp denotes the p-restriction of the dummy adversary Ã of [Can01]; Ãp simulates Ã but
halts after max {p(k), 1} activations and quits every single activation if it runs longer than p(k)
steps. By assumption, for every q ∈ Z[x], there is a simulator S̃q such that for any environment Z̃,
we have—in the setting and notation of [Can01]—that idealF ,S̃q,Z̃ ≈ realπ,Ãq ,Z̃ . By assumption

about F , we may—without loss of generality—assume S̃q to never send any message to F . Let
p ∈ Z[x] be arbitrary and let Ap be the p-bounded dummy adversary in our setting. We describe
a simulator S mimicking Ap; once again, we silently assume S to respect the p-bounding of Ap. S
internally keeps a simulation of S̃q (for q ∈ Z[x] sufficiently large as described below) and follows
these rules:

– If S̃q asks to see the destinations of messages sent from F to the parties, S reports them
according to “request send” messages received from [F]. If S̃q wants to deliver one of these
messages, S immediately writes the respective “allow send” message to [F].

– “write” commands are buffered by S. If the sender is a corrupted party and the receiver is
an uncorrupted party Pi, in the respective next round, a “request receive” message from Pi

with recipient A is simulated. As soon as S gets a “next round” command, all valid buffered
“allow receive” messages and buffered messages with sender A are translated into requests
to deliver the respective message and forwarded to S̃q.

– “corrupt” commands are forwarded to S̃q. When S̃q actually wants to corrupt a party Pi, S
first corrupts the dummy party Pi and supplies S̃q with Pi’s history. The party history which
S̃ then returns is later—after preparing it as follows—embedded into the view sent to Z (see
also the next bullet). Namely, a “shell” [Pi] is added and all “request send” and “request
receive” messages reported earlier are included in [Pi]’s history. Similarly, “allow receive”
messages S was advised to write are included.

– Unless invoked with a “next round” command, S eventually asks S̃q to see all messages sent by
the parties. To this information, all buffered messages are added. Messages not addressed to the

17

adversary are reported as “request send” and—in the next round—as “request receive”
messages from the sending, resp. the receiving party. Finally, S reports all these messages and
the view of corrupted parties to Z and terminates its activation.

Let q be chosen such that S̃q (a) does not halt when simulated inside S as above, and (b) is able
to supply views at least as large as S does. (For fixed F and p, there must be such q as F is
polynomially bounded, and S obeys the p-bounding of Ap.) Then S is polynomially bounded and
halts after polynomially many activations. Let Z be an arbitrary (yet bounded) environment in
our setting. Let Z̃ be a [Can01]-environment which internally simulates Z and halts whenever Z
halts while relaying Z’s output. The idea of Z̃ is to give the simulated Z the view of a synchronous
protocol run of [π] while actually an asynchronous protocol run with π takes place. This means:

– At the first activation of Z̃, Z gets activated with local input “round-start” and possible
non-uniform local input of Z̃ relayed (as much as Z can read). Z also gets activated each time
a message from the adversary is generated for it by Z̃ and after a “next round” command (see
below).

– Input Z gives the parties is buffered until Z wants to send the adversary a “next round”
command. Then, Z̃ activates—in the order of party identities—all parties which Z gave input
with the respective input. Then, Z is activated with local input “round-start” and all local
output the parties possibly generated are displayed immediately to it. (Local output generated
later by the parties are not displayed to Z until the next “next round” command.)

– If Z writes a message other than “next round” to the adversary, this message is treated by
Z̃ just like a message S receives from an environment. Namely, a reply to Z is generated by
asking the adversary to report new messages and then translating this report as described above
for S. “write” commands are buffered and—at the next “next round” command from Z and
after translating “allow receive” messages into delivery commands as above—forwarded to
the adversary. “corrupt Pi” commands are forwarded to the adversary; Pi’s state, which the
adversary returns is then added—in form of a corresponding “shell” [Pi] constructed as above—
to the view Z is eventually supplied with. Corruption notifications Z̃ receives are forwarded to
Z.

Clearly, Z̃ halts after a polynomial number of activations and is polynomially bounded as Z is. By
buffering all party in- and output and message deliveries until a “next round” command is issued,
Z̃ establishes for Z a synchronous scheduling exactly like the one in our setting. (Here it is crucial
that no messages are sent between F and S̃q. Otherwise, activations of F could happen while Z
and S̃q are communicating; also S̃q could be activated in the established “computation phase” due
to an F-message.) Moreover, in the ideal model, S̃q gets the same view as when running simulated
inside S. As p and Z were arbitrary, this implies that the distribution ensembles idealF ,S̃q,Z̃ and

{Z(F ,S, k)}k , resp. the ensembles realπ,Ãq,Z̃ and {Z(∅, [π],Ap, k)}k are identical. Hence [π] ≥ [F].
The proof for the second statement is analogous to the one for the first, and we describe only the

differences. Namely, S translates “request receive” messages from [F] into messages reported to
S̃q as sent from a party to F . Possible “public headers” are supplied as included in the “request
receive” message from [F]. Consequently, if S̃q wishes to deliver a message to F , an “allow
receive” message is immediately written to [F]. The rest of the proof doesn’t need be to changed.

⊓⊔

Proof of Theorem 8. Assume that π securely realizes a three-party (the three of which will be
denoted P1, P2 and P3) functionality [FGCOM](precv, psend, clk) for certain precv, psend 6= ∞ in a

18

or communication with [F
ℓ(k)
BC]

and r denotes the bit committed to
dashed boxes surround environments,

blocked communication

local in- or output✲

inter-party comm. (including OT),

Notation:

⇒ contradiction to ideal definition
Sq plays P2 and extracts r

✻

Z5

✦✦✦✦✦

◗
◗

◗
P3

Sq

�
�

[F
ℓ(k)
BC]

P1

5.✒✑
✓✏

4.3.

2.1.

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

✒✑
✓✏

⇒ Sq extracts r in commit phase
(P2 → r in π) ⇒ (P2 → r ideal)

Z3

Z2

Z1

❄

✛ Z4

◗
◗

◗�
�

❡
❡

❡
❡

❡
❡❡✡

✡
✡
✡

✡
✡✡

[F
ℓ(k)
BC]

P3P1

P2

⇒ (P2 → r in π)
(P3 → r ideal) ⇒ (P2 → r ideal)

❄

❄

❡
❡

❡
❡

❡
❡❡✪

✪
✪

✪
✪

✪✪

✑
✑

✑
◗

◗
◗

P1 P3

[F
ℓ(k)
BC]

P2

(P3 → r in π) ⇒ (P3 → r ideal)(P3 → r ideal) ⇒ (P3 → r in π)

❡
❡

❡
❡

❡
❡❡

✛

❄

✛

❄

❡
❡

❡
❡

❡
❡❡

◗
◗

◗
�

�✡
✡
✡
✡

✡
✡✡

[F
ℓ(k)
BC]

P3

P2

P1

✪
✪

✪
✪

✪
✪✪

◗
◗

◗✑
✑

✑ [F
ℓ(k)
BC]

P3P1

P2

Fig. 2. Illustration of proof of Proposition 8

19

{[FOT‖pOT], [F
ℓ(k)
BC ‖pBC]}-hybrid model (also for certain shell parameters and polynomials pOT(k),

pBC(k), ℓ(k)). To derive a contradiction from this, we present environments Zi, i = 1, . . . , 5, one
of which must be successful in distinguishing π and a dummy adversary Aq (for sufficiently large
q) from [FGCOM] and the corresponding simulator Sq (whose existence would be guaranteed by
π ≥ [FGCOM]). In our description, we assume each Zi to silently truncate relayed messages as
well as in- and outputs to and from parties or internal simulations of parties up to a size the
sending and/or receiving party can handle. Hence q can be chosen so to enable Aq to execute all
commands issued by any Zi and supply only non-truncated views. Anticipating here, this makes
each Zi polynomially bounded and halt after polynomially many activations. To get a quick idea of
how the argumentation below works, the proof idea has been illustrated in Figure 2. A description
of Z1 follows.

Initially, Z1 lets the adversary corrupt P2. Then Z1 runs a simulation P̄2 of party P2 from π,
initialized with a fresh random tape. P̄2 is activated every time Z1 gets activated with local input
“round-start”. All communication of P̄2 with ideal functionalities or the other parties is relayed
via commands to the adversary, with one exception: P̄2’s non-broadcasted communication with P1

is blocked. That is, all “direct” messages to and from P1 as well as communication of P̄2 with
[FOT‖pOT] with “sender” or “receiver” P1 are not relayed.

Z1 itself initially gives P1 local input “(commit,r)” for uniformly selected r ∈ {0, 1}. Then Z1

waits precv(k) + psend(k) rounds and checks for possible “receipt” output of P3. If there was such
output, Z1 gives local input “(reveal)” to P1 and waits again precv(k) + psend(k) rounds. If P3

generated local output “(reveal,P1,r̄)”, Z1 halts with local output r ⊕ r̄. On the other hand,
if P3 generated no “receipt” or “reveal” output, Z1 halts with local output 1. By definition of
FGCOM and the restriction precv, psend 6= ∞ on the shell parameters, Z1 always outputs 0 in the
ideal model. As π ≥ [FGCOM] by assumption, we can hence conclude that P3 of protocol π generates
output “(reveal,P1,r)” with overwhelming9 probability when run with Z1.

Let Z2 be identical to Z1, except that instead of P2, party P1 is initially corrupted and simulated
(as P̄1 and with a fresh random tape) by Z2. Message relaying is completely analogous; in particular,
non-broadcasted communication of P̄1 with P2 is blocked. Consequently, local “commit” input is
given to the simulation P̄1. When being run with π and Aq, the output of Z2 must be identically
distributed to that of Z1: here, the views of P̄1 and P1 are identical, as well as the views of P2 and
P̄2. Thus, view and local output of P3 cannot depend on whether a run with Z1 or Z2 takes place.
The definition of Z2 now demands that Sq guarantees eventual output “(reveal,P1,r)” of P3 also
in the ideal model. By definition of the ideal functionality, then also the uncorrupted dummy party
P2 generates output in the ideal model. With an environment Z3 defined in the obvious way (i. e.,
identical to Z2, but making its own output dependent on the local output of P2), it follows that
also P2 of π generates such local output with overwhelming probability.

Consider an environment Z4 identical to Z3, except that, in addition to P1, also P3 is initially
corrupted and simulated (as P̄3 and also with a fresh random tape). This corruption is completely
passive in the sense that all communication of P̄3 is relayed—here, all non-broadcast communication
of the two simulations P̄1 and P̄3 is handled internally by Z4, that is, by simulating an instance of
[FOT‖pOT] as necessary. When run with π, the output of Z4 is henceforth distributed identically
to that of Z3 and thus the uncorrupted party P2 generates output. The definition of Z4 forces Sq

to make P2 generate such output also in the ideal model. For doing so, Sq must send a (commit,r)

9 “Overwhelming probability” means that the difference of the probability from 1 is negligible in k.

20

message to [FGCOM] before P1 is advised to reveal the commitment to r. In other words, Sq must
extract the bit committed to; this will lead to a contradiction.

Namely, consider the following, more complex environment Z5. Initially, Z5 advises the adver-
sary to corrupt P2 and P3. Internally, Z5 keeps simulations P̄3 and S̄q of P3 and Sq, respectively.
The simulation S̄q is initially instructed to corrupt the parties P1 and P3 and supplied with the
initial state of dummy parties P1, resp. P3 when S̄q actually wants to corrupt these parties. The
idea here is to give S̄q a view just as if it was interacting with Z4 in the ideal model, and then to
use S̄q to extract the bit committed to. Hence,

– non-broadcasted communication of P̄3 with P1 (i. e., possibly via [FOT‖pOT]) is relayed (via the
adversary A with which Z5 interacts) to and from the non-corrupted party P1 —note that S̄q

does not have access to such communication when running with Z4,
– non-broadcasted communication of P̄3 with P2 is relayed to and from S̄q in form of appropriate

“write” commands and by translating views from S̄q—as indicated above, S̄q takes the role of
P2 in our setting,

– non-broadcasted communication of P1 with the corrupted P2 is not relayed—this is actually the
crucial point in the proof, as both S̄q and A would expect to be able to control the oblivious
transfer channel between P1 and P2; the blocking reflects that such communication is blocked
by all Zi, i = 1, . . . , 4,

– S̄q is advised to immediately deliver any message sent from P2 to [F
ℓ(k)
BC ‖pBC]; “delivering” here

means sending the appropriate “allow receive” message to the ideal functionality. The defi-

nition of F
ℓ(k)
BC ‖pBC implies that the adversary—and thus Z5—learns the broadcasted message

then. Messages broadcasted by P2 and learned like this by Z5 are immediately forwarded to

A, and A is instructed to deliver that message to F
ℓ(k)
BC ‖pBC. Similarly, messages broadcasted

by P1 and reported by A are forwarded to S̄q and P̄3. Finally, messages broadcasted by P̄3 are
forwarded to both A and S̄q.

Z5 itself gives the party P1 local “(commit,r)” input just as the previous Zi do and waits for S̄q

to write a “(commit,r̄)” message in the name of P1 to [FGCOM]. If S̄q writes no such message even
after precv(k) + psend(k) rounds, Z5 outputs r, otherwise r ⊕ r̄.

The communication rules just given ensure that the view of P̄3 and thus that of S̄q when run
with Z5 in the hybrid model (i. e., with π and Aq) is identical to that of P̄3, resp. Sq when run
with Z4 in the ideal model. By the above discussion of Z4, the output of Z5 in the hybrid model
is hence 0 with overwhelming probability. On the other hand, Z5’s output in the ideal model
must be a random bit, as r and a possible r̄ are statistically independent by definition of FGCOM.
Summarizing, the environment Z5 successfully distinguishes π from [FGCOM] and thus we have the
desired contradiction.

For the n-party case (with n > 3), the same argument applies if we only consider the party P3

above to stand for the set {Pi | i ≥ 3} of parties. It should be noted here that the “guaranteed
delivery” property of [FGCOM] for shell parameters precv, psend 6= ∞ is heavily used already in the
first step of the proof: without such a property, we could not be sure that suppressing communication
between P1 and P2 doesn’t keep P3 from generating output. Also should be mentioned that the last
step in our proof is actually an adaption of the argument in [CF01] which shows a two-party bit
commitment functionality non-realizable without helper functionalities such as oblivious transfer.

⊓⊔

21

B Functionalities

Here we describe the oblivious transfer and broadcast functionalities used in Section 3.

Functionality F
ℓ(k)
BC

FBC proceeds as follows, running with parties P1, . . . , Pn and an adversary S . FBC is parameterized with
a polynomial ℓ(k) ∈ Z[k] bounding the length of broadcasted messages. All messages not covered here are
ignored.

– When receiving m ∈ {0, 1}l (with 1 ≤ l ≤ ℓ(k)) from a party Pi, send m to all parties P1, . . . , Pn and to S .
Process at most one message per party.

Fig. 3. The broadcast functionality F
ℓ(k)
BC

Functionality FOT

FOT proceeds as follows, running with parties P1, . . . , Pn and an adversary S . All messages not covered here
are ignored.

– When receiving “(sender,Pi,Pj,x1,x2)” from Pi, such that x1, x2 ∈ {0, 1} and there has been no such
message before for this value of (Pi, Pj), record this tuple and send “(sender,Pi,Pj)” to S .

– When receiving “(receiver,Pi,Pj,m)” from Pj , such that m ∈ {1, 2} and there has been no such message
before for this value of (Pi, Pj), record this tuple and send “(receiver,Pi,Pj)” to S .

– If at any time, there are for some Pi, Pj tuples “(sender,Pi,Pj,x1,x2)” and “(receiver,Pi,Pj,m)”
recorded, send “(transferred,Pi,Pj,xm)” to Pj and “(transferred,Pi,Pj)” to S .

Fig. 4. The oblivious transfer functionality FOT

22

