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Abstract

Hardware accelerators are often used in cryptographic applications for speeding up the highly arithmetic-intensive public-
key primitives, e.g. in high-end smart cards. One of these emerging and very promising public-key scheme is based on
HyperElliptic Curve Cryptosystems (HECC). In the open literature only a few considerations deal with hardware implemen-
tation issues of HECC.

Our contribution appears to be the first one to propose architectures for the latest findings in efficient group arithmetic
on HEC. The group operation of HECC allows parallelization at different levels: bit-level parallelization (via different digit-
sizes in multipliers) and arithmetic operation-level parallelization (via replicated multipliers). We investigate the trade-offs
between both parallelization options and identify speed and time-area optimized configurations. We found that a coprocessor
using a single multiplier (D = 8) instead of two or more is best suited. This coprocessor is able to compute group addition
and doubling in479 and334 clock cycles, respectively. Providing more resources it is possible to achieve288 and248 clock
cycles, respectively.
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1 Introduction

All modern security protocols, such as IPSec, SSL and TLS use symmetric-key as well as public-key cryptographic algo-
rithms. In order to be able to provide highly arithmetic-intensive public-key cryptographic primitives, hardware accelerators
are often used. An example are high-end smart cards, where a cryptographic coprocessor takes over all the expensive (area
and time) computations.

In practical applications the most used public-key algorithms are RSA and Elliptic Curve Cryptosystems (ECC). One
emerging and very promising public-key scheme is the HyperElliptic Curve Cryptosystem (HECC). HECC has been analyzed
and implemented only recently both in software [10,11,15,17,20,21,23–25,27,33] and in more hardware-oriented platforms
such as FPGAs [4,31,32].

The work at hand presents, for the first time, an architecture for a HECC coprocessor considering the most recent explicit
formulae to compute group operations. All of the previous work implementing HECC in hardware used the original Cantor
algorithm, which is outdated. Furthermore, we present and evaluate different design options for the HECC coprocessor.
In order to do so, we wrote software capable of scheduling the necessary operations, resulting in an optimal architecture
with respect to area and speed. Parallelizing at the bit and arithmetic operation level we found that: 1) no more than three
multiplier units are useful; 2) architectures implementing one inversion and one multiplication unit are the best choice; 3)
and providing sufficient resources group addition and doubling can be performed in288 and248 clock cycles, respectively.
Moreover, we explored the overlapping of two group operations and we analyzed the usage of registers.

The rest of the paper is organized as follows. Section 2 summarizes the contributions dealing with previous works.
Section 3 gives a brief overview of the mathematical background of HECC. Section 4 presents the architecture of the HECC
coprocessor and Section 5 the used methodology. Finally, we end this contribution with a discussion of our results (Section
6) and some conclusions (Section 7).



2 Previous Work

This section gives a short overview of the hardware implementations targeting HECC and of the previous research work to
parallelize hardware ECC.

The first work discussing hardware architectures for the implementation of HECC appeared in [31, 32]. The authors
describe efficient architectures to implement the necessary field operations and polynomial arithmetic in hardware. All of the
presented architectures are speed and area optimized. In [31], they also estimated that for a hypothetical clock frequency of
20 MHz, the scalar multiplication of HECC would take21.4 ms using the window NAF method.

In [4] the authors presented the first complete hardware implementation of a hyperelliptic curve coprocessor. This imple-
mentation targets a genus-2 HEC overF2113 . The target platform is a Xilinx II FPGA. Point addition and point doubling with
a clock frequency of4 5MHz take105µs and90µs, respectively. The scalar multiplication could be computed in10.1 ms.

Note that publications [4,31,32] adopt the Cantor algorithm to compute group operations. Today, there exist more efficient
algorithms to compute group addition and group doubling, the so-called explicit formulae (for more details see Section 3.2).

In [16] the authors proposed a parallelization of the explicit group operation of HECC. They developed a general method-
ology for obtaining parallel algorithms. The methodology guarantees that the obtained parallel version requires a minimum
number of rounds. They show that for the inversion free arithmetic [12] using4, 8 and12 multipliers in parallel, scalar
multiplication can be carried out in27, 14 and10 parallel rounds, respectively. When using affine coordinates [11] and8
multipliers it can be performed in11 rounds, including an inversion round.

Note that for an effective implementation it is impractical to use so many multipliers in parallel as stated in [16]. The work
at hand attempts to consider not only the minimum number of rounds (speed), but also the necessary devices (area) as well
as practical applications.

A similar work as that presented here for HECC can be found in [3] for ECC, where a study of the trade-off between the
number of operators and different coordinate systems is presented. In [2] two scalar multiplications are scheduled in parallel
on the same architecture: the two operations are executed in different coordinate systems to improve the use of the operators.
Note that the group operations of elliptic curves are much less complex than those of the hyperelliptic ones. In ECC the
silicon area of the possible architecture is easily bounded since the critical path can be computed by hand, while in the case
of HECC it is much more complex.

3 Mathematical Background

In this section we introduce briefly the theory of HECC, restricting attention to the material relevant for this work only. The
interested reader is referred to [1,9] for more background on HECC.

3.1 Definition of HECC

Let F be a finite field and letF be the algebraic closure ofF. A hyperelliptic curveC of genusg ≥ 1 overF is the set of the
solutions(x, y) ∈ F× F to the following equation:

C : y2 + h(x)y = f(x)

The polynomialh(x) ∈ F[x] is of degree at mostg andf(x) ∈ F[x] is a monic polynomial of degree2g + 1. For odd
characteristic it suffices to leth(x) = 0 and to havef(x) squarefree. Such a curveC is said to be non-singular if there does
not exist any pair(x, y) ∈ F×F satisfying the equation of the curveC and the two partial differential equations2y+h(x) = 0
andh′(x)y − f ′(x) = 0.

The so-called divisorD is defined as follows:D =
∑

miPi, to be a formal weighted sum of pointsPi of the curveC (and
the integersmi are the wights), with the additional condition thatDσ =

∑
miP

σ
i is equal toD for all the automorphismsσ

of F overF (see [1] for details).
Divisors admit a reduced form. A reduced divisor can be represented as a pair of polynomialsu(x), v(x) [18, page 3.17].

Reduced divisors can be added (group addition), e.g.D3 = D1 + D2, or doubled (group doubling), e.g.D2 = 2D1 =
D1 + D1, and hence the so-called scalar multiplicationkD = D + · · ·+ D for k times is defined. The scalar multiplication
kD is the basic operation of HECC, that we want to implement with a coprocessor.



3.2 Group Operations

The formulae given for the group operations (addition, doubling) of HEC by Cantor [6] can be rewritten in explicit form,
thus resulting in more efficient arithmetic. The explicit formulae were first presented in [7]. Starting with this finding, a
considerable effort of different research groups has been put into finding more efficient operations. The group operations
of genus-2 curves have been studied most intensively ( [7, 11–15, 17, 22, 29]), but also group operations on genus-3 curves
( [10,20,21,33]) and even genus-4 curves ( [23]) have been considered.

In the work at hand, we target our HECC coprocessor for genus-2 curves using underlying fields of characteristic two. We
used the up-to-date fastest explicit formulae, as presented in [22], where the authors introduced a group doubling requiring a
single field inversion,9 field multiplications and6 field squarings. Group addition can be computed with1 field inversions,
21 field multiplications and3 field squarings.

3.3 Security of HECC

It is widely accepted that for most cryptographic applications based on EC or HEC, the necessary group is of order at least
≈ 2160. Thus, for HECC overFq, we must have at leastg · log2 |Fq| ≈ 160. In particular, we will need a field order|Fq|
≈ 280 for genus-2 curves. Even the very recent attack found by Thériault [30] shows no progress in attacks against genus-2
HEC.

4 Architecture of the HECC coprocessor

To implement the coprocessor we chose a standard architecture, see Figure 1. It contains a register file to store temporary
results and outputs. The size of each register was chosen to be the dimension of the field, namely81 bits. The register file
has two output ports to feed the operators and one input port to receive the result. This guarantees feasibility and ease of
implementation. At any given clock cycle only one field operation can start. If the operation is unary, such as inversion, one
bus remains idle.
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Operation inputs

Control signals

Mult. IControl
Unit

Register

File
SquarerInverter AdderMult. II .....

Figure 1. Crypto-processor architecture.

The following list is a summary of how we implemented the field arithmetic:

• Addition: The addition of two elements requires the modulo2 addition of the coefficients of the field elements.

• Squaring: The squaring of a field elementA =
∑m−1

i=0 aix
i is ruled by the following equation:A2 ≡ ∑m−1

i=0 aix
2i mod

F (x). Further details can be found in [19].



Table 1. Components of the coprocessor: area and time.
Area Latency

Total number [Clock
of gates cycles]

Add [m]XOR [m] 1
Sqr [19] [m+t+1]XOR [m+t+1] 1

Mult [28] [D ·m]AND &
[D ·m]XOR [2Dm] dm/De

Inv [5] [6 ·m + log2m]AND &
[6 ·m + log2m] XOR [2(6m + log2m)] 2 ·m

• Multiplication: We decided to use digit multipliers, introduced in [28] for fields GF(2m). This kind of multiplier allows
a trade-off between speed, area and power consumption. It works processing several multiplicand coefficients at the
same time. The number of coefficients processed in parallel is the digit-sizeD. GivenD, we denote byd = dm/De
the total number of digits in a polynomial of degreem−1. Hence,C ≡ AB mod F (x) = A

∑d−1
i=0 Bix

Di mod F (x).

• Inversion: The inversion is computed using the algorithm proposed in [5]. It is based on a modification of Euclid’s
algorithm for computing the gcd of two polynomials. The asymptotic complexity is linear with the modulus both in
time and area.

In Table 1 we give the area and latency for each arithmetic components we used. The given estimates assume2-input gates
and optimum field polynomialsF (x) = xm +

∑t
i=0 fix

i, wherem− t ≥ D.

5 Methodology

In this section we describe briefly our approach to find the best suited architecture for the HECC coprocessor.

1. Input: First we evaluated the most recent findings regarding the group operation of HECC. The given formulae were
then prepared for the scheduler.

2. Scheduler: Our own software library, especially developed to schedule the HECC group operations, is the heart of our
methodology. The scheduler is based on the method known as Operation Scheduling [8] and works accordingly to the
As Soon As Possible (ASAP) policy. There is a list of operations that should be executed by the architecture. The
scheduler takes one operation at a time and searches for the earliest time slot where the operation can be executed. It
is constrained by the number of available resources and by the different times required to execute each operation.

The same methodology is used by compilers for scheduling machine instructions. It should be noted that this method-
ology is heuristic and does not grant optimal results. To reach the optimal scheduling it is necessary to use other
methods instead, see [8]. The scheduler has the following parameters:

• HECC formulae.

• Implementation method for addition, inversion, multiplication and squaring.

• Number of multiplication units.

• Different digit-sizes for the multiplier.

• Properties of the bus.

• Memory access time.

3. Testing: The results of the scheduler were tested by applying test vectors. In order to do so we implemented HECC
group operations with the NTL library [26].

4. Analysis: The results were analyzed and, if needed, the input architecture was changed, in order to find a better
structure for the coprocessor.

Traditionally, when evaluating the performance of cryptographic implementations, emphasis was put first on the throughput
of the implementation and, second, on the amount of hardware resources consumed to achieve the desired throughput. We



will consider both the hardware requirements and the time constraints of the cryptographic application. Hence, we are going
to use the area-time product and the optimal implementation will reach the highest throughput consuming the smallest area.

We designed an architecture for the HECC coprocessor using different design criteria. We varied the number of multipliers
(one, two, three and four), as well as their digit-sizeD (D = 2, 4, 8, 16). Hence, we changed different architecture options,
the processing power of the whole coprocessor and of each individual multiplier. Increasing the processing power yields a
speed up of the group operation, but also causes a growth in area. Thus, there must exist an optimum architecture, where the
area-time product is minimal.

Our goal is to implement a simple controller computing group operations with a fixed execution order. Hence, we look at
a static schedule. The alternative would be to implement a finite state machine executing the schedule directly, controlling
the availability of resources and deciding which operation should be executed. This solution is feasible but we consider it as
too complex and expensive compared to a simple controller executing the operations in a fixed order.

Recent research in hyperelliptic curve cryptosystems provides a large number of explicit formulae to choose from for
computing group operations. We chose the up-to-date fastest ones, as are given in [22].

6 Results

In this section the results of the scheduling methodology are presented. To extract the sequence of finite field operations
necessary to compute group operations and to measure the timing, we chose a set of keys and scheduled addition and
doubling. If one implements scalar multiplication using the double-and-add algorithm, the following consecutive group
operations should be scheduled: addition after doubling, doubling after doubling and doubling after addition (it is impossible
to have addition after addition due to the structure of the double-and-add algorithm).

We examined all the cases in order to find out whether we could schedule the second group operation in such a way as to
gain speed and achieve a higher hardware utilization. Our results show that addition is always scheduled in the same way. As
for doubling, there are two different ways to execute it, depending on the previous operation. When doubling is executed after
another doubling, we can gain speed; thus we decided to integrate two options for computing doubling. One option covers
the situation where the previous operation is an addition, and the other where it is a doubling. We have to allow negligible
extra hardware for the controller to decide which option to choose.

6.1 Time Requirements of the Group Operations

After these considerations we can introduce some results. Table 2 shows the clock cycles necessary for performing a group
addition in the different system configurations. Table 3 shows the latency of doubling. In this case, two different latency
figures are given for each system. As stated before, the time necessary to perform doubling depends on the operation executed
soon before. The leftmost figure in each cell of Table 3 is the number of clock cycles necessary to compute doubling after
doubling. The rightmost instead is the time latency of doubling after addition.

One can see that by increasing the digit-size and the number of multipliers, the time necessary to execute a group operation
decreases. For group addition our results show that the performance does not increase in some cases, even when augmenting
the resources of the system. For example, focusing on the speed of addition, using three rather than four digit-size multipliers
with D = 8 (Table 2, third row) does not make any performance difference. The same behavior can be observed for2, 3 and
4 multipliers with digit-size16.

Focusing on doubling, there is almost no performance gain in moving from3 to 4 multipliers, no matter of what kind
(Table 3, rightmost two columns). In addition, there is no performance gain in providing2, 3 or 4 multipliers of digit-size8
or 16. Taking only performance into account, one concludes from Tables 2 and 3 that the design option using one inverter,
two multipliers (D = 16), one adder and one squarer is preferable. The architecture can perform group doubling and addition
in 289 and248 clock cycles, respectively. As stated in Section 5, the ASAP scheduling policy does not grant an optimum
solution; this is evident in the case of3 or 4 multipliers withD = 16. The scheduling of doubling after addition is worse
than the case with two multipliers.

6.2 Parallel Computation of Group Operations

In the case of genus-2 HEC each group operation produces as output one polynomial of degree two and one monic polynomial
of degree three. Hence, the output consists of4 coefficients, namely four field elements. They are neither produced at the
same time nor are all necessary to start the next group operation right away. This means that when one field element (one



Table 2. Clock cycles per group addition.
Digit-size Number of multipliers

1 2 3 4

2 1259 739 664 635
4 739 479 444 435
8 479 349 335 335
16 356 289 288 288

Table 3. Clock cycles per group doubling.
Digit-size Number of multipliers

1 2 3 4

2 724 / 846 486 / 560 458 / 490 458 / 484
4 464 / 526 346 / 380 338 / 350 338 / 344
8 334 / 366 278 / 286 278 / 279 278 / 279
16 274 / 284 248 / 247 248 / 250 248 / 250

coefficient) is computed, it can be used by the next group operation. We measure the overlapping of two group operations as
the difference of the time when the last field operation of the former group operation ends execution minus the time when the
first of the latter starts.

Table 4 shows the overlapping between for doubling after addition. Overlapping decreases as the speed and the number
of multipliers increase. Similar behaviors have been observed in the other cases (doubling after doubling and doubling after
addition).

6.3 Register Allocation

Schedulers fall into two broad families: unconstrained or resource limited. We choose to upper bound the number of resources
as for busses and arithmetic units, while that of registers is unbounded. Once the operations are scheduled, we count the
number of live registers and compute the register allocation. This option is the simplest solution and gives good results. In
fact, each register stores a field element of81 bits. Simulations demonstrate that changing the other parameters of the system
has a low impact on the number of required registers. The system needs18 and20 registers in the best and worst case,
respectively.

If a designer wants to lower the number of required registers, he can trade the number of registers for additional latency.
In order to do so, he should avoid overlapping and start a group operation only when the previous has finished. We noted
that a single group operation uses from8 to 10 registers, while the maximum register number is reached when two group
operations overlap.

6.4 Evaluation of Different Architecture Options

In this section we report the results and compare the different architectures in terms of latency and area. In order to do so, we
listed the use of the different multipliers as a percentage of the total time of one group operation. Thus, the figures shown in
Table 5 and 6 are computed as follows:#mul·tmul

tgroup
, where#mul is the number of multiplications executed by one multiplier

unit during one group operation,tmul is the time needed for one multiplication andtgroup is the total execution time of the
group operation.

In an ideal scenario all the multipliers should be used uniformly. However, one can see that the fourth multiplier, and in

Table 4. Overlapping in clock cycles of doubling after addition.
Digit-size Number of multipliers

1 2 3 4

2 333 172 169 140
4 173 92 89 80
8 93 48 48 48
16 50 30 33 33



Table 5. Use of the multiplier as a percentage of the total time of group addition.
Digit-size Number of multipliers

1 2 3 4

2 68.3 % - - -
61.0 % 55.4 % - -
55.5 % 43.2 % 30.8 % -
51.6 % 45.1 % 25.8 % 12.9 %

4 59.6 % - - -
48.2 % 43.8 % - -
42.5 % 33.1 % 23.6 % -
38.6 % 33.7 % 19.3 % 9.6 %

8 48.2 % - - -
34.6 % 31.5 % - -
32.8 % 22.9 % 13.1 % -
32.8 % 19.7 % 13.1 % 3.2 %

16 35.3 % - - -
22.8 % 20.7 % - -
22.9 % 16.6 % 4.1 % -
22.9 % 16.6 % 4.1 % 0 %

Table 6. Use of the multiplier as a percentage of the total time of group doubling.
Digit-size Number of multipliers

1 2 3 4

2 50.9 % - - -
42.1 % 33.7 % - -
35.8 % 35.8 % 8.9 % -
35.8 % 35.8 % 8.9 % 0 %

4 40.7 % - - -
30.3 % 24.2 % - -
24.8 % 24.8 % 6.2 % -
24.8 % 24.8 % 6.2 % 0 %

8 29.6 % - - -
19.7 % 15.8 % - -
15.8 % 15.8 % 3.9 % -
15.8 % 15.8 % 3.9 % 0 %

16 19.7 % - - -
12 % 9.6 % - -
12 % 9.6 % 0 % -
12 % 9.6 % 0 % 0 %

some cases also the third multiplier, are used very unfrequently (see Table 6, the column corresponding to the4th multiplier).
Hence, for most applications it will be unreasonable to provide this extra hardware unit.

In Table 8 we show a comparison to find the optimal architecture. The optimal implementation will achieve the highest
throughput consuming the smallest area (contrary to some traditional cryptographic implementations, where only best per-
formance was evaluated). The analysis uses the normalized area-time product (with respect to the lowest area-time product).
Table 8 shows that the architecture using one inversion, one multiplication (D = 8), one addition and one squaring achieves
the best area-time product.

To evaluate the latency of a complete scalar multiplicationkD, reported in Table 7, we examined it in an average case,
where the integerk of 160 bits has half of its bits equal to1 and the rest equal to0. This means that80 and160 additions
and doublings were performed, respectively. Half of the160 doublings are computed after another doubling and half after an
addition.

We supposed that the all different configurations of the system work always at the same frequency. This a a worst-case
assumption. In fact, usually the multiplier unit dominates frequency, and a smaller digit-size will yield to higher clock
frequency and thus speed-up the system.

It should be noted that we omitted the register file area in the estimation. We decided to do so after noting that the required
number of registers is almost the same in all the configurations, and that the area consumed by a register can vary depending
on the implementation technology. If we consider the area of the register file to be constant, then it can be omitted in the
area-time product.



Table 7. Latency estimation in clock cycles.
Digit-size Number of multipliers

1 2 3 4

2 165987 113948 100345 99836
4 106527 80228 74625 74136
8 76797 63524 61844 61844
16 62969 56216 56139 56139

Table 8. Area-time product.
Digit-size Number of multipliers

1 2 3 4

2 1.3552 1.1148 1.1442 1.3000
4 1.0422 1.0447 1.2133 1.4454
8 1 1.2385 1.6063 2.0067
16 1.2277 1.8241 2.5487 3.2758

7 Conclusions and Further Research

We proposed for the first time an architecture for a HECC coprocessor using the recently developed explicit formulae for the
group operations. Different options for the architecture were evaluated. These options differ in the kind (various digit-sizes)
and number of multipliers.

We found out that if resources are unbounded, the group addition and doubling operations of HECC execute in288 and
248 clock cycles, respectively. However, we noted that using over three multipliers does not help significantly, because
additional multiplication units have very low utilization rates. For a realistic scenario the architecture using one inverter, one
multiplier (with D = 8), one adder and one squarer achieves the best area-time product. In addition, we tested the possibility
to overlap group operations. In the case of doubling after addition, in the best case we could compute in parallel the two
operations in333 clock cycles. Finally we also analyzed the usage of registers, resulting in the necessity of19 registers of81
bit each.

There are some hints on improving these results. For example one might use different policies to schedule group opera-
tions. From a more architectural point of view, one might attempt to implement the register file by means of a conventional
32-bit long word memory. On the side of HEC group operations, it is possible to use inversion free formulae, which could
reach higher degree of parallelism. While on the implementation aspect, one could synthesize the architecture using an FPGA
to examine the impact of the critical path of the operators on the throughput of the system. Hopefully our findings are of
interest for the research community as well as for industry.
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