
Clarifying Obfuscation: Improving the Security of White-Box Encoding

Hamilton E. Link and William D. Neumann
Sandia National Laboratories?

P.O. Box 5800
Albuquerque, NM 87185-5800-0455

[helink,wneuman]@sandia.gov

Abstract

To ensure the security of software executing on mali-
cious hosts, as in digital rights management (DRM)
applications, it is desirable to encrypt or decrypt
content using white-box-encoded cryptographic al-
gorithms in the manner of Chow et al. Such encod-
ed algorithms must run on an adversarys machine
without revealing the private key information used,
despite the adversarys ability to observe and manip-
ulate the running algorithm. We have implemented
obfuscated (white-box) DES and 3DES algorithms
along the lines of Chow et al., with alterations that
improve the security of the key, eliminating attacks
that extract the key from Chow et al.s obfuscated
DES. Our system is secure against two previously
published attacks on Chow et al.s system, as well
as a new adaptation of a statistical bucketing attack
on their system. During implementation of white-
box DES we found that a number of optimizations
were needed for practical generation and execution.
On a typical laptop we can generate obfuscated DES
functions in a Lisp environment in under a minute
allocating 11 MB, including the space required for
the resulting function. The resulting function occu-
pies 4.5 MB and encrypts or decrypts each block in
approximately 30 ms on an 800 MHz G4 processor;
slight run-time performance of the obfuscated DES
could be traded to further reduce our algorithms rep-
resentation to 2.3 MB. Although it is over an order
of magnitude slower than typical DES systems, we
believe it is fast enough for application to some DRM
problems.

1 Introduction

The central threat to software in digital rights man-
agement (DRM) contexts is the malicious host. Soft-

ware must run on an adversarys computer, putting
them in complete control of execution. The provider
must assume that the adversary is able to run, stop,
and restart the software at any point, reverse engi-
neer components of the system, and see and manip-
ulate all data. For software that must run on tradi-
tional hardware, an adversary can reverse engineer
the entire program. We are interested in a class of
programs that implicitly compute functions and de-
pend upon a data segment that is incomprehensible
to an adversary.

A system that is intended to be run on a malicious
host is, by definition, not a black box because the
adversary is able to view the programs execution as
well as any intermediate results that are generated
during computation. The white-box attack context
was introduced by Chow et al. as a setting where
the adversary is allowed to not only make such ob-
servations about the software, but is also able to ex-
amine and alter the software at will [CEJv02a]. The
system they implement in this context is a white-
box program is a DES encryption algorithm. Ide-
ally, a white-box encryption function would be so
difficult to analyze that an adversary would be in-
clined to resort to a plaintext/ciphertext pairs at-
tack, much as if the white-box implementation were
a black box. Their implementation of DES does lend
itself to some analysis, however, and a key can be
extracted easily. We have built upon their ideas to
create a similar white-box version of DES that is
much less vulnerable to direct analysis.

One possible use for white-box cryptography would
be the replacement of content encoding schemes such
as the Content Scramble System (CSS) used to pro-
tect DVDs [css]. A chip could be made to per-
form decryption of DVD content using a white-box
DES decryptor without revealing the encryption key,
which an adversary would like to use to generate ad-

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States?

Department of Energy under Contract DE-AC04-94AL85000.



Figure 1 DES as a a sequence of table and matrix operations

ditional playable DVDs. As with CSS, such a sys-
tem would still be vulnerable to duplication of raw
data images, but it would be far more difficult for
a criminal to generate properly encoded alterations
or to extract the quantity of information needed to
create a content player without the original content
controls.

A second application for white-box cryptography of
this sort would be in authenticating communications
in low power processors in wireless broadcast situ-
ations. In such a setup, it would be desirable if,
for example, directives broadcast from some central
authority could be authenticated prior to being car-
ried out. The obvious approach would be to sign the
directives with the central authority’s private key,
and require that the nodes verify the signature be-
fore processing the command. However, in many
situations, the nodes may not be powerful enough
to verify the signature efficiently. With such low-
power nodes, we would prefer to be able to use a
symmetric-key message authentication code to ver-
ify the authenticity of the sender. Unfortunately, if
a MAC is used, an adversary need only compromise
a single node and recover the shared symmetric key
in order to pose as the central authority and issue
bogus directives. Using white-box cryptography, we
can hide the key from the adversary in a “verify-
only” version of the code, which would prevent the
attacker from issuing any bogus directives.

Chow et al. developed a white-box encoding for
DES; their approach can be readily applied to other
block ciphers such as Rijndael [CEJv02b]. The pro-
cess of encoding reduces DES to small table lookups
and then systematically reindexes and delinearizes

those tables. In their publication of a white-box
DES they admit vulnerability to a statistical buck-
eting attack on their encoding. They address this
vulnerability by augmenting DES with a nonstan-
dard input and output permutation, but this makes
their implementation a non-DES cipher, which may
be a reasonable approach for many DRM applica-
tions hat do not require the use of standard encryp-
tion schemes. Jacob et al. [JBF02] also performed
some analysis of this DES encoding and described
a fault-injection attack using differential cryptanal-
ysis that reveals the DES key. This attack requires
matching encodings of DES encryption and decryp-
tion, however, which would not be the case in many
DRM applications.

We have improved upon the work of Chow et al. and
have implemented a white-box DES that is resilient
to both the statistical bucketing attack described to
by Chow et al. and the differential cryptanalysis
attack of Jacob et al. We have also implemented a
modified statistical bucketing attack against Chow
et al.s DES that requires fewer encryptions by the
target function than either of these prior attacks and
requires only access to a white-box DES encryption
function. Our alterations protect against this new
attack as well. Our white-box DES is comparable in
time and space requirements to its predecessor. We
have profiled our implementation and believe that
while it is substantially slower than a typical DES,
the cost is appropriate to the threat model and the
performance is acceptable for some uses.



2 Related work

In recent years, research into obfuscation has pro-
duced a number of methods of protecting code
from an adversary. A number of these attacks
are described in [Hoh98]. Most of the obfusca-
tion techniques attempt to prevent the adversary
from performing static analysis on the code to
learn about the underlying algorithm [WDHK01],
[CTL97], [CTL98]. This approach differs from ours
and that of Chow, van Oorschot, et al. in that,
rather than hiding the workings of the obfuscated
program, our goal is to obfuscate a portion of the
data segment of the code. In addition, none of these
techniques are believed to be secure in the white-box
attack context, where dynamic analysis of the code
is allowed. Barak, et al. have shown that it is not
possible to obfuscate all programs [BGI+01]to cre-
ate black-box equivalents for a computationally un-
bounded malicious host. Theoretical work remains
to be done to identify useful subclasses of programs
that can be obfuscated to black-box equivalents for a
computationally bounded malicious host or to define
other useful definitions of obfuscation.

The other major branch of research into obfusca-
tion has been built up from Yao’s encrypted cir-
cuits [Yao86]. This approach requires representing
the code to be obfuscated as its equivalent circuit,
and then using Yao’s techniques to encrypt the cir-
cuit, its input, and all intermediate values [AF90].
While these techniques can be proven to be secure
(modulo standard cryptographic assumptions), they
are terribly inefficient to represent, with each gate in
the circuit requiring 96 bytes of space in its encrypt-
ed form [ACCK00]. Another approach similar to this
is that of Sander and Tschudin [ST98a], [ST98b],
who encrypt an instance of a function along with
its inputs using a homeomorphic encryption scheme.
The encrypted inputs can then be processed on an
untrusted host who can return the encrypted result
to the original party for decryption. Unfortunately,
this technique is restricted to a small class of prob-
lems – those that can be represented by a rational
function.

Perhaps the most closely related approach to ours
and Chow et al.’s is that of W.P.R. Mitchell [Mit99].
Mitchell describes a technique for performing en-
cryptions with most round-based block ciphers while
keeping the secret key hidden by a construct he calls
“deceitful automata”. While this technique is inter-
esting from a theoretical standpoint, there are no

known implementations of these deceitful automata,
and it seems as if any such implementation would re-
quire an excessive increase in code size. Additional-
ly, Mitchell describes this technique as being secure
only against a “naive adversary” with access to a
debugger and disassembler, and not against an at-
tacker working within the white-box attack context.

3 Review of White-Box DES

Chow et al. and Jacob et al. described a white-box
encoding of DES that is the basis for our implemen-
tation. In the interests of completeness, we will re-
view the particulars of encoding DES here. Chow et
al. also provided details on specific elements of the
white-box encoding process that we do not need to
reproduce.

DES is usually described as a sequence of permuta-
tions, s-boxes, and xors on bit vectors. The permu-
tations and xors are linear and can be represented
by affine transformations (ATs), but because the s-
boxes in DES are nonlinear, we can not represent
DES as a single AT. We can represent DES as alter-
nating ATs and s-boxes. Chow outlines a process for
re-representing an affine transformation with func-
tionally equivalent code and data that cannot easily
be used to recover the original AT. Once we repre-
sent an instance of DES (i.e., a key-specific DES)
with ATs and s-boxes, we can prevent recovery of
the ATs and simultaneously conceal the structure of
the s-boxes to prevent recovery of the key that was
used to generate them.

To represent DES permutations and xors for each
round as a single AT, the s-box output must be ac-
companied by the original left and right input halves,
Lr and Rr, for round r. This information is brought
forward in parallel using 8 × 8 T-boxes that pro-
duce Lr, Rr, and the s-box results. Rr is included
as the 16 duplicate bits passed into the s-boxes by
the expansion permutation (EP), and 16 additional
replicated bits of s-box input. The T-boxes allow
the remaining DES components to be represented
as matrix operations that are combined into a sin-
gle AT in each round. In this manner, all of DES
can be represented by alternating ATs and T-boxes
(Figure 1).

Chow et al. used a technique of matrix decompo-
sition (Figure 2) to implement io-block encoding of
affine transformations. The technique divides each



Figure 2 Decomposition of an affine transform

AT into independent equations that compute sub-
vectors of the original result. Each subvector in the
output is computed using a copy of the input vector,
which is also divided into subvectors. Any subdivi-
sion of the input and output vectors will work. For
clarity, Figure 2 depicts a uniform division of bit vec-
tor input into four a-bit vectors, and the creation of
the output from five b-bit vectors. The first tables
are 2a-element multiplication tables with b-bit en-
tries. The remaining tables are addition tables and
have 22b b-bit entries, so tables that add two 4-bit
values have 256 4-bit entries, while a table that adds
two 8-bit values has 65,536 8-bit entries. We chose
to divide input into 8-bit subvectors to match the
8-bit output of the T-boxes, and we divided the out-
put into 4-bit subvectors to keep the addition tables
from growing out of hand.

The delinearization step referred to by Chow et al.
and Jacob et al. prevents an adversary from viewing
the original contents of each table. Tables are delin-
earized by creating random permutations to rename
their contents; for example, the elements of a table
of 8-bit values would be renamed with a permuta-
tion of [0 . . . 28−1]. The inverse of this permutation
would be used to reindex the following table, which
would subsequently have its contents renamed. For
a system like DES, which can be represented entire-
ly with ATs and table lookups, this process can be
carried out on the entire implementation once the
ATs have been tabularized.

Because the output of a table is delinearized, it is
not possible to split the elements of the table into
separate pieces without delinearizing the pieces sep-
arately. For this reason the block sizes available to
us had to be divisors of eight. The smallest repre-
sentation of the 96 × 96 matrices used to represent
the rounds of DES would come from a 6×2 io-block

encoding of the matrices, but such a division would
have reduced the effectiveness of delinearization. For
security, obfuscated blocks associated with the T-
box input and output need to be as large as can be
represented efficiently.

4 Attack on Split T-Box Output

Chow et al. described a statistical bucketing attack
on their white-box DES that exploits the nonlinear-
ity of the s-boxes to expose the key in under ten
seconds. Their attack tracks individual bit changes
in the input to the second round of s-boxes, generat-
ing and comparing preimage sets of input to expose
the key. For their T-box implementation, which di-
vides the 8-bit T-box output into two 4-bit chunks,
one of which is the obscured 4-bit s-box output, it
is actually possible to generate more detailed parti-
tions in the input and expose the key more efficiently.
We implemented this new attack and found it to be
several times faster than that of Chow et al.

Our implementation of the statistical bucketing at-
tack identifies the T-box corresponding to each s-
box, exposes the first round key 6 bits at a time,
and then uses brute force search to reveal the full
DES key. Our software precomputes the 4-element
sets of 6-bit preimages for each s-box using an all ze-
ro key. The 6-bit elements of each preimage are run
backwards through the expansion permutation (EP)
and the DES initial permutation (P1) to produce the
corresponding zero-key preimages.

To identify the T-box corresponding to each s-box
given a white-box DES, we encrypt 0 through the
first T-boxes. We then turn on individual input bits
and observe the changes in the T-box output to iden-
tify the 4-bit T-box output corresponding to each



Figure 3 The structure of the domain (left) causes a correct round subkey to produce recognizable preimage sets.

s-box. Next we begin testing the 6-bit hypotheses
for each portion of the first round key. Hypotheses
are reversed through EP and P1, and this value is
xored with all elements of each zero-key preimage
before being passed to the encryptor. If the pro-
cessed preimages each map to a single 4-bit T-box
output (i.e., the set of preimages remain the same),
the hypothesis is correct and 6 bits of the 48-bit first
round key have been identified (Figure 3). When the
first round key is known, we record the full white-
box DES encoding of an arbitrary input. This is
used to perform brute force search of the remaining
bits, comparing the recorded result with a conven-
tional DES encoding for each potential key until a
match is found.

As part of the attack implementation, a reference
DES is created that produces first-round s-box re-
sults. All 64 6-bit s-box inputs (corresponding to
6 bits of message encrypted with a zero key) are
passed through all eight s-boxes and mapped back-
wards through EP and P1. The DES inputs cor-
responding to each of the 16 4-bit results for each
s-box are recorded as preimage sets. Each s-box has
16 zero-key preimage sets with 4 elements.

The first step of the attack is to identify which of the
twelve T-boxes correspond to the eight s-boxes. This
is a matter of encrypting a zero block through the
first round of T-boxes, and then encrypting individ-
ual bits and observing which T-box outputs change.
For the bits b0b1b2b3b4b5 passed into an s-box, bits
b0 and b5 are passed as bypass bits in the T-box to
create a bijection, b1 and b4 are produced as bypass
bits for other T-boxes, and b2 and b3 are replicated
in an arbitrary T-box as part of the replicated bits
(those bits not duplicated by EP) for Rr. The T-box
that is changed by both b1 and b4 for an s-box is the

matching T-box, and in particular the 4-bit T-box
output block that changes corresponds to the 4-bit
s-box output. Our attack uses this process to build
s-box output bitmasks.

Once the s-box outputs have been identified, the pro-
gram runs through each s-box and each of 64 corre-
sponding candidate 6-bit portions of the first round
key. For each candidate key, the 6 bits are reversed
through EP and the DES initial permutation to get
a plaintext that effectively cancels those key bits for
that s-box. This key preimage is xored with the el-
ements of a zero-key preimage set, and these values
are passed into the white-box DES. The s-box out-
put bitmask is used to isolate the results, and the
four results are compared. If they are not all equal,
then the candidate key bits are incorrect, and the al-
gorithm moves on. If all four results are equal for all
preimage sets, the candidate key bits are correct1.

At this point we have the first round key and one
alternative hypothesis (see1), and the algorithm is
able to generate key schedules and perform brute
force search of the 29 possible keys to find a plain-
text/ciphertext pair matching one created with the
white-box DES. From start to finish, a largely unop-
timized version our attack takes approximately three
seconds on an 800 MHz G4 processor.

Our statistical bucketing routine returns a DES key
when given a complete instance of Chow et al.s DES
function and a crippled version that returns the out-
put of the first round of T-boxes. We supplied a
crippled function for expediency, but this is not nec-
essary; a function that returns T-box output can be
automatically generated by analyzing the encryptors
control flow. We have not implemented this portion
of a full attack.

The sole exception is s-box 4, for which the preimage sets are the same as those for inputs that were xored an with 101111b1

prior to entering s-box 4. This property was first reported by Shamir in [Sha85]



5 Implementation Improvements

Because we record preimage sets considering the
entire s-box output, we can reduce the hypothesis
space for each 6-bit portion of the first round key
to a single value. This makes the attack faster than
that described by Chow et al., which considered only
one bit of s-box output. With minimal algorithmic
optimization, the entire process takes about three
seconds on our reference platform. The statistical
bucketing attack depends upon the separation of the
permuted s-box results from the other T-box out-
put bits. The s-boxes are lossy, and so the preim-
ages have multiple elements and may be compared
with one another even when the output values are
renamed. When T-box output is a permuted 8-bit
value, the T-boxes are bijections and preimage com-
parison is no longer useful.

Chow et al. admitted that their white-box DES im-
plementation is vulnerable to a statistical bucketing
attack on the input to the second round of T-boxes,
but nevertheless they recommend 4× 4 blocking for
the matrices making up DES. This exposes their im-
plementation to our more aggressive statistical buck-
eting attack, which exploits the separation of s-box
output and supplemental output produced by the
T-boxes.

Using an 8×4 block size rather than a 4×4 block size
prevents our new attack. Although it would map
well to the input and output of fully-delinearized
T-boxes, 8 × 8 io-block encoding of the Mis unfor-
tunately produces addition tables that map 16 bit
values to 8 bit values, for a total of more than 250
MB of tables to implement a single encryption func-
tion! Using an 8 × 4 block size allows the T-box
output to produce an eight-bit permuted value from
the concatenation of two four bit values, and the
multiplication and addition tables that make up the
io-block encoded matrix become 8 × 4 tables. The
result is a DES implementation whose T-box output
does not leak information needed by the statistical
bucketing attack. The new DES is the same size as
Chow et al.s, because the addition tables in both are
the same size, and these tables make up the bulk of
white-box DES.

Further discouraging analysis of the T-box output is
possible by completely eliminating it as an accessible
intermediate value. Once an Mi has been io-block

encoded using an 8× 4 block, the initial 8× 4 mul-
tiplication tables accept the same size output as the
T-boxes produce, and the results of an 8× 8 T-box
and a corresponding 8 × 4 multiplication table can
be precomputed to form a single 8 × 4 table. Each
T-box result is fed into multiple multiplication ta-
bles, so ultimately this precomputation produces a
replacement for each multiplication table and elim-
inates the T-boxes. (Chow et al. used the same
approach when folding each pair of 4× 4 multiplica-
tion tables into the subsequent addition table.) Af-
ter this process, our entire DES implementation con-
sists of 8×4 tables, specifically multiplication tables
(for the first AT only), fused T-box/multiplication
tables, and addition tables. Chow et al.s implemen-
tation used 8 × 8 T-boxes (split to take two 4-bit
input chunks and produce two 4-bit output chunks),
and 8× 4 vector addition tables.

To prevent the original statistical bucketing attack
on the input to the second round of T-boxes, we
must disrupt the preimage of each input bit by in-
termixing the s-box input with Lr and Rr. We mix
the 16 replicated bits of Rr with Lr by including
a random AT, µ, in the Mis2, and delinearize the
T-box input as a single 8-bit block. Moving to an
8 × 8 block size for the Mis would allow us to pass
the T-boxes 8-bit blocks instead of two concatenated
4-bit blocks, but as we have said this would produce
an intolerably large DES implementation. Once the
8× 4 io-block encoding has been prepared, however,
it is possible to use combined function encoding [CE-
Jv02a] on the final addition tables of each pair of
trees (see Figure 2) in the io-block encoding, whose
output corresponds to a T-box. The combined func-
tion encoding adds twelve 16× 8 tables before each
round of T-boxes in the place of twice that many
8× 4 tables.

The fused T-box and multiplication table could be
fused into the 16× 8 addition tables, but this would
enlarge the implementation once again by duplicat-
ing the 16× 8 tables a dozen times. We recommend
the combined function encoding of each pair of ad-
dition tables that produces T-box input and the cre-
ation of an intermediate value for T-box input that
is obfuscated in 8-bit blocks. Once these modifica-
tions are made, each T-box input block includes six
s-box input bits and two bits containing informa-
tion about the left and replicated bits. This makes
it more difficult to identify which T-box corresponds

According to [JBF02], Chow et al. used a simple permutation for µ instead of an affine transform2



MiB Packed MiB

Chow et al. (4× 4) 4.54 2.27
8× 4 4.49 2.25
8× 8 274.75 274.75
8× 4, Joined Roots 16.40 14.20
8× 4, JR, 3DES 48.83 42.42

MiB is the number of mibibytes (220 bytes) of tables if 4-bit
values are stored as 8-bit characters (for efficiency of refer-
ence). Packed MiB is the number of mibibytes of tables if
two 4-bit values are stored per 8-bit character.

Table 1 Comparison of white-box DES implementations.

to which s-box in the second round and removes the
association between preimages and individual bits of
input, preventing the attack.

In practice a few optimizations made disproportion-
ate improvements in the time and space required to
generate an instance of DES (Table 1). Precom-
puting constant matrices used in the ATs for DES
reduced the AT multiplications that had to be done
at generation time. Declaring the types of our ma-
trices to the Lisp compiler allowed elements to be
packed more densely and manipulated with unboxed
instructions by the compiler. Shrewd preservation
and reuse of memory allocated to matrices and per-
mutations reduced the frequency of garbage collec-
tion and saved a great deal of time spent initializing
those data structures. Finally, a surprising amount
of time during generation was devoted to creating
and applying small random permutations, so even
small performance improvements to these functions
made a large difference in the later stages of opti-
mization.

We implemented white-box DES using several ap-
proaches, including the 4 × 4 io-block encoding of
Chow et al., to compare the time and space require-
ments. The test platform was an 800Mhz PPC G4
running Mac OS X 10.2.6 and MCL 5.0b5. We im-
plemented both our modified systems and Chow et
al.s original algorithm in Lisp in this environment.

6 Differential Fault Injection Attack

Jacob et al. describe an attack on the white-box
DES implementation of Chow et al., in which faults
are inserted to enable differential cryptanalysis of
the embedded DES s-boxes. The attack is a very ef-
ficient one, requiring just dozens of calls to a decryp-

tion oracle and a similar number of encryptions using
the white-box implementation to recover 48 bits of
the embedded key. The other 8 bits can be recovered
via brute force attack using a reference implementa-
tion of DES. We describe a simplified interpretation
of the attack below. Throughout this description we
assume the adversary has a white-box DES encryp-
tion function, and we will use the following notation:

Ek
d0,d1

(l, r): This means to run the white-box encryp-
tor, with embedded key k, for rounds d0

through d1 on the plaintext that consists
of l in the left block and r in the right.
If only d0 is specified, then only that one
round of encryption will be performed
at that time. The resulting 96-bit value,
σd1 will be the obfuscated input to the
T-boxes of round d1 + 1.

Dk(l, r): This means to call the decryption oracle
with embedded key, k, on the ciphertext
consisting of l in the left half, and r in the
right. The resulting 64-bit value, l0, r0

will be the resulting plaintext.

We will also assume that the attacker is working on
the ciphertext at the output of round 16 (denoted
by the blocks L16 and R16, i.e. before the final DES
permutation. This is a valid assumption, as the final
permutation is well known and easily invertible.

The fault injection attack proceeds in four stages:

• Determine the representation of L15 =
fk
16(0), R15 = 0

This is done by first computing l0, r0 = Dk(0, 0),
and then computing σ15 = Ek

1,15(l0, r0) (see Fig-
ure 4(a)). This is the obfuscated representation
of L15 = fk

16(0), R15 = 0 and will be used later
in the attack, where we will refer to it as Σ15.

• Determine which segments of σ15 affect
which bits of L16

This is done by first computing li, ri = Dk(2i, 0)
and then computing σi

15 = Ek
1,15(li, ri) for 0 ≤

i < 32 (see Figure 4(b)). The σi
15 can then be

compared to Σ15 to determine which 4-bit blocks
have changed for each i. This also tells the at-
tacker which T-boxes are the “real” T-boxes, as
well as to which s-box they correspond.



σ15σ15

Left Repl Right EP

0 0

f(0) 00 0

f k
16+

Σ15

Left Repl Right EP

2i 0

2i⊕f(0) 00 0

f k
16+

σ15

Left Repl Right EP

0 2i

f(2i) 2i2j/0 0/2j

f k
16+

Left Repl Right EP

f(2i)⊕f(0) 2i

f(0) 2i0 0

f k
16+

(a) (b)

(c) (d)

Figure 4 The attack proceeds by selecting ciphertexts, consulting a decryption oracle, recording the next to final

results from encryption, and selectively overwriting these intermediate results prior to completing the encryption.

• Determine fk
16(0)⊕ fk

16(2
i)

First compute li, ri = Dk(0, 2i), then compute
σi

15 = Ek
1,15(li, ri) for 0 ≤ i < 32 (see Fig-

ure 4(c)). In the second step, it can be deter-
mined which T-box is affected by the bit that is
set in the right half of the ciphertext, and in par-
ticular, which 4-bit block(s) in σi

15. The attacker
can now swap in all of the blocks of Σ15 that will
not overwrite the 4-bit block that is affected by
2i, call this new value σ′i

15.
3 This will have the

effect of changing L15 from fk
16(2

i) back to fk
16(0)

(see Figure 4(d)). Now, computing Ek
16(σ

′i
15) re-

sults in L16 = fk
16(0)⊕fk

16(2
i), which will be used

in the final step.

• Perform differential cryptanalysis on the
s-boxes

Given up to six different fk
16(0)⊕fk

16(2
i) for each

s-box that the various 2i will fall into, the at-
tacker now performs differential cryptanalysis on
each s-box to recover the 6-bits of the final round
sub-key that goes into each s-box. Once the 48-
bit sub-key is recovered, use brute force on a ref-
erence implementation of DES to recover the oth-

er 8 bits of the key. Note that the technique de-
scribed in the previous step is guaranteed to pro-
duce at least four valid values of fk

16(0)⊕fk
16(2

i),
which may result in the attacker recovering as
few as 40 of the 48 bits of the final round sub-
key, in which case the brute-force portion of the
attack will require up to 216 trial encryptions.
Slightly more involved techniques in step three,
however, can retrieve all 48 bits of the sub-key.

This fault injection attack takes advantage of two of
the design decisions made by Chow et al. in order to
expose the final round subkey: the splitting of the
8-bit T-box into two 4-bit values, and the specifica-
tion of µ as a straight permutation. This is done as
follows:

1. The four bit blocking ensures that the “swap-
ping in” of the representation of fk

16(0) will
harm at most two right half bits in the “re-
al” T-boxes (the only T-boxes we care about in
any case), thus guaranteeing at least four valid
fk
16(0)⊕fk

16(2
i) data points per s-box – more than

enough to carry out a differential attack on the

This step will need to be repeated twice for those bits that are replicated by the expansion permutation, once for each 4-bit3

block that will be affected.



s-boxes.

2. Because µ is a straight permutation of bits, a one
bit change to L16 results in a single bit change
in L15 (and vice versa) This means that only a
small subset of the 4-bit blocks that represent
fk
16(0) need to be “swapped in” in order to learn

the value of fk
16(0)⊕ fk

16(2
i) for any single s-box.

Acting in concert with the note above, this makes
it likely that an attacker can gain more than 4
valid fk

16(0)⊕ fk
16(2

i) data points for each s-box,
improving the efficiency of the attack.

Our improvements to white-box DES remove both
of those leverage points. The first is affected by our
introduction of 8-bit blocking at the inputs to the
T-boxes. If a bit is flipped in the right half of the
ciphertext, this change will be destroyed if the bit
is anywhere in one of the T-boxes that are overwrit-
ten when fk

16(0) is swapped back into L15. With
the 4-bit blocking of Chow et al., four input bits are
guaranteed to never be overwritten, thus four valid
fk

n(0)⊕fk
n(2i) data points are guaranteed to be com-

puted in every DES s-box. In our implementation,
there are no such guarantees.

The second leverage point is removed by replac-
ing the simple permutation µ with a random affine
transform. Any single bit change to L16 will result
in an expected change in half of the bits of L15 (as
well as the replicated bits of the right half). Since
each real T-box contains two of these bits, we can
expect that 6 of the 8 real T-boxes (and 10 of the 12
total T-boxes) will be affected by a single bit change
in L16. What this implies is that in order to reset
L15 so it contains fk

16(0) in at least the four bit po-
sitions that contain the s-box we are attacking, we
will likely have to swap in all twelve 8-bit blocks of
Σ15.4

Unfortunately, the 8-bit blocking does not complete-
ly eliminate the threat of the fault injection attack.
This is because each real T-box contains only two
of the mixed left-half and replicated right-half bits.
And so if the attacker always swaps in the eleven
8-bit blocks of Σ15 that do not overwrite the bit of
interest set in the right half, there is still a chance
that those two bits, which correspond to two bits of

the representation of fk
16(2

i) may just be the same
as the equivalent bits of fk

16(0). This event occurs
with probability 0.25.

If this happens, L15 will be reset to fk
16(0) after

completing the encryption, L16 will contain fk
16(0)⊕

fk
16(2

i) for the s-box of interest, and the attacker
will have gained a valid data point to use in differ-
ential cryptanalysis. The attacker can determine if
this has happened because there will be at most two
non-zero 4-bit blocks in the left half5. If this has not
happened, most if not all of the 4-bit blocks of the
left half will be non-zero with overwhelming proba-
bility.

In our improved implementation of white-box DES,
an attacker still has a 0.25 probability of obtaining
a valid data point to use in the differential crypt-
analysis, with up to six data points per s-box. The
amount of information gained varies according to
the s-box being attacked, the position of the inject-
ed fault within the s-box, and the number of data
points obtained. As an example, this information
is fully described for s-box 1 in Table ??. Howev-
er, the attacker will gain an expected 1.22 effective
bits6 of the final round sub-key per s-box. Based on
this measurement, we have improved the resiliency
of white-box DES against this attack from surren-
dering a guaranteed 40 bits of the final round key
(and all 48 with high probability), to surrendering
an expected 9.8 bits of the final round key. While
this is still not as strong as a black-box implemen-
tation, it is strong enough to make an attack on the
triple-DES variant of our implementation infeasible.

7 Application to 3DES

When extending the technique to 3DES, the final
matrix from each DES portion (M3M2) is com-
bined with the first matrix from the following DES
(M1). This eliminates intermediate values that
would enable the implementation to be compromised
in thirds. Using M1M3M2 as a single io-block encod-
ed matrix between the three DES portions requires
the entire 3DES be attacked as a whole. In addition
it saves both space and time, causing the whole of
3DES to be less than three times as large and take

The probability of this not occurring is approximately 2−8.74

The block corresponding to the s-box of interest plus one if the bit set in the right half was copied by EP. The adversary can5

tell which is which based on which s-boxes affect which bits in the final output.
The attacker may not necessarily determine any actual bits of the sub-key, but is still able to reduce the search space of possible6

keys that need to be checked during brute force search.



Bits 4-6
000 100 010 001 110 101 011 111

000
0.00
0.00
0.00

2.68
3.31
5.00

2.42
3.32
5.00

2.42
3.24
5.00

3.68
5.42
6.00

3.68
5.51
6.00

3.42
5.40
6.00

5.00
5.88
6.00

100
2.42
3.08
5.00

3.68
5.14
6.00

4.00
5.43
6.00

3.42
5.33
6.00

5.00
5.84
6.00

4.00
5.88
6.00

5.00
5.91
6.00

5.00
5.97
6.00

010
2.19
2.99
5.00

4.42
5.40
6.00

3.68
5.37
6.00

3.42
5.14
6.00

5.00
5.91
6.00

4.42
5.93
6.00

4.00
5.84
6.00

6.00
6.00
6.00

001
2.42
3.24
5.00

3.42
5.15
6.00

3.68
5.43
6.00

3.42
5.40
6.00

5.00
5.94
6.00

4.42
5.86
6.00

4.00
5.81
6.00

5.00
5.97
6.00

B
it

s
1-

3

110
3.68
5.39
6.00

5.00
5.78
6.00

5.00
5.94
6.00

4.00
5.84
6.00

5.00
5.97
6.00

5.00
5.97
6.00

6.00
6.00
6.00

6.00
6.00
6.00

101
3.68
5.43
6.00

4.00
5.81
6.00

5.00
5.91
6.00

4.41
5.86
6.00

5.00
5.97
6.00

5.00
5.97
6.00

5.00
5.97
6.00

6.00
6.00
6.00

011
3.68
5.38
6.00

5.00
5.88
6.00

5.00
5.97
6.00

5.00
5.91
6.00

6.00
6.00
6.00

6.00
6.00
6.00

5.00
5.97
6.00

6.00
6.00
6.00

111
5.00
5.97
6.00

6.00
6.00
6.00

6.00
6.00
6.00

6.00
6.00
6.00

6.00
6.00
6.00

6.00
6.00
6.00

6.00
6.00
6.00

6.00
6.00
6.00

Cell entries show the minimum, mean, and maximum information gain given successful fault
injection attacks on bits of s-box 1 input bits 1 through 6 as indicated by the row and column.

Table 2 Comparison of white-box DES implementations.

less than three times the time as the encoded DES.

Our statistical bucketing attack applies to a 3DES
with split-output T-boxes. Once we extract 47 bits
of the first key, leaving 9 bits of uncertainty (for the
remaining 8 bits and the two possible 6-bit key por-
tions associated with s-box 4), we have 512 hypothe-
ses for what the first round encryption result could
be. This equates to 512 hypotheses for what would
result (implicitly) in a zero result after the first DES
(or a zero result xored with a 6-bit first-round subkey
for the second DES), giving 512 possible 48-bit first
round keys (at most; it may be possible to eliminate
some of these). Ultimately this leads to 218 hypothe-
ses for DES keys 1 and 2 when extracting a round
key from the final iteration of DES. The resulting
search space is 227 to recover the full key. It is al-
so worth noting that once the initial 512 hypotheses
are acquired, they can be investigated independent-
ly, parallelizing the attack.

We are inclined to recommend 3DES rather than
DES for any conceivable use case, because the ma-
licious host is able to generate as many plaintext-
ciphertext pairs as needed.

8 Future Work

Further improvements in the size and security of
white-box DES may be possible. Joining the roots of
the vector addition trees to prevent statistical buck-
eting attacks on the t-boxes may not be necessary for
any but the first and final few T-boxes, for example.
Avoiding it in the interior of DES would greatly re-
duce the size of the implementation, and would lead
to even greater savings in a 3DES implementation.
It is also possible to eliminate the dummy T-boxes
in favor of eight 12-bit T-boxes. This would improve
the security of the system further against the differ-
ential cryptanalysis attack of Jacob et al., reducing
the adversarys expected gain to 0.05 effective bits
per T-box, totaling 0.40 effective bits. This security
comes at a substantial increase in size if 12-bit T-
boxes are used throughout DES, so it is worth eval-
uating the potential of reverting to 8-bit, split-input
T-boxes for the interior operations to compensate.

Chow et al. speculates the possibility of matrix anal-
ysis enabled by sparse tables multiplication tables
containing only a few of the 2b possible output val-
ues. We have not yet implemented our solution to
this, but it should be possible to give individual val-



ues in the table many obscuring names instead of
only one, and compensate for this when computing
the contents of the following tables. Analysis of the
utility in attacking the matrix before and after such
modifications is necessary. Some analysis is also nec-
essary to confirm that the new system is resilient to
other forms of cryptanalysis. While we believe that
the four 4-bit values passed to the joined root in
our current implementation are not as susceptible
to cryptanalysis as the original split T-box inputs
were, we have not yet demonstrated this.

This additional work should ultimately result in a
white-box implementation of 3DES that is as com-
pact as possible and provides black-box level securi-
ty.

References

[AF90] Mart́ın Abadi, Joan Feigenbaum (1990).
Secure circuit evaluation: A protocol
based on hiding information from an or-
acle. Journal of Cryptology, 2(1):1–12.

[ACCK00] Joy Algesheimer, Christian Cachin, Jan
Camenisch, Günter Karjoth (2000). Cryp-
tographic security for mobile code. Tech-
nical Report,

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Im-
pagliazzo, Steven Rudich, Amit Sahai,
et. al. (2001). On the (im)possibility of
obfuscating programs. Lecture Notes in
Computer Science, 2139:1–??.

[CEJv02a] Stanley Chow, Phil Eisen, Harold John-
son, Paul van Oorschot (2002a). A
white-box DES implementation for DRM
applications. In Proceedings of DRM
2002 - 2nd ACM Workshop on Digital
Rights Management.

[CEJv02b] Stanley Chow, Phil Eisen, Harold John-
son, Paul van Oorschot (2002b). A
white-box cryptography and an AES im-
plementation. In Proceedings of SAC
2002 - 9th Annual Workshop on Se-
lected Areas in Cryptography, number
2595 in Lecture Notes in Computer Sci-
ence, pages 250–270. Springer.

[CTL97] Christian Collberg, Clark Thomborson,
Douglas Low (1997). A taxonomy of ob-
fuscating transformations.

[CTL98] Christian Collberg, Clark Thombor-
son, Douglas Low (1998). Manufac-
turing cheap, resilient, and stealthy
opaque constructs. In Principles of Pro-
gramming Languages 1998, POPL’98,
pages 184–196.

[Hoh98] Fritz Hohl (1998). Time limited black-
box security: Protecting mobile agents
from malicious hosts. Lecture Notes in
Computer Science, 1419:90–111.

[JBF02] Matthias Jacob, Dan Boneh, Edward
Felten (2002). Attacking an obfuscat-
ed cipher by injecting faults. In ACM
CCS-9 Workshop DRM.

[Mit99] W.P.R. Mitchell (1999). Protecting se-
cret keys in a compromised compu-
tational system. In Andreas Pfitz-
mann, editor, Information Hiding, num-
ber 1768 in Lecture Notes In Computer
Science, pages 448–462. Springer.

[ST98a] Tomas Sander, Christian F. Tschudin
(1998a). Protecting mobile agents
against malicious hosts. Lecture Notes
in Computer Science, 1419:44–??.

[ST98b] T. Sander, C. Tschudin (1998b). To-
wards mobile cryptography. In Proceed-
ings of the IEEE Symposium on Securi-
ty and Privacy. IEEE Computer Society
Press.

[Sha85] Adi Shamir (1985). On the security of
DES. In [Wil86], pages 280–281.

[WDHK01] C. Wang, J. Davidson, J. Hill, J. Knight
(2001). Protection of software-based
survivability mechanisms.

[Yao86] Andrew Chi-Chih Yao (1986). How to
generate and exchange secrets (extend-
ed abstract). In 27th Annual Sympo-
sium on Foundations of Computer Sci-
ence, pages 162–167, Toronto, Ontario,
Canada. IEEE.

[css] http://www.dvdcca.org/css.
[Wil86] Hugh C. Williams, editor (1986). Ad-

vances in Cryptology - CRYPTO ’85,
Santa Barbara, California, USA, August
18-22, 1985, Proceedings, number 218 in
Lecture Notes in Computer Science. ,
Springer.


