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Abstract

The aim of the paper is the construction of the index calculus algo-

rithm for the discrete logarithm problem on elliptic curves. The construc-

tion presented here is based on the problem of finding bounded solutions

to some explicit modular multivariate polynomial equations. These equa-

tions arise from the elliptic curve summation polynomials introduced here

and may be computed easily. Roughly speaking, we show that given the

algorithm for solving such equations, which works in polynomial or low

exponential time in the size of the input, one finds discrete logarithms

faster than by means of Pollard’s methods.
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1 Introduction

Let E be the elliptic curve defined over the prime finite field Fp of p elements
by the equation

Y 2 = X3 + AX + B. (1)

The discrete log problem here is given P,Q ∈ E(Fp) find an integer number
n such that Q = nP in E(Fp) if such an n exists. It is of great importance
in cryptography, see [1] and [2]. The aim of the paper is the construction
of the index calculus algorithm for the problem. The construction presented
here is based on the problem of finding bounded solutions to some explicit
modular multivariate polynomial equations. These equations arise from the
summation polynomials introduced in the second Section of the paper. In the
third Section we show, roughly speaking, that given a good algorithm for solving
such equations one finds discrete logarithms in E(Fp) probably faster than by
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means of Pollard’s methods, see [3],[4],[6] for them. An index calculus for the
problem, called the xendi calculus, was published by Silverman [7]. It was shown
in [8] that the xendi calculus fails to improve known bounds. We stress here that
the underlying idea of the present new approach is different from Silverman’s.

2 Summation Polynomials

Let E be the elliptic curve given by the equation (1) over a field K of charac-
teristic 6= 2, 3, which is not necessary Fp now. For any natural number n ≥ 2
we introduce the polynomial fn = fn(X1,X2, . . . ,Xn) in n variables which is
related to the arithmetic operation on E. We call this polynomial summation
polynomial and define it by the following property. Let x1, x2, . . . , xn be any el-
ements from K, the algebraic closure of the field K, then fn(x1, x2, . . . , xn) = 0
if and only if there exist y1, y2, . . . , yn ∈ K such that points (xi, yi) are on E
and (x1, y1) + (x2, y2) + . . . + (xn, yn) = P∞ in the group E(K).

Theorem 1 The polynomial fn may be defined by f2(X1,X2) = X1 − X2, and
f3(X1,X2,X3) =

(X1−X2)
2X2

3−2((X1+X2)(X1X2+A)+2B)X3+((X1X2−A)2−4B(X1+X2)),

and fn(X1,X2, . . . ,Xn) =

ResX(fn−k(X1, . . . ,Xn−k−1,X), fk+2(Xn−k, . . . ,Xn,X)) (2)

for any n ≥ 4 and n − 3 ≥ k ≥ 1.
The polynomial fn is symmetric and of degree 2n−2 in each variable Xi for

any n ≥ 3.
The polynomial fn is absolutely irreducible and

fn(X1, . . . ,Xn−1,Xn) = f2
n−1(X1, . . . ,Xn−1)X

2n−2

n + . . .

for any n ≥ 3.

Proof. First we define the polynomial fn for n = 2 and n = 3. One sees that
f2 = X1 − X2. Now we determine f3. Let (x1, y1) and (x2, y2) be two affine
points on E such that x1 6= x2. We denote

(x3, y3) = (x1, y1) + (x2, y2),

(x4, y4) = (x1, y1) − (x2, y2).

One can see that x3, x4 are roots of a quadratic polynomial, whose coefficients
are symmetric functions in x1 and x2. Really, we derive

x3 = λ2
3 − (x1 + x2),

x4 = λ2
4 − (x1 + x2),
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where λ3 = (y1 − y2)/(x1 − x2) and λ4 = (y1 + y2)/(x1 − x2). Then

x3 + x4 =

λ2
3 + λ2

4 − 2(x1 + x2) =

2 (x1+x2)(x1x2+A)+2B
(x1−x2)2

,

and

x3x4 =

(λ2
3 − (x1 + x2))(λ

2
4 − (x1 + x2)) =

(x1x2−A)2−4B(x1+x2)
(x1−x2)2

,

The x-coordinates x3 and x4 are roots of the polynomial

(x1 − x2)
2X2 − 2((x1 + x2)(x1x2 + A) + 2B)X + ((x1x2 − A)2 − 4B(x1 + x2)).

If x1 = x2 and (x3, y3) = 2(x1, y1), where (x3, y3) is an affine point on E, one
can see that x3 is the root of the same polynomial. It means that one can take
f3(X1,X2,X3) =

(X1−X2)
2X2

3−2((X1+X2)(X1X2+A)+2B)X3+((X1X2−A)2−4B(X1+X2)).

One sees that the polynomial f3(X1,X2,X3) is irreducible over the field K(X3).
It follows from the fact that the equation f3(X1,X2,X3) = 0 is isomorphic
over K(X3) to the initial elliptic curve (1). In particular, the polynomial
f3(X1,X2,X3) is absolutely irreducible. So we have proved all claims when
n = 3.

Let n ≥ 4, and n − 3 ≥ k ≥ 1, and

(x1, y1) + (x2, y2) + . . . + (xn, yn) = P∞ (3)

in the group E(K). First we consider the case (x1, y1)+. . .+(xn−k−1, yn−k−1) =
(x, y) for some affine point (x, y) ∈ E. So (xn−k, yn−k)+. . .+(xn, yn) = (x,−y).
It implies the polynomials fn−k(x1, . . . , xn−k−1,X) and fk+2(xn−k, . . . , xn,X)
have nonzero leading coefficients and the common root x. It follows by induction
that the leading coefficients of the polynomials are f2

n−k−1(x1, . . . , xn−k−1) and
f2

k+1(xn−k, . . . , xn) which are nonzero. Then fn(x1, x2, . . . , xn) =

ResX(fn−k(x1, . . . , xn−k−1,X), fk+2(xn−k, . . . , xn,X)) = 0

Let (x1, y1)+ . . .+(xn−k−1, yn−k−1) = P∞ then (xn−k, yn−k)+ . . .+(xn, yn) =
P∞ and the leading coefficients of the polynomials fn−k(x1, . . . , xn−k−1,X) and
fk+2(xn−k, . . . , xn,X) are zeros. Again fn(x1, x2, . . . , xn) =

ResX(fn−k(x1, . . . , xn−k−1,X), fk+2(xn−k, . . . , xn,X)) = 0.
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When fn(x1, x2, . . . , xn) = 0 the equality (3) is true. Really, if the leading coef-
ficients of the polynomials fn−k(X1, . . . ,Xn−1,X) and fk+2(Xn−k, . . . ,Xn,X)
in X are zeros at x1, . . . , xn then

(x1, y1) + . . . + (xn−k−1, yn−k−1) = P∞,

(xn−k, yn−k) + . . . + (xn, yn) = P∞,

by induction for some yi ∈ K. So (3) is true. If one of these coefficients isn’t zero
then the polynomials fn−k(x1, . . . , xn−1,X) and fk+2(xn−k, . . . , xn,X) have a
common root x ∈ K̄. Again by induction

(x1, y1) + . . . + (xn−k−1, yn−k−1) = (x, y)

(xn−k, yn−k) + . . . + (xn, yn) = ±(x, y)

and (3) is true.
By induction and using known properties of the resultant one gets degXn

fn ≤
2n−2. On the other hand one can always find x1, . . . , xn−1 ∈ K such that the
x-coordinates of 2n−2 points

(x1, y1) ± . . . ± (xn−1, yn−1)

are pairwise different. It means that the polynomial fn(x1, . . . , xn−1,Xn) in Xn

has just 2n−2 different roots. That is degXn
fn = 2n−2. The same is true for all

other variables.
Now we prove that fn is absolutely irreducible. Let on the contrary fn =

G1G2 for some polynomials Gi over K. It follows from the definition of the
polynomial fn that Gi is a constant or depends on all variables. From (2) it
follows that

fn = (Xn−1 − Xn)2
n−2

F1F2,

where F1 = fn−1(X1, . . . ,Xn−2,X), and F2 = fn−1(X1, . . . ,Xn−2,X), and
X,X ∈ K1 = K(Xn−1,Xn) are roots of the polynomial f3(Xn−1,Xn,X). One
proves by induction on n and using the same argument that the polynomials F1

and F2 are irreducible over K1. So F1 should divide one of Gi which is defined
over K. Therefore F1 and F2 divide the same polynomial Gi, for example G1.
So G2 should be a constant and the polynomial fn is absolutely irreducible.

To prove the last claim of the Theorem we observe that the coefficient at
X2n−2

n of the polynomial fn is just

Z2n−2

n fn(X1, . . . ,Xn−1,Xn/Zn),

when Zn = 0. One sees that

Z2n−2

n fn(X1, . . . ,Xn−1,Xn/Zn) =

ResX(fn−k(X1, . . . ,Xn−k−1,X), Z2k

n fk+2(Xn−k, . . . ,Xn/Zn,X)).

By induction the last resultant, when Zn = 0, is the resultant

ResX(fn−k(X1, . . . ,Xn−k−1,X), f2
k+1(Xn−k, . . . ,Xn−1,X))

which equals f2
n−1(X1, . . . ,Xn−1). This finishes the proof of the Theorem.
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Remark 1 In the case of characteristic 2 and 3 the same polynomial may be
introduced and computed in a similar way. So we omit this. Insted we give two
first summation polynomials f3 and f4 for the Koblitz elliptic curves, see [9],
defined over the finite field of two elements F2 by the equation

Y 2 + XY = X3 + aX2 + 1, (4)

where a = 0, 1. They are

f3(x1, x2, x3) = (x1x2 + x1x3 + x2x3)
2 + x1x2x3 + 1,

and

f4(x1, x2, x3, x4) =

(x1 + x2 + x3 + x4)
4 + (x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)

4 +

x1x2x3x4(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1 + x2 + x3 + x4)
2

(x1x2x3x4)
2(x1 + x2 + x3 + x4)

2 + (x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)
2

3 The Discrete Logarithm Problem

We return now to the discrete logarithm problem in E(Fp), where E is given
by (1) over the field Fp. We fix any natural number n ≥ 2. Let R = (x, y) =
l1P + l2Q in E(Fp) for random integers l1 and l2. Let’s consider the equation

fn+1(x1, . . . , xn, x) ≡ 0(mod p) (5)

in variables x1, . . . , xn. Very probably (5) has a solution x0
1, . . . , x

0
m, where x0

i

are integer numbers bounded by p1/n+δ for some small δ > 0 or x0
i are rational

numbers the numerator and the denominator of which are bounded by p1/(2n)+δ.
Imagine we have an algorithm able to find such a solution. It would imply we
are able to find the relation

(x0
1, y

0
1) + . . . + (x0

n, y0
n) = l1P + l2Q (6)

for some y0
1 , . . . , y0

n in Fp or in Fp2 . It isn’t important if some y0
i ∈ Fp2 \ Fp,

since the sum of all such points in (6) is an order 2 point on E. The relations
(6) may be combined with the relations

(x1, y1) + . . . + (xm, ym) = P∞

that would come from the equations

fm(x1, . . . , xm) ≡ 0(mod p) (7)

for m ≥ n if one could find them bounded by p1/n+δ. One should avoid trivial
solutions to (5) and (7) like x1, x1, x2, x2, . . . , xk, xk is always solution to (7)
when m = 2k. One needs about p1/n+δ nontrivial solutions to find the logarithm

5



of Q to the base P . So if the algorithm, finding a bounded solution to (5) and (7),
works in tp,n operations then the complexity of the discrete logarithm problem
in E(Fp) is essentially

tp,np1/n+δ + p2/n+2δ

operations. When n ≥ 5, even for some exponential tp,n, this amount may be
less than O(p1/2) provided by Pollard’s methods.

There exist modular multivariate polynomial equations a bounded solution
for which may be found in polynomial or low exponential time in the size of the
input. The exciting question arising here is whether or not it is true for (5) and
(7)?

Remark 2 The similar approach may be developed for the Koblitz curve E
defined by (4). To construct the index calculus algorithm for the discrete loga-
rithm problem in E(F2l) one should have an algorithm, working in polynomial
or low exponential time, for findind polynomials x1, x2, . . . , xn over F2 of de-
gree ≤ l/n + δ satisfing the equation fn+1(x1, x2, . . . , xn, x) ≡ 0 for a random
polynomial x modulo an irreducible polynomial of degree l over the field F2.
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